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1 Introduction

In this paper we provide a fully micro-founded, analytically tractable general equilibrium
macroeconomic model of neoclassical investment, production and the cross-sectional con-
sumption distribution in which the limits to insurance to idiosynchratic income risk are
explicitly derived from contractual frictions.

With this model we seek to integrate two foundational strands of the literature on
macroeconomics with household heterogeneity. The first strand has developed and applied
the standard incomplete markets model with uninsurable idiosyncratic income shocks and
neoclassical production, see Bewley (1986), Imrohoroglu (1989), Uhlig (1990), Huggett
(1993) and Aiyagari (1994). In that model, households can trade assets to self-insure
against income fluctuations, but these assets are not permitted to pay out contingent on
a household’s individual income realization, thereby ruling out explicit insurance against
income risk. The second branch is the broad literature on recursive contracts and endoge-
nously incomplete markets which permits explicit insurance but in which the extent of such
insurance is restricted by informational or contract enforcement frictions. Specifically, in
this paper we incorporate dynamic insurance contracts offered by competitive financial
intermediaries, as analyzed in Krueger and Uhlig (2006), into a neoclassical production
economy. Financial intermediaries can commit to long-term financial contracts, but house-
holds cannot.

As a result we make three contributions: one substantive, one methodological and one
technical in nature. On the substantive side, we provide a macroeconomic model with
household heterogeneity that links the accumulation of the aggregate capital stock in the
economy to the insurance provided by financial intermediaries to households. In practice,
capital held for financing insurance commitments is a substantial part of the capital stock.
In our model we make the arguably extreme assumption that this accounts for all of it.1

On the methodological side we fully analytically (as well as numerically) characterize a
dynamic optimal insurance model with one-sided limited commitment and production as
well as capital accumulation. On the technical side, we extend the discrete-time analysis
of recursive dynamic contracting problems in Marcet and Marimon (2019) to a continuous
time setting as well as establish the appropriate mathematical framework and key results,
see Appendix A and Online Appendices B, C and D.

1One can argue that models of the Aiyagari-Huggett-Uhlig variety also assume that insurance against
idiosyncratic income fluctuations accounts for the entire holdings of capital: agents with constant income and
the same discount factor would not accumulate capital and financial institutions are absent in these models.

1



In a seminal paper, Aiyagari (1994) analyzed an economy in which households self-
insure against idiosyncratic income fluctuations by purchasing shares of the aggregate cap-
ital stock. Variants of the model differ in the set of assets households can trade, but by
assumption agents do not have access to financial instruments that provide direct insurance
against the idiosyncratic income risk they face, despite the fact that such insurance would
be mutually beneficial, given the underlying physical environment. A large literature is now
building on that model to link microeconomic inequality to macroeconomic performance,
including applied policy (reform) analysis.2 Any analysis of welfare in such models then
necessarily comes with the caveat that households may already be able to do better for
themselves if only the model builder allowed them to do so. As parameters or policies
change, one may be concerned that these missing gains from trade shift, too.3 Alternative
general equilibrium workhorse models are therefore needed, in which households are al-
lowed to pursue all contractual possibilities, limited only by informational or commitment
constraints. The purpose of this paper is to provide one such alternative model.

The contractual friction in our model arises from the inability of households to commit
to future obligations implied by full-insurance risk sharing contracts. We postulate financial
markets in which perfectly competitive intermediaries offer long-term insurance contracts
to households. These financial intermediaries receive all incomes from a customer that
has signed a contract, and can commit perfectly to future state-contingent consumption
payments. Competition among intermediaries implies that the present discounted value of
profits from these contracts is zero at the time of contract signing. The crucial friction that
prevents perfect consumption insurance in the model is that households, at any moment,
can costlessly switch to another intermediary, signing a new contract there. That is, we
model relationships between financial intermediaries and private households as long-term
contracts with one-sided limited commitment: the intermediary is fully committed, the
household is not. This structure of financial markets is identical to the one assumed in the
discrete-time, partial equilibrium model of Krueger and Uhlig (2006), which in turn builds
on the seminal work of Harris and Holmstrom (1982), Thomas and Worrall (1988), Kehoe
and Levine (1993, 2001), Phelan (1995), Kocherlakota (1996) and Alvarez and Jermann
(2000), and in economies with storage, by Abraham and Laczo (2018).

In our previous paper, and in accordance with the contract theory literature, we showed

2See surveys by Heathcote, Storesletten and Violante (2011) and Krueger, Mitman and Perri (2016, 2017).
3A recent and general approach to assessing welfare consequences in models with heterogeneous agents

is contained in Dàvila and Schaab (2022b)
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that the one-sided limited commitment friction induces contracts with payments from the
household to the intermediary that are front-loaded: when income is high, the household
effectively builds up a stock of savings with the intermediary, which then finances the in-
surance offered by the intermediary against low income realizations down the road. In this
paper we embed these contracts and the implied asset demand by the intermediaries in a
neoclassical production economy, as in Aiyagari (1994). The contractual savings implied
by back-loaded insurance contracts fund the aggregate capital stock of the economy. Fi-
nancial intermediaries buy shares of the capital stock to finance their future liabilities from
the insurance contracts they have signed with households. Aggregate capital itself is ac-
cumulated and used together with inelastically supplied labor in an aggregate neoclassical
production function by a competitive sector of production firms.

Households supply labor inelastically to these firms, but as in Bewley (1986), Imro-
horoglu (1989), Uhlig (1990), Huggett (1993) and Aiyagari (1994), their labor productiv-
ity and thus earnings are subject to idiosyncratic risk. This risk induces household insur-
ance needs and thus generates a savings motive, which in turn finances the capital stock.
Our model therefore provides a third (and intermediate) alternative neoclassical production
economy with capital, relative to the self-insurance framework of Aiyagari (1994) and the
full-insurance (representative agent) framework.

As a methodological innovation to the limited commitment general equilibrium litera-
ture we describe our model in continuous time. This is useful since an optimal insurance
contract is akin to an optimal stopping problem, and the use of continuous time avoids inte-
ger problems (the optimal stopping time falling in between two periods) that arise in a dis-
crete time setting. In order to obtain our sharp analytical characterization of the equilibrium
for a full understanding of the forces at work, we focus on the case where households have
logarithmic utility and labor productivity can take only two values, one of which is zero.
For this case, we provide a complete analytical characterization of the optimal consumption
insurance contract as well as the stationary consumption distribution. Under restrictions on
the parameters, we show that there is a unique equilibrium that features partial consump-
tion insurance. We provide explicit closed-form expressions for this equilibrium, including
the steady-state capital stock and its rate of return. The stationary consumption distribu-
tion is also available in closed form, and we show that this distribution has a Pareto form,
truncated by an upper mass point. Comparative statics with respect to the deep parameters
of the model (and, specifically, the parameters determining income risk, preferences and
production technologies) deliver unambiguous results. We submit that this full analytical
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characterization of a stationary equilibrium is an additional, attractive benefit of our model,
and a welcome methodological advance, noting that Aiyagari-type models (as standard
limited commitment economies with a continuum of households, as in Krueger and Perri,
2006) and Broer, 2013) typically require numerical solutions.

Our results complement work on and provide a foundation for understanding proper-
ties of richer structures, which one may confront directly with the data, but are likely to
be less tractable. The paper shares that ambition with the characterization of the two-state
continuous-time Aiyagari model in Achdou et al. (2022). Like us, they aim for a deeper
understanding of these models rather than an empirically appealing quantification. As here,
they characterize the equilibrium by two differential equations: one governing the optimal
solution of the consumption insurance problem, and one characterizing the associated sta-
tionary distribution. They derive an analytical characterization of the wealth distribution,
given the savings function. While the latter cannot be characterized analytically there,
we achieve complete characterization in this paper, and thus can proceed all the way to
provide closed-form solutions for all equilibrium objects. Methodologically, the papers
complement each other by characterizing equilibria in the same physical environment, but
under two fundamentally different market structures.

In principle, contracts can depend on the entire history up to the present. As a tech-
nical innovation, we thus provide a mathematical framework and appropriate language to
describe histories and measurability in continuous time (see Online Appendix C) and then
proceed to expand the discrete-time analysis of recursive dynamic contracting problems in
Marcet and Marimon (2019) to a continuous time setting (see Appendix A.1 and Online
Appendix D.2). This is in contrast to the recursive representation with current capital and
productivity as the state space in Achdou et al. (2022).4 We show how to study expected
payoffs by splitting the future into parts without a state change as well as the first state
change, and use it to establish a number of non-trivial properties as well as the Hamilton-
Jacobi-Bellman equations, see Appendix A.4 and Online Appendices D.4 and D.5. While
tailored to the specific environment at hand, these techniques should prove considerably
useful beyond the model studied here. A road map to these technical contributions is in
Online Appendix B.

4We derive rather than assume a state space representation, and establish key properties without it.
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1.1 Relation to the Literature

As discussed above, our broad aim in this paper is to connect the dynamic contracting liter-
ature with income risk and limited commitment to the quantitative general equilibrium lit-
erature in macroeconomics. Our dynamic limited commitment risk sharing contract model
builds on the theoretical work characterizing optimal contracts in such environments. Es-
pecially relevant is the subset of the literature that has done so in continuous time.

As highlighted above, the paper by Achdou et al. (2022) is most closely related to
our work. Zhang (2013) studies a consumption insurance model with limited commitment
similar to that in Krueger and Uhlig (2006), but permits income to be a serially corre-
lated finite state Markov chain, rather than a sequence of iid random variables. He also
allows the household’s outside option to be a general function of the current income state,
rather than simply autarky. The author derives the optimal consumption insurance contract.
Grochulski and Zhang (2012) characterize the optimal contract in continuous time, under
the assumption that the market return equals the discount rate, the outside option is autarky,
and the income process follows a general geometric Brownian motion. The work by Miao
and Zhang (2015) shares related results with Grochulski and Zhang (2012).

Like us, Dàvila and Schaab (2022a) generalize Marcet and Marimon (2019) to continuous-
time heterogeneous-agent settings, but in a rather different context. They introduce “time-
less penalties” in order to analyze Ramsey optimal policies. Our explicit derivation of the
cumulative Lagrange multipliers complements their formulation and can aid in providing a
foundation. Overall, our approach is related in spirit to recent approaches such as Achdou
et al (2022), Alvarez and Lippi (2022) and Alvarez, Lippi and Souganidis (2022) who ex-
plicitly characterize equilibrium quantities by pushing far the analytics of aggregating the
continuous-time dynamics of heterogeneous actors and exploring mean field games.

