
NBER WORKING PAPER SERIES

CONSUMER DEMAND WITH SOCIAL INFLUENCES:
EVIDENCE FROM AN E-COMMERCE PLATFORM

El Hadi Caoui
Chiara Farronato
John J. Horton
Robert Schultz

Working Paper 30351
http://www.nber.org/papers/w30351

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2022

We thank David Holtz, Yao Luo, Steve Tadelis, and Richard Zeckhauser for helpful comments 
and suggestions. Authors have no material or financial interest in the entities that are the subject 
of this research. The views expressed herein are those of the authors and do not necessarily reflect 
the views of the National Bureau of Economic Research. Schultz conducted paid consulting as a 
part time Data Science Intern between November 2018  and May 2019 for StockX. All research 
in this paper was conducted after this consulting relationship had concluded.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official 
NBER publications.

© 2022 by El Hadi Caoui, Chiara Farronato, John J. Horton, and Robert Schultz. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided 
that full credit, including © notice, is given to the source.



Consumer Demand with Social Influences: Evidence from an E-Commerce Platform
El Hadi Caoui, Chiara Farronato, John J. Horton, and Robert Schultz
NBER Working Paper No. 30351
August 2022
JEL No. D12,D44,L81

ABSTRACT

For some kinds of goods, rarity itself is valued. "Fashionable'" goods are demanded in part 
because they are unique. In this paper, we explore the economics of rare goods using auctions of 
limited-edition shoes held by an e-commerce platform. We model endogenous entry and bidding 
in multi-unit auctions and construct demand curves from realized bids. We find that doubling 
inventory reduces willingness to pay by 7-15%. From the producer perspective, ignoring the 
value of rarity leads to substantial overproduction: auctioned quantities are 82% above the profit-
maximizing level. From the consumer perspective however, the negative spillovers of restricting 
quantity more than offset the benefits of rarer goods.

El Hadi Caoui
elhadi.caoui@rotman.utoronto.ca

Chiara Farronato
Harvard Business School
Morgan Hall 427
Soldiers Field
Boston, MA 02163
and NBER
cfarronato@hbs.edu

John J. Horton
Massachusetts Institute of Technology
Sloan School of Management
100 Main St
Cambridge, MA 02142
and NBER
john.joseph.horton@gmail.com

Robert Schultz
United States
schultro@umich.edu



1 Introduction

Economists have long-recognized the fact that for some goods, demand does not depend
solely on the price and the functional properties of the good, but rather is subject to “social
influence” (Pigou, 1913; Leibenstein, 1950; Becker, 1991; Krueger, 2013). Examples include
fashionable clothing, jewelry, artwork, collectibles, concert and event tickets, cars, and restau-
rants. For this kind of goods, the conjectured primary social influence is for the (unmet)
demand of others to increase individual valuation—consumers gain utility from obtaining a
good that few others also consume or possess because it signals high social status. Sociologists
of fashion have characterized this as a taste for distinction (Simmel (1957)), and economists
describe it as conspicuous consumption (Veblen (1899)). We call goods with these character-
istics “fashion” goods. Despite the many theoretical contributions studying social influences
in demand, there is little empirical evidence measuring their importance in practice and the
related implications for firm strategy and consumer welfare.

In this paper, we consider a firm selling substitutable fashion goods whose consumers
derive utility from consuming those goods and from their rarity. For each good taken in
isolation, unlike a firm offering a conventional good, the firm faces a demand curve that
depends on the total quantity produced. Increasing quantity causes movement along the
demand curve, but also shifts the demand curve downward as consumers’ valuations for the
good decrease. Although rarity directly increases consumer valuation for a fashion good, it
also makes it harder to purchase the good. The risk of rationing shifts consumers towards
alternative fashion substitutes that are relatively more widely available, thus decreasing
demand for the rarer good. We explore how these two opposed forces jointly affect the
optimal inventory choices of a profit-maximizing firm.

We exploit a particular sale of customized outdoor slippers, or “slides”, shown in Fig-
ure A2 (Appendix). The slides were manufactured by Straye, but they were customized by
Ben Baller, a celebrity jeweler particularly popular in the hip hop community. The slides had
the expression “Ben Baller did the chain” printed on the upper layer. This expression is a
lyric from the rapper A$AP Ferg, who rapped “Ferg is the name, Ben Baller did the chain”
on the track “Plain Jane.”1 In the song, the expression carries a meaning of exclusivity.

The product was offered in two colors (red and black) that consumers perceive as substi-
tutes and was available in nine different adult sizes, creating nine distinct markets. To sell
the slides, Mr. Baller partnered with StockX, an e-commerce platform for branded shoes,
handbags, and watches. The slides were sold directly to customers in an auction that StockX
called “IPO,” using the same acronym as for Initial Public Offering. The IPO was effectively
a sealed-bid uniform price auction with a $50 reserve price. Total quantities for each color
and size combination were announced ex ante, and the auctions for each color-size product
were run independently. Customers could submit at most one bid for each color-size combi-
nation. Slides were allocated to the highest bidders. The lowest winning bid determined the
clearing price for all winning bidders.

The red slide was considerably rarer than the black slide, despite being functionally
equivalent. According to internal discussions, the rareness of the red slide was not due to
any perceived or anticipated difference in demand or difference in production cost for red

1https://genius.com/12495999, accessed June 2022.
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versus black, which both cost $30 to manufacture. In fact, Mr. Baller reportedly did not
know beforehand which color would prove more popular. The product had never been sold
before, and the IPO was also one of the first that StockX planned, making it unlikely that
inventory levels by shoe size and color were optimized.

We have access to the full collection of bids and (anonymous) bidder identifiers, which
we use to generate stylized facts. One strong piece of evidence for rarity entering directly
into consumer valuation is that bids for the rarer red slides were 3.9% higher on average.
Although rarity and redness are confounded, we (a) do have variation in relative inventory
by size, and (b) we observe that many bidders bid on both the red and black slides in the
same size. Once the effect of color is controlled for, we find that doubling the total quantity
offered reduces bids—and hence shifts the demand curve downward—by 7.8%.

