INDUSTRIAL LAND DISCOUNT IN CHINA: A PUBLIC FINANCE PERSPECTIVE

Zhiguo He
Scott T. Nelson
Yang Su
Anthony Lee Zhang
Fudong Zhang

Working Paper 30504
http://www.nber.org/papers/w30504

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
September 2022

Zhiguo He acknowledges financial support from the John E. Jeuck Endowment at the University of Chicago Booth School of Business. This research was funded in part by the Tsinghua University – University of Chicago Joint Research Center for Economics and Finance. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2022 by Zhiguo He, Scott T. Nelson, Yang Su, Anthony Lee Zhang, and Fudong Zhang. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

China’s land market features a substantial industrial discount: industrial-zoned land is an order of magnitude cheaper than residential land. In contrast to explanations centered on subsidies to industry or promoting industry growth, we emphasize the importance of future tax revenues from the land and find that local public finance incentives can largely rationalize this price gap. Under the "land finance" system, land sales are an important source of revenues for Chinese local governments. We show that local governments, who serve as monopolistic land sellers in China, face a trade-off between supplying residential or industrial land that is determined by the different time profiles of revenues from industrial and residential land sales, local governments’ financial constraints, and the extent of local governments’ tax revenue sharing with other levels of government.
1 Introduction

China’s land market is perhaps one of the key drivers of the extraordinary growth of the Chinese economy in the past forty years. One of the unique features of China’s land market is the practice of “land finance” (Cao et al., 2008; Lin and Yi, 2011; Liu et al., 2014) by which local governments, who serve as monopolistic sellers in the local land market, heavily rely on land sales for fiscal revenue (see, e.g., Liu and Xiong, 2020). This differs drastically from other developed economies where municipal governments finance a significant part of their public expenditure via the residential property taxes (Ahern, 2021), which is absent in China.

Just like in many other countries, there are rigid zoning restrictions in China. As highlighted in Chen et al. (2018), land zoned for residential use sells at roughly a ten-fold higher price than land zoned for industrial use. In 2019 the average price of residential land in China was 3,619 RMB/m², while the average price of industrial land was 304 RMB/m². We call this price difference between residential and industrial land the industrial land discount (or industrial discount interchangeably). Our paper aims to offer a comprehensive study of this industrial discount, which has profound implications for the real estate market, public finance, economic growth, and even political economy in China.

The typical view in the literature is that residential land sales are primarily a way for local governments to raise revenues, whereas industrial land is sold primarily to subsidize industry, stimulate economic growth, and support labor demand. In support of this view, in discussing the industrial land discount, Liu and Xiong (2020, pp. 193) state that “it is common practice for local governments throughout China to offer industrial land at subsidized prices to support local industries.”

This paper proposes an explanation for the industrial land discount that stems from local public finance rather than from subsidies to industry. We propose that the choice between residential and industrial land sales essentially involves an intertemporal revenue tradeoff. Chinese local governments are predominately funded through a combination of

1See literature review for more papers along this line. There is a broad narrative that holds China “favor[s] industry and investment over the service sector and domestic consumption;” and in more recent years, China has shifted to target subsidies at specific “strategic” industrial sectors (Chen and Naughton, 2016; Liu, 2019). The analysis of the choice between residential and industrial land sales in this paper is more in line with the first broad-based industrial policy, rather than the second policy of subsidies targeted at specific sectors. In Section 4.4, we briefly analyze whether our estimates can be affected by the targeted industrial policies by looking at the non-targeted industries only.
corporate tax revenues and land sale revenues; in 2019, these two numbers were roughly 8.7 trillion RMB and 7.3 trillion RMB respectively. Industrial land generates persistent future tax flows, since industrial firms pay value-added taxes and income taxes, along with various fees. Since there are no residential property taxes in China, residential land sales create only a temporary increase in taxes paid by home developers. This implies that local governments face a choice between selling residential land with larger upfront revenues and selling industrial land which pays more persistent cash flows of tax revenues over time.

This dynamic perspective implies that the large upfront industrial land discount does not necessarily imply that governments are systematically subsidizing industry through cheap land. Indeed, we show that the flow of tax revenues from industrial land, after adjusting for taxes paid by residential developers, can quantitatively compensate for the upfront industrial land discount. We also provide causal evidence that local governments’ financing needs affect land zoning, suggesting that local public finance plays an underappreciated role in shaping the path of China’s economic growth through the land allocation channel.

We start with a conceptual framework to analyze the forces that drive the equilibrium return from supplying industrial rather than residential land. We consider a local government whose objective is to maximize the present value of its fiscal revenues. Besides the upfront land sale revenues that all belong to the local government, residential land generates a one-time tax paid by home developers, while industrial land generates a persistent cash flow of industrial taxes, which is shared with the central government. In equilibrium, the local government is willing to sell industrial land at a lower price due to the future tax benefits. The framework points to two simple and measurable summary statistics. The first is the industrial discount, i.e., the price difference between industrial and residential land. The second is the internal rate of return (IRR) on industrial land sales, calculated as the discount rate which equates the present values of all cash flows from industrial and residential land sales.

The model makes two predictions about industrial discounts, which we bring to
the data. The first concerns governments’ cost of capital: when local governments are less patient, they will sell more residential land, depressing residential prices and thus industrial discounts. The second concerns the fraction of industrial tax revenues which accrue to local governments: if local governments capture more of the tax revenues from industrial land sales, they will sell more industrial land, increasing industrial discounts.

Taking this framework to the data requires three datasets. The first is data on the universe of land parcels sold by the Chinese government, from 2007 to 2019. We observe the price of each parcel and the name of the buyer, whether it is zoned for industrial or residential use, and characteristics of the parcel such as its location and size. The second is data on large Chinese industrial firms, including manufacturing, mining, and utility firms, during 1998-2013. The last is annual financial reports from listed developers during 2008-2020. By merging the first two datasets, we are able to identify the industrial firm who acquired each land parcel during 2007-2010, for which we can estimate the consequent effect of land purchase on firm taxes for at least four years. Our primary estimates of the IRR on industrial land are hence based on land sales during 2007-2010.

To show the quantitative importance of future tax revenues as compared to industrial discounts, we first calculate the IRR on industrial land sales, which requires estimation of three quantities: the average discount on industrial land versus residential land; the long-term increase in tax revenues from firms who purchase industrial land; and the one-time tax revenues paid by home developers when they sell housing units to local residents. We emphasize that all inputs in this calculation are based on their respective sample periods and hence do not suffer from the usual “look-ahead” bias.

We first estimate the industrial land discount based on a potential-outcomes framework. We use observed residential (industrial) sale prices to estimate a hedonic model to predict what the prices of industrial (residential) land parcels would have been if they were, counter-factually, sold as residential (industrial). We then estimate the industrial land discount by taking the difference between the actual (predicted) residential price and the predicted (actual) industrial price. During 2007-2010, the average industrial land discount is estimated to be 1012.83 RMB/m².

Next, to estimate the marginal tax revenues from industrial land sales, we first use a differences-in-differences approach to estimate the marginal impact of land purchases on firms’ sales. We then estimate marginal tax revenues by multiplying the increase in sales of the land-purchasing firms by an effective tax rate, taking into account the spillover
effect on, in particular, the upstream firms. For land purchase during 2007-2010 and using firm sales and tax data until 2013, we find that the annual future marginal taxes are approximately 113.6 RMB/m² in the first three years, and 214.2 RMB/m² thereafter.

Finally, we estimate the incremental tax revenues paid by home developers. For simplicity, we assume the developer taxes occur only once and accrue in the next year after land acquisition. We find that for residential land sold during 2007-2010, the average developer tax in the next year is about 1453.03 RMB/m².

These estimates allow us to back out the IRR implied by the industrial-residential land tradeoff. We find that during 2007-2010 the industrial land IRR, i.e., the discount rate that equates the present value of industrial versus residential land sales, is 7.70%. The estimated IRR is comparable to, but at the high end of, local governments’ cost of capital, which when proxied by their bond yields ranges between 3.5% and 7.5%. Thus, industrial land sales in China are not subsidized relative to residential land sales, once we take future tax revenues into account. This is the main takeaway of our paper.

We take our methodology to further estimate the industrial IRR over time, with more recent industrial land discounts and home developer tax data but holding the industrial taxes constant due to data limitations. Our estimation shows that the industrial IRR has decreased after 2010, declining dramatically since 2016 in particular. In 2019, the industrial discount is roughly 3.80%, which is smaller than usual estimates of the government discount rate. Under our framework, the decreasing trend can be explained by the increasing share of tax revenues that accrue to local governments, especially the 2016 tax reform that doubled the local governments’ share of value-added taxes.

Based on these findings, we propose that land allocation decisions in China are essentially determined by the interaction of three forces: the “land finance” system, through which land sales are a core source of local governments’ operational revenues; the distinct time profiles of revenues from industrial and residential land sales along with the governments’ financial constraints; and the way that tax revenues are split between the central government and local governments. The last two points are new to the literature on industrial discounts, and Section 5 provides further evidence that industrial discounts are associated with local governments’ discount rates as well as local governments’ share of industrial tax revenues.

First, if local governments’ choice between industrial and residential land sales represents an intertemporal revenue tradeoff, industrial discounts should be lower when the
governments’ discount rates are higher, e.g., when the governments are less patient or face greater financial constraints. Consistent with this hypothesis, we show that industrial land discounts are negatively associated with local governments’ cost of capital, as measured by local governments’ municipal corporate bond yields, in the cross-section of cities. The negative correlation also holds when we instrument for municipal corporate bond yields using an instrument that builds on Chen et al. (2020). Second, we show that industrial land discounts are positively correlated with city governments’ shares of value-added taxes in the cross-section. Exploiting a 2016 change in local-central tax sharing, we show that cities that experienced a larger increase in their share of value-added taxes subsequently exhibited greater increases in their industrial discounts.

Literature Review. Our paper relates to the following strands of literature. Many papers have argued that local governments in China tend to suppress industrial land prices while inflating residential prices. Liu and Xiong (2020) illustrate the diverging trends between industrial, commercial, and residential land prices, and argue that the industrial price gap is due to local governments’ incentives to subsidize industrial land to support local industries. Lei and Gong (2014) argue that, in order to increase fiscal income and city output, it is optimal for local governments to distort the relative prices of industrial and residential lands, due to the agglomeration effects of industrial land sales, as well as future tax revenues from firms.

Researchers have also related various local government incentives to land market distortions. Tao et al. (2010) empirically document that Chinese local governments used subsidized industrial land in competition for investment, with Chinese prefecture-level data between 1995 and 2003. Also using prefecture-level data but from 2003 to 2012, Huang and Du (2017) show that local governments’ incentives, such as to attract investments, to increase revenue, and to signal performance, all contribute to distorted land allocation toward more industrial land at cheaper prices. Tian et al. (2019) show that local government leaders adjust land policies in their jurisdictions at different stages of their term of office, in response to incentives for promotion. Xie et al. (2019) test the effects of VAT sharing and business tax sharing on local governments’ land allocation decisions. Fan et al. (2015) model Chinese local governments’ incentive to increase the supply of land for industrial use in order to generate more labor inflow and faster urbanization. Tian et al. (2022) match land transaction data with industry-county-specific characteristics, and show that industries which can generate stronger spillover effects to local incumbents
through agglomeration economies were favored in land allocation by governments.

There are several papers that empirically investigate price distortions in the Chinese land market due to corruption. Cai et al. (2013a) and Li (2019) show that the local governments take advantage of differences between auction formats to influence effective land prices. Chen and Kung (2019) argue that firms with links to Chinese political elites are able to obtain large price discounts in the land market.

Relatively little research directly examines the rate of return on land sales. One exception is Fu et al. (2021), who calculate the average productivity of land using city-level data and show that a growing share of the land conversion (from agriculture to urban) quota is allocated to less productive cities. A few researchers study the quantitative implications of land market distortions. Deng et al. (2020) infer housing and land market frictions from data on housing and land investment and sales, and study the quantitative impact of those frictions. Fei (2020) quantitatively examines the impact of firm ownership on the cost of land for Chinese manufacturers.

This paper proceeds as follows. Section 2 describes institutional details of the Chinese land market, as well as our data. Section 3 introduces a conceptual framework illustrating the tradeoff local governments face between industrial and residential land sales. Section 4 shows how we estimate industrial discounts, marginal tax revenues generated by industrial land sales, and government IRRs. In Section 5, we show how industrial discounts are associated with local governments’ shares of industrial tax revenues, as well as local government bond yields. We conclude in Section 6.

2 Institutional Details and Data

This section provides a brief summary of the key institutional background for Chinese land markets, followed by the description of data used in this paper.

2.1 Institutional Background

The Chinese land market. There was no formal land market in China before the 1980s. The development of market-based “commodity housing” in the 1990s opened up land leases for the residential market. The industrial land market was also developed together with the reform of state owned enterprises and the growth of private firms. The 1994
Tax-Sharing Reform made land lease sales an important source of local government revenue, spurring the take-off of the Chinese land market. However, regulations for the land market were not fully in place yet; without any requirement to release land lease contracts to the public, local governments had a great deal of leeway in granting land leases via hidden “negotiations.” Combined with the substantial ambiguities in the scope of property rights at that time, land leases were often granted significantly below market values, leading to corruption and efficiency losses (Cai et al., 2013a).

During the late 1990s and early 2000s, Beijing passed several laws and regulations to formalize the land market, with the intention of banning private negotiated deals from the local government. Most land leases were required to be sold at market prices, through a variety of different market mechanisms. Auctions are the most popular sales mechanism, during which most of the information about the land, as well as details about the pricing process, are revealed to the public. Governments are also allowed to use “agreements” to set prices, if the requirements for auction-based land sales are not met. Regardless of the sale method used, local governments have been required to make deeds records publicly available since 2004. The permitted uses for each land parcel—analogueous to zoning restrictions—are also strictly regulated. There are essentially four land usage categories: residential, industrial, commercial, and public utility (which covers education, health, transportation, and related uses). We provide a detailed explanation of these market mechanisms as well as land categories in Appendix A.1.

Industrial versus residential lands. Our study focuses on residential and industrial lands, which are the two major land categories and generally account for over 60% of total land supply. The quantity and price gaps between those two types of land have important implications for city development and therefore have attracted extensive prior research. There are guidelines routinely published by the Ministry of Housing and Urban-Rural Development on the split of different types of land usage in a city, which are generally loosely stated and not necessarily binding. For example, the 2012 Code states that residential land share should fall in the range between 25% to 40% and the industrial land share in the range between 15% to 30%, with exceptions permitted for cities with

4 The Ministry of Natural Resources (then the Ministry of Land and Resources) informally maintained a website which posted the information of all the land transactions at deeds level, which is our data source. Although most of the regulations were in place in the early 2000s, it was not until the mid 2000s—which is when our empirical data starts—that local governments started to fully comply with these regulations.
special characteristics.5

\textbf{Land quota system and its determination.} The Chinese government imposes a land quota system that plans out the maximum amount of newly developed urban land for each city over different horizons. The quota system is first “top-down.” It is based on land use master plans (usually covering 15 years) from the national level down to the city level. At higher levels of government, these plans are jointly carved out by several national ministries and the provincial governments. The system is also “bottom-up.” At the lower level, city governments participate in drafting those plans and provide feedback to higher level governments. Besides the long-term land use master plan, there are also five-year land use plans drafted by city governments and then reviewed and approved by the provincial and national government. In addition, the master plan generally gets modified or amended every five years, reflecting input from all levels of government.6

Under the total quotas set by these medium- and long-term plans, local governments decide how to implement these land supply plans in the short-run. Each year, based on its economic development needs, a local government first decides how much quota they will need out of their medium-long-term cap, then files a proposal with the Ministry of Natural Resources, and finally supplies land according to the quota after approval. Importantly, the quota issued by the Ministry of Natural Resources concerns only the total area of land supplied across all uses, so local governments have freedom in allocating the quota to different types of land. Moreover, local governments can occasionally apply for special quota deviations from the regulation of land use plan. Overall, local governments tend to have substantial control over land supply composition in the short run and are an integral part of the medium-to-long term land-use planning.

The actual supply of land comes out of each city’s “Municipal Land Reserve Center,” which is the executing institution of the municipal government that monopolizes the primary land market. Land reserve centers are responsible for procuring raw land, making it sell-able land, and holding it as land reserve assets for the city (to use or to sell later). See Appendix A.1 for a detailed discussion of how the land reserve system works in China.5

5See the 2012 Code for classification of urban and rural land use and planning standards for development land. The Ministry of Housing and Urban-Rural Development routinely updates those codes.

6In addition, sometimes off-schedule modifications are possible, for example when higher-level governments see issues in the land market, or when a local government files an application for a change of land usage plan.
Land allocation and local government financing. Land allocation has important implications for Chinese local government public finance. As highlighted by a team of named Chinese scholars and policy makers (Cai et al., 2013b), “Land finance is a key challenge: most Chinese cities fund their urban infrastructure largely from land sales; 40% of the government debt needs land finance in 2010; land sale revenue accounts for about one third of total local government revenue during 2010-2012.” Another important role played by land is that future land reserves can serve as collateral for local government debt; according to a report from the Chinese National Audit Office, 37.23% of local government debt explicitly pledged future land sales revenue as collateral by the end of 2012.

Taxes revenue from firms also play an important role in funding local governments in China. According to the Ministry of Finance, local governments’ total fiscal revenue in 2019 largely comes from three sources: 10 trillion RMB from local government general revenue, 7.5 trillion RMB from the central government transfer payments, and 8 trillion RMB from local government-managed funds (7.3 trillion RMB from land sales). Since about half of the local government general revenues and central government transfers are from value-added taxes and corporate income taxes, local government revenue from the two tax items is about 8.7 trillion RMB ($10 + 7.5 \div 2$). The overall picture is that, as the top two sources of revenue, taxes from firms and direct land sales together cover over 60% of local government’s budget in China.

2.2 Data

Land sale data. We use land sale data from the Ministry of Natural Resources. This dataset covers the universe of land sales by the local governments in China from 2007 to 2019. We focus on residential and industrial land parcels allocated by agreement, tender, auction and listing. Agreements do not necessarily represent market-based transfers, while the latter three (tender, auction, and listing) do; throughout the paper, we will use “auction” to refer to all the latter three allocation methods. We retrieve data on the geographical coordinates of land parcels using the Gaode maps API, a leading Location Based Services (LBS) provider in China. We define markets as urban units, which are

7See the Ministry of Finance’s 2019 Report on the execution of the central and local budgets.
8This excludes a category of allocation called “administrative allotments” involving no payment from land receivers, which is generally used for infrastructure, government offices, military facilities, etc.
9See https://lbs.amap.com/.
Figure 1: Average Land Prices Over Time by Land Use: Industrial vs. Residential

Note: This figure reports the average price (per square meter) of residential and industrial land weighted by land size that are sold through auctions for each year during 2007-2019.

contiguous urban clusters as identified by satellite images (see Appendix A.3). Figure 1 shows prices of industrial and residential land. Residential land prices exceed industrial land prices by a significant amount, and the price gap increases over time.

