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1 Introduction

Environmental degradation and climate change pose growing risks to humans.1 The social costs of

pollution and climate change depend crucially on the extent to which humans can adapt to extreme

environmental conditions. While long-term migration could be an effective strategy to adapt to

a changing environment (Banzhaf and Walsh, 2008; Deschênes and Moretti, 2009; Kahn, 2010;

Freeman et al., 2019; Desmet et al., 2021), it entails significant costs especially for residents in

developing countries with severe market frictions and institutional constraints. In contrast, short-

term intercity travel may offer a more practical and affordable adaptation strategy to reduce the

negative effects of local environmental conditions. Indeed, “haze-avoidance tourism” and “smog

refugees” have become important trends in intercity travel in China with the advent of cheap and

fast transportation modes (Arlt, 2017; Sharkov, 2016; Chen et al., 2021).

This study provides to our knowledge the first analysis of how improved transportation infras-

tructure facilitates behavioral changes in response to adverse environmental conditions. Our anal-

ysis uses a unique data set of daily travel flows between all city-pairs in China, constructed based

on credit and debit card transactions from the world’s largest inter-bank payment network (Union-

Pay). The estimation takes advantage of the unprecedented and staggered expansion of high-speed

railways (HSR) in China shown in Figure A1. Since 2008, China has built by far the largest HSR

network in the world, reaching nearly 38,000 km by 2020 and more than twice as long as the HSR

network of all other countries combined. In the meantime, with rapid economic growth and heavy

reliance on fossil fuels, air pollution has become one of the most pressing challenges in large ur-

ban centers in China (Greenstone et al., 2021; The Health Effects Institute, 2019). Many Chinese

cities regularly rank among the most polluted cities in the world. In addition, climate change has

increased both the frequency and the intensity of heat waves, exacerbated by the heat island effect in

mega cities (Ye et al., 2014; Luo and Lau, 2017). Pollution and temperature extremes raise serious

concerns, given the size of the affected population in China and technological or financial constraints

for adaptation, especially for the urban poor.

Our analysis uses an empirical framework that combines the difference-in-differences and triple-

difference strategies: comparing the exposure to extreme air pollution and temperature among trav-

elers from cities with HSR access to that among travelers from cities without such access, under

different environmental conditions in home cities. The causal effect of HSR connection on adapta-

tion to environmental extremes is quantified by the variation in travel patterns in response to envi-

1A large literature has documented various impacts of pollution and climate change on economic growth (Nordhaus,
2006; Dell et al., 2012; Carleton and Hsiang, 2016), social stability (Burke et al., 2010; Hsiang et al., 2013), and health
(Deschênes et al., 2009; Currie and Neidell, 2005; Chen et al., 2013; Landrigan et al., 2018) among others.
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ronmental conditions. The key identification assumption is that the timing of a city’s connection to

HSR network is not driven by or in response to unobserved factors that affect daily variation in travel

patterns, after controlling for a rich set of fixed effects including city fixed effects, day-of-sample

fixed effects. This is plausible as the exact connection date is often determined by idiosyncratic

engineering and institutional factors. The event study analysis shows no clear trend in the outcome

variable before the HSR connection, supporting our identification assumption.

Our results show that China’s rapid expansion of its HSR network has facilitated the adaption

to environmental extremes: residents can more easily travel to destinations that have better environ-

mental conditions. When home cities are subject to pollution extremes, travelers from cities without

HSR access are 12.8% more likely to experience these detrimental conditions than those from cities

with HSR connection. When home cities encounter temperature extremes, travelers without HSR

access are 27.7% more likely to expose to temperature extremes than those with HSR access. In

comparison, when home cities are not subject to pollution or temperature extremes, travelers’ expo-

sure to environmental extremes is similar regardless of the HSR access. In terms of the underlying

channels, longer travel distances as a result of the HSR expansion explain 43% of the reduction

in exposure to extreme pollution and 50% of the reduction in exposure to extreme temperatures.

The remaining effect can be attributed to travelers’ ability to leverage HSR connection and delib-

erately choose destination cities with better environmental conditions, conditioning on the distance

to the origin city. Longer term adaptation in travel patterns (including changes in travel distance)

to predictable environmental conditions post the HSR access explains 71% of the reduction in ex-

treme pollution exposure and 83% of the reduction in extreme temperature exposure. The remaining

impacts are attributed to contemporaneous responses to environmental extremes. Altogether, these

reductions in exposure to environmental extremes entail substantial health benefits through reduced

mortality.

This study contributes to two strands of literature. First, a large literature examines the benefit

of transportation networks through promoting the mobility of people and goods (Behrens and Pels,

2012; Donaldson, 2018; Bernard et al., 2019), fostering market integration (Baum-Snow, 2010;

Zheng and Kahn, 2013; Faber, 2014; Donaldson and Hornbeck, 2016; Lin, 2017), and facilitat-

ing knowledge sharing (Agrawal et al., 2017; Dong et al., 2020). Leveraging the rapid expansion

of the HSR network in China and high-frequency data on intercity travel, our paper adds to this

literature by demonstrating how improved transportation networks can facilitate adaptation to air

pollution and temperature extremes. Second, this paper contributes to the literature on adaptation

to adverse environmental conditions such as climate change and local pollution. Studies show that

behavioral changes play an important role in mitigating the risks associated with air pollution and
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climate change through reducing outdoor activities (Graff Zivin and Neidell, 2014; Moretti and Nei-

dell, 2011a; Barwick et al., 2020), increasing defensive investments (Barreca et al., 2016; Ito and

Zhang, 2020; Zheng and Kahn, 2017; Zhang and Mu, 2018), as well as changing residential lo-

cations (Banzhaf and Walsh, 2008; Bayer et al., 2009; Deschênes and Moretti, 2009; Kahn, 2010;

Black et al., 2011; Chen et al., 2017; Freeman et al., 2019; Balboni, 2021; Cruz and Rossi-Hansberg,

2021). Our study demonstrates that improved transportation infrastructure renders short-term inter-

city travel another important adaptation strategy to mitigate the negative effects of adverse environ-

mental conditions.

2 Data and Descriptive Evidence

Intercity Travel Flow We construct daily bilateral passenger flows across cities by leveraging the

universe of credit and debit card transactions conducted through the UnionPay network. UnionPay

is the only inter-bank payment network in China, and the largest network in the world. The database

covers 34 trillion yuan ($4.9 trillion) of annual economic activities from 2.7 billion cards from

2011 to 2016. The date and location information of transaction records allows us to trace traveler

flows between city pairs on a daily basis. This enables us to overcome a major data limitation

in the literature where high-frequency measures of city-pair travel flows at the national level are

unavailable until very recently with the proliferation of mobile positioning data.

Our traveler flow is calculated from a 1% card sample, which includes the stream of transactions

made by 270 million cards during 2013-2016. We focus on offline transactions, for which the

cardholder is physically present at the merchant’s location. A trip occurs if the city of the transaction

differs from the home city.2 Using credit and debit cards is a popular payment method and accounted

for over 40% of national retail consumption during our data period. Electronic payment methods

such as Wechat and Alipay were limited during our data period, accounting for less than 2% of

aggregate retail sales in 2013 and about 10% in 2016.

To examine the quality of our intercity travel flows based on card transactions data, we compare

our data on travel flows with intercity mobility data from Baidu Migration by Baidu Maps, China’s

leading provider of digital map and online navigation services. Baidu migration data report popu-

lation inflows from the top 100 origin cities and outflows to the top 100 destination cities between

January 21 and March 23 in 2019 and between January 10 and March 15 in 2020.3 The data are

based on the location of over 600 million users of Baidu’s location-based services, hence providing

2We limit our sample to trips up to seven days. The majority of trips last for one to two days.
3Source: http://qianxi.baidu.com/. Baidu Migration data aim to help understand population flows during the Chinese

New Year so the data duration centers around the time of Chinese New Year. The data are only available from 2019.
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good coverage and accuracy. Panels (a) and (b) in Appendix Figure A2 show that the two measures

of intercity travels have high correlations, with a R2 of 0.79 for both outflows and inflows. Panel (c)

depicts the coefficient estimates of a gravity equation where the travel frequencies between city pairs

(in logarithm) from the two data sources are separately regressed on flexible distance bins between

the origin and destination cities. The coefficient estimates based on the UnionPay and Baidu data

are very close to each other across all distance bins. These validation exercises confirm the high

quality of our travel flow measures based on card transactions data.

Air Pollution and Temperature Data Air quality data come from China’s Ministry of Ecology

and Environment (MEE, formerly the Ministry of Environmental Protection). From 2013, ground-

level monitoring stations were installed or upgraded in over 1600 sites throughout China and hourly

air quality data from these monitoring stations are publicly reported on the MEE website. The num-

ber of monitoring stations and cities covered increased steadily from 1003 stations in 159 cities in

2013 to 1615 stations in 367 cities in 2015. We calculate the daily concentration of PM2.5 at the

city-daily level by averaging hourly readings from monitoring stations within a city. The nationwide

average concentration of PM2.5 during the 2013-2016 period was 48 µg/m3 (with a standard devi-

ation of 41 µg/m3), much higher than the annual air quality standards of 12 µg/m3 set by the U.S.