We use the descriptive facts to motivate a structural model of entry and bidding in multi-
unit auctions of substitutable products. The IPO rules and the large number of entrants make
bidding truthfully an approximately optimal strategy, conditional on entering an auction. To
rationalize heterogeneity in entry, we allow for two types of consumers: global bidders, who,
given their shoe size, bid on any color for which their valuation exceeds the reserve price; and
local bidders, who bid on the color that maximizes their expected utility. The setup allows
us to back out the distributions of bidder types and willingness to pay as a function of color
and available inventory.

Using the estimated model, we investigate the role of rarity in determining the auction-
eer’s optimal choice of inventory levels. Increasing auctioned quantities of red slides not only
reduces valuations (“rarity”) but also affects bidders’ entry choices (“substitution”). Rarity
and substitution lead to countervailing effects on firm profits from an increase in inventory.
On the one hand, making the red slides more widely available increases the winning prob-
ability when entering the red slide auction, inducing some bidders to substitute away from
the black slide auction. On the other hand, making red slides more widely available reduces
valuations upon winning, which depresses bids in the red slide auction. Overall, we find that
ignoring the role of rarity in demand leads to substantial over-production, even when substi-
tution effects are accounted for: chosen quantities without considering rarity are 82% above
the profit-maximizing levels.

Our paper provides empirical evidence that firms should consider social influences and
substitution among fashion goods when choosing inventory levels. Given how many goods
are subject to social influences, understanding this feature of firm decision-making is con-
sequential. As our exercise showcases, the increasing use of auctions to sell limited edition
goods can provide valuable customer insights to inform these decisions.

Our work is related to the literature on conspicuous consumption (Bernheim (1994), Bag-
well and Bernheim (1996)), in which consumer utility is a function of both consumption of
a product and status signaled by that product. When status is taken into account, demand
curves can exhibit positive slopes (Corneo and Jeanne (1997)) and even perfect competition
can give rise to positive mark-ups (Pesendorfer (1995)). In our setup, status comes from the
rarity of an item, which is measured by the total quantity supplied. The marketing literature
has long recognized the social needs of uniqueness and exclusivity that limited edition prod-
ucts can fulfill (Amaldoss and Jain (2005a), Amaldoss and Jain (2005b), Amaldoss and Jain
(2008), Amaldoss and Jain (2010), Balachander and Stock (2009)), especially for products
such as cars and clothing that are consumed publicly (Chao and Schor (1998)).
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The goods sold on StockX tend to be fashion goods, with an active secondary market
where resale prices often exceed retail prices. Manufacturers of these goods may under-price
their products in the primary market due to fairness constraints (Kahneman et al. (1986)).
Rather than price, other ordeals, such as waiting in line, help allocate the goods to consumers
(Nichols and Zeckhauser, 1982; Alatas et al., 2012). However, under-pricing leads to demand
rationing and often induces inefficient rent-seeking behavior by brokers and scalpers (Leslie
and Sorensen (2014)). Bhave and Budish (2018) study how introducing auctions to sell
otherwise under-priced items helps reduce the arbitrage profits enjoyed by brokers.

Anecdotal evidence, such as the stock-outs of the Xbox and the PlayStation and the lines
at Apple stores preceding iPhone launches,2 suggests that scarcity may be an intentional
strategy to induce willingness to pay and increase sales (DeGraba (1995), Debo and van
Ryzin (2011)). Balachander et al. (2009) provide rare empirical evidence that in the US
automobile industry, low introductory inventory levels are associated with higher consumer
preferences and this is likely due to the signaling value of supplier-induced scarcity. Like
Balachander et al. (2009) we directly include inventory levels into the utility function. Unlike
Balachander et al. (2009), we leverage a more direct measure of consumers’ willingness to
pay (i.e., submitted bids) and study how a multi-product firm should set inventory levels
when the fashion goods it sells are substitutable.

The paper is organized as follows. Section 2 presents our empirical context and provides
simple stylized facts that motivate our structural model. We present our model in Section 3
and its estimation in Section 4. Section 5 describes the counterfactual analysis and Section
6 concludes.

2 Empirical Context and Stylized Facts

The limited-edition product we consider was sold on StockX.com. StockX is an online market-
place founded in 2015 for the resale of branded sneakers, streetwear, handbags, and watches.3

At least for streetwear and sneakers, the marketplace only sells new goods, and StockX veri-
fies that the goods bought and sold are unused, authentic and defect-free.4 The marketplace
guarantees product quality by having sellers ship tentatively sold items to a StockX authen-
tication center, where each item is physically inspected. If the good fails inspection, it is sent
back to the seller and the transaction is canceled; if the good passes, it is shipped to the
buyer.

Direct authentication takes time and effort, but the fact that StockX is popular despite
these delays reflects the limitations of the non-intermediated secondary market in these brand
goods. The quality of counterfeit goods is often extremely high, and only the best trained
individuals would be able to spot a fake. Additionally, many of these goods are extremely
rare and high value so the extra cost of authentication is small compared to its benefits.

2https://www.inc.com/business-insider/massive-lines-iphone-x-apple-store-people-queue-

days-tim-cook.html and https://money.cnn.com/2013/12/24/technology/xbox-playstation-

supply-shortages/, accessed June 2022.
3Since the time of our data, the platform has expanded to include trading cards, electronics, collectibles,

and Non-fungible tokens (NFTs).
4Handbags and watches can be used but in great conditions.
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Because the platform verifies that all goods sold are of the same high quality, StockX
can sell them by aggregating products of the same type—e.g. pairs of Air Jordan 1 Nike
shoes—into a single product page. Separately for each shoe size, StockX uses a continuous
double auction to determine the transaction price, with buyers and sellers submitting time-
limited bids and asks. Either side can observe the order book and buy or sell at the bid or
ask price. StockX makes the order book and transaction history public, so buyers and sellers
have access to market-level information before placing their bids.

