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ABSTRACT

This paper introduces a computationally efficient methodology for estimating variants of structural 
models. Our approach approximates the relationship between moments and parameters, offering a 
low-cost alternative to traditional estimation methods. We establish general convergence 
conditions, primarily requiring model-based moments to be continuous functions of parameters. 
While this continuity does not necessitate a continuous economic model, it does require the model 
to have only sparse discontinuities, a concept we define. We also provide convergence rate bounds 
for Kernel and Neural Net approximations, with the latter demonstrating superior performance in 
higher dimensions.

We apply this methodology to two standard structural models: (1) dynamic corporate finance and 
(2) life-cycle portfolio choice. We demonstrate the reliability of our approach through simulations
and then use it to explore identification, robustness to sample splits and moment selection, and
model misspecification. These explorations are computationally infeasible with standard
techniques, but become trivial with our methodology.
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1 Introduction

Robustness checks are a standard feature of applied empirical work in economics and
finance. After establishing their main results, researchers typically examine whether
alternative mechanisms can explain their findings and provide additional analyses
to control for such channels. For instance, they reestimate their main specification
across various subsamples, either expecting results to be stable or to vary in a specific
way. In other cases, they estimate different specifications to account for alternative
channels, anticipating that their main predictions will hold in these amended specifi-
cations. These analyses (sample splits, changing the model) are part of the standard
toolbox used by applied researchers.

Such robustness checks are rare in structural research, primarily due to com-
putational constraints. As a first example, consider the case of sub-sample splits,
which involve reestimating a model for particular periods or groups of observations.
In reduced-form work, this analysis has negligible computational cost. However, in
structural research, it can be prohibitively expensive, as each new estimation may
take days and often requires human monitoring to fine-tune optimization. Second,
consider robustness checks in reduced-form work that introduce additional control
variables in regressions. Again, these checks are nearly costless. In simulation-
based estimation, a related exercise might involve “purging” moments from control
variables and estimating variants of the model fitted against such refined moments.
Alternatively, the econometrician may want to evaluate parameter robustness to mo-
ment selection, varying the number and nature of moments against which the model
is estimated. In many cases, the computational burden of reestimating the structural
model implies that very few alternatives, if any, can be considered in practice. This
paper overcomes this challenge by introducing a computationally efficient methodol-
ogy for estimating variants of structural models. We provide convergence conditions
and characterization, and present two applications using popular models.

Our approach works as follows. We consider the estimation of a structural model
S. Given deep parameters θ, the model generates moments f(θ). In most applications,
such dynamic choice models, f is calculated numerically. An estimate θ∗ of structural
parameters is then obtained by minimizing a distance between simulated moments
f(θ) and empirical moments m:

θ∗ = arg min
θ

(m− f(θ))>W (m− f(θ)),
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where W is a weighting matrix. While simulating the economic model (i.e., numer-
ically computing f(θ)) for any given θ can be reasonably fast, the estimation process
can be computationally costly as it requires a large number of such simulations, as
well as human monitoring. This computational burden limits the number of estima-
tions that are feasible for a given research project.

We propose to reduce this computational cost by building an approximation of
f . Importantly, we do not approximate the numerical solution of the model itself,
as explored in various works (e.g., Fernandez-Villaverde et al. (2021b), Fernández-
Villaverde et al. (2021a), Duarte (2020)). Instead, we directly approximate the mo-
ment function f .

Our methodology follows three main steps. First, we generate a training dataset
Dn, comprising n (vectors of) parameters values and their corresponding moment val-
ues. This training dataset is fixed once and for all. This step is computationally
intensive since n can be large. However, it is not more costly than a single model
estimation, which also requires a large number of simulations. In the second step,
we fit the approximate moment function fn. Consistent with findings in the litera-
ture, we find that Neural Nets perform particularly well, as they mitigate the curse
of dimensionality in θ. This step is computationally inexpensive. Finally, in the third
step, we estimate parameters by matching moments using the approximate function
fn instead of the true function f :

θ̂n = arg min
θ

(m− fn(θ))>W (m− fn(θ)).

This step incurs almost no computational cost since fn is already known.

In section 3, we examine the general applicability of our method. First, we provide
conditions under which the moment function f and its approximation fn lead to the
convergence of the estimate θ̂n → θ∗ as the training data size n→∞. A key condition
is the continuity of moments f with respect to θ. Under slightly stronger regularity
conditions near the true estimate, we derive a formula for the approximation error:

θ̂n − θ∗ ≈
(
∇fn(θ̂n)>W ∇f(θ̂n)

)−1

∇fn(θ̂n)>W︸ ︷︷ ︸
≡Λn

(
f(θ̂n)− fn(θ̂n)

)
,

where Λn is the “approximate sensitivity matrix” (as in Andrews et al. (2017)) of pa-
rameters to moments, and f(θ̂n) − fn(θ̂n) is the moment approximation error. Once
the model has been estimated using the approximation, this formula incurs minimal
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computational cost.
The choice of the parametric function fn is crucial for achieving a good approxi-

mation. We provide convergence speed results for kernel smoothers and neural nets.
The kernel smoother converges at least as fast as n−1/K , where K is the dimension
of θ. Using classic results from the literature, we find that neural nets converge at
least as fast as

(
logn
n

)1/4. For complex models (where K is large), neural nets converge
faster. This intuition is well-documented in the machine-learning literature: Neural
nets can “mitigate the curse of dimensionality” by increasing in complexity as the
training sample size grows (see e.g. Barron (1994), and more recently Farrell et al.
(2021)).

While the continuity of moments f is necessary for convergence, we show in Sec-
tion 4 that this does not imply the model itself must be continuous. Instead, the
model must satisfy a weaker condition, which we call “light discontinuity” in the pa-
rameters θ. Intuitively, light discontinuity means that the functions used to compute
moments have their discontinuities on a countable number of curves, parameterized
by θ. We prove that all models satisfying this condition have continuous moments.
We also discuss why standard economic models with non-convexities typically meet
this criterion.

We apply our methodology to two standard structural models: (1) a dynamic cor-
porate finance model similar to Hennessy and Whited (2007a) (Section 5.1), and (2) a
life-cycle consumption and portfolio choice model, similar to Viceira (2001) and Cocco
et al. (2005). In both case, we use neural networks to fit the approximate moment
function fn, since they exhibit faster convergence in high-dimensional settings.

We first assess the validity of the approximate parameter estimates by drawing
a “validation” sample of parameters and corresponding moments. Using these vali-
dation moments, we estimate the model with the approximation fn and compare the
resulting parameters to the true parameters that generated the validation sample.
In both applications, the correlation between the true parameters and our “approxi-
mate” estimates in the validation sample is always larger than .95, and mostly larger
than .99. While our approach is orders of magnitude faster than SMM (about 1 second
compared to an hour), the difference in estimates is small, if not negligible. We also
use this validation sample to verify that the approximation error formula accurately
measures the true estimation error.

We then use fn to conduct various robustness checks. First, we examine the sensi-
tivity of parameter estimates to the choice of targeted moments. In structural work,
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discussions of identification typically focus on the function f near the SMM estimate
θ∗ (model comparative statics). However, as noted by Andrews et al. (2017), a more
effective diagnostic tool is the assessment of how parameter estimates vary with em-
pirical moments, since it reveals how changes in data affect estimates. This approach
is rarely employed due to the computational expense of reestimating the model while
slowly adjusting empirical moments. Our method allows for this analysis at nearly
no cost. In our applications, representing parameters as functions of moments offers
a different, and often more accurate, diagnostic for identification.

Second, we evaluate the robustness of parameter estimates to the selection of tar-
geted moments. For any structural model, the number of moments one can use to
estimate the model is potentially large. If the model correctly represents the data-
generating process, the specific moments targeted in estimation do not matter, as long
as they identify all parameters. However, in practice, models are always misspecified,
so that moment selection matters. To evaluate robustness to moment selection, re-
searchers usually calculate additional moments in the model not used in estimation
and compare them to their empirical values. This approach is not ideal, as the choice
of baseline moments is arbitrary. Moreover, if the estimated model fails to match
these non-targeted moments, it is unclear whether and how matching these moments
would affect parameter estimates. A better approach is to reestimate the model across
many sets of possible moments. While this approach would be computationally expen-
sive using traditional methods, this becomes feasible using our approximation fn. In
our two applications, we explore thousands of possible moment combinations, and re-
port the resulting distribution of parameter estimates. We find that few estimates are
robust to moment selection (especially in the corporate finance model), and isolate the
moments that significantly impact estimation.

Third, we test the robustness of estimates across different subsamples. In reduced-
form analyses, econometricians often re-estimate regression models on various sub-
samples to check whether estimates are stable or change in expected ways. In struc-
tural work, the equivalent exercise would require reestimating the model for each
subsample, which becomes computationally prohibitive if there are many sample
splits. However, the low computational cost of our approach makes these checks
straightforward. As demonstrated in our corporate finance application, structural
parameters exhibit considerable variation over time, providing valuable insights into
the model’s validity.

Finally, our methodology allows us to assess model misspecification. Specifically,
we examine how inference is affected when the data is generated using alternative
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models, i.e., not the model used in the baseline estimation. We first simulate many
datasets using alternative models with different specifications and a range of param-
eter values. For each of these datasets, we then reestimate structural parameters
using the baseline model. Despite the many structural estimations required, this ap-
proach is feasible thanks to our approximation method. More formally, we specify
an alternative model with structural parameters θa and moments ga(θa). For each
θa, we estimate the parameters of the baseline model that best fit the alternative
model-generated moments by solving:

θ̂n(θa, ga) = arg min
θ

(ga(θa)− fn(θ))>W (ga(θa)− fn(θ)),

allowing us to estimate parameters for a wide range of θa values and alternative mod-
els ga. For θa in the neighborhood of θ∗ and ga in the neighborhood of f , this method
aligns with the diagnostic proposed by Andrews et al. (2017), which does not require
specifying ga. Our approach enables a broader exploration of potential misspecifica-
tion, although it necessitates specifying the nature of misspecification (i.e., to take
a stand about the alternative model ga). We apply this approach to our corporate fi-
nance model, considering alternative models where financing may be constrained by
cash-flow expectations (Lian and Ma, 2021). We find that, when the baseline model
omits these cash-flow constraints, the cost of financing constraints is overestimated
by a factor of 2 or 3.

The paper starts with a short literature review (section 2), and then moves on to
establish the convergence results (section 3). Section 4 characterizes economic models
that satisfy the key condition required in our methodology (moments are continuous
functions of structural parameters). Section 5 explores two applications and Section
6 concludes.

2 Related literature

Our paper primarily contributes to recent literature aimed at increasing transparency
in structural estimation, with a particular focus on the sensitivity of policy predictions
to moment or model misspecification. Andrews et al. (2020b) offers a formal definition
of transparency in empirical research and applies it to structural estimation in eco-
nomics. Andrews et al. (2017) derives a local linear approximation of the relationship
between parameter estimates and data moments, providing a diagnostic tool for as-
sessing misspecification bias. This method does not require explicitly specifying the
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misspecification but assumes that misspecification bias is small. While our analysis
of misspecification is global, it does require to specify alternative models to the base-
line model. In a follow-up work, Andrews et al. (2020a) formalizes the link between
descriptive analysis and structural estimation using a similar local approximation.
Our approach facilitates exploring additional descriptive statistics at low cost (non-
targeted moments, model outputs). More broadly, our work connects to the literature
on robustness to model misspecification (e.g., Huber (2011); Armstrong and Kolesár
(2021); Bonhomme and Weidner (2018)).

In the structural literature, discussions of identification typically revolve around
the relationship between moments and structural parameters – the function f(θ).
Table D.1 reviews recent structural papers in corporate and household finance. Of the
43 papers surveyed, 12 show local comparative statics (e.g., plots of f around θ∗), 8
report the Jacobian matrix (derivatives of f around θ∗), and 24 omit both. Four recent
papers reports the sensitivity matrix of Andrews et al. (2017), i.e. the local derivative
of parameter estimates w.r.t. targeted moments. Our approach eliminates the need
for linear approximations, which, as our examples show, are not always valid.

Our paper is also connected to emerging work that seeks to improve numerical
solutions for models through approximations. For instance, Norets (2012) uses neu-
ral networks to approximate the solution of a finite-horizon, dynamic discrete choice
model. Similarly, Duarte (2020) describes a new solution method combining ML algo-
rithms and Gradient Descent Algorithm. Chen et al. (2021) and Fonseca et al. (2022)
use predictive algorithms to estimate the solution of models, after these are numeri-
cally solved on a training sample.1 Our focus differs significantly from these papers
as we aim to approximate moments as a function of parameters, rather than approxi-
mating the value or policy functions of the underlying model. Our approach is driven
by our interest in estimation and robustness analysis, rather than solving the model.

Finally, our paper contributes to the vast literature that structurally estimate dy-
namic models of corporate and household finance (see Strebulaev and Whited (2012)
for a survey of the corporate finance literature, and Gomes et al. (2021) for household
finance). We assess the robustness of these widely-used models.

1For further references, see also Fernández-Villaverde et al. (2021a), Villa and Valaitis (2019),
Maliar et al. (2019), Azinovic et al. (2019).
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3 Our approach: Presentation and general results

This section outlines our approach and the conditions under which it applies. We
begin by showing convergence, then provide a formula to compute the approximation
error, and conclude with results on convergence speed. The focus here is on general
results that depend solely on the properties of the moments of the estimated model,
rather than its solutions. In Section 4, we discuss conditions on model solutions, with
a particular focus on dynamic choice models, which we use as our main applications.

3.1 Description and notations

Let S be a structural model with deep parameters θ ∈ RK , generating a vector of
moments f(θ) ∈ RM , where M is the number of computable moments. These moments
do not need to be all empirically observable. Some can be a combination of structural
parameters that capture an outcome of interest (e.g., the average loss in market value
due to financial constraints in a structural corporate finance model).

In simulation-based estimation, f(·) does not admit a closed-form representation
and is computed numerically. For clarity, we assume that f(·) can be exactly computed
via extensive simulations, ignoring any simulation error. Let m represent the vector
of empirical counterparts to the model-based moments f(θ). The minimum distance
estimator of θ is obtained by the following minimization:

θ∗ ∈ arg min
θ

(m− f(θ))>W (m− f(θ)), (1)

where W is a weighting matrix, which assigns zero weights to moments that cannot
be observed in the data. We call θ∗ the true parameter estimate, i.e., the solution to
Equation (1).

Estimating the model for a specific set of moment values, m, is computationally
expensive. When the model lacks a closed-form solution, it must be solved numeri-
cally and moments have to be generated through simulation. This process is time-
consuming, especially for dynamic and non-linear models. Additionally, optimization
algorithms must compute moments f(θ) across many parameter values to find θ∗, the
global minimizer in Equation (1). This issue is exacerbated by the curse of dimen-
sionality, as the parameter space expands exponentially with K.

Due to these limitations, researchers often perform only a few estimations. Fun-
damentally, the issue that plagues this approach is that it lacks “economies of scale”:
each new estimation on a different set of empirical moments (whether on moments
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estimated for different subsamples or a different set of moments altogether) incurs
the same computational cost as the initial estimation.

Our approach creates such economies of scope using an approximation of the func-
tion f(·). To achieve this, we propose the following process:

1. Parameter Bounds: Define ex ante bounds for each parameter in θ. These
bounds also need to be specified in standard estimation techniques. They can be
based on expert knowledge or prior findings in the literature. Let Pθ ⊂ RK be
the set of admissible parameter vectors.

2. Drawing Parameters: We select n parameter values (θi)1≤i≤n from this set
Pθ. The exact method to build this estimate is not critical. One option is to
use a regularly spaced grid. In our applications, we use quasi-random Halton
sequences, which maintain uniform density as new points are added. Thus, to
increase the size of the training sample from n to n′, the researcher only needs
to draw n′ − n parameter values while retaining the original n draws.

3. Model Simulations: For each parameter values θi, we solve the model and
simulate moments f(θi). This step creates a training dataset Dn, consisting of
n parameters and their corresponding moments under the model S. Although
computationally intensive, this step is performed only once.

4. Fitting the Approximation: We use the training data Dn to find a parametric
approximation fn(θ) of f(θ), which can be computed for any θ. We refer to fn

as the approximate moment function. While no specific parametrization is re-
quired, we focus on neural networks, as they converge faster than kernel meth-
ods and yield more accurate results in our applications.

5. Estimation Estimate θ̂n as the solution of:

θ̂n ∈ arg min
θ∈Pθ

(m− fn(θ))>W (m− fn(θ)). (2)

where θ̂n is the approximate parameter estimate.

Only step 3, building the training dataset Dn, is computationally expensive. How-
ever, the size of the training dataset is typically chosen to match the number of model
simulations required for a single estimation using SMM. Therefore, this step is no
more costly than a standard estimation.
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3.2 Convergence

Let m be a vector of empirical moments. To simplify the exposition, we assume that
m is measured without statistical error, since this aspect of the inference problem is
already covered by well-known formulas (see e.g., Gouriéroux and Montfort (1996)).
We make the following assumptions:

Assumption 1. Suppose that the following hold:

i. Pθ is nonempty and compact.

ii. W is positive-definite.

iii. There exists a unique θ∗ ∈ Pθ such that m = f(θ∗).

iv. The model S generates a continuous moment function f(·).

The first two assumptions are standard and technical. The third assumption is
stronger, as it requires that the model is (1) well-identified and (2) fits the data,
though we do not assume that the model is the true data-generating process. The
fourth assumption is crucial: The moments need to be continuous functions of param-
eters. This continuity depends on the specific model and moments used. In Section
4, we will derive sufficient conditions on the underlying economic model so that this
assumption is verified.

The following theorem formalizes the conditions under which the approximate pa-
rameter estimate (the minimizer of program (2)) converges to the true parameter
estimate (the minimizer of program (1)):

Theorem 1 (Convergence of approximate parameter estimate). Suppose Assumption
1 holds and the approximate moment function fn satisfies:

i. fn uniformly converges to f as n→∞.

ii. fn is continuous.

Then, the approximate parameter estimate converges to the true parameter estimate:
θ̂n → θ∗ as n→∞.

Proof. See Appendix A.3.

The conditions (i) and (ii) in Theorem 1, requiring that fn converges uniformly and
is continuous, can be ensured the choice of the approximation fn.

10



3.3 Asymptotic approximation error formula

When n is large but finite, our approximate estimator differs from the actual estima-
tor since fn 6= f . This difference can be computed analytically provided n is suffi-
ciently large, i.e., when θ̂n − θ∗ is small enough:

Proposition 1. Suppose the assumptions in Theorem 1 hold. Additionally, assume
there exist N0, L0, and a neighborhood O ⊆ Pθ around θ∗ such that O is open in RK

and for n ≥ N0, ∇fn and ∇f exist and are continuous on O, and the sensitivity matrix
Λn, defined below, exists with ‖Λn‖2 ≤ L0. Then, as n→∞, we have:

θ̂n − θ∗ =
(
∇fn(θ̂n)>W ∇f(θ̂n)

)−1

∇fn(θ̂n)>W︸ ︷︷ ︸
≡Λn

(
f(θ̂n)− fn(θ̂n)

)
+O

(
‖θ̂n − θ∗‖2

2

)
. (3)

Proof. See Appendix A.4.