Turning to general equilibrium treatments, in the context of the sovereign debt and de-
fault literature, Hellwig and Lorenzoni (2009) and the generalization in Martins-da-Rocha
and Santos (2019) consider an endowment economy, in which two agents optimally share
their risky income stream over time, subject to contractual constraints. The market return
in their economy is shown to be zero under appropriate assumptions. Gottardi and Kubler
(2015) study an endowment economy with finitely many (types of) agents and complete
markets, but under the assumption that the short sales of the Arrow securities have have to
be collateralized. Default on debt results in the loss of the collateral, but as in our work
there is no additional punishment. The focus of their work is to study the existence and the
efficiency properties of equilibria in their model without capital. Although our focus is dif-
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ferent, the long-term risk-sharing consumption allocations we characterize and then embed
in a neoclassical production economy with capital accumulation can also be decentralized
as competitive equilibria in a model where households trade a full set of Arrow securities
and physical capital, and where the short sales of the Arrow securities have to be collater-
alized by capital, as in the market structure of Gottardi and Kubler (2015). We explore this
formulation in Ando, Krueger and Uhlig (2022) and Krueger, Li and Uhlig (2022).

On the applied side, there is now considerable evidence that individual consumption
smoothing is larger than what standard approaches of self-insurance via asset savings would
generate. In a benchmark contribution, Blundell, Pistaferri and Preston (2008) have shown
that there is a fairly low pass-through of income shocks to consumption. Using improved
methods and data as well as alternative approaches, their results have been largely con-
firmed by the more recent literature such as Arellano, Blundell and Bonhomme (2017),
Eika et al. (2020), Chatterjee, Morley and Sigh (2020), Braxton et al. (2021), Com-
mault (2021), and Balke and Lamadon (2022). Thus, alternatives to the conventional
self-insurance approach are needed. Our paper connects to this literature by allowing for
endogenously incomplete insurance against income risk.

One interpretation of the contractual arrangements of our paper is that of firms that
provide workers with long-term employment-wage contracts. A recent literature, building
on the work of Harris and Holmstrom (1982), emphasizes that firms provide insurance to
its workers against idiosyncratic productivity fluctuations. Lamadon (2016) and Balke and
Lamadon (2022) have calculated the optimal within-firm insurance mechanism, in the pres-
ence of a variety of sources of risk, including firm-specific risk, worker productivity risk
and unobservable effort. Guiso, Pistaferri and Schivardi (2005) also argue, empirically, that
the insurance of worker productivity by firms is an important mechanism to insulate work-
ers from idiosyncratic shocks. Finally, Saporta-Eksten (2014) shows that wages are lower
after a spell of unemployment, which he interprets as a loss in productivity. In the context
of our model this observation can also be rationalized as part of the optimal consumption
insurance contract, in the event that the productivity of the worker has dropped temporarily.

In Section 2 we set out the model, and Section 3 characterizes the optimal risk-sharing
contract. Section 4 derives the associated stationary consumption distribution and Section
5 characterizes the stationary general equilibrium. We contrast this stationary equilibrium
with one emerging in the standard incomplete markets model in Section 6. Section 7 dis-
cusses the possibility of multiple stationary equilibria when we depart from log-utility.
Section 8 concludes. The Appendix and Online Appendices provide the formal analysis.
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2 The Model

2.1 Preferences and Endowments

Time is continuous. There is a population of a continuum of infinitely lived agents of mass
1. Agents have a strictly increasing, strictly concave and twice continuously differentiable
period utility function u : IR++ → IR and discount the future at rate ρ > 0. Expected
lifetime utility of a newborn household is given by

E

[∫ ∞
0

e−ρtu(c(t))dt

]
.

For our analytical results, we impose that

u(c) = log(c)

Labor productivity zit of an individual agent i at time t is assumed to follow a two-
state Markov process that is independent across agents. Productivity can be either high,
zit = ζ > 0 or zero zit = 0. Let Z = {0, ζ}. The transition from high to low productivity
occurs at rate ξ > 0, whereas the transition from low to high productivity occurs at rate
ν > 0. Since labor income will equal labor productivity times a common wage w for each
household, we will use the terms (labor) productivity and income interchangeably.5

Given the stochastic structure of the endowment process, the share of households with
low and high income is equal to

(ψl, ψh) =

(
ξ

ξ + ν
,

ν

ξ + ν

)
We assume that newborn households draw their productivity from the stationary income
distribution and that the average labor productivity in the economy is equal to 1. Thus we
assume that

ν

ξ + ν
ζ = 1. (1)

5We assume that households with low labor productivity also have some nontradable endowment χ > 0
that they can consume if they do not sign up for a consumption risk-sharing contract. This assumption avoids
the complication that individuals who initially have not yet received the high income realization at least once
and thus will not be provided with consumption insurance (as we will show) are forced to consume 0. Denote
the utility from consuming the nontradable endowment by u = u(χ) > −∞. In the steady-state equilibrium
the mass of these individuals will be zero, of course, and thus this assumption is irrelevant for the remainder
of this paper focusing on long-run stationary equilibria.
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2.2 Technology

There is a competitive sector of production firms that uses labor and potentially capital to
produce the final output good according to the Cobb-Douglas production function

AF (K,L) = AKθL1−θ.

where θ ∈ (0, 1) denotes the capital share. Production firms seek to maximize profits,
taking as given the market spot wage w per efficiency unit of labor and the market rental
rate per unit of capital. Capital accumulation is linear and depreciates at rate δ. There is a
resulting equilibrium rate of return or interest rate r for investing in capital. We dropped the
subscript t to economize on notation, since we shall concern ourselves only with stationary
equilibria in which aggregate variables are constant.

There is a competitive sector of risk-neutral intermediaries who seek to maximize prof-
its. Agents seek to insure themselves against these income fluctuations with financial in-
termediaries. However, the commitment is one-sided only: while the intermediary can
commit to the contract for the entire future, agents are free to leave the contract at any time
they please without punishment and sign up with the next intermediary. Intermediaries
compete for agents, and do not have resources on their own. Similar to Krueger and Uhlig
(2006), these assumptions will imply that newborn agents will have to wait until the first
time they receive the high income before signing an insurance contract. They then provide
their chosen intermediary with a stream of “insurance premium payments”while in the high
income state, to finance subsequent payments for a potential “dry spell” of low productiv-
ity, until they transit to high income again. We assume that the law of large numbers applies
to each individual intermediary or, alternatively, that there is full mutual insurance among
intermediaries, so that intermediaries are not exposed to any risk The intermediaries invest
the premium payments in capital and therefore discount future streams of payments and
incomes at the rate of return r on capital.

2.3 Timing of Events

At time zero, a newborn household first draws labor productivity z from the stationary in-
come distribution and then signs a long-term consumption insurance contract with one
of the many competing financial intermediaries, delivering lifetime utility U out(z). At
any subsequent instant t > 0, first the current labor productivity z is realized from the
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household-level Markov process. The household then has the option of sticking with its
current intermediary or signing up with another intermediary, in the latter case receiving a
contract delivering lifetime utility U out(z). Consumption is then allocated to the household
according to the consumption insurance contract this household has signed.

2.4 Stationary Equilibrium

Intermediary contracts promise some lifetime utility U for the household from delivering
a stochastic stream of future consumption. Given U and the current labor productivity
z of the household, the profit maximization objective of intermediaries is equivalent to
minimizing the net present value V (z, U) of the contract costs, i.e., to minimize the net
present value of the difference between the household’s stream of consumption and its
income. The income is given by the labor productivity z (τ) at future dates τ multiplied
by the wage w. It will likewise be convenient to scale consumption by the wage level. In
slight abuse of notation, let c (τ)w denote the consumption of the household at date τ . It
is an adapted process, that is, it may depend on events known at date τ . In particular, it
will depend on the history of the productivity process z(s), s ≤ τ for that agent, up to and
including τ . In Online Appendix C, we provide precise notation to express this history
dependence, but skip it in the main text for ease of notation. In designing the contract, the
intermediary needs to take into account that the household will leave whenever residual
lifetime utility drops below the outside option U out(z) that is available to the agents when
signing a new contract with a competing intermediary.

Definition 1. For fixed outside options U out(z), with z ∈ Z, a starting date t and a fixed

wagew and rate of return on capital or interest rate r, an optimal consumption insurance
contract c(τ ; z, U) and the cost function V (z, U) solve

V (z, U) = min
〈c(τ)〉≥0

E

[∫ ∞
t

e−r(τ−t) [wc(τ)− wz(τ)] dτ

∣∣∣∣ z(t) = z

]
subject to the promise-keeping constraint

E

[∫ ∞
t

e−ρ(τ−t)u(wc(τ))dτ

∣∣∣∣ z(t) = z

]
≥ U (2)
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and the limited commitment constraints

E

[∫ ∞
s

e−ρ(τ−s)u(wc(τ))dτ

∣∣∣∣ z(s)

]
≥ U out(z(s)) for all s > t (3)

for all τ ≥ t, for all z ∈ Z and all U ∈
[
U out(z), ū

ρ

)
.

Note that the stationary structure of the model ensures that the optimal consumption
insurance contract does not depend on calendar time, but rather only on the income z with
which the household starts the contract. Moreover, there will never be a reason to leave
the current contract and take the outside option, restarting a contract at some particular
date. For the equilibrium definition, we therefore implicitly confine ourselves to contracts
starting at date t = 0.

Definition 2. A stationary equilibrium consists of outside options {U out(z)}z∈Z , consump-

tion insurance contracts c(τ, z, U) : R+ × Z ×
[
U out(z), ū

ρ

)
→ R+ and V : Z ×[

U out(z), ū
ρ

)
→ R, an equilibrium wage w and interest rate r and a stationary consump-

tion probability density function φ(c) such that

1. Given {U out(z)}z∈Z and r, the consumption insurance contract c(τ, z, U), V (z, U)

is optimal in the sense of definition 1.

2. The outside options lead to zero profits of the financial intermediaries: for all z ∈ Z

V (z, U out(z)) = 0.

3. The interest rate and wage (r, w) satisfy

r = AFK(K, 1)− δ (4)

w = AFL(K, 1) (5)

4. The goods market clears ∫
wcφ(c)dc+ δK = AF (K, 1). (6)
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5. The capital market clears

w
[∫
cφ(c)dc− 1

]
r

= K (7)

6. The stationary consumption probability density function is consistent with the dy-

namics of the optimal consumption contract as well as the stochastic structure of

birth and death in the model.

Several elements of this definition are noteworthy. The first two items formalize the no-
tion that financial intermediaries compete for households by offering optimal consumption
insurance contracts (item 1), and that their profits are driven to zero by perfect competition
(item 2). These equilibrium requirements are identical to those in the endowment economy
of Krueger and Uhlig (2006), but accounting for the fact that the current model is cast in
continuous time. Whereas item 3 contains the standard optimality conditions of the repre-
sentative production firm, the statement of the capital market clearing condition (7), as well
as the inclusion of both the capital market clearing condition and the goods market clearing
condition (6) require further discussion.