Just like StockX mimics the stock market for the resale of shoes, the initial sale of Ben
Baller slides mimicked an initial public offering. A limited number of red and black slides
were available for sale in a sealed-bid uniform price auction with a $50 reserve price. The
auctions were run independently for each size and color combination, and each bidder was
allowed to place at most one bid per auction, even if they could bid across multiple auctions.
At the end of the auction, all the available pairs of shoes were allocated to the highest
bidders, and the market clearing price was defined by the lowest winning bid.5

We have internal company data on the bids that were placed during the Ben Baller
auctions, with anonymous identifiers for each individual user. We also have the inventory
available by shoe color and size, which allows us to derive market-clearing prices, and to
determine the winners and the losers of each auction.

Figure 1: Ben Baller Slide IPO: Inventory, Bids, and Prices (in $)
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Notes: The figures show the quantity of shoes auctioned (top panel), the number of
bids received (middle panel), and the market clearing price (bottom panel) by

color-size combination.

5The full rules are available here: https://stockx.com/news/Ben-baller-ipo-official-rules/.
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The chosen production quantities by color and size are shown in the top panel of Figure 1.
The relative rarity of red slides is readily apparent, though we also see substantial variation
in inventory across shoe sizes. In part, different inventories likely reflect the distribution of
shoe sizes in the population.

A total of 10, 075 bids were submitted by 6, 936 distinct bidders. 37.5% of bidders placed
bids in multiple auctions, accounting for 56.9% of bids. Bidders placing multiple bids over-
whelmingly bid twice, once on a red slide, once on black slide of the same size—85.9% of
multi-auction bidders did that.

The total number of bids submitted by color-size combination are shown in the middle
panel of Figure 1. The market clearing prices are shown in the bottom panel of Figure 1.
Despite the fact that black slides received on average more bids than red slides of the same
size, market clearing prices are higher for red slides. In the next section, we argue that these
differences reflect the fact that red slides were rarer and thus expected to go for a higher
clearing price, making entry less attractive for red slides compared to black slides.

Close examination of the data reveals the presence of a small number of outliers: in many
auctions, the top bids are much higher than the remaining ones and in the range of one
million dollars. We believe these bids are unlikely to reflect bidders’ true willingness to pay.
Since the presence of outliers can bias or distort estimates of interest, we handle outliers via
trimming. In each auction, we trim the top 5% of bids before conducting our analysis. We
provide robustness checks to this choice in Table A1 (Appendix).

To evaluate the reduced-form relationship between rarity and bidding behavior, we run
regressions of the form

log bi = αRedi + β logQi + γs(i) + ϵi, (1)

where i denotes a bid. REDi is a dummy variable for the red slides. We also control for
shoe size by including fixed effects for three size categories: small (5-7), medium (8-10), large
(11-13).6

Results are presented in Table 1.7 Specifications (1) to (4) show the results based on
Ordinary Least Squares (OLS) regressions. Column (1) only contains a constant and the
dummy variable for red slides. On average, red slides receive bids that are 3.9% higher than
black slides. Column (2) replaces the red dummy with the log of the inventory available for
the shoe size-color combination corresponding to the bid. The estimated elasticity of bids
to inventory levels is 4.8: doubling inventory levels reduces bids by 4.8% on average. This
elasticity remains similar when we control for color (column (3)) and fixed effects for the
small, medium, and large shoe sizes (column (4)).

The OLS estimates do not account for truncation of bids at the reserve price. As a
consequence, they should be interpreted as the effect on the mean bid conditional on the

6Separate fixed effects for each shoe size tend to absorb a lot of variation and make it harder to identify
the effect of quantity.

7There is a mass of bidders at the reserve price. While it seems improbable that a large number of bidders
have a valuation right at the reserve price, those bidders likely anticipated that StockX might still reward
losing bidders. In the past, StockX has rewarded participants with discounts like free shipping on future
orders. As such, we view the mass of bids right at the reserve price as likely reflecting factors other than
a bona fide attempt to win the slides. We thus remove bids right at the reserve price when running the
regressions.
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Table 1: Effect of Rarity on Bids

Dependent variable: Bid (log)

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 4.577 4.785 4.744 4.282 4.672 4.593

(0.008) (0.047) (0.068) (0.023) (0.088) (0.128)
Red (indicator) 0.039 0.013 0.011 0.073 0.025 0.022

(0.011) (0.016) (0.018) (0.022) (0.029) (0.035)
Quantity (log) -0.048 -0.039 -0.042 -0.090 -0.073 -0.078

(0.012) (0.016) (0.022) (0.022) (0.030) (0.042)
Shoe size FE No No No Yes No No No Yes
Model OLS OLS OLS OLS MLE MLE MLE MLE
Observations 6,467 6,467 6,467 6,467 6,467 6,467 6,467 6,467

Notes: Standard errors are in parenthesis. Shoe size FE are dummies for three size categories: small (5-

7), medium (8-10), large (11-13). MLE gives the maximium likelihood estimator assuming log-normally

distributed bids and accounts for truncation at the reserve price.

valuation being greater than the reserve price. We account for truncation using a Maximum
Likelihood estimator (MLE), in which bids are assumed to be distributed according to a
log-normal distribution truncated at the reserve price of $50. Specifications (5) through (8)
in Table 1 present the MLE results, which support an even bigger elasticity than the OLS
estimates. Indeed, the coefficient on quantity in column (8) implies that doubling inventory
is associated with a reduction in the bid amount of 7.8%.

What does the value of rarity imply for the seller’s optimal inventory choices? In what
follows, we investigate this question via counterfactual analysis of a structural model.

