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ABSTRACT

We develop an optimal policy assignment rule that integrates two distinctive approaches 
commonly used in economics—targeting by observables and targeting through self-selection. Our 
method can be used with experimental or quasi-experimental data to identify who should be 
treated, be untreated, and self-select to achieve a policymaker’s objective. Applying this method 
to a randomized controlled trial on a residential energy rebate program, we find that targeting that 
optimally exploits both observable data and self-selection outperforms conventional targeting. 
We highlight that the Local Average Treatment Effect (LATE) framework (Imbens and Angrist, 
1994) can be used to investigate the mechanism in our approach. By estimating several key 
LATEs based on the random variation created by our experiment, we demonstrate how our 
method allows policymakers to identify whose self-selection would be valuable and harmful to 
social welfare.
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1 Introduction

Targeting has become a central question in economics and policy design. When policymakers face

budget constraints, identifying those who should be treated is critical to maximizing policy impacts. Ad-

vances in machine learning and econometric methods have led to a surge in research on targeting in many

policy domains, including job training programs (Kitagawa and Tetenov, 2018), social safety net programs

(Finkelstein and Notowidigdo, 2019; Deshpande and Li, 2019), energy efficiency programs (Burlig, Knittel,

Rapson, Reguant, and Wolfram, 2020), behavioral nudges for electricity conservation (Knittel and Stolper,

2021), and dynamic electricity pricing (Ito, Ida, and Takana, forthcoming).

Economists generally consider two distinctive approaches to the design of effective targeting. The first

approach is based on observable characteristics. In this approach, policymakers use individuals’ observable

data to explore optimal targeting (Kitagawa and Tetenov, 2018; Athey and Wager, 2021). The second

approach is based on self-selection. In this approach, policymakers consider individuals’ self-selection

as valuable information to target certain individual types (Heckman and Vytlacil, 2005; Heckman, 2010;

Alatas, Purnamasari, Wai-Poi, Banerjee, Olken, and Hanna, 2016; Ito, Ida, and Takana, forthcoming).

A priori, which approach is desirable for policymakers is unclear. For example, referring to the two

distinctive approaches above as “planner’s decisions" and “laissez-faire," Manski (2013) summarizes,

“The bottom line is that one should be skeptical of broad assertions that individuals are better

informed than planners and hence make better decisions. Of course, skepticism of such as-

sertions does not imply that planning is more effective than laissez-faire. Their relative merits

depend on the particulars of the choice problem."

—Charles F. Manski, Public Policy in an Uncertain World

A common view in the literature, reflected in this quote, is that the appropriate approach depends on the

context, and therefore, researchers and policymakers need to decide which to use on a case-by-case basis.

In this study, we develop an optimal policy assignment rule that systematically integrates these two

distinctive approaches commonly used in economics. Consider a treatment from which the social welfare

gains are heterogeneous across individuals and can be positive, negative, or zero, depending on who takes the

treatment. Our idea is that policymakers can leverage both of the observable and unobservable information

by identifying three types of individuals based on their observable characteristics: i) individuals who should
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be untreated, ii) those who should be treated, and iii) those who should choose by themselves whether to

receive the treatment. Once these individual types are identified, policymakers can design a targeting policy

that takes advantage of observed and unobserved heterogeneity in the treatment effect.

We begin by formulating this idea by characterizing a social planner’s optimal policy assignment prob-

lem following the statistical treatment choice literature (Manski, 2004). Thereafter, we highlight that the

Local Average Treatment Effect (LATE) framework (Imbens and Angrist, 1994) can be used to investigate

the mechanism in our approach. When individuals have an option to take a treatment, we can define two

individual types. Takers are individuals who would take the treatment and non-takers are those who would

not take the treatment. We demonstrate that the planner’s decision rule can be characterized by the LATEs

for takers and non-takers as well as the average treatment effect (ATE), all conditional on individuals’ ob-

servable characteristics.

We then show that the optimal policy assignment rule, LATEs for takers and non-takers and the ATE

can be identified and estimated by a randomized controlled trial (RCT) or a quasi-experiment with three

randomly-assigned groups: an untreated group, a treated group, and a self-selection group in which individ-

uals choose whether to take the treatment. To estimate the optimal policy assignment, we use the empirical

welfare maximization (EWM) method developed by Kitagawa and Tetenov (2018) with policy trees (Zhou,

Athey, and Wager, 2023). Further, we demonstrate that the conventional estimation strategy for the LATE

(Imbens and Angrist, 1994) can be applied to the three randomly-assigned groups to estimate the LATEs for

takers and non-takers.

The theoretical framework described above clarifies what variation has to be generated by an RCT or

quasi-experiment to estimate the optimal policy assignment. With this insight, we designed an RCT on a

residential electricity rebate program and implemented a field experiment in collaboration with the Japanese

Ministry of Environment. The policy goal of the rebate program is to incentivize energy conservation in

peak demand hours when the marginal cost of electricity tends to be substantially higher than the time-

invariant residential electricity price. In our context, the social welfare gain from this rebate program can be

heterogeneous across individuals and can be positive, negative, or zero given the existence of per-household

implementation cost. This implies that optimal targeting could improve the social welfare gain from this

program.

We randomly assigned households to an untreated group, a treated group, and a self-selection group

to generate data for our empirical analysis. Using the data from this RCT, we estimate the optimal pol-
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icy assignment, the ATE, and LATEs for takers and non-takers. We then use our framework to quantify

the program’s social welfare gain for each of the five policies: i) all consumers get untreated, ii) all con-

sumers get treated, iii) all consumers self-select, iv) optimal targeting without self-selection (selection-

absent targeting), and v) optimal targeting with self-selection (selection-driven targeting). Our findings

suggest that although the conventional targeting (selection-absent targeting) outperforms non-targeting poli-

cies, the selection-driven targeting substantially improves welfare relative to the selection-absent targeting.

The optimal assignment suggests that 24% of households should be untreated, 31% should be treated, and

45% should self-select. The selection-driven targeting would provide an additional 42% of social welfare

gain from the rebate program relative to the selection-absent targeting.

We then use the LATE framework described above to investigate the mechanism in our optimal policy

assignment. Given the random assignment in our field experiment, we are able to estimate the LATEs for

takers and non-takers conditional on observables. This implies that we can estimate these LATEs for each

of the three groups obtained by the optimal assignment rule. Consider households who would be assigned

to the self-selection group by the optimal assignment rule. For these households, we find that the LATE

for takers is positive and large, and the LATE for non-takers is negative. Hence, self-selection is useful for

the planner to sort customers in this group to get treated or untreated by their choice. In contrast, these

two LATEs for those who are not assigned to the self-selection group suggest that allowing self-selection

hurts social welfare because the planner can obtain higher social welfare gains by assigning them to either

compulsory treatment or compulsory un-treatment.

Related literature and our contributions—Our study is related to three strands of the literature. First,

many recent studies in economics have explored targeting based either on “observables" or “unobservables"

through self-selection. Along with the papers cited earlier in this introduction, recent studies on targeting

solely based on individuals’ observable characteristics include Johnson, Levine, and Toffel (forthcoming);

Murakami, Shimada, Ushifusa, and Ida (2022); Cagala, Glogowsky, Rincke, and Strittmatter (2021); Chris-

tensen, Francisco, Myers, Shao, and Souza (2021); Gerarden and Yang (2023) and studies on targeting based

on self-selection include Dynarski, Libassi, Michelmore, and Owen (2021); Lieber and Lockwood (2019);

Unrath (2021); Waldinger (2021). However, to the best of knowledge, this is the first study to build an algo-

rithm that systematically integrates these two distinctive targeting approaches to maximize a policy’s social

welfare gain.1

1 For example, Gerarden and Yang (2023) and other recent studies on residential electricity demand explore targeting based on
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Second, the medical statistics literature has studied hybrid sampling designs that combine randomization

and treatment choice by patients. See, e.g., Janevic, Janz, Dodge, Lin, Pan, Sinco, and Clark (2003), Long,

Little, and Lin (2008), and references therein. In the medical literature, the sampling process used in our

experiment is referred to as “a doubly randomized preference trial" (Rücker, 1989). An example of a clinical

trial that implements a doubly randomized preference design is the Woman Take Pride study analyzed in

Janevic, Janz, Dodge, Lin, Pan, Sinco, and Clark (2003). These studies focus on assessing whether letting

patients choose their own treatment can have a direct causal effect on their health status beyond the causal

effect of the treatment itself. See Knox, Yamamoto, Baum, and Berinsky (2019) for partial identification

analysis in such a context and an application to political science. Doubly randomized preference trials have

received less attention in economics. Bhattacharya (2013) is the only study that uses double randomization

between randomized control trials and planner’s allocation to assess the efficiency of the planner’s treatment

allocations. To our knowledge, no work has analyzed doubly randomized preference trial data to integrate

targeting by observable characteristics and targeting through self-selection.

Third, our econometric framework builds on the growing statistical treatment choice literature. Gener-

ally assuming discrete characteristics, earlier studies in this literature (Manski, 2004; Dehejia, 2005; Hirano

and Porter, 2009; Stoye, 2009, 2012; Chamberlain, 2011; Tetenov, 2012, among others) formulate estima-

tion of a treatment assignment rule as a statistical decision problem. The empirical welfare maximization

approach proposed by Kitagawa and Tetenov (2018) estimates a treatment assignment rule by maximizing

the in-sample empirical welfare criterion over a class of assignment rules. As shown in Online Appendix of

Kitagawa and Tetenov (2018) and Zhou, Athey, and Wager (2023), this approach can accommodate multi-

armed treatment assignment and a rich set of household characteristics, including continuous characteristics,

as in our empirical application. We employ a class of tree partitions considered in Athey and Wager (2021)

and Zhou, Athey, and Wager (2023) as our class of policy rules. Finally, building on the LATE framework

by Imbens and Angrist (1994), we demonstrate that the newly-defined estimators, the LATEs for takers and

non-takers, can be used to investigate the mechanism in the optimal policy assignment in the presence of

self-selection. These LATE estimands can be viewed as the complier’s average treatment effects under a

multi-valued discrete instrument, which indexes the three arms randomly assigned in the experiment.

the observable characteristics of customers without using self-selection. Our study differs from these studies because our objective
is to develop an algorithm that systematically integrates targeting based on self-selection and observables.
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2 Conceptual Framework

In this section, we present a theoretical framework of optimal policy assignment in the presence of self-

selection. We begin by formulating an optimal policy assignment problem in Section 2.1. In Section 2.2,

we present that the Local Average Treatment Effect (LATE) framework (Imbens and Angrist, 1994) can be

used to investigate the mechanism in our approach. In Section 2.3, we describe how to empirically estimate

the optimal policy assignment and LATEs using data from an RCT and the EWM method.

2.1 Optimal Policy Assignment in the Presence of Self-Selection

Consider a planner who wishes to introduce a policy intervention (program) to a population of interest.