Firm data. To estimate the tax yield on the industrial land, we take industrial firm data from the National Survey of Industrial Firms (NSIF), which is collected by the National Bureau of Statistics on all industrial (manufacturing, mining, and utility) firms in China during 1998-2013. Despite some concerns about the data quality (Nie et al., 2012), the data has been widely used in economic research on China.\(^\text{10}\) Besides the issue of missing 2010 data,\(^\text{11}\) it is also subject to censoring and random dropout concerns, which we analyze in appendices A.2 and C.2.

To estimate the marginal impact of land acquisition on firm sales, we merge firm data with industrial land purchase data using firm names, taking into account firms buying land through their subsidiaries. To simplify our estimation, we exclude firms that purchased land in multiple years during our sample. That is to say, in our difference-in-

\(^{10}\)Some studies use the data until 2005 (Hsieh and Klenow, 2009) or until 2007 (Liu and Lu, 2015; Bai et al., 2019), and others use the data until 2013 (Heinrich et al., 2020; Cen et al., 2021; Tang et al., 2021).

\(^{11}\)For the year 2010, all operating information except sales and employment is missing, and we drop that year due to concerns about data quality.
differences strategy, firms that purchased land (once or multiple times) in a single year in the sample period form our treatment group, while the control firms are those who never purchased any new land during our sample period.

In total, we are able to merge 22,636 transactions out of a total of 124,341 industrial land purchases by firms via agreement, tender, auction and listing during 2007-2010. In the NSIF sample, around 3% of firm-year observations during 2003-2013 were matched to land purchases during 2007-2010. Appendix Table A.1 compares merged land parcels and firms to the universe of parcels and firms. Merged parcels are slightly more expensive, and indistinguishable in terms of size and distance to the urban unit centers from the universe of land parcels. Land purchasing firms are also slightly larger than the population of firms in terms of most metrics.

To estimate the incremental taxes collected from home developers to whom local governments sell residential land, we use the financial information during 2007-2021 of all listed firms classified as home developers by the China Securities Regulatory Commission. City data. We collect city-level data on GDP and population from the Urban Statistic Yearbook published by the National Bureau of Statistics. The data covers all the municipal cities in China during 2007-2018.

3 Conceptual Framework

We start with defining the industrial land discount in this section, followed by a conceptual framework that highlights the intertemporal revenue tradeoff faced by local governments under the Chinese fiscal system.

3.1 Industrial Land Discounts

The core object of our study is the discount of industrial land relative to residential land. Figure 1 shows average land sale prices over time, separately for residential- and industrial-zoned land. A striking pattern emerges: industrial land prices are an order of magnitude lower than residential land prices throughout our sample period. Given the large share of local government revenue that derives from land sales, this raises the question of why a revenue-maximizing local government would not reallocate land sales from industrial to residential uses until the prices in both markets equalize.
Table 1: Data Summary

<table>
<thead>
<tr>
<th></th>
<th>Obs</th>
<th>Mean</th>
<th>Std Dev</th>
<th>P10</th>
<th>P50</th>
<th>P90</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Land characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Price, RMB/m²</td>
<td>292,371</td>
<td>2,113.22</td>
<td>2,595.73</td>
<td>264.40</td>
<td>1,200.00</td>
<td>5,101.21</td>
</tr>
<tr>
<td>Area, 1000 m²</td>
<td>292,371</td>
<td>29.80</td>
<td>46.90</td>
<td>0.20</td>
<td>15.30</td>
<td>69.50</td>
</tr>
<tr>
<td>Distance to urban unit centers, km</td>
<td>292,371</td>
<td>9.26</td>
<td>11.60</td>
<td>0.91</td>
<td>5.15</td>
<td>22.06</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Price, RMB/m²</td>
<td>371,717</td>
<td>252.30</td>
<td>260.43</td>
<td>96.00</td>
<td>199.11</td>
<td>445.48</td>
</tr>
<tr>
<td>Area, 1000 m²</td>
<td>371,717</td>
<td>36.60</td>
<td>73.30</td>
<td>3.30</td>
<td>17.40</td>
<td>80.40</td>
</tr>
<tr>
<td>Distance to urban unit centers, km</td>
<td>371,717</td>
<td>10.28</td>
<td>10.93</td>
<td>1.46</td>
<td>7.57</td>
<td>21.77</td>
</tr>
<tr>
<td>B. Firm characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales, million RMB</td>
<td>1,729</td>
<td>9275.224</td>
<td>28673.8</td>
<td>443.5946</td>
<td>2352.02</td>
<td>18326.41</td>
</tr>
<tr>
<td>Cost, million RMB</td>
<td>1,729</td>
<td>6328.855</td>
<td>20170.43</td>
<td>281.86</td>
<td>1450.66</td>
<td>12380.3</td>
</tr>
<tr>
<td>OtherTax, million RMB</td>
<td>1,729</td>
<td>737.2629</td>
<td>2203.758</td>
<td>10.4888</td>
<td>189.44</td>
<td>1453.62</td>
</tr>
<tr>
<td>IncomeTax, million RMB</td>
<td>1,729</td>
<td>432.1878</td>
<td>1406.951</td>
<td>5.802</td>
<td>115.9482</td>
<td>807.18</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Treated Firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profit margin</td>
<td>21,976</td>
<td>0.05</td>
<td>0.08</td>
<td>0.00</td>
<td>0.04</td>
<td>0.13</td>
</tr>
<tr>
<td>Sale, 1000 RMB</td>
<td>21,752</td>
<td>179,459</td>
<td>371,021</td>
<td>11,457</td>
<td>61,288</td>
<td>411,539</td>
</tr>
<tr>
<td>Area, 1000 m²</td>
<td>4,349</td>
<td>34.11</td>
<td>45.43</td>
<td>4.55</td>
<td>18.83</td>
<td>80.00</td>
</tr>
<tr>
<td>-Control Firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profit margin</td>
<td>22,345</td>
<td>0.05</td>
<td>0.14</td>
<td>0.00</td>
<td>0.04</td>
<td>0.13</td>
</tr>
<tr>
<td>Sales, 1000 RMB</td>
<td>22,110</td>
<td>174,007</td>
<td>353,169</td>
<td>10,815</td>
<td>60,484</td>
<td>402,751</td>
</tr>
<tr>
<td>C. City characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IndDisc, RMB/m²</td>
<td>3,092</td>
<td>1,520,86</td>
<td>1,416,96</td>
<td>223.86</td>
<td>1,082.47</td>
<td>3,472.72</td>
</tr>
<tr>
<td>City VAT Share, %</td>
<td>2,839</td>
<td>23.94</td>
<td>10.15</td>
<td>15.00</td>
<td>20.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Change of City VAT Share in 2016, %</td>
<td>216</td>
<td>20.29</td>
<td>6.41</td>
<td>16.25</td>
<td>20.00</td>
<td>27.50</td>
</tr>
<tr>
<td>City MCB Coupon rate, %</td>
<td>257</td>
<td>6.96</td>
<td>0.80</td>
<td>5.88</td>
<td>6.98</td>
<td>8.00</td>
</tr>
<tr>
<td>Deficit/GDP</td>
<td>257</td>
<td>0.09</td>
<td>0.08</td>
<td>0.01</td>
<td>0.07</td>
<td>0.17</td>
</tr>
<tr>
<td>GDP growth rate, %</td>
<td>257</td>
<td>13.39</td>
<td>3.19</td>
<td>10.10</td>
<td>13.20</td>
<td>16.50</td>
</tr>
<tr>
<td>GDP per capita, 10,000 RMB</td>
<td>257</td>
<td>2.46</td>
<td>1.71</td>
<td>0.97</td>
<td>1.93</td>
<td>4.98</td>
</tr>
<tr>
<td>LateTerm</td>
<td>257</td>
<td>0.14</td>
<td>0.35</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note: This table reports summary statistics at the land, firm-year and city-year level. Panel A is based on the residential and industrial land auction transactions during 2007-2019; Panel B is based on the listed developers and the matched sample of firms used to estimate the effect of land purchase on sales. In Panel C, the first two variables are time-varying city characteristics during 2007-2019, the next four variables are city-level characteristics in 2008 and the last is a binary indicator for whether the provincial governor had been in office for more than three years at the end of 2008.
Consider a single parcel of land to be sold in period t, and let p_t^{ind} and p_t^{res} respectively denote the parcel’s expected price per square meter, if it is sold as industrial or residential land. Section 4.1 gives the details of our estimation method based on a potential-outcomes framework, which addresses the issue that the observed pattern in Figure 1 could be driven by the difference between the underlying characteristics of two land groups.

As we are interested in governments’ net revenue from selling lands, we need to adjust both p_t^{ind} and p_t^{res} for their respective costs. In general, there are three kinds of costs for land sales, some of which differ between industrial and residential lands; we explain the details in Appendix A.1. First, there is a fixed component, which mainly includes the “standard” compensation to incumbent land occupants and the cost of land development. These fixed costs apply equally to both types of land, and hence cancel out when calculating the industrial discount. The second type of cost is the “non-standard” compensation to local land occupants, which depends on the expected land sale price. This usually involves bargaining with local incumbent land occupants over a “resettlement agreement for demolition,” in which incumbents are compensated essentially based on expected future revenues from land sales. Typically, incumbent occupants know whether the redeveloped land is intended for residential or industrial uses. Rent-sharing with incumbents is a large part of the costs of residential land sales, but matters little for industrial land sales—generally, industrial land sales generate relatively negligible upfront revenues and thus involve less negotiation with local occupants. Third, as laid out in the Code for Planning Standards (see footnote 5 Item 4.3.2), selling residential land involves certain auxiliary costs, including extra land and fiscal support for education and other services associated with new residences. The latter two variable costs only apply to residential land, and in Appendix C.1 we estimate that the sum of these two variable costs is about $\frac{1}{3}$ of residential sale revenues.

Denote the additional cost associated with residential land by $\lambda = \frac{1}{3}$. Throughout the paper we define the industrial land discount as:

$$\text{IndDisc}_t \equiv (1 - \lambda)p_t^{\text{res}} - p_t^{\text{ind}}.$$ (1)

That is, (1) is the difference in upfront profit per square meter from selling residential land compared to industrial land. Note that the extra cost imposed on residential land could explain part of the (raw) industrial land discount observed in Figure 1. As shown shortly in Section 4, however, under the estimate $\lambda = \frac{1}{3}$, auxiliary costs alone are too
small to explain the entirety of industrial discounts.

As laid down in the next section, we hypothesize that an intertemporal revenue tradeoff faced by local governments under the Chinese tax system can largely explain the industrial land discount in the land market. Although to our knowledge we are the first to conduct a comprehensive and focused study on this price gap, alternative explanations from prior research could include subsidies to economically important industries (Liu, 2019), subsidies to support labor inflow and urbanization (Lei and Gong, 2014 and Fan et al., 2015), incentives for promotion (Tian et al., 2019), corruption (Wu et al., 2012), or simply lower-quality land being allocated for industrial purposes. While we may refute some explanations, our perspective is largely complementary to these alternative views.

3.2 Tax Revenues and the IRR on Industrial Land Sales

As explained in the introduction, Chinese local governments are predominately funded through a combination of tax revenue and land sales revenue. Given the current land finance system in China, one factor in the choice between allocating a new land parcel for residential versus industrial purposes is the distinct time profiles of revenues from industrial and residential land sales. More specifically, there are higher revenues upfront from residential land sales, as opposed to higher revenues in the future from industrial tax revenues. The government’s decision between industrial and residential land sales thus depends on how it values current versus future cash flows.

In this section we first formally define IRR^{ind}, which is the internal rate of return (IRR) on industrial land sales. We then develop a simple framework which allows us to link IRR^{ind} to the local government’s discount rate, its tax sharing rule with higher governments, and demand elasticities in both land markets.

3.2.1 IRR on Industrial Land

Following the terminology in practice in corporate finance (Berk and DeMarzo, 2017), we define the IRR on industrial land as the discount rate ρ that equates the net present value
of industrial versus residential land sales:

\[
\sum_{s \geq t+1} \frac{\text{Tax}^{\text{ind}}_{t,s}}{(1 + \rho)^{s-t}} - \sum_{s \geq t+1} \frac{\text{Tax}^{\text{res}}_{t,s}}{(1 + \rho)^{s-t}} = (1 - \lambda)p^{\text{res}}_t - p^{\text{ind}}_t \quad \text{IndDisc}
\]

(2)

In Eq. (2), the right hand side is industrial land discount as defined in Eq. (1). On the left hand side, \(\text{Tax}^{\text{ind}}_{t,s}\) is industrial taxes per square meter of land in year \(s\) due to firms’ land purchase in year \(t\), and \(\text{Tax}^{\text{res}}_{t,s}\) is residential taxes paid by home developers in year \(s\) due to their land developing businesses on land purchased in year \(t\). We invoke the convention that tax cash flows start to accrue one year after the land sale.

Unlike the industrial taxes that occur every year after \(t\), the residential tax revenues are temporary and we need to take a stance on their timing. In practice, some taxes, such as the deed taxes and stamp tax, are paid at the time of land acquisition; others, such as the value-added and income taxes, will be paid when the houses are “advance sold,” which generally occurs within three years after the land acquisition. For simplicity, we assume all the residential taxes occur in the next year following the land acquisition. That is to say, we assume that \(\text{Tax}^{\text{res}}_{t,s} = 1_{s=t+1} \times \text{DevTax}_s\) with \(\text{DevTax}_s\) denoting the developer taxes per square meter of residential land in year \(s\).\(^{12}\)

In summary, we are defining IRR on industrial land sales, denoted by \(\text{IRR}^{\text{ind}}\), to be

\[
\text{IRR}^{\text{ind}}_t = \begin{cases} \rho : \sum_{s \geq t+1} \frac{\text{Tax}^{\text{ind}}_{t,s}}{(1 + \rho)^{s-t}} = (1 - \lambda)p^{\text{res}}_t - p^{\text{ind}}_t + \frac{\text{DevTax}_{t+1}}{1 + \rho} \end{cases}
\]

(3)

Eq. (3) allows us to calculate \(\text{IRR}^{\text{ind}}\) after we obtain estimates for all inputs (industrial discounts, \(\text{Tax}^{\text{ind}}\), and \(\text{DevTax}\)) in Section 4.

\(^{12}\)In Section 4.4.2 we consider the alternative case that \(\text{DevTax}\) occurs two years later and show that our results are robust to this choice.
3.2.2 Equilibrium IRR^{ind} from the Government Optimization Problem

Under the premise that land allocation decisions made by Chinese local governments reflect the intertemporal tradeoff outlined above, what should be the relation between IRR^{ind} and the government’s cost of capital, denoted as r^{gov}? In a frictionless benchmark where the government lacks monopoly power and internalizes all tax revenues fully, its indifference condition between selling a marginal land parcel as industrial versus residential indeed implies that $\text{IRR}^{\text{ind}} = r^{\text{gov}}$. There are, however, a number of economic and/or policy factors that could drive a wedge between IRR^{ind} and r^{gov}.

First, in China, city governments keep almost the entirety of their land sales revenue, but only a fraction of taxes paid by local firms. The value-added, corporate income and business taxes are all shared between the city and upper-level governments. In Section C.10 of the appendix we report the effective share of all industrial taxes that accrued to city-level governments during 2007-2010 to be 31.66%. Suppose that the city government only internalizes a share $k \in (0, 1)$ of tax revenues from industrial firms. If we think of city governments as fully determining land allocation decisions and they only care about the revenues they get, k can be thought of as the share of taxes that directly accrue to city governments. More realistically, city governments negotiate with higher-level governments over land allocation decisions; k can then be thought of as the eventual weight that the bargaining outcome places on tax revenue in determining land allocations.

In Appendix B, we construct a simple model with perpetuity cash flows. When city governments only internalize future tax revenue partially indexed by k, we will have:

$$\text{IRR}^{\text{ind}} = \frac{r^{\text{gov}}}{k}. \quad (4)$$

Intuitively, the smaller the share of future industrial taxes that a city government receives, the greater the required industrial tax revenues in order for the government’s indifference condition to hold, and hence the higher IRR^{ind} will be. As $k < 1$, $\text{IRR}^{\text{ind}} > r^{\text{gov}}$.

Second, it is well known that Chinese local governments are monopolistic sellers in their local land markets. Thus, their sales can move land prices, and marginal revenue may differ from price. Taking the simple model developed above but further incorporating different demand elasticities in industrial and residential land markets, in Appendix B
we show that

\[
\text{IRR}^{\text{ind}} = \frac{r^{\text{gov}}}{k} \times \left[1 - \frac{\sigma_{\text{res}}^{-1} - \sigma_{\text{ind}}^{-1}}{\text{IndDisc} + \text{DevTax}} \right],
\]

where \(\sigma_{\text{res}} \) (\(\sigma_{\text{ind}} \)) is the negative demand semi-elasticity of residential (industrial) land.\(^{13}\)

The demand elasticity for industrial land is likely to be greater than that for residential land, as firms typically shop around among different cities while most households do not move across cities.\(^{14}\) We therefore would expect the term in brackets in Eq. (5) to be less than 1. Intuitively, the monopolistic local government takes into account the price impact it has in the residential housing market and so will tend to maintain a higher industrial land discount, generating a lower implied \(\text{IRR}^{\text{ind}} \). As a result, the relationship between \(\text{IRR}^{\text{ind}} \) and \(r^{\text{gov}} \) is ambiguous, depending on the relative size of \(k \) and the term in brackets. In Section 4.4.3 we show \(\text{IRR}^{\text{ind}} \) goes from larger to smaller than \(r^{\text{gov}} \) during 2007-2019, likely driven by the increase in \(k \) during that time period.

Before we move on to the next section to estimate \(\text{IRR}^{\text{ind}} \) formally, we stress that \(\text{IRR}^{\text{ind}} \) in Eq. (3) incorporates the industrial firms’ marginal tax revenues only; it ignores potential non-pecuniary benefits or costs that the government derives from choosing industrial rather than residential zoning. One advantage of our approach, which provides a gauge of the magnitude of \(\text{IRR}^{\text{ind}} \), is that it gives a clear guidance on whether one particular economic force alone, i.e., taxes, can explain the striking empirical pattern.

4 Estimation

In the framework laid out in Section 3, measuring industrial land discounts and estimating government IRRs requires three key quantities: \(p^{\text{ind}}_t \) and \(p^{\text{res}}_t \), the representative prices per square meter of industrial and residential land; \(\text{Tax}^{\text{ind}}_{t,s} \), the stream of future tax revenues generated by industrial land sales at \(t \); and \(\text{DevTax}_s \), the taxes paid by home developers in year \(s \) based on home developing business on the residential land. We provide these

\(^{13}\)In this derivation, for exposition purposes we further assume that the one-time developer taxes \(\text{DevTax} \) occur at the same time as the sale of residential land.

\(^{14}\)One reason for households’ immobility across cities is China’s “hukou” residence restrictions (Li et al., 2017).
estimates in this section. After estimating industrial discounts in Section 4.1, we use a differences-in-differences approach in Section 4.2 to estimate the marginal effect of land purchases on industrial firms’ sales and taxes. Section 4.3 conducts the estimation of taxes paid by developers based on home development on the residential land. We then combine these estimates together to calculate IRRs on industrial land sales in Section 4.4.