Environmental Protection Agency and 35 µg/m3 by China’s MEE.

We collect hourly temperature data from NOAA’s Integrated Surface Database (ISD) for all

weather stations in China. ISD includes 408 weather stations in China that has complete time series

from 2013 to 2016. We match each city to the nearest weather station in ISD using their geographical

coordinates. All timestamps in the dataset are adjusted by an 8-hour lead to offset the difference

between Bejing Time and Greenwich Mean Time. We average over hourly readings to obtain the

daily average temperature.

HSR Network The expansion of the HSR network has been unprecedented in China (Figure A1).

While the country had no HSR at the beginning of 21st century, the total lengthen of HSR reached

37,900 km by 2020, linking all of its major cities. The rapid expansion of the HSR network has led

to one of the most significant increases in human mobility in modern history: the passenger trips via

HSR increased from 290 million to 2.3 billion during 2010-2019.

We gather information on the opening dates of HSR station from government official reports.

If a city has multiple HSR stations, we use the date when the first HSR station started operation

in the city. For HSR connections, we use national railway timetables which report the origin and

destination cities for all train services on a given day. The number of connections via HSR is defined

as the number of distinct cities that are directly connected to the origin city via HSR. China’s airport
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network also expanded during our sample period. To control for the expansion of the air transport

network, we collect data on airport connections based on monthly reports from the Official Aviation

Guide that cover schedules on all of China’s domestic flights from 2013 to 2016.

Figure 1 provides the first descriptive evidence on the benefit of improved transportation net-

works in mitigating households’ pollution exposure. The top panel plots travelers’ pollution expo-

sure against the corresponding day’s pollution in the home city. Travelers’ pollution exposure is de-

fined as the weighted average of the daily pollution levels across destination cities, where the weights

are daily origin-destination traveler shares. Travelers based in cities with active HSR connections

experience a statistically significant lower pollution exposure than those without HSR connections

throughout the entire spectrum of home pollution levels, with a widening gap as home conditions

deteriorate. When the home city suffers from hazardous pollution – PM2.5 higher than 100 µg/m3

(the 90th percentile), the wedge between travelers from HSR cities and those from non-HSR cities

exceeds 9 µg/m3 and can reach as high as 30 µg/m3.

Table 1 provides the second piece of descriptive evidence by further tabulating travel patterns –

the share of traveler flows to destination cities with different pollution quintiles – for each pollution

quintile of the home city. Panels (a) and (b) present the statistics for HSR city travelers and non-HSR

city travelers, respectively, and Panel (c) reports their difference. Consistent with the evidence in

Figure 1, the last column of Panel (c) shows that intercity travelers from cities with HSR access ex-

perience a lower pollution exposure than travelers from cities without HSR across all five quintiles of

home pollution. The gap increases monotonically with home pollution levels. While the difference

is a modest 0.44 µg/m3 when the home city’s pollution is in the lowest quintile, the gap enlarges to

8.35 µg/m3 at the highest quintile. Much of this reduction is driven by a noticeably smaller fraction

of HSR city travelers who visit dirty destinations (47.3%) than non-HSR city travelers (55.1%).

Appendix Table A1 and Section A provide the summary statistics of key variables and additional

descriptive evidence. Results for temperature exposure are similar and are shown in Appendix Fig-

ure A3 and Table A2. These patterns present strong suggestive evidence that travelers benefit from

improvements in passenger transportation infrastructure by experiencing reduced exposure to ad-

verse environmental conditions.

3 Empirical Framework

Our empirical framework combines the difference-in-differences (DID) and triple-differences to

examine how improved transportation infrastructure affects travelers’ exposure to environmental
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extremes:

TravExpoit = β1 Expoit +β2iHSRit +β3HSRit×Expoit +Xit +µi +δt + εit . (1)

The outcome variable of our analysis, travelers’ exposure, TravExpoit captures the average exposure

to environmental (either air pollution or temperature) extremes for travelers from city i on day t. It is

defined as a weighted average of environmental conditions at the destination cities, where the weight

for a destination city is the share of travelers from a given city to the corresponding destination city:

TravExpoit = ∑
j 6=i

Expo jt ·
Ni jt

∑k 6=i Nikt
, (2)

where Expo jt is the environmental condition in destination city j on day t, Ni jt is the number of

travelers from city i visiting city j on day t, and ∑k 6=i Nikt is the total number of travelers from city

i on day t. In our baseline specification, Expo jt is constructed as an indicator being one when city

i experiences extreme air pollution or temperature on day t. Extreme pollution is defined as PM2.5

larger than 100 µg/m3 (the 90th percentile of the empirical distribution) and extreme temperature is

defined as daily average temperature below 30◦F or above 90◦F (about 10% of the observations).4 In

robustness checks, we use different cutoffs to define extreme conditions and also estimate a model

with continuous environmental variables.

HSRit captures the connectivity of city i at time t. We use two measures: an indicator variable

indicating whether city i is connected to the network or not at time t, and a continuous connectivity

measure that is a weighted number of destination cities that can be reached from city i via HSR at

time t. The weight for each destination city j is its total inflow of visitors in the base year of 2012

over the squared distance between the origin and destination city-pair:

H̃SRC
it = ∑

j 6=i

[
TotalIn f low j,2012

Distance2
i j

×HSRi jt

]
,

HSRC
it = (H̃SRC

it −µ)/σ .

TotalIn f low j,2012 is city j’s total number of visitors in 2012, distancei j is the great circle distance,

and HSRi jt is an indicator for HSR connection between city-pair i j on date t. We normalize the

connectivity measure to have zero mean and unit variance and define it as HSRC
it . Unlike the HSR

dummy (HSRit) used in the main analysis whose value remains the same after a city is first connected

4China’s standard for daily maximum PM2.5 is 75 µg/m3. In comparison, the US Environmental Protection Agency’s
daily PM2.5 standard is 35 µg/m3.

6



to the HSR network, HSRC
it increases whenever city i is connected to additional destinations as the

HSR network expands. In addition, this measure also reflects cities’ centrality in the transportation

network.

The coefficient β1 in Equation (3) captures the relationship between a home city’s environmental

condition and its travelers’ exposure. While both pollution and temperature are correlated geograph-

ically, the spatial correlation decays across space. In the absence of a strong correlation between the

trip direction and destination conditions (e.g., all trips going from dirty to dirty cities), one should

expect to see 0 < β1 < 1. The second coefficient, β2i, varies by city and allows for differential

changes in travelers’ exposure before and after the HSR connection. The key parameter of interest

is β3 on the interaction term, HSRit ×Expoit . It captures how HSR connection affects the slope

of the relationship between local environmental conditions and travelers’ exposure. If HSR facili-

tates residents’ ability to mitigate adverse environmental conditions at home, β3 should be negative.

Time-varying city attributes Xit include whether city i has airports at time t and the number of des-

tination airports with direct flights from city i. We incorporate city fixed effects µi to control for

time-invariant unobservables (e.g., connectivity or centrality) at the city level and day-of-sample

fixed effects δt to absorb seasonality and temporal shocks in travel patterns.5

The identification of β2i relies on the DID strategy and the staggered roll-out of the HSR expan-

sion across cities. The identification of β3 relies on a triple-difference design: it compares changes

in the outcome variable (before and after the HSR connection) when the home city is subject to envi-

ronmental extremes relative to changes in the outcome when the home city has mild environmental

conditions. As illustrated in both Figure 1 and Panel (c) in Table 1, when home city is clean, travelers

from cities with HSR connection experience a negligible or small reduction in pollution exposure

compared to those from cities without HSR connection. However, when home city is polluted, the

reduction in pollution exposure is much more pronounced. The differences in the pollution exposure

reduction across different pollution levels in the home city pin down the magnitude of β3.

The key identification assumption is that the exact timing of a city’s connection to the HSR net-

work is exogenous. That is, there are no confounding factors that affect the relationship between a

home city’s environmental conditions and its travelers’ exposure before and after the HSR connec-

tion. The assumption would be violated if the connection is driven by or in response to time-varying

and city-specific unobservables that also affect travel patterns hence travelers’ exposure to environ-

mental extremes.

In practice, the HSR network’s expansion is a complicated process involving many entities and

numerous steps including siting, obtaining building permissions, securing the financing, and imple-

5All regressions are weighted by the number of travelers from home city i on day t, so that the effect sizes reported
below can be interpreted as the national average across all travelers.