Instead of the uniform assignment over the entire population, the planner is interested in targeted assignment

for heterogeneous individuals. A novel feature of our setting is that the planner can control not only who is

compulsorily exposed to the program but also who is given an option to opt-in to the program. Interpreting

an individual’s take-up of the program as their exposure to the treatment, the planner’s goal is therefore

to assign each individual in the population to one of the three arms: compulsorily treated (indexed as T ),

compulsorily untreated (indexed as U ), and self-selection (indexed as S). An individual assigned to T or U

is exposed to or excluded from the program with no opt-out or opt-in option, whereas an individual assigned

to S chooses whether to take it up by themselves. In our RCT, the treatment refers to participation in the

energy rebate program. Hence, individuals assigned to T and U are those who are compulsorily exposed to

and excluded from the rebate program, respectively. Individuals assigned to S are those who are given the

choice to decide whether to participate in the program on their own.

The planner’s goal is to optimize a social welfare criterion by assigning individuals to these three arms.

Following the statistical treatment choice literature (Manski, 2004), we specify the planner’s social welfare

criterion to be the sum of individuals’ welfare contributions. An individual’s welfare contribution is a known

function of the individual’s response to being assigned to arm T , U , or S, and the per-person cost of the

treatment. An individual’s welfare contribution may not correspond to their utility. Hence, if an individual

is assigned to S, their utility maximizing decision may not correspond to the choice that maximizes the

planner’s objective. For example, some individuals assigned to S participate in the energy rebate program

to obtain monetary benefits but save less electricity consumption than that needed to compensate for the

implementation cost of the program for the planner.
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Let YT , YU , and YS denote the potential welfare contributions that would be realized if an individual

were assigned to T , U , and S.

We assume that the planner observes a pre-treatment characteristic vector for each individual x 2 X ,

where X denotes the support of the characteristics. Depending on these observable characteristics, the

planner assigns each individual to one of the three arms. Let GT ✓ X denote a set of the pre-treatment

characteristics x such that any individual whose x belongs to GT is assigned to T . Similarly, let GU and

GS denote sets of the pre-treatment characteristics x such that the individuals with x 2 GU are assigned to

U and individuals with x 2 GS are assigned to S.

We call a partition G := (GT , GU , GS) an assignment policy. G describes how individuals are assigned

to arms according to their observable characteristics x. The realized welfare contribution after assignment

for an individual with characteristics x is either YT , YU , or YS depending on x 2 GT , x 2 GU , or x 2 GS .

Hence, their welfare contribution under the policy G can be written as

X

j2{T,U,S}

Yj · 1{x 2 Gj}. (1)

Viewing individual characteristics and their potential welfare contributions as random variables, the average

welfare contribution under assignment policy G can be written as

W(G) ⌘ E

2

4
X

j2{T,U,S}

Yj · 1{X 2 Gj}

3

5 , (2)

where the expectation is with respect to (YT , YU , YS , X).

We define W(G) as our social welfare function. The social welfare function depends on the assignment

policy G through the post-assignment distribution of individual welfare contributions, which can be manip-

ulated by changing the individuals assigned to the different arms. This form of social welfare is standard in

the statistical treatment choice literature. Yj is not restricted to any specific functional form. Therefore, the

planner can choose an appropriate social welfare function, including utilitarian and non-utilitarian welfare

functions.2

The planner’s objective is to find the optimal assignment policy G⇤ that maximizes the social welfare
2Appendix of Ida et al. (2022) shows how our method can be extended to non-utilitarian welfare functions with redistributional

goals.
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W(G) over a set of possible assignment policies. If the planner can implement any assignment policy, this

set of assignment policies corresponds to the set of measurable partitions of X . Accordingly, G⇤ can be

defined by

G⇤ 2 argmax
G2eG

W(G), (3)

where eG := {G = (GT , GU , GS) : G is a measurable partition of X}.

It is desirable that individuals with characteristics x be assigned to an arm that provides the largest

conditional mean welfare contribution among {E[Yj |x] : j 2 {T, U, S}}. In the absence of a self-selection

treatment arm, the planner’s assignment policy is to allocate them to either T or U . The optimal choice is

then determined by comparing E[YT |x] and E[YU |x]. In other words, an optimal assignment policy exploits

only heterogeneity in the average welfare contribution conditional on observable characteristics x, which

can be assessed by the planner prior to assignment. We use G† to denote this sub-optimal policy assignment

and call it the selection-absent targeting.

Once individuals are permitted to self-select treatment, social welfare can be improved beyond the level

attained by the selection-absent targeting. This is because an individual may possess private information,

which drives or helps predict their response to the treatment, and choose whether to receive treatment based

on it. Importantly, there can be significant heterogeneity in the usefulness of self-selection for the planner’s

objective. Individuals with some values of x choose by themselves the treatment that is optimal in terms

of the social welfare. In contrast, individuals with other values of x may choose treatment that does not

improve social welfare. Thus, an optimal assignment policy that identifies who should be assigned to S

along with T and U could further improve welfare. We use G⇤ to denote this optimal policy assignment and

call it the selection-driven targeting. In this case, the planner allocates individuals with x to either T , U , or

S by comparing E[YT |x], E[YU |x], and E[YS |x].3

2.2 Using the LATE Framework to Investigate the Mechanism

In this section, we present a simple model that clarifies how the optimal assignment policy G⇤ assigns

T , U , and S to individuals in accordance with individual observable characteristics x. We highlight that the
3This also implies that comparing the sub-optimal assignment policies (such as the assignment policy with T and U only)

against the optimal assignment policy allows us to estimate the welfare cost of eliminating an arm option or options.
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framework of the Local Average Treatment Effect (LATE) developed by Imbens and Angrist (1994) can be

used to uncover the mechanism in our approach.

Let DS 2 {0, 1} denote the individual’s take-up of treatment when assigned to S. The choice DS may

depend on both observable characteristics X and unobservable characteristics (i.e., private information).

We define the LATEs for takers and non-takers as follows, which will be useful statistics to characterize the

mechanism of optimal policy assignment.

Definition 2.1. (The LATEs for takers and non-takers) Let DS 2 {0, 1} denote an individual’s treat-

ment take-up when they self-select into treatment and (YT , YU ) denote the treated and untreated poten-

tial outcomes. We define the LATE for takers by E[YT � YU |DS = 1] and the LATE for non-takers by

E[YT � YU |DS = 0].4

In our RCT, the takers are individuals who voluntarily participate in the energy rebate program. The

non-takers, on the other hand, are those who choose not to participate in the program when assigned to S.

Additionally, we make the following assumption, which is not required for the validity of our method in

Section 2.1 but useful to investigate the mechanism.

Assumption 2.2. The following holds:

YS = YT · 1{DS = 1}+ YU · 1{DS = 0}.

The meaning of Assumption 2.2 is that an individual’s response to the treatment is the same irrespec-

tive of whether they self-select themselves or are assigned to it by the planner. That is, who chooses the

treatment, either the individuals themselves or the planner, does not have causal impact on the individuals’

outcomes, and this can be viewed as the exclusion restriction for instrumental variables, with an indicator for

assignment to the self-selection treatment corresponding to an instrumental variable. This analogy to instru-

mental variable exclusion, combined with the random assignment of the self-selection treatment, provides a

necessary testable implication for Assumption 2.2 as shown at the end of this section.

We use p1(x) = P (DS = 1|x) and p0(x) = P (DS = 0|x) to denote the probability of take-up
4An alternative way to define E[YT � YU |DS = 1] and E[YT � YU |DS = 0] is to use the average treatment effects on the

treated (ATT) and the average treatment effects on the untreated (ATU). E[YT �YU |DS = 1] is the ATT for individuals assigned to
group S and E[YT �YU |DS = 0] is the ATU for individuals assigned to group S. In our context, these terms could create confusion
because there is another ATT for those assigned to the compulsory treatment group (T ) and another ATU for those assigned to the
compulsory untreated group (U ). To avoid this confusion, we use the terms defined in definition 2.1.
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conditional on x. Under Assumption 2.2, E[Yj |x] can be decomposed by,

E[Yj |x] =

8
>><

>>:

p1(x) · E[YT |DS = 1, x] + p0(x) · E[YU |DS = 0, x] if j = S

p1(x) · E[Yj |DS = 1, x] + p0(x) · E[Yj |DS = 0, x] if j 2 {T, U}.
(4)

We can use equation (4) to investigate how the planner ranks the three assignments (T, U, S) for in-

dividuals with x. First, consider what condition makes the planner prefer S over U . Equation (4) im-

plies that E[YS � YU |x] = p1(x) · E[YT � YU |DS = 1, x]. Assuming p1(x) > 0, E[YS � YU |x] � 0

if only if E[YT � YU |DS = 1, x] � 0. That is, the LATE for takers has to be greater than or equal

to 0. Second, consider what condition makes the planner prefer S over T . Equation (4) implies that

E[YS � YT |x] = p0(x) · E[YU � YT |DS = 0, x]. Assuming p0(x) > 0, E[YS � YT |x] � 0 if only if

E[YT � YU |DS = 0, x]  0. That is, the LATE for non-takers has to be less than or equal to 0.

Finally, the condition that makes the planner prefer T over U is trivial such that E[YT � YU |x] � 0.

Combining the three conditions, we can characterize the optimal assignment policy G⇤ as defined in equation

(3) that has the form G⇤ = (G⇤
T , G

⇤
U , G

⇤
S) with

G⇤
T = {x 2 X : E[YT � YU |x] � 0 and E[YT � YU |DS = 0, x] > 0},

G⇤
U = {x 2 X : E[YT � YU |x] < 0 and E[YT � YU |DS = 1, x] < 0},

G⇤
S = {x 2 X : E[YT � YU |DS = 1, x] � 0 and E[YT � YU |DS = 0, x]  0}.

(5)

Equation (5) implies that the key statistics that characterize the optimal assignment mechanism are the ATE

(E[YT � YU |x]), the LATE for takers (E[YT � YU |DS = 1, x), and the LATE for non-takers (E[YT �

YU |DS = 0, x]), all conditional on observables.

2.3 Estimation

In this section, we describe how data from an RCT allows us to estimate the optimal policy assignment

(G⇤) presented in Section 2.1 and LATEs for takers and non-takers described in Section 2.2.

To estimate G⇤, we use the EWM method in Kitagawa and Tetenov (2018). Let the RCT data be a size n

random sample of (Yi, Zi, Xi), where Zi 2 {T, U, S} is individual i’s randomly-assigned treatment arm, Yi

is their observed outcome (welfare contribution), and Xi are their observable pre-treatment characteristics.
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We use {YT,i, YU,i, YS,i} to denote potential outcomes for individual i, the observed outcome Yi is subject

to Yi =
P

j2{T,U,S} Yj,i · 1{Zi = j}. We assume that {YT,i, YU,i, YS,i, Xi}i=1,...,n are independently and

identically distributed as {YT , YU , YS , X}.

