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Zoomers and Boomers: Asset Prices and

Intergenerational Inequality

By Leland E. Farmer and Roger E. A. Farmer∗

We construct a perpetual youth DSGE model with aggregate un-
certainty in which there are dynamically complete markets and
agents have Epstein-Zin preferences. We prove that, when en-
dowments have a realistic hump-shaped age-profile, our model has
three steady-state equilibria. One of these equilibria is dynamically
inefficient and displays real price indeterminacy. We estimate the
parameters of our model and we find that a fourth-order approxi-
mation around the indeterminate steady-state provides the best fit
to U.S. data. Our work interprets the large and persistent genera-
tional inequality that has been observed in western economies over
the past century as the result of uninsurable income shocks to birth
cohorts.

I. Introduction

We construct a Dynamic Stochastic General Equilibrium (DSGE) model in
which people have finite lives and a constant probability of death. Models with
this property are referred to as perpetual youth models. Agents trade with each
other in dynamically complete asset markets but are unable to buy or sell secu-
rities contingent on the state of the world they are born into.
We model preferences with an Epstein-Zin (1989) recursive utility function and

we compute the decision rules in discrete time for an Epstein-Zin consumer as a
function of the moments of prices, wealth, and future income. We construct the
pricing kernel in general equilibrium and we derive a set of equations in aggregate
variables that characterize dynamic equilibria.
We introduce a government that funds its expenditures with taxes and by issu-

ing dollar-denominated debt. We show that, for balanced-budget policies in which
expenditures equal taxes, our model has one steady-state equilibrium in which
the gross real interest rate equals the growth rate and at least one other equilib-
rium in which the real value of government debt is equal to zero. We refer to the
former equilibrium as the golden rule and the latter equilibria as generationally

autarkic or more compactly as autarkic.
We allow the income process of an individual to be a hump-shaped function of

age and we prove that there exists a critical value of the intertemporal elasticity of
substitution, iesc, such that for all values of ies < iesc there exist two non-trivial

∗ Leland E. Farmer: University of Virginia, lefarmer@virginia.edu. Roger E. A. Farmer: Department
of Economics, University of Warwick, r.farmer.1@warwick.ac.uk and Department of Economics, UCLA,
rfarmer@econ.ucla.edu.
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autarkic equilibria. One of these equilibria is dynamically efficient. The other is
dynamically inefficient.

We compute the determinacy properties of equilibrium at each of the steady
states and we show that when monetary and fiscal policy are both active, in the
sense of Leeper (1991), the efficient autarkic steady state is explosive, the golden-
rule steady-state is determinate and the inefficient steady-state is indeterminate
of degree 1. By simulating a fourth-order approximation to our model evaluated
around the indeterminate steady-state we are able to capture the fact that, in U.S.
data, the safe interest rate has been one to two percentage points lower than the
growth rate of GDP but the return on a risky claim has been several percentage
points higher.

We calibrate a subset of the parameters of our model and we estimate the
remaining parameters by simulated method of moments using a fourth-order ap-
proximation around both the determinate and indeterminate steady states. By
expanding the state space to include a non-fundamental shock we are able to com-
pare a version of our model driven by purely fundamental shocks with a version
in which asset prices display excess volatility caused by sunspot shocks. In each
of these versions of the model, we allow the data to determine if monetary and/or
fiscal policy were active and/or passive.

In our preferred specification of the model there is an important role for the non-
fundamental representation of the state, even though monetary and fiscal policy
are both active. This result occurs because of an interaction between the hump-
shaped income profile and a low intertemporal elasticity of substitution which
allows for the existence of a dynamically inefficient steady-state equilibrium that
displays real as opposed to nominal indeterminacy.

We explore two additional implications of our model that we did not build into
the specification. First, we show that our model displays return predictability
at one-year, three-year, five-year and seven-year horizons of a magnitude that
is consistent with observed return predictability in the data. Second, we show
that non-fundamental shocks cause large and persistent variations in cohort life-
time wealth even though our model has dynamically complete markets. These
variations are caused by the inability of birth cohorts to write insurance contracts
over the state of the world they are born into. Our work interprets the large and
persistent generational inequality that has been observed in western economies
over the past century as the result of uninsurable income shocks to birth cohorts.

II. Literature Review

An emerging literature extends Representative Agent New-Keynesian (RANK)
models to allow for uninsurable income risk by adding multiple agents and in-
complete markets. These models come in two-agent varieties – TANK models
– of the kind studied by Bilbiie (2008, 2020), and – HANK models – as in the
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work of Auclert et al. (2020) and Kaplan et al. (2018).1 HANK models are more
general than TANK models but they must carry around the wealth distribution
as a state variable. Since the wealth distribution is an infinite dimensional object,
solving and estimating HANK models is a challenging, but not insurmountable,
problem. Techniques to solve and estimate HANK models, building on insights
from Krusell and Smith (1998), have been developed by Reiter (2009); Winberry
(2018); Auclert et al. (2021) and Bilal (2021).

Our work is complementary to the HANK literature, but we approach the is-
sue of heterogeneity in a different way. In contrast to the literature reviewed
in Kaplan and Violante (2018), where wealth inequality arises from uninsurable
idiosyncratic income risk, we follow Campbell and Nosbusch (2007) by assuming
that wealth inequality is caused by uninsurable aggregate risks to newborn gener-
ations who cannot insure across the state of the world they are born into.2 Unlike
Campbell and Nosbusch (2007) who calibrate a perpetual youth model with loga-
rithmic preferences, our agents have Epstein-Zin preferences and we estimate the
parameters of our model on U.S. data. The extension to a more general pref-
erence specification is key to our results which exploit the existence of multiple
steady-state equilibria when agents have a hump-shaped income profile and a low
intertemporal elasticity of substitution.

The literature surveyed by Kaplan and Violante (2018) is concerned with the
relative size of fiscal and monetary multipliers across wealth groups that arise as
a consequence of sticky prices in a production economy. In contrast, we study
an endowment economy and we are concerned with the interaction of policy with
asset pricing and with the impact of large non-fundamental shocks to asset prices
as a cause of inequality in the intergenerational distribution of wealth.3

The first DSGE perpetual youth model in discrete time, of which we are aware,
is the paper by Farmer (1990a) who builds a DSGE perpetual youth model using
RINCE (Farmer, 1990b) preferences – a special case of Epstein and Zin (1989).4

RINCE preferences allow for a general intertemporal elasticity of substitution but
they impose the restriction that agents are risk neutral. We generalize Farmer
(1990a) to the case of general Epstein-Zin (1989) preferences and we allow for a
hump-shaped endowment process.

In subsequent developments in the DSGE perpetual youth literature, Farmer
et al. (2011) show how to construct the pricing kernel in a discrete time DSGE
perpetual youth model with complete markets and Farmer (2018) uses their result
to construct a model with two types of agents who have Von-Neumann Morgen-

1TANK is an acronym for Two Agent New Keynesian and HANK stands for Heterogeneous Agent
New Keynesian.

2For a related approach, see Gomez (2022) who characterizes the evolution of the wealth distribution
in a continuous time perpetual youth model with two types of agents.

3A natural extension of our work and, in our current research, we are building a model with production
and sticky-prices. A model of this type provides a tractable alternative way of studying heterogeneity of
policy transmission across agents.

4The perpetual youth model is due to to (Blanchard, 1985) who builds a model in continuous time
using insights from Yaari (1965). It is sometimes referred to as the Blanchard-Yaari model.
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stern preferences. Gârleanu and Panageas (2015; 2021; Forthcoming) present a
series of results for the Epstein and Duffie (1992) continuous time case. We ex-
tend the Farmer et al. (2011) result to construct the pricing kernel for the case
of a perpetual youth model with aggregate shocks where agents have Epstein-Zin
preferences and where the endowment pattern is hump-shaped. Both of these
features are key to the ability of our model to fit asset pricing facts in U.S. data.

Our solution to the individual’s problem is related to the results in Toda (2014)
and Flynn et al. (Forthcoming) who study the solution to a related problem in
which agents have access to a limited set of assets. In contrast, our assump-
tion that markets are dynamically complete allows us to aggregate individual
decision rules and to generate a set of low dimensional aggregate equations that
characterize equilibrium and facilitates our empirical application. Our ability to
accommodate heterogeneous agents in a tractable way distinguishes our empiri-
cal work from DSGE models that solve and estimate Epstein-Zin models with a
representative consumer (Epstein and Zin, 1991; van Binsbergen et al., 2008).

Much of the asset pricing literature addresses the determinants of asset pricing
in a continuous time model with endowment shocks that follow a diffusion process.
There is no government sector in these models and inflation is assumed to be
exogenous.5 In contrast, we build a model in which government intervenes in the
goods and asset markets through fiscal and monetary policy and we assume that
time is discrete. This places our work at the intersection of the representative
agent macro models surveyed in Leeper and Leith (2016) and the continuous
time asset pricing papers of Gârleanu and Panageas (2015, 2021, Forthcoming),
Schmidt (2022), and Gomez (2022).

An important contribution of our paper is our proof that a hump-shaped endow-
ment pattern interacts with a low intertemporal elasticity of substitution to gen-
erate multiple autarkic steady-state equilibria in a perpetual youth model. Draw-
ing on insights from Kehoe and Levine (1983, 1985), Farmer and Zabczyk (2022)
demonstrate that relative price indeterminacy emerges in three-period overlap-
ping generations models when the endowment pattern is hump-shaped and the
intertemporal elasticity of substitution is less than some critical number iesc.
They extend the three period model and show, by means of a calibrated example,
that the same phenomenon occurs in a perfect-foresight 62-period model. Our
current paper extends this result to the perpetual youth model with aggregate
shocks and estimates the parameters of the model using real-world U.S. data.

