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Abstract

This paper describes the response of the economy to large shocks in a nonlinear

production network. While arbitrary combinations of shocks can be studied, it focuses

on a sector’s tail centrality, which quantifies the effect of a large negative shock to the

sector – a measure of the systemic risk of each sector. Tail centrality is theoretically

and empirically very different from local centrality measures such as sales share –

in a benchmark case, it is measured as a sector’s average downstream closeness to

final production. The paper then uses the results to analyze the determinants of

total tail risk in the economy. Increases in interconnectedness in the presence of

complementarity can simultaneously reduce the sensitivity of the economy to small

shocks while increasing the sensitivity to large shocks. Tail risk is strongest in economies

that display conditional granularity, where some sectors become highly influential

following negative shocks.

1 Introduction

Background

Recent experience has demonstrated that dislocations to supply chains can have significant

effects on the economy both locally and internationally. Shocks to both the supply of goods,

such as semiconductors and natural gas, and also the ability to transport them, e.g. due to

shutdowns at major ports and constraints on trucking, have propagated through the global

*Northwestern University and NBER. This paper would not exist without Alireza Tahbaz-Salehi. I
appreciate helpful comments from Nicolas Crouzet, Joel Flynn, Xavier Gabaix, Stefano Giglio, Francois
Gourio, Ernest Liu, Pooya Molavi, Rui Sousa, Fabrice Tourre, Aleh Tsyvinski, and seminar participants
at Northwestern, the Triangle Macro-Finance Workshop, the NBER Summer Insitute, the Macro Finance
Society, and Caltech.
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supply chain. Over a longer period, research has found that large movements in GDP occur

more frequently than predicted by the normal distribution (e.g. Acemoglu et al. (2017)), and

a body of work since Gabaix (2011) has developed suggesting how large shocks to influential

sectors or firms could cause such events.1 Additionally, extreme events in the data tend to be

negative, so that the distribution of GDP, in both levels and growth rates, is asymmetrical.2

An analysis of large shocks is interesting primarily in a nonlinear setting. In a purely

linear model, one immediately knows how the economy responds to large shocks by simply

observing its behavior when shocks are small. But when the economy is nonlinear the task

of understanding the effects of large shocks becomes much harder – the sectors that are

important in normal times need not be the ones that are important in extreme situations.

There are some highly specialized cases where nonlinear models can be solved analytically,

but in general they are approximated via Taylor series (which need not actually converge),

in which case even allowing for second-order terms can significantly reduce tractability.3

Contribution

This paper asks how the structure of the economy determines the extent to which different

sectors create systemic risk. That is, when do large shocks to individual sectors transmit

through supply chains to the rest of the economy? And if we know something about that

transmission, what does it tell us about the determinants of tail risk in GDP?

The paper’s core contribution is to answer those questions in the context of a general

network production model. Its central theoretical tool is a result that gives a closed-form

expression for the asymptotic response of GDP to any combination of shocks. That result

is first used to understand why large shocks in some sectors propagate and affect the full

economy while others may only have local effects. Second, when that result is combined with

1Empirically, Barrot and Sauvagnat (2016) and Carvalho et al. (2020) study the effects of large shocks to
individual firms due to natural disasters on production. See also related work by Fujiy, Ghose, and Khanna
(2021). Liu and Tsyvinski (2021) study the dynamic effects of large shocks in a linear setting.

2For recent models, see Dew-Becker, Tahbaz-Salehi, and Vedolin (2021), Dupraz, Nakamura, and
Steinsson (2020), Ilut, Kehrig, and Schneider (2018). Those papers also discuss empirical evidence.

3Jones (2011) and Dew-Becker and Vedolin (2021) study closed form solutions to nonlinear models
(roundabout economies). For a second-order approximation, see, notably, Baqaee and Farhi (2019), for
an insightful analysis that simultaneously illustrates the complexity of analyzing a quadratic approximation.
That said, in the class of models studied in this paper, the Taylor series has a finite radius of convergence.
Outside that radius – i.e. for sufficiently large shocks – it is meaningless as an approximation. See also den
Haan and de Wind (2009).
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a probability distribution for the shocks, it is possible to describe the tails of the distribution

of GDP. The insights gained from the analysis are significantly different from those from

local approximations. The analysis clarifies what factors make a firm or sector systemically

risky and thus also what creates risk for the economy as a whole.

Methods

In production networks, economic units produce outputs using as inputs both labor

and the products of other units. The various units interact, propagating and potentially

amplifying or attenuating shocks. Importantly, this paper’s model allows for arbitrary

elasticities of substitution across inputs in each sector.

Consider a vector of productivity shocks, with a direction and a magnitude. The direction

represents a scenario, some mixture of shocks, e.g. a positive oil supply shock, or a simultaneous

positive oil shock and negative shock to semiconductors. Holding the mixture fixed, the paper

asks what happens when the size of the shocks is scaled up. The paper’s theoretical tool

is a result that shows that for large shocks, GDP and sector prices and output all converge

to linear asymptotes. The analysis can be thought of as giving a first-order asymptotic, as

opposed to local, description of the economy.4

When combined with an assumption about the distribution of the shocks, the asymptotes

also determine the probability of large movements in GDP.

Results

The paper’s first application of the limiting approximation is to study what determines

whether a large negative shock to a given sector has only local effects or propagates through

the economy to GDP. First, consistent with Baqaee and Farhi (2019), it shows that complementarity

is key to propagation. A novel finding, though, is that the asymptotic effect does not depend

on the precise value of the elasticity of substitution. In the tail, negative shocks propagate

through nodes where the elasticity is below 1 and are stopped by nodes where the elasticity is

above 1 – the distance of the elasticity above or below 1 does not appear. That does not mean

the precise elasticity does not actually matter, but rather illustrates that for understanding

first-order effects in the tail the sign relative to 1 is all we need to know.

Similarly, the analysis shows that it is the topology of the production network, rather

than its geometry, that determines propagation. The importance of a sector depends on how

much of GDP is downstream of it. Unlike in a local approximation, the intensity of the use

4And there are actually no higher order terms in the Taylor series at infinity.
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of its output by downstream sectors is (again, to the first order) irrelevant. Another way

to put it: the size of a sector in good times does not determine its importance in extreme

situations. A sector can be simultaneously small and also systemically important – utilities

being the canonical example.

Putting the results on complementarity and downstream propagation together, we can

describe how interconnectedness affects tail risk. When a new link is added to the production

network whereby a sector has a new input that substitutes for others, that makes the network

more robust, while when a new input is added that is a complement, the network becomes

more fragile. That fragility can arise even when the new input simultaneously reduces

sensitivity to small shocks. That is, the economy can simultaneously become more diversified

locally and also face an increased risk of crashes.5 As a recent practical example, consider the

case of semiconductors. The rise of computer technology has been massively beneficial to the

economy, but at the same time it has made essentially every sector sensitive to the supply of

semiconductors, making that sector surprisingly influential following a recent negative shock.

Using input-output data for the US, the paper gives a first-pass empirical estimate of

tail centrality – the effect on GDP of a large shock to each sector. The basic finding is that

tail centrality and sales shares – which measure local centrality – are only about 60 percent

correlated, with numerous sectors with small sales shares having large tail centralities, while

many sectors with large sales shares have small tail centralities. The sectors with the highest

tail centrality include electricity, trucking, oil, and legal services, with the last being a

particularly interesting gut-check, so to speak, to help see the full extent of the model’s

predictions.

Finally, but no less importantly, the paper uses the asymptotic expressions for the

response of GDP to show how the structure of the economy interacts with the distribution

of the shocks to determine the distribution of extreme realizations of GDP.

That analysis first provides comparative statics showing what factors create and exacerbates

asymmetry in the distribution of GDP growth: increases in complementarity and in connections

running through complementary sectors both create left tail risk.

Second, this section examines the model’s implications for the distribution of GDP under

specific distributional assumptions that have appeared in the literature. In a broad range

of cases capturing most work, tail risk is determined by the magnitude of a single worst-

5See Acemoglu and Azar (2020) for related work on changes in interconnectedness in production networks.
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case scenario. For the case of i.i.d. shocks, that actually becomes particularly simple:

what matters is the largest Domar weight (sales share) that any sector can attain for any

combination of shocks. That is, whatever sector has the ability to generate the most systemic

risk ultimately represents a sufficient statistic for the total tail risk in GDP.

The novel idea consistently underlying this paper’s results is that what really matters

for tail risk is the relative size of the sectors in extreme scenarios. Tails are driven not by

granularity at steady-state, but rather by conditional granularity. As a specific example, in

a fully connected and symmetrical network with N sectors, the average transmission of each

sector’s shocks to GDP is of order N−1 for small shocks, but of order 1 for large shocks.

There is no granularity near steady-state, but severe granularity in tail events.

For a more realistic example, take electricity and restaurants. In normal times, those

sectors are of similar size, which in a linear approximation would imply that they have

similar effects on GDP. But one lesson of Covid was that shutting down restaurants is not

catastrophic for GDP,6 whereas one might expect that a significant reduction in available

electricity would have strongly negative effects – and that those effects would be convex in

the size of the decline in available power. Electricity is systemically important not because

it is important in good times, but because it would be important in bad times. And the

paper’s analysis shows how to quantify precisely how important.

Additional related literature

The paper’s framework builds most directly on the literature on production networks,

going back to Long and Plosser (1983).7 The closest link is to Baqaee and Farhi (2019), who

study higher moments of output in the same nonlinear framework, but studying an explicitly

local approximation, which necessarily does not speak specifically to large deviations as it has

infinitely large errors in the tails. There are also a number of recent papers on the propagation

of shocks and distortions in production networks, both empirical and theoretical.8 A contribution

6Consumer spending on food services and accommodations fell by 40 percent, or $403 billion between
2019Q4 and 2020Q2. Spending at movie theaters fell by 99 percent.

7That literature is large and work has studied features of networks, e.g. what makes a particular sector or
firm central and what determines the behavior of GDP. For recent representative work, in addition to other
work discussed, see Liu and Tsyvinski (2021), vom Lehn and Winberry (2021), La’O and Tahbaz-Salehi
(2021), and Bigio and La’O (2020).

8Liu (2019), Bigio and La’O (2020), and Boehm and Oberfield (2020) study the propagation of distortions
in production networks. Costello (2020) and Alfaro, Garcia-Santana, and Moral-Benito (2021) study the
propagation of credit supply shocks. Gofman, Segal, and Wu (2020) study the propagation of technology
shocks and their effects on firm risk.
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of this paper is to potentially give a way for work in those areas to get analytic approximations

where they were previously unavailable.

A focus of the analysis is how the network effectively changes as shocks change. Taschereau-

Dumouchel (2021) formally studies an endogenous production network and its effects on the

distribution of GDP. There is also a related literature in international trade on endogenous

value chains (e.g. Alfaro et al. (2019)).

The paper’s analysis applies to supply shocks to different sectors. There is also work

on demand shocks, for which propagation runs upstream through the network, rather than

downstream (see the discussion in Carvalho and Tahbaz-Salehi (2019)).

Some of this paper’s specific results are related to past work on networks and extreme

value theory, and that work is discussed when those results are discussed (e.g. section 5.1.2).

Outline

The remainder of the paper is organized as follows. Section 2 describes the basic structure

of the economy. Section 3 presents the result on approximating output in terms of the

exogenous shocks. Sections 4 and 5 analyze the determinants of the tail centrality of

individual sectors, while section 6 examines it in the data. Finally, section 7 presents results

on the probability of extreme realizations of GDP and section 8 concludes.

2 Structure of the economy

The model is static and frictionless and takes the form of a standard nested CES production

network as studied in Baqaee and Farhi (2019). There are N production units each producing

a distinct good. A unit might represent a sector, or a firm, or even just part of a sector or

firm, though the paper will refer to them as “sectors” as a standard shorthand. Each unit

has a CES production function of the form

Yi = ZiL
1−α
i

(∑
j

A
1/σi
i,j X

(σi−1)/σi
i,j

)ασi/(σi−1)

(1)

where Yi is unit i’s output, Zi its productivity, Li its use of labor, and Xi,j its use of good

j as an input (throughout the paper, summations without ranges are taken over 1, ..., N).9

9The fact that labor in (1) has a unit elasticity of substitution with material inputs is without loss of
generality – one can always specify an additional unit that converts labor into labor services, which are then
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The parameters Ai,j, normalized such that
∑

j Ai,j = 1, determine the relative importance

of different inputs. If Ai,j = 0, unit i does not use good j.

1 − α represents labor’s share of income. It is easy to relax the model to allow that to

vary across sectors (as it does empirically).

σi is the elasticity of substitution across material inputs for unit i. When σi → 1,

the production function becomes Cobb–Douglas (with the Ai,j becoming the exponents).

Though I assume a CES specification for simplicity, Appendix D.4 shows that the results

also hold under much more general conditions.