A key additional assumption in Proposition 1 is that f is locally differentiable
with a continuous derivative around the true parameter. The assumption that fn is
continuously differentiable is easier to satisfy if fn is constructed appropriately (e.g.,
using a neural network).

Another crucial assumption in Proposition 1 is the existence and boundedness of
the matrix Λn. Intuitively, Λn is similar to the “sensitivity matrix” in Andrews et al.
(2020b): it represents the local derivative of parameters with respect to moments. The
existence of Λn requires that the model is identified (i.e., ∇f is full-rank), along with
some regularity conditions (since the matrix inversion also involves∇fn). For simplic-
ity of exposition, we directly require the boundedness of ‖Λn‖2 rather than imposing
more primitive conditions. Finally, the second term on the right side of Equation (3),
f(θ̂n)− fn(θ̂n), measures the approximation error on the moments themselves.

The formula introduced in (3) is computationally inexpensive to obtain. While the
values of f(θ̂n) and its gradient ∇f(θ̂n) must be computed numerically, this requires
only a small number of evaluations. The functions fn and their gradients at the esti-
mate are simple enough to often have closed-form expression.

In our applications below, we demonstrate through simulations that the formula
(3) provides an accurate approximation of the true error.
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3.4 Two parameterizations for fn and their speeds of conver-
gence

We now turn to the construction of fn. We explore two parameterizations that ensure
that the conditions in Theorem 1 are satisfied (in particular, that fn → f uniformly),
and for which we can produce results on convergence speed.

3.4.1 Granularity of the training data

We first introduce a key concept, the granularity of the training data. For the param-
eters in the training sample, (θi)1≤i≤n, we define:

δn = max
θ∈Pθ

min
1≤i≤n

‖θ − θi‖2, (4)

which represents the maximum distance from any point in Pθ to its nearest element
in the training datasetDn. Our asymptotic results assume that as n increases, δn → 0:
each point on Pθ becomes closer and closer to the elements of the training dataset, i.e.,
the training data become infinitely granular.

How fast does δn decrease with n, the size of the training dataset Dn? The answer
depends on how the elements of Dn are structured.

To build intuition, consider the simple case of a regular grid over Pθ. Suppose the
set of possible parameter values is a cube of dimension K, and that Dn consists of
regularly spaced points in this cube. Then, it is easy to see that:

δn = O
(
n−

1
K

)
.

Thus, δn decreases with n, but more slowly if parameters have a large dimension K –
the standard curse of dimensionality.2

In our application, we use a uniform draw over Pθ via a Halton sequence instead of
a regular grid. The advantage of this method is that granularity increases uniformly
by simply adding more points to the existing sample, unlike a regular grid that would
require redrawing the entire sample to increase n, which is computationally costly.

With uniform draws, the upper bound on convergence is the same as with a regular
grid, although only in probability, as shown in the following lemma:

2To see this, assume edges of Pθ have length Ek and each edge has q regularly spaced points. Then,
the number of points in the training sample is n = qK . The maximum distance between the grid and

any point of Pθ is δn =

√∑
k E

2
k

2q . Thus, δn ∝ n−
1
K .
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Lemma 1. Suppose Pθ = [a1, b1]× . . .× [aK , bK ] ⊂ RK , with ai < bi <∞ for 1 ≤ i ≤ K,
and assume Dn is generated by draws of θ from a uniform distribution over Pθ. Then,
for any value of 0 < p < 1, with probability 1− p, the maximum distance to the nearest
training data point, δn, defined in (4), satisfies:

δn = (− log p)
1
K · O

(
n−

1
K

)
. (5)

Proof. See Appendix A.5.

This lemma shows that, even when requiring a high confidence (i.e., p close to 0),
the upper bound on δn decreases nearly as fast as n−1/K . Thus, the granularity of
uniform random draws is, asymptotically, similar to regular grids.

3.4.2 Kernel approximation

Next, we examine the properties and convergence speed of kernel smoothing (Li
and Racine, 2023), a natural parameterization for fn. We use a Nadaraya-Watson
weighted average formula, while requiring specific properties of the kernel function
that best fit our setting. Given training data (θi)1≤i≤n, the kernel smoothing function
is defined as:

fn(θ) =

∑n
i=1 kn(θ, θi)f(θi)∑n

i=1 kn(θ, θi)
, kn(θ, θ′) = η

(
‖θ − θ′‖2

2

λ2
n

)
, (6)

where the weight function η(·) is a real-valued, continuously differentiable function
that accepts scalar inputs. Moreover, η(x) > 0 for 0 ≤ x < 1, η(x) = 0 for x ≥ 1, and
η(x) is non-increasing for 0 ≤ x ≤ 1. The scaling parameter λn is set to be larger than
the granularity of the training dataset δn, i.e., λn = γ δn for some constant γ > 1.

The following proposition summarizes the properties of kernel smoothing as δn →
0:

Proposition 2. Let θ̂n be the approximate parameter estimate based on the kernel-
smoothing function in (6). Suppose Assumption 1 holds. Then, as n → ∞ and the
training data become more granular (δn → 0), we have:

i. The approximate parameter estimate converges to the true parameter estimate:
θ̂n → θ∗.

ii. Furthermore, ∇fn exists and is continuous on any neighborhood O ⊆ Pθ around
θ∗ that is open in RK . Assuming the rest of assumptions in Proposition 1 hold,
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the convergence error satisfies:

‖θ̂n − θ∗‖2 = O (δn) . (7)

iii. Assuming the conditions in part (ii) hold, if the training data lie on a regular
grid, the convergence error satisfies:

‖θ̂n − θ∗‖2 = O
(
n−

1
K

)
. (8)

Finally, as shown in Lemma 1, the same bound holds in probability when the
training data is uniformly drawn from a bounded box in RK .

Proof. See Appendix A.6.

Proposition 2 shows that, under regularity conditions, the convergence speed is at
least of the same order as δn, the granularity of the training data. Additionally, if the
training data are evenly spaced or drawn uniformly, the convergence error is given
by n−1/K . This is the classic curse of dimensionality: a large number of parameters
dramatically slows down convergence speed.

3.4.3 Neural network approximation

We now explore the properties and convergence speed of approximate moments when
fn represents a neural network. To leverage existing results from the literature, we
focus here on a training dataset generated by random draws of θ in Pθ. As we show
below, neural networks converge faster than kernel, especially for high-dimensional
parameters.

Assume each component function f rn, 1 ≤ r ≤ M of fn is a shallow neural network
(NN) of the class:

f rn(θ) = cr0 +
N∑
i=1

criφ
(
(ari )

>θ + bri
)
, (9)

where N is the number of nodes, φ is a sigmoid function which is infinitely differen-
tiable, ari is a K-dimensional vector, while cr0, cri , and bri are scalars.

The exact convergence speed of fn depends on several factors, including the loss
function used to train the network, the distribution of θ, or the smoothness of the true
function f . For simplicity, we rely here implicitly on the assumptions needed to show
convergence and convergence speed of fn in Barron (1994). These assumptions yield
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the following result for the approximate parameter estimate θ̂n, labeled as “informal”
since we do not fully specify the assumptions:

Proposition 3 (Informal). Let θ̂n be the approximate parameter estimate based on
a neural network described in (9), which is appropriately trained over the training
dataset Dn, generated by random draws of θ in Pθ. Moreover, suppose Assumption 1
holds. Then, as the training data size n→∞:

i. The approximate parameter estimate converges to the true parameter estimate:
θ̂n → θ∗.

ii. Suppose the neural net training procedure is appropriately set up such that fn,
together with f and θ∗, satisfies the assumptions of Proposition 1 and ‖∇fn(θ)‖2

is uniformly bounded across n and θ. Moreover, let the number of neural net
nodes increase as N =

√
n/(K log n). Then, the convergence error satisfies:

‖θ̂n − θ∗‖2 = O

(
√
M

(
K log n

n

) 1
4

)
. (10)

Proof. See Appendix A.7.

This informal proposition leverages both our earlier results and two important
findings from the early machine-learning literature. First, Cybenko (1989) shows that
neural networks uniformly converge toward continuous functions, which allows us to
apply Theorem 1, establishing that θ̂n → θ∗. This property, along with some regularity
conditions, enables us to apply Proposition 1, which relates θ̂n − θ∗ to f(θ̂n) − fn(θ̂n).
Finally, we use Barron (1994) (and its associated regularity conditions) to establish
an upper bound on the convergence of f(θ̂n)− fn(θ̂n), which leads to our final result.

Proposition 3 shows that the convergence speed of the neural network approxima-
tion depends less on the dimension K compared to the kernel approximation, where
K enters multiplicatively but not as a power of n. This result echoes standard find-
ings in machine learning. Neural networks, by increasing the number of nodes, can
better handle complexity and mitigate the curse of dimensionality.

While this result holds for a single layer NN, it is common to use, in practice,
deeper NNs, rather than the shallow but very wide structure suggested by Barron
(1994). At the very least, the above result provides an upper bound for the conver-
gence error of deeper neural networks (i.e., a lower bound for the convergence speed).
See, for instance, Farrell et al. (2021) for recent convergence speed results in the case
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of Multi-Layer Perceptrons (MLPs). Using such advanced results seems promising,
but beyond the scope of this paper.

4 What ensures the continuity of moments

A key assumption to ensure convergence of our approach is that the true moments of
the estimated model S, f(θ), are continuous. This may look like a restrictive assump-
tion, but we show here that it does not require the estimated model to be continuous.
We start with a generic characterization of models, and then move on to the specific
class of dynamic choice models, the focus of our application.

4.1 Continuity of model, continuity of moments

We start with a generic model parametrized by θ ∈ Rk, with variables x ∈ Rd (some
of these variables may be endogenous to the model, while others may be exogenous).
For instance, in the corporate finance model we explore below, x could include capital,
debt, and productivity shocks while θ contains deep parameters such as adjustment
costs and productivity volatility.

Let h(x, θ) be an M -dimensional vector of functions of the variables x, whose ex-
pectation defines the moments of interest. Thus, the moment function f is:

f(θ) = Ex[h(x, θ)].

h does not need to be continuous for f to be continuous in θ. Instead, we provide
below a weaker sufficient condition that guarantees the continuity of f , based on the
following definition:

Definition 1 (Light discontinuity). Consider the function h(x, θ), that is defined over
X×P ⊆ Rd × Rk, and let D be the set of all discontinuity points of h, i.e.,

D = {(x, θ) ∈ X×P | h is discontinuous at (x, θ)}. (11)

Then, h is called lightly discontinuous over θ (i.e., over its second input) if D can be
expressed in terms of a countable number of functions Fr as follows:

D =
∞⋃
r=1

{(x, θ) | xI = Fr(x−I, θ), for some ∅ 6= I ⊆ [d]} , (12)
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where [d] = {1, . . . , d}, and for I = {i1, . . . , ik} ⊆ [d] with i1 < . . . < ik, xI is the subvector
xI = (xi1 , . . . , xik), and −I = [d] \ I. Moreover, the domain of each function Fr is a subset
of all valid inputs (x−I, θ), where (x, θ) ∈ X×P.

Of course, all continuous functions are also lightly discontinuous. To further vi-
sualize this condition, consider the case where x is a scalar, i.e., d = 1. The set of
discontinuity points becomes D =

⋃∞
r=1 {(x, θ) | x = Fr(θ)}, meaning h has a count-

able number of discontinuities for each θ. Definition 1 generalizes to cases where x
has more than one dimension. For d > 1, it requires that the discontinuity points of
h form a countable number of (zero-volume) “curves” in Rd for each θ (as opposed to
“points” in the case where d = 1). This condition is commonly satisfied by economic
models with non-convexities, as discussed below.

The following theorem establishes that when f is composed of moments of “lightly
discontinuous” functions, it is continuous. This key result, which requires additional
but easily met technical conditions, is stated as follows:

Theorem 2 (Continuity of the moment function). Consider the (real- or vector-valued)
function h(x, θ) defined over the convex set X × P ⊆ Rd × Rk and the measure µx

defined over X (which may or may not be a probability measure) corresponding to
model variables x, where µx is dominated by the Lebesgue measure on Rd. Additionally,
assume there exists a function g defined over X such that ‖h(x, θ)‖2 ≤ g(x) for all
(x, θ) ∈ X×P, where h(x, θ) and g(x) are measurable functions of x, and

∫
g(x) dµx <∞.

Then, if h(x, θ) is lightly discontinuous over θ:

i. The moment function f(θ) = Ex[h(x, θ)] =
∫
h(x, θ)dµx is continuous.

ii. As a special case of part (i), suppose µx is a probability measure and the event
A(x, θ) can be described by the indicator function h(x, θ) = 1A(x,θ), i.e., h(x, θ) = 1

if A(x, θ) occurs and h(x, θ) = 0 otherwise. Then f(θ) = Px[A(x, θ)] = Ex[h(x, θ)] is
continuous.

Proof. See Appendix A.8.

Theorem 2 is a key result of this paper. A straightforward application is when h

is continuous, as is often the case in economic models where variables and outcomes
are continuous functions of parameters. In such cases, moments are continuous in
deep parameters, ensuring that our approximation method converges. More interest-
ingly, when h is discontinuous but its discontinuities can be described by a countable
number of functions of x−I and θ, the moments remain continuous.
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This property applies to all economic models with non-convexities. For example,
consider a neoclassical investment model with fixed adjustment costs, where capital k
is the only state variable. These models feature an (s, S) rule, where next-period cap-
ital k′ is discontinuous for low and high productivity levels z = z(k, θ) and z = z(k, θ),
respectively. Between these bounds, no investment occurs, but when productivity
crosses these thresholds, the firm discontinuously invests or disinvests. The policy
function of these models thus satisfies the light discontinuity condition of Definition
1. Thus, despite the discontinuities in the policy function k′, the moment of any con-
tinuous function of k and z will be continuous in θ, as shown by the theorem.

The intuition of the theorem is clear from the following one-dimensional example,
inspired by (s, S) rules:

Example 1. Assume x > 0 is a scalar and consider the function h(x, θ) = x1x>θ.
The discontinuities of h occur at x = θ, i.e., the set of discontinuity points can be
written as {(x, θ) | x = F1(θ)}, where the function F1 : [0,∞) → [0,∞) is given by
F1(θ) = θ. This discontinuity set is of the form introduced by Definition 1, making h

lightly discontinuous over θ. For instance, such a function h could be generated by an
investment model with fixed adjustment costs and time-varying productivity x, where
the firm only invests when productivity is sufficiently high. Theorem 2 shows that
Ex[h(x, θ)] is continuous. The reason is clear in this simple example. If G is the c.d.f. of
x, we have Ex[h(x, θ)] =

∫
θ
x dG(x), which is not only continuous but differentiable with

respect to θ. The same intuition holds for a higher number of breakpoints, provided
they are countable.

The second part of the theorem is a direct corollary of the first. If an econometri-
cian computes the probability of an event h(x, θ) > 0, this probability will be continu-
ous in θ if 1h(x,θ)>0 is lightly discontinuous over θ. The discontinuity in 1h(x,θ)>0 occurs
at the “boundary” of the region defined by h(x, θ) > 0. By crossing this boundary,
either by a jump in h or smoothly, 1h(x,θ)>0 “jumps” between 0 and 1. If this bound-
ary can be described by the form introduced in Definition 1, then 1h(x,θ)>0 is lightly
discontinuous over θ.

Consider again Example 1, but now focusing on Px[h(x, θ) > 0]. The boundary
of h(x, θ) = x1x>θ > 0 (considering the domain x > 0) is x = θ, forming the dis-
continuity set {(x, θ) | x = θ}, which satisfies Definition 1. Theorem 2 then pre-
dicts that Px[h(x, θ) > 0] is continuous, which can be verified directly by noting that
Px[h(x, θ) > 0] =

∫
θ
dG(x), a clearly continuous (and differentiable) function of θ.

Functions that are not lightly continuous are unlikely to be used in structural
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estimation. For example, consider the case where h(x, θ) = x1θ>0. In this case,
Ex[h(x, θ)] = Ex[x] · 1θ>0 is clearly not continuous in θ. Our theorem does not apply
because the function x1θ>0 is not lightly discontinuous over θ– its discontinuity occurs
for all values of x when θ = 0. However, such functions are rare in economics and
even less likely to be used in empirical analyses.

Finally, note that the continuity results in Theorem 2 hold for a broader notion of
discontinuity, as described in Appendix A.8. We focus on the more restrictive Defini-
tion 1 because it is directly applicable to economic models.

4.2 Dynamic choice models

A downside of the previous result is that it relies on characterizing the model’s output
rather than its primitives. This means the model must first be solved to show that h
is lightly discontinuous.

To characterize the model’s primitives instead, we focus on a class of dynamic
choice models for several reasons. First, these models generally lack closed-form so-
lutions and must be solved numerically, making them a natural fit for our method.
Second, they are widely used in the literature (e.g., in education (Keane and Wolpin,
1997), household finance (Gourinchas and Parker, 2002), corporate finance (Hennessy
and Whited, 2007b), etc.). Finally, our two applications below come from this class of
models.

More precisely, we consider the following class of models. Let 0 < β < 1, s ∈ Pa,
z ∈ Pz, and θ ∈ Pθ, where each of Pa, Pz, and Pθ lies in finite-dimensional Euclidean
space. The class of models is described by the following Bellman equation:

V (s, z; θ) = sup
a∈Pa

π(a, s, z; θ) + β Ez′ [V (a, z′; θ) | z],

s.t. Mi(a, s, z; θ) ≤ 0, 1 ≤ i ≤ N.
(13)

where π(·) and Mi(·) are real-valued functions defined over P2
a × Pz × Pθ. Moreover,

µz′|z is the probability measure defined over Pz corresponding to the random variable
z′ given z. The following theorem applies to cases where the model’s primitives (payoff
function, constraints) are continuous.

Theorem 3. Consider the maximization problem introduced in (13) and assume the
following conditions hold:

i. Pθ, Pz, and Pa are nonempty and compact.
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ii. Pa is convex and contains an open set.

iii. Pz is measurable and µz′|z is dominated by the Lebesgue measure.

iv. π and Mi are continuous.

v. Mi(a, s, z; θ) is convex in a.

vi. For every (s, z; θ) ∈ Pa×Pz ×Pθ, there exists a ∈ Pa such that Mi(a, s, z; θ) < 0 for
all 1 ≤ i ≤ N .