Much of the empirical literature that studies asset pricing has focused on dy-
namically efficient steady-states. In part, this is due to the work of Abel et al.
(1989) who argue that dynamically inefficient equilibria are empirically implausi-
ble. Blanchard (2019), in contrast, argues that a low safe interest rate has been
the norm in post-WWII U.S. data and he asks the question: what is the appro-

5An important exception to this is Swanson (2021), who shows that a discrete-time representative
agent New-Keynesian model with Epstein-Zin preferences is consistent with a number of asset pricing
facts.
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priate interest rate to assess the welfare effects of fiscal policy? Our empirical
results, under the maintained assumption of an endowment economy, answer this
question. We find that the data are best explained by a dynamically inefficient
steady state in which asset prices are driven by a highly volatile sunspot shock. In
our model, as in the data, the safe interest rate is below the GDP growth rate but
the risky rate is above it. The ability of our model to exploit non-fundamental
shocks to drive up the risky rate follows from the fact that the model contains a
locally indeterminate steady-state equilibrium. Previous work that exploits this
idea is surveyed in Farmer (2020).
We are not the only authors to point to dynamic indeterminacy as a potential

explanation for features of the asset markets. Brunnermeier et al. (2022b,a) study
the existence of bubbles in infinite horizon models in both continuous and discrete
time and Aguiar et al. (2021) study Pareto improving policies in a model with
idiosyncratic income risk. Reis (2021) explicitly studies the role of liquidity effects
in a model with aggregate shocks in which the interest rate is less than the growth
rate and Miao and Su (2021) study the emergence of debt as a bubble in a
Keynesian model with production. Unlike the papers cited here, our model has
no frictions and dynamically complete markets and we estimate the parameters
of our model on U.S. data.
In our empirical work we estimate both determinate and indeterminate versions

of our model as in the work of Lubik and Schorfheide (2004); Aruoba et al.
(2018) and Farmer and Nicolò (2018). Lubik and Schorfheide (2003) were the
first to develop a method to estimate indeterminate models. Their approach was
refined by Farmer et al. (2015) and Bianchi and Nicolò (2021). In this paper
we first choose the dimension of the state and, for each choice of the state, we
approximate the solution to the model by a fourth order approximation. Our
approximation uses uses Matlab code from Levintal (2017) who builds on results
from Schmitt-Grohé and Uribe (2004) to construct an efficient algorithm using
local perturbation methods.

III. The Agents’ Problem

We construct a perpetual youth model in which agents die with probability
1 − π and in which a member of the cohort born at date j is endowed with a
before-tax fraction yjt of aggregate real GDP which we refer to with the symbol

Yt. Define yjt as

yjt =
1

1− π

(

κ1λ
t−j
1 + κ2λ

t−j
2

)

, (1)

for (κ1, κ2) ∈ R
2 and (λ1, λ2) ∈ [0, 1]2. We choose the parameters κ1, κ2, λ1 and

λ2 to match the U.S. income profile as in Gârleanu and Panageas (2015). Figure
1 shows the age-profile of individual before-tax income shares for our choice of
parameters. GDP is generated by the process
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Figure 1: Individual Before-Tax Income Share

Note: This figure plots the individual before-tax income share of an agent conditional on surviving.

The x-axis is the age of the agent in years, assuming the agent “begins life” at age 20.

Yt
Yt−1

= γt,

where γt is a non-negative random variable whose dynamics follow an autoregres-
sive process in logs. Define γ̃t ≡ log(γt). Let 0 < ργ < 1 be the persistence of
γ̃t, let γ̄ be the steady-state growth rate of GDP, and let εγ be an i.i.d. random
variable with mean 0 and variance σ2γ . The dynamics of γ̃t are given by

γ̃t+1 = (1− ργ) log(γ̄) + ργ γ̃t + εγ,t+1. (2)

The variables of our model are elements of a vector of random variables Xt ∈
X ⊂ R

n
+ which we partition into two subsets

X = {S, T}, S ∈ XS ⊂ R
n1
+ , T ∈ XT ⊂ R

n2
+ , n = n1 + n2.

We refer to S as states and T as co-states. To keep the notation concise, in the
remainder of the paper we refer to variables xt ∈ Xt and xt+1 ∈ Xt+1 with the
notation x and x′ where x here refers to a generic element of X.

Private agents maximize the discounted expected value of an Epstein-Zin re-
cursive utility function. The problem of a member of cohort j is defined by the
value function, vj , that solves Problem 1.
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PROBLEM 1:

vj
(

Aj
)

= max
Aj ′

[

(

Cj
)ρ

+ βπ
(

mj
)ρ
] 1

ρ
, (3)

mj =

{

E

[

vj
′
(

Aj
′
)ρθ
]} 1

ρθ

,

Cj + πE
[

Q′Aj
′
]

= Aj + yj(1− τ)Y, (4)

with initial condition

Aj(Sj) = 0

and where τ is the tax rate.

PROPOSITION 1 (Solution to the Consumers’ Problem): The value function and

the policy function that solve Problem 1 are given by

Cj = ψ−1W j and vj = ψ
1−ρ
ρ W j .

The variable ψ is defined recursively as,

ψ = 1 + πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

,

where W j is the sum of three components.

W j = Hj
1 +Hj

2 +Aj ,

and H1 and H2 represent the discounted present values of the two components of

the after-tax income shares from the right-hand-side of Eq. (1). Aj is the value

of financial assets owned by a member of generation j in state St.

PROOF:

For a proof of Proposition 1, see Appendix A.

The parameters ρ and θ are related to the intertemporal elasticity of substitu-
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tion, ies, and the coefficient of relative risk aversion, rra, by the identities6

ies ≡
1

1− ρ
, rra ≡ 1− ρθ. (5)

Q′ ≡ Q̃′/χ(S′) is the pricing kernel, Q̃′ is the price at date t of a claim to one
unit of the commodity in state S′ and χ(S′) is the date t conditional probability
that state S′ occurs. Aj is the value of state S dependent Arrow securities that
were accumulated at date t− 1 by generation j.
The term π that appears in equations (3) and (4) serves two roles. In Eq. (3)

it is the probability that a person survives into period t + 1. In Eq. (4) it is the
price of a security that insures the life of the agent. This security sells for price
π when there is free entry to the financial services industry.7

IV. Government Policy

In this section we discuss fiscal and monetary policy.

A. Fiscal Policy

The government purchases g goods as a fraction of nominal GDP which it pays
for by raising a proportional income tax at rate τ and by issuing nominal debt
with a maturity structure parameterized by δ. The government budget equation
is given by the expression,

Bδ ′pδ =
(

1 + δpδ
)

Bδ + PY (g − τ) . (6)

Here, P is the dollar price of commodities and the nominal bond Bδ ′ is a promise
to repay $1 plus δBδ ′ nominal bonds in period t + 1. By choosing δ ∈ [0, 1] we
can mimic the maturity structure of public debt in U.S. data.
Bδ ′ sells for price pδ in period t and it follows from the assumption of no riskless

arbitrage that pδ is given by the expression

pδ = E

[

Q′

Π′

(

1 + δpδ
′
)

]

. (7)

6It is more usual to parameterize Epstein-Zin preference by a parameter ρ and a parameter α, where
in our notation, α = ρθ. Our alternative parameterization permits us to study the special case of ies = 1
by taking the limit as ρ → 0. The more familiar parameterization using ρ and α leads to numerical
instability in our empirical estimates for values of ρ close to 0. For the special case when θ = 1, agents
have Von-Neumann Morgenstern preferences on the space of lotteries over intertemporal consumption
sequences.

7If the agent is a debtor, the contract pays her debts in the event that she dies. If she is a creditor,
the security represents an annuity that gives the agent an additional stream of payments while she is
alive and that returns her assets to the financial institution that issued the security in the event of her
death. Because there is a continuum of agents in each generation, there is no aggregate risk to issuing
these securities.
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Using the definition

bδ =
Bδ

PLYL
,

where PL and YL are the lagged dollar price of commodities and lagged GDP
respectively, we can rewrite Eq. (6) in terms of ratios to nominal GDP,

pδbδ
′
=
bδ
(

1 + δpδ
)

Πγ
+ g − τ, (8)

where Π is the gross inflation rate between periods t− 1 and t.

We model government purchases with the assumption that a transformation
of government purchases is determined by an autoregressive process. Define g̃ ≡

log
(

1
1−g

)

, let ḡ denote the steady-state government spending-GDP ratio, and

define the persistence of g̃ by the parameter 0 < ρg < 1. We assume that

g̃′ = (1− ρg) log

(

1

1− ḡ

)

+ ρg g̃ + ε′g, (9)

where ε′g is a zero mean random variable with standard deviation σg.

We assume further that the government follows a fiscal rule of the form

τ = τ̄ + φτ

[

bδ(1 + δpδ)

Πγ
− Φ

]

,

where φτ is a fiscal response coefficient. By setting a positive response coefficient,
φτ , our model can capture a passive fiscal policy in which the government actively
stabilizes the economy at a given debt-GDP ratio, represented here by the symbol
Φ.8

The target value of the debt-GDP ratio must be consistent with its steady-state
value,

Φ =
b̄δ(1 + p̄δ)

Π̄γ̄
.

Because there may be multiple steady-states and the steady-state value of the

debt-GDP ratio b̄δ(1+p̄δ)
Π̄γ̄

is different in each of them, Φ cannot be chosen inde-

pendently; it is a function of τ̄ and φτ , as well of all of the other parameters of
the model which contribute to the determination of the steady state values of b̄δ,

8A fiscal policy in which the government adjusts taxes and spending to maintain budget balance is
referred to as a passive. A fiscal policy in which the government sets a deficit rule that is independent
of the debt-GDP ratio is said to be active. This definition originates in an attempt to provide a unified
theory of fiscal and monetary interactions (Leeper, 1991). A government that actively adjusts its fiscal
rule is said to follow a passive fiscal policy. We retain the definition here for consistency with previous
literature.
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p̄δ, and Π̄.

B. Monetary Policy

The central bank sets the gross nominal interest rate R as a function of the
date t − 1 interest rate RL, the gross inflation rate Π, and the gross real GDP
growth rate γ, according to the Taylor Rule (Taylor, 1999),

R = RL
φR

[

(

Π

Π∗

)φπ
(

γ

γ∗

)φγ
(

Π∗

Q∗

)

]1−φR

exp(εR), (10)

where εR is a policy shock, generated by an i.i.d. stochastic process with mean 0
and variance given by σ2R.
Π∗ is the gross inflation target, γ∗ is the target GDP growth rate, and Q∗ is

the target steady-state value of the pricing kernel. The parameters φR, φπ, and
φγ capture the interest rate smoothing motive, the inflation response, and the
output growth response of the Taylor Rule. The central bank is free to choose
any value for Π∗, γ∗ and Q∗; but in order to hit the growth and inflation targets
they must choose values that are consistent with equilibrium. In our estimation
we approximate a solution to the model around a steady-state. We choose γ∗ = γ̄
and we pick values of Π∗ = Π̄ and Q∗ = Q̄ that are consistent with their target
non-stochastic steady-state.