Using the RCT data and a class G of policies G, the EWM method estimates an optimal policy G⇤ by

maximizing the empirical analogue of the social welfare function over G:

Ĝ⇤ 2 argmax
G2G

cW(G),

cW(G) ⌘ 1

n

nX

i=1

X

j2{T,U,S}

✓
Yi · 1{Zi = j}
P (Zi = j|Xi)

· 1{Xi 2 Gj}
◆
, (6)

where cW(G) is an empirical welfare function of G that produces an unbiased estimate of the population

social welfare W(G). Observations are weighted by the inverse of the propensity scores, P (Zi = j|Xi),

which are known from the RCT design.

The EWM approach is model-free: It does not require any assumptions or a functional form specification

for the potential outcome distributions. However, the class of policies G must be specified, considering any

feasibility constraints for assignment policies. If the class G is too rich, the EWM solution ĜEWM will

overfit the RCT data, and the social welfare attained by the estimated policy falls.

We use a class of decision trees (Breiman, Friedman, Olshen, and Stone, 2017) as G. The main reasons

for this choice are the ease of interpretation of the decision tree-based assignment policies and the availability

of partition search algorithms from the classification tree literature. To illustrate the interpretation of a

decision tree-based assignment policy, Figure 1 presents an example decision tree of depth 2 for a two-

dimensional X . By traversing a tree from its top node to a bottom node, we map from x to one of the tree

assignment options. This tree structure generates a partition of the characteristic space X as in Figures 1

(b). A decision tree of depth 2 partitions X into four subspaces, with individuals whose x belongs to each

subspace assigned to one of the three options. Generally, a decision tree of depth L partitions X into 2L

subspaces.
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Figure 1: Illustration of the Decision Tree

(a) Decision tree with depth-2

X1 � a1

X2 � a2

T

True

S

False

True

X1 � a3

U

True

S

False

False

(b) Partition of X by the decision tree

X1

X2

a1

a2

a3

GS GU

GT

GS

Notes: This figure illustrates the decision tree described in Section 2.3 by using an example case with two variables and depth-
2. Note that in our empirical analysis, we use more than two variables and depth deeper than 2, so this figure is only for
illustration. Policy assignment T , U , S corresponds to the treated, untreated, and selection arms.

A decision tree of depth L comprises two components: (i) a set of inequalities allocated to the nodes

in the top L � 1 layers and (ii) a set of options allocated to the terminal nodes. Thus searching an optimal

decision tree of depth L corresponds to searching for an optimal combination of inequalities in the nodes in

the top L� 1 layers and an assignment option for each terminal node. For instance, in the example decision

tree of depth 2 in Figure 1, searching for the optimal tree is equivalent to optimally choosing an X for each

node in the first and second layers (i.e., triplet of indices (j, k, l) 2 {1, . . . ,K} of the elements of X where

K denotes the dimension of X), threshold values (a1, a2, a3) for these same nodes, and an assignment

option (opt1, . . . , opt4) 2 {T, U, S}4 for each of the bottom nodes. Learning an optimal decision tree of

depth L by the EWM method corresponds to finding a tree partition that maximizes the empirical welfare

function W(Ĝ) over a class G of decision trees of depth L. The complexity of the policy class G can be

controlled by fixing the depth of possible decision trees (see, e.g., Zhou, Athey, and Wager, 2023). In our

empirical application in Section 4, we estimate equations (6).

We now demonstrate that the LATE for takers (E[YT�YU |Ds = 1, x]) and non-takers (E[YT�YU |DS =

0, x]) can be also identified and estimated by the RCT data under Assumption 2.2. Supposing that the

experimental assignment Z is randomly assigned and that Assumption 2.2 holds, our identification strategy

is the same as that of Imbens and Angrist (1994).5 We denote the observed take-up by D 2 {0, 1}, which
5In general, the identification of LATE requires monotonicity assumption. In our application, this assumption is automatically

satisfied by the nature of groups. In fact, if we define DT 2 {0, 1} and DU 2 {0, 1} as the individual’s potential take-up of
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obeys D = 1{Z = T} + 1{Z = S,DS = 1}. Furthermore, we suppress the dependence on x for ease of

notation, although all expectations are taken conditional on x.

First, we discuss the identification and estimation of the LATE for takers. As illustrated in Section 2.2,

the ITT between S and U (i.e., E[YS�YU ]) equals to p1·E[YT�YU |DS = 1] where p1 = P (DS = 1). Then,

the experimental variation of S and U allows us to identify the ITT and p1 by E[Y |Z = S]�E[Y |Z = U ]

and P (D = 1|Z = S), respectively. Consequently, the LATE for takers can be identified by

E [YT � YU |DS = 1] =
E [Y |Z = S]� E [Y |Z = U ]

P (D = 1|Z = S)
. (7)

This identification result is simply the application of the conventional LATE framework to experimental

groups S and U . Thus, we can estimate this LATE by running the instrumental variable (IV) estimation

using data from two groups (Z 2 {S,U}) with the randomly-assigned Z as an instrument for take-up D.

Similarly, the ITT between T and S (i.e., E[YT � YS ]) can be written as p0 · E[YT � YU |DS = 0] with

p0 = P (DS = 0). Then, the experimental variation of T and S allows us to identify the ITT and p0 by

E[Y |Z = T ]� E[Y |Z = S] and P (D = 0|Z = S), respectively. As a result, the LATE for non-takers can

be identified by

E [YT � YU |DS = 0] =
E [Y |Z = T ]� E [Y |Z = S]

P (D = 0|Z = S)
. (8)

As compared to the case of LATE for takers, this result can be regarded as the application of conventional

LATE framework to experimental groups T and S. In our empirical application in Section 5.1, we estimate

equations (7) and (8).

Identification of the LATE for takers and non-takers crucially relies on the exclusion restriction of As-

sumption 2.2, while validity of Assumption 2.2 can be arguable depending on the context. Similarly to

the testable implications of the instrument validity assumption for LATE models shown by Balke and Pearl

(1997), Imbens and Rubin (1997), and Heckman and Vytlacil (2005), non-negativity of the potential out-

come distributions for takers and non-takers identified by Assumption 2.2 and the random assignment of Z

treatment when assigned to T and U , it always holds that 1 ⌘ DT � DS � DU ⌘ 0 since non-compliance is not allowed under
T and U .
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requires the following inequalities on the distribution of observables:

f(y|Z = T ) � f(y|D = 1, Z = S) · Pr(D = 1|Z = S), (9)

f(y|Z = U) � f(y|D = 0, Z = S) · Pr(D = 0|Z = S)

for all y 2 R, where f(y|·) denotes the probability density function of the observed outcome Y conditional

on the corresponding event. The instrument validity test available in the literature such as the test of Kita-

gawa (2015) can be applied to empirically assess these inequalities and it can serve as a specification test for

Assumption 2.2. We perform this test with our data in Section 5.1.

3 Field Experiment and Data

The framework in Section 2 highlighted that data from an RCT can be used to estimate the optimal policy

assignment in the presence of self-selection. In this section, we describe how we designed and implemented

such an RCT in the context of a residential energy rebate program in Japan. Section 3.1 provides an overview

of the field experiment. Section 3.2 presents summary statistics and balance test.6

3.1 Field Experiment

We conducted our field experiment in the summer of 2020 in collaboration with the Ministry of the

Environment, Government of Japan in the Kansai (around Osaka) and Chubu (around Nagoya) regions of

Japan.7 To include a broad set of households, we invited customers in these regions both by letter and email

with a participation reward with 2000 JPY (⇡ 20 USD, given 1 ¢ ⇡ 1 JPY in the summer of 2020). A

total of 4446 customers pre-registered for the experiment. Non-residential customers, those who canceled

their electricity contracts in the middle of the experiment, and those who have incomplete high-frequency

electricity usage data were excluded. This left us with 3870 residential customers. That is, our experiment

was an RCT for households who agreed to participate in the experiment, which is common in the literature
6In Appendix of Ida et al. (2022), we show empirical evidence on heterogeneity in the treatment effects on peak-hour electricity

usage, which suggests that optimal targeting in Section 4 could substantially improve the policy outcome.
7We obtained an Institutional Review Board approval from the ethics committee of the Inter-Graduate School Program for

Sustainable Development and Survivable Societies, Kyoto University. Furthermore, We registered the experiment in the AEA RCT
Registry (Ida, Ishihara, Kido, and Sasaki, 2020).
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of residential electricity demand (Wolak, 2006, 2011; Ito, Ida, and Takana, forthcoming).8

We randomly assigned the 3870 households to one of the following three groups: untreated group (U ),

treated group (T ), and self-selection group (S).9

Untreated group (U ): 1577 customers did not participate in the rebate program.

Treated group (T ): 1486 customers participated in the rebate program.

Selection group (S): 807 customers were asked to choose whether they intended to participate in the

rebate program.

The rebate program in our experiment is called the “peak-time rebate" (PTR) program (Wolak, 2011).

The fundamental inefficiency in electricity markets in many countries is that residential electricity prices do

not fully reflect the time-varying marginal cost of electricity. In peak hours, the time-invariant residential

price tends to be too low relative to time-variant marginal cost. This creates a text-book example of short-

run deadweight loss. The goal of peak-time rebate programs is to lower this deadweight loss by setting the

rebate incentive close to the marginal cost.

The PTR is likely to be inferior to simply setting the hourly prices equal to c for two reasons (Wolak,

2011). First, although the PTR provides customers a marginal incentive to reduce their electricity usage, it

does not “penalize" the customers if they increase their usage. Second, if a policymaker does not carefully

set the “baseline usage", which we discuss below, customers may have an incentive to manipulate their

baseline usage to obtain a rebate. Therefore, economists tend to consider dynamic pricing as a better option

than the PTR (Wolak, 2011; Ito, Ida, and Takana, forthcoming).

However, it is often difficult or impossible for policymakers to implement dynamic pricing for broad

population because of political feasibility. The PTR is politically favorable in many countries because

participating customers do not lose money, although they have a marginal incentive to conserve. This is

why the Japanese government, who was our partner in conducting the experiment, intended to study the

PTR rather than dynamic pricing in this research project, and implemented a similar policy in reality in the

summer of 2022.10

8Because our experiment was an RCT for households who agreed to participate in the experiment, the external validity of the
sample is an important question. To investigate this point, we collected data from a random sample of 2070 customers who resided
in the experimental locations but did not participate in the experiment. We find that the experimental sample has slightly higher
sample averages in their monthly electricity usage, number of people at home on weekdays, self-efficacy in energy conservation,
and household income. We report details in Appendix of Ida et al. (2022).

9The random assignment process was designed such that U : T : S= 2: 2: 1. A relatively large number of households were
assigned to the U and T groups in consideration that the data for these groups was going to be used for other studies.

10In June 2022, the Japanese government announced the launch of a electricity rebate program called “Setsuden Point Program"
to address the expected shortage of electricity supply in the summer of 2022. Similar to the rebate program studied in our field
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The objective of our PTR was to reduce residential electricity consumption in the system peak hours (be-

tween 1 pm and 5 pm) during the week of August 24 to 30, 2020. To prevent customers from manipulating

their baseline usage, we did not tell them how the baseline was calculated until August. The baseline usage

is each customer’s average electricity usage during the peak hours from July 1 to 31. During the treatment

week (from August 24 to 30), customers who enrolled in the rebate program received a rebate that was equal

to the energy conservation during the peak hours relative to the baseline (kWh) times 100 JPY per 1kWh.