3 Model of Entry and Bidding Behavior

This section presents a model of entry and bidding behavior motivated by the descriptive
evidence above. We consider each shoe size as its own separate market, where two products
are available: red and black slides. Bidders draw valuations for the two products and make
their entry decisions as a function of those valuations: in this sense, entry is “selective” as
in Samuelson (1985). We allow for bidder heterogeneity, in that some bidders may bid on at
most one color, whereas others can bid on both colors.

We consider the allocation of two products, B (black) and R (red), whose inventory levels
are denoted QB and QR. The products are sold via two simultaneous multi-unit uniform
price auctions with a public reserve price P0 equal to $50. There are N symmetric potential
bidders, which is common knowledge. A share p of those bidders are global bidders, who are
deep-pocketed and can bid on both products. The rest are local bidders, who are budget-
constrained and can bid on at most a single product. There are no costs to bidding in an
auction.

Each bidder i privately draws a pair of valuations (viB, viR). We assume that the pair
(viB, viR) is drawn from a joint distribution F (., .), continuous in both arguments, with

7



support [vB, vB]× [vR, vR], and with marginal densities strictly positive on the interior of the
support. Valuations are independent and identically distributed across bidders. We allow for
the joint distribution F (., .) to depend on the quantities (QB, QR) to capture the effect of
rarity on valuations. The reserve price is binding, that is, P0 > vR and P0 > vB.

Bidders make their entry and bidding decisions simultaneously based on their type– global
or local–and valuations. Outcomes are determined by the rules of the auction mechanism:
the available inventory is sold to the highest bidders, and the clearing price is determined
by the lowest winning bid.

We seek to characterize a Bayesian Nash Equilibrium of the entry-bidding game. In the
bidding stage, the fact that bidders cannot place more than one bid greatly simplifies the
analysis because unit-demand limits bidders’ ability to influence clearing prices via demand
reduction or bid shading strategies (Vickrey (1961)). However, there is a chance for a bidder
to affect the price they pay, which happens when their bid is exactly the Qth

R -highest bid in
the auction R or the Qth

B -highest bid in auction B. Since the probability that this occurs
and bid-shading incentives both decrease in N , for simplicity we assume that all participants
have a dominant strategy of bidding their valuation if they enter the auction.8

When choosing whether to enter, global bidders enter any auction for which their valu-
ation is above the reserve price: There are four possible cases: if vB ≥ P0 and vR ≥ P0, the
global bidder enters both auctions; if vB ≥ P0 and vR < P0, they enter auction B only; if
vB < P0 and vR ≥ P0, they enter auction R; and if vB < P0 and vR < P0 they do not enter
any auctions.

Local bidders enter at most a single auction, as long as their valuation is above the
reserve price. If vB ≥ P0 and vR < P0, then the local bidder enters auction B only. Similarly,
if vR ≥ P0 and vB < P0, then the local bidder enters auction R only. In the case where
vR ≥ P0 and vB ≥ P0, a local bidder enters the auction with the highest expected payoff.
In the remainder of this section, we focus on characterizing the entry equilibrium for local
bidders when vR ≥ P0 and vB ≥ P0.

Let us consider, temporarily, cut-off entry strategies of the following type: a local bidder
enters auction R if and only if vR ≥ c(vB) for some endogenous function c(.). They enter
auction B otherwise. We show below that any entry equilibrium of this game has a payoff-
equivalent representation in cut-off entry strategies. Let πR(vR|c) and πB(vB|c) denote bidder
i’s expected payoffs if they enter auction R and B respectively, when all local bidders follow
the entry cut-off strategy c(.). Local bidder i enters auction R if and only if πR(vR|c) ≥
πB(vB|c), so the optimal cut-off rule c∗(.) must satisfy the following indifference condition:

πR(c
∗(vB)|c∗) = πB(vB|c∗) for all vB ∈ [vB, vB] (2)

The next proposition proves the existence of an equilibrium in cut-off strategies.

8In a multi-unit auction where k items are sold to n bidders at the lowest winning bid, the equilibrium
bidding strategy takes the form

β(x) = x−
∫ x

0

[
F (u)

F (x)

]n−k

du

In our application, the second (bid-shading) term will be close to zero as the number of bidders per auction
ranges from 77 to 1, 386.
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Proposition 1 There exists a symmetric equilibrium of the entry stage in cut-off strategies
c∗(.), such that local bidder i, with valuations viR ≥ P0 and viB ≥ P0, enters auction R iff
viR ≥ c∗(viB) and enters auction B otherwise. The function c∗(.) is increasing on [P0, vB],
takes values in [P0, vR], and satisfies the boundary condition c∗(P0) = P0. Additionally, any
pure strategy equilibrium of the entry stage has a payoff-equivalent representation in cut-off
strategies.

Proof : Available in Appendix A.
Note that while at least one such equilibrium exists, there may be multiple equilibria

in cut-off strategies. We verify the uniqueness of the equilibrium numerically within the
estimation routine.

4 Estimation

For each shoe size, we observe the bid, or pair of bids, submitted by each entrant, and the
quantities sold in red and black. The primitives to recover are the distribution of valuations
F (., .) and the share of local bidders p. The main identification challenge is that bidder types
are not directly observed. Due to the binding reserve price, one cannot distinguish between a
global bidder i who bid in auction R only because viR ≥ P0 and viB < P0, from a local bidder
j who preferred to bid on R because vjR ≥ c∗(vjB) and vjB ≥ P0. Nonetheless, Appendix B
shows that the model primitives are non-parametrically identified from the observed data.

Due to our limited sample size, we impose parametric restrictions on the distribution of
valuations F (., .). Estimation proceeds in two steps. First, we note that global bidders can
be identified in the data when they enter both auctions. Therefore, we estimate the joint
distribution of valuations F (., .) using bids submitted by global bidders who bid in both
auctions B and R. Pairs of valuation (viB, viR) are assumed to be drawn from a bi-variate
log-normal distribution with means that depend on the color and the inventory:[

log(viB)
log(viR)

]
∼ N

([
µB + β logQB

µB + µR + β logQR

]
,

[
σB ρ
ρ σR

])
. (3)

σR, σB, and ρ denote the standard deviations of log(viB), log(viR), and the correlation co-
efficient between these two variables. When constructing the likelihood, we account for the
fact that bids are truncated at P0.