V. Definitions of the Variables

In this section we construct a set of aggregate variables and a set of equations
that connect these variables at consecutive dates and in consecutive states. We
divide the variables that are growing through time by GDP to create a set of
stationary variables and we assemble the equations of the model into a function
that defines equilibrium.

A. The State Variables of the Model

We discuss two representations of the model, one in which all of the state
variables are fundamental, and one in which the state includes a non-fundamental
variable driven by sunspot shocks. We refer to the fundamental representation of
the state as S and to the non-fundamental representation of the state as S̃.
S includes the variables γ and g which we model as first order auto-correlated

processes in the transformed variables log(γ) and log
(

1
1−g

)

, bδ which is related

to the real value of the debt-GDP ratio, and εR, the monetary policy shock. S
also includes RL and cL from the date t − 1 information set and zL, where z is
the following function of the moments of ψ′ and Q′,

z = E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
1−ρθ

]

.
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We include zL and cL in the state because the pricing kernel at date t holds in
all pairs of consecutive states {St−1, St} and, as we show in Proposition 2, Q is a
function of cL and zL.

This discussion leads to the following vector of fundamental state variables, S

S ≡ {cL, zL, RL, b
δ, γ, g, εR}.

Most existing DSGE models are estimated under the assumption that all of the
states are fundamental. However, the perpetual youth model is not restricted to
purely fundamental equilibria and for some parameterizations of the model we
find that there exists an indeterminate steady-state. For these parameterizations
we define an asset that we refer to as equity. Equity issued at date j is a claim
to the income stream λt−jYt for all t ≥ j and its price, PE is determined by the
recursion9

PE = E

[

Q′
(

λPE
′
+ Y ′

)]

.

The price-dividend ratio is determined by the expression

pE = E

[

γ′Q′
(

λpE
′
+ 1
)]

.

Equity is a redundant asset and in a model with a unique determinate steady-
state it would appear as a co-state variable. In contrast, in a model with an inde-
terminate steady-state, there are stationary equilibria driven purely by sunspots.
In these equilibria, there are insufficient initial conditions to uniquely deter-
mine all of the variables and there may exist sunspot equilibria in which non-
fundamental shocks influence prices and allocations (Azariadis, 1981; Cass and
Shell, 1983).

In our empirical work, we explore the properties of sunspot equilibria close to
an indeterminate steady-state by choosing pE to be an additional state variable.
In the non-fundamental version of the model we define the augmented state vector
S̃,

S̃ ≡ {S, pE}.

There is no unique way to choose an additional state variable although Farmer
et al. (2015) show, in the context of a linear model, that if one allows for an
arbitrary variance-covariance between the sunspot shock and the fundamental
shocks, all choices of the additional state are observationally equivalent. The
sunspot moves the economy to a point on the stable manifold of a locally inde-
terminate steady state. By specifying a variance-covariance structure for all the

9λ represents the decay rate of the claim and it is not identified independently of the volatility of the
innovation to the sunspot shock. For existence of equilibrium, it must satisfy the inequality λγ̄Q̄ < 1 in a
steady state parameterized by Q̄. In our estimation we set λ = πλ1 which guarantees that this inequality
is satisfied in any equilibrium in which human wealth is well defined.
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shocks one arrives at an empirically testable model that can be compared with
non sunspot theories. In this paper we show that a sunspot-driven equilibrium
provides a much better fit to U.S. data than fundamental equilibria of the same
model.

B. The Co-state Variables of the Model

The co-state vector T includes z, ψ, Q and c. It also includes the variables
R, τ , Π, pδ and two stationary variables, h1 and h2 which represent the net
present values of the two components of the income streams in Eq. (1) added up
over all living agents and expressed as ratios to GDP. These variables are defined
recursively,10

h1 = α(1− τ) + πλ1E
[

γ′Q′h′1
]

, and h2 = (1− α)(1− τ) + πλ2E
[

γ′Q′h′2
]

.

For the specification of the state in which all states are fundamental, T also
includes the price-dividend ratio pE .

This discussion leads to the following vectors of co-state variables for the fun-
damental and non-fundamental versions of the model,

T̃ = {z, ψ, h1, h2, Q, c, R, τ,Π, p
δ}, and T = {pE , T̃}.

VI. Competitive Equilibrium

In this section we introduce the dynamic equations that link the variables
through time and we define the concepts of a competitive equilibrium, a steady-

state equilibrium, and a balanced-budget steady-state.

DEFINITION 1 (Competitive Equilibrium): A ‘competitive equilibrium’ is a stochas-

tic sequence of prices and allocations such that markets clear at every period and

allocations solve the households’ utility maximization problems at every date and

in every state.

In Appendix D we establish the following proposition.

PROPOSITION 2 (Characterization of Equilibrium):
Define a vector X ∈ X ⊂ R

n
+

X ≡ {cL, zL, RL, b
δ, γ, g, εR, p

E , z, ψ, h1, h2, Q, c, R, τ,Π, p
δ}

10See Appendix D.
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and functions φ : X 2 → R+ and F : X 2 → R
n
+ where

φ(X,X ′) ≡









πβ
1

1−ρ cL

γ

(

c− ψ−1 [(1− λ1π)h1 + (1− λ2π)h2]

)

z
θ−1

(1−ρ)θ

L ψ
1−θ
1−ρθ









1−ρθ

,

and

F =

















































































c− cL
′

z − zL
′

R−RL
′

ψc− h1 − h2 −
bδ(1+δpδ)

Πγ

γ̃′ − (1− ργ) log(γ̄)− ργ γ̃ − ε′γ

g̃′ − (1− ρg) log
(

1
1−ḡ

)

− ρg g̃ − ε′g
ε′R
pE − γ′Q′(λpE

′
+ 1)

z − ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

ψ − 1− πβ
1

1−ρ z
1−ρθ
(1−ρ)θ

h1 − α(1− τ)− πλ1γ
′Q′h′1

h2 − (1− α)(1− τ)− πλ2γ
′Q′h′2

Q− φ(X,X ′)
c+ g − 1

R− Q′

Π′

τ − τ̄ − φτ

[

bδ(1+δpδ)
Πγ − Φ

]

R−
[

RL
]φR

[

(

Π
Π∗

)φπ
(

γ
γ∗

)φγ
(

Π∗

Q∗

)

]1−φR

pδ − Q′

Π′

(

1 + δpδ
′
)

















































































.

A competitive equilibrium is characterized by a bounded stationary stochastic

process {Xt}
∞
t=1 that satisfies the functional equation

E
[

F (X,X ′)
]

= 0, (11)

with boundary conditions

ψ−1
1

(

h1,1 + h2,1 +
bδ1(1 + δpδ1)

Π1γ1

)

= 1− g1,

RL = RL,1, cL = cL,1, and zL = zL,1,

where
bδ1(1+δp

δ
1)

Π1γ1
, h1,1, and h2,1 are the debt-GDP ratio and the two components of
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the human wealth-GDP ratio in period 1, g1 is the period 1 government spending-

GDP ratio, and ψ1 is the initial inverse savings propensity.

A steady-state is a vector X̄ ∈ X that satisfies the equation

F (X̄, X̄) = 0. (12)

DEFINITION 2 (Steady-State Equilibrium): A ‘steady-state equilibrium’, or more

compactly a ‘steady-state’, is a competitive equilibrium in which the variables of

the model are non-stochastic and time invariant. A steady-state equilibrium is

‘non-trivial’ if the steady-state pricing kernel, Q̄, is strictly positive. A ‘balanced

budget steady-state’ is a steady-state equilibrium of the model in which the gov-

ernment follows the balanced budget policy ḡ = τ̄ .

Proposition 3 characterizes the properties of balanced-budget steady-states.

PROPOSITION 3 (Multiplicity of Balanced-Budget Steady-States): The model

has at least two balanced-budget steady-states. In one of these steady-states

Q̄gr =
1

γ̄
.

We refer to this as the golden rule and we index the elements of X̄ in the golden-

rule steady state with the subscript gr. In the one-commodity model, the golden-

rule is unique. In addition to the golden rule, there is at least one other steady-

state in which

b̄aui = 0.

We refer to these steady states as a ‘generationally autarkic’ or more compactly

as ‘autarkic’ and we index the elements of X̄ in the i-th autarkic steady state with

the subscript aui.

PROOF:

Using equations (7) and (8) and exploiting the balanced budget assumption
leads to the steady-state expression,

b̄δ(Q̄)

(

1−
1

Q̄γ̄

)

= 0,

from which it follows that either

b̄δ(Q̄) = 0, or Q̄ =
1

γ̄
.

This established Proposition 3.

PROPOSITION 4 (Multiplicity of Autarkic Steady-States): Define the following
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compound parameters,

δ1 ≡
1

1− πλ1γ̄
, δ2 ≡

1

1− πλ2γ̄
, δb ≡

1

1− πβ
1

1−ρ

,

∆ ≡ δ1 − δ2, ρc ≡ −
log(πβ)

log(λ1γ̄)
,

and the following inequalities

α > 1, δb > δ1 > δ2, δ1 −∆(1− α) > δb, ρ < ρc < 0. (13)

When the parameters satisfy the inequalities in (13), there is a trivial autarkic

steady-state and two non-trivial autarkic steady-states. The steady-state pricing

kernel in these steady-states are solutions to the equation,

h(Q)

1− ḡ
≡

[

α

1− πλ1γ̄Q
+

(1− α)

1− πλ2γ̄Q

]

=

[

1

1− πβ
1

1−ρQ
ρ

ρ−1

]

≡
ψ(Q)

1− τ̄
, (14)

where h(Q) ≡ h1(Q) + h2(Q) is aggregate human wealth-GDP. We refer to the

values of the non-trivial steady-state pricing kernel in these two steady-states as

Q̄au1 and Q̄au2.

The steady state indexed by au1 is dynamically efficient and the steady state

pricing kernel Q̄au1 satisfies the inequality Q̄au1 < Q̄gr = 1
γ
. The steady state

indexed by au2 is dynamically inefficient and the steady state pricing kernel Q̄au2
satisfies the inequality Q̄au2 > Q̄gr =

1
γ
.