7



menting the physical construction. The exact timing (day or month) of a city’s connection to the

HSR network is often driven by a host of idiosyncratic factors. Most HSR lines in our sample began

construction in 2005 or right after 2008, directly following the passage of the Mid-to-Long Term

Railway Network Plan in 2004 and its revision in 2008. However, their completion dates spread out

across years. The duration of the construction progress depends on engineering difficulties which

increases with the railway’s length and bridge/tunnel ratio. For instance, the opening of the Wuhan-

Guangzhou line must wait for the completion of the Wuhan Tianxingzhou Yangtze River Bridge, the

longest combined road and rail span bridge in the world. It is also affected by political factors, acci-

dents, and other exogenous factors that expedite or delay these projects. Notable examples include

the Wenzhou train crash in July 2011 that has halted the construction of ongoing projects for more

than a year.6

The event study in Figure 2 displays no clear trend in changes in travelers’ exposure to extreme

pollution on either clean or polluted days before the HSR connection, lending support to our identi-

fication assumption. In addition, the HSR treatment effects appear stable over time, which suggests

that our estimates are less subject to the concerns on two-way fixed effects regressions when treat-

ment effects are dynamic (evolving over time) and the inclusion of early-treated units in the control

group (Goodman-Bacon, 2021).

All regressions are weighted by the number of home city i’s travelers at time t, so that the effect

sizes reported below can be interpreted as the national average across all travelers.7 In theory, if HSR

connection simply enables travelers to travel further to destinations whose pollution and temperature

are less correlated to those at home, the aggregate benefit in terms of pollution mitigation could be

either negative or positive. For example, travelers might visit dirty places when home cities are

clean. This negative effect could cancel out or dominate the benefit from mitigation when the home

city is polluted. Hence, whether improved transportation facilitates adaptation on net is an empirical

question.

6https://www.ft.com/content/a9337b06-fe20-11e0-a1eb-00144feabdc0
7The aggregate benefit of the HSR network’s expansion on travelers’ pollution exposure is estimated based on

−∑i ∑t ωit(β2i + β3×Expoit), where ωit is the share of travelers in city i and on day t among all HSR city-days in
our sample period.
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4 Empirical Findings

4.1 Baseline Results

Table 2 reports OLS estimates as specified in Equation (3) for travelers’ exposure to air pollution

and temperature in Panel (a) and (b), respectively. Column (1) uses the indicator variable to measure

HSR connectivity while Column (2) uses the continuous measure. The estimates of β1 in both

columns and both panels are significantly lower than one, implying that intercity travel reduces the

correlation between the environmental condition in the home city and travelers’ realized exposure.

The estimates of β1 for temperature exposure are slightly larger than those for pollution exposure,

likely due to stronger spatial correlation in temperature than air pollution.

The estimates of β2i, not shown in the table, tend to be small and statistically insignificant on

average, consistent with the negligible differences in the two lines’ intercept as shown in Figure 1.

In Column (1) for example, the set of β2i estimates has an average of -0.002 and standard error of

0.033 for air pollution, and an average of 0.008 and standard error of 0.018 for temperature.8

In contrast to the small estimates of β2i, the estimates of β3 are negative and economically large

in all columns. In other words, the impact of HSR connection on adaptation is mainly through the

change in the slope, rather than the intercept. As a result, the expansion of the HSR network has

flattened the relationship between environmental extremes in the home city and travelers’ exposure.

The last row of Panel (a) presents the HSR connection’s aggregate impact across all city-days

on travelers’ exposure to environmental extremes. HSR connection leads to a 0.7 percentage-point

reduction in the likelihood of being exposed to extreme pollution (relative to the sample mean of

11 percentage points), based on the discrete measure of HSR connectivity. This represents a 7%

decrease in travelers’ likelihood of experiencing extreme pollution over all environmental conditions

in home cities. Using the continuous measure, HSR connectivity leads to a 1.1 percentage-point

reduction, or 10% decrease in travelers’ exposure to extreme pollution. The larger estimates reflect

the continuous measure’s ability to capture not only the home city’s connection to the HSR network,

but also the improved connectivity as the network expands.

Results on travelers’ exposure to extreme temperatures are reported in Panel (b). These findings

mirror those for pollution exposure: intercity travel reduces the correlation between home conditions

and travelers’ realized exposure. In addition, connection to a better passenger transportation network

reduces travelers’ likelihood of exposure to extreme temperatures by 0.6 percentage points (using the

discrete HSR connection measure) and 0.7 percentage points (using the continuous HSR connection

measure) out of a sample mean of 6 percentage points, which is equivalent to a 10-11% reduction.

8The inter-quartile range is from -0.015 to 0.020 for pollution and from 0.003 to 0.020 for temperature.
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Figure 3 illustrates the magnitude of the estimates in Column (1) of Table 2 by contrasting the

actual exposure to extreme conditions with counterfactual exposure for travelers with HSR connec-

tions. The counterfactual exposure is simulated as the predicted outcome from Equation (3) when

HSR dummies are switched to zero. This comparison allows us to focus on the same set of city-

days with HSR connections and avoid the differences between HSR cities and non-HSR cities that

are unrelated to pollution mitigation. Panels (a) and (b) display results for pollution exposure and

temperature exposure separately.

When a traveler’s home city is clean, the traveler can expect to experience a modest chance (8

percentage points) of being subject to severe pollution – a reflection of mean reversion and the spatial

heterogeneity of air pollution. Removing HSR only moderately increases the traveler’s chance of

experiencing severe pollution to 8.1 percentage points. In contrast, when the home city is suffering

from extreme pollution, removing access to the HSR network would raise the traveler’s probabil-

ity of experiencing extreme pollution from 38.4 to 43.3 percentage points, amounting to a 12.8%

increase. Results for extreme temperature exposure are similar. The impact of HSR connection is

negligible when home cities have mild temperatures. But when home cities are subject to extreme

temperatures, removing HSR would increase travelers’ exposure to such extremes from 38.6 to 49.3

percentage points, a 27.7% jump.

4.2 Robustness Checks

This section explores the robustness of our findings to alternative specifications. Table A3 reports a

host of robustness checks for both the discrete measure of HSR connectivity (Panel (a)) and contin-

uous measure of HSR connectivity (Panel (b)). In Columns (1) and (2), we replace the indicator of

extreme pollution with the continuous PM2.5 reading and replace the indicator of extreme temper-

ature with the absolute deviation from 70◦F. One µg/m3 increase in PM2.5 at home translates into

0.34 µg/m3 increase in travelers’ exposure for cities not connected to HSR and only 0.28 µg/m3

for travelers from HSR cities, using the discrete measure of HSR connectivity. The patterns are

similar for the effect on temperature exposure. Columns (3)-(6) use alternative cutoffs to define en-

vironmental extremes: Columns (3) and (4) use 120 µg/m3 and 150 µg/m3 for extreme pollution,

Column (5) uses 25 ◦F and 95 ◦F as the cutoffs for extreme temperature, and Column (6) uses 35 ◦F

and 85 ◦F for the temperature cutoff. The coefficient estimates have the same signs and are similar

in magnitude to the baseline estimates in Table 2. Results are similar using the continuous measure

of HSR connectivity.

Table A4 examines robustness to different sample cuts for both the discrete (Panel (a)) and

continuous measures (Panel (b)) of HSR connectivity. The number of travelers in our analysis
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is derived from card transactions and subject to measurement errors. To examine robustness to

potential measurement errors, Columns (1) and (2) exclude each city’s 5% of days with the most

card transactions and 5% of days with the least card transactions. Columns (3) and (4) exclude

10% of days with the most and 10% of days with the least transactions. In addition, since card

penetration rates are lower in small cities, Columns (5) and (6) only keep the large cities defined

in the top three tiers. There are 117 cities in the top three tiers out of a total of 336 cities. These

cities have larger populations than the lower-tier cities and account for over 80% of travelers in

our sample. All of these regressions demonstrate that our results are robust to measurement errors

and that the expansion of the passenger transportation infrastructure makes the intercity travel an

effective strategy to reduce exposure to environmental extremes.

Our specifications so far relate travelers’ exposure to home conditions on the same day. This

implicitly assumes that households can respond quickly to negative shocks. Given the easy access

to pollution and weather forecasts during our sample period, and the expansive train network and

frequent services, households can and often do use forecasts to travel to desirable places in the event

of (anticipated) pollution episodes and heat waves (Arlt, 2017; Sharkov, 2016; Chen et al., 2021).

Nonetheless, to allow for the possibility that households react with a lag to pollution and temper-

ature shocks (due to the time constraint it takes to respond) or respond in advance of these shocks

(due to the wide availability and increasing accuracy of forecasts), Table A5 replaces the daily envi-

ronmental measure Expoit with its average in the following week in Column (1) and with its average

in the previous week in Column (2). Similar to Tables A3-A4, Panel (a) presents results using the

discrete HSR connectivity and Panel (b) reports results using continuous connectivity. Travelers

respond to both leading and lagged home pollution/temperature, though the magnitudes are smaller

than responses to contemporary conditions. These results suggests that HSR facilitates adaptation

to both contemporaneous environmental shocks and recent and future shocks.