Second, for each shoe size, we calibrate the total number of potential entrants N and the
share of local bidders p to match moments given by the entry rates in the data. Denote by
nBR, nB, and nR the observed number of bidders who entered both auctions of a given size,
auction B only, and auction R only, respectively. N is set such that the share of entrants
nB+nR+nBR

N
equals the probability that a given bidder enters:

nB + nR + nBR

N
= 1− F (P0, P0) (4)

p is set such that the share of bidders who submit two bids equals the probability that a
bidder is global and draws both valuations above the reserve price:

nBR

N
= (1− p) [1− FB(P0)− FR(P0) + F (P0, P0)] (5)
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Two main advantages of this estimation approach are that: (i) it does not require knowledge
of local bidders’ entry equilibrium strategy c∗(.); and (ii) it does not require knowledge of
the total number of potential entrants when estimating valuations.

Results. Table 2 shows Maximum Likelihood estimates of the parameters governing the
distribution of valuations. The estimate for ρ indicates that valuations for B and R are
highly correlated within bidder. The quantity auctioned in a given color negatively impacts
valuations for that color (β is negative and statistically significant), confirming that bidders
exhibit a preference for rarity. Finally, we do not find any significant ex ante differences in
valuations across colors, given that µR is indistinguishable from zero.

Table 2: MLE Estimates

Estimate Std. Error t-value
µB 4.254 0.036 118.511
µR −0.026 0.032 −0.821
β −0.150 0.007 −21.207

σR 1.127 0.042 26.665
σB 1.136 0.023 50.176
ρ 0.971 0.002 425.272
Observations 3, 542
- Log Likelihood 1, 340

Notes: MLE Estimates of the model primitives contained in Equa-

tion 3.

The share of local bidders p is similar across sizes and close to 58%. The distribution of
the number of potential entrants mirrors the distribution of number bids received (middle
panel in Figure 1), with medium sizes having the largest populations of potential entrants.
For completeness, we include the estimates of the number of potential entrants N (Equation
4) and the share of local bidders p (Equation 5) in Figure A3 (Appendix).

Model Fit. Before using these estimates for counterfactuals, we examine how well the
estimated model fits the data. To do so, we solve for the Bayesian Nash Equilibrium for each
shoe size separately. In particular, we find local bidders’ entry strategy c∗(.), simulate auction
outcomes, and compare these to the data. We solve the game by searching for a fixed point
of the best-response mapping. Since we cannot search over the infinite-dimensional space of
increasing functions satisfying c(P0) = P0, we restrict our search to the class of piece-wise
linear functions of the form

c(vB) =

{
k0vB + k1 if vB ≤ ṽ

vB + k2 if vB > ṽ
, (6)

where for a given choice of (ṽ, k2), (k0, k1) are set to satisfy the restrictions: c(P0) = k0P0 +
k1 = P0 and k0ṽ + k1 = ṽ + k2. These two constraints ensure that the function satisfies the
constraint c(P0) = P0 and is continuous.
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Our choice for the shape of c(.) is motivated by the interim payoffs. We provide intuition
for the linear segment vB + k2 in Equation 6, noting that the other segment k0vB + k1 is
uniquely determined by the restrictions above. When valuations are large enough relative to
the expected market clearing prices, the probability of winning is approximately one, and
interim payoffs satisfy

πR(vR|c) −→
vR→∞

vR − E[pR] and πB(vB|c) −→
vB→∞

vB − E[pB], (7)

where pB and pR are the prices bidder i expects to pay in case of winning. At the limit, the
optimal cutoff strategy that makes bidder i indifferent between entering auction B and R
must satisfy

c(vB)− E[pR] = vB − E[pB].

Hence, c(.) will be of the form vB + k2 where k2 = E[pR]−E[pB] when vB is large relative to
the expected market clearing prices. How large does vB need to be, i.e., what is the value of ṽ
in Equation 6? With N large, the distributions of market clearing prices are tightly centered
around the mean of the Qth

B -order and Qth
R -order statistics out of N draws. In practice, we

start with ṽ = E[pB], and iterate on both (ṽ, k2) in the best-response mapping. That is, for

a given candidate cutoff rule c(k) = (ṽ(k), k
(k)
2 ) in iteration k, we numerically compute the

expected market-clearing price in auction B given entry strategy c(k), and set this value as
the updated ṽ(k+1). Next, we update kk+1

2 = E[pR|pR < vB + k2, c
(k)] − E[pB|pB < vB, c

(k)].
Iterations proceed until convergence.9 Finally, we initialize the iteration procedure at different
starting points and verify that the algorithm converges to the same equilibrium c∗ = (ṽ∗, k∗

2).
Given the equilibrium entry strategies found above, we simulate 10,000 auctions of red

and black slides for each shoe size. We compare the average simulated numbers of entrants
into the R auction, B auction, and both auctions to the observed entry levels. Similarly, we
compare the average simulated prices to the observed market clearing prices.

The first three panels of Figure 2 compare the realized number of entrants with the results
of model simulations (mean predictions are shown), by size and entry type, i.e., entry into
B only, R only, or both. The results confirm that the model performs well. Importantly, the
model replicates the feature that there are fewer entrants into auction R relative to auction
B due to the fact that QR < QB for all shoe sizes (see Figure 1).

The bottom-right panel of Figure 2 compares the 18 realized market clearing prices by
color and size to the mean simulated prices of our model. Although the model slightly over-
predicts prices at the top, the model prediction of market clearing prices are overall quite
close to the data given the restrictions imposed by our parametric assumptions. Overall, the
model captures the heterogeneity in prices and entry rates across sizes and colors quite well.