Customers who enrolled in the program were notified about the information about the treatment week, peak

hours, and reward calculation procedure in the beginning of August.

Customers in the selection group (S) were asked to send an email or a prepaid post card during the two-

week period from July 31 to August 11 if they intended to participate in the rebate program. The take-up

rate was 37.17%, which was rather higher than those for Critical Peak Pricing (CPP) in previous studies.11

As mentioned above, the PTR never make consumers pay more, unlike the CPP treatment, which may have

contributed to the higher take-up rate. At the same time, although the PTR would not make any participating

household worse off financially, the take-up rate was lower than 100%, which could imply that there were

non-financial reasons for a relatively low take-up, including inertia to participate in a new program.

3.2 Data and Summary Statistics

Our primary data is household-level electricity consumption over a 30-minute interval. We collected this

data in the pre-experimental period (from July 1 to 31, 2020) and in the experimental period (from August

24 to 30, 2020). Moreover, we conducted a survey before the experiment to collect a variety of household

characteristics.

Table 1 presents summary statistics and balance check. Columns 1, 2, and 3 present the sample averages

by the randomly-assigned group (Z = {U, T, S}) with the standard deviations in brackets. Columns 4 to

6 report the difference in sample means with the standard error in parentheses. The first three variables are

electricity usage (watt hour per 30-minute) in peak hours (from 1 pm to 5 pm), pre-peak hours (from 10 am

to 1 pm), and post-peak hours (from 5 pm to 8 pm). The rest of the variables are from the survey. “Number

of people at home" is the number of household members usually at home on weekdays. The survey also

experiment, the Setsuden Point rebate program provided a rebate for electricity customers if they reduced their electricity usage.
Likewise, California used similar electricity rebate programs in the California electricity crisis in 2000-2002 and subsequent years
(Reiss and White, 2008; Ito, 2015).

11The take-up rate for the CPP was 20% in Fowlie, Wolfram, Baylis, Spurlock, Todd-Blick, and Cappers (2021) and 16% (without
a take-up incentive) in Ito, Ida, and Takana (forthcoming).
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asked the self-efficacy in energy conservation using the 5-point Likert scale, in which higher scores imply

higher self-efficacy. The household income is reported in 10000 JPY. “All electric" equals one if a customer

has an all-electric service with no natural gas service. The survey also asked about the numbers of room air

conditioners, electric fans, household members, and the total living area.

Table 1: Summary Statistics and Balance Check

Sample mean by group Difference in sample means
[standard deviation] (standard error)

Untreated Treated Selection U vs. T U vs. S T vs. S
(Z = U ) (Z = T ) (Z = S)

Peak hour usage (Wh) 192 190 189 2.57 2.87 0.29
[141] [138] [134] (5.03) (5.91) (5.93)

Pre-peak hour usage (Wh) 179 176 180 3.79 �1.11 �4.89
[137] [135] [142] (4.92) (6.07) (6.11)

Post-peak hour usage (Wh) 299 297 293 1.94 6.02 4.08
[175] [171] [174] (6.26) (7.54) (7.56)

Number of people at home 2.48 2.44 2.47 0.04 0.01 �0.03
[1.24] [1.24] [1.27] (0.04) (0.05) (0.06)

Self-efficacy in energy 3.45 3.46 3.49 �0.01 �0.04 �0.02
conservation (1-5 scale) [0.85] [0.85] [0.83] (0.03) (0.04) (0.04)

Household income 645 613 637 31.69 8.45 �23.23
(JPY 10,000) [399] [362] [391] (13.75) (17.06) (16.67)

All electric 0.32 0.31 0.30 0.01 0.02 0.00
[0.47] [0.46] [0.46] (0.02) (0.02) (0.02)

Number of air conditioners 3.14 3.11 3.08 0.03 0.05 0.02
[1.69] [1.71] [1.67] (0.06) (0.07) (0.07)

Number of fans 2.80 2.73 2.77 0.07 0.04 �0.04
[1.63] [1.63] [1.56] (0.06) (0.07) (0.07)

Number of household members 2.76 2.73 2.75 0.04 0.01 �0.03
[1.27] [1.27] [1.28] (0.05) (0.06) (0.06)

Total living area (m2) 107.29 105.51 103.42 1.78 3.87 2.09
[48.57] [49.61] [46.14] (1.78) (2.03) (2.07)

Notes: Columns 1-3 present the sample mean and standard deviations in blackets for the pre-experiment consumption data and
demographic variables by randomly-assigned group: untreated (Z = U ), treated (Z = T ), and selection (Z = S). Columns 4-6
show the difference in the sample means with the standard error of the difference in parentheses. The number of households are
1,577 (U ), 1,486 (T ), and 807 (S). The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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4 Optimal Assignment Policy and Welfare Gains

In this section, we apply the framework we developed in Section 2 to our experimental data. In our

framework, the planner’s objective is to find the optimal policy assignment rule G⇤ = (G⇤
T , G

⇤
U , G

⇤
S) that

maximizes the expected welfare gain W(G) in equation (2). We begin by defining W(G) in our empirical

context in Section 4.1, describe exogenous parameters and estimation details in Section 4.2, and report the

estimation results in Section 4.3.

4.1 Construction of the Social Welfare Criterion

We use p and c to denote the price and marginal cost of electricity. In peak hours, the time-invariant

residential price p tends to be too low relative to c. The goal of peak-time rebate programs is to reduce

welfare loss from this economic inefficiency by setting the rebate incentive equal to c.

Consider a household that takes the rebate program. We use QU and QT to denote the potential untreated

and treated outcomes of electricity consumption. We assume a locally-linear demand curve for electricity

usage. Then, the short-run social welfare gain from this program can be written by 1
2(p � c)(QT � QU ).

Further, we consider that the reduction in consumption creates an additional long-run social welfare gain as it

saves the cost of power plant investments. We denote this long-run gain by �(QT �QU ), where � is the price

per kW in the capacity market. Finally, the participation to the rebate program incurs an implementation

cost per customer by a.

Then, for each j 2 {T, U, S}, the social welfare gain from the rebate program can be written by,

Yj := b · (Qj �QU )� a · 1{Dj = 1}, (10)

where b = 1
2(p � c) + �, Qj is the potential outcome of electricity usage for j 2 {T, U, S}, and Dj is the

consumer’s potential take-up of the program for j 2 {T, U, S}. Equation (10) implies that Yj = 0 if the

consumer is untreated (j = U ).

As presented in Section 2, the planner’s objective is determining the optimal policy assignment rule

G⇤ = (G⇤
T , G

⇤
U , G

⇤
S) that maximizes W(G) ⌘ E

hP
j2{T,U,S} Yj · 1{X 2 Gj}

i
. By inserting equation

(10) to this objective function, �b · YU becomes a constant and does not depend on the policy assignment

G. Therefore, to find G⇤, we can maximize W(G) by replacing Yj with eYj := b · Qj � a · 1{Di = 1}.
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As described in Section 2.3, we use the EWM to estimate the optimal policy by maximizing the following

objective function over a class of policies G: 1n
Pn

i=1

P
j2{T,U,S}

Yi·1{Zi=j}
P (Zi=j|Xi)

·1{Xi 2 Gj} , where i indicates

each household, n is the sample size, Yi = b ·Qi � a · 1{Di = 1}, Qi is the observed electricity usage for

household i, Di = 1 if household i is treated, and Zi 2 {T, U, S} is the randomly-assigned group in our

experiment.

4.2 Estimation Details

Equation (10) includes four exogenous parameters: p, c, a, and �. We use data from the Japanese

electricity market during our experimental period to set the values for these parameters. p is the unit price

of electricity. We set to p = 25 JPY/kWh, approximately the regulated price of electricity in Japan, which

is independent of the time of a day.12 c is the marginal cost of production for electricity. We specify

c = 125 JPY/kWh, so that the difference between p and c is equal to the rebate per kWh, which is 100

JPY. The wholesale price of electricity sometimes soars during peak hours such as summer afternoons or

winter evenings, reflecting supply constraints. In the past, the wholesale price has occasionally exceeded

100 JPY/kWh in summer afternoons.13

Parameter a represents the administrative cost of implementing our energy saving program. This cost

comprises several items, including the installation cost of the Home Energy Management System (HEMS)

required to participate. In 2016, the Japanese government estimated the cost of implementing a demand

reduction program, including the installation cost of HEMS, to be 291.1 JPY per household per season (Ida

and Ushifusa, 2017).14 We use this as the value of the administrative cost.

Parameter � represents the long-term benefits of a unit reduction in energy consumption. We consider

the effect of a unit reduction on the capacity market, where future supply capacity is traded between the

power generation and retail sectors. In Japan, the capacity market was established in 2020, with the first
12In Japan, until April 1 2016 household electricity was supplied by local power companies and retail prices were regulated.

Since then, entry into the retail electricity industry has been fully liberalized, allowing all households to freely choose their price
menu. However, as a transitional measure, the regulated price for households is being maintained for the time being, and is set at
approximately 25 JPY/kWh regardless of the time of day.

13The wholesale electricity market, where the power generation sector and the retail sector trade electricity, is operated by the
Japan Electric Power Exchange (JEPX). Most trading takes place in the “day-ahead market” where both sectors trade electricity on
the day before the actual demand period. Trading results are disclosed, and we confirm that the price exceeded 100 JPY/kWh on
July 25, 2018. Moreover, the price has exceeded even 125 JPY/kWh. For example, the price reached 250 JPY/kWh on January 15,
2021.

14We do not include the installation cost for a smart meter in the administrative cost. Since the Great East Japan Earthquake of
March 11, 2011 and the accident at the Fukushima Daiichi Nuclear Power Plant, the Japanese government has stipulated that smart
meters should be installed in all homes by the end of the decade, so this cost is “sunk” in that it will be paid regardless of whether
a demand reduction program is implemented.

18



auction held at that time. In that auction, the Japanese government provided a reference price 9425 JPY/kW

to bidders, which we use as the value for �.

To estimate the optimal policy G⇤, we need to solve the optimization problem with the objective function

in Section 4.1. To do so, we specify the policy class to be the class of decision trees of depth 6. We select

five variables among candidates to be used in constructing the decision trees. The first two variables are

constructed by each household’s hourly electricity usage data in the pre-experimental period: the average

usage in peak hours relative to pre-peak hours and the average usage in peak hours relative to post-peak

hours. The other three variables are from pre-experimental survey data: household income, the number of

household members usually at home on weekdays, and a measure of the households’ self-efficacy in energy

conservation. These variables are selected based on their ability to predict electricity consumption and the

conditional average treatment effects. Specifically, we select these variables by running two off-the-shelf

machine learning algorithms, lasso and random forest, with all the available covariates and assessing the

importance of each variable. When using lasso to assess importance, we regress Qi on all the available

covariates with a l1-penalization term. We order variables in terms of importance by increasing the penal-

ization parameter step-wise and checking which variables remain selected for large penalization parameter

values. When using random forest, we estimate the conditional average treatment effects using the causal

forest algorithm of (Wager and Athey, 2018) with all available covariates included. We use the frequency

with which a variable is used to split nodes as a measure of its importance. These selected variables are

those that appeared on the lists of important variables produced by both methods.