In the capital market clearing condition (7), the right-hand side K = Kd is the demand
for capital by the representative firm. The numerator on the left-hand side is the excess
consumption, relative to labor income, of all households, that is, the capital income required
to finance the consumption that exceeds labor income. Dividing by the return to capital r
gives the capital stock that households, or financial intermediaries on behalf of households,
need to own to deliver the required capital income. Thus we can think of

Ks =
w
[∫
cφ(c)dc− 1

]
r

(8)

as the supply of capital by the household sector, intermediated through financial markets
by the intermediaries. By restating the capital market clearing condition as

Ks(r) = Kd(r)

where Ks(r) is defined in (8) and Kd(r) is defined through (4) we can provide a graphical
analysis of the existence and uniqueness of the stationary equilibrium in the (K, r) space,
analogously to the well-known figure from Aiyagari (1994) for the standard incomplete
markets model.
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Finally, we note that as long as r 6= 0, the usual logic of Walras’ law applies and one of
the two market clearing conditions is redundant. To see this, note that the right-hand side
of equation (6) can be written as

AF (K, 1) = AFL(K, 1) + AFK(K, 1)K

and from equations (4) and (5) it follows that

AF (K, 1) = w + (r + δ)K.

Using this in equation (6) and rearranging implies, for r 6= 0, the capital market clearing
condition (7). Thus for all r 6= 0 we can use either of the market clearing conditions
in our analysis. The case r = 0, however, will require special attention, and we will
argue in Section 5 that even though the goods market clears for r = 0 under fairly general
conditions, the capital market generically does not, indicating that a) r = 0 is generically
not a stationary equilibrium interest rate and b) at r = 0 we need to study both the goods
and the capital market clearing conditions when analyzing a stationary equilibrium.

In order to do so, in the next sections we now aim to characterize the entire steady-state
equilibrium, including the stationary consumption distribution whose cumulative distribu-
tion function we denote by Φ (with associated probability density function φ). First, we
characterize the optimal consumption contract under various assumptions on the relation-
ship between the constant interest rate r and the constant time discount rate ρ of the house-
hold. Then we discuss aggregation and the equilibrium determination of interest rates.

3 The Optimal Risk-Sharing Contract

The nature of the optimal consumption insurance contract depends crucially on the re-
lationship between the subjective time discount factor ρ and the endogenous stationary
equilibrium interest rate r. We discuss the relevant cases in turn. First, we discuss the case
r = ρ, which will deliver a sharp and very simple characterization of the optimal con-
sumption contract that features full consumption insurance of the household after the first
instance of having received high income. We then analyze the case r < ρ, which will result
in partial consumption insurance, the relevant case for the general equilibrium of the model
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in a wide range of model parameterizations.6. We shall examine the range r ∈ (−δ, ρ] for
the equilibrium interest rate. In order to ensure that capital supply is well defined over that
range, we need the following assumption (see Online Appendix E.1.1).7

Assumption 1.
ξ > δ (9)

The key property of the optimal contract is that the limited commitment constraint is
binding for individuals with high productivity z = ζ , whereas the constraint is slack for
low-productivity agents and a standard complete markets Euler equation holds. For this
characterization, the following useful and intuitively appealing result is crucial. It says that
intermediaries have to offer, in equilibrium, a contract to high-productivity individuals that
yields higher lifetime utility than the one for low-productivity agents.

Lemma 1.
U out(ζ) > U out(0) (10)

The proof is in Appendix A.3 and Online Appendix E.1. The key idea of the proof is that
an agent with currently high productivity (and thus with higher expected lifetime income
transferred to the intermediary) can be provided with the contract of the low-productivity
agent, delivering the same utility and a profit to the principal, a contradiction to perfect
competition between (and, thus, zero profits of) the intermediaries.8

3.1 Full Insurance in the Long Run: ρ = r

We first characterize the optimal consumption insurance contract under the assumption
r = ρ, and for productivity z = ζ and outside option U out(ζ)), and then discuss the
relevance of other (z, U) combinations. A visual representation is provided in the left
panel of Figure 1.

6In our model we cannot a priori exclude the possibility of equilibria in which the real interest rate exceeds
the household time discount factor, and we analyze the optimal consumption contract under the assumption
that r > ρ, a case we call superinsurance, in Online Appendix G. There we also argue that this case cannot
result in a stationary general equilibrium.

7Ultimately, we only need that the equilibrium interest rate r∗ calculated in (36) satisfies r∗ > −ξ. The
exposition of the theory is more transparent with the stronger assumption in equation (9), though.

8The details of the construction of the contract are subtle and require the construction of a three-state
stochastic process in order to make starting a contract in the high and the low productivity state formally
comparable. There we also describe how the three-state process generates the two-state process z(s) assumed
throughout the main body of the paper.
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Figure 1: These two figures show the implied path for the optimal contract consumption,
given a sample path for productivity. If the agent always had (near) zero income in the past,
the agent will also consume (near) zero. Upon the first instance of high productivity, the
agent signs a long-term contract, surrendering part of his current income for consumption
insurance in the future. When r = ρ as in the left panel, consumption is then constant
forever. While productivity is high, consumption is also constant for r < ρ as shown in the
right panel, since an otherwise optimally declining consumption path would lead agents
to abandon the current contract and sign up with a new intermediary at a higher starting
consumption amount. When productivity switches to zero, consumption follows a standard
continuous-time Euler equation. These properties are established in Lemma 2.

Proposition 1. Suppose that ρ = r. In that case, the household consumes the nontradable

endowment cl = χ as long as zit = 0, and signs a consumption contract that has constant

consumption ch =
(

ρ+ν
ρ+ν+ξ

)
ζ and remains there forever the instant labor productivity rises

to ζ . Households born with income ζ immediately sign a contract and consume ch forever.

The formal proof is in Online Appendix E.2.1; here we give a heuristic derivation of the
main components of the contract. To do so, in what follows, let the wage-deflated cost of
the consumption insurance contracts be denoted by v = V/w. As further shorthand, denote
as

vl = V (0, U out(0))/w

vh = V (z, U out(ζ))/w

and let vhl denote the wage-deflated cost of a contract for the financial intermediary in
which the household had high income in some previous periods (and thus currently con-
sumes ch) but currently has productivity z = 0 and, thus, no labor income.
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Generally per Proposition 12 in Appendix A.4 or specifically per Corollary 3 in Online
Appendix E.2.1, the flow costs of the financial intermediary satisfy the Hamilton-Jacobi-
Bellman equations

rvl = cl + ν(vh − vl)

rvh = ch − ζ + ξ(vhl − vh)

rvhl = ch + ν(vh − vhl)

Due to perfect competition of financial intermediaries (item 2 of the equilibrium definition)
vh = vl = 0. Using this in the above equations to solve for (cl, ch, vhl) and imposing r = ρ

delivers:

cl = 0 (11)

ch =

(
ρ+ ν

ρ+ ν + ξ

)
ζ = ch(ρ) (12)

vhl =
ch

ρ+ ν
=

(
1

ρ+ ν + ξ

)
ζ (13)

Thus the optimal risk-sharing contract collects a net insurance premium

ζ − ch =

(
ξ

ρ+ ν + ξ

)
ζ

from households with high income realizations and uses it to pay consumption insurance
ch to those households that have obtained insurance (those with previously high income
realizations) and have currently low income. The expected net present discount value of this
insurance, recognizing that with Poisson intensity ν the household receives high income
and leaves the current insurance spell, is given by vhl in equation (13).

3.2 Partial Insurance: r < ρ

We now characterize the optimal consumption contract when r < ρ. A visual representa-
tion is provided in the right panel of Figure 1.

Proposition 2. Suppose r < ρ and

u(c) = log(c) (14)
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1. Whenever a household has high productivity, it consumes a constant wage-deflated

amount ch =
(

ρ+ν
ρ+ν+ξ

)
ζ.

2. When productivity switches to 0, consumption is continuous and subsequently drifts

down according to the full-insurance Euler equation

ċ(t)

c(t)
= r − ρ < 0 (15)

3. Let τ denote the time elapsed since productivity last switched from z = ζ to 0. Then,

c(τ) = che
(r−ρ)τ (16)

Equation (15) follows from (55) for the log-case σ = 1. Note that the proposition
implies that consumption jumps back up to ch upon a switch to high productivity, a property
established in the key lemma 2. The complete proof for a more general utility function
including the CRRA case, is in Online Appendix E.2.2.

We now again heuristically derive this result for logarithmic period utility. By perfect
competition, contract costs are zero when entering the contract with high income, vh = 0,

and similarly for entering the consumption contract with low income, vl = 0. Denote by
τ the time elapsed since having had the high productivity and by vhl(τ) the remaining
wage-deflated costs of the contract, at that point. Asymptotically, consumption c(τ) con-
verges to cl = 0, as τ → ∞ and as long as no switch back to high productivity occurs.
Generally per Proposition 12 in Appendix A.4 or specifically per Corollary 4 in Online
Appendix E.2.2, the Hamilton-Jacobi-Bellman equations characterizing the wage-deflated
costs in the high-productivity state, the low-productivity state prior to having had a high-
productivity realization, and after time τ since having had high productivity read as

rvh = ch − ζ + ξ(v(0)− vh) (17)

rvl = cl + ν(vh − vl) (18)

rvhl(τ) = c(τ) + ν(vh − vhl(τ)) + v̇hl(τ) (19)

with terminal condition
vhl(∞) = vl = 0.

Simplifying equations (17) to (19) again delivers cl = 0. As before cl = 0, and individ-
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uals with initially low income do not obtain any consumption insurance in the risk-sharing
contract. Insurance would require prepayment by the insurance company, and perfect com-
petition plus limited commitment on the household side implies that this prepayment cannot
be recouped later. The other two equations simplify to

ξvhl(0) = ζ − ch (20)

(r + ν)vhl(τ) = c(τ) + v̇hl(τ) (21)

The first equation states that in the case of high income, the household, as before in the
case where r = ρ, pays an insurance premium ζ − ch that has to compensate the financial
intermediary for the cost incurred during the low-income spell in which the losses for the
intermediary amount to vhl(0). This equation relates the two endogenous variables ch and
vhl(0) to each other.

Equation (21) is a linear ordinary differential equation and can be integrated using the
consumption path in (16) to obtain

vhl(τ) =
c(τ)

ρ+ ν
=
che

(r−ρ)τ

ρ+ ν
(22)

This result can be verified by differentiating (22) and verifying that it solves equation (21).
Additional details and results for the general CRRA case are provided in Online Appendix
E.2.2.

We can evaluate (22) at t = 0 to obtain9

vhl(0) =
ch

ρ+ ν
(23)

The optimal consumption path drifts downward at rate r−ρ from ch toward cl = 0. Thus the
entry consumption level ch fully characterizes the consumption contract. Using equation
(20) to substitute out vhl(0) in equation (23) delivers this consumption level as

ch =

(
ρ+ ν

ρ+ ν + ξ

)
ζ (24)

exactly as (12) in the full-insurance case. Notably, for logarithmic utility ch only depends

9Note that this cost v(0) is the counterpart to the insurance cost in equation (13) for the full-insurance
case; if r = ρ then v(0) = vhl where vhl was defined in (13).
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on exogenous parameters, but not the equilibrium interest rate r < ρ. This makes the
log-case especially tractable and does not hold true for general CRRA period utility.