5 Counterfactual Analysis

In this section, we investigate how preferences for rarity and substitution patterns of local
bidders affect the optimal quantity sold by the auctioneer. To implement our counterfactuals,

9Convergence is reached when the cut-off rule satisfies |πR(vB + k
(k+1)
2 |c) − πB(vB |c)| < $0.01, ∀vB ≥

ṽ(k+1).
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Figure 2: Comparison of Model Simulations to Data: Entry and Clearing Prices
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Notes: The figures display the simulated and observed number of bidders
who enter auction R only (top left), auction B only (top right), and both
auctions (bottom left). The bottom right panel displays the simulated and
observed market clearing prices.
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we use the estimated model and vary the quantity of red slides, which are scarcer than black
slides for all shoe sizes. The auction outcomes of interest include bidders’ entry rates, market
clearing prices, seller’s profits, and consumer surplus.

Varying the quantity QR will affect not only valuations for R but also bidders’ entry
choices. Indeed, local bidders make their entry decisions by comparing the expected payoffs
from entering auctions B and R. The payoffs depend on the inventory levels (QB, QR),
which influence the expected market clearing price and likelihood of winning in each auction.
Increasing QR, all else equal, raises the expected payoff from entering auction R and may
induce bidders to substitute away from auction B to R. This shift towards auction R will
increase market clearing prices for R at the expense of auction B. However, increasing the
R inventory also has a direct negative effect on willingness to pay, which will decrease the
market clearing price for R.

In order to disentangle the effect of QR on valuations (“rarity”) from its effect on entry

(“substitution”), we consider alternative quantities Q̃R = γQR, where QR is the baseline
inventory and γ is a multiplier between 0.5 and 10. For each γ and shoe size, we compute
outcomes under four counterfactual scenarios:

1. No rarity, No substitution. In this counterfactual, we assume that valuations and local
bidders’ entry decisions (the cut-off function c∗(.)) do not vary with quantity and are
kept fixed at their baseline levels.

2. Rarity, No substitution. This counterfactual allows valuations to depend on quantities
but entry decisions remain fixed at their baseline level.

3. No Rarity, Substitution. Valuations do not vary with quantity but local bidders make
optimal entry decisions given auctioned quantities.

4. Rarity, Substitution. In this counterfactual, valuations depend on auctioned quantities
and bidders make optimal entry decisions.

Scenarios 3 and 4 require us to recompute the Bayesian Nash Equilibrium entry strategies
for each choice of inventory (QB, Q̃R).

10

We present results for size 10 shoes, which received the highest number of bids. Each
panel in Figure 3 presents the counterfactual outcomes—number of bids, market clearing
prices, profits, and consumer surplus—as a function of the quantity multiplier γ. Each row
corresponds to one of the four scenarios. In scenario 1, the number of bids in each auction
(top-left panel in Figure 3) does not change because valuations are constant and entry deci-
sions are kept fixed. The market clearing price (top-right panel) for red shoes decreases with
inventory, as the auctioneer goes down the demand curve. However, revenues monotonically
increase with γ because the price reduction is more than offset by more units sold. To com-
pute profits (bottom-left), we use a constant marginal cost of $30 that StockX confirmed was
the production cost. The profit-maximizing inventory level is denoted with a dotted vertical
line in the figure. Holding constant the quantity of black slides, profits across both black

10In the extreme case where the counterfactual quantity QR is higher than the number of entrants, we
assume that the auctioneer sells to all entrants at the reserve price P0 = $50.
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Figure 3: Outcomes Under Four Counterfactual Scenarios

4. Rarity, Substitution

3. No Rarity, Substitution

2. Rarity, No Substitution

1. No Rarity, No Substitution

0.0 2.5 5.0 7.5 10.0

400

800

1200

1600

400

800

1200

1600

400

800

1200

1600

400

800

1200

1600

N
um

be
r 

of
 b

id
s 

re
ce

iv
ed

4. Rarity, Substitution

3. No Rarity, Substitution

2. Rarity, No Substitution

1. No Rarity, No Substitution

0.0 2.5 5.0 7.5 10.0

200

400

600

200

400

600

200

400

600

200

400

600

M
ar

ke
t c

le
ar

in
g 

pr
ic

e

6.4

2.4

9.2

4.8

4. Rarity, Substitution

3. No Rarity, Substitution

2. Rarity, No Substitution

1. No Rarity, No Substitution

0.0 2.5 5.0 7.5 10.0

10000

20000

30000

40000

50000

10000

20000

30000

40000

50000

10000

20000

30000

40000

50000

10000

20000

30000

40000

50000

Quantity multiplier

P
ro

fit
s

4. Rarity, Substitution

3. No Rarity, Substitution

2. Rarity, No Substitution

1. No Rarity, No Substitution

0.0 2.5 5.0 7.5 10.0

20000

40000

60000

80000

20000

40000

60000

80000

20000

40000

60000

80000

20000

40000

60000

80000

Quantity multiplier

C
on

su
m

er
 S

ur
pl

us

black red black and red
Notes: The figures plot 4 outcomes (number of bids, market clearing prices, profits, and consumer surplus)
under the 4 different counterfactual scenarios described in Section 5. The blue triangles mark the value of γ
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and red slides are maximized with an inventory of red slides equal to 6.4 times the baseline
inventory.

In scenario 2, willingness to pay decreases with γ, which translates into a smaller number
of bidders entering auction R, because they either prefer entering auction B instead or stay
out altogether due to the binding reserve price. Note that, although bidders are not allowed
to re-optimize their entry decisions in scenario 2, some bidders still substitute from R to
B based on the baseline entry equilibrium whenever viR < c∗(viB). The lower number of
entrants into auction R leads to a sharper drop in the market clearing price for R (relative
to scenario 1), while the clearing price for B increases slightly with γ. Revenues increase
less than in scenario 1, which translates into an profit-maximizing quantity reached when γ
equals 2.4. As expected, preferences for rarity lead the seller to contract inventory levels to
keep valuations, and thus prices, high.