We use the decision tree at depth 6, and maximize the empirical welfare criterion by applying the ex-

haustive search algorithm of Zhou, Athey, and Wager (2023).15 An important technical detail of the EWM

estimation is that the optimized empirical welfare value from the estimation will be an upwardly biased

estimate of the true welfare attained by the estimated policy. This is known as the winner’s bias (see, e.g.,

Andrews, Kitagawa, and McCloskey, 2019), and is caused by using the same data twice: once to learn the

policy and once to infer the policy’s welfare.16

15For computational reasons, it is difficult to obtain a globally optimal tree of depth 6 that exactly maximizes the empirical
welfare. To alleviate this difficulty, we employ a heuristic two-step procedure to approximate the globally optimal depth-6 tree.
Specifically, we first optimize the parent tree of depth 3 that maximizes the empirical welfare in the entire sample; the resulting
parent tree divides the entire sample into 8 subsamples. Then, for each subsample, we search the child depth-3 tree that maximizes
the empirical welfare within the subsample. We finally graft the child depth-3 trees on the parent tree to construct the depth-6
tree. In the machine learning literature, this grafted-tree approach is common when constructing tree classifiers for computational
feasibility (see, e.g., Chapter 2 of Breiman et al. (2017) and Section 9.2 in Hastie et al. (2009)).

16The estimation and inference procedures proposed by Andrews, Kitagawa, and McCloskey (2019) cannot be directly applied
to decision tree based policies because the number of candidate policies is infinite.
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To mitigate the winner’s bias in our point estimates and confidence intervals, we create an artificial test

sample by fitting random forests to run regressions of the outcome onto all the covariates and generating data

with permuted regression residuals. We then estimate the optimal welfare by the welfare value in the test

sample evaluated at the EWM optimal policy obtained in the original sample. One-sided 1 � ↵ confidence

intervals are constructed by applying the standard normal approximation to t-ratio centered at the point

estimate and standard errors estimated with the artificial test sample.

Specifically, we construct test data {Y test
i , Zi, Xi}ni=1 by generating (Qtest

i , Dtest
i ) in the following proce-

dure and plugging them into (10). For each j 2 {T, U, S}, let Ij := {i : Zi = j} be the set of experimental

units assigned to arm j.

1. For i 2 IT and i 2 IU , set Dtest
i = 1 and Dtest

i = 0, respectively. For i 2 IS , we estimate P (DS,i =

1|Xi) to obtain P̂ (DS,i = 1|Xi) and sample {Dtest
i }i2IS according to Dtest

i ⇠ P̂ (DS,i = 1|Xi).

2. For each j 2 {T, U}, using subsample Ij ,

(a) Estimate the conditional expectation function of electricity usage given the set of covariates Xi,

E[Qj,i|Xi], and calculate residuals ✏̂j,i = Qi � Ê[Qj,i|Xi].

(b) Estimate E[✏2j,i|Xi] by regressing ✏̂2i on Xi, and calculate �̂i =
q
Ê[✏2j,i|Xi] for i 2 Ij . Sam-

ple {✏̃i}i2Ij iid from the empirical distribution of the standardized residuals {✏̂i/�̂i}i2Ij , and

calculate ✏test
i = ✏̃i · �̂i for i 2 Ij .

(c) Construct Qtest
i = Ê[Qj,i|Xi] + ✏test

i .

3. For subsample IS , we additionally include take-up status Di in the regressions of QS,i and ✏̂2S,i,

and let �̂i(Di) =
q
Ê[✏2S,i|Xi, Di]. We generate ✏test

i by drawing ✏̃i from the standardized resid-

ual distribution (conditional on take-up status) and setting ✏test
i = ✏̃i · �̂i(Dtest

i ). We then construct

Qtest
i = Ê[QS,i|Xi, Dtest

i ] + ✏test
i .

In this procedure, we estimate the conditional expectation functions using random forests (Friedberg, Tib-

shirani, Athey, and Wager, 2021; Wager and Athey, 2018).

With these test data, we estimate a point estimator for the welfare level by

\W(G⇤) ⌘ 1

n

nX

i=1

X

j2{T,U,S}

✓
Y test
i · 1{Zi = j}
P (Zi = j|Xi)

· 1{Xi 2 Ĝ⇤
j}
◆
, (11)
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where Ĝ⇤ is an EWM policy defined in (6) constructed upon the original sample. We form one-sided

confidence intervals for W(G⇤) with coverage 1 � ↵ by
h
\W(G⇤)� z1�↵ · �̂W/n1/2,1

i
, where z1�↵ is

the (1� ↵)-th quantile of the standard normal distribution and �̂W is a standard deviation estimator for the

summands in (11).

Our approach mitigates winner’s bias than the naive approach of reporting the maximized empirical

welfare (cW(Ĝ⇤)) because in our approach the random forest estimation in Step 1 optimizes the regression

fitness criterion that is different from the empirical welfare criterion used by the policy tree to obtain Ĝ⇤.

This disagreement of the objective functions can significantly reduce the statistical dependence between the

EWM policy Ĝ⇤ and the test sample to obtain \W(G⇤).17

As an alternative to our approach, sample splitting offers a simple way to construct an unbiased estimator

and asymptotically valid confidence intervals for the welfare attained by a policy estimated by the training

sample. However, sample splitting comes at a cost of precision loss in the estimation of both optimal policies

and welfare. In addition, since our interest is to infer the welfare at a population optimal policy, an estimate

by sample splitting underestimates the population maximal welfare. Our approach, in contrast, can utilize

the whole sample to estimate an optimal policy.

4.3 Results of the Optimal Policy Assignment

We estimate the optimal policy assignment that maximizes social welfare based on the algorithm we

described in equation (6) in Section 2. We compare five alternative policies: 1) assigning everyone to U ,

2) assigning everyone to T , 3) assigning everyone to S, 4) the selection-absent targeting G†, and 5) the

selection-driven targeting G⇤.

In Table 2, we present the welfare performances of three benchmark policies without targeting (100%

U , 100% T , and 100% S) followed by the suboptimal and optimal targeting policies (G† and G⇤). For each

policy, we estimate the ITT of the welfare gain in JPY per household per season.18

We find that the 100% T policy induces a welfare gain of 120.7 per consumer, but the effect is not

statistically significant. The 100% S policy results in a welfare gain by 180.6 per consumer and is marginally

significant at a p-value of 0.107. These results suggest that without targeting, we cannot reject that the

policy’s net welfare gain can be zero.
17Based on extensive Monte Carlo simulations, we show that our procedure mitigates the bias relative to the naive approach. The

results of our Monte Carlo studies are available in Appendix of Ida et al. (2022).
18The ITT is equivalent to the ATE when a policy does not allow for self-selection.
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Table 2: Welfare Gains from Each Policy

Policy Welfare Gain Share of customers in each arm

GU GT GS

100% untreated 0 100.0% 0.0% 0.0%
(—)

100% treated 120.7 0.0% 100.0% 0.0%
(98.8)

100% self-selection 180.6 0.0% 0.0% 100.0%
(112.1)

Selection-absent targeting (G†) 387.8 47.6% 52.4% 0.0%
(55.7)

Selection-driven targeting (G⇤) 551.4 23.9% 31.4% 44.7%
(68.2)

Notes: This table summarizes characteristics of three benchmark policies (100% untreated, 100% treated, and 100% self-selection),
selection-absent targeting (G†), and selection-driven targeting (G⇤). The column titled “Welfare Gain” shows the estimated ITT of
welfare gain in JPY per household per season, with its standard error in parentheses. The monetary unit is given as 1 ¢ = 1 JPY in
the summer of 2020.

Our policy intervention induces both cost (from the implementation cost) and benefit (from the energy

conservation), and therefore, the net welfare gain from a consumer can be positive, negative, or zero. This

implies that we could increase the policy performance by targeting policies, G† and G⇤. The results in

Table 2 suggest that the selection-absent targeting (G†) attains a welfare gain by 387.8 per consumer. Our

algorithm identifies that 52.4% of consumers should be treated, and 47.6% of them should be untreated.

Furthermore, we find that the selection-driven targeting (G⇤) results in a welfare gain of 551.4 per

consumer. With this policy, our algorithm identifies that 31.4% of consumers should be treated, 23.9% of

them should be untreated, and 44.7% of them should self-select.

In Table 3, we statistically test the null hypothesis that a policy’s welfare gain is larger than another pol-

icy’s welfare gain. The 100% S generates a larger welfare gain than the 100% T policy, but the difference is

not statistically significant (p-value is 0.29). Both of our targeting policies (G† and G⇤) generate statistically

larger welfare gains than non-targeting policies. Finally, we find that the selection-driven targeting (G⇤)

results in a 42% (= 551.4/387.8 � 1) larger welfare gain than the selection-absent targeting (G†), and the

difference is statistically significant at a p-value of 0.004.
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Table 3: Comparisons of Alternative Policies

Difference in Welfare Gains p-value

100% self-selection vs. 100% treated 59.9 0.293
(110.0)

Selection-absent targeting (G†) vs. 100% treated 267.1 0.004
(99.7)

Selection-absent targeting (G†) vs. 100% self-selection 207.2 0.038
(116.9)

Selection-driven targeting (G⇤) vs. 100% treated 430.7 0.000
(106.9)

Selection-driven targeting (G⇤) vs. 100% self-selection 370.8 0.001
(113.9)

Selection-driven targeting (G⇤) vs. Selection-absent targeting (G†) 163.6 0.004
(61.4)

Notes: This table compares welfare gains from each policy. For each row, the column “Difference in Welfare Gains” shows
the estimated welfare gain of the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in JPY
per household per season, with its standard error in parenthesis. The column “p-value” gives the p-value for the null hypothesis:
H0 : WL � WR. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.

Table 4 presents the covariates distribution by the optimal policy assignment group G⇤ = (G⇤
U , G

⇤
T , G

⇤
S).