As discussed in Baqaee and Farhi (2019), this structure captures arbitrary substitution

patterns through nesting of the production functions. For example, if a real-world industry

has some inputs that are substitutes and some that are complements, that would be modeled

here as two production functions whose outputs are then combined to produce the real-

world industry’s output. Section 5.2 gives another example in which substitutability can

be modeled as a property of a good instead of a production function, and Appendix D.4.1

discusses a more general setup from Chodorow-Reich et al. (2022).10

Last, there is representative consumer whose utility over consumption of the different

goods is

U (C1, ..., CN) =
∏
i

Cβi
i (2)

where
∑

j βj = 1 and we define a vector β = [β1, ..., βN ]′. The unitary elasticity of

substitution in consumption focuses the analysis on nonlinearity in production, rather than

final demand, but it is without loss of generality.11

The representative agent purchases Ci units of good i with wages and inelastically supplies

a single unit of labor so that
∑

i Li = 1.

Throughout the paper, lower-case letters denote logs, e.g. zi = logZi. I also normalize

productivity such that zi = 0 represents, informally, the steady-state or average value.

For the main results I assume labor can be frictionlessly reallocated across sectors. The

limits go through identically with fixed labor (Appendix D.5), and allowing for an upward

combined with other inputs with a non-unitary elasticity
10An example of a model in which the paper’s results do not hold is one where labor cannot be reallocated

across sectors and it has an elasticity of substitution with material inputs smaller than 1 (such a model does
not have a solution for all levels of productivity).

11One can always add a sector with a non-unitary elasticity of substitution that produces a single final
good, with β = 1 for that sector and equal to zero for all other sectors.
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sloping aggregate labor supply curve is also straightforward.

Since the economy is frictionless, it can be solved either competitively or from the

perspective of a social planner.

Definition. A competitive equilibrium is a set of prices {Pi}∪W and quantities {Yi}, {Xi,j},
{Ci,j}, and {Li} such that each unit i maximizes its profits, PiYi −WLi −

∑
j PjXi,j, the

representative consumer maximizes utility, producers and the consumer take prices as given,

and markets clear: Yi = Ci +
∑

j Xj,i.

Since there is no government spending or investment, GDP is equal to aggregate consumption.

I denote logGDP by gdp.

The model does not in general have a closed form solution.

2.1 Cost minimization

Normalizing the wage to 1, marginal cost pricing along with cost minimization implies that

good i’s log price satisfies

pi = −zi +
α

1− σi
log

(
N∑
j=1

Aij exp ((1− σi) pj)

)
(3)

We have the usual result that shocks propagate downstream: each sector’s price depends

on its own productivity and the prices of its inputs. In the special case where σi = 1, the

recursion is linear and solvable by hand: p = − (I − αA)−1 z, where A is a matrix collecting

the Ai,j coefficients, and z is the vector of log productivities.

Equation (3) implies prices do not depend on demand, a “no-substitution” type result

(see, e.g., Acemoglu and Azar (2020) and Flynn, Patterson, and Sturm (2022)). Given a

solution for p (as a function of z), utility maximization for the consumer yields,

gdp = −β′p (4)

showing how the recursion for prices combined with preferences determines gdp.

In the linear case, the analysis is straightforward. For σi 6= 1, the price recursion is

nonlinear and has no general closed-form solution. If one just wants a quantitative model, it

is easy to get a numerical solution even for large N . But for the purposes of characterizing
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the behavior of the economy theoretically and understanding the forces determining the

importance of different sectors and shocks, being able to analyze the model by hand is

useful. Even a second-order approximation, though, can become difficult to work with, not

only due to the number of terms (quadratic in N), but also due to the fact that the precise

values of all the parameters of the model appear.

3 Large shock behavior

Any vector of log productivities has a polar representation,

z = θt (5)

where θ ∈ RN , such that θ′θ = 1, is a unit vector representing a direction in productivity

space and t is a scalar determining magnitude. As examples, θ = [..., 0, 1, 0, ...] represents a

shock to a single sector, while θ = [1, 1, ...] /
√
N represents a common shock to all sectors.

3.1 The large shock limit

Lemma 1. As t → ∞, for each i there exist unique, continuous scalar-valued functions

µi (θ) and φi (θ) such that

lim
t→∞
|pi (θt)− (µi (θ) + φi (θ) t)| = 0 (6)

where

φi (θ) = −θi + αi


maxj∈Si φj (θ) if σi < 1∑

j Ai,jφj (θ) if σi = 1

minj∈Si φj (θ) if σi > 1

(7)

and Si ≡ {j : Ai,j > 0} is the set of inputs used by sector i.

While the recursion for prices (3) is not solvable in closed form, it has a remarkably

simple limit. For σi < 1 it involves a maximum upstream, while for σi > 1 a minimum. The

result immediately shows how complementarity and substitutability affect shock propagation:

negative productivity shocks propagate downstream through parts of the production process

that are complementary (σi < 1), while positive productivity shocks propagate through parts

that are substitutable (σi > 1).
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Figure 1: Network examples

(a) (b)

(c)

σ<1 σ>1

(d)
Notes: The nodes represent sectors and arrows flows of goods. The red nodes and arrows represent a
hypothetical tail network following a shock to the darkest red sector (with the shading becoming lighter with
distance). All sectors use their own output as an input. For panels (a)-(c), all elasticities are assumed to be
less than 1. For panel (d), the two center nodes have elasticites as noted, and the others again have σ < 1.

Since the recursion involves a max/min, it can be interpreted as saying that as t → ∞,

every sector’s behavior ends up driven by a single one of its inputs (ignoring the knife-edge

case of σi = 1). In other words, for a given combination of shocks θ, as t → ∞, there is a

tail network, which depends on θ, and in which each sector has just a single upstream link.

Figure 1 displays four hypothetical networks, with the tail networks for the special case of a

shock to a single sector (darkest red) denoted by the red arrows.

An elasticity of substitution less than 1 means that when an input’s price rises, its share

of expenditures rises, while an elasticity above one means that the share falls. The source of

the result in (7) is that in the limit as t→∞, expenditure shares are ultimately driven to 0

or 1, depending on the elasticity and the shock, with σi = 1 being the knife-edge case with

constant expenditure shares.12

There is also a simple recursion for µ (θ), which depends on A and σ, but for this paper’s

12Mathematically, the result comes from the log-sum-exponential that appears in the recursion. Using
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analysis it will be unimportant (see Appendix A.1). Similarly, sector output follows yi →
µy,i − φit for a constant µy,i (see Appendix D.1), but the remainder of the paper focuses on

aggregate output.

3.2 The behavior of GDP

Using the fact that gdp = −β′p, we immediately have the paper’s main theoretical tool for

calculating the effects of large shocks.

Theorem 1. Under the conditions of Lemma 1,

lim
t→∞
|gdp (θt)− (−β′µ (θ) + λ (θ) t)| = 0 (9)

where λ (θ) ≡ −β′φ (θ) (10)

and µ (θ) and φ (θ) are stacked (vector-valued) versions of µi and φi.

gdp converges to a linear asymptote with slope λ (θ) ≡ −β′φ (θ).

The panels of Figure 2 plot various approximations for log GDP for some arbitrary value

of θ, with t varying along the x-axis. The negative side of the axis, for t < 0, formally

corresponds to reversing the sign of θ – i.e. t runs from 0 to∞ on each side and θ is replaced

with −θ on the left.

When σi = 1 for all i, the model is fully linear with λ (θ) = β′ (I − αA)−1 θ; otherwise

it is nonlinear. The nonlinearity can be locally captured by a Taylor series, as is shown

in the left-hand panel. The right-hand panel plots the approximation implied by Theorem

1. As t grows both to the left and right, log GDP approaches the two straight lines, with

λ (θ) 6= −λ (−θ). That difference is how the tail approximation captures nonlinearity.

Appendices D.2 and D.3 discuss asymptotic convergence. GDP approaches its asymptote

exponentially, so there are no higher-order polynomial terms that appear. When elasticities

pi ∼ φit asymptotically,

φi ∼ −θi +
α

1− σi
1

t
log

 N∑
j=1

Aij exp (φj)
(1−σi)t

 (8)

As t→∞, the exponent (1− σi) t goes to ±∞, and the log-sum-exp converges to a max or min, except for
the case σi = 1, where t drops out.
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Figure 2: Linear, quadratic, and tail approximations

log(productivity)

lo
g
(G

D
P

)

true model

linear approx.

quad. approx.

(a) Small-shock approximations

log(productivity)
lo

g
(G

D
P

)

true model

tail approx.

(b) Large-shock approximation
Notes: The x-axis is log productivity and the y-axis log aggregate output. The x-axis may represent
productivity in a single sector, or it could be the scale of a shock that affects productivity in multiple
sectors. The concavity in GDP in this example is consistent with an economy featuring complementarities.

of substitution are closer to 1 or when the units whose shocks are relevant in the tail (in the

sense of being the argument of the max/min in (7) for some sector) have smaller production

weights, the tail approximation will tend to be less accurate for a given t. That said, the main

reason to use the tail approximation instead of a higher-order Taylor series (or numerical

solution) is its tractability, parameter invariance, and the fact that it is formally describing

first-order asymptotic behavior.

3.2.1 Invariance

A significant feature of the results so far is that the asymptotic behavior of the economy

is invariant to the specific values of the production parameters. The values of the φi’s,

and hence the limits for prices, do not depend on the exact values of any σi or Ai,j. All

that matters is whether the elasticities are above or below 1 and whether the production

weights are greater than zero. In the example in Figure 2, changing the exact values of the

production parameters (away from σi = 1 or Ai,j = 0) changes µ (θ), and hence the levels of

12



the asymptotes, and it can change the curvature of GDP with respect to productivity, but

the slopes of the asymptotes are unaffected.

In terms of networks, the result says that what matters in the tail is the topology of

the network – the set of edges – rather than the geometry – their weights. In other words,

when thinking about the supply-chain risks associated with large shocks, what is important

is not how large a given supplier is on average, but rather how many sectors it supplies

(the link to out-degree is formalized below). Unlike the usual analysis for small shocks or a

Cobb–Douglas economy, this result implies that for large shocks, the economy is analyzed

as an unweighted network. The second-order Taylor series in Figure 2, on the other hand,

depends on the precise value of every parameter of the model.

4 Sector tail centrality

This section studies how large shocks to individual sectors affect GDP.

Definition. The left and right tail centralities of unit i are, respectively,

γLi ≡ lim
∆zi→−∞

∆gdp

∆zi
(11)

γRi ≡ lim
∆zi→∞

∆gdp

∆zi
(12)

where ∆ denotes a deviation from steady-state (zi = 0 ∀ i)

The usual local approximation takes ∆zi → 0; here we study ∆zi → ±∞.

Corollary 1. Let ei denote a vector equal to 1 in element i and zero otherwise. Then in the

notation of Theorem 1,

γLi = −λ (−ei) (13)

γRi = λ (ei) (14)

4.1 Comparative statics

Because of the simplicity of Theorem 1, it is straightforward to characterize how the parameters

of the model affect tail centralities.
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Sector i has a direct downstream link to sector j if Aj,i > 0, and sector j is downstream of

sector i if there is a path via direct downstream links from i to j. Note that it is possible for

i and j to both be downstream of each other – the economy need not have a strict hierarchy.

Complementarity magnifies negative shocks and attenuates positive shocks:

Proposition 1. γLi weakly increases and γRi weakly decreases when σj transitions from above

to below 1 for any j downstream of i.

Intuitively, substitutability gives greater opportunity to use the output of relatively

productive sectors, while complementarity requires using all inputs, including the weakest.

Since productivity shocks propagate downstream, those are the only elasticities that matter.

Second, interconnectedness in the network increases tail risk under complementarity and

reduces it under substitutability:

Proposition 2. When the set of inputs used by sector i grows, in the sense that Si → Si∪ j
for some j 6⊂ Si, γ

L
k weakly increases and γRk weakly decreases for all k if σi > 1 and decreases

if σi < 1.

One way to state that result makes it seem obvious: if the number of inputs needed to

produce output grows, then the supply chain is more fragile. On the other hand, if there are

more options for production, it becomes less fragile. Just like in the previous result, σi < 1

is a situation where as sector effectively needs all of its inputs, while σi > 1 is a situation

where it can use just a single input.

There is a less obvious implication of this result, though: if a sector discovers an input

that strongly increases the marginal product of all of its other inputs, then production is

more delicate, with all left tail centralities (weakly) rising. Obviously such a discovery will

increase output, but it also will make output in the future sensitive to more shocks, since

now shocks to the new input will matter, where they did not previously. Take electricity,

for example – obviously we are better off for having it, but at the same time the economy is

now sensitive to the risk of electricity being cut off.

Panels (b) and (c) of Figure 1 give an example of the effect of adding a link to the

network. When the top-left sector is shocked, adding a single link (the thick arrow) causes

the shock to now propagate to the entire network.
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5 Special cases and examples

5.1 Fully complementary production: average closeness

Consider an economy in which σi < 1 for all i (for example, the calibrations of Jones (2011),

Baqaee and Farhi (2019), and Rubbo (2020)).13 Assume also that Ai,i ∈ (0, 1), which

guarantees that every unit uses at least two inputs, one of which is its own output (which is

true for 88 percent of sectors according to the BEA). The Ai,j are otherwise unconstrained.

Using Theorem 1, it is then immediate that γRi = βi ∀ i. When a unit gets a sufficiently

positive shock, it eventually has no downstream impacts, affecting GDP only through its

direct effect on consumption.