We summarize the optimal consumption contract for the full-insurance and the partial-
insurance cases and for log utility in the following proposition.

Proposition 3. If r ≤ ρ and u(c) = log(c), then there exists a unique consumption level

ch =

(
ρ+ ν

ρ+ ν + ξ

)
ζ =

(
1

1 + ξ
ρ+ν

)
ζ = ch(ρ)

with the following properties:

1. Agents with currently high productivity receive the wage-deflated consumption ch.

2. Agents with currently low productivity, who switched from high productivity τ peri-

ods ago, receive the wage-deflated consumption

c(t) = che
(r−ρ)τ

3. ch is independent of the interest rate r, proportional to ζ , strictly decreasing in ξ and

strictly increasing in ρ+ ν.

Individuals who never had high income consume the nontradable endowment cl = χ until

the first occurrence of high income and then sign the consumption risk-sharing contract.

The proof is provided through the calculations above. Proposition 18 in Online Ap-
pendix E.2.2 provides the generalization to the CRRA case.10

4 The Invariant Consumption Distribution

In the previous section we have shown that the optimal consumption insurance contract
depends on the relationship between the endogenous market interest rate r and the subjec-

10Note that the expected present discounted value of the cost of the consumption contract is always finite
as equation (22) reveals. That the expected present discounted value of the revenue from the first phase of
the contract (when the agent has high productivity but consumes ch < ζ) remains finite requires that r > −ξ,
but this will be ensured with Assumption 1 in equilibrium.

Finally, note that optimal insurance contracts can also be characterized for the case in which the interest
rate exceeds the time preference rate. Online Appendix G argues that the optimal consumption contract has
the same features as the one for full insurance, but that consumption grows at rate r − ρ > after the first
time productivity turns high. We show in the Online Appendix that in this case no stationary consumption
distribution with finite aggregate consumption exists.
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tive discount factor ρ, which determines whether the contract is characterized by full or
partial consumption insurance. The risk-sharing contract in turn determines the long-run,
stationary consumption distribution, which we now derive.

4.1 Full Insurance in the Long Run: ρ = r

In this case, the optimal consumption contract has only two consumption levels, cl = 0 and
ch, as characterized in Section 3.1. Since individuals flow out of cl at positive rate ν and
there is no inflow to this consumption level, the stationary consumption distribution places
all mass φh = 1 on ch; in the long run, consumption of all individuals is constant at ch.

4.2 Partial Insurance: r < ρ

In Section 3.2 we characterized the optimal consumption contract under the parametric
restriction that r < ρ. We showed that all households with high income consume ch =(
ρ
r
· r+ν
r+ν+ξ

)
ζ, independent of the interest rate. Thus the stationary consumption distribu-

tion has a mass point at ch with mass φ(ch) = ν
ν+ξ

.

Households with currently low income have a consumption process that satisfies

ċ(t) = (r − ρ)c(t). (25)

Finally, since there is positive outflow out of consumption level cl = 0 at rate ν and no
inflow, the invariant consumption distribution has no second mass point at cl.

Proposition 4. On (0, ch) the stationary consumption distribution satisfies the Kolmogorov

forward equation or Fokker-Planck equation

0 = −d [(r − ρ)cφ(c)]

dc
− νφ(c) (26)

Proof. The easiest way to see this is to note that the equation is the Kolmogorov forward
equation for a drift-diffusion process with negative drift (r − ρ)c and zero diffusion (see
Theorem 2.8 in Pavliotis (2014) or equation (3.40) in Stokey, 2009), and thus for the process
(25), if there were no jumps. The second term then arises from the fact that the household
switches to high income with Poisson intensity ν. Alternatively, this is a version of equation
(8) in Achdou et al. (2022).
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Since
d [(r − ρ)cφ(c)]

dc
= (r − ρ) [φ(c) + cφ′(c)]

we find that on c ∈ (0, ch) the stationary distribution satisfies

(ρ− r) [φ(c) + cφ′(c)] = νφ(c)

and thus
cφ′(c)

φ(c)
=

ν

ρ− r
− 1.

Thus on this interval the stationary consumption distribution is Pareto with tail parameter
ν
ρ−r − 1, that is

φ(c) = φ1c
( ν
ρ−r−1)

where φ1 is a constant that is determined by the requirement that the stationary consump-
tion distribution integrates to the share ξ/(ν + ξ) of zero productivity households over the
interval c ∈ (0, ch). A straightforward calculation delivers:

Proposition 5. For any given r < ρ, the stationary consumption distribution is given by a

mass point at ch of mass ν/(ν + ξ) and a Pareto density below this mass point,

φr(c) =

{
ξν(ch)

− ν
ρ−r

(ρ−r)(ν+ξ)
c

ν
ρ−r−1 if c ∈ (0, ch)

ν
ν+ξ

δδδch if c = ch

where δδδch indicates a Dirac mass point at ch.

Aside from ρ and ch, the shape of the consumption probability function for zero pro-
ductivity depends on ν, which governs the hazard rate of moving to high productivity, the
ratio ν/ξ of the two exit rates as well as the interest rate r. Figure 2 shows three examples
when r is varied and all other parameters are held constant. The growth rate of the pdf is
given by

d log φr(c)

d log c
=

ν

ρ− r
− 1

We therefore have the following corollary.

Corollary 1. If ν < ρ− r, then the pdf is strictly decreasing in c. If ν > ρ− r then the pdf

is strictly increasing in c. If ν ∈ (ρ − r, 2(ρ − r)), then the pdf is strictly increasing and

strictly concave in c. Finally, if ν > 2(ρ− r) then the pdf is strictly increasing and strictly

convex in c.
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Figure 2: Consumption distributions as stated in Proposition 5 for three different values of
r, when ρ = 0.05, ν = 0.05 and ξ = 0.04. There is a mass point at the same ch ≈ 1.3
of mass ≈ 0.56 independent of r (see equation (24)) and indicated by a black square. For
zero productivity, consumption has a density that depends on r. Corollary 1 informs us
about the shape. For r = 0, we have ν = ρ − r and the density is flat. For r = 0.02,
ρ− r < ν < 2(ρ− r), and the density is strictly concave. For r = 0.04, ν > 2(ρ− r) and
the density is strictly convex.

5 General Equilibrium: Market Clearing Interest Rate r

In equilibrium, the goods market clearing condition (6) and the capital market clearing
condition (7) have to hold and these are the remaining equations to satisfy. By Walras’ law,
the latter implies the former. We proceed by parameterizing both sides of these equations
and hence demand and supply for capital and consumption goods with the equilibrium
interest rate r. It will be convenient to always divide by the equilibrium wage w = w(r).

5.1 Supply of Consumption Goods and Demand for Capital

The supply of consumption goods and the demand for capital can be derived in a straight-
forward fashion from the production side of the economy. Exploiting the production
first-order conditions (4) and (5) and as in Aiyagari (1994) we can express aggregate
demand for capital and the wage as a function of the interest rate, K = Kd(r) and
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w = w(r) = AFL(Kd(r), 1). Define the capital demand normalized by the wage, as

κd(r) =
Kd(r)

w(r)

and the consumption goods supply, normalized by the wage, as

G(r) =
AF (Kd(r), 1)− δKd(r)

w(r)

The following result then immediately follows from straightforward calculations (see On-
line Appendix E.3):

Proposition 6. Let the production function be of the form

Y = AKθL1−θ.

Then

G(r) = 1 +
θr

(1− θ) (r + δ)
(27)

κd(r) :=
Kd(r)

w(r)
=

θ

(1− θ)(r + δ)
(28)

The functions G(r), κd(r) are continuously differentiable on r ∈ (−δ,∞), and G(r) is

strictly increasing, with limr↘−δ G(r) = −∞, G(r = 0) = 1 and limr↗∞G(r) = 1 +
θ

1−θ and κd(r) is strictly decreasing, with limr↘−δ κ
d(r) = ∞, κd(r = 0) = θ

(1−θ)δ and

limr↗∞ κ
d(r) = 0.

5.2 Demand for Consumption Goods and Supply of Capital

Aggregate consumption, normalized by the aggregate wage w, is

C(r) =

∫
cφr(c)dc (29)

where φr was calculated explicitly in Section 4. Aggregate consumption in excess of total
wage earnings is financed by returns on capital. Define capital supply, normalized by wage,
as κs(r) = Ks(r)/w(r). Per the left-hand side of the capital market clearing condition (7),
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it is given by

κs(r) =
C(r)− 1

r
(30)

For r = 0, we need to determine κs(0) through an application of L’Hopital’s rule.
In the case of r = ρ and thus full insurance, the invariant consumption distribution puts

unit mass on consumption ch given by (12). Substituting out ζ in equation (12) per the
normalization in equation (1), the wage-normalized aggregate consumption demand and
the wage-normalized aggregate capital supply in the case of r = ρ are

C(ρ) = ch = 1 +
ρξ

ν(ν + ρ+ ξ)
(31)

κs(ρ) := κFI =
ξ

ν(ν + ρ+ ξ)
(32)

In the case of r < ρ, there is partial insurance. After tedious algebra (see Online
Appendix E.4), we obtain

C(r) = 1 +
rξ

(ν + ρ− r)(ν + ρ+ ξ)
(33)

κs(r) =
ξ

(ν + ρ− r) (ν + ρ+ ξ)
(34)

The next proposition is proved in Online Appendix E.4 and summarizes useful properties
of the capital supply function.

Proposition 7. The capital supply function κs(r) is continuously differentiable and strictly

increasing on r ∈ [−δ, ρ), with

κs(−δ) =
ξ

(ν + ρ+ δ) (ν + ρ+ ξ)
<∞ and lim

r↗ρ
κs(r) = κFI .

5.3 Characterization of the Equilibrium and Comparative Statics

There is a unique time discount factor ρFI such that capital demand (28) equals full-
insurance capital supply (32). It satisfies

θ

(1− θ)(ρFI + δ)
=

ξ

ν(ν + ρFI + ξ)
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In that case, consumption supply (27) is equal to full-insurance consumption demand (31).
The following assumption will ensure the existence of a unique equilibrium:

Assumption 2. Let the exogenous parameters of the model satisfy θ, ν, ξ, ρ > 0 and

θ

(1− θ)(ρ+ δ)
≤ ξ

ν(ν + ρ+ ξ)
(35)

Theorem 1. Let Assumption 2 be satisfied. Then there exists a unique stationary equi-

librium. If ρ = ρFI then the equilibrium features full insurance. If ρ 6= ρFI , then the

equilibrium features partial insurance. In contrast, if Assumption 2 is violated, then no

stationary equilibrium exists.