Then, there exists a unique and continuous V (·) that solves the dynamic model
in (13), and the optimal solution is attained at some a∗(s, z; θ) that satisfies the con-
straints. Moreover, if a∗(s, z; θ) is unique for every (s, z; θ) ∈ Pa × Pz × Pθ, then a∗(·) is
continuous.

Proof. See Appendix A.9.

This theorem ensures that, as long as the model’s primitives are continuous, the
value function and the optimal policy functions are continuous as well. For this the-
orem to hold, profit and constraint functions need to be continuous. Condition (v) is
typically satisfied in most problems. For instance, an equity issuance constraint in
a corporate finance model corresponds to M = −π, and since profits in these models
are continuous and concave, Condition (v) is met. Similarly, in models where debt d
is constrained by firm value, the constraints correspond to M = −λV + d, which is
convex as long as V is concave.

Theorem 3 excludes cases where M and π are not continuous, such as models with
lumpy investment costs or fixed stock market participation costs. These models fea-
ture “inaction bands” with discontinuous jumps; for instance, households may not buy
stocks unless their wealth exceeds a certain threshold, after which they invest. Such
policy functions are lightly discontinuous, as in Example 1. However, the literature
has yet to demonstrate that solutions of these models generically include inaction
bands with jumps (see, e.g., Elsby and Michaels (2019)).

5 Applications

We apply our method to two cases, examining its implementation and evaluating its
performance. We then demonstrate its usefulness in studying robustness through
identification analysis, moment selection, sample splits, and misspecification.
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5.1 Dynamic corporate finance model

5.1.1 Model, parameters and moments

We use a standard model of firm dynamics with collateral constraints, as described in
Catherine et al. (2022b). Time is discrete. Every period, the firm draws a productivity
zt, and chooses capital kt and debt dt to maximize a discounted sum of per-period cash
flows, subject to a financing constraint. The discount rate is r.

At time t, the firm’s profit is: πt = ezt(1−α)kαt . Productivity follows an AR(1) process
zt = ρzzt−1 + ηt. The variance of the innovation term ηt is σ2

z .
Investment it = kt+1−(1−δ)kt entails a convex cost γ

2

i2t
kt

, where δ is the depreciation
rate. Profits, net of interest payments and depreciation (δkt), are taxed at a rate
τ = 1/3. This tax rate applies both to negative and positive profits so that firms
receive a tax credit when their accounting profits are negative. The firm can hold
cash (when dt < 0) or issue debt (dt > 0), which is risk-free and incurs an interest rate
r.

Financing frictions arise from two constraints: (1) a collateral constraint that lim-
its borrowing dt+1 ≤ λkt+1 (2) a linear cost (ξ) of equity issuance, such that negative
cash-flows to equity are multiplied by (1 + ξ).

In total, there are seven structural parameters: θ = (δ, γ, α, ρz, σz, ξ, λ). We also
compute the “value loss of financing constraints”, which represents the difference in
the mean log value of constrained firms compared to similar unconstrained firms (i.e.,
ξ = 0).

The literature has used a variety of moments to identify these parameters. We de-
fine f as the function linking the parameters θ to a set of 17 moments used in previous
work. The first seven moments are : mean(investment/assets), mean(profit/assets),
mean(equity issuance/assets), mean(leverage), mean autocorrelation of investment,
std(log growth sales) and std(log growth 5yr sales). They correspond to the moments
used in Catherine et al. (2022b), who also discuss how they identify the model’s pa-
rameters. An additional 10 moments, used in the literature, are described in Ap-
pendix B.1. Throughout our analysis, the dataset we use is a COMPUSTAT extract
from 1971–2019.

5.1.2 Training the approximate moment function fn

We now construct the approximate moment function fn. We restrict structural param-
eters to a compact box P with the following ranges: δ ∈ [0; .2], γ ∈ [0; .3], α ∈ [.5; .9],
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ρz ∈ [.5; .98], σz ∈ [0.2; 2], ξ ∈ [0; .3] and λ ∈ [0; .6]. We generate a training dataset Dn
using a Halton sequence of n = 50, 000 parameters drawn from P. For each draw, we
solve the model, and calculate the 17 corresponding moments using simulations. This
step takes approximately 140 hours with our numerical setup.

We also generate a separate “validation” dataset of 1,000 parameters using a Hal-
ton sequence in P. Some draws leads to models that cannot be identified. For in-
stance, if the cost of equity issuance is sufficiently large, firms won’t issue any equity.
As a result, the ratio of equity issuance to assets cannot identify the cost of equity
issuance beyond a threshold. This non-identification is not specific to our approxima-
tion, i.e. the true model is also not identified for these draws.

To detect these “badly identified” draws, we compute for each draw in the valida-
tion sample (J>(θi)WJ(θi))

−1/2, where J is the Jacobian matrix of the true model and
W is the inverse of the variance-covariance matrix of the 17 moments, estimated by
bootstrapping the full sample. We then drop all draws for which one of the diagonal
elements of this matrix is 10 times larger than the standard error of the full-sample
parameter estimates (obtained through real SMM, see below).3 We end up with a
validation sample of 215 observations.

We train a neural network fn using this training data. In Appendix B.4, we com-
pare this neural network approximation to a kernel method and show that the neural
network achieves a better fit, consistent with the faster convergence of neural net-
works in high-dimensional problems (see Proposition 3). The neural network is a
Multi-Layer Perceptron (MLP) with 5 layers and 512,256,128,64,32 nodes. Imple-
mentation details are in Appendix B.3. This architecture is more complex than in
proposition 3, as deep NNs have been shown to converge faster when the target func-
tion f is smooth enough (Farrell et al., 2021), especially for larger dimensions.

5.1.3 Approximate moment estimation: performance

To validate our approach, we use two methods: (1) comparing the approximate es-
timates to the true parameters using the validation sample and (2) comparing the
approximate estimates to actual SMM estimates on real data.

For each draw in the validation sample, we estimate the seven structural param-
eters by targeting the first seven moments described in Section 5.1.1 using the ap-
proximate moment function fn. Figure 1 shows scatter plots comparing the estimated

3While this selection criterion is somewhat arbitrary, we have experimented with alternative defi-
nitions and found that this did not affect our assessment of the estimates’ precision.
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and true parameters across all the draws. R2 values are above 95% for all parame-
ters. We also observe that some parameters are better estimated than others. This
is because, despite the filter applied to the validation sample, some draws still lead
to poorly identified models. This is in particular true for equity issuance costs, as low
equity issuance is consistent with a large range of equity issuance cost parameters.
Nevertheless, Figure 1 establishes that the method performs well overall.

Next, we compare the approximate estimates to actual SMM estimates on mo-
ments from real data. The advantage of this approach is that we know that the true
model is well-identified when matched on real empirical moments. We identify the
true SMM parameters using a standard procedure (Tik Tak algorithm): (1) we ini-
tialize the algorithm by evaluating the SMM objective at 50,000 different starting
points (2) we run Nelder-Mead optimizations at the 50 best starting points using at
most 200 function evaluations. The model is estimated by targeting the full-sample
moments shown in column 1 of Appendix Table B.1. Table 1 reports true SMM es-
timates and approximate estimates, while Appendix Table B.1 provide moment fits.4

Table 1 shows that true and approximate parameter estimates are all within a few
percentage points of each other. Line 3 applies the approximation error correction
from Section 3.3, which further reduce the bias of the approximate estimate.

5.1.4 Identification diagnostic

Our method can also assess how moments affect parameter estimates, a computation-
ally intensive task requiring re-estimating the model for many different values of the
targeted moments.

For brevity, Figure 2 illustrates this approach by focusing on a specific moment,
the volatility of 5-year sales growth. The yellow line shows how this simulated mo-
ment changes as a function of the different parameters. This is the typical “compara-
tive static” figure reported in structural work. In contrast, the blue line corresponds
to our identification diagnostic: we re-estimate the model many times by targeting
many possible values for the volatility of 5-year sales growth and report the relation
between the approximate parameter estimates and the targeted moment values. Ev-
ery point on the blue line thus corresponds to a different estimation. The red line

4Appendix Figure B.2 shows that our approach is faster than the standard SMM by several orders
of magnitude. The computing times we report exclude the simulation of the training sample, which is
long but required for both estimations. For the true SMM, it takes an additional 17 minutes for the
estimation to converge to its final value. In contrast, the approximation-based estimation converges in
less than a second (provided the NN has been estimated).
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Figure 1: Out-of-sample Performance
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Notes. This figure shows the precision, in the validation sample, of our benchmark approximate SMM across estimated param-
eters. For each draw θ, f(θ) in the validation sample, we use neural nets to construct the approximate moment function fn and
estimate parameters θ̂n. The x-axis reports the true parameters θ, and the y-axis reports the estimated parameters θ̂n.
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Table 1: Parameter Estimates: true vs. approximate SMM
ρz σz γ λ ξ α δ value loss

true SMM .7178 1.1566 .0413 .1087 .0378 .8155 .0670 .0250
- s.e., local deriv. .0068 .0508 .0024 .0030 .0021 .0074 .0008 .0019

approx. SMM .7270 1.1413 .0439 .1070 .0378 .8141 .0669 .0254
- s.e., local fit deriv. .0070 .0560 .0024 .0029 .0017 .0082 .0008 .0018

approx. SMM, corrected .7179 1.1569 .0412 .1087 .0381 .8158 .0671 .0252
- s.e., local fit deriv. .0065 .0525 .0022 .0030 .0016 .0077 .0008 .0017

Notes. The table reports parameter estimates of the corporate finance model presented in Section 5.1.1. The first line corre-

sponds to parameter estimates using a standard SMM technique (as described in the text). The second line shows parameter

estimates using NN fit as approximate moment function. The third line shows the approximate SMM estimates, corrected using

the approximation error formula from Section 3.3. ‘s.e., local deriv.’ corresponds to the standard errors of the true SMM param-

eters, calculated using the Jacobian matrix of the true model f . ‘s.e., local fit deriv.’ corresponds to the standard errors of the

approximate SMM parameters, calculated using the Jacobian matrix of the approximate moment function fn. We use the delta

method to calculate the standard error of value loss.

shows the local linear approximation from Andrews et al. (2017), which corresponds
to a linearized version of our technique around the SMM estimate and does not re-
quire re-estimating the model.

Figure 2 illustrate the advantages of our methodology. First, the standard “com-
parative static” figure reported in the literature can be misleading. For instance, the
yellow line on the top-right panel shows that a larger volatility of TFP shocks (σz) in-
creases the volatility of 5-year sales growth. One could use this analysis to conclude
that samples with larger volatility of 5-year sales growth would lead to infer a higher
σz. This conclusion would be incorrect. The blue line on the same panel shows that a
higher volatility of 5-year sales growth instead leads to infer a lower σz. The reason
for this discrepancy is that the “comparative static” approach ignores that parameter
estimates jointly depend on all targeted moments. This is easily seen in our context.
For a given volatility of 1-year sales growth, a larger volatility of 5-year sales growth
implies that TFP shocks are more persistent (i.e., a higher ρ, as shown in the top-left
panel). Because TFP persistence is higher, capital becomes more responsive to TFP
shocks, which, in turn, increases the volatility of 1-year sales growth. To match the
data, the model then needs to reduce σ, the volatility of TFP shocks.

Second, Figure 2 also illustrates that the local linear approximation in Andrews
et al. (2017) can fail to hold outside of a close vicinity of the actual moments used in
the estimation. For instance, consider the case where the volatility of 5-year sales
growth was 80%, instead of its empirical value of 58%. The linear approximation on
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Figure 2: Relationship between parameters to 5-year growth volatility
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Notes. This figure plots parameter values on the y-axis and the volatility of 5-year sales growth on the x-axis. The yellow line
draws local comparative statics, i.e. how variations in one parameter around its estimated value – holding other parameters
fixed at their estimated value – affect the moment value. The blue line plots how variations in the moment value – holding other
moments fixed at their empirical value – affect the estimation of each parameter. For each new set of moment, parameters are
re-estimated using our approximation technique. The red line is the local approximation of Andrews et al. (2017). The black
vertical line shows the value of the moment in the data.
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the red line suggests that the collateral constraint parameter (λ) would be close to
the one we estimate in the main estimation, leading to the conclusion that financial
constraints would be about the same in this alternative sample. Our diagnostic shows
instead that λwould be then about twice larger, suggesting instead significantly lower
financial constraints.

5.1.5 Robustness to moment selection

Methods of moments do not provide guidance on which moments to target in estima-
tion. We can however use our approximation approach to evaluate the robustness of
parameter estimates to moment selection. Conceptually, this is straightforward: we
consider many combinations of possible targeted moments and re-estimate the model
for each combination. Robustness is established if parameter values remain stable
across most estimations. This robustness exercise cannot be done with standard es-
timation techniques, as it requires many estimations. Our approximation approach
makes this feasible at low computational cost.

Concretely, we re-estimate our model by targeting both (a) the 7 moments used
in our baseline and (b) any possible subset of the remaining 10 moments. This re-
quires 210 = 1, 024 separate estimations. Of these, we only consider estimations that
correspond to reasonably well-identified sets of moments. We drop cases where the
standard errors for an estimated parameter is more than 10 times larger than the
standard error of the baseline true SMM.5 This leaves us with 722 estimations. Fig-
ure 3 reports the distribution of parameter estimates. The solid black lines corre-
spond to the baseline estimates and dashed lines show the 95% confidence interval. A
baseline estimate robust to moment selection would have a large share of alternative
estimates close to the baseline value.

Most parameter estimates for this model are not robust to moment selection. For
instance, the estimated variance of innovations to z, σz, which has a benchmark es-
timate of 1.1, admits a wide range of alternative estimates – from 0.4 and 1.1 – de-
pending on which moments are targeted in the estimation. We also see that in many
alternative estimations, the parameter estimate for σz hits its upper bound of 1.5.
Similar conclusions are obtained for all parameters.

5As before, we compute standard errors through the classic SMM formula (J ′WJ)−1/2, using as
weight matrix the inverse of the variance-covariance matrix of empirical moments.
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Figure 3: Histogram of estimates across 722 sets of targeted moments (Corporate
Finance Model)

Notes. This figure explores the sensitivity of parameter estimates to moment selection. Our baseline estimation targets
seven moments (mi)i∈{1..7}. We consider a set of 10 additional moments used in the literature to estimate similar models:
(mi)i∈{8..17} described in Section 5.1.2. We construct all possible sets of moments that contain the seven baseline moments and
any combination of the 10 additional moments. These sets of moments are then used as targeted moments in an approximate
SMM. This results in 1,024 sets of parameter estimates. After dropping cases where estimates are poorly-identified – where the
standard errors for an estimated parameter is more than 10 times larger than the standard errors of the baseline estimate –
we end up with 702 estimates. Each panel in the figure shows the distribution of parameters across these 702 estimations. The
vertical black line and dashed lines show the baseline parameter estimates, together with their 95% confidence interval.
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5.1.6 Sample splits

Our method also allows for re-estimating the model across subsamples, a common
practice in reduced-form analysis but computationally expensive for structural mod-
els. Such sample splits can be useful as they can help test for specific mechanisms or
identify useful trends in the data.

Figure 4 shows time-varying estimates of parameters: every year t, we re-estimate
the model by targeting moments estimated over the [t− 5; t+ 4] period. This analysis
reveals interesting trends. For instance, the collateral constraint parameter λ goes
from .2 in the 1970s to close to 0 in the 2000s. One explanation is the well-documented
increase in cash holdings over this period (Bates et al., 2009): a reduction in net
leverage leads the model to believe that firms are more financially constrained and
that the collateral parameter λ is thus smaller. Similarly, the estimated depreciation
rate steadily declines from 8% to 4%. One possible explanation is the rise in intangible
capital over the period (Crouzet and Eberly, 2018). As the model does not feature
intangible capital, a reduction in physical investment rate can only be attributed to a
decline in depreciation rate.

5.2 Model Misspecification

Finally, we explore model misspecification by simulating alternative models and re-
estimating the baseline model using moments generated from these alternatives. The
baseline estimate will be robust to misspecification if it is close to these alternative
estimates. This approach is similar to Catherine et al. (2022b).

We illustrate our approach in the context of the recent corporate finance literature,
which shows that financial constraints often take the form of cash-flow constraints
rather than collateral constraints (e.g. Lian and Ma (2021), Greenwald (2019)). Our
objective is to assess the robustness of the baseline estimates to this particular source
of misspecification.

To do so, we augment the baseline model of Section 5.1.1 to introduce this new
channel. We rewrite the debt constraint as: dt < λkt + λ2.E[ezt(1−α)]kαt . We then sim-
ulate 40 versions of this alternative model, where baseline parameters are the base-
line estimates of Table 1, and λ2 increases uniformly from 0 (no misspecification) to 2
(large misspecification). This provides us with 40 sets of alternative moments.

We then estimate the baseline model (i.e., the model with λ2 = 0) 40 separate
times by targeting these 40 different sets of moments. Figure 5 plots the estimated
value loss from financing constraints (y-axis) against the value of λ used to simulate
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Figure 4: Time Series Estimates (Corporate Finance Model)
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Notes. This figure shows the sensitivity of parameter estimates to the sample period used to compute the targeted moment.
For each year t on the x-axis, we compute the seven baseline moments (mi)i∈{1..7} on the sample period [t − 5, t + 4]. We
then re-estimate the model using the benchmark approximate SMM that targets the moments measured for this sub-period.
The y-axis reports the resulting parameter estimates and their 95% confidence interval. The horizontal solid and dashed red
lines corresponds to the baseline estimates obtained when computing moments on the entire sample, together with their 95%
confidence interval.
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the targeted moments (x-axis). The black line corresponds to the actual value loss of
financing constraints in the correctly-specified model with both collateral and cash-
flow constraints, which intuitively decreases as λ2 increases.

Figure 5: Model Mispecification: Estimating Model with Collateral Constraints on
Data Generated by Cash-flow Constraints (Corporate Finance Model)
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Notes. This figure explores the sensitivity of estimation to model misspecification. We consider an augmented version of our
corporate finance model where firms can pledge a multiple λ2 of their EBITDA so that their debt constraint takes the form
dt < λkt + λ2.E[ezt(1−α)]kαt . We assume that the correctly specified model is the augmented model where the baseline param-
eters are set to their estimated value in Table 1 and λ2 takes various values from 0 (the baseline model) to 2. For each possible
value of λ2, we re-estimate the baseline parameter values using the mis-specified model that targets these moments (simulated
with the correctly-specified model). The x-axis plots the values of λ2 used in each estimation. The blue circles report the value
loss from financial constraint estimated with the approximation to the misspecified model while we target moments generated
by the correctly-specified model. The black line reports the value loss from financial constraint in the correctly-specified model.

Figure 5 shows that estimates of value loss (from financial constraints) are robust
to values of λ2 below 0.6. However, as λ2 increases, the misspecified model wrongly
infers increasing value losses (while the true value losses are in fact going down).
A simple explanation is that as λ2 increases, firms can avoid issuing equity and the
average equity to asset ratio in the economy goes down. The baseline model infers
from this reduced equity issuance that the costs of equity issuance is going up, which
leads to a large value loss from financial constraint. This analysis illustrates how we
can leverage our methodology to evaluate the effect of specific model misspecification.