While positive unit shocks eventually die out, negative unit shocks propagate, since

production in all units is complementary. That implies that

γLi =
1

1− α

n∑
j=1

βjα
dmin(j,i) (15)

where dmin(j, i) is the length of the shortest downstream path from i to j.14 In the complementary

economy, a unit’s left tail centrality is measured by its average downstream closeness to final

consumption: γLi involves the sum across units of each unit’s consumption weight times a

term, αdmin(j,i), that decreases in the number of upstream steps from that unit back to i.

Equation (15) answers the question of what types of units have high tail centrality under

complementarity: those that are direct suppliers to producers of a large fraction of GDP

(and that do not have substitutes). That also implies that tail centralities increase when the

economy is more connected.

More generally, all of the following will increase γLi :

1. An increase in the number of units downstream of i or an increase in their share of

GDP

2. A decrease in the number of steps between unit i and the units downstream of it

13See also evidence in Atalay (2017) and Atalay et al. (2018), among others.
14I.e. if i 6= j and Ai,j > 0, dmin (j, i) = 1. If Ai,j = 0, but there exists a k such that Ai,k > 0 and

Ak,j > 0, then dmin (i, j) = 2. Etc.
The assumption that Ai,i ∈ (0, 1) ensures that the shocked sector is directly downstream of itself, which

determines its φi.
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3. An increase in the share of expenditures on material inputs, α.

On the other side, γRi = βi ∀ i. That is, positive shocks do not propagate, so their only

asymptotic effect is from their direct impact. When σi ≥ 1 ∀ i, the results for γLi and γRi

are switched – right tail centrality is equal to average downstream closeness to GDP and left

tail centrality is simply βi.

5.1.1 The tail network

Under fully complementary production it is possible to give a fuller description of the tail

network that was discussed in section 3.1. At any given productivity, there is a vector of

Domar weights, D, with dgdp/dz = D (which, by Hulten’s (1978) theorem, are nominal sales

shares). D measures the importance of each sector in a given state. In steady-state (z = 0),

D′ss ≡ β′ (I − αA)−1 (16)

Proposition 3. If σi ≤ 1 for all i, there is a finite set of N×1 vectors of asymptotic Domar

weights, Dk, such that

λ (θ) = min
k
D′kθ (17)

It immediately follows that GDP is concave in that λ (θ) > 0⇐⇒ λ (θ) ≤ −λ (−θ)

In a linear model, where the production network is fixed, the Domar weights are constant

so that there is a single slope determining the response to any θ, λ (θ) = D′ssθ. In a nonlinear

model, the Domar weights vary depending on productivity, but the proposition says that in

the limit they only take on a finite set of values. That follows from the recursion defining φ

– for σi 6= 1, every sector’s price just depends on that of a single upstream input in the tail,

and there are only a finite set of possible upstream sectors.15 That is, each D′k is of the form

β′ (I − αMk)
−1, where Mk is a matrix representing a particular tail network.

In the language of graph theory, the tail network is a minimal spanning tree over the

sectors downstream of i, rooted at i, where a spanning tree connects all downstream nodes

back to i and it is minimal in that it uses the fewest possible links.16

Proposition 3 immediately yields an alternative description of tail centrality:

15The minimization here is reminiscent of the worst-case network analysis in Jiang, Rigobon, and Rigobon
(2021).

16In DeMarzo, Vayanos, and Zweibel’s (2003) analysis of persuasion, the influence of node i depends on
the number of spanning trees rooted at i. Here, on the other hand, all that matters is the minimal tree,
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Corollary 2. In the fully complementary economy,

γLi = max
k
Dk,i (18)

That is, a sector’s left tail centrality is measured by the largest value that its Domar

weight can take on for any feasible tail network structure. This is the paper’s first view

of the importance of conditional granularity. A sector need not be granular in steady-state

to be able to significantly damage the economy. What matters is whether it can ever be

granular.

Panels (a)-(c) of Figure 1 plot three hypothetical production networks for σi < 1 ∀ i. The

arrows represent downstream links. The darkest red nodes are the shocked sectors, and the

red arrows represent the tail networks given those shocks. Lighter red nodes are downstream

of the shocked sectors.

5.1.2 Relationship with other centrality measures

The idea of measuring centrality via average closeness appears elsewhere in the networks

literature in the form of harmonic centrality, which is an unweighted average closeness.17

The concept of the efficiency of a network is then measured by the average closeness between

pairs of nodes (Marchiori and Latora (2000) and Crucitti et al. (2003)). In the context of

complementary production, a network with greater efficiency then also has more tail risk

(this is formalized further in section 7).

The difference between average closeness and the usual Bonacich (1987) centrality that

appears in a Cobb–Douglas economy is that the latter measures centrality by looking across

every possible path through the network, while average closeness is measured based only on

shortest paths (see Carvalho and Tahbaz-Salehi (2019)).18

again due to the choice of shortest paths (i.e. the tail network).
The concept of spanning trees (in some cases minimal ones) appears elsewhere in economics including

in the analysis of diversity (Weitzman (1992) and Nehring and Puppe (2002)), price indexes (Hill (1999),
Hill (2004), and Diewert (2010)), game theory (Granot and Huberman (1981), and auctions (Sun and Yang
(2014)).

17See Boldi and Vigna (2014) who justify it axiomatically, along with Rochat (2009) and Bloch, Jackson,
and Tebaldi (2021)

18These results also suggest that there might be a relationship with the concept of upstreamness studied
in Antras and Chor (2013) and Antras et al. (2012). However, the normalization here is different. For those
papers, a sector is fully downstream if it sells only to final users. Here, though, what determines a sector’s
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Intuitively, the result on closeness suggests that out-degree of a unit – the number of

units directly downstream of it – would be closely linked to tail centrality. Define weighted

out-degree to be

degi ≡
∑

j:i∈S(j)

βj (19)

Proposition 4. Under fully complementary production, left tail centrality satisfies

1

1− α
(βi + α degi) ≤ γLi ≤

1

1− α
(
βi + α degi +α

2 (1− degi)
)

(20)

Weighted out-degree thus gives upper and lower bounds for tail centrality.19

5.1.3 Example: fully connected economy

Example 1. Suppose σi < 1 for all i and every sector uses inputs from itself and every other

sector (i.e. Ai,j > 0 ∀ i, j). Then

φi = θi +
α

1− α
θmin (21)

λ (θ) = β′θ +
α

1− α
θmin (22)

where θmin = mini θi. The tail centrality of any sector i is γLi = βi + α/ (1− α).

In the case of a fully connected production network, each sector’s φi is a linear combination

of its own productivity and that of the weakest sector, and GDP then depends on both a

linear combination of the θ’s and also the minimum. So even if, for example, the economy

is fully symmetric, with each good used in equal amounts so that all sectors have identical

Domar weights in steady-state, the effect of a shock on GDP in the tail depends additionally

on the productivity of the weakest sector

Note again the invariance: the results in this example do not depend on the exact value

of any of the production parameters. A sector can be large or small on average, but if, given

θ, it has the minimal value of θi, it will have weight βi + α/ (1− α) when the scale of the

shocks, t, is large.

centrality is not just the composition of its sales, but also the fraction of final users that it sells to.
19Out-degree appears frequently in the networks literature, including, recently, Carvalho et al. (2021),

Herskovic et al. (2020), Bernard, Moxnes, and Saito (2019), and Mossel, Sly, and Tamuz (2015) among
many others.
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This again illustrates the idea of conditional granularity. Even if no sector is granular (for

large N) when shocks are small, as the shocks become large, the sector with the most negative

shock becomes granular in the sense that it becomes a uniquely important determinant of

GDP. It is thus possible for the economy to diversify, with the vector β having smaller

average values, while tail risk stays large, simply because in this economy a large negative

shock to any single sector has the power to significantly impact GDP. Tail centrality is thus

independent of diversification, the number of units, and steady-state Domar weights.

Panel (a) of Figure 1 represents the tail network for a version of this economy with three

sectors.

5.2 Allowing for substitutes

In the description of the economy in equation (1), substitutability is a characteristic of a

sector. But it is also possible to treat substitutability as a characteristic of a good. For

example, for some goods i′ and i′′ to be substitutes, they can be combined into are combined

into a bundle i via the function

Yi =
(
X

(σi−1)/σi
i,i′ +X

(σi−1)/σi
i,i′′

)σi/(σi−1)

(23)

with σi > 1.20 If goods i′ and i′′ are used only in production of good i – that is, i′ and

i′′ are substitutes for each other and they never appear individually – then γLi′ = γLi′′ = 0,

regardless of any other elasticities or production weights. For example, it might be that iron

and steel are substitutes for each other in all uses (if imperfect ones), in which case each

individually has a left tail centrality of zero.21 This is the formalization of the idea described

in the introduction that what determines tail centrality is having a large fraction of GDP

downstream and having no close substitutes.

To generalize further, one could imagine a situation where good i′ is used both in a bundle

with i′′ and also separately on its own. Then, if σj < 1 ∀ j 6= i, we have a modified version

of the result above. Define d−imin (j, i′) to be the length of the shortest upstream path from j

20Formally, this requires allowing for differential αi across the production functions in the baseline setup.
That is a straightforward extension.

21Again, σi > 1 implies that if the price of good i′ rises, then expenditures on it fall relative to those on
i′′ – if iron gets more expensive, then expenditures shift relatively towards steel (regardless of whether total
expenditures on iron and steel combined rise or fall).
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to i′ that does not go through good i. Then

γLi =
1

1− α

n∑
j=1

βjα
d−imin(j,i′) (24)

That is, if a good has substitutes for some uses but not others, then its tail centrality

is calculated based on its closeness to final production only via paths where it cannot be

substituted. Panel (d) of Figure 1 gives an example of this situation.

6 Tail centrality in the data

This section examines two aspects of tail centralities in the data. First, it gives a simple first-

pass estimate of tail centralities and compares them to sales shares in recent data. Second, it

studies two sectors that have had significant changes in sales shares over time and examines

how those changes relate to their out-degrees and hence tail centralities.

6.1 Estimating tail centralities

I study the most recent (2012) sector detail input-output tables reported by the BEA. The

tables have 379 private sectors.22 Define an Ai,j coefficient to be positive, so that there is an

upstream link, if sector i spends at least 0.5 percent of its expenditures on materials for the

output of sector j. I set α = 1/2 in calculating γLi . The βi parameters are calculated from

the fraction of nominal final expenditure going to each sector.

Figure 3 plots Domar weights (nominal output divided by nominal GDP) against left tail

centralities. There is a weak positive correlation of 0.23, but the figure makes apparent that

the distributions are very different. There are a few sectors, such as Petroleum Refineries,

that have sales shares noticeably higher than most others. But there are numerous sectors

with tail centralities close to 0.5. 13 sectors have γLi > 0.8 max
(
γLi
)
, while only two have

Dss,i > 0.8 max (Dss,i).

22For this paper’s purposes, it is important to use a detailed version of the input-output tables because at
higher levels of aggregation, the sectors become very strongly connected. The disaggregated table has much
more sparse links.

I exclude customs duties, funds and trusts, real estate sectors, management services, and employment
services. Management services are almost entirely offices of holding companies, while employment services
represent staffing agencies, so we take both as representing more appropriately relatively generic labor input.
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Figure 3: Domar weights and tail centralities

Notes: The x-axis is the Domar weight of each sector. The y-axis is the left tail centrality. The data is the
2012 BEA input-output table. The top four sectors according to both centrality measures are labeled.

One can also see that the top sectors by Domar weight have very different tail centralities

– Petroleum Refineries at 0.40, Oil and Gas Extraction at 0.25, and Hospitals at 0.07. Oil

and Gas Extraction is lower because it is one more step up the supply chain from refineries.

Hospitals are low because they produce essentially only final output.

Table 1 further examines the top sectors sorted by sales and tail centrality. The top

sectors for tail centrality are all universal inputs. The first is electricity, which is why it has

appeared frequently as an example. The second highest tail centrality is for trucking services

– all of final production involves trucking at some phase.

The third-highest tail centrality is for legal services – again, simply because every sector

purchases legal services. Does it make sense to claim that a large negative shock to the legal

services sector could cause a crash in GDP? There is ample evidence that legal institutions

are necessary for the growth of the economy. All aspects of business rely on property rights
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Table 1: Top sectors by left tail centrality and sales share

Largest by left tail centrality
Sector γLi Sales share
Electric power generation, transmission, and distribution 0.4714 0.0324
Truck transportation 0.4578 0.0211
Legal services 0.4428 0.0224
Advertising, public relations, and related services 0.4404 0.0242
Accounting, tax preparation, bookkeeping, and payroll services 0.4282 0.0112
Services to buildings and dwellings 0.4186 0.0095
Monetary authorities and depository credit intermediation 0.4101 0.0304
Wired telecommunications carriers 0.4049 0.0231
Other nondurable goods merchant wholesalers 0.4040 0.0220
Insurance carriers, except direct life 0.4004 0.0340
Petroleum refineries 0.3997 0.0529

Largest by sales share
Sector γLi Sales share
Hospitals 0.0652 0.0652
Petroleum refineries 0.3997 0.0529
Oil and gas extraction 0.2515 0.0465
Insurance carriers, except direct life 0.4004 0.0340
Electric power generation, transmission, and distribution 0.4714 0.0324
Offices of physicians 0.0316 0.0316
Monetary authorities and depository credit intermediation 0.4101 0.0304
Scientific research and development services 0.0263 0.0269
Other financial investment activities 0.2810 0.0247
Advertising, public relations, and related services 0.4404 0.0242
Wired telecommunications carriers 0.4049 0.0231
Notes: Sales shares and tail centralities calculated from the 2012 BEA input-output tables.

and contract enforcement. If, for some reason, the legal system literally shut down and legal

services were actually no longer available to firms, it is entirely plausible that there would

be significant declines in output.