5 Channels of Impacts and the Extensive Margin

5.1 Channels of Impacts

Changes in Travel Distance HSR access reduces travel costs, expands the set of feasible destina-

tions, and allows individuals to travel to more distant destinations. Panels (a) and (b) of Appendix

Figure A4 plot the distribution of trip distance for travelers from cities with and without HSR con-

nection. As the associated benefit is more pronounced when a traveler’s home city experiences high

pollution as shown above, we plot the distributions separately for clean and polluted days (with

PM2.5 exceeding 100 µg/m3). Panel (c) presents the difference in trip distances between travelers
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from HSR cities and those from non-HSR cities during days that are polluted (red bars) and clean

(green bars). HSR connection has significantly shifted the travel distribution to the right: the frac-

tion of trips exceeding 500 km increases from 35% among travelers without HSR connection to

52% among those with access when home cities are clean. The difference in the fraction of trips

exceeding 500 km is even more pronounced and widens to 21 percentage points during polluted

days.

These patterns suggest that HSR expansion allows people to travel farther. As correlations in

environmental conditions decay spatially, traveling farther reduces travelers’ probability of experi-

encing adverse conditions similar to those observed at home. Can distance alone explain the entirety

of HSR’s mitigation effect? To answer this question, we replace the environmental conditions at

destination cities with the concurrent environmental conditions in cities that are of a similar distance

to the origin in the construction of travelers’ exposure:9

TravExpo1
it = ∑

j 6=i
Êxpo jt ·

Ni jt

∑k 6=i Nikt
,

where Êxpo jt is the pollution level of a randomly-chosen city that is similarly distant from the

original city as city j on the same day t. We simulate this alternative traveler exposure TravExpo1
it

for all origin cities and all days in the sample. Then we use this alternative measure of travelers’

exposure as the outcome variable in equation (3).

We replicate this simulation exercise 100 times and report results in the top panel of Table A6.10

This analysis preserves the distribution of travel distance for all cities. If distance is the only channel

underlying HSR’s mitigation effect, we should expect estimates from these simulations to be close

to those using real data. Instead, HSR’s coefficients center around -0.02 and -0.06 for pollution

and temperature exposure, respectively, and are much smaller in absolute value than the baseline

estimates of -0.05 and -0.12 in Table 2. Correspondingly, the aggregate benefit of HSR in this

simulation exercise is only a 0.3 percentage point reduction in exposure to extreme pollution and

extreme temperatures. This constitutes 43% of HSR’s baseline effects for pollution mitigation and

50% of HSR’s baseline effects for temperature mitigation. We conclude that distance-based factors

cannot explain all of HSR’s mitigation benefits documented in the main text. Instead, travelers

appear to be able to leverage HSR connection and deliberately choose destination cities with better

9We allow for a maximum difference of 100 km when defining cities of similar distance to the origin. Specifically,
for each origin-destination pair, we draw a circular band centering around the origin, with the inner and outer radius
being the distance between the city pair±100 km. One of the cities within the band is randomly picked and its pollution
level of the day is used as the counterfactual.

10The reported β ’s are the average estimates from the simulation runs, and their standard errors are directly calculated
using the simulation estimates.
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environmental conditions, conditioning on the distance to the origin city.

Adaptation Horizons Adaptation to environmental extremes through intercity travel could arise

from multiple margins. First, individuals can travel to places with predictably desirable environmen-

tal conditions, such as trips to southern cities during polluted and harsh winter months in northern

cities. Second, residents can spontaneously evade unexpected environmental extremes at home by

visiting cities with better environmental conditions. Both margins of adjustment are associated with

reduced exposure to environmental extremes and could generate mortality and morbidity benefits,

though the second margin has shorter (planning) horizons than the first one. The changes in travel

behavior as illustrated in Appendix Figure A4 are consistent with both margins. This section presents

simulations that disentangle these different margins.

To quantify the benefit of HSR that derives from longer horizon responses to predictable environ-

mental extremes as distinct from short horizon adaptation to unpredicted environmental conditions,

we use the average shares of each home city’s travelers visiting different destinations to construct

the travelers’ exposure, instead of the daily travel shares. We do this separately for before and after

the HSR connection:

TravExpo2
it = ∑

j 6=i
Expo jt ·

NNo HSR
i j

∑k 6=i NNoHSR
ik

·1{t before HSR}+∑
j 6=i

Expo jt ·
NHSR

i j

∑k 6=i NHSR
ik
·1{t post HSR},

where NNo HSR
i j is the total number of travelers from city i to city j prior to the HSR access and

NHSR
i j is the total number of travelers from city i to city j post the HSR access. By construction, this

formulation removes deliberate travel responses to temporal, day-to-day variations in environmental

conditions. Then we use this alternative measure of travelers’ exposure as the outcome variable

in Equation (3). The lower panel of Appendix Table A6 suggests that this margin accounts for

71% of HSR’s aggregate benefit in pollution mitigation and 83% for temperature. We attribute the

remaining benefit (29% of pollution reduction and 17% of temperature mitigation) to day-to-day

avoidance behavior, whereby residents deliberately seek cities with better environmental conditions

when the home city is hit by unpredicted environmental extremes. HSR access has a relatively

smaller impact on day-to-day temperature mitigation than pollution mitigation because temperature

extremes exhibit less geographical variation and hence are harder to escape from.

5.2 The Extensive Margin

Our analysis has so far focused on the intensive margin of travel responses: the role of HSR in help-

ing travelers escape pollution and temperature extremes on a short-term basis. However, adjustments
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at the extensive margin could also be relevant. It is unclear ex-ante whether people travel more or

less when the home city experiences environmental extremes and how HSR affects the extensive

margin. On the one hand, people might have stronger incentives to travel to cities that are cleaner or

with more moderate temperatures as a means of avoidance. On the other hand, people might reduce

outdoor activities entirely, thus limiting their intercity travel. Appendix Table A7 reports results

from a Poisson pseudo maximum likelihood (PPML) regression using the number of outbound trav-

elers in a city-day as the outcome variable.11 Consistent with the findings in the literature (Moretti

and Neidell, 2011b; Graff Zivin and Neidell, 2014; Barwick et al., 2018), residents travel less when

their home cities are subject to extreme conditions. This is in line with the observation that residents

stay indoors to avoid exposure, as advocated by the government and news media. On the other hand,

having access to the HSR network increases the number of outbound trips by 4-5% (first row) and

facilitates travel during episodes of environmental extremes, especially on polluted days (columns

2-3).

We also conduct another analysis that directly looks at the impact of HSR on monthly outbound

travelers. To address the potential treatment effect heterogeneity in the staggered DID design, Figure

A7 plots the event study of HSR opening on the share of outbound travelers among a city’s popu-

lation following the strategy proposed in Callaway and Sant’Anna (2021) and Sant’Anna and Zhao

(2020). There was no clear pre-trend before HSR opening, lending credence to the randomness of

the treatment timing. However, there was a pronounced jump after the opening: having HSR access

leads to a 0.013 percentage point increase in the share of travelers (i.e. roughly a 5% increase from

the base of 0.28 percentage points). These two pieces of evidence are consistent in suggesting that

despite a contraction of travelling in extreme conditions, HSR promotes outbound trips by around

5% in both polluted and non-polluted days.

6 Health Benefits

Our analysis shows that the HSR access leads to a 0.7 percentage point reduction in travelers’ likeli-

hood of experiencing extreme pollution (Table 2), or a 7% reduction in travelers’ average pollution

exposure. This is equivalent to an annual reduction of 3.9 µg/m3 PM2.5 in pollution exposure for an

average traveler. Based on Ebenstein et al. (2017)’s mortality estimates from air pollution and the

value of statistic life for a Chinese traveler, the annual reduction in pollution exposure induced by

11PPML models (Silva and Tenreyro, 2006) are commonly used in the trade and migration literature. It is preferred to
OLS (log-)linear specification in our setting for its consistency in the presence of heteroskedasticity and large dispersion
in the outcome variable.
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improved HSR transportation networks translates to a nationwide savings of $2.2 billion in 2015.12

For the mortality impact of temperature extremes, we follow the age-specific dose-response

functions from Deschênes and Greenstone (2011). Applying their estimates to the age structure

of the Chinese population, one-day less exposure to temperature extremes decreases the mortality

rate by 4.6 to 8.6 per million people, with the elderly population accounting for the lion’s share of

the benefit. The expansion of HSR network reduces an average travelers’ exposure to temperature

extremes by two days per year (Table 2). Taken together, these estimates suggest that mitigation in

exposure to temperature extremes as a result of the HSR expansion leads to an annual savings of

$532 million to $944 million in mortality cost.

Overall, the mortality benefit from the moderation in population exposure to air pollution and

temperature extremes as a result of the HSR network expansion amounts to $2.7 billion to $3.1

billion per year at the national level. Deschênes et al. (2017) and Barwick et al. (2018) show that

the morbidity benefit can be as high as two-thirds of the mortality benefit from reduced air pollution

in the U.S. and China, respectively. If morbidity savings were included, the aggregate health benefit

could amount to $4.5 to $5.1 billion per year.