5.3 Dynamic portfolio choice model

We now apply our method to a life-cycle portfolio choice model.
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5.3.1 Model description

The model is a variation of Catherine et al. (2022a), excluding housing investment.
Households choose between investing in a risk-free asset and the stock market over
their life cycle. Compared to Viceira (2001) and Cocco et al. (2005), the model includes
countercyclical income risk (as in Guvenen et al. (2014)) and a realistic Social Security
system. Details on labor income, stock market, and Social Security specifications are
in Appendix C.1.

Given processes for labor, capital and social security incomes, the agent maximizes
the discounted sum of utilities from consumption Ct:

Vt0 = E
T∑
t=t0

βt−1

(
t−1∏
k=0

(1−mk)

)
C1−γ
t

1− γ
, (14)

where γ is the coefficient of relative risk-aversion, mk the mortality rate at age k, β
the subjective discount factor and T the maximum lifespan. Mortality rates and age
of death are calibrated. Short selling or leveraging the stock market is not allowed,
so that the wealth share of equity is between 0 and 1. Finally, owning any equity at
date t costs Φ times the macro component of wages (see Appendix C.1 for details).

With other parameters calibrated, we estimate three model parameters: the dis-
count factor β, risk aversion γ, and the cost of owning equity Φ (θ = (γ, β,Φ)).

As in Catherine et al. (2022a), parameter estimation is based on matching three
moments from the Survey of Consumer Finances (1989–2016): (1) the wealth-to-labor
income ratio, (2) the percentage of households holding equity, and (3) the stock share
of wealth among equity holders. The construction of these moments is explained in
Appendix C.2, and their role in identifying θ is discussed in Catherine et al. (2022a).

5.3.2 Training the aproximate moment function fn

Similar to the corporate finance model, we build a training sample to train the ap-
proximate moment function fn. The sample contains 1,992 random parameter draws
θi and the corresponding moments f(θi) obtained by simulating the model. We also
construct a validation sample of 106 well-identified parameter values to evaluate the
precision of the approximation fn. Exact details about the construction of these sam-
ples are provided in Appendix C.3. Note that the training and validation samples are
smaller than in our corporate finance example, so we can assess the effect of sample
size on our methodology.
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Next, we train the approximate moment function fn using the training sample and
a neural network (a 5-layer MLP with 256, 128, 64, 32 and 16 nodes).

The results are similar to the corporate finance model, as shown in Figure 6, the
counterpart to Figure 1. For each draw in the validation sample, the scatter plot
compares the true parameters (x-axis) to the parameters estimated using fn (y-axis).
The out-of-sample R2 is above 95% for all three parameters. Appendix C.4 shows
that the kernel smoother performs as well as the deep NN in this application. This
can be due to the lower-dimensional setting (3 parameters) or possibly to the smaller
training sample, which may reduce the relative precision of the NN.

Figure 6: Performance of Estimation using Benchmark Approximation (Household
Finance Model)
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Notes. This figure shows, for the household finance model, the precision, in the validation sample, of our benchmark approxi-

mate SMM across estimated parameters. For each draw θ, f(θ) in the validation sample, we use neural nets to construct the

approximate moment function fn and estimate parameters θ̂n which match f(θ). The x-axis reports the true parameters θ,

while the y-axis reports the estimated parameters θ̂n.

As in the corporate finance application, we also test our method on real data, using
the three core empirical moments from the SCF (see Appendix C.2). We estimate
parameters using (1) standard SMM, (2) the approximate NN moment function, and
(3) the approximate moment method corrected with the error estimate formula from
(3).

Table 2 shows that the approximate estimates are close to the standard SMM
estimates.6 Both approaches give similar values for risk-aversion (γ about 8.3) and
discount factor (β about .91). The participation cost Φ is estimated at .0053 in the

6In Appendix C.5, we also show that the approximate method is orders of magnitude faster than
running the true SMM.
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Table 2: Parameter Estimates: true vs. approximate SMM

γ β Φ

true SMM 8.328 0.9106 0.0053
- s.e., local deriv. 0.064 0.0021 0.0002

approx. SMM 8.621 0.9048 0.0056
- s.e., local fit deriv. 0.083 0.0024 0.0003

approx. SMM, corrected 8.371 0.9098 0.0052
- s.e., local fit deriv. 0.077 0.0023 0.0003

estimation, lower bound 1.01 0.5 0
estimation, upper bound 20 1 0.25

Notes. This table reports the parameter estimates of the household finance model presented in Section C.1. We report parameter

estimates using the true SMM (first line), the benchmark approximate SMM (second line), and the approximate SMM corrected

with the first-order error estimate (third line). The benchmark approximation is a neural net. γ is risk-aversion. β is the

subjective discount factor. Φ is the participation cost.

true SMM, and .0056 in the approximate SMM, a small economic difference of about
$50 a year. The third line confirms that the approximation error formula (3) usefully
corrects the approximate SMM.

5.4 Identification Diagnostic

Figure 7, analog to Figure 2, shows how changes in targeted moments affect esti-
mated parameters (blue line). This analysis is made possible by the low computa-
tional cost of the approximate SMM. There are nine figures, one for each moment-
parameter pair. The figure includes nine panels, each representing a moment-parameter
pair.

Similar takeaways emerge from this analysis. First, relying on local comparative
statics from f(θ) can be misleading. For instance, in the top left panel, comparative
statics suggest that higher mean wealth leads to increased risk aversion (yellow line),
as more risk-averse households save more. However, the actual estimation (blue line)
shows the opposite: holding the participation rate and equity share constant, the
model needs to reduce risk aversion to match higher household savings and equity
investment.

Second, the linear approximation from Andrews et al. (2017) can fail when con-
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Figure 7: Sensitivity of Parameters to Moments (Household Finance Model)
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B. Participation rate
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C. Mean Conditional equity share
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Notes. This figure plots parameter values on the y-axis and the value of moment on the x-axis. Panel A (resp. B and C)
corresponds to mean wealth) (resp. participation rate and conditional equity share). The yellow line draws the function f(θ) –
moments as functions of parameter values. The blue line plots how variations in moment values – holding other moments fixed
– affect parameter estimates. Each dot on the blue line corresponds to a separate estimation. Finally, the red line corresponds
to the local linear approximation of the blue line around the parameter estimates, i.e. the “sensitivity matrix” of Andrews et al.
(2017). The black vertical line indicates the value of a moment in the data.
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sidering moment values that differ significantly from their empirical values. For ex-
ample, an equity share of 0.6 (instead of 0.35 in the SCF) would lead to inferring a
risk-aversion of 5 in actual estimation; the linear approximation would lead to esti-
mate it at 2 instead.

5.5 Robustness to Moment Selection

As in our corporate finance application, we analyze the robustness of parameter esti-
mates to moment selection. To do this, we expand our set of moments from the initial
three to include an additional 64 moments. The first group of four moments deals
with normalization and non-normality: (1) median wealth, (2) median conditional
equity share, (3) an alternative definition of mean conditional equity share, normal-
ized by financial wealth rather than net worth, and (4) the median of this alternative
conditional equity share. The first two moments address the fat upper tails of stock
holdings and total wealth, while the last two adjust for differences between net worth
and financial wealth, which are identical in the model but not in the data.

The second group consists of 60 moments, which are the baseline moments (mean
wealth, stock participation, and equity share) broken down by 20 age groups, ranging
from ages 23–25 to 80–82.7 The procedure is explained in detail in Catherine (2021).

We then re-estimate the model using 72 alternative sets of moments. Unlike the
corporate finance case, where all combinations were explored, the portfolio choice
model cannot simultaneously match equity shares normalized by both total wealth
and financial wealth. Thus, we focus on the following moment combinations:

• 12 combinations of the three baseline moments: (a) mean wealth (overall or by
age group), (b) mean participation (overall or by age group), and (c) mean equity
share (overall, by age group, or normalized by financial wealth).

• 36 combinations that add either (a) median wealth, (b) median equity share, or
(c) median equity share normalized by financial wealth to the previous 12.

• 24 combinations that add both median wealth and one of the two median equity
share measures to the previous combinations.

Figure 8 shows the distribution of parameter estimates across all 72 sets of mo-
ments. Most combinations produce consistent risk-aversion estimates, with the dis-

7We compute the life-cycle of unconditional equity share, instead of conditional equity share, as the
model often returns zero participation for some age groups, making the conditional mean equity share
undefined.
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tribution peaking at 6–7, although this peak is substantially lower than the baseline
estimate of 8.5. The discount factor (β) estimates range from 0.9 to 0.96, closely clus-
tering around the baseline estimate of 0.93. For participation costs, the distribution
peaks at 0, significantly lower than the baseline estimate of 0.005.
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Figure 8: Histogram of estimates across 72 sets of targeted moments (Household
Finance Model)

Notes. This figure explores the sensitivity of parameter estimates to moment selection. Our baseline estimation targets three
moments (mi)i∈{1..3}. We consider 72 alternative set of moments described in Section 5.5. Each panel in the figure shows the
distribution of parameters across these 72 estimations. The vertical black line and dashed lines report the baseline parameter
estimates, together with their 95% confidence interval.
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6 Conclusion

This paper presents a fast and straightforward method for conducting robustness
checks and identification diagnostics in structural estimation. Our approach involves
estimating an approximation of the relation between model parameters and moments
using a training dataset. Once this approximation is fitted, it allows for the rapid
estimation of structural parameters. In our two applications—corporate finance and
household finance models—we demonstrate that this ”approximate SMM” drastically
reduces computational costs compared to standard SMM methods, with minimal loss
of precision.

This reduction in computational burden opens up three important exercises that
were previously challenging to conduct. First, we can now easily assess parameter
robustness to moment selection. Second, sample-split analyses become feasible, al-
lowing for quicker assessments of model robustness and validity across different sub-
samples. Lastly, the approximate SMM enables us to explore the sensitivity of base-
line estimates to misspecification bias. By simulating various alternative models, we
can evaluate how deviations from the baseline model affect parameter estimates.
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A Proofs
In this section, we provide the mathematical proofs of the statements in the main body of the paper.
We begin by outlining the necessary conventions, definitions, and elementary facts in Appendix A.1.
Next, in Appendix A.2, we present lemmas and their proofs, which are used to establish the statements
in the subsequent sections.

A.1 Preliminaries

A.1.1 Conventions

Unless otherwise deducible from the context, we assume that each set mentioned in this section lies
in some finite-dimensional Euclidean space. The transpose operation is denoted by ·>. If x ∈ Rd,
we consider x as a column vector, i.e., x is d × 1. The probability of an event A with respect to the
randomness of x is denoted by Px[A] or simply P[A], and the expectation of a function g(x) of the random
variable x is denoted by Ex[g(x)] or simply E[g(x)]. The set of positive integers is denoted by N, and the
set of real numbers by R. The set difference is denoted by A \B, defined as A \B = {x ∈ A | x /∈ B}.
The Cartesian product of sets is denoted by A× B, and A2 = A× A. The volume of a set A is denoted
by vol(A). The minimum and maximum of finitely many real numbers are denoted by min(r1, . . . , rn)

and max(r1, . . . , rn), respectively.

A.1.2 Definitions

1. Indexed sequences: We consider sequences of objects like {ak}k∈N, where the corresponding
index set N ⊆ N has infinitely many elements. When it is clear from the context, we omit the
index set and simply refer to the sequence as ak. Moreover, the corresponding convergence is
considered based on N. For instance, when the elements ak are vectors in Rd, the convergence
of ak to a, denoted by ak → a, simply means that for every ε > 0, there exists N ∈ N such that for
every k ∈ N with k ≥ N , we have ‖ak − a‖2 < ε. If this does not hold, we write ak 9 a.

2. Extended real system: We consider R = R∪{−∞,∞} = [−∞,∞]. The corresponding extended
arithmetic and conventions can be found in Rockafellar and Wets (2009, Chapter 1).

3. Minimizers and maximizers: For h : Rd → R, note that inf h and suph always exist in R.
Moreover, the set of minimizers and maximizers of h are defined as:

arg minh = {x ∈ Rd | h(x) = inf h}, arg maxh = {x ∈ Rd | h(x) = suph}. (A.1)

4. Neighborhood of infinity: Define:

N∞ = {N ⊆ N | N \N is finite}, N#
∞ = {N ⊆ N | N is infinite}. (A.2)

5. Properness: A function h : Rd → R is called proper if there exists x ∈ Rd such that h(x) < ∞
and, for all x ∈ Rd, we have −∞ < h(x).

6. Level sets: For a real-valued function h : X → R and α ∈ R, the level set of h corresponding to
α is defined as lev≤α h = {x ∈ X | h(x) ≤ α}.
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7. Level-boundedness: A sequence of functions {hi}i∈N, with hi : X → R, is called eventually
level-bounded if there exists N ∈ N∞ such that for every i ∈ N, hi is level-bounded, i.e., for every
α ∈ R, the level set lev≤α h is bounded (possibly empty).

8. Painlevé-Kuratowski convergence of sets: (Rockafellar and Wets, 2009, Definition 4.1) Con-
sider the sequence of sets {Ci}i∈N, with the notions of lim infiCi and lim supiCi defined as:

lim sup
i→∞

Ci =
{
x | ∃N ∈ N#

∞, ∃xk ∈ Ck for k ∈ N, with xk → x
}
, (A.3)

lim inf
i→∞

Ci = {x | ∃N ∈ N∞, ∃xk ∈ Ck for k ∈ N, with xk → x} . (A.4)

Then {Ci}i∈N is said to converge to C if C ⊆ lim infi→∞Ci and lim supi→∞Ci ⊆ C, or equiva-
lently C = lim infi→∞Ci = lim supi→∞Ci. In such a case, we write Ci → C.

9. Kuratowski continuity of set-valued functions: (Equivalent to Rockafellar and Wets (2009,
Definition 5.4)) Consider a set-valued function P(x), where x ∈ Rd and P(x) ⊆ Rk, and let
X ⊆ Rd. Then P(x) is called outer semi-continuous at x0 ∈ X relative to X if, for every sequence
{xi}i∈N in X with xi → x0, we have lim supi→∞P(xi) ⊆ P(x0). It is inner semi-continuous if
P(x0) ⊆ lim infi→∞P(xi).

P(x) is called continuous at x0 ∈ X relative to X if it is both outer and inner semi-continuous at
x0 relative to X. This is equivalent to having P(xi)→ P(x0) (in the Painlevé-Kuratowski sense)
for every sequence {xi}i∈N in X with xi → x0. If P(x) is (outer semi- or inner semi-) continuous
at every x0 ∈ X relative to X, then P(·) is (outer semi- or inner semi-) continuous relative to X.

10. Graph of set-valued functions: Consider a set-valued function P(x), where x ∈ Rd and P(x) ⊆
Rk. The graph of P is defined as gphP = {(x, u) ∈ Rd × Rk | u ∈ P(x)}.

11. Inverse image under set-valued functions: Consider a set-valued function P(x), where x ∈
Rd and P(x) ⊆ Rk. The inverse image of a subset Y ⊆ Rk is defined as P−1(Y) = {x ∈ Rd |
P(x) ∩Y 6= ∅}.

12. Open and closed balls: Given θ0 ∈ Rd and r > 0, the open and closed balls around θ0 with
radius r are denoted by B(θ0, r) and B̄(θ0, r), respectively, and are defined as follows:

B(θ0, r) = {θ ∈ Rd | ‖θ − θ0‖2 < r}, B̄(θ0, r) = {θ ∈ Rd | ‖θ − θ0‖2 ≤ r}. (A.5)

13. Diameter of sets: Let C ⊆ Rd. The diameter of C is defined as diam(C) = supx,y∈C ‖x− y‖2.

14. Preimages: For a function h : X → Y and B ⊆ Y, the preimage of B under h is defined as
hpre(B) = {x ∈ X | h(x) ∈ B}.

15. Supremum norm on functions: For a real-valued function h : X → R, the supremum norm
‖ · ‖∞ is defined as ‖h‖∞ = supx∈X |h(x)|.

16. Epigraphs: For h : Rd → R, the epigraph of h is defined as epih =
{

(x, α) ∈ Rd × R | α ≥ h(x)
}

.

17. Cluster points: A point a is called a cluster point of the sequence ai if there exists a subsequence
of ai that converges to a.

18. Interior of sets: For A ⊆ Rd, the interior of A, denoted by int(A), is the union of all subsets of
A that are open in Rd.

45



19. Absolute continuity (dominance) of measures: Consider measures µ and ν on the same
measurable space (X,F). Then, µ is dominated by ν (or absolutely continuous with respect to ν),
denoted by µ� ν, if for every A ∈ F , ν(A) = 0 implies that µ(A) = 0.

20. Negligible sets: Consider a measure space (X,F , µ). A set A ⊆ X is called negligible with
respect to µ (or µ-negligible) if A ∈ F and µ(A) = 0.

21. Jacobian matrices: Consider the function h : X → Rk with X ⊆ Rd. Given the existence of
an open neighborhood O ⊆ X around a, the Jacobian matrix of h at a, denoted by ∇h(a) (if it
exists), is a k× d matrix whose ij-th element is ∂hi/∂xj(a). Here, ∂hi/∂xj represents the partial
derivative of the i-th component of h with respect to the j-th element of the input.

22. Uniform convergence of functions: Consider the functions hi, h : X → Rk. The sequence
{hi}i∈N uniformly converges to h on A ⊆ X if, for every ε > 0, there exists N ∈ N∞ such that
‖hi(x)− h(x)‖2 < ε for all i ∈ N and all x ∈ A. This is denoted by hi

unif−→ h on A.

23. Integrable functions: Consider a measure µ and a function h. The function h is called inte-
grable with respect to µ, or in short µ-integrable, if it is µ-measurable and

∫
h dµ <∞.

24. Continuity of functions over topological spaces: A function h : X → Y, where X and Y are
topological spaces, is called continuous if for every open subset V ⊆ Y, the preimage hpre(V) ⊆ X
is open. Equivalently, hpre(V) is closed in X if V is closed in Y.

25. Continuity of functions over Euclidean spaces: A function h : X → Rk, where X ⊆ Rd, is
called continuous at x̄ ∈ X if for every ε > 0, there exists δ > 0 such that if x ∈ B(x̄, δ) ∩X, we
have ‖h(x)−h(x̄)‖2 < ε. Equivalently, h is continuous at x̄ ∈ X if for every sequence {xi}i∈N in X

with xi → x̄, we have h(xi)→ h(x̄). Moreover, h is called continuous on A ⊆ X if it is continuous
at every x̄ ∈ A. Finally, h is called continuous if it is continuous on X.

26. Lower semi-continuity: A function h : Rd → R is called a lower semi-continuous function if for
every x0 ∈ Rd, we have lim infx→x0

h(x) = h(x0).