The parameter ρ is related to the intertemporal elasticity of substitution by the
identity

ies ≡
1

1− ρ
,

and Proposition 4 implies that, when the parameters of the model satisfy inequal-
ities (13), there exists a critical value,

iesc =
1

1− ρc
,

such that for all values of ies < iesc there exist multiple autarkic steady-states.
In our empirical work we calibrate the parameters π, λ1, and γ̄ and estimate the
parameter β. For our parameterization, this critical value is ies = 0.453. For an
explanation and a proof of Proposition 4 see Appendix E.



16 WORKING PAPER: FIRST DRAFT AUGUST 2022

VII. The Determinacy Properties of the Steady-States

In this section we discuss the concept of local determinacy of equilibrium and
we explain the solution and estimation strategy that we use to compare the model
with data.

A. The Definition of Local Determinacy

A steady-state, X̄ is said to be locally determinate if, in the absence of shocks,
and for initial values of the state variables in the neighborhood of X̄, there is a
unique value for the co-state variables such that equilibrium sequences {Xt}t≥0

converge to X̄. We elaborate on this definition below.
Define the matrices

Aeq ≡ FX |eq and Beq ≡ FX′ |eq ,

where Aeq and Beq represents the Jacobians of the function F (X,X
′) with respect

to the vectors X and X ′ evaluated at a steady state eq ∈ {gr, au1, au2}. Consider
the following linear approximation of Eq. (12)

AeqX̃ +BeqX̃
′ = 0, (15)

where the tilde signifies deviations from the steady state.
Let σeq ∈ C

n denote the spectrum of the matrix pencil (Aeq − σeqBeq) and let
meq denote the number of elements of σeq inside the unit circle.11 Let deq denote
the degree of indeterminacy of the steady state. It follows from the Blanchard
Kahn conditions (Blanchard and Kahn, 1980) that

deq = meq − n+ n1,

where n1 is the number of fundamental state variables and n is the dimension of
X.
For a simple version of our model with a balanced budget and monetary and

fiscal policies that are both active, we computed the spectra at the three steady
states for values of ies ∈ [0.05, iesc]. For all values of ies in this range we found
that

dau1 = −1, dgr = 0 and dau2 = 1.

These results imply that the efficient autarkic steady state is explosive and would
never be reached if monetary and fiscal policy were both active. The golden-
rule steady state is locally determinate and, in the vicinity of the golden-rule,
there exists a unique equilibrium that is a function only of fundamentals. In
contrast, we found that the inefficient autarkic steady-state equilibrium displays
one degree of indeterminacy even when both monetary and fiscal policy are active.

11The σi(eq) are solutions to the polynomial equation: det (Aeq − σeqBeq) = 0.
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This is in marked contrast to results from the representative agent model in which
equilibrium, under an active monetary policy and an active fiscal policy, does not
exist (Leeper and Leith, 2016). The indeterminacy that occurs at the inefficient
autarkic steady-state is real as opposed to nominal and it leads to the possibility
of a volatile pricing kernel, driven by sunspot fluctuations in non-fundamentals.

B. Excess Volatility and the Equity Premium

The fact that the overlapping generations model has an indeterminate dynam-
ically inefficient steady-state equilibrium was established in Samuelson’s seminal
(1958) paper. In two-generation one-commodity models, the existence of an inde-
terminate steady-state equilibrium occurs only if debt is denominated in dollars.
In models with three or more generations, that qualification is unnecessary and
we have examples of multi-generation models that display indeterminacy of rel-
ative prices and real interest rates (Kehoe and Levine, 1983, 1985; Farmer and
Zabczyk, 2022). Our paper provides a further example of this phenomenon.
The existence of an indeterminate dynamically inefficient steady-state equilib-

rium is interesting because it offers the potential to understand three asset market
facts that are otherwise difficult to explain. The first fact is that asset prices are
far more volatile than can easily be explained by fluctuations in fundamentals
(Shiller, 1981; Leroy and Porter, 1981). The second fact is that the return to
government debt has been lower than the growth rate of GDP for long periods of
time (Blanchard, 2019). And the third fact is that the average rate of return to
the stock market has been two to three percentage points higher than the growth
rate of GDP in a century of U.S. data (Mehra and Prescott, 1985).
For any risky asset with return R′

r, the no-arbitrage condition in the asset
markets implies that

E[R′
r] =

1− Cov(R′
r, Q

′)

E[Q′]
>

1

E[Q′]
≡ R′

s,

whereR′
s is the return on a risk-free bond and the inequality follows if Cov(R′

r, Q
′) <

0. By choosing pE as a state variable, we ensure that fluctuations in ε′s cause ex-
cess volatility in the pricing kernel, Q′, and conditional on a realization of γ′, they
induce a negative covariance between sunspot fluctuations in the pricing kernel
and the return to a risky asset.

VIII. Solution and Estimation Strategy

We parameterize the model by a finite vector of parameters ϑ ∈ Θ ⊂ R
ℓ and

using the partition, X ≡ {S, T}, we define the function G : X 2
S × X 2

T → R
n,

G(S, S′, T, T ′;ϑ) ≡ F (X,X ′).

Define a vector shocks ε ∈ E ⊂ R
k
+. A solution to the model is pair of functions
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f : XS × E → XS and g : XS → XT ,

S′ = f(S, ε′) and T = g(S),

where the functions f and g satisfy the functional equation,

E
[

G
(

S, f [S, ε′], g[S], g[f(S, ε′)];ϑ
)]

≡ 0.

For the fundamental version of the model we choose

S ≡ {cL, zL, RL, b
δ, γ, g, ε̄R},

and we define three fundamental shocks, εγ , εg, and εR. In this representation of

the model, k = 3 and we specify AR(1) processes for γ̃ = log(γ) and g̃ = log
(

1
1−g

)

and a zero mean i.i.d. process for εR,

γ̃′ = (1− ργ) log(γ̄) + ργ γ̃ + εγ
′,

g̃′ = (1− ρg) log

(

1

1− ḡ

)

+ ρg g̃ + εg
′,

ε′R ∼ i.i.d.(0, σ2R).

In our estimation strategy we further assume that the elements of ε are uncorre-
lated and we parameterize their standard deviations by σγ , σg, and σR. For the
non-fundamental version of the model we choose

S̃ = {S, pE},

and we add a non-fundamental shock εs. In this specification, k = 4, and the
states γ, g, εR, and p

E follow the processes

γ̃′ = (1− ργ) log(γ̄) + ργ γ̃ + εγ
′,

g̃′ = (1− ρg) log

(

1

1− ḡ

)

+ ρg g̃ + εg
′,

ε′R ∼ i.i.d.(0, σ2R),

pE
′
= E

[

pE
′
]

exp(εs
′).

In the non-fundamental model there is an additional i.i.d. shock εs
′ with mean 0

and standard deviation σs.

IX. Data Sources and Moment Matching

This section describes data sources and partitions the parameter space into a
subset of parameters that we calibrated, or estimated by OLS, and a subset that
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we estimated by simulated method-of-moments.

For the risky asset, we used data on the value-weighted market portfolio from
the Center for Research in Security Prices (CRSP). The price-dividend ratio was
computed as the price of the value-weighted market portfolio divided by a 12-
month moving sum of daily dividends (as in Welch and Goyal (2008)). For the
risk-free 1-period asset, we used the effective federal funds rate from FRED.12

For inflation, we used Consumer Price Index (CPI) inflation. For the government
debt-to-GDP ratio we used total public debt as a percentage of GDP from FRED.
All data are quarterly and the sample period is 1990Q1-2019Q4.

The model has 23 parameters which we collect into the vector ϑ ∈ Θ. We
calibrated 11 of these parameters to match various observable features of the
data and we refer to the subset of calibrated parameters as ϑC . The remaining
12 parameters, collected into the vector ϑE , were estimated by simulated method-
of-moments,

ϑ ≡
[

ϑ
′
C ,ϑ

′
E

]′
.

A. Parameters Calibrated or Estimated by Least-Squares

Table 1 displays the values of ϑC . We chose the survival probability π to
match an average life expectancy of 50 years. Agents are assumed to begin life as
working-age adults, so if an agent enters the economy at age 20, they would live
on average until they are 70.

We chose the parameters λ1, λ2, and α to match the U.S. income profile as
shown in Figure 1. These parameters are taken from Gârleanu and Panageas
(2015) who use least-squares to fit a doubly exponential process to the age profile
of U.S. cohort data.

We chose AR(1) processes for output growth and government spending from
univariate first-order auto-regressions of the logs of real GDP growth and a trans-
formation of the government spending-GDP ratio in U.S. data. The estimated
parameters for output growth imply an annualized real GDP growth rate of 2.43%
and an annualized unconditional standard deviation of 1.14%. The estimated pa-
rameters for government spending imply a mean real government spending-GDP
ratio of 20.85% and unconditional standard deviation of 1.41%.

Finally, we chosen δ to match the average maturity of government debt in our
data set which we estimate to be 5 years.

B. Parameters Estimated by Method of Moments

We collect the estimated parameters into a vector

ϑE = [β, ρ, θ, τ , φτ , ρR, π, φπ, φγ , κ, σR, σs]
⊤

12Federal Reserve Bank of St Louis Economic Database.
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Parameter Calibrated Value

Survival Probability

π 0.995

Endowment Profile

λ1 0.987
λ2 0.985
α 8.522

Output Growth

100 log(γ̄) 0.608
ργ 0.402
100σγ 0.529

Government Spending

ḡ 0.209
ρg 0.991
100σg 0.230

Government Debt

δ 0.950

Table 1: Calibrated Parameters

Note: We chose the survival probability to match an av-

erage working-age life-span of 50 years. We chose the en-

dowment profile parameters to match estimates in Gârleanu

and Panageas (2015). We estimate the output growth and

government spending parameters by OLS using data from

FRED. Finally, we chose the decay rate of government bonds
to match an average maturity of 5 years.

The parameter β is the discount factor of the household. The parameters ρ and θ
are the functions of the intertemporal elasticity of substitution and the coefficient
of relative risk aversion defined in Eq. (5); these are the only three estimated
private-sector parameters. τ̄ and φτ parameterize the fiscal rule, φR, φπ, and φγ
parameterize the monetary rule and σR and σs are standard deviations of the
monetary shock and the sunspot shock.