7 Conclusion

The role of human mobility especially in the form of short-term migration as an adaption strategy to a

changing environment is not well understood. This study examines whether improved transportation

infrastructure could promote short-term mobility and facilitate behavioral changes in response to

adverse environmental conditions. The empirical analysis benefits from high-frequency data on

intercity travels, China’s massive and staggered expansion of the HSR network, as well as rich

variation in daily pollution and temperature at the city level.

Our analysis finds that the rapid expansion of HSR has made short-term intercity passenger

travel an effective adaptation strategy to adverse environmental conditions, leading to significant

health benefits. Such adaptation can be attributed to both short-run deliberate responses to unex-

pected environmental extremes at home and also shifts in longer-term travel patterns due to reduced

travel costs. These findings contribute to our understanding of the role of adaptation and the bene-

fit of transportation infrastructure investment in a changing environment. Examining the potential

12Ebenstein et al. (2017)’s mortality estimates refer to PM10. As shown by China’s pollution monitoring data, one
µg/m3 increase in PM2.5 corresponds to 1.5 µg/m3 increase in PM10. We multiply Ebenstein et al. (2017)’s mortality
estimates by 1.5 to derive the impact of PM2.5 exposure in our context. Based on the transfer elasticity of 1.2 and the
U.S. population’s VSL estimate at 2.27 million in 2015$ from Ashenfelter and Greenstone (2004), the estimated VSL
for the Chinese population is $0.21 million for a prime age person. Our results are age-adjusted based on Murphy and
Topel (2006).
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feedback effects of these behavioral changes on air pollution and carbon emissions is an important

topic for future research.
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Figure 1: Travelers’ exposure to PM2.5 vs. home exposure

Notes: The top figure plots travelers’ average exposure to PM2.5 (y-axis) against PM2.5 level at the travelers’ home city
(x-axis), separately for city-days with access to HSR (green line) and city-days without access to HSR (red dash line).
Both lines are local polynomial regressions weighted by Epanechnikov kernel with optimal bandwidth. The gray area is
the 95% confidence interval. Gray vertical lines mark the 25th, 50th, 75th, and 90th percentiles of the PM2.5 distribution.
The bottom figure displays the distribution of daily PM2.5 at home cities, separately for city-days with access to HSR
(green bars) and city-days without access to HSR (red bars).
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Figure 2: Event study of HSR impact

(a) β2m: impact of HSR on clean days (b) β3m: additional impact of HSR on polluted days

Notes: The figures plot coefficient estimates (blue dashed line) by month relative to HSR station openings from the following equation:

TravExpoit = β1 Expoit + ∑
m∈[−25,25]

β2mHSRit + ∑
m∈[−25,25]

β3mHSRit ×Expoit +Xit +µi +δt + εit , (3)

where TravExpoit is exposure to extreme pollution for travelers from city i on day t. We group city-days that are more than 24 months before the HSR connection
(including cities that are never connected) to m = −25 and city-days that are more than 24 months post the HSR connection to m = 25. The gray area denotes
the 95% CI for the monthly coefficient estimates. The red line denotes the simple averages for months before and after the station opening. The bar denotes the
difference between the two averages with its standard error in the bracket. We test the difference with a t-test and label the statistical significance with the following
notations: *** p < 0.01, ** p < 0.05, and * p < 0.10. We normalize the average of the pre-opening coefficients to zero (instead of the coefficient on a single period
to zero) following Miller (2021).
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Figure 3: Access to HSR and reduction in exposure to pollution and temperature extremes

(a) Exposure to extreme pollution (b) Exposure to extreme temperature

Notes: Actual and counterfactual likelihood of travelers experiencing extreme pollution (panel (a)) and extreme temperature (panel (b)), based on coefficient
estimates in column (1) of Table 2. Dots to the left (right) of the red dashed line refer to days when home cities experience mild (extreme) conditions. Extreme
pollution is defined as PM2.5 above 100 µg/m3 and extreme temperature is defined as daily average temperature below 30◦F or above 90◦F. Counterfactual exposure
is the predicted outcome from Equation (3) when HSR dummies are switched to zero. Blue dots (whiskers) denote point estimates (95% confidence intervals).
Standard errors in brackets are estimated from 100 block bootstrap replications with each home city as a block.
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Table 1: Travelers’ travel patterns and pollution exposure

(a) For travelers from city-days with HSR

Flow shares by pollution quintile at destination Avg. Exposure of

Clean Dirty PM2.5 (µg/m3) at
1 2 3 4 5 Home Dest.

H
om

e
in

Clean 1 40.1% 24.7% 15.4% 11.4% 8.4% 15.9 34.9
2 23.4% 29.6% 21.6% 14.8% 10.7% 27.5 41.3
3 14.7% 21.2% 27.5% 22.3% 14.2% 40.4 48.6
4 10.5% 14.0% 21.6% 31.2% 22.6% 59.1 58.2

Dirty 5 7.2% 9.8% 13.6% 22.0% 47.3% 120.0 83.8

(b) For travelers from city-days without HSR

Flow shares by pollution quintile at destination Avg. Exposure of

Clean Dirty PM2.5 (µg/m3) at
1 2 3 4 5 Home Dest.

H
om

e
in

Clean 1 37.0% 26.4% 17.2% 11.5% 7.9% 15.7 35.3
2 21.1% 28.0% 23.5% 16.7% 10.8% 27.5 42.3
3 13.0% 20.7% 27.4% 23.8% 15.2% 40.2 49.6
4 8.5% 12.5% 21.0% 32.4% 25.7% 59.1 61.1

Dirty 5 4.9% 7.3% 11.0% 21.8% 55.1% 115.4 92.2

(c) Difference between Panel (a) and Panel (b)

Difference in flow shares by pollution quintile Diff. in

Clean Dirty PM2.5 (µg/m3) at
1 2 3 4 5 Home Dest.

H
om

e
in

Clean 1 3.0% -1.7% -1.8% -0.1% 0.5% 0.18 -0.44
2 2.3% 1.6% -1.8% -1.9% -0.1% 0.03 -1.03
3 1.7% 0.5% 0.1% -1.4% -0.9% 0.14 -1.03
4 2.1% 1.5% 0.7% -1.2% -3.1% 0.00 -2.92

Dirty 5 2.3% 2.5% 2.6% 0.2% -7.7% 4.61 -8.35

Notes: This table complements Figure 1 and illustrates that travelers from HSR cities are more likely to visit cleaner
cities than those from non-HSR cities. Each row represents the shares of travels to destination cities with different
pollution quintile, conditioning on the home city-day’s pollution quintile. Panel (a) refers to travelers from city-days
with HSR, panel (b) refers to travelers from city-days without HSR, and panel (c) presents the difference between the
two. Positive (negative) values are colored in different shades of green (red) according to the magnitude. The quintile
cutoffs for daily PM2.5 are 22, 33, 48, and 73 µg/m3.
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Table 2: Travelers’ likelihood of experiencing environmental extremes

(1) (2)
Discrete HSRit Continuous HSRit

Panel (a) : Air Pollution Likelihood of experiencing
Daily PM2.5 > 100µg/m3 pollution extremes

1{home extreme} 0.27*** 0.19***
(0.01) (0.01)

1{home extreme}×HSRit -0.05*** -0.04***
(0.02) (0.01)

N 330,801 330,801
R2 0.79 0.79

HSR’s overall impact -0.007** -0.011**
(0.003) (0.004)

Panel (b) : Temperature Likelihood of experiencing
Daily temp. < 30◦F or > 90◦F temperature extremes

1{home extreme} 0.40*** 0.32***
(0.03) (0.01)

1{home extreme}×HSRit -0.12*** -0.07***
(0.03) (0.01)

N 466,257 466,257
R2 0.79 0.79

HSR’s overall impact -0.006*** -0.007**
(0.002) (0.003)

Notes: All regressions are weighted by home cities’ number of outbound travelers on day t. The dependent variable in
Panel (a) and (b) is the likelihood that travelers experience extreme pollution (PM2.5 > 100µg/m3) and extreme tem-
perature (daily average temperature < 30◦F or > 90◦F), respectively, defined in Eq. (2). The average of the dependent
variables for pollution and temperature is 0.11 and 0.06, indicating the likelihood of travelers being subject to extreme
pollution and temperature of 11% and 6%. 1{home extreme} is an indicator for extreme conditions at home city i on
day t. In Column (1), HSRit is the indicator variable for access to HSR stations in the home city. In Column (2), we
instead use the standardized continuous connectivity measure, HSRC

it . The number of observations is smaller in panel
(a) as not all cities had PM2.5 monitoring stations in 2013 and 2014. Day-of-sample fixed effects (FEs), city FEs, and
interactions between city FEs and HSR connection are included in all regressions. The last row of each panel reports
HSR’s aggregate mitigation effect, which is a 0.7 percentage-point reduction in traveler’s likelihood of experiencing
extreme pollution in column (1) of Panel (a) and a 0.6 percentage-point reduction in column (1) of Panel (b). Standard
errors for coefficient estimates are clustered at the city level. Standard errors for the aggregate impact are estimated from
100 block bootstrap replications with each home city as a block. *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Online Appendix
A Additional Data Description and Evidence

Summary Statistics Table A1 presents summary statistics for key variables used in this analysis.