Columns 1, 2, and 3 show the mean and standard deviation by group, and Columns 4, 5, and 6 show the

difference between the means and its standard errors. For example, the means of household income indicate

that higher-income households are more likely to be assigned to U rather than T or S. Similarly, the means

of self-efficacy in energy conservation suggest that households with lower efficacy in energy conservation

are more likely to be assigned to U .
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Table 4: Covariate Distribution by Optimally Assigned Group G⇤

Sample mean by group Difference in sample means
[standard deviation] (standard error)

G⇤
U G⇤

T G⇤
S G⇤

U vs. G⇤
T G⇤

U vs. G⇤
S G⇤

T vs. G⇤
S

Peak hour usage (Wh) 203 180 191 23.03 11.98 �11.05
[146] [136] [135] (6.18) (5.79) (5.08)

Pre-peak hour usage (Wh) 198 167 175 30.56 23.08 �7.48
[150] [133] [132] (6.23) (5.86) (4.97)

Post-peak hour usage (Wh) 329 255 310 73.22 18.82 �54.40
[176] [176] [164] (7.67) (7.00) (6.41)

Number of people at home 2.87 2.27 2.38 0.60 0.48 �0.11
[1.34] [1.32] [1.08] (0.06) (0.05) (0.05)

Self-efficacy in energy 3.30 3.49 3.53 �0.19 �0.23 �0.04
conservation (1-5 scale) [1.02] [0.82] [0.75] (0.04) (0.04) (0.03)

Household income 787 597 572 190.12 215.11 25.00
(JPY 10,000) [433] [397] [318] (18.23) (16.15) (13.73)

All electric 0.36 0.25 0.33 0.11 0.03 �0.08
[0.48] [0.43] [0.47] (0.02) (0.02) (0.02)

Number of air conditioners 3.41 2.82 3.16 0.58 0.24 �0.34
[1.72] [1.66] [1.67] (0.07) (0.07) (0.06)

Number of fans 2.99 2.58 2.78 0.41 0.20 �0.21
[1.75] [1.57] [1.55] (0.07) (0.07) (0.06)

Number of household members 3.17 2.54 2.67 0.63 0.50 �0.13
[1.31] [1.36] [1.14] (0.06) (0.05) (0.05)

Total living area (m2) 115.41 97.16 106.73 18.25 8.68 �9.57
[47.77] [49.13] [47.37] (2.11) (1.94) (1.81)

Notes: This table shows the covariate distribution by group based on the optimal policy assignment G⇤. The last column shows
the difference in the sample means and its standard errors in parentheses. The monetary unit is given as 1 ¢ = 1 JPY in the summer
of 2020.

5 Mechanism Behind the Optimal Policy Assignment

In this section, we investigate the mechanism in the optimal policy assignment G⇤. To do so, we analyze

the LATEs for takers and non-takers in Section 5.1 and the counterfactual ITTs in Section 5.2.
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5.1 Using the LATE Framework to Uncover the Mechanism

As presented in Section 2.2, an advantage of our research design is that we can identify both of the LATE

for takers (E[YT � YU |DS = 1]) and the LATE for non-takers (E[YT � YU |DS = 0]). In this section, we

demonstrate that these two LATEs can be used to examine the mechanism in the selection-driven targeting.

In our empirical context, we define takers and non-takers in the following way with the notations used

in Section 2.1. If a consumer is assigned to the self-selection group (S), the consumer has a binary choice

between getting treated or untreated. We use DS = {0, 1} to denote this potential outcome. That is, DS = 1

(takers) means that the consumer would take the treatment if she is assigned to S, and DS = 0 (non-takers)

means that she would not take the treatment if she is assigned to S.

As shown in equation (7) in Section 2.2, we can use the conventional LATE framework by Imbens and

Angrist (1994) to demonstrate that E [YT � YU |DS = 1] = E[Y |Z=S]�E[Y |Z=U ]
P (D=1|Z=S) , where Z = {S,U} is

randomly assigned in our RCT, Z = S is the selection group, Z = U is the untreated group, and D is the

observed treatment take-up for those who were assigned to Z = S. The numerator of the right-hand side

of the equation is the difference in the ITTs between groups S and U , and the denominator is the take-up

rate in groups S. Therefore, the sample analogue of this equation can be estimated from our experimental

data.19 A unique feature of our research design is that we have a randomly-assigned compulsory treatment

group (Z = T ) along with groups Z = {S,U}. As presented in equation (7) in Section 2.2, we can use two

groups Z = {S, T} to estimate the LATE for non-takers by E [YT � YU |DS = 0] = E[Y |Z=T ]�E[Y |Z=S]
P (D=0|Z=S) .

Note that the LATEs for takers and non-takers can be estimated conditional on X because the random-

ization of Z = (U, T, S) holds given X . This implies that we can estimate these LATEs by customer types

based on X . Now consider the optimal assignment rule computed by the selection-driven targeting policy,

G⇤ = (G⇤
U , G

⇤
T , G

⇤
S). This policy divides customers into three groups based on their observables: those who

should be untreated (X 2 G⇤
U ), those who should be treated (X 2 G⇤

T ), and those who should self-select

(X 2 G⇤
S).

In Figure 2, we estimate equations (7) and (8) for these three groups, G⇤
U , G⇤

T , and G⇤
S . For those who

are assigned to the selection group (G⇤
S), the LATE for takers is 2033 and the LATE for non-takers is �818.

This implies that self-selection is a useful tool for this group to let customers sort into the treatment choice
19Equation (7) demonstrates that the LATE for takers is equivalent to the LATE for compliers when we consider two groups with

a binary instrument Z = {U, S}. This also implies that we can use the conventional IV estimation to estimate equation (7) under
the regular assumptions for identifying the LATE. In particular, a key assumption is the exclusion restriction presented in equation
(2.2).
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that is in line with the planner’s objective.

By contrast, if we allow self-selection for customers in G⇤
U , it would decrease welfare because the LATE

for takers in this group is �2012. Similarly, if we allow self-selection in G⇤
T , it would lower welfare because

self-selection would make non-takers out of the treatment even though their LATE is positive and large at

1124. Therefore, the LATE for takers and non-takers presented in Figure 2 highlights how our algorithm

chooses who should get treated, untreated, and choose to get treated by themselves.

To empirically assess Assumption 2.2, we perform the test developed by Kitagawa (2015) for the null

hypothesis of the inequalities (9). We find that the p-value of this test is 1.000, which provides supporting

evidence for Assumption 2.2 with our data.20

Figure 2: Mechanism Behind the Algorithm: The LATEs for Takers and Non-Takers
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Notes: This figure shows the estimation results in Section 5.1. For each of the three groups in the optimal assignment (x 2
G

⇤
U , x 2 G

⇤
T , x 2 G

⇤
S), we estimate the LATE for takers (E[YT � YU |DS = 1]) and the LATE for non-takers (E[YT �

YU |DS = 0]) to investigate the mechanism in the optimal assignment. We show the point estimates with the 95% confidence
intervals. For example, for those who are assigned to the selection group (G⇤

S), the LATE for takers is 2033, and the LATE
for non-takers is �818. This implies that self-selection is a useful tool for this group to let customers sort into the treatment
choice that is in line with the planner’s objective. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.

20We find that the p-value is not sensitive to various choices of tuning parameter values in the method.
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5.2 Counterfactual Intention-to-Treat Analysis

Another way to investigate the mechanism in our algorithm is to estimate the counterfactual ITTs sepa-

rately for each of the three groups G⇤
U , G⇤

T , and G⇤
S . For instance, consider customers in G⇤

U , who should

be untreated according to the optimal assignment rule. Note that within this group, our experiment provided

a random variation of Z = (U, T, S). Therefore, we can use this variation to estimate three ITTs as if they

were assigned to U , T , and S. Similarly, we can estimate these three ITTs for customers in G⇤
T and those in

G⇤
S .

Table 5 presents these counterfactual ITTs for each of G⇤
U , G⇤

T , and G⇤
S . The results for customers in G⇤

U

imply that their ITTs would be negative (�905.4 and �900.6) if they were assigned to T and S, respectively.

That is, the welfare gains are maximized if they are assigned to U . Similarly, the results for customers in

G⇤
T and G⇤

S suggest that their welfare gains are maximized when they are assigned to T and S, respectively.

Table 5: Mechanism Behind the Algorithm: Counterfactual Analysis of the ITT

Consumer types based on the optimal assignment rule G⇤

G⇤
U G⇤

T G⇤
S

Counterfactual ITT (if assigned to U ) 0 0 0
(——) (——) (——)

Counterfactual ITT (if assigned to T ) �905.4 662.5 257.8
(157.8) (131.4) (117.5)

Counterfactual ITT (if assigned to S) �900.6 �18.8 767.0
(184.2) (153.9) (120.3)

Notes: This figure shows the estimation results in Section 5.2. For each of the three groups in the optimal assignment (x 2 G
⇤
U , x 2

G
⇤
T , x 2 G

⇤
S), we estimate three counterfactual ITTs: ITT if assigned to U , ITT if assigned to T , and ITT if assigned to S, with the

standard errors in parentheses. The table indicates that the policy assignment computed by G
⇤ coincides with the arm that attains

the highest welfare gain for every subgroup of {x 2 G
⇤
j}, j 2 {U, T, S}. The monetary unit is given as 1 ¢= 1 JPY in the summer

of 2020.

Hence, the policy assignment computed by G⇤ coincides with the arm that attains the highest welfare

gain for every subgroup of {X 2 G⇤
j}, j 2 {U, T, S}. In other words, the optimal policy G⇤ captures

households’ heterogeneous responses by using both observed and unobserved characteristics to maximize

social welfare. While this result is true by construction because our algorithm finds the optimal assignment

by maximizing the ITT of the welfare gain, Table 5 is useful to visualize the mechanism by observing that

we indeed see the optimal ITTs in the diagonal line.
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6 Conclusion

We develop an optimal policy assignment rule that systematically integrates two distinctive approaches

commonly used in the literature—targeting by “observables” and targeting through “self-selection.” Our

method identifies those who should be treated, should be untreated, and should self-select into a treatment to

maximize a policy’s social welfare gain. To generate data required to estimate optimal policy assignment, we

designed a randomized controlled trial for a residential energy rebate program. We show that targeting that

leverages information on both observables and self-selection outperforms conventional targeting. Finally,

we highlight that the LATE framework (Imbens and Angrist, 1994) can be used to uncover the mechanism

in our approach. We introduce new estimators, the LATEs for takers and non-takers, to demonstrate how

our method identifies whose self-selection is useful and harmful for the planner to maximize social welfare.
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A Online Appendix of NBER Working Paper #30469

A.1 The External Validity of the Experimental Sample

We randomly sampled 2070 customers from the target population who did not participate in this ex-

periment, and conducted a similar survey to the one for the experimental sample. The purpose of this was

to investigate the external validity of our experimental sample by comparing the mean for each variable

between the control group from our experimental sample and this random sample. Columns 1 and 2 of

Table A.1 present summary statistics for the untreated group and the random sample. Column 3 presents

differences in means, with the standard errors of these differences in parentheses. We observe larger means

for four variables in the untreated group than in the random sample, and the differences are statistically

significant. Our experimental sample has larger pre-experiment electricity usage per month, a larger number

of people at home on weekdays, higher self-efficacy in energy conservation, and higher household income.

This implies that our sample includes a larger number of customers who are willing and able to reduce their

electricity consumption, which should be taken into consideration when discussing the generalizability of

this study.

A.2 Heterogeneity in the Program’s Impact on Peak-Hour Electricity Usage

The rebate program aimed at incentivizing energy conservation in peak hours. A key variable in our

social welfare function is, therefore, electricity usage in peak hours. This section provides a simple analysis

on heterogeneity in the rebate program’s impact on peak-hour electricity usage.