4.1 Industrial Land Discount Estimation

For each parcel of land indexed by i, we first estimate the price of the land if it were sold for the alternative use (industrial or residential). Let p_{it}^{res} (p_{it}^{ind}) denote the price per square meter of the parcel assuming it is sold as residential (industrial) land. Let 1_{it}^{res} be a dummy representing whether parcel i is actually sold as a residential parcel. The sale price for parcel i that we observe is:

$$p_{i,t} = \begin{cases} p_{i,t}^{\text{res}} & 1_{i,t}^{\text{res}} = 1, \\ p_{i,t}^{\text{ind}} & 1_{i,t}^{\text{res}} = 0. \end{cases} \quad (6)$$

Our goal is to estimate both outcomes $p_{i,t}^{\text{res}}$ and $p_{i,t}^{\text{ind}}$, only one of which is observed.

The main challenge is that land parcels are not randomly zoned as residential or industrial. For example, parcels closer to the city center are more likely to be used as residential, and hence it is likely that $E[p_{i,t}^{\text{res}} | 1_{i,t}^{\text{res}} = 1] \neq E[p_{i,t}^{\text{res}} | 1_{i,t}^{\text{res}} = 0]$. Therefore, one cannot directly take the average observed prices of residential land parcels as the predicted price of the industrial land parcels, if they were instead zoned for residential use. We must control for the differences in land characteristics between the two types of land parcels.

We proceed by using the sample of observed residential (industrial) sale prices to estimate a hedonic model to predict what the prices of industrial (residential) land parcels would have been if they were, counter-factually, sold as residential (industrial). Formally, let J_{res} and J_{ind} represent the sets of residential and industrial parcels, respectively:

$$J_{\text{res}} \equiv \{ i : 1_{i,t}^{\text{res}} = 1 \}, \quad J_{\text{ind}} \equiv \{ i : 1_{i,t}^{\text{res}} = 0 \}.$$
For all residential parcels $i \in \mathcal{I}_{\text{res}}$, we will estimate the following regression specification:

$$p_{i,t} = X_{i,t} \cdot \beta^{\text{res}} \cdot \gamma_{u,t}^{\text{res}} + \epsilon_{i,t}, \ \forall i \in \mathcal{I}_{\text{res}}. \quad (7)$$

Eq. (7) is a hedonic model that predicts $p_{i,t}$, the price per square meter of each residential land parcel. To control for geographical variation in prices within cities, we construct “urban units,” which are geographical units smaller than cities, by grouping contiguous pieces of urban land into blocks. We describe details of this procedure in Appendix A.3.\footnote{Appendix Figure A.1 shows some examples of the urban units in large and small cities.} Parcel characteristics $X_{i,t}$ consist of the following control variables: second-order polynomials in the log of the area of the land parcel, the distance to the center of the closest urban unit, and the year-quarter in which the land is sold. We also include urban-unit-by-year fixed effects $\gamma_{u,t}$.

We estimate Eq. (7) by restricting the sample to the set of land parcels sold by auctions. To account for the possibility that the coefficients may vary over time and across cities, we estimate (7) separately for each prefecture city, and separately for two time periods: 2007-2010 and 2011-2019. Since specification (7) requires enough data to precisely estimate, we restrict our estimation to cities and periods in which we observe at least 80 (120) industrial land sales as well as 80 (120) residential land sales in the city during 2007-2010 (2011-2019). This leaves us with 213 (285) out of 341 cities for 2007-2010 (2011-2019), which collectively constitute 88.6% (98.4%) of all industrial and residential land sales through auction during 2007-2010 (2011-2019).

Using our estimates from specification (7), we can then predict residential prices for industrial parcels by plugging characteristics of these parcels into Eq. (7):

$$\hat{p}_{i,t}^{\text{res}} = X_{i,t} \hat{\beta}^{\text{res}} + \hat{\gamma}_{u,t}^{\text{res}}, \ \forall i \in \mathcal{I}_{\text{ind}}. \quad (8)$$

That is, $\hat{p}_{i,t}^{\text{res}}$ is the predicted price of parcel i if it were sold as residential land. Analogously, we fit a hedonic model to industrial land parcels, with the same control variables as in (7):

$$p_{i,t} = X_{i,t} \beta^{\text{ind}} + \gamma_{u,t}^{\text{ind}} + \epsilon_{i,t}, \ \forall i \in \mathcal{I}_{\text{ind}}. \quad (9)$$

We then predict the counter-factual industrial prices for residential parcels as:

$$\hat{p}_{i,t}^{\text{ind}} = X_{i,t} \hat{\beta}^{\text{ind}} + \hat{\gamma}_{u,t}^{\text{ind}}, \ \forall i \in \mathcal{I}_{\text{res}}. \quad (10)$$
Using our estimates of \(\{ p_{res,i,t}, p_{ind,i,t}, \hat{p}_{res,i,t}, \hat{p}_{ind,i,t}, \lambda \} \), we can estimate industrial land discounts for each parcel using equation (1) as follows:

\[
\text{IndDisc}_{i,t} = \begin{cases}
(1 - \lambda) p_{res,i,t} - \hat{p}_{ind,i,t}, & i \in \mathcal{I}_{res}; \\
(1 - \lambda) \hat{p}_{res,i,t} - p_{ind,i,t}, & i \in \mathcal{I}_{ind}.
\end{cases}
\]

In words, \(\text{IndDisc}_{i,t} \) is the actual (predicted) residential sale price minus the predicted (actual) industrial price for residential (industrial) parcels, where the residential prices are adjusted by \(1 - \lambda = \frac{2}{3} \) (recall Section 3.1).

The estimation delivers \(\text{IndDisc}_{i,t} \) at the land parcel level. We then aggregate to form city-year level estimates, \(\text{IndDisc}_{c,t} \), by taking averages of \(\text{IndDisc}_{i,t} \) weighted by the size of each land parcel. Figure 2 shows the distribution of \(\text{IndDisc}_{c,t} \) in the cross section and over time. Panel (a) plots the industrial land discounts against GDP per capita across provinces, showing a positive correlation between the level of industrial discount and economic development. Panel (b) plots the time series of the estimated industrial land discount. It was about 400-500 RMB/m\(^2\) during 2007-2009 and increased to 750 RMB/m\(^2\) around 2010. It remained stable during 2010-2015, but increased significantly during 2015-2018. In 2019, the average industrial discount reached about 2,000 RMB/m\(^2\), five
times the level in 2007.16 Section 5.2 provides one explanation for the significant increase of industrial land discounts from 2015 to 2018.

4.2 Industrial Tax Estimation

4.2.1 Estimation Methodology

In this section, we discuss how we estimate the effects of land purchases on firms’ sales using a differences-in-differences approach.

To bring the conceptual framework to the data, we impose a few econometric assumptions. Suppose that in period τ_j, firm j purchases a land parcel of size Δ_j. Define $\Delta_{j,t} \equiv \Delta_j \cdot 1_{t \geq \tau_j}$; then firm j’s sales in period t take the following form:

$$S_{j,t} = \alpha_j + \eta_t + \theta_{t-\tau_j+1} \cdot \Delta_{j,t} + \varepsilon_{j,t}. \quad (11)$$

In words, Eq. (11) states that firms’ sales are determined by time-varying factors η_t, time-invariant firm-specific factors α_j, and land purchases $\Delta_{j,t}$, whose effect depends on a parameter $\theta_{t-\tau_j+1}$. The time-varying factors η_t may represent, in reduced form, factors such as growth, demand, and input prices, while α_j represents persistent firm-specific productivity differences.

In this framework, treated firms are those that ever acquired some new industrial land during their presence in the sample either through auctions or agreements, i.e., firms with $\Delta_j > 0$ for some $\tau_j < \infty$. For cleaner identification, we focus on the sample of firms who have purchased land only in one year in our sample period.17 In contrast, control firms are those that never acquired any new industrial land during their presence in the sample (so that $\tau_j = \infty$), regardless of the transfer method.

A natural concern with estimating the parameters $\theta_{t-\tau_j+1}$ in Eq. (11) is that land purchase decisions may be endogenous with firm-time-specific shocks $\varepsilon_{j,t}$. To address

16From 2007 to 2015, the simple average of residential (industrial) land price across all cities, where we use predicted value if not observed, increased by a factor of 2.23 (1.41) in our data. Liu and Xiong (2020) control for changing land characteristics and show that residential land price increased by a factor of about 3.12 and the industrial land price barely changed during the same period.

17If a firm purchased multiple land parcels in one year, then we aggregate these purchases together as one firm-year observation.
this concern, we decompose these shocks as

\[\varepsilon_{j,t} = f(p(x_{j,t})) + e_{j,t}. \]

In this decomposition, \(f \) can be any function, and \(p(x_{j,t}) \) is a firm’s probability of purchasing land given observables \(x_{j,t} \). We make the identifying assumptions:

\[\mathbb{E}[e_{j,t} \Delta_{j,t} | \alpha_j, \eta_t, \tau_j \in [\tau, \infty]] = 0 \quad \text{and} \quad \mathbb{E}[e_{j,t} \mathbf{1}_{\Delta_{j_t} > 0} | \alpha_j, \eta_t, \tau_j \in [\tau, \infty]] = 0, \quad \forall \tau \]

In words, the two requirements for \(e_{j,t} \) are that these shocks to firm sales be uncorrelated (i) with the amount of land purchased and (ii) with the decision of whether to buy land, among firms that either purchase land in a particular year (\(\tau_j = \tau \)) or do not purchase land at all (\(\tau_j = \infty \)). The conditioning on \(\alpha_j \) and \(\eta_t \) reflects that these assumptions only need to hold after we control for firm and time fixed effects. Because \(e_{j,t} \) is the component of firm-time-specific shocks that are unrelated to the probability of land purchase predicted by \(x_{j,t} \) (see equation (12)), we view this as a plausible identifying assumption, and moreover an assumption that we can partially test by examining pre-trends in sales among treatment and control firms.

Motivated by this framework, we match treated firms with control firms using propensity scores \(\hat{p}(x_{j,t}) \) for land purchase using firm characteristics in year \(t = \tau_j - 1 \). Recall that the control firms are those that did not acquire any new industrial land during their presence in the sample. After stratifying by event year, province, and two-digit National Industries Classification code, we estimate \(\hat{p}(x_{j,t}) \) based on the three following observables at the firm level:

\[x_{j,t} = \{ \log S_{j,t-1}, \log S_{j,t-2}, \frac{\text{Profit}_{j,t-1}}{S_{j,t-1}} \} . \]

Here, \(S_{j,t} \) is firm \(j \)’s sales in period \(t \) and \(\text{Profit}_{j,t}/S_{j,t} \) is firm \(j \)’s profit margin in period \(t \). In our data, we find these three variables are predictive of land purchase decisions; other observables do not provide additional explanatory power for whether the firm purchases land in \(t = \tau_j \).

After matching, one test of our assumption on the residuals \(e_{j,t} \) will be whether treated firms and control firms exhibit parallel trends in sales prior to \(\tau_j \). We conduct this test as part of our differences-in-differences strategy below and confirm (fail to reject) parallel
trends for all purchase cohorts τ.

We estimate the effects of land purchase, $\theta_{t-\tau+1}$, using difference-in-differences on the matched sample. To do so, we define the average land size in a given land-purchase year τ as

$$\bar{\Delta}_\tau \equiv E[\Delta_j | \Delta_j > 0, \tau_j = \tau],$$

(14)

which essentially estimates the average land size at a particular year τ by averaging over land transactions in that year. Using Eq. (11), firm sales can be equivalently written as

$$S_{j,t} = \alpha_j + \eta_t + \theta_{t-\tau+1} \cdot 1_{\Delta_j > 0} \cdot \bar{\Delta}_{\tau_j} + \epsilon'\prime_{j,t},$$

(15)

where we define

$$\epsilon'\prime_{j,t} = \begin{cases}
\epsilon_{j,t}, & \Delta_{j,t} = 0; \\
\epsilon_{j,t} + \theta_{t-\tau+1} \cdot (\Delta_{j,t} - \bar{\Delta}_{\tau_j}), & \Delta_{j,t} > 0.
\end{cases}$$

(16)

Note that,

$$E[\epsilon'\prime_{j,t} \bar{\Delta}_{\tau_j} | \alpha_j, \eta_t] = 0,$$

(17)

where we use conditioning on α_j and η_t to reflect controlling for firm and time fixed effects. This follows from (13) thanks to the definition of $\bar{\Delta}_{\tau_j}$ in Eq. (14). In light of Eq. (17), we can consistently estimate $\theta_{t-\tau+1}$ with difference-in-differences estimation using regression specification (15).

4.2.2 The Effect of Land Purchase on Sales

Table 2 reports the estimates of specification (15). We take the year $t = \tau - 1$ to be the base year; this essentially assumes that the land purchase occurs at the beginning of the purchase year τ. In all regressions we also allow the time fixed effects η_t to vary at the province-year level, i.e., $\eta_{p,t}$, to absorb differences in time trends across provinces.

For each purchase year $\tau \in \{2007, 2008, 2009, 2010\}$, we use data from years $\tau - 4$ (there are very few firms with data before $\tau - 4$) through the year 2013. We start from 2007 which is the first year of the land sale data; we end in 2010 which is the last land purchase year for which we observe firm tax data after two years (i.e., 2013) to estimate the permanent impact of land purchase on taxes as in Table 3.

Table 2 reveals three important patterns. First, estimated treatment effects are positive and are both economically and statistically significant. Each square meter of land
generates, for example, 428.2 RMB in additional sales in the first year after land purchase in 2007. Second, overall, the estimated treatment effects grow over time.

Third, and importantly for validating our matched difference-in-differences identification assumptions, treated and control firms are not significantly distinguishable prior to the event. Note, our matching procedure guarantees that the parallel trend holds between the treated and control firms from \(t = \tau - 2 \) to \(t = \tau - 1 \). The fact that the parallel trend holds from \(t = \tau - 4 \) to \(t = \tau - 2 \) lends some support to our identification assumption.

Motivated by these patterns, Table 3 summarizes the estimated treatment effects more concisely. In words, we pool the four purchase years \(\tau \in \{2007, 2008, 2009, 2010\} \) together and separately estimate a treatment effect for the first three years after purchase, which captures the more modest effects on sales that we observe as firms presumably are making other fixed investments (e.g., new plants) that complement the land purchase, and another treatment effect for the third and subsequent years after purchase, which captures the long-run effects of new land. Formally, we estimate

\[
S_{j,t} = \alpha_j + \eta_{t,\tau_j} + \theta_{\text{short}} \cdot 1_{\Delta_j > 0, t-\tau_j \in \{0,1,2\}} \cdot \Delta_{t_j} + \theta_{\text{long}} \cdot 1_{\Delta_j > 0, t-\tau_j > 2} \cdot \Delta_{t_j} + \epsilon_{j,t}.
\]

In the first column we report these estimates using land sales that occur in 2007-2010, for which we have sufficient sample to estimate long-run treatment effects. In the next four columns we report the estimated effects year-by-year.

Overall, we observe that in the first three years after land purchase, land sales generate an additional 636.2 RMB/m² in sales on average per year; and in subsequent years after land purchase, land sales generate a long-run effect of 1199 RMB/m² in sales on average per year.\(^\text{18}\)

Before leaving this section we discuss one econometric issue regarding panel balance. Firms enter and exit our panel due to data linkage issues and due to firm births and deaths. For example, we use firm names as firm identifiers, so name changes or inconsistencies in name reporting can lead to panel imbalance if we fail to track a firm over time. Panel imbalance can also arise due to censoring when firm sales fall below a threshold for inclusion in our data. We address imbalance by excluding matched treated-control pairs from our analysis whenever either firm’s data are imbalanced. In Appendix C.2 we study the causes of panel imbalance and conclude the majority of imbalance is due to

\(^\text{18}\)As the data for 2010 is missing, we lack one year of observations for either the first three years or the later years, depending on the land purchase year \(\tau \).
Table 2: Dynamic Treatment Effect of Land Purchase on Sales

<table>
<thead>
<tr>
<th>Event Year τ</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: Sales</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = -4)$</td>
<td>192.9 (0.562)</td>
<td>-77.30 (-0.110)</td>
<td>-17.82 (-0.0717)</td>
<td>141.4 (0.444)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = -3)$</td>
<td>2.781 (0.0143)</td>
<td>185.0 (0.337)</td>
<td>-105.7 (-0.534)</td>
<td>339.4 (1.568)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = -2)$</td>
<td>10.21 (0.0936)</td>
<td>-107.3 (-0.363)</td>
<td>69.11 (0.554)</td>
<td>191.5 (1.558)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = 0)$</td>
<td>428.2*** (2.869)</td>
<td>938.1** (2.257)</td>
<td>287.3** (2.133)</td>
<td>428.2*** (2.869)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = 1)$</td>
<td>783.3*** (3.235)</td>
<td>1,097** (2.486)</td>
<td>772.3*** (2.695)</td>
<td>783.3*** (3.235)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = 2)$</td>
<td>687.0** (2.207)</td>
<td>655.6** (2.129)</td>
<td>1,048*** (2.985)</td>
<td>687.0** (2.207)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = 3)$</td>
<td>1,691** (2.070)</td>
<td>602.9* (1.678)</td>
<td>1,497*** (3.299)</td>
<td>1,691** (2.070)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = 4)$</td>
<td>814.2* (1.847)</td>
<td>2,222* (1.725)</td>
<td>965.8** (2.333)</td>
<td>814.2* (1.847)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = 5)$</td>
<td>1,293* (1.757)</td>
<td>1,600 (1.059)</td>
<td></td>
<td>1,293* (1.757)</td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau = 6)$</td>
<td>2,081** (1.968)</td>
<td></td>
<td></td>
<td>2,081** (1.968)</td>
</tr>
</tbody>
</table>

Firm FE | Yes | Yes | Yes | Yes |
Province-Year FE | Yes | Yes | Yes | Yes |
Observations | 9,189 | 4,046 | 13,132 | 16,510 |
R^2 | 0.475 | 0.522 | 0.521 | 0.497 |

Note: This table reports estimation results of Model (15) with the matched sample. We drop the matched pairs whenever the treated or the control firm exits the sample. For each treatment year $\tau \in \{2007, 2008, ..., 2010\}$, the sample ranges from $\tau - 4$ to 2013. (Since 2010 data is missing, we do not have estimators for year at $t = 2010$.) The variable sales is in 1,000 RMB and $\bar{\Delta}$ is in 1,000 m2. The year of $t = \tau - 1$ is used as the base year. Standard errors are clustered by firms. Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table 3: Baseline Estimation of Marginal Output of Land

<table>
<thead>
<tr>
<th>Event Year</th>
<th></th>
<th>2007-2010</th>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: Sales</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau \in {0,1,2})$</td>
<td>636.2***</td>
<td>561.7**</td>
<td>1,003**</td>
<td>393.6**</td>
<td>751.3**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.367)</td>
<td>(2.562)</td>
<td>(2.205)</td>
<td>(2.327)</td>
<td>(2.352)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{\Delta} \cdot \text{Treat} \cdot (t - \tau > 2)$</td>
<td>1,199***</td>
<td>1,283**</td>
<td>1,836*</td>
<td>736.3**</td>
<td>1,342***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.453)</td>
<td>(2.050)</td>
<td>(1.745)</td>
<td>(2.073)</td>
<td>(2.887)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Province-Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EventYear-Province-Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>43,671</td>
<td>9,425</td>
<td>4,196</td>
<td>13,171</td>
<td>16,879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.505</td>
<td>0.439</td>
<td>0.548</td>
<td>0.561</td>
<td>0.488</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports estimation results of Model (18) with the matched sample. We drop the matched pairs whenever the treated or the control firm exits the sample. The first estimate is for $\theta_{\text{short-run}}$ and the second is for $\theta_{\text{long-run}}$. For each treatment year $\tau \in \{2007, 2008, ..., 2010\}$, the sample ranges from $\tau - 4$ to 2013 (but the data for 2010 is missing). The variable “sales” is in 1,000 RMB and $\bar{\Delta}$ is in 1,000 m2. Standard errors are clustered by firms. Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1

idiosyncratic reasons such as imperfect matches on firm name over time. We also find evidence that a modest amount of imbalance is due to censoring, which we argue in Appendix C.2 makes our estimates of land-purchase treatment effects conservative.