In order to match the equity premium and the Sharpe ratio in U.S. data we
introduce the parameter κ which represents the fraction of a firm financed by
debt. This parameter captures leverage and it allows us to increase our estimate
of the equity premium and simultaneously increase the standard deviation of the
return on the risky asset. The risk-return trade-off to a leveraged asset is a
direct application of the Modigliani-Miller theorem in a model with dynamically
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compete markets.
Let Rr,ℓ, Rr,u and Rs denote the gross real return on a levered risky asset, the

gross real return on an unlevered risky asset and the gross real return on a riskless
bond. It follows from the assumption of complete asset markets that

Rr,ℓ −Rs =
1

1− κ
(Rr,u −Rs) .

When we report statistics related to the risky return we use Rr,ℓ.
For some parameterizations, our model has three steady-state equilibria and

for others it has only two. Our estimation strategy allows for both possibilities.
First, we chose the state vector to be S, and we searched over the parameter
space ΘE for the minimum distance between the model and data moments. Our
estimation procedure computes the steady states associated with any given vector
and it rejects a steady state if it does not satisfy the Blanchard-Kahn conditions.
This implies that, for a given definition of the state our equilibrium is determinate
by construction.
We did not impose any assumptions, in advance, about whether fiscal and/or

monetary policy are active or passive. Instead, we allowed the stance of policy
to be chosen to achieve the best fit. In a model with a unique steady-state, our
approach would require that either fiscal policy is active and monetary policy is
passive, or monetary policy is active and fiscal policy is passive. In our model,
in contrast, there are always at least two steady states and, for low values of the
ies, there are three. This fact allows us to construct a determinate equilibria at
any one of the three steady states by picking appropriate combinations of policy
activism.
The novel aspect of our work, is that we are not restricted to the choice of S as

the state vector. In our empirical work we repeated the estimation exercise using
pE as an additional state. We refer to the augmented state vector as S̃ = {S, pE}.
The augmented model has one additional state variable and one additional non-
fundamental shock that we assumed to be uncorrelated with the fundamental
shocks. We parameterized the volatility of the non-fundamental shock by σs.
This discussion implies that the standard model has 11 estimated parameters
while the augmented model has 12. We refer to the standard and augmented
models as models S and S̃ respectively.
We searched over all determinate equilibria under both definitions of the state

and we compared the best fit for the two alternative specifications, where by best
fit, we mean the model that most closely matches the following fifteen macro and
financial moments:

• µrnr : mean of the nominal risky rate

• σ2rnr : variance of the nominal risky rate

• µrn
f
: mean of the nominal risk-free rate
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• σ2rn
f
: variance of the nominal risk-free rate

• ρrn
f
: auto-correlation of the nominal risk-free rate

• µpd: mean of the log price-dividend ratio

• σ2pd: variance of the log price-dividend ratio

• ρpd: auto-correlation of the log price-dividend ratio

• µπ: mean of inflation

• σ2π: variance of inflation

• µb: mean of the debt-to-GDP ratio

• σ2b : variance of the debt-to-GDP ratio

• σrn
f
,π: covariance between the nominal risk-free rate and inflation

• σrn
f
,γ : covariance between the nominal risk-free rate and real GDP growth

• σπ,γ : covariance between inflation and real GDP growth

We estimated ϑE using two-step simulated method of moments. For a given
parameter vector, we solved the model using a fourth-order perturbation approx-
imation with code from Levintal (2017). We simulated 5,000 periods of burn-in
and we kept the subsequent 100,000 draws to compute moments.

C. Model Fit

We found that the data favor model S̃ in which the sunspot shock plays an
important role. Table 2 compares the fit of models S̃ and S to the targeted mo-
ments. We report estimated parameter values and 95% bootstrapped confidence
intervals for Model S̃ in Table 3. We begin by discussing the results for Model S̃.
With a couple of exceptions, the moments of Model S̃ are close to their data

analogues with a typical percentage difference of less than 10%. The two excep-
tions to the close fit are the mean and persistence of the price-dividend ratio. The
mean of the log price-dividend ratio is 3.11 compared to 3.92 and its persistence,
measured by ρpd, is estimated to be 0.99 compared to 0.75 in data.13

For a visual display of data generated by the model, in Figures 2 and 3 we
plot simulated sample paths of length 300 quarters for a selection of macro and
financial variables. All series are annualized. In Figure 2 we plot the risk-free

13We suspect that this aspect of our model could be improved by exploring alternative specifications for
the additional state variable that allow the price-dividend ratio to respond to lagged and contemporaneous
values of shocks to other variables in the model. For example, we have not allowed for the possibility
that the stock market is too volatile because it over-reacts to fundamentals. Instead, we modeled all
excess volatility as exogenous.
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Moments Data Model S̃ Model S

Risky Rate

µrnr 9.23 9.34 9.86
σrnr 16.21 16.24 3.03

Risk-free Rate

µrn
f

2.66 2.82 2.40

σrn
f

1.10 1.02 0.73

ρrn
f

0.85 0.87 0.74

Log Price-Dividend Ratio

µpd 3.92 3.11 3.03
σpd 0.26 0.29 0.03
ρpd 0.75 0.99 0.94

Inflation

µπ 2.38 2.40 2.37
σπ 1.18 1.26 1.21

Government Debt

µb 74.02 75.28 73.33
σb 18.90 18.23 19.47

Correlations

ρrn
f
,γ 0.20 0.22 0.33

ρrn
f
,π 0.32 0.42 0.55

ργ,π 0.25 0.22 0.23

Table 2: Targeted Moments Fit

Note: We annualize all moments except correlations. Specifically, we multiply
means by 4 and standard deviations are multiplied by 2, and we report both

quantities in percentage points. We raise auto-correlations to the power 4. We

compute moments from the model as the average of 1,205,000 simulated draws
where the first 5,000 draws are discarded as burn-in.

rate, inflation, the consumption-GDP ratio, the log human-wealth-GDP ratio, the
debt-GDP ratio and the deficit-GDP ratio.

The top left panel of Figure 2 shows the risk-free rate which varies between 5%
and 1% and the top right panel shows the annualized quarter-on-quarter inflation
rate. Both of these series closely match the data moments that we targeted. For
the risk-free rate, the model mean is 2.82% compared to 2.66% in data with a
persistence of 0.87 compared to 0.85 in data. We also match volatility well with
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Figure 2: Simulated Macro Data

Note: This figure plots 300 quarters of data simulated from model S solved using a fourth-order per-

turbation and evaluated at the parameters estimated using the simulated method of moments. We

present results for six different variables. Going top to bottom and left to right these are the nominal

risk-free rate, inflation, consumption-GDP ratio, log human wealth-GDP ratio, debt-GDP ratio, and

deficit-GDP ratio.

a model standard deviation of 1.02% compared to a data standard deviation of
1.10%. For the inflation rate, the model mean is 2.40% compared to 2.38% in data
with a model standard deviation of 1.26% compared to a data standard deviation
of 1.18%.

The middle-left panel of Figure 2 reports the consumption-GDP ratio which is
driven by our estimated process for government spending; the consumption and
government spending ratios add up to 1 by construction. The middle-right panel
displays the logarithm of the ratio of human wealth to GDP.

The human-wealth ratio series varies between 5 and 5.5 in log units and is highly
persistent. This fact has important consequences for inter-generational inequality
that we document below. Although our model has dynamically complete markets,
new birth cohorts are unable to insure across the states of the world they are
born into. The difference between the life prospects of a birth co-cohort with a
log human wealth of 5.5 as opposed to 5 is substantial and a difference of this
magnitude implies very large differences in life prospects across generations.

The bottom two panels of Figure 2 show that our model generates realistic
paths for both the debt-GDP ratio and the deficit-GDP ratio. The mean of the
model debt-GDP ratio is 75% with a standard deviation of 18% compared with
74% and 19% in data and an average deficit-to-GDP ratio of 3.3%.
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Turning now to the financial data, in Figure 3 we graph annualized data for the
equity premium, the volatility of excess returns, the market price of risk, and the
price-dividend ratio. The top left panel of this figure shows the equity premium
which has a mean mean value of 6.33%. This series is persistent and displays
significant time-variation with a range between 10% and 6% over the sample.
The equity premium displays a steady decline in response to the run-up in asset
prices. A similar pattern is observed in the market price of risk, graphed in the
lower left panel.

The top right panel of Figure 3 plots the conditional volatility of excess returns
which shows that our model displays some endogenous stochastic volatility that
arises from non-linearities which are captured in our fourth-order approximation.
Finally, the bottom right panel plots the price-dividend ratio which is a state
variable in the estimated version of our model. This series exhibits large and
persistent fluctuations that are driven by the non-fundamental sunspot shock.
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Figure 3: Simulated Financial Variables

Note: This figure plots 300 quarters of data simulated from model S solved using a fourth-order per-

turbation and evaluated at the parameters estimated using the simulated method of moments. We

present results for four different variables. Going top to bottom and left to right these are the condi-

tional equity premium, conditional volatility of excess returns, market price of risk, and price-dividend
ratio.

Model S exhibits major shortcomings relative to Model S̃ when it comes to
fitting the targeted moments. The main issue is that Model S is incapable of
producing enough volatility in interest rates and asset prices relative to the data.
Model S produces a high equity premium of 7.45% using financial leverage but
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only produces a risky rate volatility of 3.03% compared to 16.21% in the data.
This leads to an annualized Sharpe ratio 2.53 which is significantly larger than
the annualized Sharpe ratio of 0.41 in the data.
Similarly, the log price-dividend ratio is too low on average with a mean of

3.03 compared to 3.92 in the data and exhibits significantly less volatility, 0.03
compared to 0.26. Model S also produces a much stronger correlation between
the nominal risk-free rate and inflation than in the data, 0.55 compared to 0.32.

D. Parameter Estimates

Our point estimate of the intertemporal elasticity of substitution, ies, is equal to
0.41. This estimate is less than iesc implying a parameterization with three steady
states. We found that the data favors an approximation around the dynamically
inefficient steady-state, allowing the model to capture the fact that, in the U.S.
data, the safe interest rate has been lower than the growth rate in much of the
post-war period.
Our point estimate of the coefficient of relative risk aversion, rra, is 17.37.