There are a total of 330,819 city-day observations for PM2.5 readings and 466,551 city-day observa-

tions for temperature from 2013 to 2016. Some cities did not have PM2.5 monitoring stations in the

beginning of our sample, which explains PM2.5’s lower number of observations. The average daily

PM2.5 is 52.19 µg/m3. This is considerably higher than U.S.’s daily standard of 35.4 µg/m3. About

19% of the city-days also exceeded China’s daily standard of 75 µg/m3 (which became effective in

2016).

PM2.5 varies considerably in our sample period, with a standard deviation of 44.51 µg/m3 and

an inter-quartile range of 40.3 µg/m3. The 90th, 95th, and 99th percentiles are 100.8, 131.8, and

219.8 µg/m3, respectively. About 80% of the variation comes from day-to-day changes within a

city, while the remaining 20% arises from differences across cities (within vs. between variation

in a panel setting). The average temperature is 57.96 ◦F , also with a sizeable standard derivation

(20.2 ◦F) and inter-quartile range (29.3 ◦F). Similar to pollution, within-city variation accounts for

a lion’s share (three-quarters) of total variation in temperature. The cutoff for extreme heat in our

baseline analysis is 90◦F, the 99th percentile of the temperature distribution. The 95th percentile is

83◦F = 26◦C, which appears as a very mild cutoff for hot days. The cutoff for extreme cold is 30◦F.

Using 30◦F and 90◦F as cutoffs, extreme temperature occurs in around 10% of city-days.

Additional Descriptive Evidence We present additional descriptive evidence on patterns of adap-

tation to environmental extremes and the role of transportation infrastructure in facilitating such

adaptation. Figure A3 is analogous to Figure 1 and presents descriptive evidence on the benefit of

improved transportation networks in mitigating households’ exposure to extreme temperature. The

top panel plots the temperature level experienced by travelers against temperature levels at their

home cities. The colored lines represent the local polynomial smoothed averages of the raw data for

city-days with HSR connections (blue) and city-days without HSR (red), respectively. The bottom

panel presents the empirical temperature distribution for city-days with HSR (blue) and city-days

without HSR (red).

Travelers with HSR connections experience warmer temperatures during cold seasons (temper-

ature below 37◦F) at home and cooler temperatures during mild and hot seasons (temperature above

37◦F). These differences can reach 5 degrees and are statistically significant throughout most of the
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distribution, except in the tails when estimates are noisier.13 The bottom panel shows that the home

city’s temperature is slightly higher for city-days with HSR access. This is largely due to cross-

sectional variation, as cities with HSR are more likely to be found in the warmer south. Figure A3

complements Figure 1 in the main text and provides descriptive evidence on the benefit of improved

transportation networks in mitigating households’ exposure to adverse environmental conditions.

Figure A5 further maps the geographical distribution of HSR’s impact in reducing pollution

exposure across cities during each city’s 50 most polluted days between 2014 - 2016. The outcome

variable is the difference in µg/m3 between the pollution level at the home city and travelers’ actual

exposure. Hence the figure illustrates travelers’ benefit of leaving their home city during their home

city’s 50 most polluted days between 2014 - 2016. A larger positive number denotes a higher

benefit. Cities outlined by thick black borders were connected to the HSR network by 2013. We

use the most polluted days between 2014-2016 instead of 2013-2016 since some cities did not have

HSR connections during the winter of 2013 when several episodes of extreme pollution occurred.

Cities that experience larger reductions in travelers’ pollution exposure, on days of intense home

exposure, are shown in darker green. It is evident from the map that cities with HSR connections are

more likely to exhibit larger reductions relative to their neighbors without such connections. Cities

that reap the greatest benefit in pollution reduction tend to be located in Northern China, which has

experienced the country’s worst pollution over the past decade, especially in winter months.

Figure A6 presents travelers’ benefits in terms of temperature exposure in each city’s 50 hottest

(left panel) and 50 coldest days (right panel) during 2014 - 2016. Travelers’ benefit is measured by

the difference between their actual exposure and the temperature at the home city. Darker green col-

ors represent travelers experiencing cooler temperatures during hottest days (left panel) and warmer

temperatures during coldest days (right panel). Cities in Southeastern China with HSR access dis-

play the largest benefits during the hottest days, as the majority of these cities falls into the humid

subtropical climate category and are vulnerable to heat waves. Similarly, cities in Northeastern

China with HSR access benefit more on the coldest days, when the temperature falls below zero.

These trips are facilitated by several north-south HSR lines that travel across a wide temperature

range (e.g. the Beijing - Wuhan line). The contrast between cities on and off the HSR lines reflects

the mitigating effect of HSR connections, except for southeastern cities in cold days when these

cities are much warmer than the rest of the country.

Table A2 illustrates travel patterns by destination cities’ temperature, analogous to Table 1. Since

extreme temperature includes both cold and hot days, we divide the temperature distribution into ten

bins (decile), five bins for temperatures below 61 ◦F (the median) and five bins for temperatures

13The standard errors are calculated using the Epanechnikov kernel and optimal bandwidth in STATA.
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above 61 ◦F . Each row of the table reports the fraction of travelers visiting each of the ten tem-

perature bins, conditioning on the decile of home temperature. The last two columns report the

average temperature experienced by travelers and that at their home city. Panels (a) and (b) present

the statistics for travelers’ from non-HSR cities and those from HSR cities, respectively, and Panel

(c) reports their difference. For example, when the home city’s temperature is in the coldest decile,

travelers with HSR access are 8.6 percentage points more likely to visit warmer destinations than

travelers without HSR access. Similarly, when the home city’s temperature is in the highest decile,

travelers with HSR access are 7.7 percentage points more likely to visit cooler destinations than trav-

elers without HSR access. Table A2 complements Table 1 in the main text and provides additional

descriptive evidence on the benefit of improved transportation networks.
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B Appendix Figures and Tables

Figure A1: Expansion of the HSR network

Year In 2010 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17

HSR network
# Cities Added 55 16 21 23 40 25 11 7
# Cities in Network 55 71 92 115 155 180 191 198
# City-pairs Connected 196 524 2710 4234 6042 6884 - -

Notes: This map depicts the rollout of the HSR network from 2008 to 2017. Different colors represent the year when a
city is first connected to the HSR network.
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Figure A2: Validation using Baidu Migration Data

(a) Population Outflow (b) Population Inflow

(c) Gravity Equation Estimates

Notes: Panel (a) plots the total number of outbound trips (in logarithm) originating from each city using UnionPay data
on the y-axis against that using the Baidu Migration index on the x-axis. Panel (b) plots the total number of arriving trips
(in logarithm) from each city using UnionPay data on the y-axis against that using the Baidu Migration index on the
x-axis. Each dot represent a city. Panel (c) plots the estimates of β from the gravity Equation below based on city-pair
bilateral trips from UnionPay data and the Baidu Migration Index, respectively.

ln(ni j) = ∑βkIk +αi + γ j + εi j,

where ni j is the aggregate trips between i and j in 2016 for the Unionpay data and in 2019 for Baidu data (only available
from 2019). Ik stand for fifteen 200km interval distance bands (0-200km is chosen as the base group). There are 328
observations. The R2 from both regressions is 0.791, suggesting a high correlation between these two measures.
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Figure A3: Travelers’ exposure to temperature vs. home exposure

Notes: The top figure plots temperature level experienced by travelers (y-axis) against temperature level at home city
(x-axis), separately for city-days with access to HSR (green line) and city-days without access to HSR (red dash line).
Both lines are local polynomial regressions weighted by Epanechnikov kernel with optimal bandwidth. The gray area is
the 95% confidence interval. The bottom figure displays the distribution of daily temperature at home cities, separately
for city-days with access to HSR (green bars) and city-days without access to HSR (red bars). Gray vertical lines mark
the 10th, 25th, 50th, 75th, and 90th percentiles of the temperature distribution.
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Figure A4: Trip distance for city-days during clean and polluted days

(a) Trip distances during clean days (b) Trip distances during polluted days

(c) Difference in trip distances

Notes: Panels (a)-(b): histograms for trip distances for cities without or with HSR access during clean and polluted
(PM2.5 > 100µg/m3) days. Panel (c) plots differences in traveler density between cities with HSR access and cities
without, on clean days (green bars) and polluted days (red bars). Travelers from cities with HSR access are more likely
to visit distant destinations and especially so when home cities experience extreme pollution.
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Figure A5: The HSR network and exposure to pollution extremes