4.2.3 Firm Tax Estimation

We now calculate the marginal tax revenues generated by firms’ land purchases. Although in Section 4.2.2 we only estimate the increase of sales of the land-purchasing firms, the tax estimation goes beyond the single firm and incorporates general equilibrium effect.

The most important taxes paid by industrial firms are value-added taxes and corporate income taxes, with both being approximately linear functions of the firm’s value added.\(^{19}\) If we assume homogeneous relationship between taxes and value added across firms, then the total increase of taxes due to a single firm’s land purchase equals the total increase of value added times the effective tax rate.

In this paper we approximate the total increase of value added to the economy due to the purchase of an industrial land parcel by the total increase of sales of that land-

\(^{19}\)For a detailed description of the system of firm taxation in China, see Appendix C.5.
purchasing firm. By definition, the sales of the land-purchasing firm equal the sum of value added of all upstream firms in the treated firm’s supply chain, and hence we will miss the externality effects on other firms in the economy, such as the downstream firms and competing firms. To sign the externality, Appendix C.3 presents a simple model with perfect competition, which builds on Hulten (1978) and Baqaee and Farhi (2019). Our analysis shows that the increase in land buyers’ output will over-estimate changes in total output, if land purchases lead land-buying firms to increase their input purchases. Essentially, this is because land buyers cannibalize some input purchases, and hence decrease output of other firms.

Therefore, under the framework of Hulten (1978) and Baqaee and Farhi (2019) with perfect competition, our treatment tends to over-estimate the total effect on value added to the economy. However, in practice, the product markets in China could be far from competitive. To our best knowledge, there is no standard solution in the literature to address the bias, and we will leave this to future studies.

So what remains is the estimation of the effective tax rates. We estimate the industrial firm tax rates in China in Appendix C.5. As shown in Figure A.3, while effective tax rates depend on firm size, the average value-added tax rate, which is approximately 12.10%, is relatively stable for firms of different sizes. We also estimate that income taxes and other administrative fees amount to approximately 5.77% of firms’ value added. Combining these estimates, firms face an average tax rate of approximately 17.87%.

Now we obtain the marginal effects of land purchase on tax revenues, by multiplying the tax rate with the estimated effect, 17.87%, on sales from column (1) of Table 3. Recall we have assumed that incremental tax cash flows start one year after the sale of industrial land (which occurs at the beginning of that year). Therefore, for industrial land sale in year $t - 1$ (i.e., at the beginning of year t), the industrial tax cash flows in year s is:

\[
\text{Tax}^{\text{ind}}_{t-1, s} = 636.2 \times 17.87\% = 113.6 \text{ RMB}, \quad \text{for } s - t \in \{0, 1, 2\} \quad (19)
\]

\[
\text{Tax}^{\text{ind}}_{t-1, s} = 1199 \times 17.87\% = 214.2 \text{ RMB}, \quad \text{for } s - t > 2 \quad (20)
\]

4.2.4 Complementary Evidence

Our estimates of marginal tax income of industrial land sales from the government’s perspective square nicely with the following two pieces of complementary evidence.
Average VAT income from industrial land. As a first benchmark, we compare our estimated marginal effect of land sales on tax receipts to the average VAT per square meter of land. For each province during our sample period, we calculate the average VAT per square meter of land as total VAT revenue from China Tax Yearbook,\(^{20}\) divided by total industrial land size (from China City Construction Yearbook). Appendix Figure A.4a shows the average VAT income per square meter of land for each province in 2011, a year that is right after the sample period of 2007-2010 that we use to estimate the marginal taxes on land. Across all provinces, the simple average VAT income per square meter of land is 332 RMB/m\(^2\). This has the same magnitude as, though is slightly larger than, the long-run (marginal) tax revenues per square meter of land, 214.2 RMB/m\(^2\) in Eq. (20).

Official guidance on minimum required tax on industrial land. As the second source of evidence on tax income, we use the government’s direct guidance on the “required minimum” tax paid by firms operating on industrial land. In 2008, the Ministry of Land Resources initiated the Guidelines on Land Supply to Industrial Projects, which required the local land bureaus to impose restrictions on the industrial land supply along certain dimensions (for example, a green land ratio).\(^{21}\) Some provincial land bureaus modified the guidelines by adding additional requirements on the tax payment by firms, with Jiangsu province being the first to explicitly impose an industry-specific minimum requirement on tax payments by firms on industrial land in 2018. Some provinces, such as Hunan, followed and imposed the same minimum requirement in 2020.

Appendix Figure A.4b plots the industry-specific minimum requirement on annual tax payments set by Jiangsu and Hunan province for all non-tobacco-related manufacturing industries. The minimum tax requirement for most industries is around 100 RMB/m\(^2\), and if we average across industries using the industrial composition of land sales in our data during 2007-2010, we find an average minimum tax requirement of 113.6 RMB/m\(^2\). We thus conclude our estimate of the marginal tax revenues of 214.2 RMB/m\(^2\) accords with these minimum requirements, further validating our estimates.

\(^{20}\)We calculate the total VAT paid by firms in each province as the summation of both the local governments’ and the central government’s VAT revenues.

\(^{21}\)Other restrictions are on the amount of fixed investment, floor ratio, the fraction of land for buildings and construction, and the fraction of land for offices and utilities.
4.3 Developer Tax Estimation

Finally, we estimate the increase in taxes paid by residential developers induced by residential land sales. When residential developers purchase land and build apartments on it, this increases their sales, which increases the taxes they pay. Since there are no residential property taxes in China, these one-time incremental taxes paid by developers are the only channel through which residential land sales increase tax revenues. The tax revenue collected per square meter of residential land in city c and year t can be expressed as:

$$\text{DevTax}_{t,c} = p^h_{t,c} \times \text{FloorRatio}_c \times \text{DevTaxRate}_t,$$

(21)

where $p^h_{t,c}$ is the average house price per square meter of livable space; FloorRatio_c is the average amount of livable space that is built per square meter of residential land sold; and DevTaxRate_t is the expected amount of taxes developers pay, for each RMB of increase in their total sales in year t.

We calculate $p^h_{t,c}$ using total house sales revenue divided by the total construction area of houses sold in city c and year t. We measure FloorRatio_c using the area-weighted average value of all residential land parcels sold in city c from 2007-2019; there is little variation in the city-level floor ratio over time. To get DevTaxRate_t, we use data of listed developers in year t and regress the firms’ total annual taxes on annual sales. Appendix Figure A.5 shows the relationship between the listed developers’ annual taxes against their sales. The relationship is close to linear year by year, suggesting that DevTaxRate_t is roughly independent of developer size.

Figure 3 shows how $\text{DevTax}_{t,c}$ varies across cities and over time. The left panel shows that in provinces with higher GDP per capita, home developers pay more taxes per square meter of land. The right panel shows that average taxes paid by developers, per square meter of land sold, is increasing over time.\footnote{Since May 1, 2016, home developers start to pay value-added taxes, which is not reported in their income statements. We estimate the value-added taxes using $(\text{Sales-COGS}) \times \text{VAT tax rate}$ and then add it to the reported taxes.}
This section uses the framework of Section 3 to translate our empirical estimates into an IRR estimate on industrial land sales. We first focus on 2007-2010, the sample period based on which we estimate the industrial tax revenues. We then provide various robustness discussions, and finally extend the methodology to calculate the IRR estimate over time.

4.4.1 IRRind during 2007-2010

Recall that the industrial tax estimates are at the national level based on land sold during 2007-2010. We calculate national average values of the industrial land discounts and residential tax gains from residential land, by taking the weighted averages of IndDisc\textsubscript{c,t} during 2007-2010 and DevTax\textsubscript{t,c} during 2008-2011, weighted by the area of land purchased by the treated firms in that city-year. We find that the weighted-average industrial land discount during 2007-2010 is 1012.83 RMB/m2, and the weighted-average developer taxes during 2008-2011 is 1453.03 RMB/m2. Combining this with the estimates of industrial tax revenues, which are 113.6 RMB/m2 in the first two years given by Eq. (19) and 214.2 RMB/m2 thereafter given by Eq. (20), we calculate the government IRR in
Table 4: Industrial Discount, Tax and IRRind

<table>
<thead>
<tr>
<th></th>
<th>IndDisc</th>
<th>Taxind</th>
<th>Taxres</th>
<th>IRRind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1012.83</td>
<td>113.67</td>
<td>214.23</td>
<td>1453.03</td>
</tr>
<tr>
<td>Exclude Five-Yr-Plan-Targeted industries</td>
<td>991.55</td>
<td>98.89</td>
<td>171.77</td>
<td>1380.74</td>
</tr>
<tr>
<td>Full Tax Deduction</td>
<td>1012.83</td>
<td>85.25</td>
<td>214.23</td>
<td>1453.03</td>
</tr>
<tr>
<td>Two-year gap of DevTax</td>
<td>1012.83</td>
<td>113.67</td>
<td>214.23</td>
<td>1765.69</td>
</tr>
<tr>
<td>Combination of three adjustments</td>
<td>991.55</td>
<td>74.17</td>
<td>171.77</td>
<td>1713.68</td>
</tr>
</tbody>
</table>

Note: This table shows the industrial land discount estimates during 2007-2010, the tax benefits, and the corresponding IRRind, calculated with Eq. (3). We aggregate the city-year level industrial discount estimates and developer taxes to the national level, all using the weight proportional to the area of land purchased by the treated firms in that city-year when we estimate Column (1) in Table 3. We conduct robustness checks by excluding industries that were ever targeted by the Five-year plan (the second row), deducting the maximum possible tax rebates of 25% in the first five years (the third row), assuming the developer tax cash flow occurring two years following land acquisition (the forth row), and the combination of the three adjustments (the last row). In Row 2 and 5, we set the weight to be the land area purchased by firms in non-targeted industries to match the industrial tax estimation.

Eq. (3) to be IRRind = 7.70%. We emphasize that all inputs in this calculation are based on their respective sample periods and hence do not suffer the usual “look-ahead” bias.

One of the main takeaways from our paper is that our estimate of IRRind is not smaller than most estimates of government discount rates in the literature, which we will call rgov. We proxy the city government’s cost of capital using the issuance yield of municipal corporate bonds (MCBs, or Chengtou Bonds in Chinese). MCBs are bonds issued by local government financial vehicles (LGFVs), which are state-owned enterprises, to support infrastructure investment at both the provincial and the city level.23 Since the “four-trillion stimulus plan”, China’s response to the global financial crisis in 2009-2010, MCBs have become the major financing source for Chinese city governments besides selling land directly (Bai et al., 2016; Chen et al., 2020), and their market-determined yields reflect the city governments’ fiscal conditions.24

23As explained in Chen et al. (2020), MCBs have the implicit backing of the corresponding city government (hence the name municipal), but in a strict legal sense they are issued by LGFVs entities just like other regular corporations (hence corporate).

24We do not use the yields of municipal bonds for three reasons. First, the official municipal bonds (i.e., those issued by Chinese local governments directly) were rather limited in supply before Beijing launched the second major tax reform in 2014. Second, after 2015, municipal bonds are explicitly guaranteed by the central government, which removes any risk premia associated with fiscal conditions of municipalities.
We find that our estimate of \(\text{IRR}^{\text{ind}} \) is comparable to city governments’ cost of capital \(r^{\text{gov}} \), which ranges from 3.5% to 7.5%. This finding suggests that city governments’ sharing of tax revenues with higher-level governments plays an important role in the equilibrium land allocation decisions. To see this, if the city government received the entirety of VAT revenues, then the discussion of governments’ market power over residential and industrial land in Section 3 (see Eq. (5)) indicates that \(\text{IRR}^{\text{ind}} \) should be smaller than city governments’ cost of capital. In contrast, the fact that city governments only retain a fraction of tax revenues can explain why \(\text{IRR}^{\text{ind}} \) is comparable to \(r^{\text{gov}} \).\(^{25}\)

In sum, guided by the simple economic framework developed in Section 3.2, our estimated \(\text{IRR}^{\text{ind}} \) leads us to highlight the interaction of three forces that drive the IRR on industrial land sales in China: the “land finance” system, in which the revenues from land sales accrue entirely to city governments and are an important source of governments’ operational funds; the distinct time profiles of revenues from industrial and residential land sales along with the governments’ discount rates; and the asymmetric treatment of industrial tax revenues, which are shared between city governments and upper-level governments. The last two points are new to the literature on the price discounts on industrial (versus residential) land, and Section 5 conducts cross-sectional analysis to provide further evidence that industrial discounts are associated with cities’ discount rates as well as their shares of industrial tax revenues.

4.4.2 Robustness Checks

We conduct a number of robustness checks on our estimates of \(\text{IRR}^{\text{ind}} \); our methodology is described in detail in Appendix C.9. First, we calculate \(\text{IRR}^{\text{ind}} \) separately for industries based on whether they were ever targeted in China’s Eleventh or Twelfth Five-year Plans. This addresses concerns that the government may be subsidizing targeted industries through other favorable policies, causing \(\text{IRR}^{\text{ind}} \) to be particularly high for firms in these industries as we have ignored the cost of these policies. Appendix Table A.5 shows \(\text{IRR}^{\text{ind}} \) separately for targeted and non-targeted industries. We estimate \(\text{IRR}^{\text{ind}} \) for targeted

Finally, municipal bonds are subject to strict issuance quotas, and hence do not serve as the marginal financing method for city governments.

\(^{25}\)In Appendix B, we consider an alternative assumption that the cash flow is not constant perpetuity but grows at a constant rate \(g \). In this case, the measured IRR is the same as Eq. (5) except \(r^{\text{gov}} \) is replaced by \(r^{\text{gov}} - g \). This implies that the growth of industrial taxes \(g \), which tends to make implied \(\text{IRR}^{\text{ind}} \) lower, plays the opposite role of the city tax sharing \(k \).
industries to be 8.05% (unreported), which is indeed modestly higher than the IRR of 6.57% for non-targeted industries. Thus, accounting for industrial policy-targeted industries does not substantially affect our IRR estimates.

Second, local governments occasionally offer tax rebates for new firm entrants in the first few years where they operate. The third row of Table 4 shows how our IRR estimate changes if we assume the most conservative case that firms receive a 25% tax rebate in the first five years of their existence. This also reduces our IRR estimate only modestly, from the baseline level of 7.70% to 7.33%.

Third, we consider an alternative assumption on the timing of the developer tax cash flows, i.e., the developer taxes all occur two years following the land acquisition. The estimated average developer taxes increase to 1765.69 RMB/m², and the IRR reduces modestly to 6.93% as shown in the fourth row.

In the last row, we consider the two subsidy policies together and the alternative timing of developer tax cash flows and further estimate IRR for non-target (target) industries to be 5.60% (7.24%, unreported).

4.4.3 Time Series of \(\text{IRR}^{\text{ind}} \)

Recall that the industrial discount estimates used in Table 4 are based on land transactions in 2007-2010, during which time we have high-quality data on industrial firms for our tax estimation. Changes in land market conditions and the government incentives may have moved the IRR since 2010. We cannot directly estimate industrial taxes after 2010, since we do not have a long enough panel to estimate our differences-in-differences specification. However, under the assumption that industrial taxes per square meter of industrial land stay the same before and after 2010, we can use our yearly estimates of industrial land discounts and the developer taxes (weighted similarly to the first row in Table 4) to calculate the corresponding \(\text{IRR}^{\text{ind}} \) year by year.

Figure 4 plots the time series of \(\text{IRR}^{\text{ind}} \) along with the city government’s discount rates proxied by the average MCB yields. The \(\text{IRR}^{\text{ind}} \) was stable during 2010 and 2015 and varied between 5.0% and 6.5%, which is still comparable to the MCB yields. The \(\text{IRR}^{\text{ind}} \) decreased substantially since 2016 and was about 3.80% in 2019, which dips below the government discount rates.

As implied by Eq. (4) discussed in Section 3.2, the decreasing trend of \(\text{IRR}^{\text{ind}} \) is most
Figure 4: Industrial Discount and IRR

Note: This figure plots: (1) the time series of IRR^{ind} (in black solid line), calculated by holding the tax benefits constant as in Eq. (19) and (20) and using the yearly estimates of industrial discounts and developer taxes; (2) the effective tax rates that accrue to the city governments (in blue dotted line); and (3) the average MCB yield (in red dash-dotted line), calculated as MCB issuance yield weighted by issuing amount for each year.

likely explained by the increasing trend of city governments’ tax share. Indeed, Figure 4 shows the increasing trend of the effective tax rates that accrue to the city governments, which are estimated by regressing the annual change of the city government fiscal revenues plus central transfers on the annual change of the city GDP. As we will show shortly in Section 5.2, this pattern also holds in cross-section.

5 City-level Evidence: Discount Rates and Tax Sharing

So far, we have shown the quantitative importance of industrial taxes in local governments’ land allocation decisions. In this section, we provide causal evidence that industrial taxes do affect the land allocation decisions, by exploiting cross-city heterogeneity. Recall the theoretical framework in Section 3.2, where we derive $\text{IRR}^{\text{ind}} = r^{\text{gov}}/k$ in Eq. (4) without considering demand elasticities. Because IRR^{ind} inversely relates to industrial discount, our framework predicts that industrial discounts should be negatively correlated with city government MCB yields r^{gov}, and positively correlated between with the city government share of VAT k. Figure 5 plots simple binscatters of MCB yields and VAT shares across city-years against industrial discounts, showing that both predictions hold empirically.
We proceed to analyze these relationships in detail.