In a model with constant-relative-risk-aversion (CRRA) preferences, a value for
rra of 17.37 would imply a value for the ies of 0.06 which is well outside the
5% confidence bound of 0.37 for our estimate of that parameter. Similarly, the
estimated value of the ies would, under CRRA preferences, imply a coefficient of
relative risk-aversion of 2.48. This, once again, is below the 5% confidence bound
of our estimate of this parameter which is equal to 14.87. We conclude that our
estimates allow us to reject the hypothesis of Von-Neumann Morgenstern CRRA
preferences in favor of Epstein-Zin.
Next, we turn to the fiscal rule parameters. We estimated a steady state tax-to-

GDP ratio of 17.55% which implies a steady state deficit-to-GDP ratio of 3.33%.
The debt stabilization parameter φτ = 3.63× 10−6 implies a weak fiscal response
of taxes to deviations of debt from its steady state. This response accounts
implies a nearly constant tax rate as a fraction of GDP and is too small to act as
an independent stabilization mechanism. We conclude that our estimates imply
that fiscal policy during our sample period was active.
For the monetary policy rule, we estimated a response coefficient to inflation

of φπ = 2.14 and a response coefficient to real GDP growth of φγ = 0.94. These
estimates imply that monetary policy was active and are within the range esti-
mated in previous literature. The 95% confidence intervals for these parameters
significantly overlap with confidence intervals reported in other estimated DSGE
models. For example, Gust et al. (2017), report point estimates of φπ = 1.67
and φγ = 0.73 and corresponding 95% percent credible sets of [1.21, 2.14] and
[0.39, 1.07], albeit in a richer model which includes production and a zero lower
bound on nominal interest rates.
We estimated the leverage ratio, κ, to be 0.81 which implies a debt-to-equity

ratio of approximately 4. This is higher than the value of 2 used in Bansal and
Yaron (2004), like the monetary policy parameters φπ, and φγ , it is relatively
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Parameter Estimate 95% Bootstrap CI

Preferences

βπ 0.992 [0.991, 0.993]
ies 0.404 [0.370, 0.466]
rra 17.373 [14.874, 21.232]

Fiscal Rule

τ 0.176 [0.156, 0.189]
φτ 3.63× 10−6 [3.24× 10−6, 3.97× 10−6]

Taylor Rule

ρR 0.914 [0.884, 0.967]
100 log (Π∗) -0.398 [-0.447, -0.363]
φπ 2.137 [1.765, 2.390]
φγ 0.939 [0.817, 1.143]

Leverage

κ 0.812 [0.729, 0.860]

Exogenous Shocks

100σR 7.69× 10−4 [6.80× 10−4, 8.46× 10−4]
100σs 1.443 [1.029, 1.560]

Table 3: Estimated Parameters

Note: We estimate parameters using the simulated method of moments (SMM).

For each parameter value, we solve the model using fourth-order perturbation

around all steady states for which a solution exists. We use the solution associated

with the lowest value of the objective function. We simulated the model using

a common set of random numbers for 105,000 draws. We discard the first 5,000

draws as burn-in and use the subsequent 100,000 to compute moments. We report

bootstrapped 95% confidence intervals in brackets and account for data moment

variability by using a block bootstrap with optimal block length chosen according

to Politis and White (2004).

imprecisely estimated with a 95% confidence interval of [2.69, 6.15].

In our preferred specification the state is S̃ and there are four shocks, εγ , εg, εR
and εs. The standard deviations of εγ and εg were recovered from least-squares
regressions of univariate AR processes and our point estimates are σγ = 5.3×10−3

and σg = 2.3×10−3. Our estimate of the standard deviation of εR is σR = 0.008×
10−3. These are all small numbers relative to the main driver of fluctuations in
our model, the sunspot shock εs, which has an estimated standard deviation
of σs = 14 × 10−3, three times larger than the growth shock. We conclude from
these estimates that the hump-shaped income profile, in conjunction with sunspot
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shocks and a low ies are critical features of our explanation of the data that are
inconsistent with a steady-state driven by fundamentals.

X. Some Additional Implications of Our Model

In this section we explore some additional implications of our model that we
did not explicitly target in our moment matching exercise. These include the
ability of our model to explain return predictability and the age-distribution of
consumption inequality. The fact that our model works well at explaining these
features of the data is, we argue, an additional fact that supports our explanation.

A. Return Predictability

We begin with the issue of return predictability. It is well-known that valuation
ratios, such as the price-dividend ratio, predict future excess returns, especially
at longer horizons.14 In Table 4, we examine the predictability of long-horizon
excess returns in our model and we compare the ability of our model to explain
future returns with predictability regressions in the data.
Let Ret→t+h be the gross levered excess return on equity between periods t and

t+ h and consider regressions of the form

logRet→t+h = α+ β log(pEt ) + εt+h,

for values of h corresponding to 1, 3, 5, and 7 years. For our estimated model, we
simulated 10,000 samples of length 120 quarters and we estimated four regressions,
one for each forecast period, in each sample. This procedure gave us a distribution
of coefficient estimates and R2 values. In Table 4, we report the median values
of the regression coefficient at each horizon, along with the 2.5th and 97.5th
percentiles for the simulated data and the realized regression coefficients in the
data.
In the data, the return predictability coefficients are negative at every horizon

and they become increasingly more negative with the forecast horizon. These
model coefficients range from −0.80 at a one year horizon to −4.38 at a seven
year horizon. This compares to return predictability coefficients in the data of
−0.25 at a one year horizon to −0.97 at a seven year horizon. Our model matches
the pattern of decreasing negative coefficients and, although the magnitudes of
our simulated coefficients are larger than in the data, the data coefficients fall
within the 95% confidence bounds coming from the distribution across 10,000
replications. We likely overstate the magnitude of the predictability coefficients
because the price-dividend ratio in our model is significantly more persistent than
in the data.
The model R2 values also display the same pattern as the data but they are

lower than their empirical counterparts. The model R2 values start at 0.09 for

14See e.g. Fama and French (1988).
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1-year ahead excess returns and increase to 0.46 for 7-year ahead excess returns.
This is compared with data R2 values that range from 0.16 to 0.69. Our model-
implied R2 values are lower than their empirical counterparts, but they are also
within the bounds of sampling uncertainty for our sample of 10,000 replications.

Data Model

Horizon (Years) Coeffcient R2 Coefficient R2

1 -0.25 0.16 -0.80 0.09
[-2.44, 0.01] [0.00, 0.26]

3 -0.61 0.35 -2.27 0.25
[-5.37, 0.07] [0.00, 0.57]

5 -0.90 0.56 -3.53 0.38
[-6.94, 0.27] [0.01, 0.73]

7 -0.97 0.69 -4.38 0.46
[-8.12, 0.53] [0.01, 0.82]

Table 4: Long-Horizon Regressions of Excess Returns on the Log
P/D Ratio

Note: The model coefficients are generated using 10,000 simulated samples of

length 120 quarters. For each sample, we run predictive regressions of the form

logRe
t→t+h = α+ β log(pEt )+ εt+h, where Re

t→t+h is the gross excess return on the

risky asset between time t and t+ h. We report median values of the estimated co-

efficients β and the R2 of these regressions. The 2.5th and 97.5th percentiles across

simulations are reported in brackets.

B. Intergenerational Inequality

Next we turn to the implications of our model for the temporal structure of
wealth and consumption inequality across generations. Although we assume the
existence of dynamically complete markets over aggregate uncertainty, the gen-
erational structure of our model does not allow agents to insure over the state of
the world they are born into. When this assumption is combined with large per-
sistent fluctuations in non-fundamental uncertainty it implies that cohorts born
at different points in time have vastly different lifetime earnings prospects.
Figure 4 plots the average consumption to average income ratios of four different

age groups over time to illustrate their dynamics. This figure shows that the
young have the highest consumption-to-income ratios on average but there is time-
variation in these ratios for different age groups. Young agents, ages 20-34, start
out life by borrowing against their human wealth and thus have consumption-
income ratios of approximately 1.5. For age groups, 35-49, 50-64 and 65-79, the
agents in our model have consumption-income ratios close to 0.7.
While we do not include either housing or human capital in our model, this
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Figure 4: Consumption-Income Ratios by Cohort Over Time

Note: This figure plots the average consumption to average income ratio for agents of four different

age groups: ages 20-34, ages 35-49, ages 50-64, and ages 65-79 over 300 quarters of data simulated

from model S solved using fourth-order perturbation and evaluated at the parameters estimated by

simulated method of moments. A value of one corresponds to an agent who consumes their entire

income in a given period, values greater than one correspond to agents who are borrowing, and values

less than one correspond to agent who are saving.

pattern is suggestive of the life-cycle consumption patterns in real world data
in which households in their twenties and thirties accumulate debt to finance
education and house purchases that they pay off at later stages of their lives.

A second feature of our model is its ability to capture persistent temporal
variation in consumption inequality of the kind documented by Attanasio and
Pistaferri (2016). To illustrate this feature of our model, we computed the er-
godic distribution of the consumption Gini coefficient in 25,000 years of quarterly
data generated in a fourth-order simulation of our model using the estimated
parameters. Figure 5 plots a kernel estimate of this distribution.

While the mode of the consumption Gini is around 0.45, there is considerable
time-variation with significant probability mass at 0.38 and 0.48 implying large
movements in inter-generational inequality over time. We infer that while Gen-
eration Z – the zoomers – are much worse off than the boomers, the descendants
of Generation Z a hundred years or more from now may benefit from an upswing
in the generational pendulum and face a similar life-cycle pattern of consumption
and wealth accumulation to that of the Baby Boomer generation.
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Figure 5: Ergodic Distribution of Consumption Inequality

Note: This figure plots the ergodic distribution of the consumption Gini coefficient. The density is esti-

mated nonparametrically using local kernel smoothing with a Normal kernel function and a bandwidth

of 0.02. We use 105,000 quarters of data simulated from model S solved using fourth-order perturba-

tion evaluated at the parameters estimated using the simulated method of moments where the first

5,000 obervations are discarded as burn-in.

XI. Conclusion

We have constructed and estimated a perpetual youth model of an endowment
economy with dynamically complete markets and aggregate shocks. Our work
makes three principal contributions to the literature.