Proof. The proof builds on Propositions 6 and 7 as well as the calculations above. If
Assumption 2 holds with equality, the previous discussion showed that in this knife-edge
case, the unique stationary equilibrium satisfies full insurance with r∗ = ρ. Suppose then
that Assumption 2 holds with strict inequality and that therefore

κd(ρ) < lim
r↗ρ

κs(r) = κFI

Since κs(r) and κd(r) are continuous on (−δ, ρ) and since κs(r) is strictly increasing, while
κd(r) is strictly decreasing, and since κs(r = −δ) <∞ = limr↘−δ κ

d(r), the intermediate
value theorem implies that there exists a unique r∗ ∈ (−δ, ρ) such that

κs(r∗) = κd(r∗)

Finally, if instead Assumption 2 is violated, then

lim
r↗ρ

κs(r) = κFI < κd(ρ)

and thus any stationary equilibrium must satisfy r∗ > ρ. However, for any r > ρ, as argued
in Online Appendix G, there is no stationary equilibrium.

The unique equilibrium interest rate satisfies κs(r∗) = κd(r∗). Exploiting equations
(28) and (34), we find

r∗ =
θ(ν + ρ+ ξ)(ν + ρ)− ξδ(1− θ)

ξ + θ(ν + ρ)
(36)
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This is our central result: the equilibrium interest rate and, with it, all other equilibrium
quantities can be calculated explicitly. Associated with this interest rate is a stationary con-
sumption distribution with mass point at ch and a truncated Pareto distribution below chwith
Pareto coefficient κ = ν

ρ−r∗ − 1, given in Proposition 5 at r = r∗. The comparative statics
of this unique equilibrium are immediate and summarized in the following proposition:

Proposition 8. Let Assumption 2 be satisfied with strict inequality. Then the unique equilib-

rium interest rate r∗ ∈ (−δ, ρ) is a strictly increasing function of ρ+ ν and θ and a strictly

decreasing function of ξ and δ. The associated equilibrium capital stock K∗ > KFI = is a

strictly increasing function of ξ and a strictly decreasing function of ρ+ ν as well as δ.

Proof. Write

r∗ =
(ν + ρ+ ξ)(ν + ρ) + ξδ − ξδ

θ
ξ
θ

+ ν + ρ

to see that r∗ is increasing in θ, since the numerator is increasing in θ and the denominator
is decreasing in θ. Proceed likewise for the other claims, except calculating the derivative
for the dependence on ξ.

The unique equilibrium can be represented graphically, as in the standard incomplete
markets models. Aiyagari (1994) plots asset demand and supply in (r,K) space. We do
the same here, in Figure 3a for a specific parameterization chosen in the welfare analysis
conducted in the next section. As shown above, there is a unique equilibrium with an
interest rate r < ρ that clears the capital market.

Figure 3b and direct calculation show that the goods market clears at r = 0. However11

and as shown in Figure 3a, capital demand by firms differs from capital supplied by house-
holds through the financial intermediaries at r = 0 and there is no equilibrium at r = 0,
except for the knife-edge case where the capital market also clears at r = 0, i.e.,

ξ

(ν + ρ+ ξ)(ν + ρ)
=

θ

(1− θ)δ

In the case where r∗ > 0 and therefore κs(0) < κd(0) as in Figure 3a, one could slightly
expand the model and implement r = 0 as an equilibrium by having a government own just

11We thank Marcus Hagedorn and Matt Rognlie for very helpful discussions on this issue. Auclert and
Rognlie (2020) show that the same argument applies to the standard incomplete markets model (as originally
described in Aiyagari, 1994). Our discussion here is an adaptation of their argument.
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(a) Capital Demand κd(r) and Supply κs(r) as a
Function of the Interest Rate r

(b) Goods Demand w(r)C(r) and Net Supply
Y (r)− δK(r) as a Function of r

Figure 3: The left panel shows wage-normalized capital demand by production firms κd(r)
and capital supply by financial intermediaries κs(r), as a function of the interest rate. As
proved in the previous subsection, κd(r) is strictly decreasing on [−δ, ρ] and approaches∞
as r approaches−δ. Capital supply is strictly increasing on [−δ, ρ], and the figure is drawn
with Assumption 1 in place, guaranteeing a unique intersection and thus a unique station-
ary equilibrium interest rate r∗ < ρ. The right panel plots consumption demand C(r) by
the household sector versus consumption goods supply G(r). There are two intersections:
one at the stationary equilibrium interest rate r∗ (in this case positive) and one at r = 0;
we argue below that, generically, r = 0 is not an equilibrium interest rate.

the right amount of capital Kg > 0 such that

Ks(0) +Kg = Kd(0) (37)

Since r = 0, the government does not collect any revenue from this ownership that would
need to be distributed, and thus a simple adjustment of the equilibrium definition that has
the government own just the right amount of the capital stock would implement r = 0 as
an equilibrium, with associated partial-insurance consumption allocation.12 For the case
r∗ < 0 and therefore κs(0) > κd(0), the government could issue bonds at zero interest to
implement the r = 0 equilibrium; that is, Kg < 0 in equation (37) is now a liability rather

12This discussion appears to suggest that Walras’ law breaks down at r = 0.We observe that capital market
clearing always implies consumption goods market clearing. If r 6= 0 the reverse is also true, but not at r = 0.
Walras’ law p ∗ z(p) = 0 only implies the statement that if N-1 markets clear (excess demand di(p) = 0 for
all i = 1, ...N − 1), then the N-th market clears if the price vector p has only non-zero elements. It simply
does not follow from Walras’ law at r = 0 that one market clearing condition implies the other.
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than an asset of the government.

6 Comparison to the Standard Incomplete Markets Model

Our model presents an alternative general equilibrium model with idiosyncratic income
shocks to the canonical standard incomplete markets model. It is therefore instructive to
compare stationary equilibria in both models. To clarify the sources of the differences it
is instructive to formulate the Hamilton-Jacobi-Bellman equations for both versions of the
model.

Consider first the household problem in the standard representative agent neoclassical
growth model. For that model, the Hamilton-Jacobi-Bellman equation reads as

ρU(k) = max
c,x
{u(c) + U ′(k)x}

s.t. c+ x = rk + w

or plugging in the budget constraint to substitute out the (marginal) change in the capital
stock x, one obtains the perhaps more familiar form

ρU(k) = max
c
{u(c) + U ′(k)(rk + w − c)}

Introducing idiosyncratic productivity risk z with Poisson transitions as above, but under
the assumption of incomplete insurance markets we obtain the HJB equation (see, e.g.,
Achdou et al., 2022):

ρU(k, z) = max
c,x
{u(c) + U ′(k)x+ pz(U(k, z̃)− U(k, z))} (38)

s.t. c+ x = rk + wz (39)

where the value function U(k, z) now depends on the idiosyncratic productivity state z in
addition to the capital stock owned by the household and pz denotes the Poisson intensity
with which the productivity state changes from the current state z to the other state z̃, i.e.,
pz = ξ if z = ζ and pz = ν if z = 0. With intensity pz lifetime utility changes from U(k, z)

to U(k, z̃), and the incomplete markets assumption is reflected in the fact that the capital
stock upon a state change from z to z̃ remains the same.

Our model instead has complete markets but limited commitment. In Krueger and Uh-
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lig (2006) we show that one way to interpret (or decentralize) the optimal consumption
contract is through a financial market in the spirit of Alvarez and Jermann (2000) in which
households trade Arrow securities that pay off contingent on the realization of the idiosyn-
cratic productivity state, but with endogenously determined shortsale constraints. Without
any punishment for default, Krueger and Uhlig (2006) show that these shortsale constraints
prevent negative asset positions altogether. The prices of the Arrow securities reflect the
transition rates across idiosyncratic states. As we show in Proposition 13 of Appendix A.4,
the HJB equation in this decentralized version of our model then reads as

ρU(k, z) = max
c,x,k̃

{
u(c) + U ′(k)x+ pz(U(k̃, z̃)− U(k, z))

}
(40)

s.t. c+ x+ pz(k̃ − k) = rk + wz (41)

k̃ ≥ 0, x ≥ 0 if k = 0 (42)

In contrast to the HBJ equation in (38), the capital stock with which the household enters
the next period is state-contingent and thus allowed to differ between the contingency of
no state transition (lifetime utility U(k, z)) and a state transition (lifetime utility U(k̃, z̃)).
These state-contingent capital stocks are reflected in equation (40) and contrast with (38)
for the standard incomplete markets model where the capital stock is restricted to be the
same across the two productivity states. In the budget constraint (41), the term pz(k̃ − k)

reflects the state-contingent addition (or subtraction) of capital, at the actuarially fair price
pz, and the constraints in equation (42) ensure that the capital stock in the case of a state
transition cannot go negative, and that the capital stock, conditional on remaining in the
same state, cannot go from zero to negative.

In Figure 4 we plot the (normalized by the wage) capital demand by firms and the
capital supply, and display the market clearing real interest rate, both in our model and in
the standard incomplete markets model, as pioneered by Aiyagari (1994), and characterized
in continuous time with two income shocks by Achdou et al. (2022).13

We observe that for every interest rate, the supply of assets from the household sec-
tor is higher in the standard incomplete markets model than in the limited commitment
model with endogenous consumption insurance contracts. In the presence of explicit in-
come insurance (subject to the endogenous limit that state-contingent assets cannot become
negative) the need to accumulate capital for precautionary reasons is reduced. As a conse-

13See also Sargent et al. (2021)
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Figure 4: This figure compares equilibria in our economy and the Aiyagari (1994) model. It
displays the equilibrium determination in the capital market. Following Aiyagari (1994) it
has the interest rate on the y-axis and (normalized by the wage) capital demand by firms and
capital supply by the household sector on the x-axis. Capital demand (in black) is common
between both models. Capital supply in our model was already plotted in Figure 3a, as was
the equilibrium (but with x-axis and y-axis interchanged). Figure 4 also shows the familiar
asset supply curve from the Aiyagari model that diverges to ∞ as r approaches the time
discount rate ρ from below. Asset supply in the standard incomplete markets economy
is larger for every interest rate, and the resulting equilibrium interest rate is lower, and
equilibrium capital stock is higher in that model, relative to ours.

quence of the larger supply of capital for a given r, the equilibrium interest rate is lower
and the equilibrium capital stock is higher in the Aiyagari model.

7 Multiple Partial-Insurance Equilibria When the Elas-
ticity of Substitution Is Not Unity

In the previous sections we have shown that with log-utility at most one stationary equi-
librium exists. We now argue that deviating from a unit elasticity of substitution raises the
possibility of multiple stationary equilibria. Assume now that the period utility function is
given by

u(c) =
c1−σ

1− σ
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where σ 6= 1 is the coefficient of relative risk aversion (and the inverse of the intertemporal
elasticity of substitution). All other model elements are completely unchanged.

Evidently, the normalized capital demand function κd(r) is unaffected since it is deter-
mined purely from the production side of the economy. The argument that there cannot
be a stationary equilibrium with r > ρ and the condition for a full-insurance equilibrium
remain unchanged as well, since the full-insurance allocation does not depend on σ. Thus,
we continue to assume that Assumption 2 holds with strict inequality, so that we can focus
on partial-insurance equilibria with r < ρ.