One potential concern with that argument is that the input-output tables do not actually

measure things like enforcement of property rights or the use of courts; they just measure

expenditures on (external) lawyers by firms. That actually illustrates a key advantage of
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γLi : measuring it does not require measuring all of each sector’s expenditures on each input.

All that we need to know is that a sector uses some input. And the input-output tables are

certainly correct that all sectors directly use legal services.

In addition to utilities and professional services like lawyers and accountants, the last

major category of sectors that appears repeatedly among the top sources of tail risk is

financial institutions. Just as with legal services, all firms use financial services in one way

or another (as do essentially all households). The analysis here thus helps explain why the

financial sector would be a relevant source of crashes throughout history – when financial

services are disrupted, every firm in the economy faces more difficulty in production.

There is past work examining, both in models and in the data, the effects of shocks to

the energy sector, financial services, and legal and accounting institutions. The analysis here

shows how those shocks are linked: they all represent shocks to universal inputs, where tail

centralities are far larger than steady-state sales shares.

The bottom section of table 1 reports the top sectors sorted by sales share. Again, not

all have particularly high tail centralities – in many cases they only produce final goods, like

hospitals.

6.2 Hospitals and computers

Two prominent sectors that have undergone significant changes in the post-war period are

computer equipment and hospitals.23 The left-hand panel of Figure 4 plots their Domar

weights for the period 1963–2020. The Domar weight of hospitals rose by a factor of 5 from

0.02 to 0.10. Computer equipment rose from about 0.03 to a peak of 0.07 and then fell back

to nearly where it started. According to the standard local analysis, then, hospitals have

become progressively more important, while the importance of computers to the economy

peaked around 2000 and has subsequently fallen by half.

The right-hand panel of Figure 4 plots their out-degrees, measured here as the fraction of

sectors that purchase output from those same two sectors. Hospitals never sell output to more

than one other sector (where again the cutoff is 0.5% of the using sector’s intermediates).

Computers, on the other hand, rose from being purchased by 30 to 55 percent of sectors.

23The computer equipment sector stays consistent in the BEA input-output ables between the 1963–1996
and 1997–2020 versions. For consistency across those two datasets, I use the combined “Hospitals and
Nursing and Residential Care” sector.
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The rise in the Domar weight of the computer-producing sector can thus be said to be driven

by the extensive margin – its Domar weight increases by the same factor as the number of

sectors using its output – whereas the rise in the Domar weight of hospitals is driven by the

intensive margin – the share of final expenditures going to them has risen.

In terms of tail centrality, using the detailed input-output tables as above, the tail

centrality of the semiconductor-producing sector (the figure uses “computer equipment”

– a higher level of aggregation – because it is available at the annual frequency) rose from

0.18 to 0.31 between 1963 and 2012, while the tail centrality of hospitals is always simply

equal to its share of final consumption, which is also its Domar weight.

Figure 4: Time series of Domar weights and out-degree
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Notes: The left-hand panel plots Domar weights for the two sectors calculated from BEA annual input-
output tables. The right-hand panel plots, for each year, the fraction of sectors that spent at least 0.5
percent of expenditures on material inputs on the industry’s output (note this is measuring computers as a
material input; investment expenditures are not counted in measuring the production network parameters
Ai,j).

7 The risk of large deviations in GDP and their source

The results so far describe how the economy responds to a given shock to productivity.

This section combines Theorem 1 with assumptions about the probability distribution for

shocks to describe the probability distribution of GDP. It first gives a general result and
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then studies the behavior of the economy under various specific assumptions that have been

used for shocks in the literature.

The key results are as follows:

1. The tail approximation from Theorem 1 is sufficient for characterizing the tail of GDP

(meaning that the invariance that holds for Theorem 1 also holds for the determinants of

GDP tail risk).

2. When σi ≤ 1 ∀ i, increases in interconnectedness increase tail risk.

3. Whereas past work has studied the riskiness of the steady-state production network,

tail risk is in general driven by the riskiest of the tail networks, as in section 5.1.1.

Additionally, this section generalizes well-known results on extreme realizations of sums

of random variables (e.g. Nair, Wierman, and Zwart (2022) and Embrechts, Kluppelberg,

and Mikosch (2013), among many others) to a nonlinear setting.

7.1 Shock distributions

I assume that there is a positive function s (θ) that determines the scale of the shocks in

direction θ. Specifically, for t greater than some t̄, t/s (θ) has a cumulative distribution

function F , with complementary CDF F̄ ≡ 1 − F (note F̄ is positive and decreasing). So,

for example, if s (θ) = ks (θ′), then the nth percentile of z in direction θ is k times that in

direction θ′. For the purposes of this paper, consistent with the analysis so far, it is only

necessary to choose the distribution of z for large t (i.e. when ‖z‖ is large), with its behavior

for t ≤ t̄ left unrestricted.

I assume θ has a probability measure m. Since z = θt is a unique decomposition, we can

write its probability distribution equivalently over z or θ and t (with t = ‖z‖ and θ = z/ ‖z‖).
To formalize the above assumptions, we set, for t > t̄,

Pr [θ ∈ Θ, t/s (θ) > x] = m (Θ) F̄ (x) (25)

The representation in (25) accommodates standard distributions studied in the literature

such as the multivariate normal, elliptical distributions more generally, transformations

of Laplace distributed vectors, and Pareto-tailed distributions (Resnick (2007)). Specific

parametric examples are studied below. A simple example of a distribution that does not

have a representation (25) is the case with N = 1 so that z is a scalar and z is distributed
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normally conditional on being positive but exponentially conditional on being negative.

Intuitively, the restriction, which can easily be relaxed, is that the tail shape (as distinct

from the scale) is the same for all θ.24

7.2 General result

Theorem 2. Given the distribution for z in (25), there exists a function ε (x) ≥ 0 with

limx→∞ ε (x) = 0 and an x̄ such that for x > x̄∫
Θ−

F̄

(
x− µ (θ) + ε (x)

−s (θ)λ (θ)

)
dm (θ) ≤ Pr [gdp < −x] ≤

∫
Θ−

F̄

(
x− µ (θ)− ε (x)

−s (θ)λ (θ)

)
dm (θ)

(26)

where Θ− = {θ : s (θ)λ (θ) < 0}

Theorem 2 says that the CDF of logGDP is well approximated by∫
Θ−

F̄

(
x− µ (θ)

−s (θ)λ (θ)

)
dm (θ) (27)

and in fact the µ (θ) term is also irrelevant since x eventually dominates. Intuitively, this

says that the CDF of GDP, in the tail, depends on the average across all shocks (
∫
dm (θ)),

of the probability that each shock (θ) creates a large decline in GDP, where (x− µ (θ)) /λ (θ)

is the size of a shock needed in direction θ to generate a decline of size x.

7.2.1 General properties of the tail of GDP

Even without further specialization, there are general results that follow from Theorem 2.

Determinants of tail risk. First, the probability of large deviations in GDP depends

on the probability of large deviations in productivity, scaled by the limiting slope, λ (θ),

showing that the tail approximation is the correct way to analyze tail risk in this setting.

Other aspects of the economy – such as the steady-state Domar weights, the precise values of

the elasticities of substitution, or terms in a Taylor expansion – are irrelevant. The invariance

results for the function λ thus also hold for tail risk – it is unaffected by the exact values

of the production parameters and only depends on the topology of the production network

24For practical purposes, if the tail decays significantly faster in some direction (z > 0 in this example),
then that can be analyzed by just setting the measure m to zero in that direction.
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(which Ai,j > 0) along with whether σi is above or below 1.

A second observation is that the volatility of the shocks in different directions, captured

by s (θ), interacts with λ (θ) to determine tail risk. When the shocks are more volatile – s is

larger – tail risk is greater.

Comparative statics. Generalized versions of the comparative statics in section 4.1

are useful here for showing what makes the economy riskier.

Proposition 5. For sufficiently large x, any factor that weakly increases λ (θ) for all θ

weakly reduces tail risk in the limiting sense of Theorem 1. In particular,

1. when any σi transitions from below to above 1

2. when the set of inputs used by any sector i grows if σi > 1 or shrinks if σi < 1.

The second part of the proposition shows how changes in interconnectedness affect tail

risk – interconnectedness reduces tail risk when it increases the number of substitutes and

increases tail risk when it increases the number of complements.

Skewness. We also obtain a general result on skewness in the tail. It is an asymptotic

form of skewness, as opposed to the scaled third moment.

Corollary 3. If the distribution of z is symmetrical (s (θ) = s (−θ) and m (θ) = m (−θ)),

then when GDP is concave in the sense that λ (θ) > 0⇐⇒ −λ (−θ) ≥ λ (θ), Pr [gdp < −x] ≥
Pr [gdp > x] for sufficiently large x. In particular, that holds when σi < 1 for all i.

So under very general (but still only sufficient) conditions, as long as the elasticities are all

below 1, the left tail of GDP is heavier than the right. Concavity in production thus robustly

generates left skewness in GDP, in the limiting sense of the corollary. This is a formal tail

version of results that are intuitively described and studied in a local approximation by

Baqaee and Farhi (2019).

Finally, Theorem 2 shows how nonlinearity in the economy generates increases in tail

risk. If the economy were linear, the argument of F̄ in (26) would be x
−s(θ)D′ssθ

. When λ (θ)

is larger in magnitude than D′ssθ, there is a larger chance of a large movement in GDP.

7.3 Interconnectedness and risk in the economy

As discussed above and in section 4.1, when a sector sells to a new downstream sector, left

tail risk weakly increases if the new downstream sector has an elasticity of substitution less
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than 1. In other words, complementarity and interconnectedness combine to increase left

tail risk (and at the same time reduce the probability of large booms in GDP).

But obviously the tail probabilities in Theorem 2 are not the only way to evaluate the risk

of the economy. Another interesting question is how the economy responds to small shocks,

or equivalently, what the variance of logGDP is in a first-order Taylor approximation.

If Σ is the covariance matrix of z, we have, from a first-order approximation,

var (logGDP ) ≈ D′ssΣDss (28)

Since D′ssΣDss is continuous in A, any small change in A – i.e. a change in some Ai,j from

zero to a small positive number – will cause only a small change in D′ssΣDss, even though

it can cause a discrete shift in the values of the function λ, and hence in tail risk. In other

words, local risk is always affected smoothly by A, but tail risk is affected discretely by it.

In addition, an increase in interconnectedness, even though it cannot reduce tail risk

when σi < 1 ∀ i, can certainly reduce the sensitivity of GDP to small shocks. Since the

sum of the Domar weights, Dss,i, is always equal to (1− α)−1, we have the following simple

example:

Example 2. Suppose the shocks are uncorrelated (Σ is diagonal). A marginal increase in

the sales share of any sector starting from zero, if it (weakly) reduces the sales shares of all

other sectors, will reduce D′ssΣDss.

The example gives simple sufficient – and far from necessary – conditions for when adding

a new sector diversifies the economy. At the same time, though, the results above show

that adding a new sector will weakly increase tail risk (weakly reduce λ (θ) for all θ) when

the elasticity of substitution in production is less than 1. This section thus shows that in

the model increases in interconnectedness – measured here by the number of links in the

production network ((i, j) pairs such that Ai,j > 0) – can diversify the economy, making it

less sensitive to small shocks, while at the same time increasing the probability of an extreme

negative realization of GDP.

7.4 Specific distributions

This section specializes the result in Theorem 2 to specific distributions that appear in the

literature. Beyond the specific results, three patterns emerge: (1) for independent shocks
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tail risk depends on sector tail centralities (crashes are not caused by simultaneous shocks to

multiple sectors); (2) as the tails of the shocks become heavier, more sectors can potentially

cause crashes; (3) tail risk arises in the presence of conditional granularity.

7.4.1 Weibull tails

A wide range of distributions, including the normal, gamma, exponential, Gumbel, and

Fréchet families all can be said to have Weibull tails, up to asymptotically negligible terms,

in the following sense:

Definition. The shocks have a Weibull-type tail if, for t > t̄,

F̄ (t) = c exp (−η (t− t̄)κ) (29)

where c = Pr (t ≤ t̄) (30)

for parameters κ > 0 and η > 0.

Smaller κ represents heavier tails, with κ = 1 corresponding to the exponential distribution

and κ = 2 to the normal.25 In addition, all three types of extreme value distributions

(Weibull, Gumbel, and Fréchet) have Weibull-type tails. The Weibull family thus covers

a broad range of behaviors, including all but the very lightest (e.g. bounded) and very

heaviest (Pareto or Cauchy) tails and, as discussed below, has been used prominently in the

literature.