27. Lipschitz continuity: A function h : X → Rk is called Lipschitz continuous if there exists a
constant L ≥ 0 such that for every x, y ∈ X, we have ‖h(x)− h(y)‖2 ≤ L‖x− y‖2. The constant L
is called the Lipschitz constant (factor).

28. Uniform continuity: A function h : X → Rk is called uniformly continuous if for every ε > 0,
there exists δ > 0 such that for every x, y ∈ X with ‖x− y‖2 < δ, we have ‖h(x)− h(y)‖2 < ε.

A.1.3 Elementary Facts

In the following, we present some elementary and well-known mathematical facts that are used
throughout the proofs. For more details on of these facts, we refer to Munkres (2000); Rudin (1953);
Rockafellar and Wets (2009); Lang (2012); Folland (1999); Kato (2013); Halmos (2013).

1. Bolzano-Weierstrass Theorem: Every bounded sequence in Rd, has a cluster point.

2. If A×B is convex then A and B are convex.

3. Compactness in Rd is equivalent to being closed and bounded. If A and B are compact sets, then
both A × B and A ∩ B are compact. Additionally, if C is a closed subset of A, then C is also
compact.
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4. A continuous function that is considered over a compact set, attains its maximum and minimum
at some points in that compact set, and consequently is bounded.

5. A continuous function over a compact set is uniformly continuous.

6. The image of a compact set under a continuous function is compact.

7. The uniform convergence of a sequence of multi-component functions holds if and only if it holds
for each component.

8. If hi and gi are sequences of bounded functions with hi
unif−→ h and gi

unif−→ g, then hi + gi and higi
are sequences of bounded functions with hi + gi

unif−→ h+ g and higi
unif−→ hg.

9. Pointwise maximization of finite number of convex function is convex.

10. Pointwise maximization of finite number of continuous function is continuous.

11. The level set of a convex function with a convex domain is a convex set.

12. The space of real-valued continuous functions over a compact set, equipped with the ‖ ·‖∞ norm,
forms a Banach space, i.e., it is a complete normed space.

13. For a real-valued function h, suppose ∇h exists and is continuous on an open subset O of the
domain of h and x0 = arg minx∈O h(x). Then ∇h(x0) = 0.

14. Taylor’s First-Order Expansion: For a continuously differentiable function h : S → Rk, where
S ⊆ Rd is open and convex, suppose x, x0 ∈ S. Then,

h(x) = h(x0) +∇h(x0)(x− x0) +O
(
‖x− x0‖22

)
. (A.6)

15. Mean Value Inequality: For a differentiable function h : S → Rk, where S ⊆ Rd is open and
convex, if ‖∇h(x)‖2 ≤ L for all x ∈ S, then h is Lipschitz continuous with Lipschitz factor L.

16. For events A and B, if A⇒ B, then P[A] ≤ P[B].

17. Dominated Convergence Theorem: Let {hi}i∈N be a sequence of real-valued measurable func-
tions on a measure space (X,F , µ) such that hi(x) → h(x) holds almost everywhere on X with
respect to µ. Moreover, assume there exists a µ-integrable function g(x) such that |hi(x)| ≤ g(x)

for every i ∈ N and x ∈ X. Then hi and h are µ-integrable and
∫
hidµ→

∫
hdµ.

18. Considering the Lebesgue measure, a countable union of negligible sets is negligible.

19. Given the function h whose domain lies in Rd1 and range in Rd2 , the graph of h, i.e., the set
{(x, y) | y = h(x)}, has zero Lebesgue measure in Rd1+d2 .

20. Consider the continuous function h(x, y), whose domain is a compact set, and the measure µx
that is defined over the domain where x lies. Moreover, assume that µx is dominated by the
Lebesgue measure. Then the mapping y 7→

∫
h(x, y) dµx is continuous.

21. A continuous function over a compact set is integrable with respect to the Lebesgue measure.
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A.2 Intermediate Proof Steps
In this section, we present and prove key formal statements that serve as intermediate steps for the
results of this paper. Collecting these steps here aims to improve organization and ensure conciseness
in the final proofs.

Theorem A.1 (Theorem 7.33 in Rockafellar and Wets (2009)). Consider hi, h : Rd → R, and suppose the
sequence of functions {hi}i∈N is eventually level-bounded, and hi and h are lower semi-continuous and
proper. Moreover, suppose we have epihi → epih (in the Painlevé-Kuratowski sense). Then inf hi → inf h

(finite), while for i in some index set N ∈ N∞, the sets arg minhi are nonempty and form a bounded
sequence, i.e.,

lim sup
i→∞

(arg minhi) ⊆ arg minh. (A.7)

Lemma A.1. Consider the sequence of sets {Ai}i∈N, where ∅ 6= Ai ⊆ A for every i ∈ N and A ⊆ Rd

is bounded. Moreover, suppose lim supi→∞Ai ⊆ {a}, where the limit is considered in the Painlevé-
Kuratowski sense. Then, for a sequence {ai}i∈N with ai ∈ Ai for each i ∈ N, we have ai → a.

Proof of Lemma A.1. First, observe that lim supi→∞Ai 6= ∅ because Ai 6= ∅ and thus there exists
ai ∈ Ai ⊆ A for i ∈ N. Therefore, the sequence {ai}i∈N is bounded and has a cluster point in Rd due
to the Bolzano-Weierstrass Theorem (see item 17 of Appendix A.1.2 and item 1 of Appendix A.1.3).
Note that any cluster point of {ai}i∈N lies in lim supi→∞Ai by the definition provided in item 8 of
Appendix A.1.2, and thus lim supi→∞Ai 6= ∅. Hence, lim supi→∞Ai = {a}.

Consider {ai}i∈N with ai ∈ Ai. To prove ai → a, by contradiction suppose ai 9 a (see item 1 of
Appendix A.1.2). This means there exists ε > 0 and N ∈ N#

∞ such that ‖ak − a‖2 ≥ ε for all k ∈ N.
On the other hand, note that {ak}k∈N is a bounded sequence and thus has a cluster point in Rd due

to the Bolzano-Weierstrass Theorem. This cluster point lies in lim supi→∞Ai = {a} by definition and is
therefore a. This means {ak}k∈N has a subsequence that converges to a, which contradicts ‖ak−a‖2 ≥ ε
for all k ∈ N, as obtained above.

Lemma A.2. Suppose A ⊆ Rd is compact and convex, and intA 6= ∅. Then, for every a ∈ A\ intA, there
exists a sequence {an}n∈N in intA such that an → a.

Proof of Lemma A.2. Since intA 6= ∅, there exists a0 ∈ intA. Let e1, . . . , ed denote the unit vectors
parallel to the d standard axes. Since intA is open, there exist numbers αk > 0 for 1 ≤ k ≤ d such that
bk = a0 + αkek ∈ intA for 1 ≤ k ≤ d. Note that a 6= bk because bk ∈ intA, while a ∈ A \ intA. Next,
define the following convex cone:

C =

a+

d∑
j=1

tj
d

(bj − a)
∣∣ tj ∈ [0, 1] for 1 ≤ j ≤ d

 . (A.8)

Due to the convexity of A, we have C ⊆ A. Therefore, intC ⊆ intA. By letting tj = 1/n, observe that
an = a+

∑d
j=1(bj − a)/nd ∈ intC ⊆ intA, and an → a.

Lemma A.3. (An extension of Rockafellar and Wets (2009, Example 5.10)) Consider nonempty sets
X ⊆ Rd, A ⊆ Rk, and the functions gi : A × X → R for 1 ≤ i ≤ N . Define the set-valued function
P(x) ⊆ Rk with x ∈ Rd, where for x /∈ X, we have P(x) = ∅, and for x ∈ X:

P(x) = {a ∈ A | gi(a, x) ≤ 0, for all 1 ≤ i ≤ N}. (A.9)
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Suppose the following conditions hold:

i. X is compact.

ii. A is compact and convex with int(A) 6= ∅.

iii. gi is continuous.

iv. gi(a, x) is convex in a.

v. For every x ∈ X, there exists a ∈ A such that gi(a, x) < 0 for all 1 ≤ i ≤ N .

Then P(·) is continuous relative to X (in the Kuratowski sense), and P(x) is a nonempty and closed
subset of A for every x ∈ X.

Proof of Lemma A.3. Define g(a, x) = max(g1(a, x), . . . , gN (a, x)) and observe that g is continuous and
g(a, x) is convex in a (see items 9 and 10 of Appendix A.1.3). Moreover, g(a, x) ≤ 0 holds if and only if
gi(a, x) ≤ 0 holds for every 1 ≤ i ≤ N , and a similar statement is true for g(a, x) < 0. Hence, we can
rewrite P(x) for x ∈ X as follows:

P(x) = {a ∈ A | g(a, x) ≤ 0}. (A.10)

Moreover, note that the graph of P (defined in item 10 of Appendix A.1.2) is:

gphP = {(x, a) ∈ Rd × Rk | a ∈ P(x)} = {(x, a) ∈ X×A | g(a, x) ≤ 0}. (A.11)

To prove that P is continuous relative to X (in the Kuratowski sense), it suffices to show that it is both
outer and inner semi-continuous relative to X (see item 9 of Appendix A.1.2). With this in mind, the
proof is presented through the following steps:

Step 1. Proving P(x) is nonempty, convex, and a closed subset of A for every x ∈ X:
Suppose x ∈ X. Then, P(x) is nonempty due to item (v) of the assumptions. Additionally, P(x) is
the preimage of the closed set (−∞, 0] under the continuous mapping a 7→ g(a, x) and is therefore a
closed subset of A (see item 24 of Appendix A.1.2). Moreover, P(x) is the level set of a convex mapping
a 7→ g(a, x) over the convex domain A, and thus P(x) is a convex set (see item 11 of Appendix A.1.3).

Step 2. Proving P is outer semi-continuous relative to X:
gphP in (A.11) is the preimage of the closed set (−∞, 0] under the continuous mapping (x, a) 7→ g(a, x)

and thus is a closed subset of X × A. Since X × A is compact, gphP is compact (see item 3 of Ap-
pendix A.1.3).

From Step 1, P(x) is closed in the compact set A and is thus compact and consequently closed in Rk.
Therefore, P is a closed-valued mapping. According to Rockafellar and Wets (2009, Theorem 5.7(b)),
a closed-valued mapping P is outer semi-continuous relative to X if and only if, for every compact set
B ⊆ Rk, its inverse image P−1(B) (defined in item 11 of Appendix A.1.2) is a closed subset of X.

As a result, it suffices to prove that P−1(B) is compact. To this end, let Proj : Rd ×Rk → Rd denote
the projection mapping of (x, a) onto x, i.e., Proj(x, a) = x. Using this notation, we have:

P−1(B) = Proj ( gphP ∩ X×B ) . (A.12)
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Note that gphP ∩ X×B is compact because both X×B and gphP are compact. Moreover, projection
is a continuous mapping. Therefore, P−1(B) in (A.12) is the image of a compact set under a continuous
mapping and is thus compact (see item 6 of Appendix A.1.3).

Step 3. Finding intP(x̄) and proving intP(x̄) 6= ∅ for all x̄ ∈ X:
Suppose x̄ ∈ X. Then, the following holds due to the continuity of the mapping a 7→ g(a, x̄):

intP(x̄) = {a ∈ intA | g(a, x̄) < 0} ∪ int ({a ∈ A | g(a, x̄) = 0}) = {a ∈ intA | g(a, x̄) < 0}. (A.13)

Note that the rightmost equality in (A.13) holds because int{a ∈ A | g(a, x̄) = 0} = ∅. To see why
this is true, suppose by contradiction that there exists an open set O ⊆ A such that g(a, x̄) = 0 for all
a ∈ O. Let a1 ∈ O. From the assumptions, there is also a2 ∈ A such that g(a2, x̄) < 0. Furthermore,
there exists 0 < λ < 1 such that the point a0 = λa1 + (1 − λ)a2 also lies in O. Since a0 ∈ O, we
have g(a0, x̄) = 0. However, this contradicts the fact that, due to the convexity of g(·, x̄), we have
g(a0, x̄) ≤ λg(a1, x̄) + (1− λ)g(a2, x̄) = (1− λ)g(a2, x̄) < 0. Hence, (A.13) holds.

Due to item (v) of the assumptions, we know there exists â ∈ A such that g(â, x̄) < 0. Based on this,
we claim that intP(x̄) 6= ∅, i.e., there exists a ∈ intA such that g(a, x̄) < 0. Suppose, by contradiction,
that for every a ∈ intA, we have g(a, x̄) ≥ 0. This would imply that â ∈ A \ intA. Since A is com-
pact and convex with intA 6= ∅, we can apply Lemma A.2 and conclude that there exists a sequence
{an}n∈N in intA such that an → â. As a result, g(an, x̄) ≥ 0 for every n ∈ N. Since g is continuous,
g(an, x̄) → g(â, x̄), and thus, from g(an, x̄) ≥ 0, we conclude that g(â, x̄) ≥ 0. This contradicts the as-
sumption that g(â, x̄) < 0. Hence, the claim is proven, i.e., intP(x̄) = {a ∈ intA | g(a, x̄) < 0} 6= ∅.

Step 4. Proving P is inner semi-continuous relative to X:
Rockafellar and Wets (2009, Theorem 5.9 (a)) states that, given P is convex-valued (shown in Step 1),
to prove that P is inner semi-continuous relative to X, it suffices to show that for every x̄ ∈ X, we have
intP(x̄) 6= ∅ (shown in Step 3) and for all ā ∈ intP(x̄), there exists an open neighborhood W around
(x̄, ā) such that W ∩ (X× Rk) ⊆ gphP.

Let ā ∈ intP(x̄), with intP(x̄) obtained in (A.13). Thus, g(ā, x̄) < 0. Since (x, a) 7→ g(a, x) is a
continuous mapping over X × intP(x̄), there exists an open neighborhood W ⊆ Rd × intP(x̄) around
(x̄, ā) such that g(a, x) < 0 for all (x, a) ∈ W ∩ (X × intP(x̄)). Observe that W ∩ (X × intP(x̄)) =

W ∩ (X × Rk). Therefore, we have shown that for all (x, a) ∈W ∩ (X × Rk), we have g(a, x) < 0, and
thus (x, a) ∈ gphP. Hence, W ∩ (X× Rk) ⊆ gphP.

Lemma A.4. Consider the function f : A×X→ R and the following maximization problem:

v(x) = sup
a∈Q(x)

f(a, x), (A.14)

where Q(x) ⊆ A is a set-valued function with Q(x) = ∅ if x /∈ X. Suppose the following conditions hold:

i. A and X are nonempty and compact.

ii. f is continuous.

iii. Q(·) is continuous relative to X (in the Kuratowski sense).

iv. Q(x) is a nonempty and closed subset of A for every x ∈ X.
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Then, v(·) is continuous, and the problem (A.14) attains its optimal solution at some a∗(x) ∈ Q(x).
Moreover, if a∗(x) is unique for every x ∈ X, then a∗(·) is continuous.

Proof of Lemma A.4. Note that Q(x) is a nonempty compact set (see item 3 of Appendix A.1.3), and
thus problem (A.14) is a maximization of a continuous function over a compact set. Therefore, v(x) is
finite, and this optimal value is attained at some a∗(x) ∈ Q(x) (see item 4 of Appendix A.1.3). Hence,
it remains to prove the continuity of v(·) and a∗(·). To this end, let A ⊆ Rd1 and X ⊆ Rd2 . Denote by
δ : Rd1 ×Rd2 → R the indicator function of Q(x) similar to Rockafellar and Wets (2009, Chapter 1), i.e.,
for a ∈ Rd1 and x ∈ Rd2 , define:

δ(a, x) =

0 if x ∈ X and a ∈ Q(x),

∞ otherwise.
(A.15)

Moreover, consider an extension of −f(·) to the function h : Rd1 × Rd2 → R, where:

h(a, x) =

−f(a, x) if (a, x) ∈ A×X,

∞ if (a, x) /∈ A×X.
(A.16)

Using (A.15) and (A.16), we can rewrite the problem in (A.14) as an equivalent unconstrained mini-
mization problem as follows:

v(x) = inf
a∈Rd1

[h(a, x) + δ(a, x)] , a∗(x) ∈ arg min
a∈Rd1

[h(a, x) + δ(a, x)] . (A.17)

Consider a sequence {xi}i∈N, with xi → x0, where xi ∈ X for i ≥ 0, and let a∗i = a∗(xi), vi = v(xi),
hi(a) = h(a, xi), δi(a) = δ(a, xi), and fi(a) = f(a, xi) for i ≥ 0. To demonstrate the continuity of v(·) and
a∗(·), it suffices to show that v(xi) → v(x0) and a∗(xi) → a∗(x0), i.e., vi → v0 and a∗i → a∗0 (see item 25
of Appendix A.1.2). We will show this by applying Theorem A.1 through the following steps:

Step 1. Proving level-boundedness, properness, and lower semi-continuity of hi + δi, i ≥ 0:
Observe that δi for i ≥ 0 is proper if and only if Q(xi) is nonempty, level-bounded if and only if Q(xi)

is bounded, and lower semi-continuous if and only if Q(xi) is closed. Since A is compact and Q(xi) is a
nonempty, closed subset of A due to the assumptions, Q(xi) is nonempty, closed, and bounded.

Moreover, note that hi for i ≥ 0 is level-bounded because A is bounded, lower semi-continuous
because fi is continuous, and proper because A is nonempty.

Given this, we can first conclude that hi + δi for i ≥ 0 is proper and level-bounded, which results in
the sequence {hi + δi}i∈N being eventually level-bounded. Additionally, hi + δi for i ≥ 0 is lower semi-
continuous due to the additive property of lower semi-continuity for proper functions (Rockafellar and
Wets, 2009, Proposition 1.39).

Step 2. Proving epi(hi + δi)→ epi(h0 + δ0):
We prove this directly through the definition of Painlevé-Kuratowski convergence of sets, as mentioned
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in item 8 of Appendix A.1.2. To this end, it suffices to show both of the following inclusions:

lim sup
i→∞

(epi(hi + δi)) ⊆ epi(h0 + δ0), (A.18)

epi(h0 + δ0) ⊆ lim inf
i→∞

(epi(hi + δi)) . (A.19)

We have for i ≥ 0:
(a, β) ∈ epi(hi + δi) ⇔ (a, β) ∈ epihi, a ∈ Q(xi). (A.20)

Moreover, note that due to the continuity of Q(·) in the Kuratowski sense (item 9 of Appendix A.1.2),
we have Q(xi)→ Q(x0) (in the Painlevé-Kuratowski sense). This means:

lim sup
i→∞

Q(xi) ⊆ Q(x0), (A.21)

Q(x0) ⊆ lim inf
i→∞

Q(xi). (A.22)

Step 2–Part 1. Proving (A.18):
To prove (A.18), assuming (a, β) ∈ lim supi→∞ (epi(hi + δi)), we show (a, β) ∈ epi(h0 + δ0). Suppose
(a, β) ∈ lim supi→∞ (epi(hi + δi)). Therefore, there exists N ∈ N#

∞ and (ak, βk) ∈ epi(hk + δk) for k ∈ N

such that (ak, βk) → (a, β). From (A.20), we have (ak, βk) ∈ epihk and ak ∈ Q(xk) for k ∈ N. Hence,
we found N ∈ N#

∞ and a sequence {ak}k∈N such that ak ∈ Q(xk) for k ∈ N and ak → a. This means
a ∈ lim supi→∞Q(xi), and due to (A.21), we conclude that a ∈ Q(x0).