In Online Appendix F we show that the optimal consumption insurance contract has
exactly the same properties as in the log-case: consumption jumps up upon receiving high
productivity and drifts down at a constant rate when productivity turns low as long as it
remains low. The key difference is that this decay rate is now given by rate r−ρ

σ
< 0 instead

of the rate r − ρ. The stationary consumption distribution is still characterized by a mass
point at the top and a truncated Pareto distribution below the top. In the Online Appendix
we also show that the normalized supply of capital is now given by

κs(r) =
ξ(

ν + ρ−r
σ

+ r + ξ
) (
ν + ρ−r

σ

)
which of course specializes to the log-case analyzed above for σ = 1. Capital demand
κd(r) remains as in equation (28). The capital market clearing condition κs(r) = κd(r)

now reads14

ξ(
ν + ρ−r

σ
+ r + ξ

) (
ν + ρ−r

σ

) =
θ

(1− θ)(r + δ)
(43)

The characterization of equilibrium remains fully analytically tractable since any equilib-
rium interest rate is a solution r to this equation, which can be rewritten as a quadratic
equation in r for all σ ∈ (0,∞) (see Online Appendix F.3.2). Only when σ = 1 and
the income and substitution effects cancel in the optimal consumption contract, the term
ρ−r
σ

+r in (43) vanishes, capital supply is unambiguously increasing in the interest rate and
the market clearing condition becomes linear in r.

14Note that the total cost of the optimal consumption contract is only finite, and thus the capital supply
function κs(r) for the partial-insurance case is only well-defined for interest rates satisfying ν+ ρ−r

σ +r > 0.
For σ ≤ 1, this imposes no further restrictions and κs(r) is well-defined on (−∞, ρ). However, for σ > 1
the domain of κs(r) is restricted since the interest rate cannot be too negative. Concretely, it is given by(
−σν+ρ

σ−1 , ρ
)

.
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We will now demonstrate that as long as σ is sufficiently small (the IES is sufficiently
large and the substitution effect is strong relative to the income effect), the capital supply
function κs(r) is upward-sloping in the interest rate on r ∈ [−δ, ρ] and the equilibrium
remains unique. While there are two solutions to the quadratic equation in principle, only
one of them is of economic relevance, corresponding to a positive amount of capital. On
the other hand, for large enough σ (small enough IES and thus small enough substitution
effect), capital supply might be downward sloping, and is downward sloping if σ =∞ and
the lifetime utility function is of Leontieff form. This opens up the possibility of multiple
stationary equilibria. We now discuss these results more formally.

7.1 Intertemporal Elasticity of Substitution Equal to Zero: Leontieff
Preferences

In the limit case σ = ∞, households are not willing to intertemporally substitute, the op-
timal consumption contract resembles that of the full-insurance case (consumption jumps
upon the receipt of first high income and stays constant thereafter), and the stationary con-
sumption distribution has unit mass at this consumption level. Equation (43) becomes

ξ

ν (ν + r + ξ)
=

θ

(1− θ)(r + δ)
(44)

It can be rewritten as a linear equation in r. The following result is the limit case σ → ∞
of Proposition 10 in the next subsection, and stated here to motivate that proposition.

Proposition 9. Let σ =∞ and thus the lifetime utility function is Leontieff. Suppose that15

ν > δ. Then κs(r) is well-defined and strictly decreasing in the interest rate on the interval

(−ν,∞). There is a unique equilibrium interest rate r∗ > −δ.

Proof. Examine κs(r) on the left-hand side of (44). Calculate the unique solution to this
linear equation in r.

7.2 General IES σ 6= 1

The possibility that normalized capital supply is downward sloping in the interest rate for
sufficiently large values of σ (sufficiently weak substitution effect) admits the possibility

15This is needed for the NPV calculations in Section F.1 and is implied by (45) as σ →∞.
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of multiple equilibria, as already suggested by the (very) special case in the previous sub-
section. The next proposition shows that the equilibrium remains unique for σ ≤ 2, but
the possibility of exactly two stationary equilibria emerges for larger σ. These equilibrium
interest rates are solutions to a quadratic equation, and thus the characterization of equi-
librium remains analytically tractable even for the case σ 6= 1, although we might lose the
uniqueness of a partial-insurance stationary equilibrium.

Proposition 10. Let Assumption 2 be satisfied with strict inequality.

1. If σ < 1, then κs(r) is well-defined, continuous and strictly increasing on r ∈ [−δ, ρ].

There exists a unique stationary equilibrium with interest rate r ∈ (−δ, ρ).

2. Let σ > 1 and
σν + ρ

σ − 1
> δ. (45)

Then κs(r) is well-defined16 and continuous on r ∈ [−δ, ρ]. There exists at least one

stationary equilibrium with r ∈ (−δ, ρ).

(a) Suppose σ ∈ (1, 2] and ξ ≥ δ. Then κs(r) is increasing on r ∈ [−δ, ρ) and the

stationary equilibrium with interest rate r ∈ (−δ, ρ) is unique.

(b) There exist parameter combinations with 2 < σ < ∞ such that κs(r) has

decreasing parts on [−δ, ρ) and that there are two stationary equilibria with

r ∈ (−δ, ρ) solving (43).

Proof. See Online Appendix F.3.1. For the last part, see the example in Figure 5.

This proposition shows that for wide parameter combinations, uniqueness of equilib-
rium can be guaranteed (parts 1 and 2a), and identifies (in part 2b) the range of parameters
where multiple equilibria can emerge. The condition in part 2a of the proposition ensures
that κs(r) is increasing at r = −δ (and thus is increasing for all r ∈ [−δ, ρ]).

Prior to exploring the multiplicity of stationary equilibria numerically, we observe that
equilibrium interest rate(s) scale in the parameters representing rates per unit of time, i.e.,
the time discount rate, the income transition rates and the depreciation rate. Cutting each
of these rates in half will cut the equilibrium interest rate in half, and will also preserve the
number of equilibria.

16This last assumption ensures that the effective discount rate r+ ν+ g(r) used to determine ch is positive
at r = −δ, and thus ch is finite at that interest rate and at all higher interest rates.
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Corollary 2. Suppose that r∗ ∈ (−δ, ρ) is an equilibrium interest rate for parameters

ρ, δ, ξ, ν, σ, θ, A. Let α > 0. Then r = αr∗ ∈ (−αδ, αρ] is an equilibrium interest rate for

parameters αρ, αδ, αξ, αν, σ, θ, A.

Proof. See Online Appendix F.3.2

Since all equilibrium interest rates are solutions to the quadratic equation, we could in
principle characterize regions of the six-dimensional parameter space (σ, θ, δ, ν, ξ, ρ) for
which multiple equilibria emerge. Rather than doing so, we display an example parameter
combination with σ = 10 that exhibits the two stationary equilibria in Figure 5. This
example is not meant to be empirically realistic, but rather to demonstrate graphically that
our model can indeed have multiple stationary equilibria.

Figure 5: Two equilibria with partial insurance when σ > 2.

(a) Capital Market Clearing (b) Equilibrium Consumption Distributions

This figure plots an example of two equilibria, both with partial insurance, under parameter values σ =
10, θ = 0.25, δ = 0.16, ν = 0.05, ξ = 0.02, ρ = 0.4. The two equilibrium interest rates are given by r∗1 =
−0.0246, r∗2 = 0.1357. Left panel: solid line represents the capital supply curve ks (r), dashed line represents
the capital demand curve kd (r). The right panel displays the two equilibrium consumption distributions.

Figure 5a plots normalized capital demand κd(r) and supply κs(r) against the interest
rate r. As shown in the proposition above, since σ > 2, both capital demand and supply
are downward-sloping in the interest rate, and thus can intersect more than once. Figure
5b displays the consumption (normalized by the wage) distributions φr(c) associated with
the two equilibrium interest rates. The blue x-ed line corresponds to the low equilibrium
interest rate and the red circled line to the high equilibrium interest rate. Both distributions
have a mass point equal to ψh = ν

ξ+ν
and a truncated power distribution below this mass

33



point. The consumption mass point ch(r) is increasing in the (equilibrium) interest rate as
long as the IES 1/σ is less than 1, and thus the remaining probability mass spreads out
over a larger support of the consumption distribution in the high interest rate equilibrium,
falling more rapidly as consumption approaches zero. Thus, the consumption distribution
has fewer individuals with very low consumption in the equilibrium with the high interest
rate, and therefore better consumption insurance. Note that by Proposition 6 aggregate
normalized consumption C(r) =

∫
cφrdc is increasing in the interest rate r, a fact clearly

visible when comparing the two consumption distributions.

Figure 6: Equilibrium Set as Function of Depreciation Rate.

The figure plots the equilibrium interest rates r∗1 , r
∗
2 as δ changes. Other parameters are σ = 10, θ = 0.25, ν =

0.05, ξ = 0.02, ρ = 0.4.

Finally, we display how the set of equilibrium interest rates changes as we change pa-
rameters. Specifically, we vary the depreciation rate and keep all other parameters constant
in Figure 6. The figure shows that the example above with two stationary equilibria is
not a knife-edge case, but rather emerges for a range of parameter values, as long as σ is
sufficiently large, and therefore the intertemporal elasticity of substitution is sufficiently
small and the income effect sufficiently potent relative to the substitution effect. The figure
also shows that both equilibrium interest rates are positive for a positive-length interval of
δ-values. Finally, note that condition (45) in Proposition 10 fails and a partial-insurance
equilibrium ceases to exist, when the deprecation rate δ becomes too large.
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7.3 Welfare Ranking of Stationary Equilibria

Given that we have identified the possibility of multiple stationary equilibria, the natural
question arises as to whether they can be ranked in terms of their welfare properties. On
one hand, a lower interest rate is associated with a higher capital stock and thus higher
wages. On the other hand, a lower interest rate implies a faster decline in consumption
after receiving adverse income shocks, and thus potentially less consumption insurance,
also depending on the entry consumption level ch. One of the benefits of our environment
is that we can characterize both components of welfare in closed form.

With our focus on stationary equilibria, individual welfare in such an equilibrium can
be defined as expected utility at birth in the stationary equilibrium.17 To rank the normative
properties of two equilibria, one can ask by what constant α > 0 one has to scale consump-
tion in a low interest rate equilibrium to be indifferent to being born into a high interest rate
equilibrium. This consumption equivalent welfare measure is derived in Online Appendix
H and characterized in the following proposition.

Proposition 11. Assume σ > 1 and suppose there exist two stationary equilibria, with

r1 < r2. Then the equivalent variation α is given by

α =
w(r2)

w(r1)
·
[
ch(r2)

ch(r1)

] σ
σ−1

= αwage · αcontract (46)

The aggregate wage component satisfies αwage = w(r2)
w(r1)

< 1 and the contract component

satisfies αcontract =
[
ch(r2)
ch(r1)

] σ
σ−1

> 1.