Notes: This figure plots the difference in pollution levels (µg/m3) between home and travel destinations, weighted by
the number of outbound travelers, during each city’s 50 most polluted days between 2014 - 2016. Green colors indicate
travelers experiencing less pollution in their destinations than at home; red colors denote travelers experiencing more
pollution in their destinations than at home. Cities outlined in black are connected to the HSR network by 2013. Cities
with the fewest 10% travelers are not color-coded as traveler exposure in these cities is more prone to measurement
error.
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Figure A6: The HSR network and exposure to temperature extremes

(a) 50 Hottest Days (b) 50 Coldest Days

Notes: This figure plots the difference in temperature levels between home and travel destinations, weighted by the number of outbound travelers, during each city’s
50 hottest days (left panel) and 50 coldest days (right panel) between 2014 - 2016. The difference is measured as home temperature minus weighted temperature
at destinations for the hottest days (left panel) and reversely as weighted temperature at destinations minus home temperature for the coldest days (right figure).
Green colors indicate travelers experiencing milder temperatures than at home; red colors denote travelers experiencing more extreme temperatures than at home.
Cities with black borders are connected to the HSR network by 2013. The contrast between cities on and off the HSR lines reflects the mitigating effect of HSR
connections, except for southeastern cities in cold days when these cities are much warmer than the rest of the country. Cities with the fewest 10% travelers are not
color-coded as traveler exposure in these cities is more prone to measurement error.
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Figure A7: Event study: HSR opening and outbound travel

Notes: This graph shows the event study coefficients of HSR opening on a city’s share of outbound traveler relative
to its population, based on the staggered DID estimation procedure proposed in Callaway and Sant’Anna (2021) and
Sant’Anna and Zhao (2020). We restrict the sample to cities with HSR connection by the end of our sample period, and
exploits the comparision between early-connected cities and yet to be connected ones. The average treatment effect of
HSR opening on the outcome variable is 0.013 percentage point, a 5% increase from the base of 0.28 percentage point.
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Table A1: Summary statistics

Mean Std. Dev. Min Max Number of Obs.

PM2.5, µg/m3 52.19 44.51 0 1782.98 330,819
1{PM2.5>100} 0.10 0.30 0 1 330,819

Temperature, ◦F 57.96 20.22 -37.5 104.7 466,551
1{Temperature< 30◦F or > 90◦F} 0.10 0.30 0 1 466,551

Number of travelers 189.65 500.12 1 15,013 486,209
HSR 0.42 0.49 0 1 486,209

Notes: Variable 1{PM2.5 > 100} takes value 1 if a city’s daily average PM2.5 concentration is greater than 100 µg/m3

and 0 otherwise. Variable 1{Temperature< 30◦F or > 90◦F} takes value 1 if a city’s daily average tempearture is lower
than 30◦F or higher than 90◦F and 0 otherwise. Variable HSR takes value 1 if a city has an HSR station in operation on
a given day and takes value 0 otherwise.
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Table A2: Travelers’ travel patterns and temperature exposure

(a) For travelers from city-days with HSR

Flow share by temperature decile at destination Average

Cold Warm temperature (◦F) at
1 2 3 4 5 6 7 8 9 10 Home Dest.

H
om

e
in

Cold 1 40.6% 24.0% 11.9% 7.5% 7.8% 4.3% 2.4% 1.0% 0.4% 0.0% 21.8 35.8
2 14.3% 42.5% 16.6% 9.7% 7.8% 4.5% 2.6% 1.2% 0.6% 0.0% 36.0 41.7
3 7.0% 18.8% 37.6% 15.2% 9.2% 5.4% 3.3% 2.0% 1.2% 0.2% 44.8 46.9
4 4.0% 10.8% 16.0% 35.2% 16.0% 7.3% 4.7% 3.0% 2.3% 0.6% 52.1 52.2
5 3.3% 6.9% 8.5% 16.4% 35.6% 13.7% 6.3% 4.6% 3.4% 1.2% 58.6 56.9

6 1.8% 4.1% 5.3% 7.6% 16.5% 33.1% 15.0% 7.8% 5.8% 3.0% 64.4 62.5
7 0.8% 1.9% 2.7% 4.5% 7.3% 15.2% 33.1% 17.9% 10.1% 6.6% 69.4 68.2
8 0.3% 0.8% 1.6% 2.5% 4.8% 7.2% 16.1% 34.6% 19.8% 12.4% 74.1 72.8
9 0.1% 0.3% 0.7% 1.6% 2.8% 4.3% 7.9% 17.4% 40.7% 24.2% 79.0 76.8

Warm 10 0.0% 0.0% 0.1% 0.4% 0.8% 2.0% 4.2% 9.1% 20.5% 62.9% 85.1 81.8

(b) For travelers from city-days without HSR

Flow share by temperature decile at destination Average

Cold Warm temperature (◦F) at
1 2 3 4 5 6 7 8 9 10 Home Dest.

H
om

e
in

Cold 1 49.2% 22.0% 9.6% 6.7% 5.9% 3.4% 2.0% 0.9% 0.3% 0.0% 18.9 32.6
2 10.9% 45.6% 19.8% 8.8% 6.4% 3.7% 2.3% 1.3% 0.9% 0.2% 35.9 41.9
3 3.9% 13.8% 40.2% 20.0% 9.6% 5.2% 3.2% 2.1% 1.4% 0.5% 44.8 48.6
4 2.2% 6.0% 12.9% 37.4% 19.8% 8.7% 5.3% 3.8% 2.7% 1.2% 51.9 54.8
5 0.9% 2.5% 4.6% 13.4% 36.0% 18.4% 9.1% 6.6% 5.4% 3.1% 58.6 61.2

6 0.4% 1.1% 1.9% 4.3% 13.5% 31.2% 19.3% 11.2% 9.2% 7.9% 64.4 67.3
7 0.2% 0.5% 0.9% 1.9% 4.6% 13.5% 31.7% 20.9% 13.1% 12.6% 69.3 71.7
8 0.1% 0.2% 0.5% 1.0% 2.4% 5.2% 15.0% 35.6% 24.2% 15.9% 74.0 75.0
9 0.0% 0.1% 0.3% 0.6% 1.4% 2.5% 5.8% 16.0% 43.3% 29.9% 78.8 78.4

Warm 10 0.0% 0.0% 0.0% 0.2% 0.5% 1.3% 2.8% 6.0% 18.8% 70.5% 85.0 83.0

(c) Difference between Panel (a) and Panel (b)

Flow share by temperature decile at destination Average

Cold Warm temperature (◦F) at
1 2 3 4 5 6 7 8 9 10 Home Dest.

H
om

e
in

Cold 1 -8.6% 2.1% 2.3% 0.9% 1.9% 0.9% 0.3% 0.2% 0.0% 0.0% 2.9 3.2
2 3.4% -3.1% -3.1% 0.9% 1.4% 0.8% 0.2% -0.1% -0.3% -0.1% 0.1 -0.2
3 3.1% 5.0% -2.6% -4.8% -0.3% 0.3% 0.1% -0.1% -0.3% -0.3% 0.0 -1.7
4 1.9% 4.7% 3.1% -2.1% -3.8% -1.4% -0.6% -0.8% -0.4% -0.6% 0.1 -2.6
5 2.4% 4.4% 3.9% 3.0% -0.4% -4.7% -2.9% -1.9% -2.0% -1.8% 0.0 -4.3

6 1.4% 2.9% 3.3% 3.3% 3.0% 1.8% -4.3% -3.4% -3.4% -4.9% 0.0 -4.7
7 0.6% 1.4% 1.9% 2.5% 2.7% 1.6% 1.4% -3.0% -3.0% -6.1% 0.1 -3.5
8 0.2% 0.6% 1.1% 1.6% 2.4% 2.0% 1.1% -1.0% -4.4% -3.5% 0.1 -2.2
9 0.0% 0.2% 0.4% 1.0% 1.4% 1.8% 2.0% 1.5% -2.6% -5.7% 0.1 -1.6

Warm 10 0.0% 0.0% 0.0% 0.2% 0.4% 0.8% 1.5% 3.1% 1.6% -7.7% 0.1 -1.2

Notes: This table complements Figure A3 and illustrates that travelers from cities with HSR are more likely to go to
cities with milder temperature levels, compared to travelers from cities without HSR. Panel (a) refers to travelers from
city-days with HSR, panel (b) refers to travelers from city-days without HSR, and panel (c) presents the difference
between the two. Positive (negative) values are colored in different shades of green (red) according to the numerical
magnitude. In panel (a) and (b), each row represents the shares of travelers to destination cities with different temperature
decile, conditioning on home-city-day’s temperature decile. The decile cutoffs for daily temperature are 30, 41, 49, 55,
61, 67, 71, 76, and 82 ◦F.
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Table A3: Travelers’ exposure to environmental extremes with alternative exposure measures

(1) (2) (3) (4) (5) (6)

Continuous measures Alternative cutoffs
of exposure for extremes

PM2.5 |T −70◦F| PM2.5 > 120 PM2.5 > 150
T < 25◦F T < 35◦F

or T > 95◦F or T > 85◦F

Panel (a) : Discrete measure of connectivity
Expoit 0.34*** 0.45*** 0.28*** 0.27*** 0.39*** 0.41***