Scenario 3 has the opposite effect on the number of bids compared to scenario 2. As γ
increases, the expected payoff from entering auction R increases which draws bidders away
from B towards R. This shift in entry rates dampens the reduction in the market clearing
price in auction R and implies reduced revenues in auction B. The substitution from auction
B to R has a much smaller (negative) effect on revenues in B than the (positive) effect on R,
so a profit-maximizing monopolist would in fact expand inventory to 9.2 times the baseline,
larger than both the optimal level in scenarios 1 and 2. This result is perhaps counter intu-
itive, because one would think that substitution leads to cannibalization. However, allowing
bidders to switch from the black to the red shoe auction as the red inventory increases leads
to a less drastic reduction in the red shoe market clearing price compared to scenario 1,
without greatly affecting the black shoe price. This allows the seller to increase inventory
more than in scenario 1.

Finally, in scenario 4, the two forces (rarity and substitution) somewhat compensate each
other: the first reduces participation in auction R, whereas the second increases participation
in auction R. Overall, the total number of entrants in B and R decreases because with lower
valuations a fraction of bidders no longer meets the reserve price. Both prices monotonically
decrease, but similarly to scenario 3 increasing inventory has opposite effects on the revenues
for B and R. The resulting profit-maximizing γ is between the two extreme scenarios 2 and
3, at 4.8.

From the seller’s perspective, our main finding from these four scenarios is that preference
for rarity leads to substantially lower profit-maximizing quantities. This can be seen whether
substitution is shut down (scenario 1 versus 2) or accounted for (scenario 3 versus 4). Ignoring
the effect of rarity leads to quantity choices that are approximately 92% above the theoretical
optimum. Although Figure 3 focuses on shoe size 10, our main prediction is robust across
sizes: if preferences for rarity are ignored, the quantity chosen is on average 82% higher than
the optimum.

We also note that when the auctioneer accounts for the substitution between black and
red shoes (scenario 3 versus 1), the profit-maximizing quantity is higher. We think this
finding is interesting in its own right, as it stands in contrast to economic intuition for a
multi-product monopolist, which would suggest that optimal quantities should decrease when
cannibalization is accounted for. For simultaneous auctions with endogenous entry, however,
raising the quantity in one auction changes the residual demand curve (and, consequently,
the marginal revenue curve) by affecting bidders’ entry decisions. To keep exposition concise,
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we defer a detailed discussion of this point to Appendix C.
In all scenarios, consumer surplus in the red slide auction as well as in aggregate increase,

reflecting the fact that for most of the range of values of Q̃ considered (i.e., for γ ≤ 10), the
reduction in valuations due to the product being more available is more than compensated
by consumer gains from lower market clearing prices (infra-marginal consumers) and larger
quantities sold (marginal consumers). This result emphasizes that even with fashion goods,
the negative spillovers of restricting quantity more than offset the individual benefits of rarer
goods.

6 Conclusion

Most economists who have examined fashion typically lament how under-studied it is de-
spite its clear importance (Robinson (1961)). In this paper, we examined how rarity impacts
consumers willingness to pay. Using auction data from the sale of limited-edition fashion
goods on StockX, an e-commerce marketplace, we find that limiting the number of shoes
available for sale increases consumers bids. This increase translates into a higher sale price,
not just because of the lower available supply, but also because rarity induces higher bid-
der valuations. Our model also explicitly considers the effect of substitution among similar
products in bidders’ entry behavior, which in turn affects inventory levels of multi-product
firms. Preference for rarity and substitution have opposite effects on firms’ inventory choices.
While preference for rarity pushes profit-maximizing firms to constrain inventory levels to
keep valuations high, substitution pushes them to increase inventory. When focusing on con-
sumer surplus, although the directions of the effects are similar, we find that consumers’
higher utility from rarer goods is not enough to counterbalance the negative effects of higher
prices and fewer purchases arising from a reduction in inventory levels.

Many goods share the properties that make this “rarity” consideration consequential,
from branded clothing to trading cards. In these cases, when setting production quantities, it
is important for firms to take into account the impact of rarity and exclusivity on consumers’
preferences. As our analysis showcases, the use of auctions to sell limited edition goods can
provide valuable customer insights to inform these decisions. While we focus here on a multi-
product monopolist, more work is needed to understand how rarity affects competition and
market structure, which is a promising avenue for future research.
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A Proof of Proposition 1

Let C denote the set of increasing functions from [P0, vB] to [P0, vR], satisfying c(P0) = P0. We
will show that the best-response mapping is a continuous function that maps the compact
and convex set C into itself. Then, the Brouwer fixed-point theorem guarantees that an
equilibrium exists.

Let c0 ∈ C be a given cut-off entry strategy used by local bidders when vR ≥ P0 and
vB ≥ P0. Denote by pB and pR the random variables corresponding to the payment bidder i
pays if they enter and win in auctions B and R respectively: e.g., pB is the QB-th highest bid
among the nB − 1 rival entrants in auction B. The number of entrants nB (and their types)
is itself random and depends on the primitives (F (., .), p, N , QB, and QR) as well as on the
endogenous entry strategy c0 which creates selection on values for local bidders. To make the
latter dependence explicit we denote the payments pB(c0) and pR(c0). From the regularity
assumptions imposed on F (., .) and the presence of global bidders, pB(c0) and pR(c0) have
continuous cumulative distribution functions with supports [P0, vB] and [P0, vR].