In principle, the wage effect might dominate and thus the low interest rate equilibrium
has higher steady-state welfare (α < 1) for some set of parameter values exhibiting multi-
plicity of equilibria, while the better consumption insurance effect dominates and the high
interest rate equilibrium has higher steady-state welfare (α > 1) for the complementary set
of parameter values. While one could characterize these sets precisely to establish which
of them are nonempty and under what conditions, the economic insight obtained is of more
value: in this model, when there are multiple stationary equilibria, there is a welfare trade-
off between higher aggregate wages and consumption and more consumption inequality.

It is important to note that the focus on stationary equilibria in this paper ignores the
potential benefits of consuming part of the capital stock along the transition, and thus a

17Alternatively, we could define it as expected period utility. The characterization below goes through
almost unchanged under this alternative notion of equilibrium welfare, as Online Appendix H demonstrates.
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finding that attaches higher welfare to the low interest (high capital and wage) steady state
is subject to the usual caveat that it ignores transitional dynamics during which this higher
capital stock needs to be accumulated.18

8 Conclusion

In this paper we have analytically characterized stationary equilibria in a neoclassical pro-
duction economy with idiosyncratic income shocks and long-term one-sided limited com-
mitment contracts. For an important special case (log-utility, two income states, zero in-
come in the lower state) the equilibrium is unique and can be given in closed form, with
complete comparative statics results.

Given these findings, we can identify three immediately relevant next questions for fur-
ther investigation. First, on account of our use of a continuous time setting, the endogenous
optimal contract length is analytically tractable even outside the special case we have fo-
cused on thus far. However, this length will in general depend on the interest rate in the
economy, which complicates the analytical aggregation step of the analysis.

Second, thus far we have focused on stationary equilibria, thereby sidestepping the
question of whether this stationary equilibrium is reached from a given initial aggregate
stock, and what the qualitative properties of the associated transition path are. This question
is especially relevant for a full welfare (and possibly associated policy) analysis.

Finally, thus far we have focused on an environment that has idiosyncratic but no ag-
gregate shocks, rendering the macro economy deterministic. Given our sharp analytical
characterization of the equilibrium in the absence of aggregate shocks, we conjecture that
the economy with aggregate shocks might be at least partially analytically tractable as well.
We view these questions as important topics for future research and take a first step toward
them in Krueger, Li and Uhlig (2022) as well as Ando, Krueger and Uhlig (2022).
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Appendix

A A selection of results and proofs.

A precise analysis of the model requires an exact mathematical underpinning, and a tight
proof of each claim. We provide a full version in the Online Appendix, see the road map
Section B there. Here, we highlight a few key results and their proofs, focusing on parts
that are of particular significance or are less straightforward to establish.

A.1 Histories, Contracts and Multipliers

The stochastics for an agent is governed by a finite-state continuous time Markov processes
in a state x ∈ X . Productivity at date t is zt = z(xt) ∈ {0, ζ}. Contracts will generally
depend on more than just current productivity. They should not be constrained a priori
to depend on some additional low-dimensional state, but rather may depend on the entire
history, up to that date. Building on, e.g., Puterman (2005) and as explained in greater
detail and with additional notation in Online Appendix C, histories are denoted by their
beginning and end date as well as all the Markov switching dates and the values of the
Markov process at these dates,

ht,τ = (τ, n, t0 = t, t1, . . . , tn, x0 = x, x1, . . . , xn) (47)

All histories between t and τ starting from some Markov state x shall be denoted with
Ht,τ (x). Pt,τ denotes the probability distribution across histories. With this, contracts can
be more formally defined as mappings c(ht,τ ;x, U) from histories ht,τ , the initial state
x and promised utility U , see definition 3. The cost minimization problem can be more
formally defined. For example, the limited commitment constraints are now stated as∫ ∞

s

∫
Hs,τ (x(ht,s))

e−ρ(τ−s)u(wc([ht,s, hs,τ ];x, U))dPs,τdτ ≥ U out(z(x(ht,s)))

for all s > t and ht,s ∈ Ht,s(x) (48)

for all x ∈ X and U ∈ U(x). We will make repeated use of this constraint below. Basic
properties of the cost function such as concavity and differentiability are established (see
Online Appendix D.1). The contract cost minimization problem can be rewritten as a
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Lagrangian, (see Online Appendix D.2). Using partial integration, the Lagrangian can
be rewritten with cumulative Lagrange multipliers λ(ht,τ ) and the history notation as

L =

∫ ∞
t

∫
Ht,τ

e−r(τ−t) [wc(ht,τ )− wz(x(ht,τ ))] dPt,τdτ (49)

−
∫ ∞
t

∫
Ht,τ

λ(ht,τ )e
−ρ(τ−t)u(wc(ht,τ ))dPt,τdτ

+λ(ht,t)U +

∫ ∞
s=t

∫
Ht,s

e−ρ(s−t)U out(z(x(ht,s)))dPt,s × dλ,

restated with further explanations as equation (49) in the Online Appendix D.2. The cumu-
lative Lagrange multiplier reformulation in (49) provides a version of Marcet and Marimon
(2019) in continuous time. This formulation, together with differentiability properties,
yield the first-order condition

e(ρ−r)(τ−t) = λ(ht,τ )u
′(wc(ht,τ ;x, U)) (50)

A.2 A Key Property of the Contracts

The following central lemma, also in Online Appendix D.3, expresses key properties of the
contract. The proof is non-trivial. It draws on some material in the Online Appendices C
and D, which should be consulted for additional detail and explanations.

Lemma 2 (key properties of the contract). 1. Suppose that the constraint (48) does

not bind at history ht,s. Then λ̇(ht,s)+ = 0 and the derivative ċ+(ht,s) exists. If the

last jump occurred strictly before date s, i.e., if tn < s, then λ̇(ht,s) = 0 and c is

differentiable at ht,s.

2. Suppose c is differentiable at history ht,s. Then λ is differentiable at history ht,s and

ρ− r =

(
u′′(wc)wc

u′(wc(ht,s))

)
ċ(ht,s)

c(ht,s)
+

λ̇(ht,s)

λ(ht,s)
(51)

The statement and equation likewise hold for the left-derivatives, if c is left-differentiable

at history ht,s, and for the right-derivatives, if c is right-differentiable at history ht,s.

3. Suppose that the limited commitment constraint (48) binds at history ht,s. Suppose

that ρ = r. Alternatively, suppose that ρ > r and that Assumption 3 holds. Then

c(ht,s;∆) is constant in ∆ ≥ 0 and ċ+(ht,s) = 0.
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4. λ−(ht,s) 6= λ(ht,s), i.e. λ is discontinuous at history ht,s, if and only if c−(ht,s) 6=
c(ht,s). In that case, c−(ht,s) < c(ht,s), λ−(ht,s) < λ(ht,s) and (48) binds at history

ht,s with tn = s, i.e., just when the state change occurred.

Proof. 1. If the constraint does not bind at ht,s, then it will not bind either for the no-
state-change history extensions ht,s;∆, provided ∆ > 0 is sufficiently small. Thus,
λ(ht,s) = λ(ht,s;∆) is locally constant19 and thus λ̇+(ht,s) = 0. The existence of ċ+

at ht,s now follows from (50). If tn < s, the same argument applied to the truncated
histories ht,s(t, s−∆) shows that λ̇(ht,s) = 0 and the differentiability of c at ht,s.

2. Differentiation of (50) with respect to τ shows that λ is also differentiable20 at τ and
delivers (51), when replacing τ with s.

3. By assumption, the limited commitment constraint (48) binds at ht,s. For ease of
notation, write x for x(s) and z for z(x). Consider the no-state-change history exten-
sion ht,s;∆ = [ht,s, (s + ∆, 0, s, x)] for ∆ > 0. The proof proceeds in two parts. For
part A, suppose that the limited commitment constraint (48) binds again at ht,s;∆̄ for
some ∆̄ > 0. We use an averaging argument to establish that consumption must be
the same at s and at s+∆̄. With the help of the first two parts as well as some careful
analysis, we then show that the limited commitment constraint (48) must bind for all
ht,s;Delta and 0 < ∆ ≤ ∆̄ and thus establish the claim for part A. For part B, suppose
that the constraint (48) never binds again for ht,s;∆ at any ∆ > 0. We show that this
leads to a contradiction.

A. For the first part, suppose that the limited commitment constraint (48) binds at
ht,s as well as at ht,s;∆̄ for some (possibly large) ∆̄ > 0. Compare the contract
going forward conditional on these two histories: we will argue that one can do
better by averaging them, should they be different. To that end and to express
this precisely, let hs,τ be some continuation at the current state x of the history
ht,s to ht,τ = [ht,s, hs,τ ]: for a graphical illustration, see Figure 7 in the On-
line Appendix. Construct the corresponding continuation ht,τ+∆̄ = [ht,s;∆̄, h

∆̄
s,τ ]

of ht,s;∆̄ with the ∆̄-time-shifted history h∆̄
s,τ (see equation (58)). This corre-

spondence is one-one and measure preserving. Suppose now that the contract
c(ht,τ ) differs from the corresponding c(ht,τ+∆̄) for a set S of extensions hs,τ

19Returning to our original Lagrange multipliers, µ(ht,s;∆) = 0 for ∆ ≥ 0 sufficiently small.
20This is a standard calculus argument.
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with positive measure, i.e., suppose that
∫∞
τ=s

∫
Hs,τ 1hs,τ∈SdPs,τdτ > 0. Con-

sider then a new contract, which is the average between the original contract
and the contract following ht,s;∆̄, i.e., consider

c̃(ht,τ ) =
(
c([ht,s, hs,τ ]) + c([ht,s;∆̄, h

∆̄
s,τ ])

)
/2 (52)

defined for all continuations ht,τ = [ht,s, hs,τ ] of ht,s. In words, c̃ is the av-
erage between the current contract as well as the contract portion following
ht,s;∆̄ shifted backward by ∆̄. Since utility is strictly concave, this contract
now delivers strictly higher continuation utility at history ht,s, while its costs
stay unchanged, a contradiction to the hypothesis that the constraint (48) binds
at ht,s, i.e. a contradiction to the assertion that the original contract was cost-
minimizing, see Lemma 3. It follows that consumption at s + ∆̄ will be the
same as at s for any ∆̄ > 0, where (48) binds: let us denote that consumption
level as c.