First, our theoretical work presents the first discrete-time solution of the prob-
lem of a long-lived agent with Epstein-Zin preferences as a function of the mo-
ments of the endowment profile and of current and future prices. Previous macro
models that use Epstein-Zin preferences have exploited the representative agent
assumption to simplify the solution. Our contribution to this literature will per-
mit researchers to construct more general models with multiple types of agents
and can potentially be generalized to allow for multiple commodities.

Second, we have proved the existence of multiple autarkic steady-state equilib-
ria in the perpetual youth model when agents have a hump-shaped endowment
profile and when the intertemporal elasticity of substitution is less than a crit-
ical value that depends on the income profile and the preference and aggregate
endowment parameters. We established that one of the autarkic steady-states
is dynamically inefficient and we demonstrated that this fact permits the con-
struction of equilibria that are driven principally by non-fundamental shocks to
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beliefs. By exploiting sunspots and indeterminacy, we are able to explain three
asset market puzzles: the low safe rate of interest, excess volatility of asset prices
and a large equity premium.

Third, we compared estimated versions of our model with and without sunspot
equilibria and we showed that the indeterminate equilibrium provides a signif-
icantly better fit to U.S. data from 1990Q1-2019Q4. Although our model can
explain how fiscal and monetary policy influence generational inequality, it can-
not explain feedback effects from fiscal and monetary policy to real GDP since
we assume that all GDP movements are generated by an exogenous stochastic
process.15

Our model is consistent with two features of U.S. data that were not used to
estimate the model’s parameters. The first of these features is the ability of our
model to replicate real-world asset return anomalies. In the data, asset returns are
predictable at medium to long horizons. Our model displays return predictability
at one-year, three-year, five-year and seven-year horizons and the 95% confidence
bounds from return predictability of our model bracket the predictability coeffi-
cients estimated from U.S. data. The second feature of U.S. data that our model
displays is that of large persistent movements in generational inequality. Members
of Generation Z are the first Americans in recent history to be worse off than their
parents with little or no prospects of accumulating significant financial assets. In
contrast, many Baby Boomers were already house owners in their thirties. The
model we have constructed provides a plausible explanation for this phenomenon.

Appendix A: Proof of Proposition 1

PROBLEM 2:

vj = max
W j ′

[

(Cj)ρ + βπ(mj)ρ
]
1
ρ , (A1)

mj =
[

E(vj
′
)ρθ
] 1

ρθ
, (A2)

πE
[

Q′W j ′
]

=W j − Cj , (A3)

W j = Hj . (A4)

We seek to prove that the value function vj and the policy function Cj that solve
Problem 1 are given by the expressions

Cj = ψ−1W j and vj = ψ
1−ρ
ρ W j , (A5)

where ψ is the inverse propensity to consume out of wealth and where ψ satisfies

15In ongoing research, we are generalizing these results to a production economy with the goal of
comparing alternative mechanisms of policy transmission from nominal to real variables.
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the recursion,

ψ = 1 + πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

. (A6)

The proof proceeds in five steps.

STEP 1 We show that the wealth of a person with the income share defined in Eq.
(1) evolves according to Eq. (A3).

STEP 2 We show that our conjectured solution obeys the envelope condition.

STEP 3 We show that the Euler equation implies the following two lemmata

LEMMA 1: In the optimal program

mj = β
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ

(1−ρ)ρθ

Cj . (A7)

Lemma 1 is proved in Appendix B.

LEMMA 2: In the optimal program

Cj
′
= Cjβ

1
1−ρ

(

Q′
1

ρθ−1ψ′
θ−1
1−ρθ

)

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

. (A8)

Lemma 2 is proved in Appendix C.

STEP 4 Using Lemma 1 we show that if the first equality from (A5) holds, and if ψ
satisfies the recursion defined in Eq. (A6), that the budget constraint, Eq.
(A3), holds at consecutive dates.

STEP 5 Using Lemma 2 we show that the value function has the functional form
given by the second equality in equations (A5).

PROOF OF PROPOSITION 1:

STEP 1 Define, Ij ; the endowment at date t of a member of cohort j conditional on
surviving to date t, as Ij ,

Ij =
1

1− π

(

κ1λ
t−j
1 + κ2λ

t−j
2

)

(1− τ)Y, (A9)

and define the human wealth of cohort j by the recursion

Hj = Ij + πE
[

Q′Hj ′
]

, (A10)
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where Hj , Ij and Q are functions of the state S. Define

W j = Aj +Hj , (A11)

where Aj is the value of Arrow securities owned by a member of cohort j
that have positive value in the state S. It follows from the budget constraint
of a member of cohort j that

πE
[

Q′Aj
′
]

= Aj + Ij − Cj . (A12)

Combining equations (A10) – (A12) gives the wealth evolution equation,

πE
[

Q′W j ′
]

=W j − Cj . (A13)

This establishes STEP 1.

STEP 2 The envelope condition is that

∂vj

∂W j
=
∂vj

∂Cj
∂Cj

∂W j
. (A14)

Using Equations (A1) and (A5)

∂vj

∂W j
= ψ

1−ρ
ρ =

(

vj

Cj

)

1−ρ
ρ

ψ−1 =
∂vj

∂Cj
∂Cj

∂W j
. (A15)

This establishes STEP 2. Appendices B and C establish STEP 3.

STEP 4 Use Eq. (A5) to replace W j and W j ′ with ψCj and ψ′Wj
′ in Eq. (A13),

πE
[

Q′ψ′Cj
′
]

= ψCj − Cj . (A16)

Use Lemma 2 to replace Cj
′
in Eq. (A16)

πE

[

Q′ψ′

{

Cjβ
1

1−ρ

(

Q′
1

ρθ−1ψ′
θ−1
1−ρθ

)

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

}]

= ψCj − Cj . (A17)

Cancel terms in Cj and rearrange terms,

ψ = 1 + πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

(A18)
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Consolidating terms,

ψ = 1 + πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

. (A19)

This establishes STEP 4.

STEP 5 Define the function uj by the recursion,

uj =
[

(Cj)ρ + βπ(mj)ρ
]
1
ρ , (A20)

mj =
[

E(uj
′
)ρθ
] 1

ρθ
. (A21)

uj is the utility attached to an arbitrary stochastic sequence {Cjt }t≥j . Use
Lemma 1 to replace mj in Eq. (A20),

uj =

[

(Cj)ρ + βπ

(

β
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ

(1−ρ)ρθ

Cj

)ρ] 1
ρ

, (A22)

Rearranging

uj = Cj

[

1 + πβ
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
(1−ρθ)Q′

ρθ
ρθ−1

])
1−ρθ
(1−ρ)θ

]

1
ρ

, (A23)

Using Eq. (A19) and the conjecture

Cj = ψ−1W j , (A24)

it follows that the expression for the optimal value, vj(W j), is given by Eq.
(A25)

vj(W j) = Cjψ
1
ρ = ψ

1−ρ
ρ W j . (A25)

This establishes STEP 5.

Appendix B: Proof of Lemma 1

Differentiating the value function, Eq. (A1) w.r.t. W j ′ leads to the expression

∂vj

∂W j ′
=
∂vj

∂Cj
∂Cj

∂W j ′
+
∂vj

∂mj

∂mj

∂vj ′
∂vj

′

∂W j ′
= 0. (B1)
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where the partial derivatives of vj andmj w.r.t. W j ′ are taken using the functions
defined by equations (A2), (A3) and the conjecture, Eq. (A5). These expressions
are,

∂vj

∂Cj
=

(

vj

Cj

)1−ρ

,
∂Cj

∂W j ′
= −πχ′Q′ (B2)

∂vj

∂mj ′
= βπ

(

vj

mj

)1−ρ

,
∂mj

∂vj ′
= χ′

(

mj

vj ′

)1−ρθ

,
∂vj

′

∂W j ′
= ψ′

1−ρ
ρ , (B3)

where χ′ is the conditional probability that state S′ occurs. Substituting these
expressions into Eq. (B1)

(

vj

Cj

)1−ρ

πχ′Q′ = βπ

(

vj

mj

)1−ρ

χ′

(

mj

vj ′

)1−ρθ

ψ′
1−ρ
ρ (B4)

canceling terms and rearranging terms gives,

Q′ = βCj
1−ρ (

mj
)ρ(1−θ)

(

vj
′
)ρθ−1

ψ′
1−ρ
ρ . (B5)

Take the term in ψ′ to the left-hand-side, raise the equation to the power ρθ
ρθ−1

and take date t conditional expectations of both sides,

E

[

ψ′
θ(1−ρ)
1−ρθ Q′

ρθ
ρθ−1

]

= β
ρθ

ρθ−1Cj
(1−ρ)ρθ
(ρθ−1)

(

mj
)

ρ(1−θ)ρθ
ρθ−1 E

[

(

vj
′
)ρθ
]

. (B6)

Simplify this expression using the fact that

E

[

(

vj
′
)ρθ
]

=
(

mj ′
)ρθ

, (B7)

to give

E

[

ψ′
θ(1−ρ)
1−ρθ Q′

ρθ
ρθ−1

]

= β
ρθ

ρθ−1Cj
(1−ρ)ρθ
(ρθ−1)

(

mj
)

(ρ−1)ρθ
ρθ−1 . (B8)

Rearranging and raising both sides to the power 1−ρθ
(1−ρ)ρθ

mj = β
1

1−ρ

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
1−ρθ

(1−ρ)ρθ

Cj . (B9)

This establishes Lemma 1.
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Appendix C: Proof of Lemma 2

Using Eq.(B9) we have the following expression for (mj)ρ(1−θ)

(

mj
)ρ(1−θ)

= β
ρ(1−θ)
1−ρ

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
(1−θ)(1−ρθ)

(1−ρ)θ

(Cj)ρ(1−θ). (C1)

Use this expression to replace mj in Eq. (B5),

Q′ = βCj
1−ρ (

mj
)ρ(1−θ)

(

vj
′
)ρθ−1

ψ′
1−ρ
ρ . (B5)

to give

Q′ = βCj
1−ρ







β
ρ(1−θ)
1−ρ

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
(1−θ)(1−ρθ)

(1−ρ)θ

(Cj)ρ(1−θ)







(

vj
′
)ρθ−1

ψ′
1−ρ
ρ ,

Consolidate terms in β and Cj , and use Eq. (A5) to replace vj
′
by Cj

′
ψ′

1
ρ

Q′ = β
1−ρθ
1−ρ Cj

1−ρθ







(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
(1−θ)(1−ρθ)

(1−ρ)θ







(

Cj
′
ψ′

1
ρ

)ρθ−1
ψ′

1−ρ
ρ .