5.1 Government Discount Rates

A concern for interpreting Figure 5 Panel (a) is that MCB yields may be endogeneous: certain forces may affect both MCB yields and industrial discounts, so the cross-sectional correlation between MCB yields and industrial discounts may not reflect the causal effect of government discount rates on industrial discounts. To address this concern, we build on Chen et al. (2020) and use an instrumental variable for MCB yields related to China’s four-trillion stimulus plan in 2009. The instrument uses local political officials’ job tenure at the launch of the stimulus; Chen et al. (2020) show that cities in provinces with governors who were late in their term engage in more local infrastructure investment in 2009, which has long-lasting effects on the local government’s fiscal position in the future and hence on future bond yields. Local government officials’ tenure is plausibly

Footnote 26: The 2009 four-trillion stimulus program is intrinsically connected to “land finance.” As explained in He and Wei (2022), in 2009 local governments were encouraged to borrow heavily via LGFVs to fund stimulus spending. In a typical arrangement, a local government transfers ownership of a plot of land to an LGFV, which then borrows from banks using the land as collateral.
related to investment choices in 2009 because the incentive to comply with the central
government in general increases with the governor’s term.

Following Chen et al. (2020), we construct an instrument, LateTerm\(_c\), which equals one if the city \(c\)’s provincial governor had been in office for at least three years in
the beginning of 2009, and zero otherwise. The first stage is strong and statistically
significant: LateTerm\(_c\) is negatively correlated with the MCB yield in subsequent years,
and in particular during the period 2012-2019; the first-stage F-statistic for this time
period is 28.1. This negative sign is consistent with greater infrastructure investment in
2009 leading to a stronger future fiscal position, for example in the form of greater land
reserve values (both for sale, and for the government to use as collateral). The exclusion
restriction for the instrument then is that these fiscal changes only are correlated with
the future industrial discounts through changes in MCB bond yields. In particular, the
exclusion restriction requires that the size of a city’s land reserve, which can be developed
for both industrial and residential purposes, does not directly affect the choice of what
mix of residential or industrial land to sell.

We then instrument MCB yields by LateTerm\(_c\) and estimate the causal effect of MCB
yield shifts on industrial discounts, using the following specification:

\[
\text{IndDisc}_{c,t} = \beta \times \text{MCB Yield}_{c,t} + \sum_{\tau} \gamma_{\tau} \cdot \text{1}_{t=\tau} \cdot X_{c,2008} + \epsilon_{c,t}, \tag{22}
\]

where MCB Yield\(_{c,t}\) is the average yield of MCB bonds issued by city \(c\) year \(t\) and
weighted by issuance amounts. To separate our estimation sample from the potential

\[27\] More broadly, this instrumental variable is motivated by the existing literature on China’s political
economy that links local government officials’ promotion to their incentives of pursuing local economic
growth during different years of their official terms (Ru, 2018; Liu et al., 2018a). What is more, the city
government, which is our unit of observation, has a strong incentive to comply with his or her provincial
governor’s political agenda, because of China’s “one-level-up” policy: the promotion of the local officials is
largely determined by their immediate superior officials (Chen and Kung, 2019).

\[28\] See Section 2 and Appendix A.1 for the discussion of land finance in China and the role of land reserves
in shaping local government’s fiscal position.

\[29\] Chen et al. (2020) show that provinces with greater stimulus bank loans in 2009, due to future
refinancing needs, experience faster MCB growth and more shadow banking activities during 2012-2015.
Chen et al. (2020) are concerned with a pure quantity implication, while the price implication of 2009
stimulus bank loans on future MCB yields is ambiguous, exactly because of the expanded land reserves
mentioned here.

\[30\] The common definition of MCBs is given by Wind (Chen et al., 2020), of which the sample size is quite
limited especially before 2010. Our sample includes MCBs either defined by Wind or ever included in the
calculation of ChinaBond Urban Construction Investment Bond Yield-to-Maturity Curve.
Table 5: Industrial Discount and Municipal Corporate Bond Yield

<table>
<thead>
<tr>
<th>Specification</th>
<th>OLS (1)</th>
<th>OLS (2)</th>
<th>IV (3)</th>
<th>IV (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: IndDisc</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>MCBYield, %</td>
<td>-577.5***</td>
<td>-416.7***</td>
<td>-1,823***</td>
<td>-2,371***</td>
</tr>
<tr>
<td></td>
<td>(-9.105)</td>
<td>(-6.908)</td>
<td>(-7.472)</td>
<td>(-4.085)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,547</td>
<td>1,545</td>
<td>1,547</td>
<td>1,545</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.326</td>
<td>0.401</td>
<td>-0.783</td>
<td>-1.652</td>
</tr>
<tr>
<td>#City</td>
<td>277</td>
<td>276</td>
<td>277</td>
<td>276</td>
</tr>
<tr>
<td>F statistic</td>
<td>32.68</td>
<td>12.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table shows the regression of industrial land discounts on City MCB yields, i.e., the average yields of MCBs weighted by the bond size. The first two columns report the OLS estimation results and the last two columns report the 2SLS estimation results where the City MCB yield is instrumented by LateTerm_c, i.e., an indicator of whether the provincial governor had been in office for at least three years in the beginning of 2009. The sample period is from 2012-2019. Standard errors are clustered by cities. Robust t-statistics in parentheses. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

direct effect of the governor’s term in 2009, we estimate Eq. (22) based on the sample period 2012-2019. We control for time-varying effects of initial city-level economic conditions using $X_{c,2008}$, which includes the GDP per capita, the growth rate of GDP from the previous year, and the fiscal deficit over GDP, all measured in the year 2008.

The results are shown in Table 5. The first two columns report OLS estimation results, confirming the negative correlation in Figure 5. In Column (3) and (4), we instrument $\text{MCBYield}_{c,t}$ with LateTerm_c and find a significantly negative causal effect of bond yield on the industrial discounts.

The association between bond yields and the upfront industrial discounts highlights how city governments’ land allocation decisions can be entangled with their liquidity management needs. City governments with more of a liquidity shortfall or greater financial constraints may reallocate land sales from industrial to residential purposes.

31 One concern with the exclusion restriction is that the governor term in 2009 would predict the terms of future provincial governors, which could have a direct effect on the land supply. Chen et al. (2020) show that thanks to the anti-corruption campaign launched in 2012 by Xi Jinping, there is negligible correlation between governor term in 2009 and governor term in future years after 2012.

32 In appendix D.2.2, with the same specification as Eq. (22), we also find a significant and negative causal effect of the MCB yields on the city’s upfront developer taxes.
trading future cash flows from industrial taxes to more immediate cash flows from residential sales—as well as the developer taxes—under the “land finance” system. While these patterns are evident in the cross-section across geography, they also may matter over time too, for example suggesting if distress were to emerge in the Chinese municipal bond market, reductions in industrial land supply (absent any tax reform to correct for this) may be an important knock-on effect.

5.2 City Tax Shares

As we discussed in the previous section, the fact that IRR^{ind} is at the high end of the city government discount rate during 2007-2010 suggests that city governments do not fully internalize the tax revenues generated from industrial land. In this subsection, we investigate the relationship between industrial discounts and the share of value-added taxes that accrue to city governments.

The central government gets a uniform share of value-added taxes across provinces, and the province-level government has discretion in setting how to split the remaining share between itself and the city-level governments, and there is variation in the share of VAT accruing to the city governments in different provinces.\(^{33}\) Although the actual share of VAT that accrues to the city governments may underestimate the extent to which the city governments internalize tax revenues from industrial land sales,\(^{34}\) we assume the city VAT share is at least positively correlated with the extent to which city governments internalize future tax revenues in their land allocation decisions.

To present clean evidence on the causal effect of the city’s tax share on the industrial discount, we analyze a change in tax-sharing schemes in 2016. Before May 1, 2016, the central government takes 75% of the value-added taxes and the remaining 25% goes to the provincial and city governments. On May 1, 2016, the central government launched a major tax code change—the so-called "Business to Value-added" program—which enlarged the coverage of value-added taxes. More importantly, this reform modified the tax-sharing scheme, such that the share of value-add taxes retained by the local governments increased.

\(^{33}\)Wu and Zhou (2015) show that the city government VAT share tends to be higher if there is less variation in economic development across cities in the province, if the industrial sector in the city is more developed, and if there are less state-owned firms under the control of the province governments.

\(^{34}\)For example, city leaders may partially internalize the welfare of provincial or central governments, either via promotion incentives or bargaining process in revising land allocation plans.
(a) City VAT Share Pre- and Post-2016
(b) Change of Ind. Discount vs VAT Share

Figure 6: Change of City VAT Share and Industrial Land Discount

Notes: Panel (a) plots the city government’s share of VAT before and after 2016. Most cities within the same province receive the same share with very few exceptions. Panel (b) plots a binned scatter of the change of city-level industrial land discount from 2015 to 2018 against the change of city VAT share.

from 25% to 50%. The province-level government would then decide how to split the incremental 25% of the value-added taxes between itself and the city governments. The differential increase of the city’s VAT share in 2016 provides an opportunity to test the effect of tax sharing on the industrial discounts.

City VAT Share and Industrial Discounts: Raw Data. Panel A in Figure 6 shows the pre-2016 city VAT share on the x-axis, and the post-2016 city VAT share on the y-axis. Most cities experienced a rise in their share, except for cities in Guangdong whose share remained at 25%; we will explain the special circumstance of Guangdong shortly. There is also substantial heterogeneity in the magnitude of the tax share increase across cities, allowing us to investigate how industrial discounts respond to their VAT shares. Indeed, Panel B in Figure 6 shows a binned scatterplot of the change in the industrial land discount from 2015 to 2018 relative to the city VAT share change in 2016. There is a strong positive correlation between the two variables (without counting cities in Guangdong).

In both panels of Figure 6 we observe that the cities in Guangdong province appear

Local governments previously received the entirety of business taxes. After the launch of this program in May 2016, the business taxes were replaced with value-added taxes and shared by the central government, and the central government increased the VAT share of the local governments to keep their fiscal revenue stable.
to be outliers. Although they experienced zero increase in their share of VAT, the industrial land discount increased substantially from 2015 to 2018 in these cities. One possible explanation is confounding policies that also encouraged industrial land supply in Guangdong. On August 20, 2017, the provincial government of Guangdong initiated a list of actions to secure the industrial land supply by the city government. All these actions are taken by Guangdong only, and are not in place before 2017. Appendix D.1 provides more details on the land-related policies for Guangdong province. Due to these factors, we remove Guangdong from our analysis in the rest of this section.

Dynamic Treatment Effect on Industrial Discounts. We apply a straightforward difference-in-differences estimation strategy to study how local governments’ land allocation decisions respond to these changes in city VAT shares:

$$y_{c,t} = \alpha_c + \gamma_t + \sum_{\tau \neq 2015} \beta_\tau \times 1_{t=\tau} \times \Delta\text{VATShare}_c + \varepsilon_{c,t},$$ \hspace{1cm} (23)

for city c in year t, with city and year fixed effects. In Eq. (23), we use the year before the taxation change, 2015, as the base year. We also include interactions with years before 2015 to test the assumption of parallel trends between cities with differential treatment.

If city governments’ land allocation decisions are indeed sensitive to tax revenues, then as the share of industrial tax revenues accruing to city governments (k) increases, they should be willing to offer a higher industrial land discount (a lower IRR^{ind}). The estimation results reported in Table 6 support this hypothesis. We observe a significant and positive treatment effect on the industrial land discount in all the years since 2016. Moreover, there was no significant difference between cities with differential treatment prior to 2016, which lends support to the parallel trends assumption underlying this difference-in-differences strategy.

In Columns (2) and (3), we investigate the industrial and residential land price separately. Consistent with our framework, the increase of industrial tax share increases the residential and reduces the industrial land price. In terms of magnitude, the effect

36There are two possible mechanisms through which the industrial discount adjusts. First, the city government may allocate more industrial land relative to residential land in the future, with an immediate adjustment in prices (and hence industrial discounts). The quantity adjustment may not occur in the short run given the planning constraint; see Section 2. Second, if the government and the potential buyers can negotiate on the land transaction, the buyer who knows that more future taxes go to the local government may ask for a greater industrial discount.
Table 6: City VAT Share and Industrial Land Discount

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>∆VATShare</td>
<td>8.757</td>
<td>-0.156</td>
<td>-7.850</td>
<td>-1.192</td>
<td>21.80***</td>
<td>43.42***</td>
<td>26.25**</td>
<td>34.17***</td>
</tr>
<tr>
<td>Year</td>
<td>-12.63*</td>
<td>-1.965</td>
<td>-8.592</td>
<td>-0.603</td>
<td>20.53***</td>
<td>41.42***</td>
<td>25.10**</td>
<td>33.84***</td>
</tr>
<tr>
<td></td>
<td>(-1.191)</td>
<td>(-0.0136)</td>
<td>(-0.990)</td>
<td>(-0.0790)</td>
<td>(3.163)</td>
<td>(3.941)</td>
<td>(2.276)</td>
<td>(3.133)</td>
</tr>
<tr>
<td></td>
<td>-3.875</td>
<td>-1.810</td>
<td>-0.742</td>
<td>0.589</td>
<td>-1.273**</td>
<td>-2.001***</td>
<td>-1.148</td>
<td>-0.325</td>
</tr>
<tr>
<td></td>
<td>(-1.430)</td>
<td>(-1.032)</td>
<td>(-0.701)</td>
<td>(0.605)</td>
<td>(-2.055)</td>
<td>(-2.605)</td>
<td>(-0.855)</td>
<td>(-0.266)</td>
</tr>
</tbody>
</table>

Observations 2,320, R-squared 0.821, Year FE Yes, City FE Yes, #City 258

Note: This table shows how the change in city VAT share affects industrial land discounts. The sample includes all the municipal cities for which we have the industrial discount estimates from 2011-2019, and the year 2015 is used as the baseline. The treatment variable, ∆VATShare, is in percentage. Standard errors are clustered by cities. Robust t-statistics are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
is mostly driven by the increase of the residential land price. This could be because the demand elasticity for industrial land is higher than that for residential land. Industrial firms typically shop around different cities for the most favorable land price, but most households do not move across cities and demand for residential land is more fixed; therefore, residential land prices shall adjust in a significant way when the supply changes.

Although our primary interest is in the industrial discounts, the theoretical framework predicts that an increase in city governments’ share of industrial taxes leads to an increase in the sum of industrial discounts and the developer taxes accruing to the city governments. We confirm this prediction in Appendix D.2.3.

Discussion on Economic Magnitudes Table 6 allows us to gauge the economic importance of city VAT share in explaining the observed industrial land discounts. From 2015 to 2019, the city’s share of VAT increases by about 21.2%; combining this value with the treatment effect in 2019, 34.17, this VAT share change would predict an increase of industrial discounts by 724.4 RMB/m². For comparison, the realized increase of industrial discounts from 2015 to 2019 was about 762.5 (=1779.7 - 1017.2) RMB/m².

We can also link the magnitude of the estimated effect in regression model (23) to the marginal value-added tax revenue of industrial land estimated in Section 4.2.3, which is 77 (= 636.2 × 12.10%) RMB/m² in the first three years and 145 (= 1199 × 12.10%) RMB/m² permanently afterwards. If we take the average government borrowing rate of 5.25% as a proxy for the government discount rate, then the present value of total value-added tax revenue is 3,824 RMB/m² and an increase of 1% in city VAT share allows the city government to get 38.24 RMB/m² more in taxes from industrial land. This is smaller than but comparable to our estimate in Table A.8 in the appendix, where we find a 1% increase in city VAT share is associated with an increase of 50.18 RMB/m² (if we combine the three post-treatment years 2017-2019) in industrial land discount plus the city’s developer taxes.

Together, the above results suggest that governments’ land allocation decisions are sensitive to the share of tax revenues they receive: increasing the share of value-added tax revenues accruing to local governments tends to increase the industrial land discount.

37 By 2019, the average coupon rates of all municipal corporate bonds, which are the bonds issued by local government financing vehicles, is 5.25%.

38 The difference between the two numbers, 38.24 vs. 50.18, can be attributed to the government market power in the land market, which we discuss in details in Appendix B.
6 Conclusion

In this paper, we analyze the industrial land discount in the Chinese land market. Counter to conventional wisdom, the return of supplying industrial land instead of residential land, accounting for all the future tax revenues the industrial land generates, is at the high end of the usual range of government discount rates proxied by the city governments’ MCB yields during 2007-2010. The return diminishes over time with the sharpest decline in 2016, which is most likely explained by the city governments’ increasing share of local tax revenues, especially the 2016 tax reform that increased the city government share of value-added taxes. Cities with higher borrowing costs, which discount future cash flows by more, also exhibit a lower industrial land discount. Our results have implications for understanding the drivers of land prices in China, and how they are linked to the tax sharing scheme with the central government, as well as local governments’ intertemporal revenue tradeoffs. From the central government’s perspective, the tax sharing scheme between the central and local governments can be carefully designed to counteract the effect of the local governments’ differential market powers in the local land market to achieve desired land allocation outcomes.

References

Fan, Jianyong, Jiawei Mo, and Jipeng Zhang, 2015, Housing models and urbanization in china-empirical research from the perspective of land supply, *Social Sciences in China (in Chinese)* 44–63.

Fei, Xuan, 2020, The misallocation in the chinese land market, SSRN Scholarly Paper ID 3716540, Social Science Research Network.

Li, Ming, 2019, Information and corruption: Evidence from China’s land auctions, Working paper.

Online Appendix

A Supplementary material for Section 2

A.1 Further Institutional Details

Pricing mechanisms. The Chinese government has three major means to allocate lands: administrative allotment; agreement; and auctions, which are further subdivided into tenders, auctions, and listings. Auction-based pricing is required if the land parcel is to be used for commerce, tourism, entertainment, or commercial residences. Auctions must also be used for industrial land sales, when two or more land users show interest upon the publication of the land supply plan. The government can choose one of the three distinct auction formats (tender, auction, and listing), which have different degrees of pricing competitiveness, as stated in the national regulation guide, titled *Provisions on the Assignment of State-owned Construction Land Use Right through Bid Invitation, Auction and Quotation*. Li (2019) argues that the choice of auction format is used by local governments in order to corrupt and distort the land allocation process. Agreement-based pricing is much less competitive than auctions, but must meet stricter requirements (see *Provisions on the Agreement-based Assignment of the Right to Use State-Owned Land*). The third allocation method, “administrative allotment”, is primarily used for non-profit public utility usage; examples of such uses include military use, municipal infrastructure, energy and power industries, schools, hospitals, and other public facilities.

Land types. All land contracts in China are long-term leases for land use rights, which grant the holder secured tenure and control over the piece of land for a limited period. The length of a land lease typically depends on the type of the land use. For example, the leasehold for residential land is usually 70 years, while for industrial and commercial lands the leaseholds are typically 50 or 40 years. Detailed regulations on different types of land are laid out in the *Interim Regulations of the People’s Republic of China Concerning the Assignment and Transfer of the Right to the Use of the State-owned Land in the Urban Areas*. Our study excludes commercial lands, which are much smaller (less than 10%) in total size compared to residential and industrial lands. Moreover, a large fraction of commercial lands are sold with designated purposes to accompany certain residential needs.
Land reserve system and the cost to land supply. The land reserve system emerged in the late 1990s in a few cities in China, and was formalized by the central government in 2001. After the central government issued the “Measures for Land Reserve Administration”, municipal land reserve centers were granted an effective monopoly on supplying land to the market.\(^{39}\) It is stated that the purpose of the land reserve system is “to enhance the control of lands and the regulation of the land market, and ultimately to allocate land resources efficiently”. Municipal land reserve centers are the only executing government institutions that are responsible for procuring raw land, make it sell-able land, and holding it as land reserve assets for the city (to use or to sell later).\(^{40}\) According to the report from the Chinese National Audit Office, as of June 2013, the land reserve asset held by 34 major Chinese cities totaled to the amount of 16 trillion m\(^2\).