Consider estimating the intention-to-treat (ITT) of the randomly-assigned groups Z = {T, S} relative

to Z = U by the OLS with an estimating equation,

yit = �TTit + �SSit + �i + ✓t + ✏it, (1)

where yit is the natural log of electricity usage for household i in a 30-minute interval t. We include data

from the pre-experimental period and experimental period.1 A dummy variable Tit equals one if household

i is in group T and t is in the treatment period. A dummy variable Sit equals one if household i is in group S

and t is in the treatment period. We include household fixed effects �i and time fixed effects ✓t for each 30-

minute interval to control for time-specific shocks such as weather. Given that Z = {U, T, S} is randomly
1Because of randomization, the pre-experimental data is not necessary for obtaining the consistent estimator. The primary

benefit of including the pre-experimental data is that the inclusion of household fixed effects can substantially increase the precision
of the estimates because residential electricity usage tends to form a significant part of household-specific time-invariant variation.
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assigned, �T and �S provides the ITT of Z = {T, S} relative to Z = U . Because there is no self-selection

in group T , �T is also the average treatment effect (ATE) of T relative to U . We cluster standard errors at

the household level.

In Table A.2, we report the estimation results of equation (1). We begin by demonstrating the ITT for the

entire sample in Column 1. The compulsory treatment (T ) resulted in a reduction in peak-hour electricity

usage by 0.097 log points (9.2%). The self-selection treatment (S) induced a reduction by 0.052 log points

(5.1%). The p-value of the difference in these two ITTs is 0.088.2

Along with these overall program impacts, an important question for our analysis is whether there is

substantial heterogeneity in the effects. If different household types respond to T and S differently, the

optimal targeting policy could enhance the welfare gain from the policy. We investigate this question in the

remaining columns of Table A.2.3 Each pair of columns splits the sample into two groups: those with a

below median value of a particular variable and those with an above median value.

We find evidence of rich heterogeneity in the program’s impact. In columns 2 and 3, for instance, we

split customers by peak-hour electricity usage relative to pre-peak hour usage, based on data in the pre-

experimental period. For households with lower values of this variable, we find that �̂T = �0.108 and

�̂S = �0.022, and the p-value for the difference is 0.013. In contrast, for households with higher values of

this variable, �̂T = �0.079 and �̂S = �0.073, and the p-value for the difference is 0.88. That is, in terms

of the ITT for peak-hour electricity usage, T provides a larger reduction than S for a subgroup, but this is

not the case for other groups. We find similar heterogeneity when we split the sample based on the number

of people at home, the self-efficacy in energy conservation, and household income.

This heterogeneity in the program’s impact on peak-hour electricity usage implies that optimal targeting

is likely to enhance the welfare gain from the policy. However, although the simple analysis in Table A.2 is

useful, there are two caveats in this analysis. First, these ITTs are not equivalent to the social welfare gains,

and therefore, do not necessarily provide full information to rank T and S. For example, these ITTs are

related to but do not directly measure consumer surplus or social surplus. Furthermore, the cost of the policy

(i.e., the implementation cost per participating household) is not included. Second, the true heterogeneity

can be more complex as covariates may have nonlinear and interaction effects on the program’s impact. For

this reason, we conduct more comprehensive analysis based on a machine-learning method (the decision

tree).
2For the self-selection group, we can use the ITT and take-up rate to obtain the local average treatment effect for takers (LATE),

which is -0.14. This LATE is larger (in absolute value) than the ATE obtained by the T group, suggesting the possibility of selection
on welfare gains similar to the findings in Ito, Ida, and Takana (forthcoming).

3This table presents results on the covariates selected for estimating the optimal policy.
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A.3 Social Welfare Function with a Redistribution Goal

This section describes the derivation of each household’s potential welfare contribution. First, we focus

on the change in each household’s utility resulting from the introduction of the rebate program. Under the

assumption that the utility function of each household is quasi-linear and the electricity demand function is

linear, assigning a household to arm j 2 {T, U, S} changes its utility as follows

CSj =
c� p

2
· (Yj � YU ) +Rj ,

where Rj = (c � p) ·max{Ybase � Yj , 0} · 1{Dj = 1}. The first term represents the change in consumer

surplus due to an increase in the price of electricity from p to c, while the second term represents the rebate

received by reducing electricity consumption below the baseline consumption Ybase.

Then, given the Pareto weights w for a household, it is natural to define the weighted potential welfare

contribution by

Wj = w · CSj +�PSj � a�Rj + � · (Yj � YU ).

The welfare contribution is the sum of five terms. w ·CSj is the consumer surplus weighted with the Pareto

weight. �PSj is change of producer surplus, and hence we have �PSj = (p�c)(Yj�YU ). The constant a

denotes the cost taken to implement rebate program. Note that this cost does not include the rebate payment,

which is instead reflected in �Rj . Finally, the term � · (Yj � YU ) is the long-run gain. Using the concrete

expression of CSj , we can rewrite the welfare contribution as follows

Wj =

✓
(2� w)(p� c)

2
+ �

◆
· (Yj � YU )� (1� w) ·Rj � a,

which is equation (2). Further, when w = 1, the welfare contribution boils down to

Wj =

✓
p� c

2
+ �

◆
(Yj � YU )� a.

A.4 Welfare Maximization with Redistribution

In the main text, we presented the results based on the utilitarian welfare function. However, our method

is not necessarily restricted to a conventional utilitarian framework. Rather, one can apply our method to

any welfare function most appropriate for a policy goal. In this section, we shed light on this point by

considering a policy goal that balances the equity-efficiency trade-off.

Table A.3 presents the redistribution implications of the optimal utilitarian policy. The efficiency gain
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(551.4 in the table) is the ITT of the welfare gain of the optimal policy (the selection-driven targeting) based

on the utilitarian welfare function. As presented in the main text, this targeting policy (Ĝ⇤) maximizes the

utilitarian welfare gain compared to other policy options.

However, Table A.3 suggests that this policy may create a concern for equity. We compare the average

rebate that would be distributed to consumers across the household income distribution. We find that the

optimal targeting policy would distribute more rebates to higher income households. That is, although this

targeting maximizes the efficiency gain from the policy, it may not be appealing to policymakers who weigh

on redistribution implications.

To address this equity concern, we consider a social welfare function that balances the equity-efficiency

trade-off by using a framework developed by Saez (2002) and used by Allcott, Lockwood, and Taubinsky

(2019) and Lockwood (2020). Consider Pareto weights for a household: w = h
�⌫ where h is household

income and ⌫ is a scalar parameter that represents a policymaker’s preference for redistribution. With this

specification, a higher ⌫ implies a stronger preference for redistribution, ⌫ = 1 corresponds to the Rawlsian

criterion, and ⌫ = 0 corresponds to utilitarianism. When ⌫ = 1, it approximately corresponds to the weight

that would arise under logarithmic utility from income. We modify our utilitarian social welfare function by

using this weight for each consumer’s surplus from the policy intervention. In Appendix A.3, we show that

the social welfare function with this Pareto weight can be written by:

Wj = b̃ · (Yj � YU )� (1� w)Rj � a · 1{Dj = 1}, (2)

for j 2 {T, U, S}, where b̃ = 2�w
2 (p � c) + �, w = h

�⌫
/H is the normalized weight, and H is the

sum of h�⌫ over all households. Rj is the potential amount of rebate for arm j and it is defined by Rj =

(c� p) ·max{Ybase�Yj , 0} · 1{Dj = 1}, where Ybase denotes the baseline consumption of rebate payment

for the household. When ⌫ = 0, w is equal to 1 for all households, and hence, the equation (2) becomes the

utilitarian welfare function.4

In Table A.3, we present the results with ⌫ = 1 and ⌫ = 2 below the result for the utilitarian welfare

function, which is equivalent to the case with ⌫ = 0. We find that the welfare function with ⌫ = 2 is able

to roughly equalize the average rebate distributed to households across the income distribution. However,

as we expect, the efficiency gain (i.e., the welfare gain evaluated based on the utilitarian welfare function) is

compromised as we increase the weight on the preference for redistribution.
4The potential amount of rebate Rj does not appear in the utilitarian weight because it is just a lump-sum transfer between

consumers and producers. However, once we allow differential weight for each consumer’s surplus, Rj is not cancelled out in the
welfare function.
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These results indicate that policymakers can choose the welfare function that most appropriately bal-

ances the equity-efficiency trade-off and apply our method to such welfare functions. We also present in

Table A.4 that the selection-driven targeting maximizes the welfare function with all values of ⌫ that are

considered in our analysis.

A.5 Monte Carlo Simulations: Compare the Artificial Data Approach and Other Approaches

Sample splitting offers a simple way to construct unbiased estimator and asymptotically valid confidence

intervals for welfare attained by a policy estimated by the training sample. However, sample splitting comes

at a cost of precision loss in the estimation of both optimal policies and welfare. In addition, if our interest

is to infer the welfare at a population optimal policy, an estimate by sample splitting underestimates the

population maximal welfare. Our approach in the paper (the artificial data approach), in contrast, can utilize

the whole sample for estimating an optimal policy. At the same time, we expect that it mitigates winner’s

bias than the naive approach of reporting the in-sample maximized empirical welfare. This is because in our

approach we estimate the data generating process (from which we generate test samples) by optimizing the

mean squared error criterion for predicting Y , which is quite different from the empirical welfare criterion

that the policy tree is maximizing. This disagreement of the objective functions can significantly reduce the

statistical dependence between the EWM policy and the test sample used to perform point-estimation and

inference for the maximal welfare. We do not have an analytical claim but for this reason, it is expected to

perform better than the naive approach in terms of winner’s bias.

To assess this point, we perform Monte Carlo simulations to examine the statistical performance of our

approach relative to sample splitting and the naive approach. Our specifications of data generating processes

mimic the setting of our empirical analysis. We consider three treatment arms A 2 {0, 1, 2}, which are

randomly assigned according to P (A = 0) = P (A = 1) = 2/5 and P (A = 2) = 1/5. Covariate vector X

has 10 independent variables (X1, X2, · · · , X10), among which the first two follow the uniform distribution

on [0, 1], and the other eight are Bernoulli random variables with parameter 1/2. The observed outcome Y

is generated according to Y = µA(X) + ✏ with ✏ ⇠ N(0,�2), where µA(X) is the conditional expectation

function E[Y |A,X]. To assess the robustness of this analysis, we report results with three different data

generating processes (DGP). Our specifications resemble the Monte Carlo specifications in Zhou, Athey,

and Wager (2023); let f1(x) = � (x1�1)2

0.42 � (x2�1)2

0.32 + 1, f2(x) = � x2
1

0.62 � x2
2

0.42 + 1, µ0(x) = 0, and

DGP 1 µ1(x) = 2 · 1{f1(x) � 0}� 1, and µ2(x) = 2 · 1{f2(x) � 0}� 1

DGP 2 µ1(x) = 0.2f1(x) and µ2(x) = 0.2f2(x)
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DGP 3 µ1(x) = 0.03f1(x) and µ2(x) = 0.09f2(x)

The variance �2 is chosen so that it matches the ratio of the variance of regression fit to the residual variance

in our empirical data. In DGP 1, the conditional mean functions are piece-wise constants with discontinuities

at the margin of CATE(x) = µ1(x)� µ0(x) = 0. In contrast, DGPs 2 and 3 have continuous CATE(x).