Across that entire family, we have a surprisingly simple result. Denote the essential

supremum with respect to the measure m over θ of any function f (θ) by ‖f (θ)‖∞.26 For

example, in the typical case where m has full support, ‖f (θ)‖∞ = maxθ f (θ) (note that it

is not the maximum of |f (θ)|). ‖f (θ)‖∞;Θ∗ denotes the essential supremum on some subset

of the sphere Θ∗.

Proposition 6. If the shocks have Weibull tails,

lim
x→∞

Pr [gdp < −x]1/(x
κ) = exp

(
−η
(

1

‖−s (θ)λ (θ)‖∞

)κ)
(31)

25For the normal distribution, a better approximation for F̄ (t) is c (t− t̄)−1 exp
(
−η (t− t̄)2

)
. The t−1

term is asymptotically dominated by the exponential, and it is straightforward to show that the proposition
in this section also holds when any powers of t multiply the exponential in F̄ .

26Formally, ‖f (θ)‖∞ = inf {a ∈ R : m ({θ : f (θ) > a}) = 0}.
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Furthermore, for any set Θ∗ such that ‖−s (θ)λ (θ)‖∞;Θ∗ < ‖−s (θ)λ (θ)‖∞,

lim
x→∞

Pr [θ ∈ Θ∗ | gdp < −x] = 0 (32)

Analogous results hold for Pr [gdp > x].

Conditional on the distribution of the shocks, the probability that GDP has an extreme

decline is determined by a sufficient statistic: the most negative value of s (θ)λ (θ). That

function combines the scale of the shock, s (θ), and its effects, λ (θ), to determine which θ

has the single strongest impact on GDP.27 The exponential form of the distribution for t is

what causes only the single most extreme shock to end up mattering, because F̄ is effectively

infinitely convex as x→∞.

The second part of the result says that extreme realizations are driven, in probability,

by only that single most extreme shock. Any θ with −s (θ)λ (θ) < ‖−s (θ)λ (θ)‖∞ causes

a crash with probability zero asymptotically. That is, when looking across declines in gdp,

as those declines become larger, the probability that they are associated with a θ in an

arbitrarily small radius around the argmax approaches 1.

The same comparative statics results continue to hold as above, though now really they

only matter if they affect ‖−s (θ)λ (θ)‖∞. That is, any change in the model (the elasticities

or the inputs used by sectors) that does not affect that supremum does not affect tail risk.

Recall the importance of the results on invariance in Lemma 1 and Theorem 1. Here

we have another form of invariance: in the Weibull family, tail risk does not depend on the

measure m (θ) other than through its support, and the combination of shocks that leads to

extreme events is invariant to the tail shape parameter κ.

Finally, note that the result in Proposition 6 is a generalization of the well-known fact

for sub-exponential distributions (in fact, their definition) that, as x → ∞, the probability

that a sum of i.i.d. subexponentials is greater than x is equal to the probability that their

maximum is greater than x. Here instead of a sum we have a nonlinear mixture.

Tail skewness In the Weibull case we can significantly sharpen the conditions for tail

asymmetry relative to the general case:

27Under knife-edge conditions, multiple θ’s might achieve that maximum
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Corollary 4. When the shocks have Weibull tails, the following necessary and sufficient

conditions for tail asymmetry hold:

‖−s (θ)λ (θ)‖∞ > ‖s (θ)λ (θ)‖∞ ⇔ lim
x→∞

Pr [gdp < −x]

Pr [gdp > x]
=∞ (33)

‖−s (θ)λ (θ)‖∞ < ‖s (θ)λ (θ)‖∞ ⇔ lim
x→∞

Pr [gdp < −x]

Pr [gdp > x]
= 0 (34)

When s is symmetrical, a sufficient condition for the first case is σi < 1 for all i, while a

sufficient condition for the second case is σi > 1 for all i.

The condition ‖−s (θ)λ (θ)‖∞ > ‖s (θ)λ (θ)‖∞ says that the largest negative effects of

shocks are larger in magnitude than the largest positive effects. If that is true log GDP

is skewed left. When the opposite condition holds, it is skewed right. As in the corollary

in section 7.2, a sufficient condition for left tail skewness (in the limiting sense) is that

production is complementary, while if production displays substitutability – σi > 1 – then

there is right tail skewness. In other words, for a complementary economy with Weibull-type

shocks, large booms in GDP are infinitely rare compared to large declines.

In the case of the next two specific examples from the literature, it is possible to further

characterize the tail distribution of GDP.

Exponential tailed shocks and the maximum Domar weight Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2017) study a model with Cobb–Douglas production and in which shocks

are i.i.d. with exponential tails and show that what determines tail risk is the largest Domar

weight. This section generalizes that result to a case with complementary production.

Example 3. Suppose the shocks are i.i.d. with exponential tails so that s (θ) = 1/ ‖x‖1 and

m (θ) again has full support. If σi ≤ 1 for all i, then

‖−s (θ)λ (θ)‖∞ = max
n

max
j
Dn,j = max

j
γLj (35)

Pr [gdp < −x] → exp

(
−η x

maxj γLj

)
(36)

where Dn,j is the jth element of the vector Dn. The shock θ causing the tail event is equal

to 1 for the sector with the largest γLj and zero elsewhere.
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We thus continue to get the same result as in Acemoglu, Ozdaglar, and Tahbaz-Salehi

(2017) that what matters for tail risk with exponential shocks is a maximum Domar weight,

but now it is the maximum Domar weight among all possible tail networks.28 So it need

not be the case that maxj Dss,j is large for there to be significant tail risk. Rather, under

complementarity there just needs to be some Domar weight that can be large in some

situation.

The fact that extreme events are caused by a shock to a single sector – the one with

the highest left tail centrality – is again due to the importance of conditional granularity in

the model. Crashes appear not necessarily because of granularity local to steady-state, but

because there can be granularity in an extreme event. If the model is such that granularity

cannot occur – the maximum tail centrality (which is the maximum possible Domar weight

among all tail networks) is small – then tail risk will also be small.

As an example, the steady-state Domar weight of electricity is not particularly large

empirically – it is certainly not the largest sector in the economy – but its tail centrality

is highest. One can imagine a scenario in which electricity – or some other energy sector –

receives a large negative shock, becomes a limiting input in production, and then becomes

much more expensive. That is the type of scenario that these limits show is important for

driving the largest declines in GDP in this model, and it is a very different scenario from

the model of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), in which tail risk arises only

when there is a big sector at the steady state.

When this is generalized so that the shocks are exponential but with different scales, then

the sector that causes crashes is the one with the highest product of its tail centrality with

its volatility (see Appendix C.1).

Note also that in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), when the shocks are

distributed symmetrically, tail risk is also symmetrical. Here, on the other hand, tail risk is

in general asymmetrical even for symmetrical shocks.

Gaussian shocks A typical starting choice for the distribution of the shocks is normality

(e.g. Baqaee and Farhi (2019)).

Example 4. Suppose z ∼ N (0,Σ). If σi ≤ 1 for all i, then the left tail of GDP is determined

28In the case where σi = 1 for all i ≥ 0, {Dn} is just the singleton Dss and we recover their original result.
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by

‖−s (θ)λ (θ)‖∞ = max
n

√
D′nΣDn (37)

Pr [gdp < −x] → c exp

(
−1

2

x2

maxnD′nΣDn

)
(38)

as x → ∞. Denoting the argument for the maximum in (37) by n∗, the shock causing left

tail events is θ ∝ −ΣDn∗.

As above, the tail distribution of GDP remains Gaussian. Compared to the local variance,

D′ssΣDss, the left tail probabilities are as though the variance is maxnD
′
nΣDn – the largest

variance of any feasible network.29

Continuing the example of a fully connected network from section 5.1.3:

Example 5. Take the fully connected network with σi < 1 and suppose it is also symmetrical,

with Ai,j = βi = 1/N ∀ i, j.30 Then for i.i.d. normal shocks with variance σ2,

1. (Local to steady-state): Dss,i = N−1/ (1− α) and std (gdp) ≈ N−1/2σ/ (1− α)

2. (Right tail): ‖s (θ)λ (θ)‖∞ = N−1/2σ/ (1− α), which is attained at θi = N−1/2 for all i

3. (Left tail): ‖−s (θ)λ (θ)‖∞ = σα/ (1− α) +O
(
N−1/2

)
, which is attained when θi ∝ N−1

for all i except a single value, where it is proportional to N−1 + α/ (1− α).

The example shows both how diversification works in the model, and also how it differs

in the tails. Local to steady-state, i.e. where the model is well described by a first order

approximation, output has a standard deviation of order N−1/2, and the right tail decays in

the same way – i.e. the right-tail is no heavier than would be expected given the variance of

small shocks. The shock that causes right tail events is one where all sectors have an equal

increase in productivity, which is because of the dependence of output on θmin. Booms occur

when all sectors simultaneously receive positive shocks.

29Note also that in the special case of a linear model (σi = 0 for all i), the tail approximation yields the
correct result that the effective variance in both the left and right tails is D′ssΣDss.

As an example, suppose gdp =
∑
j zj and the zj are i.i.d. normal. Then the results here say that extreme

realizations of GDP are due to θ = [1, 1, ...]N−1/2. That result in fact holds for Weibull tails more generally
as long as κ > 1. See Nair, Wierman, and Zwart (2020), Proposition 3.1.

30The added perfect symmetry appears in, for example, Jones (2011), and only matters for the steady-state
Domar weights.
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On the other hand, for output to fall significantly productivity only needs to fall in a

single sector. So in this case as N grows there is actually no diversification in the tail at all.

The left-tail probabilities are as though the volatility of output is simply σα/ (1− α). Booms

are rare because productivity rising in all sectors simultaneously is relatively unlikely. But

productivity falling in one sector is not surprising at all, making crashes much more likely

than would be expected either from the local variance or the behavior of the right tail.

The mechanism here is again similar to that of the previous section and Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2017), as well as Gabaix (2011) and Acemoglu et al. (2012).

Local to the steady-state and in the right tail, the Domar weights are proportional to N−1

and each sector is equally important. But in the left tail, the sector with the most negative

shock has a weight of N−1+α/ (1− α) = O (1). While the model is structurally symmetrical,

so that all sectors on average carry the same weight and have the same size, following an

extreme shock any given sector can become large and have a major impact on the economy.

7.4.2 Power law tails

In the international trade literature, it is common to assume that productivity has a Pareto

distribution.31 Because its tail decays polynomially instead of exponentially, the Pareto

distribution generates shocks that can be much more extreme than in the Weibull case.

Proposition 7. Suppose t has a power law tail, F̄ (t) = c (t/t̄)−κ, for some c. Then

1.

lim
x→∞

Pr [gdp < −x] /
(
ct̄κx−κ

)
=

∫
Θ−

(−λ (θ))κ dm (θ) (39)

2.

lim
x→∞

Pr [θ ∈ Θ∗ | gdp < −x] =

∫
Θ∗−

(−λ (θ))κ dm (θ)∫
Θ−

(−λ (θ))κ dm (θ)
(40)

Equation (39) gives two results for the tail of GDP in the case of shocks with power law

tails. First, GDP has, in the limit, a power law tail with the same decay rate as the shocks,

κ.

Second, the probability of a large deviation in gdp now depends on an average (with

respect to the measure m) across all possible shocks of the tail slope, λ (θ). This is because

31For discussions, see, for example, Head, Mayer, and Thoenig (2014), Melitz and Redding (2015),
Arkolakis et al. (2019), and Allen, Arkolakis, and Takahashi (2020).
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even a shock with relatively low impact – small λ (θ) – can still potentially cause a crash

simply because the tails are so long. For small κ – a heavier tail – the average gets closer to

being equally weighted, while for κ → ∞, the integral depends just on the largest value of

λ (θ), consistent with the results for Weibull tails.

The fact that all crashes are, asymptotically, caused by the same shock in the Weibull

case is potentially intuitively unappealing. The results here show that that result can be

broken, but it requires allowing for the shocks to have extremely heavy tails.

A special case within the general Pareto tail is if the unit shocks are i.i.d.. Then the

measure m (θ) puts mass only on the axes – Pr [θ = ei] = 1/N , and Pr [θ ∈ Θ∗] = 0 for

any set Θ∗ that does not contain one of the unit vectors ei = [..., 0, 1, 0, ...] (Resnick (2007),

section 6.5.1). In that case, the result for GDP specializes to

lim
x→∞

Pr [gdp < −x] /
(
ct̄κx−κ

)
= N−1

∑
i

(
−γLi

)κ
(41)

Intuitively, when the shocks are i.i.d. with Pareto tails, the probability of two sectors

receiving a large negative shock simultaneously is negligible, so tail risk is determined purely

by the set of tail centralities. Anything that increases the tail centralities also increases tail

risk.

8 Conclusion

This paper studies large deviations in GDP in the context of a general nonlinear network

production model. Its core result is to characterize the asymptotic response of GDP to

arbitrary combinations of shocks. That result yields a description of the determinants of tail

risk and a measure of the risk associated with large shocks to individual sectors. In addition,

when combined with a probability distribution for shocks, it yields a description of the tail

of the probability distribution of GDP.