(0.02) (0.02) (0.02) (0.02) (0.03) (0.02)
Expoit×HSRit -0.06* -0.04* -0.05** -0.04 -0.09** -0.09***

(0.03) (0.02) (0.02) (0.02) (0.04) (0.02)

N 330,801 466,257 330,801 330,801 466,257 466,257
R2 0.88 0.95 0.76 0.72 0.77 0.81

Panel (b) : Continuous measure of connectivity
Expoit 0.25*** 0.40*** 0.19*** 0.18*** 0.32*** 0.33***

(0.02) (0.02) (0.01) (0.02) (0.02) (0.01)
Expoit×HSRC

it -0.04*** -0.03*** -0.04*** -0.04*** -0.07*** -0.06***
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

N 330,801 466,257 330,801 330,801 466,257 466,257
R2 0.88 0.96 0.76 0.72 0.79 0.83

Notes: This table examines robustness to alternative measures of exposure to pollution and temperature, as well as different cutoffs for environmental extremes. The
dependent variable is the likelihood that travelers experience environmental extremes defined in Eq. (2). PM2.5 and T denote the daily average PM2.5 concentration
and temperature level, respectively. The column heading denotes the Expoit measure used in the regression. HSRit and HSRC

it denote the discrete and continuous
HSR connectivity measures, respectively. All regressions are weighted by number of outbound travelers from city i on day t. Day-of-sample fixed effects, city fixed
effects and interactions between city fixed effects and HSR are included. Standard errors are clustered at the city level. *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A4: Travelers’ exposure to environmental extremes using sub-samples

(1) (2) (3) (4) (5) (6)

Excluding 5% days Excluding 10% days
Cities in top 3 tierswith most/least travels with most/least travels

PM2.5 > 100
T < 30◦F

PM2.5 > 100
T < 30◦F

PM2.5 > 100
T < 30◦F

or T > 90◦F or T > 90◦F or T > 90◦F

Panel (a): Discrete measure of connectivity
1{home extreme} 0.27*** 0.40*** 0.27*** 0.39*** 0.27*** 0.42***

(0.01) (0.03) (0.01) (0.03) (0.02) (0.04)
1{home extreme}×HSRit -0.05*** -0.12*** -0.05** -0.12*** -0.07*** -0.10***

(0.02) (0.03) (0.02) (0.03) (0.02) (0.04)

N 330,029 423,888 273,539 378,911 144,369 165,535
R2 0.79 0.79 0.78 0.79 0.82 0.81

Panel (b) : Continuous measure of connectivity
1{home extreme} 0.19*** 0.31*** 0.19*** 0.31*** 0.18*** 0.31***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
1{home extreme}×HSRC

it -0.04*** -0.07*** -0.04*** -0.07*** -0.04*** -0.07***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

N 301,714 423,888 272,364 378,912 144,369 165,535
R2 0.79 0.81 0.79 0.81 0.83 0.83

Notes: This table examines robustness using sub-samples. Columns (1) and (2) exclude each city’s 5% of days with the most card transactions and 5% of days
with the least card transactions. Columns (3) and (4) exclude 10% of days with the most and 10% of days with the least transactions. Columns (5) and (6) only
keep the large cities defined in the top three tiers. The dependent variable is the likelihood that travelers experience environmental extremes defined in Eq. (2).
PM2.5 and T denote the daily average PM2.5 concentration and temperature level, respectively. 1{home extreme} is an indicator for PM2.5 > 100µg/m3 in odd
columns and daily temperature < 30◦F or > 90◦F in even columns. HSRit and HSRC

it denote the discrete and continuous HSR connectivity measures, respectively.
All regressions are weighted by number of outbound travelers from city i on day t. Day-of-sample fixed effects, city fixed effects and interactions between city
fixed effects and HSR are included. Standard errors are clustered at the city level. *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A5: Travelers’ exposure to extreme pollution using leads and lags

(1) (2)

Following Week Preceding Week

Panel (a): Discrete measure of connectivity
% of extreme days in home city 0.21*** 0.22***

(0.01) (0.01)
% of extreme days ×HSRit -0.04*** -0.04***

(0.01) (0.01)

N 325,255 325,000
R2 0.75 0.75

Panel (b): Continuous measure of connectivity
% of extreme days in home city 0.14*** 0.15***

(0.01) (0.01)
% of extreme days ×HSRC

it -0.02*** -0.02***
(0.01) (0.01)

N 323,807 323,554
R2 0.75 0.75

Notes: This table examines the effect of HSR using the fraction of days when home experiences extreme pollution
in the following or preceding week. The dependent variable is the likelihood that travelers experience environmental
extremes defined in Eq. (2). Variable ‘% of extreme days in home city’ is the fraction of days with extreme pollution
in the following or preceding week. HSRit and HSRC

it denote the discrete and continuous HSR connectivity measures,
respectively. All regressions are weighted by number of outbound travelers from city i on day t. Day-of-sample fixed
effects, city fixed effects and interactions between city fixed effects and HSR are included. Standard errors are clustered
at the city level. *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A6: Travelers’ exposure to extreme pollution: channels of impacts

Panel (a) : Changes in Travel Distance
Hypothetical Travelers’ Exposure

PM> 100
T < 30◦F

or T > 90◦F

1{home extreme} 0.11*** 0.21***
(0.003) (0.002)

1{home extreme}×HSRit -0.02*** -0.06***
(0.002) (0.002)

N 330,801 466,257

HSR’s overall impact -0.003 -0.003

Panel (b) : Longer Horizon Adaptation
Hypothetical Travelers’ Exposure

PM> 100
T < 30◦F

or T > 90◦F

1{home extreme} 0.30*** 0.49***
(0.01) (0.02)

1{home extreme}×HSRit -0.02 -0.07**
(0.01) (0.03)

N 330,801 466,257
R2 0.66 0.74

HSR’s overall impact -0.005 -0.005

Notes: The dependent variable of Panel (a) is hypothetical travelers’ exposure that is constructed by replacing destination
cities’ environmental conditions with the concurrent conditions in cities of a similar distance to the origin, TravExpo1

it =

∑ j 6=i Êxpo jt ·
Ni jt

∑k 6=i Nikt
, where Êxpo jt is the pollution level of a randomly-chosen city that is similarly distant from the

original city as city j. 1{home extreme} is an indicator variable of extreme conditions. Day-of-sample fixed effects,
city fixed effects, and interactions between city fixed effects and HSR dummy are included in both regressions. The
last row reports HSR’s aggregate effect holding trip distance constant, which is a 0.3 percentage-point reduction in
traveler’s likelihood of experiencing extreme pollution as well as a 0.3 percentage-point reduction in exposure to extreme
temperature.

The dependent variable of Panel (b) is hypothetical travelers’ exposure that is constructed using the average trav-

eler flow from the origin city before and after HSR: TravExpo2
it = ∑ j 6=i Expo jt ·

NNo HSR
i j

∑k 6=i NNoHSR
ik

· 1{t before HSR}+

∑ j 6=i Expo jt ·
NHSR

i j

∑k 6=i NHSR
ik
·1{t post HSR}, where NNo HSR

i j is the total number of travelers from city i to city j prior to

the HSR access and NHSR
i j is the total number of travelers from city i to city j post the HSR access. The last row reports

HSR’s aggregate mitigation effect in the absence of day-to-day avoidance responses, which is a 0.5 percentage-point re-
duction in traveler’s likelihood of experiencing extreme pollution as well as a 0.5 percentage-point reduction in exposure
to extreme temperature. Standard errors are clustered at the city level. *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table A7: Number of outbound travelers in response to extreme pollution at home (the extensive margin)

(1) (2) (3) (4) (5)
Dep. var.: number of outbound travelers Pollution Extremes Temperature Extremes

Current Day Avg. exposure (±3 days) Current-day Avg. exposure (±3 days)

HSRit 0.049 0.044 0.041 0.054 0.054
(0.051) (0.056) (0.057) (0.052) (0.052)

1{home extreme} -0.010 -0.028 -0.032*** -0.058***
(0.013) (0.036) (0.0093) (0.013)

1{home extreme}×HSRit 0.019** 0.042** 0.010 0.0036
(0.0085) (0.019) (0.0068) (0.0095)

N 486,209 330,819 325,548 466,551 454,008

Notes: This table examines the extensive margin, i.e. the number of outbound travelers in city i at time t when city i experiences extreme conditions. Coefficients
are estimated using Poisson pseudo maximum likelihood (PPML) regression and can be interpreted as semi-elasiticities. 1{home extreme} is an indicator for
PM2.5 > 100µg/m3 in Columns 2 and 3 and daily temperature < 30◦F or > 90◦F in Columns 4 and 5. All regressions are weighted by number of outbound
travelers from city i on day t. Day-of-sample fixed effects and city fixed effects are included. Standard errors are clustered at the city level. *** p < 0.01, ** p
< 0.05, and * p < 0.10.
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