DGP 3 has a thicker margin around CATE(x) = 0 than DGP 2, i.e., DGP 3 corresponds to a harder problem

than DGP 2 in terms of classifying positive vs negative CATEs. We chose the multiplying constants in DGP

3 to replicate the distribution of the absolute value of the estimated conditional welfare gains in our empirical

data.

For each DGP, we draw 500 samples of the size of 3,870. In each sample, we estimate the optimal

2-arm (selection-absent targeting) and 3-arm trees (selection-driven targeting) of depth 6 using the two-step

procedure (see footnote 15 in the manuscript). Then, we construct the point estimates and 95% one-sided

confidence intervals (CIs) for the welfare levels and the welfare gain of the 3-arm relative to the 2-arm trees.

We compare three different ways to construct point estimates and CIs. The first is the naive method that treats

the optimized empirical welfare contrast as an estimator for the population welfare gain and constructs CI

by assuming the asymptotic normality of the point estimate. The second is the artificial test data approach

implemented in our manuscript (see Section 4.2 of the manuscript for implementation details). The third is

based on sample splitting in which we randomly split the full sample into training and test samples and use

the training one to estimate an optimal tree and the test one to infer the welfare gain. We label each method

as Naive, AT, and SS, respectively.

For each of these approaches, we assess the biases and standard errors of the point estimators and

the cove rages of one-sided confidence intervals for the welfare levels and differences at the population

optimal policies. In particular, for the main conclusion of our paper, it is of interest the coverage of CIs for

the welfare difference between the selection-driven targeting policy (3-arm tree) and the selection-absent

targeting policy (2-arm tree).

Table A.5 shows the performances of Naive, AT, and SS. We have three main findings. First, the naive

method performs quite poorly; its point estimates are heavily upward-biased, and the coverage of CI is

nearly zero due to winner’s curse bias. Second, the AT performs much better than Naive, and the coverage

probability does not deviate much from 95%, supporting our discussion given above. The SS has a larger

downward bias than AT for the optimal welfare since what SS unbiasedly estimates is the welfare at a policy

estimated in the training sample, which is lower than the population optimal welfare. In addition, due to a

smaller size of the test sample, SS suffers from the precision losses compared with the other methods.
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A.6 Appendix Tables

Table A.1: The external validity of the experimental sample

Experimental sample Random sample Difference
in the untreated group of population between sample

and population

Monthly electricity usage in July (kWh) 356 304 51.86
[205] [177] (6.34)

Number of people at home 2.48 2.31 0.17
[1.24] [1.20] (0.04)

Self-efficacy in energy conservation 3.45 3.32 0.13
(1-5 Likert scale) [0.85] [0.97] (0.03)

Household income (JPY10,000) 645 581 63.83
[399] [384] (13.06)

Number of households 1,577 2,070

Notes: We randomly sampled 2070 customers from the target population who did not participate in this experiment,
and conducted a similar survey to the one for the experimental sample. The purpose of this survey was to investigate
the external validity of our experimental sample by comparing the mean for each variable between the control group
from our experimental sample and this random sample. Columns 1 and 2 show summary statistics for the untreated
group and the random sample. Column 3 presents differences in means, with the standard errors of these differences
in parentheses. We observe larger means for four variables in the untreated group than in the random sample, and the
differences are statistically significant. Our experimental sample has larger pre-experiment electricity usage per month,
a larger number of people at home on weekdays, higher self-efficacy in energy conservation, and higher household
income. This implies that our sample includes a larger number of customers who are willing and able to reduce their
electricity consumption, which should be taken into consideration when discussing this study’s generalizability. The
monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Table A.2: Intention-to-Treat Estimates

Peak hour usage Peak hour usage
� Pre-peak hour usage � Post-peak hour usage

(in pre-experiment) (in pre-experiment)

All Low High Low High

Treated group (Z = T ) -0.097 -0.108 -0.079 -0.089 -0.094
(0.021) (0.028) (0.031) (0.030) (0.028)

Selection group (Z = S) -0.052 -0.022 -0.073 -0.070 -0.023
(0.027) (0.034) (0.041) (0.037) (0.037)

Number of customers 3,870 1,935 1,935 1,937 1,933
Number of observations 1,176,480 588,240 588,240 589,152 587,328
p-value (T = S) 0.088 0.013 0.880 0.595 0.047
Take-up rate in group S 37.2% 36.9% 37.4% 39.9% 34.7%

Number of people at home Self-efficacy Household income

Low High Low High Low High

Treated group (Z = T ) -0.096 -0.098 -0.134 -0.057 -0.071 -0.125
(0.027) (0.034) (0.028) (0.031) (0.028) (0.031)

Selection group (Z = S) -0.022 -0.094 -0.036 -0.072 -0.036 -0.060
(0.034) (0.042) (0.035) (0.040) (0.038) (0.037)

Number of customers 2,245 1,625 1,967 1,903 2,036 1,834
Number of observations 682,480 494,000 597,968 578,512 618,944 557,536
p-value (T = S) 0.020 0.934 0.004 0.715 0.336 0.094
Take-up rate in group S 37.6% 36.6% 33.8% 40.6% 34.8% 39.7%

Notes: This table shows the estimation results for equation (1) using the full-sample (the first column of the upper
panel) or sub-samples (the remaining columns). The dependent variable is the log of household-level electricity
consumption over a 30-minute interval. We include household fixed effects and time fixed effects for each 30-minute
interval. The standard errors are clustered at the household level to adjust for serial correlation. To investigate the
heterogeneity of the treatment effects, we focused on the five variables selected for estimating the optimal policy in
Section 4.2 and divided the sample into five sets of two sub-groups. For the five different variables, the first sub-
group includes households who are below the median of this variable and the second includes those who are above the
median. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Table A.3: Incorporating Equity-Efficiency Trade-off

Efficiency gain Average rebate by the quartiles of household income

[0%,25%] (25%,50%] (50%,75%] (75%,100%]

Utilitarian (⌫ = 0) 551.4 79.1 88.7 144.7 140.1
(68.2) (11.6) (12.4) (18.1) (20.7)

With a redistribution goal (⌫ = 1) 446.4 87.7 120.1 141.7 117.0
(70.5) (15.4) (15.9) (17.7) (20.6)

With a redistribution goal (⌫ = 2) 388.4 113.8 106.8 116.5 106.1
(70.6) (16.8) (15.3) (16.6) (20.2)

Notes: The first column “Efficiency gain” shows the welfare gain from the policy measured by the utilitarian welfare function.
Other columns present the average rebate amount in each of the quartile of the income distribution. The utilitarian policy maximizes
the efficiency gain but its rebate distributions are regressive. In Section A.4, we consider a welfare function with a redistribution
goal with a Pareto parameter ⌫. The policies with ⌫ = 1 and 2 reduce regressivity at the cost of sacrificing the efficiency gain. The
monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.

Table A.4: Comparisons of Selection-absent and Selection-driven Targeting in Welfare Function with Re-
distributional Goal

Difference in Welfare Gains p-value

G
⇤ vs. G† (with ⌫ = 1) 145.1 0.012

(64.4)

G
⇤ vs. G† (with ⌫ = 2) 114.8 0.039

(65.3)

Notes: This table compares welfare gains with G
⇤ (selection-driven targeting) and those with G

† (selection-absent targeting)
with a redistributional goal. The column “Difference in Welfare Gains” shows the estimated welfare gain of the selection-driven
targeting relative to selection-absent targeting in terms of welfare function weighted Pareto weight with parameter ⌫ 2 {1, 2}, with
the standard errors in parentheses. For each row, the column “Difference in Welfare Gains” shows the estimated welfare gain of
the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in JPY per household per season, with its
standard error in parenthesis. The column “p-value” gives the p-value for the null hypothesis: H0 : WL � WR. The monetary unit
is given as 1 ¢ = 1 JPY in the summer of 2020.
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Table A.5: Comparison of the Three Different Ways to Construct Point Estimates and Confidence Intervals

2-arm tree 3-arm tree 3-arm tree vs. 2-arm tree

Method Bias Std. Err. Coverage Bias Std. Err. Coverage Bias Std. Err. Coverage

DGP 1
Naive 0.127 0.034 0.018 0.198 0.041 0.000 0.071 0.033 0.268
AT -0.054 0.032 0.988 -0.123 0.038 1.000 -0.069 0.030 1.000
SS -0.105 0.049 1.000 -0.192 0.058 1.000 -0.087 0.050 0.996

DGP 2
Naive 0.180 0.035 0.000 0.338 0.041 0.000 0.158 0.035 0.000
AT -0.031 0.034 0.953 -0.055 0.039 0.968 -0.023 0.033 0.965
SS -0.077 0.051 1.000 -0.106 0.058 1.000 -0.028 0.053 0.975

DGP 3
Naive 0.324 0.035 0.000 0.462 0.041 0.000 0.138 0.038 0.006
AT -0.015 0.033 0.936 -0.025 0.038 0.939 -0.011 0.036 0.943
SS -0.050 0.050 0.996 -0.081 0.058 1.000 -0.031 0.057 0.982

Notes: Naive, AT, and SS refer to the naive method, the method based on artificial test data, and the method based on sample splitting,
respectively. The nominal coverage is 95%.
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A.7 Appendix Figures

Figure A.1: Decision tree of depth 2

Xj � a1

Xk � a2

opt1

True

opt2

False

True

Xl � a3

opt3

True

opt4

False

False

Notes: (j, k, l) 2 {1, . . . ,K}3, (a1, a2, a3) 2 R3, and (opt1, . . . , opt4) 2 {T, U, S}4. Searching for the optimal decision
tree of depth 2 is equivalent to finding the best combination of indices (j, k, l) 2 {1, . . . ,K}3 of X and threshold values
(a1, a2, a3) 2 R3 in the top 2 layers, and options (opt1, . . . , opt4) 2 {T, U, S}4 in the bottom layer.
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Figure A.2: Optimal Assignment Ĝ⇤ (Panel A: From Depth 1 to 3)
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Notes: This figure presents the depth 1 to 3 of the optimal assignment Ĝ⇤. Each household answers yes-no questions from its top,
and is given one number from 8 to 15. Households given a number less than or equal to 11 go to Panel B below. Other households go
to Panel C below. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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Figure A.2: Optimal Assignment Ĝ⇤ (Panel B: From Depth 4 to 6, Left Side)
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Notes: This figure presents the left side of depth 4 to 6 of the optimal assignment Ĝ⇤. Each household given a number at most
11 in Panel A refers to tree with the same node id. Then, following the yes-no questions from its top, each household assigned
to one of U , T , and S.
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Figure A.2: Optimal Assignment Ĝ⇤ (Panel C: From Depth 4 to 6, Right Side)
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Notes: This figure presents the right side of depth 4 to 6 of the optimal assignment Ĝ⇤. Each household given a number at least
12 in Panel A refers to tree with the same node id. Then, following the yes-no questions from its top, each household assigned
to one of U , T , and S.
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