(C2)

Simplifying further gives

Q′ = β
1−ρθ
1−ρ

(

Cj

Cj ′

)1−ρθ






(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
(1−θ)(1−ρθ)

(1−ρ)θ







ψ′(θ−1)
. (C3)

Rearranging,

Cj
′
= Cjβ

1
1−ρ

(

Q′
1

ρθ−1ψ′
θ−1

(1−ρθ)

)

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

. (C4)

This establishes Lemma 2.

Appendix D: Proof of Proposition 2

We begin by establishing that aggregate human wealth obeys a simple recursive
relationship. We assume that, conditional on survival, the cohort of newborns is
endowed with the after-tax income streams, for i = {1, 2},

κ1{λ
s−t
1 }∞s=t(1− τ)Ys and κ2{λ

s−t
2 }∞s=t(1− τ)Ys, (D1)
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where

κ1 = α1(1− λ1π), κ2 = α2(1− λ2π), and α1 + α2 = 1. (D2)

Note that the 1
1−π from (1) drops out since we are integrating over the measure

1 − π of newborn agents. Define the type i after-tax human wealth, Ht
i , owned

by cohort t at date t for i ∈ {1, 2},

Ht
i = αi(1− λiπ)(1− τ)E

[

∞
∑

k=t

(λiπ)
k−tQt(Sk)Yk

]

, (D3)

where Qt(Sk) is the date t price of a claim to one commodity in state Sk, for
k > t.
At date t there are πt−j surviving members of cohort j ≤ t each of whom owns

a claim to a fraction λt−ji of the type i income stream of a new-born. It follows
that the type i human wealth at date t of cohort j is given by the expression

Hj
i = (λiπ)

t−jHt
i , for all j ≤ t. (D4)

Adding up Eq. (D4) over all cohorts j = −∞, . . . , t gives the following expres-
sions for type i aggregate human wealth

Hi =
1

1− λiπ
Ht
i , (D5)

and notice that Hi has a recursive representation, using prime notations, as

Hi = αi(1− τ)Y + λiπE
[

Q′H ′
i

]

. (D6)

Define the human wealth ratio, hi for i = 1, 2

hi ≡
Hi

Y
, (D7)

where Y is aggregate GDP and the hi follow the recursion

hi = αi(1− τ) + λiπiE
[

γ′Q′h′i
]

. (D8)

Next, we establish that Eq. (D9),

φ(X,X ′) ≡








πβ
1

1−ρ cL

γ

(

c− ψ−1 [(1− λ1π)h1 + (1− λ2π)h2]

)

z
θ−1

(1−ρ)θ

L ψ
1−θ
1−ρθ









1−ρθ

, (D9)
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is a valid representation for the pricing kernel.
We begin with Eq. (C4), which we repeat below and which holds for all indi-

viduals at alive in two consecutive date-state pairs,

Cj
′
= Cjβ

1
1−ρ

(

Q′
1

ρθ−1ψ′
θ−1
1−ρθ

)

(

E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

])
1−θ

(1−ρ)θ

. (C4)

Let Ct =
∑

j C
j
t be the aggregate consumption of all people alive at date t. Let

A(t, t + 1) denote the index set of all individuals alive at dates t and t + 1 and
note that

∑

j∈A(t,t+1)

Cjt = πCt. (D10)

Eq. (D10) recognizes that a measure π of people alive at date t survive into period
t+ 1. Next, note that

∑

j∈A(t,t+1)

Cjt+1 = Ct+1 − Ct+1
t+1 , (D11)

where Ct+1
t+1 denotes the consumption of generation t + 1 at date t + 1. These

individuals own no financial assets but, from Eq. (D5) they own a fraction 1−λiπ
of type i human wealth. Using the expression for the policy function from Eq.
(A5) it follows that

Ct+1
t+1 = ψ−1

t+1 [(1− λ1π)H1,t+1 + (1− λ2π)H2,t+1] (D12)

Summing equation (C4) over all j ∈ A(t, t+1), using equations (D10), (D11) and
(D12) gives

C ′ − ψ′−1 [
(1− λ1π)H

′
1 +(1− λ2π)H

′
2

]

= Cπβ
1

1−ρ

(

Q′
1

ρθ−1ψ′
θ−1
1−ρθ z

1−θ
(1−ρ)θ

)

, (D13)

where

z = E

[

ψ′
(1−ρ)θ
1−ρθ Q′

ρθ
ρθ−1

]

. (D14)

Rearranging Eq. (D14)

Q′
1

1−ρθψ′
1−θ
1−ρθ z

θ−1
(1−ρ)θ =

πβ
1

1−ρC

C ′ − ψ′−1 [(1− λ1π)H1 + (1− λ2π)H2]
. (D15)

Divide the top and bottom of the right hand side by (α1+α2)Y , rearrange terms
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and lag the equation by one period to give

Q ≡








πβ
1

1−ρ cL

γ

(

c− ψ−1 [(1− λ1π)h1 + (1− λ2π)h2]

)

z
θ−1

(1−ρ)θ

L ψ
1−θ
1−ρθ









1−ρθ

, (D16)

where cL and c are the ratios of consumption to GDP at dates t− 1 and t. This
completes the proof of the functional form of the function Q = φ(X,X ′).

Appendix E: Proof of Proposition 4

A steady-state goods market equilibrium is characterized by the equality,

ψ̄−1

(

h̄1 + h̄2 +
b̄δ(1 + δp̄δ)

Π̄γ

)

= 1− ḡ. (E1)

The left-hand-side of this expression is the demand for consumption goods and the
right-hand-side is the supply of consumption goods. Both variables are written as
ratios to GDP. In an autarkic steady-state, bδ(Q̄) = 0 and ḡ = τ̄ : these conditions
imply that,

h(Q)

1− ḡ
=
ψ(Q)

1− τ̄
, (E2)

where the functions h(Q) and ψ(Q) are written out explicitly in Eqn. (E3).

h(Q)

1− ḡ
≡

[

α

1− πλ1γ̄Q
+

(1− α)

1− πλ2γ̄Q

]

=

[

1

1− πβ
1

1−ρQ
ρ

ρ−1

]

≡
ψ(Q)

1− τ̄
, (E3)

where h(q) ≡ h1(Q) + h2(Q).

Define the compound parameters,

δ1 ≡
1

1− πλ1γ̄
, δ2 ≡

1

1− πλ2γ̄
, δb ≡

1

1− πβ
1

1−ρ

, (E4)

∆ ≡ δ1 − δ2, ρc ≡ −
log(πβ)

log(λ1γ̄)
, (E5)

and the following inequalities,

α > 1, δb > δ1 > δ2, δ1 −∆(1− α) > δb, ρ < ρc < 0. (E6)
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Figure E1 plots the logarithm of the human wealth-GDP ratio, h, this is the solid
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Figure E1: Steady State Autarkic Equilibria

Note: This figure plots the functions ψ – this is the dashed line – and h – this is the solid line. The

proof proceeds by establishing that close to Q = 0 and close to the asymptote Q = Qb, ψ is greater

than h. We then show that when the assumptions of the proposition hold, h(1) > ψ(1). The fact that

both functions are continuous and increasing implies that there must be at least two intersections in

the interval (0, Qb).

line, and the logarithm of the inverse savings propensity, ψ, this is the dashed
line. Both variables are plotted as functions of Q. The figure shows that h(Q) and
ψ(Q) are both increasing functions and inspection of both functions reveals that
h(0) = ψ(0) = 1. This establishes that Q̄ = 0 is a trivial autarkic equilibrium.
Note further that h(Q) has asymptotes at

Q1 ≡
1

πλ1γ̄
and Q2 ≡

1

πλ2γ̄
. (E7)

We have plotted the function h(Q) in a domain that excludes values of Q > Q1 be-
cause steady-state human wealth is not defined outside of the domain [0, Q1]. We
have also assumed, in drawing this figure, that the parameters satisfy inequalities
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(E6). Note also that ψ(Q) has an asymptote at

Qb ≡

(

1

πβ
1

1−ρ

)
ρ−1
ρ

. (E8)

The proof that there are three autarkic steady-states proceeds in steps.

1) Note that the functions h(Q) : (0, Q1) → R+ and ψ(Q) : (0, Q1] → R+ are
continuous.

2) Next we establish that h and ψ are increasing. The derivative of h is given
by the expression

hQ =
απλ1γ̄

(1− πλ1γ̄Q)2
−

(1− α)πλ2γ̄

(1− πλ2γ̄Q)2
> 0, (E9)

where the inequality follows since α > 1. The derivative of ψ is given by
the expression

ψQ =
ρ

ρ− 1

πβ
1

1−ρQ
1

ρ−1

(

1− πβ
1

1−ρQ
ρ

ρ−1

)2 > 0, (E10)

where the inequality follows since ρ < 0. This establishes that both func-
tions are increasing.

3) Now consider the derivatives of h and ψ evaluated at Q = 0. These are
given by the expressions,

0 < {hQ}Q→0 → πγ̄(αλ1 + (1− α)λ2) <∞, (E11)

0 < {ψQ}Q→0 → ∞, (E12)

which establishes that for small ε, ψ(ε) > h(ε).

4) Now consider the inequalities (E6) which imply that Qb < Q1 where Qb is
the asymptote of the function ψ and Q1 is the asymptote of the function
h. Since both functions are increasing, it follows that, as Q→ Qb, ψ(Q) →
∞ > h(Q).

5) We have established that there is a trivial equilibrium at Q = 0 and that
ψ(Q) > h(Q) close to Q = 0 and close to Q = Qb. Now note that

h(1)− ψ(1) = δ1 −∆(1− α)− δb > 0, (E13)

where the inequality follows from assumption (E6).
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We have established that h and ψ are continuous functions and that h starts
below ψ, is above ψ for Q = 1 and drops below ψ at Q = Qb. It follows that the
functions must cross at least twice and for large enough negative values of ρ there
are two non-trivial autarkic equilibria. When inequalities (E6) hold, Q̄au1 < γ̄−1

and Q̄au2 > γ̄−1. These inequalities establish that Q̄au1 is dynamically efficient
and Q̄au2 is dynamically inefficient as claimed in Proposition 4. �.

*
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