Next, recall that (ak, βk) ∈ epihk, which means βk ≥ hk(ak). Hence,

lim
k→∞

βk ≥ lim
k→∞

hk(ak) ⇒ β ≥ lim
k→∞

hk(ak) = lim
k→∞

h(ak, xk)
E0
= h(a, x0) = h0(a), (A.23)

where the equality E0 in (A.23) holds because (ak, xk)→ (a, x0) and h(·) is continuous on A×X. Having
β ≥ h0(a) from (A.23) means (a, β) ∈ epih0. As a result, we have shown a ∈ Q(x0) and (a, β) ∈ epih0.
By applying (A.20), we have (a, β) ∈ epi(h0 + δ0). Hence, (A.18) is proven.

Step 2–Part 2. Proving (A.19):
To prove (A.19), assuming (a, β) ∈ epi(h0 + δ0), we show (a, β) ∈ lim infi→∞ (epi(hi + δi)). Suppose
(a, β) ∈ epi(h0 + δ0). Therefore, from (A.20) we have (a, β) ∈ epih0 and a ∈ Q(x0). Due to (A.22), there
exists N′ ∈ N∞ and a′k ∈ Q(xk) for k ∈ N′ such that a′k → a. Letting β′k = max(β, hk(a′k)), we can write:

lim
k→∞

β′k = max(β, lim
k→∞

hk(a′k)) = max(β, lim
k→∞

h(a′k, xk))
E1
= max(β, h(a, x0)) = max(β, h0(a))

E2
= β, (A.24)

where the equality E1 in (A.24) holds because (a′k, xk)→ (a, x0) and h(·) is continuous on A×X. Addi-
tionally, the equality E2 holds because (a, β) ∈ epih0, i.e., β ≥ h0(a). Moreover, notice that β′k ≥ hk(a′k)

and thus (a′k, β
′
k) ∈ epihk. Recall that a′k ∈ Q(xk). Applying (A.20) then results in (a′k, β

′
k) ∈ epi(hk+δk).

Hence, we found N′ ∈ N∞ and a sequence {(a′k, β′k)}k∈N′ such that (a′k, β
′
k) ∈ epi(hk + δk) for k ∈ N′ and

(a′k, β
′
k)→ (a, β). This means (a, β) ∈ lim infi→∞ (epi(hi + δi)). Hence, (A.19) is proven.

Step 3. Proving vi → v0 and a∗i → a∗0:
Through Steps 1 and 2, we have shown that the sequence of functions {hi+δi}i∈N and its limit function
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h0 + δ0 satisfy the conditions of Theorem A.1. Hence, we conclude that vi → v0 and:

lim sup
i→∞

(arg min(hi + δi)) ⊆ arg min(h0 + δ0). (A.25)

Given the uniqueness of a∗(x) for every x ∈ X, we have arg min(hi + δi) = {a∗i } for i ≥ 0, and thus
lim supi→∞{a∗i } ⊆ {a∗0}. This leads to a∗i → a∗0 due to Lemma A.1.

Lemma A.5. Let P = [a1, b1]× . . .× [aK , bK ] ⊂ RK , with ai < bi <∞ for 1 ≤ i ≤ K. Then, there exists a
constant ξ(P) > 0 such that for all x ∈ P and all 0 ≤ r ≤ diam(P), we have:

vol (B(x, r) ∩P) ≥ ξ(P) · vol (B(x, r)) . (A.26)

Proof of Lemma A.5. Suppose r < r0 for sufficiently small r0, e.g., let r0 = 1
4 min1≤i≤K(bi − ai). Then

it is straightforward to verify that the intersection vol(B(x, r) ∩P) attains its minimum value when x

is a vertex of the box P, and this minimum value is 2−K · vol(B(x, r)) at any vertex. Hence, if r < r0,
for all x ∈ P, we have:

vol (B(x, r) ∩P) ≥ 1

2K
· vol (B(x, r)) . (A.27)

Now let:
f(x, r) =

vol (B(x, r) ∩P)

vol (B(x, r))
, (A.28)

and define ξ(P) through the following minimization problem:

ξ(P) = inf f(x, r)

s.t. x ∈ P

r ∈ [r0,diam(P)] .

(A.29)

Note that f is continuous, and thus (A.29) is a minimization of a continuous function over the compact
set F = P × [r0,diam(P)], and therefore attains its optimal solution at some point (x̄, r̄) ∈ F (see
items 3 and 4 of Appendix A.1.3). Moreover, observe that f(x, r) returns positive values on F, and thus
ξ(P) = f(x̄, r̄) > 0. Letting x0 be a vertex of P, note that (x0, r0) ∈ F, which results in:

ξ(P) ≤ f(x0, r0) =
1

2K
. (A.30)

Given x ∈ P, due to (A.29), Equation (A.26) holds for r0 ≤ r ≤ diam(P), and due to (A.27) and (A.30),
Equation (A.26) holds for r < r0. Therefore, Equation (A.26) holds for all x ∈ P and all r ≤ diam(P).

Definition A.1 (Negligible discontinuity). Consider the function h(x, y) defined over X×Y ⊆ Rd × Rk

and let D be the set of all discontinuity points of h, i.e.,

D = {(x, y) ∈ X×Y | h is discontinuous at (x, y)}. (A.31)

Moreover, let Dy0 be the cross-section of D with the space y = y0, that is:

Dy0 = {x ∈ X | (x, y0) ∈ D} ⊆ Rd. (A.32)

Then, h(·) is called negligibly discontinuous over y (i.e., over its second input) if, for every y0 ∈ Y, the
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set Dy0 is νd-negligible, i.e., νd(Dy0) = 0, where νd is the Lebesgue measure over Rd.

Lemma A.6. Consider the function h(x, y) defined over the convex set X×Y ⊆ Rd ×Rk, whose outputs
lie in Rs, and the measure µx defined over X with µx � νd, where νd is the restriction of the Lebesgue
measure over Rd on X. Moreover, assume there exists a real-valued function g defined over X such that
‖h(x, y)‖2 ≤ g(x) for all (x, y) ∈ X × Y, where h(x, y) and g(x) are measurable functions of x, and∫
g(x) dµx < ∞. Finally, suppose h is negligibly discontinuous over y. Then, f(y) =

∫
h(x, y) dµx is

continuous.

Proof of Lemma A.6. Note that the convexity of X × Y leads to the convexity of X (see item 2 of
Appendix A.1.3), and thus X is Lebesgue measurable (Lang, 1986). As a result, the restriction of the
Lebesgue measure over Rd on X, namely νd, is well-defined. Moreover, since µx � νd, the measurabil-
ity of a set or function with respect to µx and νd coincides. We proceed through the following steps:

Step 1. Proving for the case s = 1:
With s = 1, meaning h(x, y) is a real-valued function, suppose a sequence {yi}i∈N in Y with yi → ȳ and
ȳ ∈ Y is given. To prove that f(y) is continuous, it suffices to show that f(yi) → f(ȳ) (see item 25 of
Appendix A.1.2).

Let hi(x) = h(x, yi) and h̄(x) = h(x, ȳ). Therefore, hi(·) and h̄(·) are real-valued functions on X.
Next, we claim that:

hi(x) −→ h̄(x), almost everywhere on X with respect to µx, (A.33)

Suppose (A.33) holds. Additionally, note that |hi(x)| ≤ g(x) for all i ∈ N due to the assumptions.
As a result,

∫
hi(x) dµx −→

∫
h̄(x) dµx holds by the Dominated Convergence Theorem (see item 17 of

Appendix A.1.3). This implies that f(yi)→ f(ȳ).
Hence, it remains to prove (A.33), which is done as follows: Using the notation of Definition A.1, let

D denote the set of discontinuity points of h(·) and consider the cross-section of D with y = ȳ, denoted
by Dȳ. Letting x ∈ X \ Dȳ, the definition of Dȳ implies that h is continuous at (x, ȳ). Recall that
(x, yi) → (x, ȳ). This leads to h(x, yi) → h(x, ȳ), or equivalently hi(x) → h̄(x), due to the continuity of
h(·) at (x, ȳ). Hence, we have shown that hi(x) −→ h̄(x) holds for x ∈ X \Dȳ.

To complete the proof of (A.33), it remains to show that µx(Dȳ) = 0. Note that νd(Dȳ) = 0 due to
the negligible discontinuity of h over y. Given that µx � νd, we conclude that µx(Dȳ) = 0 (see item 19
of Appendix A.1.2).

Step 2. Proving for the case s > 1:
For 1 ≤ r ≤ s, let hr and fr be the r-th component of the functions h and f . Moreover, observe that
fr(y) =

∫
hr(x, y) dµx and |hr(x, y)| ≤ ‖h(x, y)‖2 ≤ g(x) for all (x, y) ∈ X ×Y. Additionally, the set of

discontinuity points of hr is a subset of the set of discontinuity points of h, which results in hr being
negligibly discontinuous over y. Therefore, we can apply Step 1 to each component and conclude that
fr is continuous for every 1 ≤ r ≤ s. Hence, f is continuous.
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A.3 Proof of Theorem 1
Proof. We proceed through the following steps:

Step 1. Converting the problem into an equivalent unconstrained one:
Define:

Θn = arg min
θ∈Pθ

(m− fn(θ))>W (m− fn(θ)), (A.34)

where Θn is the set of all solutions to the minimization problem in (A.34). By arbitrarily picking
θ̂n ∈ Θn, the goal is to show that θ̂n → θ∗. Our approach is to apply Theorem A.1. To this end, we
first introduce a reformulation of (A.34) that fits Theorem A.1, where the domain of the functions is
extended to the whole space, i.e., the corresponding minimization problem is unconstrained. Having
Pθ ⊆ RK , we use function extension to convert (A.34) into an equivalent unconstrained minimization
by considering hn : RK → R such that:

hn(θ) =

(m− fn(θ))>W (m− fn(θ)) if θ ∈ Pθ,

∞ if θ /∈ Pθ.
(A.35)

As a result, using (A.35) together with the notation introduced in item 3 of Appendix A.1.2, the mini-
mization problem (A.34) can be re-written as:

Θn = arg minhn. (A.36)

Similarly, define h(θ) = (m − f(θ))>W (m − f(θ)) if θ ∈ Pθ, and h(θ) = ∞ if θ /∈ Pθ. Having defined hn
and h as outlined above, we proceed with the following steps to verify the conditions of Theorem A.1
and apply it to complete the proof.

Step 2. Proving properness, level-boundedness, and lower semi-continuity of hn and h:
We first refer to items 5, 7, and 26 of Appendix A.1.2 for the corresponding definitions. Observe that
the functions hn and h are proper because Pθ is nonempty. Additionally, hn is level-bounded due to the
boundedness of Pθ. Therefore, the sequence {hn}n∈N is eventually level-bounded. Finally, hn and h are
lower semi-continuous due to the continuity of fn and f on Pθ, respectively.

Step 3. Proving that hn
unif−→ h on Pθ:

We first refer to item 22 of Appendix A.1.2 for the definition of uniform convergence. Next, denote the
ij-th element of W by Wij and the r-th component of m, fn, and f by mr, frn, and fr, respectively. Now,
letting θ ∈ Pθ, we can write:

hn(θ) = (m− fn(θ))>W (m− fn(θ)) =
∑

i,j∈{1,...,M}

Wij(m
i − f in(θ))(mj − f jn(θ)). (A.37)

Note that frn is a continuous function over the compact set Pθ and thus is bounded (see item 4 of
Appendix A.1.3). Moreover, fn

unif−→ f on Pθ implies that the corresponding component functions also
exhibit uniform convergence, i.e., frn

unif−→ fr on Pθ for every 1 ≤ r ≤ M (see item 7 of Appendix A.1.3).
Therefore, hn(θ) in (A.37) can be constructed step by step, where each step involves a summation or a
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product of two uniformly convergent sequences of bounded functions, resulting in a sequence of func-
tions with the same properties (see item 8 of Appendix A.1.3). Hence, hn

unif−→ h on Pθ.

Step 4. Proving epihn → epih:
The uniform convergence hn

unif−→ h on Pθ from Step 3, combined with the lower semi-continuity of
hn from Step 2, results in the epigraphical convergence of hn to h on Pθ, by Rockafellar and Wets
(2009, Proposition 7.15). Note that every point (θ, α) in either epihn or epih satisfies θ ∈ Pθ. Thus,
epihn → epih (in the Painlevé-Kuratowski sense).

Step 5. Proving θn → θ∗:
Due to Steps 1, 2, and 4, we have shown that the sequence of functions {hn}n∈N and its limit function h
satisfy the conditions of Theorem A.1. By applying Theorem A.1, we conclude that Θn is nonempty, and
lim supn→∞Θn ⊆ arg minh. Moreover, given the uniqueness of θ∗ satisfying m = f(θ∗) and the positive-
definiteness of W , we conclude that θ∗ is the unique minimizer of h, i.e., arg minh = {θ∗}. Hence,
lim supn→∞Θn ⊆ {θ∗}. Since θ̂n ∈ Θn ⊆ Pθ and Pθ is bounded, this implies θ̂n → θ∗ by Lemma A.1.

A.4 Proof of Proposition 1
Proof. Since O is open, there exists an open ball B centered at θ∗ such that B ⊆ O. Next, Theorem 1
implies that θ̂n → θ∗. Therefore, there exists N1 such that θ̂n ∈ B for n ≥ N1. For the rest of the proof,
suppose n ≥ max(N0, N1). Since ∇fn exists and is continuous on B ⊆ O, the derivative of the objective
function of the minimization problem in (2) exists and is continuous on B, and thus it vanishes at the
corresponding minimizer θ̂n ∈ B (see item 13 of Appendix A.1.3). Therefore,

∇fn(θ̂n)>W (f(θ∗)− fn(θ̂n)) = 0. (A.38)

Moreover, since θ̂n → θ∗ and ∇f exists and is continuous on an open and convex set B ⊆ Pθ containing
θ̂n, we can write the following first-order Taylor expansion of f in the vicinity of θ̂n (see item 14 of
Appendix A.1.3):

f (θ∗) = f(θ̂n)−∇f(θ̂n)(θ̂n − θ∗) +R, (A.39)

where R = O(‖θ̂n − θ∗‖22). Next, replacing f (θ∗) from (A.39) into (A.38) results in:

∇fn(θ̂n)>W
(
f(θ̂n)− fn(θ̂n)−∇f(θ̂n)(θ̂n − θ∗) +R

)
= 0. (A.40)

Re-arranging the terms in (A.40) leads to:(
∇fn(θ̂n)>W ∇f(θ̂n)

)(
θ̂n − θ∗

)
= ∇fn(θ̂n)>W

(
f(θ̂n)− fn(θ̂n) +R

)
. (A.41)

The fact that Λn exists means that ∇fn(θ̂n)>W∇f(θ̂n) is invertible. This allows us to simplify (A.41)
into the following:

θ̂n − θ∗ = Λn

(
f(θ̂n)− fn(θ̂n)

)
+ ΛnR. (A.42)

Finally, having ‖Λn‖2 ≤ L0 for all n ≥ N0, we conclude that ΛnR = O(‖θ̂n − θ∗‖22).
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A.5 Proof of Lemma 1
Proof. Since the data points are drawn randomly, the quantity δn is a random variable, and the goal is
to find a probabilistic bound on δn. To this end, we start by investigating the probability of δn > r for a
given r > 0. Note that if δn > r, then the definition of δn in (4) implies that there exists α0 ∈ Pθ such
that no data point lies in B(α0, r) (defined in item 12 of Appendix A.1.2). As a result, we can write the
following inequality for the probability of δn > r:

P [δn > r] ≤ P [no data point lies in B(α0, r)] =

(
1− vol (B(α0, r) ∩Pθ)

vol(Pθ)

)n
. (A.43)

The leftmost inequality in (A.43) holds due to item 16 of Appendix A.1.3. Note that r < δn ≤ diam(Pθ),
where diam(·) is defined in item 13 of Appendix A.1.2. Therefore, due to Lemma A.5, there exists
ξ(Pθ) > 0 such that:

vol (B(α0, r) ∩Pθ) ≥ ξ(Pθ) · vol (B(α0, r)) . (A.44)

Next, let p = P[δn > r]. By substituting this together with (A.44) into (A.43), we conclude that:

p ≤
(

1− ξ(Pθ) · vol(B(α0, r))

vol(Pθ)

)n
⇒ log p ≤ n log

(
1− c0 rK

)
, (A.45)

where c0 > 0 is a constant that does not depend on r, n, or p. Next, using the Taylor series expansion
of log(1/(1− x)) for x ∈ (0, 1), the following inequality results from (A.45):

log
1

p
≥ n log

1

1− c0 rK
= n

(
c0 r

K +

∞∑
i=2

(c0 r
K)i

i

)
≥ nc0rK . (A.46)

Therefore,

r ≤ c−
1
K

0 · n− 1
K · log

1
K

(
1

p

)
. (A.47)

Recalling p = P (δn > r), we know that with probability 1 − p, we have δn ≤ r. This, together with
(A.47), leads to the fact that with probability 1− p:

δn = (− log p)
1
K · O

(
n−

1
K

)
. (A.48)

A.6 Proof of Proposition 2
Proof. We start by fixing some notations. For 1 ≤ r ≤ M , let fr and frn denote the r-th component
function of f and fn, respectively. Moreover, denote the i-th data point by θi. Next, we rewrite the
kernel smoothing function fn(θ) in Equation (6) based on nonzero terms. Recall that η(x) = 0 for x ≥ 1.
This means kn(θ, θi) = 0 when ‖θ − θi‖2 ≥ λn. Therefore, fn consists of a weighted average over the
data points lying in B(θ, λn). Let In(θ) denote these data points, i.e.,

In(θ) = {1 ≤ i ≤ n | θi ∈ B(θ, λn)}. (A.49)
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For θ ∈ Pθ, observe that In(θ) 6= ∅ because otherwise, we would have min1≤i≤n ‖θ − θi‖2 ≥ λn > δn,
which contradicts the definition of δn in (4). Having In(θ) 6= ∅ guarantees that fn(θ) remains well-
defined. More formally, for all θ ∈ Pθ, we have:

n∑
i=1

kn(θ, θi) =
∑

i∈In(θ)

kn(θ, θi) > 0. (A.50)