The simple statement of the core idea is that what determines tail risk is the structure

of the economy in the tail. For example, while granularity near steady-state affects the

dynamics of the economy near steady-state, what determines behavior in the tail is whether

the economy displays granularity in the tail. The paper shows how that can easily happen

even in a perfectly symmetrical economy where all sectors are of equal size at steady-state.
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A closely related point is that to understand the systemic risk of a sector – whether a

large shock to it will spill over into the rest of the economy – one needs to understand the

importance of the sector not on average but rather conditional on the occurrence of a large

shock. The analysis shows that it is upstream sectors that produce inputs for a large fraction

of GDP that are most systemically risky, while sectors that exclusively produce final outputs

do not produce systemic risk.

More generally, the paper provides a general theoretical foundation for analyzing tail

risk. It shows how to construct an approximation for the dynamics of the economy that,

rather than being valid only for small shocks, is valid explicitly for large shocks. That

approximation can then be combined with assumptions about the shape of the tail of the

shock distribution to yield a description of the tail behavior of the full economy.
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A Proofs

A.1 Lemma 1

The assumption that aggregate labor supply is inelastic and normalized to one implies that

real GDP is

GDP = W/P0 (42)

where W is the wage and P0 is the price of the consumption bundle. The index 0 indicates

consumption (P0 might be called a pseudo-price, since it is the cost of the consumption

bundle, but not of an actual individual good). I use lower-case letters to denote logs, so

p0 = logP0, etc. Setting labor to be the numeraire, so that W is normalized to 1, the CES

preferences for the consumer along with cost minimization immediately imply

p0 =
N∑
j=1

βipi (43)

gdp = −p0 (44)

40



Similarly, marginal cost pricing by the producers implies that the log price of good i is

pi = −zi +
α

1− σi
log

(
N∑
j=1

Aij exp ((1− σi) pj)

)
(45)

Now define φi = − limt→∞ pi/t and set the vector φ ≡ [φ1, ..., φN ]. If that limit exists and

is finite (a claim established below), then diving by t and taking limits of both sides of

equations (43) and (45) gives

lim
t→∞

t−1gdp = β′φ (46)

φi = −θi + αifi (φ) (47)

where

fi (φ) ≡


maxj∈Si φj if σi < 1∑

j Ai,jφj if σi = 1

minφj if σi > 1

(48)

To show that the system has a unique solution (guaranteeing that φ is also finite), define

a mapping g : RN → RN such that the ith element of the vector g (φ) is

gi (φ) = θi + αfi (φ) (49)

The set of solutions for φ is the set of fixed points for g, so we must just show that g has a

unique fixed point. That follows from the Banach fixed point theorem if gi is a contraction.

It is straightforward to confirm the Blackwell’s sufficient conditions hold here, giving the

result. The continuity of the solution follows from the continuity of g in θ.

To get the constant µ (θ), consider a series expansion, pi = µi + φit + o (1) (as t → ∞).

Inserting that into (3) taking limits, and using (47) yields

µi + φit = −zi +
α

1− σi
log

(
N∑
j=1

Aij exp ((1− σi) (µj + φjt))

)
(50)

µi =
α

1− σi
log

(
N∑
j=1

Aij exp ((1− σi) (µj + (φj − fi (φ)) t))

)
(51)
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µi =
α

(1− σi)
log

 ∑
j∈j∗(i)

Ai,j exp ((1− σi)µj)

 (52)

where

j∗ (i) ≡

{
{j : φj = maxk∈Si φk} if σi < 1

{j : φj = mink∈Si φk} if σi > 1
(53)

and Si is the set of inputs of sector i (i.e. Si ≡ {j : Ai,j > 0}). (52) follows from the fact

that for σi > 1, φj > fi (φ) for any j 6∈ j∗ (i) and j ∈ Si and φj < fi (φ) in the same situation

for σi < 1, so that all terms in the summation drop out except j ∈ j∗ (i). The results for the

Cobb–Douglas case following using similar analysis. It is again straightforward to confirm

that µ is the fixed point of a contraction mapping.

A.2 Propositions 1, 2, and 5

The propositions are derived for arbitrary θ, with the tail centralities being special cases.

Proposition 5 is for the general case and propositions 1 and 2 are the special cases.

Define f 0 : RN → RN to be the vectorized version of the function in (48). Define a

transformation T 0φ = θ + αf 0 (φ), with φ0 = T 0φ0 the fixed point of that transformation.

After changing some σi, we have a new transformation f 1. First, take the case with σi

transitioning from below 1 to being equal to 1 or more Then, necessarily,

T 1φ ≥ T 0φ (54)

for any φ, element-by-element, from which Proposition 1 follows.

The second proposition holds by the same argument. For example, suppose σi < 1 and

the set Si grows. Again, define a T 2 for the model with the larger Si. We have

T 2φ ≤ T 0φ (55)

for any φ, element-by-element, which establishes Proposition 2.
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A.3 Proposition 3

Define a set of N×N matrices An representing restricted versions of the production network.

For each An, each sector is restricted to using just one of its inputs, so that every An has a

single value of 1 in each row and is otherwise equal to zero, with links (1’s) only appearing

where Ai,j > 0. The set over all n of {An} represents every possible restricted network.32 If

σi = 1, then sector i always uses the same mix of inputs, and the ith row of An is equal to

Ai,· for every n.

Now define φ∗ and n∗

n∗ = arg min
n
β′ (I− αAn)−1 θ (56)

φ∗ = − (I− αAn∗)
−1 θ (57)

where 1N×1 is a vector of 1’s. That implies

φ∗ = −θ + αAn∗φ
∗ (58)

Suppose An∗ is not the solution to the recursion from Lemma 1 for φ∗. Then, clearly,

element-by-element Tφ∗ ≥ φ∗ (where T is the operator Tφ ≡ θ + αf (φ)), and whatever

the solution is for φ in Lemma 1, it will be, element-by-element, weakly greater than φ∗.

But that solution is always of the form − (I− αAn)−1 θ, leading to a contradiction with the

original construction of φ∗. So φ∗ must be the solution to the recursion with Tφ∗ = φ∗. The

result for GDP then follows immediately.

A.4 Theorem 2

We have

gdp (z) = µ (θ) + λ (θ) t+ ε (t, θ) (59)

where ε (t, θ) is an error that converges to 0 as t→∞ (from Theorem 1).

Now define

ε̄ (x) = max
θ

max
t>

x+µ(θ)
−λ(θ)

|ε (t, θ)| (60)

32The index n runs from 1 to the product of the number of inputs used by each each sector.
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Consider its limit as t →∞. Since the right-hand side is bounded and continuous in t, the

limit can be passed through the maximum and we have

lim
x→∞

ε̄ (x) = 0 (61)

Now note that

Pr [gdp < −x | θ] = Pr

[
t+

ε (t, θ)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]

(62)

where λ (θ) < 0. In addition,

Pr

[
t+

ε̄ (x)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]
≤ Pr

[
t+

ε (t, θ)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]
≤ Pr

[
t− ε̄ (x)

λ (θ)
>
x+ µ (θ)

−λ (θ)
| θ
]

Pr

[
t >

x+ µ (θ) + ε̄ (x)

−λ (θ)
| θ
]
≤ Pr [gdp < −x | θ] ≤ Pr

[
t >

x+ µ (θ)− ε̄ (x)

−λ (θ)
| θ
]

(63)

By integrating over the measure for θ (i.e. applying Fubini’s theorem),

Pr [gdp < −x] =

∫
Θ

Pr [gdp < −x | θ] dm (θ) (64)

from which the result follows directly. �

A.5 Corollary 3

Recall the notation from the proof of Theorem 1 that

gdp (θt) = µ (θ) + λ (θ) t+ ε (θ, t) (65)

and that |ε (θ, t)| < ε̄ (x) for t > x+µ(θ)
−λ(θ)

. We want to compare Pr [gdp < −x] with Pr [gdp > x].

Define ε′ (x) = max (ε̄ (x) , ε̄ (−x)). We have the bounds

Pr [gdp < −x] ≥
∫
θ:λ(θ)<0

F̄

(
x− µ (θ) + ε′ (x)

−s (θ)λ (θ)

)
dm (θ) (66)

Pr [gdp > x] ≤
∫
η:λ(η)>0

F̄

(
x− µ (η)− ε′ (x)

s (η)λ (η)

)
dm (θ) (67)
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Now first note that, for θ such that λ (θ) < 0,

x− µ (−θ)− ε′ (x)

s (−θ)λ (−θ)
− x− µ (θ) + ε′ (x)

−s (θ)λ (θ)
(68)

=

(
1

s (−θ)λ (−θ)
− 1

−s (θ)λ (θ)

)
x+
−µ (−θ)− ε′ (x)

s (−θ)λ (−θ)
− −µ (θ) + ε′ (x)

−s (θ)λ (θ)
(69)

So there exists an x̄ such that for x > x̄, the argument of F̄ in the integral for (66) is smaller

than that in (67) for any given θ. In addition,

m ({η : λ (η) > 0}) ≤ m ({θ : λ (θ) < 0}) (70)

which yields the result.
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Online appendix

B Proofs of additional propositions

B.1 Proposition 4

The left-hand inequality follows from assuming that the sectors immediately downstream of

i have no other downstream users (except final output). The right-hand inequality follows

from assuming that the remainder of GDP that is not immediately downstream of sector i’s

users is a single step further downstream. �

B.2 Proposition 6

The statement of Theorem 2 is∫
θ:λ(θ)<0

F̄

(
x− µ (θ) + ε (x)

−s (θ)λ (θ)

)
dm (θ) ≤ Pr [gdp < −x] ≤

∫
θ:λ(θ)<0

F̄

(
x− µ (θ)− ε (x)

−s (θ)λ (θ)

)
dm (θ)

(71)

In this case we have

F̄ (s) = c exp (−β (t− t̄)κ) (72)

where c = Pr (t ≤ t̄) (73)

If the limits of the two integrals in (71) are the same, then that limit is also the limit

for Pr [gdp < −x]. This section gives the derivation for the right-hand side limit, with the

arguments holding equivalently on the left with the sign of ε (x) reversed.

We have(∫
θ:λ(θ)<0

F̄

(
x− µ (θ)− ε (x)

−s (θ)λ (θ)

)
dm (θ)

)1/xκ

(74)

=

[∫
θ∈Θ

exp

(
−
(

1

−s (θ)λ (θ)
− ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)xκ
dm (θ)

]1/xκ

(75)

Now consider the limit as x→∞. I show that the limit of the right-hand side is the essential

supremum of exp
(
−
(

1
−s(θ)λ(θ)

)κ)
with respect to the measure m (θ) (i.e. the measure of
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the set of θ such that exp
(
−
(

1
s(θ)λ(θ)

)κ)
is above the essential supremum is zero). Denote

that by
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞

.

The structure of this proof is from Ash and Doleans-Dade (2000), page 470, with the

addition of the convergence of the argument of the integral with respect to x.

Define, for notational convenience,

f (θ) = exp

(
−
(

1

s (θ)λ (θ)

)κ)
(76)

f (θ;x) = exp

(
−
(

1

s (θ)λ (θ)
− ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)
(77)

Lemma B1. limx→∞ ‖f (θ;x)‖∞ = ‖f (θ)‖∞.

Proof. f (θ;x) → f (θ) pointwise trivially. The difference |f (θ;x)− f (θ)| is bounded due

to the facts that ε (x) and µ (θ) are bounded and that f (θ;x) is decreasing in s (θ)λ (θ)

(for sufficiently large x), which is bounded from above (and below, by zero). f (θ;x) then

converges uniformly to f (θ), from which ‖f (θ;x)‖∞ → ‖f (θ)‖∞ follows, since, using the

reverse triangle inequality,

|‖f (θ;x)‖∞ − ‖f (θ)‖∞| ≤ ‖f (θ)− f (θ;x)‖∞ (78)

�

Lemma B2. lim supx→∞

[∫
θ∈Θ

f (θ;x)x
κ

dm (θ)
]1/xκ

≤ ‖f (θ)‖∞

Proof. We have (except possibly on a set of measure zero)

‖f (θ;x)‖xκ ≤ ‖‖f (θ;x)‖∞‖xκ

Taking limits of both sides

lim
x→∞
‖f (θ;x)‖xκ ≤ lim

x→∞
‖‖f (θ;x)‖∞‖xκ (79)

= lim
x→∞
‖f (θ;x)‖∞ (80)

= ‖f (θ)‖∞ (81)
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where the second line follows from the fact that ‖f (θ;x)‖∞ is constant and the third line

uses lemma B1. �

Lemma B3. lim infx→∞

[∫
f (θ;x)x

κ

dm (θ)
]1/xκ

≥ ‖f (θ)‖∞

Proof. Consider some η > 0, and setA =
{
θ : exp

(
−
(

1
−s(θ)λ(θ)

)κ)
≥
∥∥∥exp

(
−
(

1
−s(θ)λ(θ)

)κ)∥∥∥
∞
− η
}

.

Consider also the setA′ =
{
θ : exp

(
−
(

1
s(θ)λ(θ)

− ±ε(x)+µ(θ)
x

1
λ(θ)
− t̄

x

)κ)
≥
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞
− η
}

.