Land reserve centers face some cost for acquiring land parcels for redevelopment and resale. The potential reserve cost of each parcel of land can be complicated to calculate, since it varies with the prior status and usage of the land. However, generally the redevelopment cost has a “fixed” component, which mainly includes the “standard” compensation for land, as well as the cost of land exploitation and a “non-standard” compensation component. The official rules for the “standard” compensation price are based on the prior usage value of the land: this price usually is set equal to a certain multiple of the land’s annual output (which mostly consists of agricultural goods). This tends to be fairly standardized, though there is some variation at the city level (Qu and Zhou, 2009).

Unsurprisingly, compensation based on prior use values created discontent among prior owners of land parcels when the sale price of redeveloped land parcels greatly exceeded the compensation paid to previous owners. Thus, local governments gradually started to introduce compensation elements based on post-redevelopment usage values in their agreements with incumbent landowners. While there is wide variation in how these

\(^{39}\) The formal “Measures” was first issued in 2007 (with the most recent update in 2018), preceded by two related regulations in 2001 and 2006, respectively. Before the establishment of the land reserve system, various de facto land occupiers (for example, state-owned enterprises) could effectively supply lands for private leasing purposes.

\(^{40}\) In China, all land is publicly owned (either state-owned or collective-owned), but the occupants of the land might have various types of usage rights. By regulation, only state-owned construction land is “marketable”. Therefore, depending on the prior status of each piece of raw land, the government needs to procure it through consolidation, expropriation, acquisition, repossession, and replacement (most of those processes involve both monetary and non-pecuniary compensations) before it can be developed into sell-able land. See more details in “Measures for Land Reserve Administration”.
schemes are implemented across cities, these schemes are essentially proportional revenue sharing schemes: local incumbent land users are given either a fraction of redeveloped land, houses on the land, or a share of net land profits. In other cases, occupants and developers negotiate directly. We collectively refer to these as “non-standard” costs of land procurement, and we explain how we estimate them from the data in Appendix C.1.

A.2 Data Cleaning

Land data. Our land sale data is from the Ministry of Natural Resources. We adopt the following procedures to remove outliers. First, the recorded size of a number of land parcels is above 10 million square meters, which are probably errors. We correct it by dividing the size by 10,000, which is the standard multiplier in Chinese unit systems. Second, the recorded price of a number of land parcels is over 100,000 yuan per square meter, which are also errors. Similarly, we scale the price down by 10,000.

We retrieve geographical coordinates of each land parcel by inputting their street addresses into the Gaode maps API. To verify the accuracy of the retrieved coordinates, we collect the Gaode address corresponding to the retrieved coordinates and compare it with the raw address in the land-sale data. We keep lands for which the Gaode address and the raw address are in the same town.

Firm data. Our firm data is from the NSIF database, collected by the Chinese National Bureau of Statistics. There is no consistent firm identifier in the NSIF database that is non-missing in all years. We thus rely on firm names to match firms across years. The database is censored from below, in the sense that one industrial firm will enter the database only in years when its annual sales exceeds a certain threshold, and if in the next year its annual sales fall below the threshold, it will not be in the database for that year.

We can lose track of a firm in the NSIF database not only due to censoring, but also to other reasons such as the data collecting process or changing firm names. In appendix C.2, we show that most of the firms dropping out of the sample can be attributed to random dropping, rather than censoring. This suggests that our DID estimates of the sales effect of land purchases should not be biased substantially by dropped firms.

Merging. We merge the land-sale data with firm data by the name of land buyers. We merge not only land parcels directly bought by the firm, but also those bought by the
firm’s immediate controlling subsidiaries (ICS), and the ICSs of the firm’s ICSs, and so forth. We define firm A as firm B’s ICS if firm B has at least a 50% equity share in firm A. The ownership data come from firm registry information which covers the population of firms in China. Appendix Table A.1 shows how the merged sample compares to the full samples of land parcels and firms.

Table A.1: Summary Statistics of Industrial Lands and Land Buying Firms

<table>
<thead>
<tr>
<th></th>
<th>Sample, 2007-2010</th>
<th>Population, 2007-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Industrial Lands Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land price per square meter (yuan)</td>
<td>22,566</td>
<td>122,901</td>
</tr>
<tr>
<td>Area (1,000 m²)</td>
<td>22,636</td>
<td>124,340</td>
</tr>
<tr>
<td>Distance to urban unit centers (km)</td>
<td>22,636</td>
<td>124,341</td>
</tr>
<tr>
<td>B. Firm Characteristics</td>
<td>Merged Firms, 2003-2013</td>
<td>All Firms, 2003-2013</td>
</tr>
<tr>
<td>Sales revenue</td>
<td>70,466</td>
<td>2,151,097</td>
</tr>
<tr>
<td>Sales cost</td>
<td>70,464</td>
<td>2,150,925</td>
</tr>
<tr>
<td>Total assets</td>
<td>70,462</td>
<td>2,151,003</td>
</tr>
<tr>
<td>Gross value of industrial output</td>
<td>70,326</td>
<td>2,148,079</td>
</tr>
<tr>
<td>Enterprise income tax</td>
<td>60,334</td>
<td>1,969,737</td>
</tr>
<tr>
<td>Value-added tax</td>
<td>68,429</td>
<td>2,115,965</td>
</tr>
<tr>
<td>Sales tax and surtax</td>
<td>68,603</td>
<td>2,122,431</td>
</tr>
<tr>
<td>Total profit</td>
<td>70,345</td>
<td>2,149,174</td>
</tr>
<tr>
<td>Sales value</td>
<td>70,320</td>
<td>2,147,941</td>
</tr>
<tr>
<td>Average annual number of employees</td>
<td>69,288</td>
<td>2,124,366</td>
</tr>
</tbody>
</table>

Panel A is summary statistics of the sample and population of industrial land parcels sold during 2007-2010. Panel B is summary statistics of firm-year (2003-2013) observations in our sample of merged firms that purchased land during 2007-2010 and in the population of all NSIF firms. In total, there are 19,602 unique merged firms that purchased land during 2007-2010 and 711,023 unique NSIF firms between 2003-2013. All variables except the last one in Panel 2 are measured in one million yuan.

A.3 Constructing Urban Units

Cities are a relatively large unit of geography, and cities may have multiple clusters of developed land with different prices. To account for this possibility, we divide cities into “urban units”. To do this, we use geographic data from Liu et al. (2018b), who use Google Earth images to classify 30m × 30m cells as urban or non-urban land, where
urban land refers to an impervious surface such as pavement, concrete, brick, stone and other man-made impenetrable cover types. We then cluster urban land into contiguous blocks, using the ArcGIS function arcpy.AggregatePolygons_cartography. Essentially, this function produces blocks of land, iteratively connecting blocks to form larger blocks, as long as they are within a specified distance of each other. The function has two parameter settings: the maximum permitted separation distance between units, which we set as one mile, and the maximum area of holes to fill, which we set as one square mile. We keep urban units of size bigger than one square mile, extract their centroids, and map each land parcel to the closest urban area centroid.

In Appendix Figure A.1, we first show the distribution of urban units throughout the country. A larger fraction of land is covered by these urban units in the more developed coastal areas, especially the Circum-Bohai Sea Region, the Yangtze River delta, and the Pearl River Delta. In Panel B we use Shanghai as an example to show the urban units in big cities. Each blue polygon with a black outline represents one urban unit. Panel C shows the urban units in a small city, Taizhou, where the urban units are mostly disconnected with each other.

There are 21,048 different urban units across the country. The median and mean of the total number of urban units in each prefecture city is 44 and 57, respectively. This large number is because, as Appendix Figure A.1 shows, there are many very small urban units. The median size of the urban units is 0.51 square kilometers and the mean is 8.39 square kilometers.

We match each land parcel to the nearest urban unit. In our estimation of industrial land discount, we use all the residential and industrial land parcels sold through auction during 2007-2019, and we impose an additional restriction to the sample size in terms of the number of land sales in each prefecture city. This leaves us with 3,837 different urban units, and the mean and median number of land parcels matched to these 3,837 urban units are 173 and 92, respectively. The mean and median size of these 3,837 urban units are 11.57 square kilometers and 0.52 square kilometers.

B Supplementary Material for Section 3

In this model, we decompose the IRR into government discount rate and the differential market power of the government between the residential and industrial land market. We
Note: Panel A is the allocation of all urban units in China. Panel B and C show the urban units in the city of Shanghai and Taizhou. Each blue polygon with black outline represents one urban unit.
will also show how the equilibrium industrial discount responds to the change of the city VAT share.

Assume the total land supply is fixed at \bar{L}, which the government can allocate between residential land L_R and industrial land L_I. Denote the industrial tax rate as τ and the city’s share as k. Assume the production function is $Y = f(L_I)$, then the city’s industrial tax revenue as a function of L_I is $k\tau f(L_I)$. Home developers also pay taxes due to home developing activities, and due to the strong correlation between residential land price and house price, we assume that the developer tax is $\tau R \times P_R L_R$, and that all developer taxes go to the city governments. Denote the semi-elasticity of demand for residential (industrial) land as $-\sigma_R$ ($-\sigma_I$) and the government discount rate as r_{gov}. The city government chooses the land supply policy to maximize the land sale revenues plus the present value of its own tax revenues:

$$\max_{L_I, L_R} \frac{1}{r_{gov}} k \tau \cdot f(L_I) + L_I P_I + (1 + \tau R) L_R P_R, \text{ s.t. } L_I + L_R = \bar{L}$$

Replace $L_R = \bar{L} - L_I$, and then the FOC with respect to L_I is:

$$0 = \frac{1}{r_{gov}} k \tau f'(L_I) + P_I + L_I \frac{dP_I}{dL_I} - (1 + \tau R) (P_R + L_R \cdot \frac{dP_R}{dL_R})$$

$$= \frac{1}{r_{gov}} k \tau f'(L_I) + P_I - \sigma_R^{-1} - (1 + \tau R) P_R + \sigma_I^{-1}$$

Equation (24) implies that in equilibrium, the marginal effect of land on tax revenues is:

$$\frac{k}{r_{gov}} \tau f'(L_I) = (1 + \tau R) P_R - P_I - (\sigma_R^{-1} - \sigma_I^{-1})$$

The IRR can then be written as

$$\text{IRR}^{ind} \equiv \frac{\tau f'(L_I)}{(1 + \tau R) P_R - P_I} = \frac{r_{gov}}{k} (1 - \frac{\sigma_R^{-1} - \sigma_I^{-1}}{(1 + \tau R) P_R - P_I})$$

Equation (26) decomposes the IRR^{ind} into three components. The first is the government discount rate r_{gov}. The second is the government differential market power in the
residential and industrial market, which is captured by the difference of the inverse semi-elasticity scaled by the industrial discount plus developer taxes. The last term is \(k \), i.e., the city government share of taxes.

If the government has no monopoly power in either of the two land markets, i.e., \(\sigma_R = \sigma_I = \infty \), then
\[
\text{IRR}^{\text{ind}} = \frac{r_{\text{gov}}}{k}.
\]

Effect of Tax share \(k \). Consider how the industrial discount changes when the government share of taxes, \(k \), increases. Denote the price elasticity of demand for residential (industrial) land as \(-\epsilon_R \) (-\(\epsilon_I \)) and assume they are constant. Then we can rewrite Equation (25) as:
\[
\frac{k}{r_{\text{gov}}} \tau f'(L_I) = (1 + \tau_R)P_R - P_I - \left(\frac{(1 + \tau_R)P_R}{\epsilon_R} - \frac{P_I}{\epsilon_I} \right)
\]
Taking derivatives with respect to \(k \) on both sides of Equation (27), we get:
\[
\frac{1}{r_{\text{gov}}} \tau f'(L_I) + \frac{k}{r_{\text{gov}}} \tau f''(L_I) \frac{dL_I}{dk} = \frac{d((1 + \tau_R)P_R - P_I)}{dk} - \frac{d(1 + \tau_R)P_R}{\epsilon_R} \frac{1}{dk} + \frac{dP_I}{\epsilon_I} \frac{1}{dk}
\]
Equation (28) states that the effect of tax share on the industrial discount equals the marginal tax revenues of the industrial land, plus the adjustment of the land allocation and the price impact on both the residential and industrial land market.

Growth of Productivity. We have assumed no productivity growth and the industrial output to be at \(f(L_I) \) forever. If the true model is that \(f(L_I) \) grows at the rate of \(g \), then in the equilibrium, the true IRR on industrial land sales would be
\[
\tilde{\text{IRR}}^{\text{ind}} = g + \frac{r_{\text{gov}} - g}{k} \left(1 - \frac{\sigma^{-1}_R - \sigma^{-1}_I}{(1 + \tau_R)P_R - P_I} \right)
\]
Our measurement of IRR assumes no growth, which turns out to be
\[
\text{IRR}^{\text{ind}} = \frac{r_{\text{gov}} - g}{k} \left(1 - \frac{\sigma^{-1}_R - \sigma^{-1}_I}{(1 + \tau_R)P_R - P_I} \right)
\]
C Supplementary material for section 4

C.1 Estimating λ

We first estimate the “non-standard” compensation to local land occupants (such as “resettlement cost for demolition”). As the “non-standard” nature of this type of cost implies, the data on it is not available at the land parcel level. Therefore, we choose to infer it as a proportional cost from the aggregate data of budget accounts of local government-managed funds. In particular, we calculate the fraction λ_1 of the land sales which must be shared with local land occupants, as the quotient of the budgeting total expenditure on “Compensation for Using Land and Removing” of the budgeting total revenue on “Sale Receipt of State-owned Land-use Rights”.41 Since we only have data on those numbers between 2010–2014 and we need to use lagged budget revenue to adjust for the time lag between land reserving and land sales, in the end we get $\lambda_1 = 0.28$ using the averages between years 2010–2012, which is in the middle of our data sample.42

For the auxiliary cost associated with providing public services to new residences, we also impose a linear cost structure: if the parcel is sold as residential land, an additional fraction λ_2 of the land must be allocated to build schools to support the residences. We estimate λ_2 by regressing the total area of educational lands on total area of residential lands across different cities, both sold during 2007-2010 and scaled by city population in 2010, after controlling for province fixed effects. The time window 2007-2010 is chosen because we estimate the marginal output of land input based on land sold in 2007-2010. We also conduct the same regression for time interval 2011-2019. To explore potential heterogeneity of λ_2, we divide the cities into three groups based on the average price of land sold during 2007-2019.

Table A.2 shows estimates of λ_2. In 2007-2010, for every 100 square meters of residential land, the city government will supply about 8 square meters of land for schools. There is not much heterogeneity across cities with different land price levels. In 2012-2019, the

41Note that those items do not distinguish between industrial and residential, but they’re generally dominated by residential land, so this is as good an approximate as we can get.

42There is also no data on the time lag between land reserving and land sales, so we chose to take the averages of lagging one to three years. Specifically, we take the total budget compensation between 2010 and 2012, divide it by the total budget revenue between 2011-2013, 2012-2014, and 2013-2015, respectively, and finally take the average of these three ratios. Note that we see an increasing time trend in λ_1 within our limited sample; unfortunately, we don’t have enough data to track the whole time trajectory of λ_1.

56
supply of education land seems to have doubled for cities with high and medium price levels, but remains mostly unchanged for the cities with low price levels. We use the \(\lambda_2 \) estimates for 2007-2010 to match our estimates of the taxes.

Our above estimates provide us with the additional cost factor associated with residential land \(\lambda = 1 - \frac{1 - \lambda_1}{1 + \lambda_2} = 1/3 \).

Table A.2: Lambda Estimates

<table>
<thead>
<tr>
<th>Price Tier</th>
<th>Sample Period</th>
<th>2007-2010</th>
<th>2011-2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
<td>0.073***</td>
<td>0.171***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.231)</td>
<td>(7.404)</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>0.079***</td>
<td>0.146***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.666)</td>
<td>(7.231)</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>0.094***</td>
<td>0.077**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.386)</td>
<td>(2.798)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.087***</td>
<td>0.114***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.737)</td>
<td>(8.695)</td>
</tr>
</tbody>
</table>

Note: Price tiers are divided based on the 1/3 and 2/3 quantile of the distribution of city-level average land price between 2007-2019. Robust t statistics clustered at province level are in parentheses. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \).

C.2 Panel Imbalance

In this subsection we further study the causes and consequences of panel imbalance in our difference-in-differences design. As noted in Section 2.2, firms enter and exit our panel due to data linkage issues, firm births and deaths, and sales falling below a threshold for inclusion in our data. While panel imbalance arising from data linkage issues is likely to be idiosyncratic, there is a concern that left-censoring due to sales falling below the threshold for inclusion could affect our estimate of the effect of land purchase. To assess the importance of censoring, we test whether panel imbalance (firm attrition) is more likely for firms close to the censoring boundary: to the extent that panel imbalance is idiosyncratic, we should not see differences in the distribution of sales for firms that do and do not attrite.

Figure A.2 shows the results of this test in the form of kernel densities of past-year sales, separately for firms that do and do not attrite in a given year. We see the two
Figure A.2: Distribution of Log(Sale) in the Past Year Conditional on Exiting or Not

Note: This figure reports the kernel densities of the past year log(sale) for firms that do and do not exit in a given year separately. For 2011, the past year is 2009 as we do not have data for 2010. The two vertical dashed lines represent the censoring boundaries, which is 5 million RMB before 2011 and 20 million RMB after 2011.

distributions are strikingly similar. If anything, firms near the 2011 censoring boundary (denoted by the second of the two vertical dashed lines in the figure) are disproportionately likely to be *not* censored. We are reassured that the role of censoring is likely modest in generating panel imbalance.