Hence, we can rewrite fn(θ) as follows:

fn(θ) =

∑
i∈In(θ) kn(θ, θi)f(θi)∑

i∈In(θ) kn(θ, θi)
. (A.51)

Suppose n ∈ N, 1 ≤ r ≤M , and θ ∈ Pθ are given. We claim that there exist ω1, ω2 ∈ B̄(θ, λn) such that:

|frn(θ)− fr(θ)| ≤ |fr (ω1)− fr (ω2)| . (A.52)

We prove (A.52) as follows: Based on (A.51), frn(θ) is a weighted average of the values fr(θi), and thus
it is bounded between the maximum and the minimum of these values:

min
i∈In(θ)

fr(θi) ≤ frn(θ) ≤ max
i∈In(θ)

fr(θi). (A.53)

Next, let:

ω1 = arg min
α∈B̄(θ,λn)∩Pθ

fr(α), ω2 = arg max
α∈B̄(θ,λn)∩Pθ

fr(α). (A.54)

Note that ω1 and ω2 exist because fr is continuous and B̄(θ, λn) ∩ Pθ is compact (see items 3 and 4 of
Appendix A.1.3). Moreover, if i ∈ In(θ), then θi ∈ B̄(θ, λn) ∩Pθ. Therefore,

fr(ω1) = min
α∈B̄(θ,λn)∩Pθ

fr(α) ≤ min
i∈In(θ)

fr(θi), (A.55)

max
i∈In(θ)

fr(θi) ≤ max
α∈B̄(θ,λn)∩Pθ

fr(α) = fr(ω2). (A.56)

Putting (A.53), (A.55), and (A.56) together leads to:

fr(ω1) ≤ frn(θ) ≤ fr(ω2). (A.57)

Moreover, since θ ∈ B̄(θ, λn) ∩Pθ, we can write:

fr(ω1) ≤ fr(θ) ≤ fr(ω2). (A.58)

Due to (A.57) and (A.58), both frn(θ) and fr(θ) lie between fr(ω1) and fr(ω2). Hence, (A.52) holds.
Having established the above results, we present the proofs as follows:

i. Note that as shown above, fn is well-defined. Moreover, fn is continuous due to the continuity of
η(·). Therefore, using Theorem 1, it suffices to prove the uniform convergence fn

unif−→ f . To prove
fn

unif−→ f , suppose ε > 0 is given. It suffices to show that there exists N such that for n ≥ N ,
‖fn(θ)− f(θ)‖2 < ε holds for all θ ∈ Pθ.
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To this end, note that fr is a continuous function over a compact set Pθ, and thus is uniformly
continuous over Pθ (see item 5 of Appendix A.1.3). Hence, there exists βr > 0 such that if
‖α1 − α2‖2 < βr, then |fr(α1)− fr(α2)| < ε/

√
M . Let β = min(β1, . . . , βM ). Since λn → 0, there

exists N such that for n ≥ N , we have λn < β/2.

Suppose the values n ≥ N , 1 ≤ r ≤ M , and θ ∈ Pθ are given. Due to (A.52), there exist ω1, ω2 ∈
B̄(θ, λn) ⊂ B(θ, β/2) such that |frn(θ)− fr(θ)| ≤ |fr(ω1)− fr(ω2)|. Note that ‖ω2 − ω1‖2 < β

and thus |fr(ω2)− fr(ω1)| < ε/
√
M holds due to the definition of β mentioned earlier. Hence,

|frn(θ)− fr(θ)| < ε/
√
M . Applying this result for all 1 ≤ r ≤ M together, we conclude that if

n ≥ N , then ‖fn(θ)− f(θ)‖2 < ε holds for all θ ∈ Pθ. This means fn
unif−→ f .

ii. We proceed through the following steps:

Step 1. Showing that ∇fn exists and is continuous over any open set O ⊆ Pθ:

Suppose the open set O ⊆ Pθ is given. Considering fn from (6), it is straightforward to compute
its corresponding M × K Jacobian matrix evaluated at θ ∈ O (see item 21 of Appendix A.1.2),
which is given by:

∇fn(θ) =
1∑n

i=1 kn (θ, θi)

 n∑
i=1

n∑
j=1

αij f (θi)∇kn (θ, θj)
>

 , (A.59)

where f (θi) ∈ RM is a column vector (i.e., it is M × 1) and:

αij =

−wi if i 6= j

1− wi if i = j
, wi =

kn (θ, θi)∑n
i=1 kn (θ, θi)

, ∇kn (θ, θi) =
2 (θ − θi)

λ2
n

η′

(
‖θ − θi‖22

λ2
n

)
. (A.60)

Note that in (A.60), η′(·) denotes the derivative of η(·) and ∇kn(θ, θi) is a row vector (i.e., it is
K × 1). Moreover, (A.59) and (A.60) together imply that ∇fn(θ) exists and is continuous over
O, due to the existence and continuity of η′(·), provided that the denominator

∑n
i=1 kn (θ, θi) is

nonzero for all θ ∈ O. This is shown in (A.50).

Step 2. Proving f is Lipschitz continuous around θ∗:

We know that the assumptions of Proposition 1 hold. As a result, there exists O ⊆ Pθ around θ∗

such that ∇f is continuous over O. In particular, ∇f is continuous at θ∗ ∈ O. Therefore, there
exists β0 > 0 such that for θ ∈ B(θ∗, β0) ⊆ O, we have ‖∇f(θ) − ∇f(θ∗)‖2 < 1

2‖∇f(θ∗)‖2, and
consequently, ‖∇f(θ)‖2 < 3

2‖∇f(θ∗)‖2.

Let L1 = 3
2‖∇f(θ∗)‖2 and define S = B(θ∗, β0). Observe that S is open and convex in RK , and

‖∇f(θ)‖2 < L1 holds for θ ∈ S. This leads to f being Lipschitz continuous with the Lipschitz
factor L1, due to the Mean Value Inequality (see item 15 of Appendix A.1.3). More formally,
‖f(α1)− f(α2)‖2 ≤ L1‖α1 − α2‖2 holds for all α1, α2 ∈ S.

Step 3. Finding the convergence rate of ‖θ̂ − θ∗‖2:

Recall S = B(θ∗, β0) from Step 2. We know that λn = γ δn → 0. Therefore, there exists N1 such
that for n ≥ N1, we have λn < β0/2. Now, suppose n ≥ N1, θ ∈ B(θ∗, β0/2), and 1 ≤ r ≤ M
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are given. Then B̄(θ, λn) ⊆ S. Additionally, from (A.52), there exist ω1, ω2 ∈ B̄(θ, λn) such that
|frn(θ)− fr(θ)| ≤ |fr(ω1)− fr(ω2)|. This, together with the Lipschitz continuity of f on S from
Step 2 and the fact that ω1, ω2 ∈ S, leads to the following inequality:

|frn(θ)− fr(θ)| ≤ |fr(ω1)− fr(ω2)| ≤ ‖f(ω1)− f(ω2)‖2 ≤ L1‖ω1 − ω2‖2 ≤ 2L1λn. (A.61)

Note that the rightmost inequality in (A.61) holds because ω1, ω2 ∈ B̄(θ, λn). By applying (A.61)
to every component for 1 ≤ r ≤M , we conclude that ‖fn(θ)−f(θ)‖2 ≤ 2

√
ML1λn holds for n ≥ N1

and θ ∈ B(θ∗, β0/2) ⊆ S ⊆ O.

Next, having θ̂n → θ∗ from part (i) of the theorem, there exists N2 such that if n ≥ N2, then
θ̂n ∈ B(θ∗, β0/2). This implies that ‖fn(θ) − f(θ)‖2 ≤ 2

√
ML1λn holds when θ = θ̂n. Therefore,

knowing that the conditions of Proposition 1 are all met (due to Step 1 and the assumptions)
and using its notation, we can write the following inequality for n ≥ max(N0, N1, N2):∥∥∥Λn

(
f(θ̂n)− fn(θ̂n)

)∥∥∥
2
≤ ‖Λn‖2‖f(θ̂n)− fn(θ̂n)‖2 ≤ L0 · 2

√
ML1λn = 2L0L1γ

√
Mδn. (A.62)

Applying Proposition 1 together with (A.62), we then conclude that ‖θ̂n−θ∗‖2 = O(δn) as n→∞.

A.7 Proof of Proposition 3 (Informal)
Proof. i. We simply verify the conditions of Theorem 1, where fn comes from a neural network

estimate with the structure of Equation (9). Note that φ(·) in (9) is a continuous function, and
so is fn. Moreover, due to the result from Cybenko (1989), when the target function f is a
continuous function defined over a compact set, the output of an appropriately trained single-
layer neural network uniformly converges to the target function. Therefore, the conditions of
Theorem 1 are satisfied, and thus θ̂n → θ∗.

ii. Knowing that the assumptions in Proposition 1 hold, we use its corresponding notation. Based
on the assumptions of Proposition 1, Step 2 in the proof of Proposition 2 shows that f is Lipschitz
continuous on an open ball B(θ∗, β0) ⊆ Pθ, with Lipschitz factor L1. Moreover, consider Ŝ =

B̄(θ∗, β0/2) ⊂ B(θ∗, β0) and note that for sufficiently large n, θ̂n lies in Ŝ. Now, by applying
Proposition 1, we conclude that:

‖θ̂n − θ∗‖2 ≤
∥∥∥Λn

(
f(θ̂n)− fn(θ̂n)

)∥∥∥
2

+O
(
‖θ̂n − θ∗‖22

)
(A.63)

≤ L0 sup
θ∈Ŝ
‖f(θ)− fn(θ)‖2 +O

(
‖θ̂n − θ∗‖22

)
. (A.64)

Next, we investigate the bound on supθ∈Ŝ ‖f(θ) − fn(θ)‖2. Let fr and frn denote the r-th com-
ponent functions of f and fn, respectively. According to Barron (1994), the mean integrated
squared error of the neural network estimator frn for fr is O(

√
(K/n) log n), provided that the

number of nodes satisfies N =
√
n/(K log n). More formally, we have:

1

vol(Pθ)

∫
Pθ

|fr(θ)− frn(θ)|2 dθ = O

((
K log n

n

) 1
2

)
. (A.65)
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The goal is to translate the bound in (A.65) to a bound on supθ∈Ŝ ‖f(θ) − fn(θ)‖2. To this end,
we proceed as follows: The uniform boundedness of ‖∇fn(θ)‖2 across n and θ implies that there
exists L2 > 0 such that every function fn is Lipschitz continuous with Lipschitz constant L2 (see
item 15 of Appendix A.1.3). Therefore, letting hn(θ) = |fr(θ)− frn(θ)|, we conclude that hn(θ) is
Lipschitz continuous on Ŝ with Lipschitz constant L1 + L2. Furthermore, due to the continuity
of hn and the compactness of Ŝ, there exist θmin = arg minθ∈Ŝ hn(θ) and θmax = arg maxθ∈Ŝ hn(θ)

(see item 4 of Appendix A.1.3). Consequently, by the Lipschitz continuity of hn on Ŝ, we have:

hn(θmax) ≤ hn(θmin) + (L1 + L2) ‖θmax − θmin‖2 ≤ hn(θmin) + (L1 + L2)β0. (A.66)

Recall that β0 is the diameter of Ŝ. Moreover, the following inequality holds:

h2
n(θmin) ≤ 1

vol(Ŝ)

∫
Ŝ

|fr(θ)− frn(θ)|2 dθ ≤ 1

vol(Ŝ)

∫
Pθ

|fr(θ)− frn(θ)|2 dθ. (A.67)

Now, (A.65) and (A.67) together imply that hn(θmin) = O(((K/n) log n)1/4). Applying this to
(A.66) yields the same bound on hn(θmax). Hence, supθ∈Ŝ |f

r(θ)− frn(θ)| = O(((K/n) log n)1/4).

Therefore, if we use M neural networks with N =
√
n/(K log n) nodes for each to estimate

f1, . . . , fM , we obtain the following bound for the overall error:

sup
θ∈Ŝ
‖f(θ)− fn(θ)‖2 ≤

√
M max

1≤r≤M
sup
θ∈Ŝ
|fr(θ)− frn(θ)| = O

(
√
M

(
K log n

n

)1/4
)
. (A.68)

Applying (A.68) to (A.64) then completes the argument.

A.8 Proof of Theorem 2
Proof. i. The convexity of X × P implies the convexity of X, which ensures that X is Lebesgue

measurable (Lang, 1986). Consequently, the restriction of the Lebesgue measure on Rd to X,
denoted by νd, is well-defined, and the theorem assumes µx � νd (see item 19 of Appendix A.1.2).
With this assumption, the measurability of a set or function with respect to µx and νd coincides.

We prove the result for a more general case by replacing light discontinuity in the assumptions
with negligible discontinuity, defined in Definition A.1. First, we show that if h(x, θ) is lightly
discontinuous over θ, then h(x, θ) is negligibly discontinuous over θ. To this end, suppose h(x, θ)

is lightly discontinuous over θ. Letting D denote the set of discontinuity points of h, and Dθ0 ⊆ X

the cross-section of D with θ = θ0, we have:

Dθ0 =

∞⋃
r=1

Dr
θ0 , where Dr

θ0 = {x | xI = Fr(x−I, θ0), for some ∅ 6= I ⊆ [d]} . (A.69)

Considering the notation z = xI, y = x−I, and h(·) = Fr(·, θ0) leads to z = h(y) and the fact that
the elements of x are a reordered version of the elements of (y, z). Therefore, Dr

θ0
is in one-to-one

correspondence with {(y, z) | z = h(y)}. This clarifies that Dθ0 describes the “graph” of a function
lying in Rd, and thus it has zero measure with respect to νd (see item 19 of Appendix A.1.3),
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i.e., νd(Dr
θ0

) = 0, or equivalently, Dr
θ0

is νd-negligible. Therefore, Dθ0 is a countable union of
νd-negligible sets and is thus νd-negligible (see item 18 of Appendix A.1.3). Hence, h(x, θ) is
negligibly discontinuous over θ. Now observe that the conditions of Lemma A.6 are all met. By
applying Lemma A.6, we conclude that f(θ) is continuous.

ii. This is a direct result of part (i) by observing that f(θ) = Px[A(x, θ)] = Ex[1A(x,θ)] = Ex[h(x, θ)].

A.9 Proof of Theorem 3
Proof. Let X = Pa × Pz × Pθ with X ⊆ Rd, and define the set-valued function P(s, z; θ) ⊆ Pa, whose
domain is Rd, such that P(s, z; θ) = ∅ if (s, z; θ) /∈ X, and for (s, z; θ) ∈ X:

P(s, z; θ) = {a ∈ Pa | Mi(a, s, z; θ) ≤ 0, 1 ≤ i ≤ N}, (A.70)

where, in the absence of inequality constraints, we simply have P(s, z; θ) = Pa. Our approach is to
apply Lemma A.4 through the following steps:

Step 1. Proving the requirements for P(s, z; θ):
In this step, our goal is to apply Lemma A.3. To this end, first observe that int(Pa) 6= ∅ because Pa is
assumed to contain an open set (see item 18 of Appendix A.1.2). Moreover, substituting x = (s, z; θ),
A = Pa, and gi(·) = Mi(·), note that the conditions of Lemma A.3 are all satisfied. This implies that
P(·) is continuous relative to X (in the Kuratowski sense), and P(x) is a nonempty and closed subset
of Pa for every x ∈ X.

Step 2. Proving the existence of a unique and continuous V (·):
Let F be the space of continuous real-valued functions over the compact set X, equipped with the
supremum norm ‖ · ‖∞ (defined in item 15 of Appendix A.1.2). As a result, (F , ‖ · ‖∞) is a Banach space
(see item 12 of Appendix A.1.3). This is a requirement for the Contraction Mapping Theorem, which
will be discussed below.

Next, define the operator T (·), which accepts as input a continuous function V : X→ R, and returns
as output the function T (V ) : X→ R, where the relation between the input and output is described by:

T (V (s, z; θ)) = sup
a∈P(s,z;θ)

π(a, s, z; θ) + β Ez′ [V (a, z′; θ) | z]. (A.71)

Note that the domain of T (·) is F . We claim that T (F) ⊆ F , or equivalently, T (V ) ∈ F if V ∈ F . To prove
this, suppose V ∈ F , meaning that V is continuous. Therefore, the mapping (a, s, z; θ) 7→ π(a, s, z; θ) +

β Ez′ [V (a, z′; θ) | z] is well-defined and continuous. To see why it is so, observe that the continuity
of V over a compact set implies its integrability with respect to the Lebesgue measure (see item 21 of
Appendix A.1.3). This, together with the fact that µz′|z is dominated by the Lebesgue measure, ensures
the preservation of continuity under the expectation Ez′ [ · | z] (see item 20 of Appendix A.1.3).

The continuity of the aforementioned mapping, together with Step 1 and substituting x = (s, z; θ),
A = Pa, Q(·) = P(·), and f(a, x) = π(a, s, z; θ) + β Ez′ [V (a, z′; θ) | z], shows that the conditions of
Lemma A.4 are satisfied. As a result, T (V ) is a continuous function, and thus T (V ) ∈ F . Hence, the
claim holds, i.e., T (F) ⊆ F .
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Moreover, it is straightforward to verify that T (·) satisfies Blackwell’s sufficient conditions for a
contraction mapping (Stokey et al., 1989, Theorem 3.3). Therefore, T : F → F is a contraction map-
ping operating over the Banach space F . As a result, the conditions of the Contraction Mapping
Theorem (Stokey et al., 1989, Theorem 3.2) are all satisfied, ensuring that T has a unique fixed point.
This means there exists a unique V ∈ F satisfying V = T (V ). Recall that F is the space of continuous
functions over X, and thus V is continuous.

Step 3. Proving the existence of a∗(·) and its continuity:
Our approach is to apply Lemma A.4. To this end, note that within Step 2, it is shown that if V ∈ F ,
the conditions of Lemma A.4 are all satisfied. Now, as a final result of Step 2, we know that V ∈ F .
Hence, Lemma A.4 applies, and we conclude that the optimal solution of the maximization problem
(13) is attained at some a∗(s, z; θ) ∈ P(s, z; θ). Furthermore, given the uniqueness of a∗(s, z; θ) for every
(s, z; θ) ∈ X, from Lemma A.4 we conclude that a∗(·) is continuous.