For any η such that A has positive measure, there exists an x̄ (η) sufficiently large that A′ has

positive measure for all x > x̄ (η) due to the continuity of exp
(
−
(

1
s(θ)λ(θ)

− ±ε(x)+µ(θ)
x

1
s(θ)λ(θ)

− t̄
x

)κ)
and the fact that exp

(
−
(

1
s(θ)λ(θ)

− ±ε(x)+µ(θ)
x

1
λ(θ)

)κ)
→ exp

(
−
(

1
s(θ)λ(θ)

)κ)
as x→∞.

It is then the case that for x > x̄ (η)

∫
exp

(
−
(

1

λ (θ)
− ±ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)xκ
dm (θ) (82)

≥
∫
A′

exp

(
−
(

1

λ (θ)
− ±ε (x) + µ (θ)

x

1

s (θ)λ (θ)
− t̄

x

)κ)xκ
dm (θ) (83)

≥
(∥∥∥∥exp

(
−
(

1

λ (θ)

)κ)∥∥∥∥
∞
− η
)xκ

µ (A′) (84)

Since µ (A′) > 0 from the definition of
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞

(ignoring the trivial case of

a constant value for exp
(
−
(

1
s(θ)λ(θ)

)κ)
), and since the above holds for any η > 0,

lim inf
x→∞

[∫
exp

(
−
(

1

s (θ)λ (θ)
− ±ε (x) + µ (θ)

x

1

λ (θ)
− t̄

x

)κ)xκ]1/xκ

dm (θ) (85)

≥
∥∥∥∥exp

(
−
(

1

s (θ)λ (θ)

)κ)∥∥∥∥
∞

(86)

�

Proof of the proposition: Since both the lim inf and lim sup are equal to
∥∥∥exp

(
−
(

1
s(θ)λ(θ)

)κ)∥∥∥
∞

,

the limit is also.

For the second part, in the set Θ∗, there exists an η such that |−s (θ)λ (θ)| < ‖−s (θ)λ (θ)‖∞−
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η. Therefore

∫
Θ∗

exp
(
−
(
x+ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)∫
exp

(
−
(
x−ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)
≤ Pr

[
θ ∈ Θ∗

| gdp < −x

]
≤

∫
Θ∗

exp
(
−
(
x−ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)∫
exp

(
−
(
x+ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)

(87)

Again, we show that both sides of the inequality have the same limit. For a sufficiently large

x,

∫
Θ∗

exp
(
−
(
x±ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)∫
exp

(
−
(
x±ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)
≤

∫
Θ∗

exp

(
−
(

x±ε(x)−µ(θ)

(‖−s(θ)λ(θ)‖∞−η)
− t̄
)κ)

dm (θ)∫
θ:|λ(θ)|>|λ(θ)|−η/2 exp

(
−
(
x−±ε(x)−µ(θ)
−s(θ)λ(θ)

− t̄
)κ)

dm (θ)

≤
exp

(
−
(

x−±ε(x)−µ(θ)

−(‖s(θ)λ(θ)‖∞−η)
− t̄
)κ)

exp

(
−
(

x−±ε(x)−µ(θ)

−(‖s(θ)λ(θ)‖∞−η/2)
− t̄
)κ) 1

m ({θ : |λ (θ)| > ‖λ (θ)‖∞ − η/2})
(88)

→ 0 (89)

�

B.3 Proof of Proposition 7

We have

F̄ (s) = c (t/t̄)−κ (90)

where c = Pr (t ≥ t̄) (91)

Inserting those into the formula from theorem 1, we again show that the integrals have the

same bound. Define Θ− ≡ {θ : λ (θ) < 0}. The bound is now∫
Θ−

(
x+ ε (x) + µ (θ)

−xs (θ)λ (θ)

)−κ
dm (θ) ≤ Pr [gdp < −x] /

(
ct̄κx−κ

)
≤
∫

Θ−

(
x− ε (x) + µ (θ)

−xs (θ)λ (θ)

)−κ
dm (θ)

(92)
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with limit

lim
x→∞

∫
Θ−

(
− (s (θ)λ (θ))−1 + x−1±ε (x) + µ (θ)

−s (θ)λ (θ)

)−κ
dm (θ) (93)

Again, recall that the ±ε (x) term is bounded, as are λ (θ) and µ (θ) (since Θ is compact).

The argument of the integral therefore converges uniformly, since∥∥∥∥∥
(
− (s (θ)λ (θ))−1 + x−1±ε (x) + µ (θ)

−s (θ)λ (θ)

)−κ
− (− (s (θ)λ (θ))κ)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
(
−λ (θ)−1 + x−1±ε (x) + µ (θ)

− (s (θ)λ (θ))

)−1
∥∥∥∥∥
κ

∞

+ ‖−s (θ)λ (θ)‖κ∞

≤

∥∥∥∥∥−s (θ)λ (θ)

(
1 +
±ε (x) + µ (θ)

x

)−1
∥∥∥∥∥
κ

∞

+ ‖−s (θ)λ (θ)‖κ∞ (94)

≤ ‖−s (θ)λ (θ)‖κ∞

∥∥∥∥ x

x+ infθ∈Θ {µ (θ)}

∥∥∥∥κ
∞

+ ‖−s (θ)λ (θ)‖κ∞ (95)

with the last line being bounded. Passing the limit through the integral yields the result

from the text. The second claim is again an application of Bayes’ rule. �

C Derivations for examples

C.1 Example 3

In this case, the probability density in the tail is exp
(
−‖z‖1;v /η

)
, where

‖x‖1,v ≡
∑
j

|xj| /vj (96)
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denotes an l1-type norm weighted by a vector v, representing the volatility of each shock.

To confirm that s (θ) = 1/ ‖θ‖1,v, note that

exp (− (t/s (θ)) /η) = exp

(
−

(
‖z‖

∥∥∥∥ z

‖z‖

∥∥∥∥
1,v

)
/η

)
(97)

= exp
(
−‖z‖1,v /η

)
(98)

as required.

The aim is to find maxθ̃:‖θ̃‖
2
=1

∥∥∥−s(θ̃)λ(θ̃)∥∥∥. Now note that bλ
(
θ̃
)

= λ
(
bθ̃
)

, and

hence s
(
θ̃
)
λ
(
θ̃
)

= λ
(
θ̃s
(
θ̃
))

. We can then apply a change of variables, with θ = θ̃s
(
θ̃
)

.

Note that θ̃ = θ/ ‖θ‖, so we have

max
θ̃:‖θ̃‖=1

∥∥∥−s(θ̃)λ(θ̃)∥∥∥ = max
θ:‖θ/s(θ/‖θ‖)‖=1

‖−λ (θ)‖ (99)

Now in this particular case,

‖θ/s (θ/ ‖θ‖)‖ =
∥∥∥θ ‖θ/ ‖θ‖‖1,v

∥∥∥ (100)

= ‖θ‖1,v (101)

The objective is then

−max
θ

max
n

D′nθ = −max
n

max
θ
D′nθ (102)

subject to the constraint ‖θ‖1,v = 1. The inner maximization on the right is a problem with

a linear objective and a linear constraint, so it is simply solved at the point that maximizes

Dn,jvj. We then have

−max
n

max
j
Dn,jvj (103)

The example in the text is the special case of vj = 1 ∀ j.
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C.2 Example 4

The aim is to find maxθ̃:‖θ̃‖
2
=1

∥∥∥−s(θ̃)λ(θ̃)∥∥∥. Now note that bλ
(
θ̃
)

= λ
(
bθ̃
)

, and hence

s
(
θ̃
)
λ
(
θ̃
)

= λ
(
θ̃s
(
θ̃
))

. We can then apply a change of variables, with θ = θ̃s
(
θ̃
)

. Note

that θ̃ = θ/ ‖θ‖, so we have

max
θ̃:‖θ̃‖=1

∥∥∥−s(θ̃)λ(θ̃)∥∥∥ = max
θ:‖θ/s(θ/‖θ‖)‖=1

‖−λ (θ)‖ (104)

Now in this particular case,

‖θ/s (θ/ ‖θ‖)‖ =
∥∥∥θ (θ′Σ−1θ

)1/2 ‖θ‖−1
∥∥∥ (105)

=
(
θ′Σ−1θ

)1/2
(106)

The Lagrangian is then

max
θ

max
n

(−D′nθ)−
γ

2

(
θ′Σ−1θ − 1

)
(107)

where γ is the multiplier on the constraint on θ. Reversing the order of the optimization

gives

−min
n

min
θ
D′nθ +

γ

2

(
θ′Σ−1θ − 1

)
(108)

θ = −γ−1ΣDn (109)

where the second line uses the first-order condition. Solving for the constraint for a given θ

yields

θ = − 1√
D′nΣDn

ΣDn (110)

(recall that θ here does not have norm 1 but instead satisfies θ′Σ−1θ = 1).

Finally, the value of the objective (which is equal to
∥∥∥−s(θ̃)λ(θ̃)∥∥∥) is

∥∥∥−s(θ̃)λ(θ̃)∥∥∥ = −D′nθ (111)

=
√
D′nΣDn (112)

52



C.3 Example 5

The complete symmetry of the economy, along with the fact that output is homogeneous of

degree 1/ (1− α) in the vector of productivities immediately implies thatDss,i = N−1/ (1− α)

for all i.

It is straightforward to confirm that φi = θi + α
1−αθmin, where θmin = mini θi. Combining

that with the final utility function yields

λ (θ) =
∑
i

N−1θi +
α

1− α
θmin (113)

For the right tail, the Lagrangian is

max
θ
λ (θ)− γ

2

(∑
i

θ2
i − 1

)
= max

θ

∑
i

N−1θi +
α

1− α
θmin −

γ

2

∑
i

θ2
i (114)

That problem is nonconvex and is solved at the point θi = N−1/2 for all i. That yields

‖σλ (θ)‖∞ =
1

1− α
σN−1/2 (115)

For the left tail, the optimization is

max
θ
−
∑
i

N−1θi −
α

1− α
θmin −

γ

2

(∑
i

θ2
i − 1

)
(116)

The first-order condition gives

θi =


− N−1√

(N−1)N−2+(N−1+ α
1−α)

2 for i 6= imin

− N−1+ α
1−α√

(N−1)N−2+(N−1+ α
1−α)

2 for i = imin
(117)

where imin = arg mini θi. Note that this solution for θi is obviously not unique – imin can
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be equal to any integer between 1 and N . To find σλ (θ), we have

‖−σλ (θ)‖∞ = σ
N−1 + 2N−1 α

1−α +
(

α
1−α

)2√
(N − 1)N−2 +

(
N−1 + α

1−α

)2
(118)

= σ
α

1− α
+O

(
N−1/2

)
(119)

where x = O
(
N−1/2

)
⇔ |x| ≤MN−1/2 for all x greater than some x0 and for some constant

M .

D Extensions and additional results

D.1 Sector output

To prove the claim from the text, we will show that the following set of limits (along with a

third additional result) is consistent with the model’s equilibrium conditions.

lim
t→∞

−yj
t

= lim
t→∞

−cj
t

= lim
t→∞

pj
t

= φj (120)

and the equilibrium conditions are

Yi = exp (zi)L
1−α
i

(∑
j

A
1/σi
i,j X

(σi−1)/σi
i,j

)ασi/(σi−1)

(121)

Yj = Cj +
∑
i

Xi,j (122)

Pj = P0C
1/σ0β

1/σ0
j C

−1/σ0
j (123)

Pj = αPi exp (zi) (Yi/ exp (zi))
(α−(σi−1)/σi)/αAi,jX

−1/σi
i,j (124)

1 = (1− α)PiYi/Li (125)

We first prove some small lemmas. Define

j∗ (i) ≡

{
arg minj∈S(i) φj if σi > 1

arg maxj∈S(i) φj if σi < 1
(126)
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For σi = 1, set φj∗(i) = fi (φ) (for fi defined above in (48)).

Lemma D4. φj∗(i) + σi
(
φj − φj∗(i)

)
≥ φj for all j ∈ S (i)

Proof. This follows from the fact that for all j ∈ S (i) , φj ≤ φj∗(i) when σi > 1 and φj ≥ φj∗(i)

when σi < 1. It is trivial for σi = 1. �

Lemma D5. fi
([
φj∗(i) + σi

(
φj − φj∗(i)

)])
= φj∗(i)

Proof. This follows simply because

fi
([
φj∗(i) + σi

(
φj − φj∗(i)

)])
= (1− σi)φj∗(i) + σifi

(
φj∗(i)

)
(127)

= φj∗(i) (128)

�

To prove the result, we also need the use of inputs. We guess that

lim
t→∞

xi,j
t

= −φj∗(i) − σi
[
φj − φj∗(i)

]
(129)

We need to verify that the above, along with the solution in the proposition, satisfies, in the

limit, the equilibrium conditions (121)-(125).

We first take limits of the equilibrium conditions. For any variable gj, define

φg,j ≡ lim
t→∞

gj
t

(130)

Inspection of equation (125) shows that, given the guesses for φp,i and φy,i, we must

have φl,i = 0.