We also examine whether panel imbalance varies by treatment status (land purchase). Appendix Table A.3 shows the survival rates of the treated and matched control firms for each event year, i.e., the percentage of firms remaining in the sample. By construction, all the firms are observed in the two years before treatment. There is not much difference between the treated and control firms in \(t = \tau - 3 \) and \(t = \tau - 4 \) in terms of the survival rates, confirming that the matching generates a comparable control group for the treatment group. However, after the treatment year, the survival rate of the treatment group is higher than that of the control group. This is consistent with the firm’s expansion on the newly acquired land increasing sales and making the firm more likely to stay above the censoring threshold. While our evidence in Figure A.2 suggests the consequences of such censoring is likely to be modest, this does imply that our estimate of the treatment
Table A.3: Survival Rates of the Matched Sample

<table>
<thead>
<tr>
<th>Event Year</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t=-4</td>
<td>37%</td>
<td>39%</td>
<td>59%</td>
<td>64%</td>
</tr>
<tr>
<td>t=-3</td>
<td>81%</td>
<td>78%</td>
<td>73%</td>
<td>79%</td>
</tr>
<tr>
<td>t=-2</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>t=-1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>t=0</td>
<td>87%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>t=1</td>
<td>68%</td>
<td>87%</td>
<td>59%</td>
<td>78%</td>
</tr>
<tr>
<td>t=2</td>
<td>55%</td>
<td>71%</td>
<td>50%</td>
<td>71%</td>
</tr>
<tr>
<td>t=3</td>
<td>36%</td>
<td>52%</td>
<td>46%</td>
<td>68%</td>
</tr>
<tr>
<td>t=4</td>
<td>32%</td>
<td>48%</td>
<td>32%</td>
<td>46%</td>
</tr>
<tr>
<td>t=5</td>
<td>29%</td>
<td>44%</td>
<td>29%</td>
<td>42%</td>
</tr>
<tr>
<td>t=6</td>
<td>26%</td>
<td>41%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports the survival rates, i.e., the percentage of firms remaining in the sample in each year, for the treated and matched control firms for each event year. Note the rates are 100% for the two years with data before the event year by construction.

effect of land purchase is conservative: when the control firms exit the sample, dropping this observation removes a higher difference between the treated and control firms in sales, so dropping out these pairs will make the treatment effect estimates downward biased. This ultimately translates into a corresponding downward bias in our estimates of the effects of land sales on tax revenues, and hence a downward bias in our estimate of local governments’ IRR from land sales.

C.3 The Impact of Land Purchases on Total Output in a Domar Aggregation Model

The foundational theorem of Hulten (1978) states that in a competitive market with a representative consumer, the impact on aggregate TFP of a microeconomic TFP shock is equal to the Domar weight, i.e., the shocked producer’s sales as a share of GDP. Hulten’s theorem is significant in the sense that sales summarize the macroeconomic impact of microeconomic shocks and we do need to concern ourselves with the details of the underlying production network structures. If we think of the land-purchase as a shock to the producer’s TFP, using the same framework as Baqee and Farhi (2019), we can show
that when a firm purchases additional land, the impact on total output in the economy is smaller than the effect on the sales of the land-purchasing firm.

Following Baqae and Farhi (2019), the representative consumer maximizes a constant-

returns aggregator of final demand for individual goods

\[Y = \max_{(c_1, \ldots, c_N)} \mathcal{D}(c_1, \ldots, c_N), \]

subject to the budget constraint

\[\sum_{i=1}^{N} p_i c_i = \sum_{f=1}^{F} w_f \bar{\ell}_f + \sum_{i=1}^{N} \pi_i, \]

where \(c_i \) is the representative consumer’s consumption of good \(i \), \(p_i \) is the price and \(\pi_i \) is the profit of producer \(i \), \(w_f \) is the price of factor \(f \) which is in fixed supply \(\bar{\ell}_f \).

Producer \(i \) maximizes its profit

\[\pi_i = p_i y_i - \sum_{f=1}^{F} w_f \ell_{i,f} - \sum_{j=1}^{N} p_j x_{i,j}, \]

subject to the following production technology

\[y_i = A_i F_i(\ell_{i,1}, \ldots, \ell_{i,F}, x_{i,1}, \ldots, x_{i,N}), \]

where \(A_i \) is technology, \(x_{i,j} \) are intermediate inputs of good \(j \) used in the production of good \(i \), and \(\ell_{i,f} \) is factor \(f \) used by \(i \).

The market clearing conditions are

\[y_i = \sum_{j=1}^{N} x_{j,i} + c_i \text{ and } \bar{\ell}_f = \sum_{i=1}^{N} \ell_{i,f} \]

Define the equilibrium output \(Y \) as a function of the technology to be \(Y(A_1, \ldots, A_N) \).

Since the first welfare theorem holds, the equilibrium allocation solves

\[Y(A_1, \ldots, A_N) = \max_{c_i, x_{i,j}, \ell_{i,f}} \mathcal{D}(c_1, \ldots, c_N) + \sum_{i} \mu_i (A_i F_i((\ell_{i,f})_{f}, (x_{i,j})_{j}) - \sum_{j} x_{j,i} - c_i) + \sum_{f} \lambda_f (\bar{\ell}_f - \sum_{i} \ell_{i,f}) \]
where μ_i and λ_f are Lagrange multipliers.

The envelope theorem implies that the increase in total output satisfies:

$$\frac{dY}{dA_i} = \mu_i F_i$$

Let the price of Y be p_c. We can then show that $\mu_i = \frac{p_i}{p_c}$. For each product j, it is either used as an input for another product i or consumed by households. If it is used as an input for i, then the profit-maximization of firm i and the optimization of the social planner imply:

$$p_i \frac{A_i \partial F_i}{\partial x_{i,j}} = p_j$$

and

$$\mu_i \frac{A_i \partial F_i}{\partial x_{i,j}} = \mu_j$$

If it is consumed by households, then

$$p_c \frac{\partial D}{\partial c_j} = p_j$$

and

$$\frac{\partial D}{\partial c_j} = \mu_j$$

Therefore, $\mu_i = \frac{p_i}{p_c}$ for any i, and hence we have that the increase in total output induced by the productivity change is:

$$p_c \frac{dY}{dA_i} = p_i F_i$$

(31)

The discussion so far follows exactly Baqee and Farhi (2019). Building on this framework, we want to compare the total output increase with the sale increase of the firm when the firm’s productivity improves. Suppose in each sector of i, there are infinite number of firms indexed by k, and each has its own productivity A^{k}_i. Following the same steps as above, the impact on total output is

$$p_c \frac{dY}{dA^{k}_i} = p_i F^{k}_i$$

Now consider the profit-maximization problem of this firm (to simplify the notation we will drop k):

$$\max_{\ell_{i,F},x_{i,j}} p_i A_i F_i(\ell_{i,1}, ..., \ell_{i,F}, x_{i,1}, ..., x_{i,N}) - \sum_{f=1}^{F} w_i \ell_{i,f} - \sum_{j=1}^{N} p_j x_{i,j}$$
The profit maximization conditions are

\[p_i A_i \frac{\partial F_i}{\partial \ell_{i,t}} = w_f \text{ and } p_i A_i \frac{\partial F_i}{\partial x_{i,j}} = p_j \]

The effect on the firm’s sale, \(p_i y_i \), is

\[p_i \frac{dy_i}{dA_i} = p_i F_i + p_i A_i \left(\sum_f \frac{\partial F_i}{\partial \ell_{i,f}} \frac{\partial \ell_{i,f}}{\partial A_i} + \sum_j \frac{\partial F_i}{\partial x_{i,j}} \frac{\partial x_{i,j}}{\partial A_i} \right) = p_i F_i + \left(\sum_f w_f \frac{\partial \ell_{i,f}}{\partial A_i} + \sum_j p_j \frac{\partial x_{i,j}}{\partial A_i} \right) \]

Thus, the increase in firms’ sales, (32), will exceed the increase in total output, (31), as long as the difference term is positive:

\[\left(\sum_f w_f \frac{\partial \ell_{i,f}}{\partial A_i} + \sum_j p_j \frac{\partial x_{i,j}}{\partial A_i} \right) > 0 \]

(33)

The LHS of expression (33) involves the derivatives \(\frac{\partial \ell_{i,f}}{\partial A_i} \) and \(\frac{\partial x_{i,j}}{\partial A_i} \), which are the changes in inputs induced by the increase in productivity. These will generally be positive: more productive firms will expand inputs. Thus, the increase in sales of the affected firm will be larger than the increase in total output.\(^{43}\)

The intuition for this result is as follows. When a firm’s productivity increases, there is a direct effect on sales from higher productivity, and an indirect reallocation effect as the firm changes its purchases of inputs, in response to increased productivity. When the first welfare theorem holds, the reallocation effects do not have a first-order effect on total output, since inputs are equally productive in all industries on the margin. Hence, the sales increase of the affected firm overestimates the increase in total output, whenever the affected firm tends to increase inputs in response to increased productivity.

C.4 Value Added Taxes in Production Networks

In this appendix, we build a simple production-network model to illustrate the assumptions under which the government’s incremental tax revenue from land sales can be calculated by multiplying the marginal effect of land sales on output by the value-added tax rate.

\(^{43}\)Note that it is possible for the LHS of (33) to be negative; for example, if demand for firm output is sufficiently inelastic, increasing productivity will cause the firm to tend to scale down input purchases.
We consider a finite-layered production network in a single market. The network has M layers, indexed by m; higher values of m denote more downstream firms. Let \mathcal{J}_m denote the set of firms in layer m of the network. Firm j in layer m produces output $S_{(m,j)}$. Output in the final layer M is sold directly to consumers, whereas output from firms in layer $m < M$ is sold to downstream firms as inputs. Total output of firm j in layer $m < M$ is the sum of its sales to downstream firms in layer $m + 1$:

$$S_{(m,j)} = \sum_{j' \in \mathcal{J}_{m+1}} S_{(m,j' \rightarrow (m+1),j)}$$

Cost-of-goods-sold for firm j is the sum of its inputs from upstream firms:

$$\text{COGS}_{(m,j)} = \sum_{j'' \in \mathcal{J}_{m-1}} S_{(m-1,j'' \rightarrow (m),j)}$$

If the VAT rate is ψ, value-added taxes for firm j are thus:

$$\psi \left[S_{(m,j)} - \text{COGS}_{(m,j)} \right] \quad (34)$$

For firms in layer 1, who do not purchase inputs, $\text{COGS}_{(m,j)} = 0$.

The total tax revenue collected by the government is the sum of (34) across all firms, that is:

$$\psi \sum_{m=1}^{M} \sum_{j \in \mathcal{J}_m} \left[S_{(m,j)} - \text{COGS}_{(m,j)} \right] \quad (35)$$

Now, the sum of $\text{COGS}_{(m,j)}$ for firms in layer m is simply the output of layer $m - 1$. To see this, note that:

$$\sum_{j \in \mathcal{J}_m} \text{COGS}_{(m,j)} = \sum_{j \in \mathcal{J}_m} \sum_{j'' \in \mathcal{J}_{m-1}} S_{(m-1,j'' \rightarrow (m),j)}$$

$$= \sum_{j'' \in \mathcal{J}_{m-1}} \sum_{j \in \mathcal{J}_m} S_{(m-1,j'' \rightarrow (m),j)} = \sum_{j'' \in \mathcal{J}_{m-1}} S_{(m-1,j'')}$$

Hence, (35) is equal to:

$$\psi \sum_{m=1}^{M} \left(\sum_{j \in \mathcal{J}_m} S_{(m,j)} - \sum_{j \in \mathcal{J}_{m-1}} S_{(m,j)} \right) \quad (36)$$
Expression (36) is a telescoping sum, which is simply equal to total output in the lowest layer, of final goods. Hence, the government’s total tax revenue is simply:

\[
\psi \sum_{m=1}^{M} \sum_{j \in \partial_m} \left[S_{(m,j)} - \text{COGS}_{(m,j)} \right] = \psi \sum_{j \in \partial_M} S_{(M,j)} \tag{37}
\]

Expression (37) captures the familiar idea that value-added taxation produces equivalent revenue to taxation of final outputs for the government.

Now, suppose firm \(j\) in layer \(M\) purchases land, and increases output from \(S_{(M,j)}\) to \(S'_{(M,j)} > S_{(M,j)}\). Expression (37) implies that, as long as output of other final goods producers in layer \(M\) stays constant, so:

\[
S'_{(M,j)} = S_{(M,j)}, \quad \forall j \in \partial_M, \ i \neq j
\]

Then the incremental tax revenue collected by the government is simply:

\[
\psi \sum_{j \in \partial_M} S'_{(M,j)} - \psi \sum_{j \in \partial_M} S_{(M,j)} = \psi \left(S'_{(M,j)} - S_{(M,j)} \right) \tag{38}
\]

that is, the increase in output of firm \(j\). Note that while we require that output of final-goods firms be held fixed, (38) holds regardless of what happens to the output of upstream firms. For example, firm \(j\) may increase purchases from input suppliers in layer \(M - 1\) to produce more output, who then increase purchases from suppliers in \(M - 2\), and so on. Conversely, \(j\) may increase efficiency, allowing it to produce more output using less inputs. (38) holds in either case. Intuitively, (38) implies that the government’s total tax revenue can always be calculated as if final goods are taxed directly, so changes in upper layers of the production network are not needed for calculating incremental tax revenues.

This discussion also highlights a few settings in which our assumptions are violated. First, our calculations for marginal tax revenue require that output of other final-goods producer firms in layer \(M\) are fixed. In practice, firm \(j\) could produce output which is a substitute or complement for other final-goods producers. If firm \(j\)’s sales cannibalize other final good producers’ sales, then our approach will overestimate incremental tax revenue. If firm \(j\)’s output is complementary to other final goods producers, so higher output from \(j\) increases other firms’ output, then our approach will underestimate
incremental tax revenue.

Second, our approach only holds for final goods producers. For intermediate goods producers, expansion in output will tend to expand output of downstream firms; our approach applied to intermediate producers will thus tend to underestimate the marginal effect of land sales on taxes.

Third, the analysis assumes that all firms in the production network operate within the same market, and thus are taxed by the same local government. If a firm purchases inputs from a firm in a different market, subject to taxation by a different government, our approach will tend to overestimate tax revenue from land sales, because some of the revenue in the production chain does not accrue to the local government selling the land.

C.5 Estimating Marginal Industrial Tax Rates

In this section, we explain how the value-added tax system in China works, and explain how we estimate marginal tax rates.

Value-added taxation and accumulated taxes. The main tax collected by the Chinese government from industrial firms is the value-added tax. The VAT rate may differ across firms in different industries, and foreign exports are taxed at a lower rate than domestic sales.

The VAT works as follows. Suppose firm A faces a tax rate of 10%, whereas firm B faces a tax rate of 20%. These tax rates are not marginal tax rates: rather, they imply that the total tax associated with each firm’s output must always equal the tax rate multiplied by output. For example, suppose firm A produces 1 unit of output, which is used by firm B as an input, to produce 2 units of output. Total taxes paid by firm A on A’s output must equal $0.1 = 10\% \times 1$. Total taxes paid by firm A and B, associated with firm B’s output, must equal $0.4 = 20\% \times 2$.

The government implements this scheme recursively. It first calculates the tax payments owed by upstream firms: in the example, A owes $0.1 = 10\% \times 1$, which is 0.1. Firm B is then directly responsible for paying the shortfall between the total tax burden associated with its output, which is 0.4, and the taxes already paid by A, which is 0.1: thus, B is responsible for 0.3 in taxes.\(^{44}\) Logistically, firm B is first responsible for the entirety of

\(^{44}\)Note that this implies that the effective marginal tax rate that B pays on value-added can differ from 20\%: in this example, B pays 0.3 of taxes, when it has produced only 1 in value-added, so its effective tax
its tax burden of 0.4: From an accounting standpoint, this quantity is referred to as B’s “accumulated tax”. B can deduct from its accumulated tax by presenting the government with receipts showing that it has purchased inputs from upstream firms, such as A. For each receipt, the government deducts from B’s tax bill amounts equal to the inputs quantity purchased, multiplied by the tax rate that the producing firm faces. In this example, B would present the government with a receipt showing a purchase of 1 unit from A, and would be entitled to a deduction of $10 \times 1\% = 0.1$.

The accumulated tax that B is responsible for also depends on whether B’s output is supplied domestically or internationally, and also on the export tax rate, which differs across industries. Output which is exported faces a lower tax rate. Hypothetically, suppose that the government’s tax rate on exports for B is 5%. If B exports one unit of output, and sells the other unit domestically, B’s total accumulated tax is:

$$1 \times 5\% + 1 \times 20\% = 0.25$$

B can still subtract taxes paid by A as deductions from this accumulated tax quantity. However, since all deductions correspond to taxes paid by firm A, the total tax paid by B, including taxes paid by upstream firms on inputs supplied to B will still be the quantity 0.25.

Measurement of marginal tax rates. Conceptually, marginal tax rates are the marginal revenue that the government collects if, for example, firm B increases output by 1 unit. We will attempt to estimate a single representative marginal tax rate associated with all firms in the economy. We will do this simply by regressing accumulated taxes on firms’ sales. The regression prediction can be interpreted as follows: if a given firm produces 100 units of output, we infer that the amount of taxes it would pay if it produced 110 units of output is simply the average accumulated tax of all firms currently producing 110 units of output.

To show that this method produces reasonable results, in Figure A.3, we show a scatterplot and a binned scatterplot of firms’ accumulated tax against firms’ output. The scatterplot shows that the ratio of accumulated tax to output differs nontrivially across firms: some firms pay a smaller share of output as accumulated tax than others. However, the binsscatter shows that the relationship between accumulated tax and output across firms is well described by a straight line passing through 0, with slope 12.10%. This rate on value-added is 30%.
means that, on average, firms pay roughly 12.10% of output as taxes, and this does not vary substantially across firms of different sizes.

Besides value-added taxes, firms also pay income taxes and a variety of administrative fees, which we will collectively call ITF\textsubscript{j,t}. Income taxes and fees are charged based on the firm’s profit; we will assume these are homogeneous across industries. If we ignore wages and predict the firm’s profit with value-added \((S\textsubscript{j,t} - COGS\textsubscript{j,t})\), we can write:

\[ITF\textsubscript{j,t} = (S\textsubscript{j,t} - COGS\textsubscript{j,t}) \cdot \psi_t \]

Following a similar logic to our calculations for value-added taxes, the accumulated income taxes and fees associated with firm j’s output, paid by j and its upstream suppliers, is \(S\textsubscript{j,t} \cdot \psi_t\). To account for these taxes and fees, we simply add \(\psi_t\) to the marginal tax rate associated with firms’ output. Since we do not observe accumulated income taxes and fees in the firm data, we instead estimate the rate \(\psi_t\) by regressing income taxes and fees, \(ITF\textsubscript{j,t}\), on firms’ value-added, \(S\textsubscript{j,t} - COGS\textsubscript{j,t}\). The estimate for the marginal rate is 5.77%, with a tight 95% confidence interval of [5.72%, 5.83%].45

Combining these estimates, our final estimate of the effective tax rate facing firms is
\((12.10% + 5.77%) = 17.87\%

C.6 Complementary Evidence of Land Tax Yields

Figure A.4 plots the average VAT per square meter of industrial land for each province (Panel (a)) and the minimum tax requirement for each industry (Panel (b)).

C.7 Estimating Marginal Residential Tax Rates

Figure A.5 shows a scatter plot and binned scatter plot of the listed home developers’ annual taxes and sales during 2007-2015.