63



B Corporate finance model: Implementation details

B.1 Construction of moments
We start with a COMPUSTAT extract over 1970-2019. We only keep firms that appear at least twice
in the sample. We drop firms in the financial (SIC code 6) or regulated (SIC code 49) sectors. We also
drop observations with total assets that are less than 10 million real 1982 dollars, or sales or book
assets that grow by more than 200%. This results in a sample of 117,976 firm-year observations and
11,198 unique firms. We compute moments targeted in the baseline estimation in the data as follows:
m1, the average investment to capital ratio, is capx

l.at . m2, the average profit to asset ratio, is oibdp
l.at . m3,

the average equity issuance to asset ratio, is computed net of repurchases: sstk−prstkc
l.at . m4, mean net

leverage, is dlc+dltt −che
at . m5, the autocorrelation of investment rates, is measured by regressing capx

l.at

on its lag, with year fixed-effects. Last, m6 and m7, are the sample standard deviations of 1-year and
5 year log sales growth: log sale − log l.sale and log sale − log l5.sale. All ratios are winsorized
at the median +/- five times the interquartile range. We also remove firm fixed-effects from all the
variables used in the empirical analysis, as the model does not feature any source of fully persistent
heterogeneity across firms: for each variable, we subtract the within-firm average and add back the
overall sample average. The bold lines in Table B.1, in Column 1, provide the means and standard
errors of these moments in our sample.

B.2 Kernel approximation: Implementation
We use a kernel function that maps parameters into moments using the formula (6):

fn(θ) =

∑n
i=1 kn(θ, θi)f(θi)∑n

i=1 kn(θ, θi)
, (B.1)

where the kernel itself is a Gaussian kernel such that:

kn(θ̃, θ̃i) = exp

(
−1

2

K∑
k=1

(
θk − θi,k

bk

)2
)

where bk is the bandwidth corresponding to parameter number k. Following proposition 2, we set the
bandwitdh to be:

bk = γ
(
θk − θk

)( 1

n

) 1
K

where
(
θk − θk

)
is the range of parameter number k. n is the number of points in the training sample

and K the number of parameters. The parameter γ, common to all parameters, is used to fit the kernel
approximation. We use γ = 0.5 in our application provides the best in-sample fit.

B.3 Neural net approximation: Implementation
The neural net is a pyramidal MLP with 5 layers and 512, 256, 128, 64 and 32 nodes. The activation
function is ReLu at all layers. The loss function is the mean absolute error (which turns out to give a
better in-sample fit than the MSE). The optimization algorithm is ADAM, a modern popular version of
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Table B.1: Simulation Moments (Corporate Finance Model)

(1) (2) (3) (4)
Data True SMM Approximate Simulation

m1 mean(investment/assets) .0760 (.0007) .0760 .0760 .0759
m2 mean(profit/assets) .1343 (.0011) .1343 .1343 .1343
m3 mean(equity issuance/assets) .0158 (.0006) .0159 .0158 .0164
m4 mean(leverage) .1049 (.0029) .1050 .1049 .1035
m5 autocorr(investment/assets) .3754 (.0066) .3758 .3754 .3869
m6 std(log sales growth) .2270 (.0017) .2270 .2270 .2259
m7 std(log sales growth 5yr) .5851 (.0050) .5851 .5851 .5890
m8 var(investment/assets) .0033 (.0001) .0167 .0176 .0167
m9 var(equity issuance/assets) .0071 (.0002) .0024 .0020 .0025
m10 frequency(equity issuance) .1178 (.0015) .1534 .1565 .1576
m11 coeff. regr. investment ratio on market/book .0122 (.0005) .3188 .3051 .3074
m12 coeff. regr. net leverage on market/book -0.0348 (.0018) -0.0313 -0.0278 -0.0285
m13 coeff. AR(1) regr. of profit/assets .5210 (.0055) .5357 .5445 .5433
m14 resid std AR(1) regr. of profit/assets .0728 (.0006) .0286 .0285 .0285
m15 var(leverage) .0266 (.0004) .0002 .0002 .0002
m16 mean(dividend/assets) .0267 (.0004) .0492 .0505 .0498
m17 var(dividend/assets) .0013 (.0000) .0054 .0052 .0053

Notes. The ‘Data’ column reports moments in the data with standard errors in parenthesis. Column ‘True SMM’ reports sim-
ulated moments using the true economic model f(θ) and parameters estimated using the true SMM. Column ‘Approximate’
reports moments calculated using the benchmark approximation fn (neural net) and the parameters estimated using the ap-
proximate SMM. Column ‘Simulation’ reports moments calculated from the true economic model f(θ) but using parameter
estimates from the approximate SMM. Targeted moments in the SMM are shown in bold font.

stochastic gradient descent with adaptive learning rate. The maximum number of epochs is 40, batch
size is 256 points, initial learning rate is 0.005 (divided by 10 every 10 epochs).

B.4 The superiority of the NN fit
We now compare the fit of neural nets and kernel approximations. Figure B.1 reports the preci-
sion of our estimation method on the validation sample, for each parameter separately, and for each
parametrization of fn. We report one minus the R2 of true parameters regressed on estimated ones.
A value of 0 means that estimated parameters are perfectly (and linearly) correlated with true ones.
First, Figure B.1 shows that our NN is much more accurate than the kernel. This is not surprising
given that NNs converge faster than Kernel especially in high dimensions (see our propositions 2 and
3; see also Farrell et al. (2021) for DNNs). Second, we see that the NN performs very well for all
parameters (with an R2 greater than 95% for all deep parameters). Third, there is, however, some
heterogeneity, with some parameters (for instance the debt constraint λ) being better estimated than
others (for instance, the cost of equity issuance ξ).

Overall, the kernel-based approach performs much less well, as expected from our results on speeds
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Figure B.1: Precision of Approximate Estimates on the Validation Sample

Notes. This figure reports a measure of the estimation error, on the validation sample, from the approximate SMM for two

approximations: Kernel and neural net. For each one of the two parametrizations, and each one of the 7 parameters plus the

value loss, we report 1−R2, one minus the R2 of a linear regression of the approximate moment estimate on the true parameter

value. If the approximate moment estimate is exactly equal to the true value, this quantity is zero. When it is uncorrelated with

the true value, it is 1.

of convergence, and existing results on deep NNs ((Farrell et al., 2021)). This is why the paper focuses
on the deep NN specification for fn.

B.5 Speed gains from the NN approximation
Figure B.2 shows that our approach is faster than the standard SMM by several orders of magnitude.
The computing times we report exclude the simulation of the training sample, which is long but re-
quired for both estimations. For the true SMM, it takes an additional 17 minutes for the estimation to
converge to its final value. In contrast, the approximation-based estimation converges in less than a
second (provided the NN has been estimated).

66



Figure B.2: True SMM Estimates, Convergence Speed of Local Optimization Stage
(Corporate Finance Model)
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Notes. We report parameter values estimated as a function of time taken via two different algorithms in our numerical setup.
The blue line corresponds to the local optimization stage of the true SMM, i.e. the minimization of the distance of empirical
moments to the true model f(θ). The optimization algorithm used in this case is Tiktak, using 50 starting points selected from
a training set of 50,000 cases and Nelder-Mead algorithm for optimization per starting point with 200 max function iteration.
The red line corresponds to the benchmark approximate SMM, which uses a neural net. The approximate estimation requires
.9 seconds — hence the red line jumps to its final value at the origin. The black line corresponds to the true SMM estimate and
the dashed lines represent the confidence interval (+/-2 standard errors) around it.
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C Dynamic Household Finance Model

C.1 Model, parameters and moments
Macroeconomic environment The stock market log return in year t is st = s1,t + s2,t where
s2,t is normally distributed with variance σ2

s2 . s1 will be correlated with labor income, and follows a
normal mixture distribution:

s1,t =

{
s−1,t ∼ N (µ−s , σ

2
s1) with probability ps

s+
1,t ∼ N (µ+

s , σ
2
s1) with probability 1− ps

(C.1)

where we impose µ−s < µ+
s and interpret µ−s as the expected log return in stock market crash years,

and ps their frequency. The growth of the log national wage index l1 is:

l1,t − l1,t−1 = µl + λlss1,t + εl,t, (C.2)

where εl,t follows N (0, σ2
l ), µl is the average growth rate, and λls captures the correlation with stock

returns.

Income risk Labor earnings can be decomposed as the product of the wage index and an idiosyn-
cratic component L2,it:

Lit = L1,t · L2,it. (C.3)

The idiosyncratic component is further decomposed into a deterministic function of age fit8, a persis-
tent component zit and a transitory shock ηit:

L2,it = efit+zit+ηit . (C.4)

The persistent component follows an AR(1) process, with innovations drawn from a normal mix-
ture. Specifically, the dynamics of zi are given by

zit = ρzzit−1 + ζit, (C.5)

where

ζit =

 ζ−it ∼ N
(
µ−z,t, σ

−
z

2
)

with probability pz

ζ+
it ∼ N

(
µ+
z,t, σ

+
z

2
)

with probability 1− pz
(C.6)

The values of pz, µ−z,t and µ+
z,t control the degree of asymmetry in the distribution of income shocks. To

capture the cyclicality of skewness, µ−z,t is an affine function of the log growth rate of the wage index:

µ−z,t = µ−z + λzl(l1,t − l1,t−1). (C.7)

where pzµ−z,t + (1 − pz)µ+
z,t = 0 and pz ≤ 0.5. If σ−z � σ+

z , pz represents the frequency of significant
events in a worker’s career. Finally, the transitory component of income is also modeled as a mixture
of normals whose first and second components always coincide with the first and second components

8Specically, we assume f to be a cubic polynomial function of age θ2age3/100 + θ1age2/10 + θ0.
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of the normal mixture governing the innovations to zi.

ηit =

{
η−it ∼ N (0, σ−η

2
) if ζit = ζ−it

η+
it ∼ N (0, σ+

η
2
) if ζit = ζ+

it

(C.8)

Social Security Social Security payroll taxes represent 12.4% of the agent’s earnings below the
maximum taxable earnings, which represents 2.5 times the national wage index.

Tit = .124 ·min {Lit, 2.5 · L1,t} . (C.9)

Retirement benefits depend on historical taxable earnings, adjusted for the growth in the national
wage index. Specifically, the agent’s Social Security benefits B are:

Bi
L1,R

=


.9 · SiR if SiR < .2

.116 + .32 · SiR if .2 ≤ SiR < 1

.286 + .15 · SiR if 1 ≤ SiR,
(C.10)

where R is the retirement age and L1,R is the value of the wage index at that age. The variable Sit
keeps track of a worker’s average taxable idiosyncratic earnings:

Sit =

t∑
k=t0

min {L2,ik, 2.5}
t− t0 + 1

, (C.11)

where t0 denotes his first year of earnings.

The parameters of income, stock market and social security are drawn from Catherine et al. (2022a)
and summarized in Table C.1.

Table C.1: Preset Parameters of Life-cycle Model

pz .136 r .02 ps .146
ρz .967 θ1 .1237 µ−s -.245
µ−z -.086 θ2 -.0125 µ+

s .115
λzl 4.291 θ0 -3.015 σs1 .077
σ−z .562 t0 23 σs2 .114
σ+
z .037 R 65 µl .008
σ−η .895 T 100 λls .161
σ+
η .089 σl .017

Notes. This table shows the calibrated parameters used in the estimation of the life-cycle model introduced in Section C.

Finally, wealth evolves as:

Wit+1 = [Wit + Lit +Bit − Tit − Cit − cit] · [πitest + (1− πit)er] , (C.12)

69



where πit is the share of his wealth invested in equity. Owning stocks incurs a cost cit = ΦL1,t if πit > 0.
Short selling or leveraging are not allowed, such that 0 ≤ πit ≤ 1.

C.2 Construction of data moments
We compute the three core data moments using the 1989–2016 waves of the triennial Survey of Con-
sumer Finances (SCF). We restrict the sample to households whose head is between age 22 and 99 and
have positive net worth. The three “core” moments are estimated as:

• m1, the mean wealth, is measured using the net worth variable (networth) from the SCF sum-
mary extract public data; note that to improve comparability across survey years, we scale
wealth by the average wage income (wageinc) of each survey year

• m2 is the average participation rate, which is the share of households whose total holdings of
stock (equity) is strictly positive

• m3 the mean conditional equity share, which is the total holdings of stock (equity) divided by
net worth, excluding vehicles (vehic), and is only computed for households with strictly positive
holdings of stocks.

Table C.2: Estimated Moments

Data True SMM Approximate Simulation

m1 mean(wealth) 5.633 (0.028) 5.633 5.633 5.620

m2 participation rate 0.557 (0.002) 0.557 0.557 0.528

m3 mean(cond. equity share) 0.345 (0.003) 0.345 0.345 0.340

m4 median(wealth) 1.996 (0.013) 2.919 2.908 2.936

m5 median(cond. equity share) 0.224 (0.002) 0.269 0.273 0.259

Notes. This table reports the moments targeted in estimation in bold fonts and untargeted moments representing median of
statistics in regular fonts. Column “Data” shows the empirical moments, with standard errors in parenthesis. Column “True
SMM” corresponds to the simulated moments for the parameters using the true SMM estimation. Column “Approximate” show
the approximate moments at the approximate parameter estimates. Column “Simulation” reports the true simulated moments
at the approximate parameter estimates. The moments used in the estimation are defined in Section 5.3.1.

C.3 Building training and validation samples
We restrict the set of parameters values P for the household finance model to: γ ∈ [1; 20], β ∈ [.5; 1],
Φ ∈ [0; .25].

To build the training sample, we first draw a Halton sequence of n = 2, 000 parameters (we use a
smaller training sample to explore the effect of sample size). For each draw θi, we simulate the model
and compute the model-generated moments to be matched. We then remove 8 points which correspond
to absurd observations (wealth higher than 1,000 the national income). We end up with a training
sample of 1,992 observations.

To measure the quality of our approximation, we also build a separate “validation” dataset starting
with 200 additional uniform draws of parameters from P and their corresponding moments. We then
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remove 7 absurd draws. Then, like in the corporate finance model, we remove “badly identified” draws.
We label a draw as “badly identified” when the s.e. implied by the formula (G>W−1G)−19 is more than
100 times larger than the s.e. of SMM estimate using the data moments. We remove such draws and
end up with 106 points in the validation sample.

C.4 Fit of NN versus Kernel smoother
We compare here the quality of our estimation for two types of approximate moment function: the
neural net (a MLP with 5 layers and 256, 128, 64, 32, and 16 nodes) and a kernel smoother (). For each
specification, we first train it on the training sample, and then use the fitted function fn to estimate
parameters off of the moments in the validation sample. We then report, in Figure C.1, the R2 between
estimated and actual parameters.

Figure C.1: Precision of Approximate Estimates on the Validation Sample

Notes. This figure reports a measure of the estimation error from the approximate SMM for different approximations. For each
of the four approximation functions, and each one of the 7 parameters plus the value loss, we report 1 − R2, one minus the R2

of a linear regression of the approximate moment estimate on the true parameter value. Such linear regressions are estimated
on the validation sample. If the approximate moment estimate is exactly equal to the true value, this quantity is zero. When
it is uncorrelated, it is 1. We consider the following specification for the approximation f(): local linear fit, local third-order
polynomial fit, a neural net with 5 layers and 10 nodes and kernel smoothing with Gaussian kernel.

First, we see that the R2 of the estimates using NN approximation is always higher than 95%,
highest for risk aversion and lowest for the discount factor. So NNs offer a good approximation of the
moment function, even with a smaller number of parameters.

Second, the kernel smoother now does quite well, even better than our deep NN for the discount
factor. We conjecture that this is because the HF model has a lower dimensionality than the CF model
(3 instead of 7 parameters). At low dimensions, our convergence results suggests that convergence
speed is actually higher for the kernel smoother. Another potential explanation for the relatively good
performance of the kernel is that the training sample size may be too low to properly fit a deep NN,
even though moments are reasonably smooth.

9In this formula, W is the variance matrix of the three main moments and G the approximate
Jacobian matrix (using fn). We expect using the true Jacobian not to make much of a difference here.
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C.5 Speed gains from the NN approximation
Figure C.2 shows that our approach is faster than the standard SMM. Like for the corporate finance
model, the SMM estimation is based on a TikTak algorithm, with a first evaluation of the SMM crite-
rion for 2,000 random points, and then Nelder-Mead optimizations at the best 5 starting points (with
at most 200 iterations per optimization). So the compute time we report for our method as well as the
SMM abstract from the first 2,000 draws, which both methods have to perform

As shown in Figure C.2, our method is orders of magnitude faster than the SMM. It takes about
30mn for the SMM to converge to the true value, while the approximate SMM does so almost instanta-
neously (about 0.45s). The slight difference with the corporate finance model is that the approximate
estimation somewhat differs from the SMM estimate (significantly only for risk aversion). We attribute
this to the fact that our training sample is too small here (since deep NNs are data hungry). With a
larger one, we conjecture that the approximate moment method would do better.
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Figure C.2: True SMM Estimates, Convergence Speed of Local Optimization Stage
(Household Finance Model)
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Notes. We report, for the household finance model, parameter values estimated as a function of time taken via two different
algorithms in our numerical setup. The blue line corresponds to the local optimization stage of the true SMM, i.e. the minimiza-
tion of the distance of empirical moments to the true model f(θ). The optimization algorithm used in this case is Tiktak, using
5 starting points selected from a training set of 2,000 cases and Nelder-Mead algorithm for local optimization per starting point
with 200 max function iteration. The red line corresponds to the benchmark approximate SMM. The approximate estimation
requires .2 seconds — hence the red line jumps to its final value at the origin. The black line corresponds to the true SMM
estimate and the dashed lines represent the confidence interval (+/-2 standard errors) around it.
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D Appendix Figures and Tables

Table D.1: Literature

Sub-field Year Reference Comparative
statics Jacobian AGS N/A

Investment,
capital structure,
and financing

1992 Whited JF X
2003 Love RFE X
2005 Hennessy et al. JF X
2007 Hennessy et al. JF X

2011 DeAngelo et al. JFE X
Lin et al. JFE X

2013 Matvos RFS X
2014 Nikolov et al. JF X

2016 Warusawitharana et al. RFS X
Li et al. RFS X

2017 Bakke et al. JFE X
Gu JFE X

2018 Wu RFS X X
2019 Nikolov et al. JFE X

2021 Frank et al. RFS X
Begenauet al. JFE X

(Forthcoming) Catherine et al. JF X X X

Corporate
governance

2009 Gayle et al. AER X

2010 Taylor JF X
Kang et al. JFE X

2012 Coles et al. JFE X
2013 Taylor JFE X
2017 Jung et al. JFE X
2018 Page JFE X
2022 Bertomeu JFE X

Bankruptcy 2016 Glover JFE X

Banking 2014 Schroth et al. JFE X

Corporate
control

2014 Dimopoulos et al. JFE X
2015 Albuquerque et al.JF X

2018 Li et al. JFE X
Wang JFE X

2020 Wang JFE X

Entrepreneurship
2020 Jones et al. AER X

2022 Ewens et al. JFE X
Catherine JFE X

Household
finance

2018 Pagel Econometrica X
2019 Sun et al. JFE X
2020 Ameriks et al. JPE X
2022 Catherine RFS X

Real
estate

2015 Corbae et al. JPE X
2017 Landvoigt RFS X
2020 Oh et al. JFE X
2021 Ghent JFE X
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