Dividing the equilibrium conditions (equations (121)-(125), respectively) by t and taking

limits as t→∞ yields

φy,i = θi + (1− α)φl,i + αfi ([φx,i,j]) (131)

φy,j = max
{
φc,j,max

i
φx,i,j

}
(132)

φj = φ0 + σ−1
0 φc − σ−1

0

(
φj∗(0) + σ0

[
φ0 − φj∗(0)

])
(133)

φp,j = φp,i + θi +
α− (σi − 1) /σi

α
(φy,i − θi)− σ−1

i φx,i,j (134)

0 = φp,i + φy,i − φl,i (135)
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Equation (131) holds using Lemma D5 and the recursion for φi. Equation (132) holds

trivially using the guesses and Lemma D4. Equations (133)-(135) hold trivially after inserting

the various guesses.

D.2 Approximation errors

This section compares Theorem 1 to local approximations.

As a first question, can a Taylor series with sufficiently many terms approximate the

response of the economy to large shocks?

Proposition 8. As t→∞, the error from any Taylor series for gdp around any value of z

will diverge to ±∞ for some θ unless σi = 1 ∀ i.

The proposition follows from the fact that GDP has a linear asymptote with a constant

that is different from zero. Any finite-order Taylor series necessarily diverges infinitely far

from the asymptote unless gdp is actually linear. This is obvious when the order of the

approximation is greater than 1, since eventually the higher order terms dominate. A linear

approximation also eventually diverges in the nonlinear case since the slope of gdp at t = 0

is not the same as at ±∞.

If the economy has any nonlinearity, the tail approximation is always preferable when the

magnitude of shocks is sufficiently large. As ‖z‖ grows, the error in the tail approximation

converges to zero, while it diverges to ±∞ (in at least some directions) for any Taylor series.

That behavior is visualized in Figure 2.33

While Theorem 1 only guarantees accuracy as t→∞, its errors also never diverge:

Corollary 5. There exists a δ such that, for all θ and t

|gdp (θt)− (µ (θ) + λ (θ) t)| < δ (136)

In addition, there is a stronger form of the main limit for convergence:

33And in general a Taylor series for a CES aggregator has a finite radius of convergence, meaning that
for t greater than some t̄, as terms are added the Taylor series gets further from the truth. Specifically, in
logs, consider log

∑
j wj exp (γθjt) for some exponent γ and a unit-norm vector θ. The sum inside the log in

general has zeros for complex t, meaning that the function has a pole and hence a finite range of convergence
for a given θ.
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Remark 1. Equations (6) and (9) in Lemma 1 and Theorem 1, respectively, can be replaced

by, for any j

lim
t→∞
|pi (θt)− (µi (θ) + φi (θ) t)| tj = 0 (137)

lim
t→∞
|gdp (θt)− (µ (θ) + λ (θ) t)| tj = 0 (138)

In other words, the approximation errors converge to zero exponentially fast as t → ∞
(i.e. faster than any power of t−1), and further one can show that the rate increases with

|σi − 1|. That is, there are no other nonzero terms in the polynomial expansion of prices and

GDP as t→∞.34

Proof. Consider the next term in a series expansion,35 pi = bit
−1 + µi + φit + o (t−1), and

take limits as t→∞,

pit− (µi + φit) t =

(
−θit+

α

1− σi
log

(
n∑
j=1

Ai,j exp ((1− σi) pj)

)
− µi − φit

)
t (139)

bi = lim
t→∞

(
−θit+ α

1−σi log
(∑n

j=1Ai,j exp ((1− σi) (bjt
−1 + µj + φjt+ o (t−1)))

)
−µi − φit

)
t(140)

bi = lim
t→∞

[{
α

1−σi log
(∑n

j=1 Ai,j exp ((1− σi) (bjt
−1 + µj + (φj − fi (φ)) t+ o (t−1)))

)
−µi

}
t

]
(141)

The recursion from above for µi immediately implies that the limit of the term in braces

is zero. Applying L’Hopital’s rule then yields the result that the equation is only solved by

bi = 0 ∀ i. The same analysis goes through for terms of any order. � �
34That is, the term |gdp (θt)− (µ (θ) + λ (θ) t)| behaves similarly to exp (−t). If one wanted to add further

terms to the approximation, it would be necessary to approximate log (gdp (z)− (µ (θ) + λ (θ) t)).
35Formally this is a Laurent series since it has both positive and negative powers of t. The terms in the

expansion for tj with j > 1 must be zero because otherwise the first limit in this section would not converge.
One way to think about this is that it is an expansion in τ = t−1 aroud τ = 0. There is a pole at τ = 0

since log GDP and all log prices go to ±∞. The τ−1 terms remove the pole, at which point we just have a
standard Taylor series in τ . The remark says that all terms in the Taylor series of order higher than 0 (i.e.
everything but the constant) are equal to zero.
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D.3 Which is the right approximation to use?

The usual Taylor approximation is around z = 0, while this paper focuses on z → ∞. As

z grows, the tail approximation is eventually superior, so for any statements about limiting

probabilities as gdp → ±∞, it is the correct representation. But at what point does that

transition happen? To shed light on that question, first note that gdp (0) = 0. So to know

the size of the error from using the tail approximation when z = 0, we need to know the

constants µ (θ).

Recall that the constant in the tail approximation is −β′µ where the vector µ solves the

recursion

µi =
α

(1− σi)
log

 ∑
j∈j∗(i)

Ai,j exp ((1− σi)µj)


and

j∗ (i) ≡

{
{j : φj = maxk∈Si φk} if σi < 1

{j : φj = mink∈Si φk} if σi > 1
(142)

The constant, µ (θ), thus increases when the elasticity of substitution is closer to 1 and

when the upstream source of shocks is units that are relatively small (have small Ai,j). Those

factors cause the tail approximation to have a relatively larger error as t→ 0.

The concave case

In the case where gdp is globally concave in the shocks – σi ≤ 1 ∀ i – a stronger result is

available. The error for the tail approximation then is smaller than for the first-order Taylor

series when

t >
µ (θ)

D′ssθ − λ (θ)
(143)

The tail approximation is superior if t is sufficiently large – larger when the constant µ (θ) is

larger or the gap between the local and tail approximations, D′ssθ − λ (θ), is smaller. That

immediately implies that when any elasticity gets closer to 1, the cutoff point gets larger,

since σi has no impact on λ and Dss. The closer are the various elasticities to 1, the larger the

shocks have to be in order for the tail approximation to be superior to a local approximation.

It is less clear what the effects of the Ai,j parameters on the cutoff is because they affect

both µ and Dss. Note, though, that (in the concave case), when λ (θ) < 0 – i.e. when

thinking about shocks that reduce GDP – the tail approximation cannot possibly be the
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better of the two until µ (θ) + λ (θ) t < 0, and the point where that happens necessarily

increases as the A parameters for the minimizing units (i.e. the units j ∈ j∗ (i) for some i)

decline.

D.4 Relaxing the CES assumption

This section extends the baseline result to a broader class of production functions and shows

that theorem 1 holds with no modification.

Consider the same competitive economy as in the main analysis, with the only difference

that each sector’s production need not be CES. Rather, just assume that it each sector

has constant returns to scale. Again, without loss of generality, assume that labor and

materials are combined with a unit elasticity of substitution. Those assumptions imply that,

in competitive equilibrium, the price of good i is given by

Pi =
1

Zi
W 1−α(Ci(P1, . . . , Pn))α (144)

where Zi is the productivity shock to industry i, Ci is a homogenous function of degree

one, and α < 1. In addition to the intermediate-input-producing industries, there is also

an industry with cost function C0 that produces a final good, which is then sold to the

representative consumer. Therefore, the final good price, P0, also satisfies equation (144),

with the convention that α0 = 1 and Z0 = 1.

The only additional assumption imposed on Ci is that

lim
t→∞

1

t
logCi (exp (φlt) , exp (φ1t) , ..., exp (φnt)) = f̃i (φl, φ1, ..., φn) (145)

for some function f̃i. A sufficient condition for that limit to exist is that

lim
t→∞

d

dt
Ci (exp (φlt) , exp (φ1t) , ..., exp (φnt)) (146)

exists. That is, it is sufficient that the gradients of the cost functions have limits, but even

that is not strictly necessary. The restriction of Ci to the CES family leads to the set of

functions fi that appear in theorem 1.
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Theorem 3. Under the assumptions of this section, and with z = θt,

lim
t→∞

(gdp (z)− λ (θ) t) t−1 = 0 (147)

where λ (θ) = φ0 and φ ∈ RN+1 is a function of θ that is implicitly defined by the system of

equations

φi = θi + αf̃i (φ) for i ∈ {0, 1, ..., N} (148)

This result shows that what ultimately determines the behavior of GDP for extreme

shocks is the limiting slope of the sector-level cost functions.

Proof. The price of good i is

pi = − log zi + αi logCi (exp (p)) (149)

Let

φi = − lim
t→∞

t−1pi (150)

we maintain for the moment that this limit exists and is finite and verify that later. Then

t−1pi = −θ + αit
−1 logCi (exp (p)) (151)

φi = −θ + αi lim
t→∞

t−1 logCi (exp (p)) (152)

= −θ + αifi (φ) (153)

where the second line takes the limit as t → ∞ and the third line uses the definition of fi

along with the continuity of Ci and the price function.

Note also that the price of the final good is

logGDP = − logP = f0 (φ) t+ o (t) (154)

Finally, to show that a solution to the system exists, define

ĝi (φ) = θi + αifi (φ) (155)

This has a unique solution if ĝ is a contraction. To see why that is true, we just check
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Blackwell’s sufficient conditions of monotonicity and discounting. Monotonicity holds simply

because the cost function itself is assumed to be monotone. Constant returns in the function

Ci also imply that f (φ+ a) = f (φ) + a. Since αi < 1, ĝi has the discounting property,

making it a contraction, so we can then apply the Banach fixed point theorem. �

D.4.1 The heterogeneous CES setup of Chodorow-Reich, Gabaix, and Koijen

(2022)

Chodorow-Reich et al. (2022) study an aggregator of the form

∑
i

φi
(Xi/Y )(σi−1)/σi − 1

(σi − 1) /σi
+ φ0 = 0 (156)

where the Xi are uses of inputs, The φi are parameters, and Y is output, which is an implicit

function of the inputs. They show that the unit cost function for this case is solved by∑
i

σi
σi − 1

(Pi/µ)1−σi + φ0 = 0 (157)

C = µ
∑
i

(Pi/µ)1−σi (158)

Now suppose the prices all have limits logPi → git as t → ∞. It is then the case that if

all σi < 1, C → (maxi gi) t, while if σi > 1, C → (min gi) t. That is, in this more general

case, the precise value of the elasticity of substitution for each good continues to play no

role, as long as all of the elasticities (within a given sector) are above or below 1. In the

case where elasticities are mixed within a sector in this model, the analysis, for general gi,

becomes much more difficult and does not yield a simple solution.

D.5 Fixed labor

Assume labor is normalized to 1 and the elasticity of substitution at the household level is

1. Then the production function, resource constraint, and FOCs are

Yi = exp (zi)

(∑
j

ai,jx
γi
i,j

)α/γi

(159)
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Yj = cj +
∑
i

xi,j (160)

pj = bjc
−1
j (161)

pj = αpi exp (zi) (yi/ exp (zi))
(α−γi)/α ai,jx

γi−1
i,j (162)

We assume productivity in each sector is

log zi = θit (163)

with t→∞. Define φ to be the solution to the recursion

φi = θi + αfi (φ) (164)

Proposition 9. We have the following limits,

lim
t→∞

log yj
t

= lim
t→∞

log cj
t

= lim
t→∞

− log pj
t

= φj (165)

Proof. The result can be proven by simply verifying that it satisfies the equilibrium conditions.

An additional result we need is the use of inputs, xi,j. The limit is

lim
t→∞

log xi,j
t

= φj∗(i) +
1

(1− γi)
[
φj − φj∗(i)

]
(166)

where

j∗ (i) =

{
arg minj∈S(i) φj if γi < 0

arg maxj∈S(i) φj if γi > 0
(167)

We need to verify that the above, along with the solution in the proposition, satisfies the

limits of the two FOCs, the resource constraint, and the production function.

We first take limits of the equilibrium conditions. For any variable gj, define

φg,j ≡ lim
t→∞

log gj
t

(168)

First, a small lemma:

φx,i,j ≤ φj (169)
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To see why, first suppose γi < 0. Then φj − φj∗(i) ≥ 0 and 1
(1−γi) < 1, from which the result

immediately follows. To see the result for γi > 1, note that

φx,i,j = φj∗(i) +
1

(1− γi)
(
φj − φj∗(i)

)
(170)

= φj +
γi

(1− γi)
(
φj − φj∗(i)

)
(171)

Since γi
1−γi > 0 and φj − φj∗(i) ≤ 0 in this case, the result again follows. It holds trivially for

γi = 0. Furthermore, note that

fi (φx,i,j) = φj∗(i) (172)

Then the limits of the three equilibrium conditions and the production function are

(equations (159) to (162), respectively)

φy,i = ζi + αifi (φx,i,j) (173)

φy,j = max
{
φc,j,max

i
φx,i,j

}
(174)

φp,j = −φc,j (175)

φp,j = φp,i + ζi +
αi − γi
αi

(φy,i − ζi) + (γi − 1)φx,i,j (176)

where the first equation uses equation (169). The first and second equations hold because

of (172). The third is trivial. The fourth holds by substituting in the various φ terms and

using the recursion defining φ. �
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