If the limited commitment constraint (48) binds for all 0 < ∆̃ < ∆̄, we would
be done with this part, since consumption would then be constant at c(ht,s;∆̃) ≡
c. Indeed, we would be done, if this is true for some sufficiently small ∆̄ > 0,
since it must then be true for all ∆̄ per “shifting” the contract by ∆̄/2 into the
future. Suppose thus that (48) binds at some21 ∆∗ ≤ ∆̄, but does not bind for all
0 < ∆̃ < ∆∗. According to the first part of the lemma, the derivative ċ(ht,s;∆̃)

exists and λ̇(ht,s;∆̃) = 0.

i. Consider the case ρ = r. According to the second part of the lemma,
ċ(ht,s;∆̃) = 0. Thus, consumption is constant at c(ht,s;∆̃) ≡ c for all 0 <

∆̃ < ∆̄, regardless of whether the constraint (48) binds or does not bind at
∆̃, establishing our claim.

ii. Consider the case ρ > r and current state x. We will show that we arrive
at a contradiction; see Figure 8 in the Online Appendix. According to the
second part of the lemma, ċ(ht,s;∆̃) < 0 for 0 < ∆̃ < ∆∗. Fix such a ∆̃.
It follows that c(ht,s;∆̃) < c(ht,s;∆∗) = c; that is, consumption jumps up
at ∆∗, even though Uht,s;∆̃ > Uht,s;∆∗ = U out(z(x)). We will show that the
contract at history ht,s;∆̃ can therefore not have been cost-minimizing. For
x′ 6= x and ∆ > 0, let ht,s;∆,x′ = [ht,s, (s + ∆, 1, s, x, x(s + ∆) = x′] be

21∆∗ exists, because Uht,s;∆̃
is continuous in ∆̃.
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the extensions of the original history ht,s with a first state change to a new
state x′ occurring at date s+ ∆.
Define Uht,s;∆̃ as the continuation utility starting at the history ht,s;∆̃. De-
ploying the construction of Online Appendix D.4 leading up to equation (82),
it is given by

Uht,s;∆̃ =

∫ ∆∗−∆̃

0

e(αx,x−ρ)τu(wc(ht,s;∆̃+τ ))dτ (53)

+e(αx,x−ρ)(∆∗−∆̃)U out(z(x))

+
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆̃+τ,x′

dτ

The first term captures the present discounted utility over the time interval
from t + s + ∆̃ to t + s + ∆∗, conditional on no state change, the second
term captures the associated continuation utility from t + s + ∆∗ onward
in that case; and the last term captures the expected continuation utility
conditional on some state change from x to x′ during the time interval
∆∗ − ∆̃ following history ht,s;∆̃.
Compare this to the similar continuation at s+ ∆∗,

Uht,s;∆∗ =

∫ ∆∗−∆̃

0

e(αx,x−ρ)τu(wc(ht,s;∆∗+τ ))dτ (54)

+e(αx,x−ρ)(∆∗−∆̃)Uht,s;∆∗+(∆∗−∆̃)

+
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆∗+τ,x′dτ

Note that c(ht,s;∆̃+τ ) < c(ht,s;∆∗+τ ) and that U out(z) ≤ Uht,s;∆∗+(∆∗−∆̃)
.

Since Uht,s;∆̃ > Uht,s;∆∗ = U out(z), it must be the case that the inequality
is reversed for the last term,

∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆̃+τ,x′

dτ

>
∑
x′ 6=x

∫ ∆∗−∆̃

0

αx,x′e
(αx,x−ρ)τUht,s;∆∗+τ,x′dτ
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Recall, though, that the contract is cost-minimizing at history ht,s;∆̃. Per the
principle of optimality established in Lemma 9 of Online Appendix D.4,
we thus arrive at a contradiction.

B. For the second part, suppose instead that (48) never binds for any ∆ > 0 at
the no-state-change history extensions ht,s;∆ = [ht,s, (s + ∆, 0, s, x(s))]. The
first part of the lemma shows that λ̇(ht,s;∆) = 0 for all ∆ > 0 as well as
λ̇+(ht,s) = 0. If ρ = r, then the second part of the lemma shows that ċ+(ht,s) =

0 and hence the claim. If ρ > r, then (76) shows that ċ(ht,s;∆)/c(ht,s;∆) <

(r − ρ)/σ̄ < 0 and hence c(ht,s;∆)→ 0 as ∆→∞.

i. Suppose then that there is some ∆ > 0, so that the continuation utility
promises upon a state change to x′ 6= x(s) binds at all extended histories

ht,s;∆,x′ = [ht,s, (s+ ∆, 1, s, s+ ∆, x(s), x′)]

for ∆ > ∆ and any x′ ∈ X . The continuation contract at the no-state-
change history extension ht,s;∆ is feasible when shifted backward in time
to s, i.e., consider the contract

c̃(ht,τ ) = c([ht,s;∆, h
∆
s,τ ])

defined for all continuations ht,τ = [ht,s, hs,τ ] of ht,s. Contract c̃ is cheaper
for the principal than contract c, since consumption along the ht,s;∆-histories
keeps declining and since one cannot do better upon a state change than to
achieve a binding constraint there. This is a contradiction to the assertion
that the contract was cost-minimizing c.

ii. Suppose instead that for any ∆ > 0, there is a positive measure of dates
s + ∆ with ∆ > ∆, at which the utility promised upon a state change is
not binding. But then and with sufficiently large ∆ and thus sufficiently
small c(ht,s;∆) along the no-state-change path, the principal can achieve a
higher promised utility for the agent by promising less consumption upon
the state change for some positive interval of time and more consumption
along the no-state-change path, again a contradiction to the contract being
cost-minimizing.

4. Since λ is weakly increasing, λ(ht,s) − λ−(ht,s) > 0. The claim now follows from
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(50) and exploiting the fact that u′(·) is strictly decreasing, as well as from noting that
λ(ht,s) is only increasing if (48) binds. Furthermore, it must be the case that tn = s,
i.e., that the state change just occurred on date s, since otherwise the derivative of
consumption would have been zero per the third part of the lemma.

For the CRRA utility function u(c) = c1−σ−1
1−σ , equation (51) implies

ċ(s)

c(s)
= − ρ− r

σ
+

1

σ

λ̇(s)

λ(s)
(55)

A.3 Three States and Ordering of Outside Options

While Lemma 1 is intuitive the proof requires the comparison of a contract starting at high
productivity to a contract starting at low productivity. This in turn requires the expansion of
the state space to some underlying state x that can take three values x(t) ∈ X = {0, 1, 2},
evolving independently from each other (See also Online Appendix E). The transition
rates αi,j to transit from state x = i to x = j are α0,1 = α2,1 = ν, α1,0 = α2,0 = ξ and
α0,2 = α1,2 = 0. Let αi,i = −

∑
j 6=i αi,j , so that α is a intensity matrix or infinitesimal

generator matrix. The following proof of Lemma 1 assumes 0 < r ≤ ρ and is also in
Online Appendix E.1, together with explanations on how to handle the case of r < 0 < ρ.

Proof of Lemma 1. The key idea is that an agent currently at high productivity can be pro-
vided with the contract of the low-productivity agent, delivering the same utility and a
profit to the principal, a contradiction to perfect competition between the principals. Some
care needs to be taken to implement this idea, however. Contracts depend on the history of
states. Thus, if the history was expressed only in terms of productivities, it would be mean-
ingless to give an agent starting with high productivity “the same” contract as an agent
starting with low productivity. The underlying state and the corresponding productivity
need to be decoupled. It is here where the three-state construction described at the begin-
ning of this section and the careful distinction between the state and the productivity at that
state as described at the beginning of Online Appendix C pay off.

Suppose by contradiction to the claim (10) that

U out(0) ≥ U out(ζ) (56)
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Fix the productivity mapping z : X → Z to be zA. Recall that zA(0) = zA(2) = 0 and
zA(1) = ζ , and that the three-state process starting at x(t) = 0 or x(t) = 2 now generates
the same stochastic process as the original two-state stochastic process for an agent starting
at z(t) = 0. Consider an optimal consumption contract c(τ ; 0, U out(0)) given to an agent
at date t = 0, say, and starting off with productivity z(0) = 0, delivering date-0 promised
utility U = U out(0) in (2) and generating costs V (0, U out(0)) = 0. Wlog, we shall impose
the condition that x(0) = 2: any contract as defined per history dependence in Online
Appendix C and starting at x(0) = 0 can be written22 as a contract starting at x(0) = 2

delivering the same outcomes, per ignoring transitions from x = 2 to x = 0. Thus, the
optimal consumption contract c(τ ; 0, U out(0)) is a mapping c : H0 → IR+ from x-histories
into consumption outcomes, where all hs,0 ∈ H0 satisfy x(0) = 2, and which satisfies the
constraints (48).

Next, fix the productivity mapping z : X → Z to be zB. Recall that zB(0) = 0 and
zB(1) = zB(2) = ζ , and that the three-state process starting at x(t) = 1 or x(t) = 2

now generates the same stochastic process as the original two-state stochastic process for
an agent starting at z(t) = ζ . The contract c delivers the same expected utility U out(0).
The contract c satisfies the constraints (48) for states x(s) = 0 and states x(s) = 1, where
zA and zB coincide. With equation (103), the constraints are also satisfied for the state
x(s) = 2 and zB(2) = ζ rather than zA(2) = 0. The consumption portion generates the
same costs for the principal, as nothing has changed regarding the consumption process,
but the expected revenue from productivity income is now strictly higher per Lemma 10. It
follows, that the contract c now delivers strictly negative costs V (ζ, U out(0)). Per Lemma 3
and equation (103), 0 > V (ζ, U out(0)) ≥ V (ζ, U out(ζ)). However, V (ζ, U out(ζ)) = 0 per
the definition of equilibrium. With that, we have arrived at a contradiction.

A.4 The Hamilton-Jacobi-Bellman Equations

Proposition 12 (the cost-minimizing HJB equation). The cost function V (x, U) solves

the Hamilton-Jacobi-Bellman equation

rV (x, U) = min
c,U̇ ,(U(x′))x′∈X/{x}

wc− wz(x) + V ′−(x, U)U̇ +
∑
x′ 6=x

αx,x′(V (x′, U(x′))− V (x, U))

22This argument can be made precise with some tedious notation.
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subject to

ρU = u(wc) + U̇ +
∑
x′ 6=x

αx,x′(U(x′)− U)

U̇ ≥ 0, if U = UOut(z(x))
ū

ρ
> U(x′) ≥ UOut(z(x′))

for all x(t) = x ∈ X and all U ∈
[
U out(z(x)), ū

ρ

)
, provided that (2) binds.

This is a restatement of Proposition 14 in the Online Appendix D.4 which also contains
the proof. For the dual perspective of maximizing utility, subject to the costs expressed as
capital, one obtains the following version, see Online Appendix D.5 for details.

Proposition 13 (the utility-minimizing HJB equation). The utility functionU(k;x) solves

the Hamilton-Jacobi-Bellman equation

ρU(k;x) = max
c,k̇,(k(x′))x′∈X/{x}

u(c) +
∂U(k;x)

∂k
k̇ +

∑
x′ 6=x

αx,x′(U(k(x′);x′)− U(k;x))

subject to

c+ k̇ +
∑
x′ 6=x

αx,x′(k(x′)− k) = rk + wz(x)

k(x′) ≥ 0 for all x′ ∈ X/{x}

k̇ ≥ 0 if k = 0

for all x ∈ X and all k ≥ 0.
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