45Note that our estimate of income tax as a fraction of value-added is much lower than the official corporate income tax rate, which is 25%. This is because income taxes are applied to firm profits, which are a small fraction of value-added.
Figure A.3: Marginal VAT Rate and Income Tax and Fees Rate

Note: Panel (a) is the scatter of the "accumulated VAT" vs. sales based on a randomly chosen 1% of the sample and Panel (b) is the bin scatter of the two based on the full sample. Panel (c) is the scatter of corporate income tax plus fees vs. value-added (i.e., output minus input) based on a randomly chosen 1% of the sample and Panel (d) is the bin scatter of the two variables based on the full sample.
Notes: Panel (a) plots the total VAT paid by firms in each province divided by the stock of industrial land in that province in 2011. Panel (b) plots the industry-specific requirement on minimum tax payment by firms on industrial land set by Jiangsu Province in 2018 and Hunan Province in 2020. Values are in RMB/m².
C.8 Classification of Targeted Industries

Table A.4 shows the list of industries that were ever targeted by one or both of the Five-year Plans initiated in 2006 and 2011.

C.9 Robustness Checks for IRR^{ind}

Targeted industrial policy. We conduct a robustness check to address the concern that our results are confounded by targeted industrial policy in China. The Chinese government has implemented various policies, such as tax rebates and subsidies on sales and investment, to support industries that are regarded as having special national importance. Since these supporting policies will incur additional cost to the government and we have ignored such costs, we could have over-estimated IRR^{ind} for these targeted industries. To check this possibility, we proceed to estimate IRR^{ind} separately for targeted and non-targeted industries empirically.

We first identify industries that were ever targeted by the Eleventh and Twelfth China Five-year Plan, which highlights the key sectors the government plans to support during the period 2006-2015 (Cen et al. (2021)). In our sample, among all the treated firms,

46 See Appendix C.8 for the list of targeted industries.
Table A.4: Targeted Industries of Five-Year Plan 2006 & 2011

<table>
<thead>
<tr>
<th>Targeted Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mfg. of agricultural and non-staple foodstuff</td>
</tr>
<tr>
<td>Chemical feedstock and chemical mfg.</td>
</tr>
<tr>
<td>Medicine mfg.</td>
</tr>
<tr>
<td>Non-ferrous smelting and extrusion</td>
</tr>
<tr>
<td>Specialized facility mfg.</td>
</tr>
<tr>
<td>Transport and comms facilities mfg.</td>
</tr>
<tr>
<td>Automobile mfg.</td>
</tr>
<tr>
<td>Electric machinery and equip mfg.</td>
</tr>
<tr>
<td>Mfg. of comms equip, computers and other electronic equip</td>
</tr>
<tr>
<td>Production and supply of electric power and heat power</td>
</tr>
<tr>
<td>Gas generation and supply</td>
</tr>
<tr>
<td>General-purpose equip mfg.</td>
</tr>
<tr>
<td>Exploitation of petroleum and natural gas</td>
</tr>
<tr>
<td>Chemical fiber mfg.</td>
</tr>
<tr>
<td>Coal mining and washing</td>
</tr>
<tr>
<td>Ferrous metal smelting and extrusion</td>
</tr>
</tbody>
</table>

Note: This table lists the industries that were ever targeted by one or both of the two Five-year Plans initiated in 2006 and 2011, which cover the period 2006-2015.

57.0% (43.0%) are from targeted (non-targeted) industries and they account for 62.7% (37.3%) of the size of the matched industrial lands. Table A.5 reports the estimated industrial land discounts, tax effect, and IRR$^{\text{ind}}$ of targeted and non-targeted industries, respectively. The targeted industries generate much more taxes per unit of land than the non-targeted industries, which might partially be attributed to government support. Regarding industrial land discount, offering a greater industrial land discount could be the direct consequence of the governments’ supporting policies, but it is also possible that the higher profitability of the targeted industries could lead firms to bid more aggressively for the land, and hence indirectly lowers the industrial discount. Appendix Table A.5 reports that our industrial discount estimates are indistinguishable between the targeted and non-targeted industries.

Taking these cash-flow estimates together, we find that the IRR$^{\text{ind}}$ on targeted in-
Table A.5: Targeted vs Non-targeted Industries

<table>
<thead>
<tr>
<th>Targeted Industry</th>
<th>IndDisc</th>
<th>Industrial Tax</th>
<th>Developer Tax</th>
<th>IRRind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>1002.13</td>
<td>121.48</td>
<td>239.60</td>
<td>1495.07</td>
</tr>
<tr>
<td>No</td>
<td>991.55</td>
<td>98.89</td>
<td>171.77</td>
<td>1380.75</td>
</tr>
</tbody>
</table>

Note: This table reports the IRRind for the two groups of industries based on whether they are ever targeted by the Eleventh and Twelfth China Five-year Plan that covers the period 2006-2015. For each group, we estimate Model (18) separately to get the tax estimates, calculate the city-year level industrial discount using residential land and only industrial land sold to firms in the targeted (or non-targeted) industry, and calculate the average discount and developer tax weighted by land area purchased by firms from the targeted (or non-targeted) industries in the sale estimation.

The results show that the targeted industries have a higher IRRind of 8.05%, which, as we discussed, tends to overestimate the true IRR due to overestimated future net revenues. Importantly, based on the firms in non-targeted industries that are free from Chinese industrial policies, we find the resulting IRRind to be 6.57%, which is only slightly smaller than the baseline value of 7.70%.

Tax Rebates. As a common strategy to attract investment, local governments often offer tax rebates for new entrants in the first few years if the new firms make a certain amount of investment and meet some tax targets. Tax rebates affect the tax revenues governments receive from industrial land sales, and may thus affect our estimate of IRRind. In the most generous case that we find, the tax rebate can apply to the first five years since firm entry, and the local governments can return the entirety of their tax shares, of which the maximum is 25%. These tax rebates do not necessarily apply to the five-year-plan targeted industries. To check how the ignorance of tax rebates can inflate our IRR, we consider the most conservative case by deducting the tax benefits by 25% for the first five years after the firm’s land purchase. This adjustment further reduces IRRind to 7.33%, as shown in the third row of Table 4.

C.10 City Government Industrial Tax Share

In this section, we provide details on how to get the share of industrial taxes that accrue to the city governments. Manufacturing firms pay three types of taxes and fees: value-added taxes, corporate income taxes, and other taxes and fees. As in Section C.5, we estimate that for one RMB increase in firm sales, the value-added taxes increase by 12.10%,
corporate income taxes increase by 3.33%, and other taxes and fees increase by 2.44%. The value-added and corporate income taxes are shared with upper levels of governments, while all the other taxes and fees accrue to the city governments. Therefore, the city government share of industrial taxes is:

\[
\text{IndTaxShare}_c = \frac{12.10\% \times \text{VATShare}_c + 3.33\% \times \text{ITShare}_c + 2.44\%}{12.10\% + 3.33\% + 2.44\%}
\]

(39)

To aggregate \(\text{IndTaxShare}_c\) to the national level in a way comparable to the estimation of IRR during 2007-2010, we calculate the average \(\text{IndTaxShare}_c\) weighted by the size of land purchased by firms during 2007-2010 used in the estimation in Table 3 Column (1), just as we aggregate the industrial discounts and developer taxes. The weighted-average \(\text{IndTaxShare}_c\) turns out to be 31.66%.

D Supplementary material for section 5

D.1 Guangdong Policy Changes in 2016

The main policy change that most provinces made in 2016 was to change the share of VAT taxes accruing to city governments. However, Guangdong is an outlier: it did not change the city government VAT tax share, but implemented a number of other policies to encourage city governments to allocate more industrial land. These policies thus confound our analysis of the effect of VAT tax changes on industrial land sales. When we include cities in Guangdong when estimating Equation (23), there are no significant results from dynamic treatment effect analysis (the results are available upon request).

Guangdong made the following policy changes in 2016. All cities within the province were required to specify a region within which all land had to be sold as industrial, not residential land. Cities were also broadly required to guarantee “sufficient” industrial land supply to advanced manufacturing industries. Incentives to do so included, for example, policies stating that industrial land allocated to major investment projects would not count towards land quotas, that is, the maximal amount of land that cities could sell within a certain period of time.

These policies were imposed upon city governments and supervised by the provincial government. Cities which experienced higher growth in manufacturing were to be
rewarded with larger quotas for future land sales. To verify in the data that this policy encouraged more industrial land sales, we regress an indicator for whether a city received a reward of higher land quotas in 2019, on the share of land sold as industrial in the year 2017. The results are shown in Table A.6: as predicted, cities allocating more industrial land were substantially more likely to be rewarded.

The majority of these policies were applied only in the Guangdong province.47 These policies are likely to have contributed to Guangdong increasing industrial land supply, despite the fact that the city government VAT share in Guangdong stayed constant in 2016. Thus, we drop Guangdong from our event study analysis.

<table>
<thead>
<tr>
<th>Table A.6: Industrial Land Supply and Reward in Guangdong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: Reward</td>
</tr>
<tr>
<td>Share of industrial land supply</td>
</tr>
<tr>
<td>(1.689)</td>
</tr>
<tr>
<td>Observations</td>
</tr>
<tr>
<td>R2</td>
</tr>
<tr>
<td>Spec</td>
</tr>
<tr>
<td>City FE</td>
</tr>
</tbody>
</table>

Note: This table reports the correlation between the share of industrial land supply in 2017 and whether the district/county received reward in 2019 across the 118 districts/counties in Guangdong. Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1

\textbf{D.2 City Government Discount Rates, VAT Share and Developer Taxes}

As our primary interest is in the industrial land discounts, we examine the causal effect of city government discount rates and the share of tax revenues on the industrial land discounts in Section 5. However, the theoretical framework links the present value of industrial tax cash flows with the upfront industrial discount plus the developer taxes. In this section, we show the causal effect of city government discount rates and the share of tax revenues on industrial discounts plus the developer taxes, just as the model predicts. We start by calculating the amount of developer tax revenues that accrue to the city governments, and then show the causal effect of discount rates and tax shares separately.

47Two exceptions are that the policy of rewarding cities with higher manufacturing growth with larger land quotas was also implemented in Guangxi in 2017, and Sichuan in 2019.
D.2.1 City’s Developer Tax Rate

In this section we describe how we calculate the developer’s tax rate \(\text{DevTaxRate}_{ct} \), that belongs to the city governments \(c \) in year \(t \).

Before May 1, 2016, home developers pay income taxes (IT), business taxes (BT) and various other kinds of taxes and fees. The city governments share the income taxes and business taxes with upper level of governments and keep the entirety of other taxes and fees. In the data of listed developers, we observe three related variables: sale, income tax, and business tax and surcharges (BTS). The last variable, BTS, includes business taxes and other taxes and fees. The BT is set to be 5% of total sales. We then calculate the city’s developer tax rate as follows:

\[
\text{CityDevTaxRate}_{c,t} = \mathbb{E}_t \left[\frac{d \text{IT}_{i,t}}{d \text{Sales}_{i,t}} \right] \times \text{ITShare}_{c,t} + \mathbb{E}_t \left[\frac{d \text{BTS}_{i,t}}{d \text{Sales}_{i,t}} \right] - 5\% + 5\% \times \text{BTShare}_{c,t}
\]

After May 1, 2016, the BT is replaced with VAT, and BTS is replaced with TS which only includes other taxes and fees. We do not observe VAT in the income statements because it is not regarded as the firms’ costs. We estimate it with \((\text{Sales} - \text{COGS})\) times the VAT rate. We calculate the city’s developer tax rate as follows:

\[
\text{CityDevTaxRate}_{c,t} = \mathbb{E}_t \left[\frac{d \text{IT}_{i,t}}{d \text{Sales}_{i,t}} \right] \times \text{ITShare}_{c,t} + \mathbb{E}_t \left[\frac{d \text{TS}_{i,t}}{d \text{Sales}_{i,t}} \right] + \mathbb{E}_t \left[\frac{d (\text{Sales}_{i,t} - \text{COGS}_{i,t}) \times \text{VATRate}_{t}}{d \text{Sales}_{i,t}} \right] \times \text{VATShare}_{c,t}
\]

For \(t = 2016 \), as the BT was in place for 1/3 of the year and VAT for the rest 2/3, we use a weighted average rate as follows:

\[
\begin{align*}
\text{CityDevTaxRate}_{c,t} &= \mathbb{E}_t \left[\frac{d \text{IT}_{i,t}}{d \text{Sales}_{i,t}} \right] \times \text{ITShare}_{c,t} + \frac{1}{3} \times \left(\mathbb{E}_{t-1} \left[\frac{d \text{BTS}_{i,t-1}}{d \text{Sales}_{i,t-1}} \right] - 5\% + 5\% \times \text{BTShare}_{c,t} \right) \\
&\quad + \frac{2}{3} \times \left(\mathbb{E}_{t+1} \left[\frac{d \text{TS}_{i,t+1}}{d \text{Sales}_{i,t+1}} \right] + \mathbb{E}_{t+1} \left[\frac{d (\text{Sales}_{i,t+1} - \text{COGS}_{i,t+1}) \times \text{VATRate}_{t+1}}{d \text{Sales}_{i,t+1}} \right] \right) \times \text{VATShare}_{c,t} \\
\end{align*}
\]

We can now calculate \(\text{CityDevTax}_{c,t} \), the amount of developer taxes that accrue to the city governments, as follows:

\[
\text{CityDevTax}_{c,t} = \text{P}^h_{c,t} \times \text{FloorRatio}_{c} \times \text{CityDevTaxRate}_{c,t}
\]
Table A.7: Developer Taxes and Municipal Corporate Bond Yield

<table>
<thead>
<tr>
<th>Specification</th>
<th>OLS</th>
<th>OLS</th>
<th>IV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep Var: DevTax</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>CMCBYield, %</td>
<td>-395.1***</td>
<td>-257.0***</td>
<td>-1,183***</td>
<td>-1,490***</td>
</tr>
<tr>
<td></td>
<td>(-6.778)</td>
<td>(-6.216)</td>
<td>(-6.093)</td>
<td>(-2.737)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,222</td>
<td>1,222</td>
<td>1,222</td>
<td>1,222</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.360</td>
<td>0.499</td>
<td>-0.766</td>
<td>-1.548</td>
</tr>
<tr>
<td>#City</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td>F statistic</td>
<td>25.13</td>
<td>6.050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table shows the regression of cities’ home developer taxes on City MCB yields, i.e., the average yields of MCBs weighted by the bond size. The first two columns report the OLS estimation results and the last two columns report the 2SLS estimation results where the City MCB yield is instrumented by \(\text{LateTerm}_c \), i.e., an indicator of whether the provincial governor had been in office for at least three years in the beginning of 2009. The sample period is from 2012-2019. Standard errors are clustered by cities. Robust t-statistics in parentheses. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \).

D.2.2 Government Discount Rates and Developer Taxes

With the same specification as Equation (22), we replace the dependent variable with the city’s developer taxes \(\text{CityDevTax}_{ct} \). The result is shown in Table A.7. A higher city government discount rate affects the city’s land allocation decisions, leading to not only a lower industrial discount but also lower city developer tax revenues as a result of lower house prices. The negative effect holds for both the OLS specification and the IV regressions, regardless of the inclusion of other city controls.

D.2.3 City VAT Share Changes and Developer Taxes.

To fully analyze city governments’ zoning decisions, we must also account for how the "Business to Value-added" program affected the amount of residential tax revenues collected by city governments, per unit of land sold. This is complicated by the fact that the "Business to Value-added" program, besides its effects on industrial tax revenues, also changed how land developers are taxed and how developer tax revenues are divided.
between local and central government.\footnote{Prior to the implementation of the program on May 1, 2016, home developers paid business taxes, corporate income taxes, and a variety of other taxes and fees, as we discussed in Subsection 4.3. City governments received a large share, approximately 82\%, of business taxes paid by developers. After the "Business to Value-added" program was implemented, developers’ business taxes were replaced by value-added taxes. A much smaller share of value-added taxes accrues to city governments.}

In the differences-in-difference specification in Table 6, we essentially identify a set of cities which experienced large increases in local governments’ share of industrial tax revenues: call these cities HighIndShareInc. We found that HighIndShare cities experienced larger increases in industrial discounts post-2016 than non-HighIndShareInc cities, which we attributed to the fact that these cities have a higher incentive to sell industrial land. However, if HighIndShareInc cities also happen to experience a decrease in developer tax revenues, local governments in HighIndShareInc cities would also have a lower incentive to sell residential land, potentially increasing industrial discounts. However, these changes in industrial discounts would be driven largely by changes in developer taxes which are correlated with industrial tax shares, rather than industrial tax shares, potentially complicating the interpretation of our results.

In order to ensure that the effects we observe are in fact driven by industrial tax revenue shares, we calculate developer taxes collected by city governments before and after the "Business to Value-Added" program was implemented as in Section D.2.1. We then use developer taxes as the dependent variable in the difference-in-difference specification. As shown in Table A.8, we find that HighIndShareInc cities actually experience increases in developer taxes per square meter after 2016. This is because house prices increased in areas with larger increases in city governments’ industrial tax shares, leading city governments’ tax revenues from developers to also increase in these areas. Increases in developer tax revenues in HighIndShareInc cities could not themselves lead to higher industrial discounts: if city governments received more tax revenue from residential land, all else fixed, they should want to sell more residential land, depressing industrial discounts. This provides evidence against the possibility that the effects we find of the "Business to Value-added" program on industrial discounts are driven by changes in city governments’ shares of developer taxes.

When local governments in HighIndShareInc cities get more money from industrial taxes, their total money from residential taxes – summing land sale revenues and taxes collected from residential developers – must also increase, in order for city governments to be indifferent. The fact that the treatment effect on both the industrial discounts and
developer taxes are positive confirms this prediction.

Figure A.6 shows that cities with a higher share of business taxes before 2016 tend to have larger increase of VAT share after the reform.

Figure A.6: Change of City VAT Share vs City Business Tax Share.

Note: This figure shows the relationship between the change of the city’s VAT share and the city’s business tax share before 2016.
Table A.8: City VAT Share and Developer Taxes

<table>
<thead>
<tr>
<th>Year</th>
<th>∆VATShare × Year</th>
<th>DevTax (1)</th>
<th>HousePrice (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>-5.069</td>
<td>-27.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.959)</td>
<td>(-0.382)</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>-1.723</td>
<td>-32.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.360)</td>
<td>(-0.468)</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>0.804</td>
<td>-31.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(-0.518)</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>-5.003</td>
<td>-79.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.333)</td>
<td>(-1.310)</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2.669</td>
<td>-9.578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.623)</td>
<td>(-0.163)</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>9.753*</td>
<td>88.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.664)</td>
<td>(1.537)</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>25.56***</td>
<td>187.9***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.074)</td>
<td>(2.848)</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>7.140</td>
<td>201.4***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.256)</td>
<td>(3.107)</td>
<td></td>
</tr>
</tbody>
</table>

Observations: 2,081 2,090
R-squared: 0.891 0.895
Year FE: Yes Yes
City FE: Yes Yes
#City: 246 247

Note: This table shows how the change of the city VAT share affects the city’s developer taxes. The sample includes all the municipal cities for which we have the DevTax_{c,t} estimates from 2011-2019, and the year 2015 is used as the baseline. The treatment variable, ∆VATShare, is of unit %. Standard errors are clustered by cities. Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1