Interim payoffs can be expressed as

πB(vB|c0) =
∫ vB

0

(vB − p)dFpB(c0)(p) =

∫ vB

0

FpB(c0)(p)dp, (8)

πR(vR|c0) =
∫ vR

0

(vR − p)dFpR(c0)(p) =

∫ vR

0

FpR(c0)(p)dp. (9)

where FpB(c0) and FpR(c0) are the cumulative distribution functions of pB(c0) and pR(c0).
Bidder i’s best-response to entry strategy c0(.), denoted cBR

0 (.) must satisfy the indifference
condition for all vB ∈ [P0, vB]

πR(c
BR
0 (vB)|c0) = πB(vB|c0) (10)

From Equation (9), πR(x|c0) is continuous and strictly increasing in x and satisfies the
boundary condition: πR(P0|c0) = 0 ≤ πB(vB|c0). Moreover, the extended function πR(x|c0)
converges to v̄R−pR. For vB such that πB(vB|c0) > v̄R−pR (i.e., the highest possible valuation
for R gives a payoff that is lower than the payoff from bidding in auction B), the bidder
will always enter auction B. For vB such that πB(vB|c0) ≤ v̄R − pR, by the Intermediate
Value Theorem, there exists a unique solution x∗ to the equation πR(x|c0) = πB(vB|c0). If
x∗ ∈ [P0, vR], denote cBR

0 (vB) ≡ x∗, otherwise, if x∗ > vR, denote cBR
0 (vB) ≡ vR. In the

latter case, the bidder never enters auction R when drawing value vB. Because πB(P0|c0) =
πR(P0|c0) = 0, we have that cBR

0 (P0) = P0. Since πB(vB|c0) is increasing in vB, the implicit
function theorem implies that cBR

0 is increasing in vB. Therefore cBR
0 ∈ C.

To prove continuity of the best-response mapping at c0, we show that for every ϵ̃ > 0,
there exists δ > 0, s.t. for every c ∈ C, ||c− c0|| < δ implies that ||cBR − cBR

0 || < ϵ̃.
Define the function

H(x, c, vB) = πR(x|c)− πB(vB|c)

for x ∈ [P0, vR], c ∈ C, and vB ∈ [P0, vB].
From Equations (8) and (9), we have that Hx(x, c, vB) = FpR(c)(x). The latter function

is continuous in x and strictly positive for x > P0. Moreover, for any sequence cn ∈ C that
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converges to c, pR(cn) converges in distribution to pR(c): i.e., FpR(c)(x) is continuous in c at
all x.

We have that cBR
0 (vB) defined above satisfies, for all vB ∈ [P0, vB],

H(cBR
0 (vB), c0, vB) = 0.

By continuity of Hx(x, c, vB) = FpR(c)(x) > 0 in (x, c), for any ϵ small enough, there
exists δ such that for ||c− c0|| < δ, H(cBR

0 (vB) + ϵ, c, vB) > 0 and H(cBR
0 (vB)− ϵ, c, vB) < 0.

Importantly, Hx(x, c, vB) does not depend on vB, therefore, δ holds for all vB. The Inter-
mediate Value Theorem guarantees that there exists a unique x∗ with |x∗ − cBR

0 (vB)| < ϵ,
such that H(x∗, c, vB) = 0. By definition of the best-response mapping, x∗ = cBR(vB).
Hence, for any ϵ and vB, we have shown that there exists δ such that ||c − c0|| < δ implies
|cBR(vB)− cBR

0 (vB)| < ϵ. This shows continuity at c0, for every vB, and a fortiori, uniformly.
The best-response mapping is a continuous function that maps C into itself. By Brouwer
fixed-point theorem, an equilibrium c∗ ∈ C exists.

Finally, for any symmetric pure strategy entry equilibrium governing local bidders’ entry
decisions when vB ≥ P0 and vR ≥ P0,

m : (vB, vR) 7→ {enter R, enter B}, (11)

let S(vB) denote the set of valuation for R such that local bidder i with valuation vB
enters R, that is,

S(vB) = {vR|m(vB, vR) = (enter R)}. (12)

Let S(vB) denote the smallest element of this set (keeping vB fixed). Suppose there exists
some ṽR > S(vB) such that a bidder drawing (vB, ṽR) would prefer to enter auction B. By
monotonicity of interim payoffs we have that

πR(ṽR|m) ≥ πR(S(vB)|m) ≥ πB(vB|m) (13)

If any inequality is strict, a bidder drawing (vB, ṽR) would strictly prefer entering auction
R, which contradicts equilibrium. Hence, it must be that

πR(ṽR|m) = πR(S(vB)|m) = πB(vB|m)

A bidder drawing either (vB, ṽR) or (vB, S(vB)) is indifferent between entering auction
R and B. Therefore, there exists a payoff-equivalent representation of entry equilibrium m,
where bidder i enters auction R under (vB, ṽR) and auction B under (vB, S(vB)). Iterating
this argument, we can conclude that any pure strategy equilibrium has a payoff-equivalent
representation using cut-off strategies. ■

B Nonparametric Identification

This section considers the identification of the model. The identification strategy assumes
the econometrician has access to an infinitely large sample of auctions with exogenous
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(N,QR, QB); i.e., the asymptotics are in the number of auctions rather than in the number
of bidders per auction.11

For each auction in the sample, we assume that the econometrician observes the param-
eters (N,QB, QR) and bids submitted by each entrant. In particular, the numbers of bidders
who enter auction B only, auction R only, or both are observed and denoted nB, nR, and
nBR. The primitives to identify are the joint distribution of valuation (viB, viR) ∼ F (., .) and
the probability p that a bidder is local.

First, the joint distribution of (viB, viR) conditional on (viB ≥ P0, viR ≥ P0) is directly
identified from pairs of bids submitted by global bidders.

Second, because bidders bid their valuation, expected payoffs πR(vR|c∗) and πB(vB|c∗)
from entering auction B and R are directly identified from the infinitely large sample of
auctions. Using the expected payoffs, one can identify the equilibrium entry strategy c∗(.)
used by local bidders with (viB ≥ P0, viR ≥ P0) by imposing the indifference condition12

πR(c
∗(vB)|c∗) = πB(vB|c∗).

To identify the distribution of valuations when bidders enter only one auction, we intro-
duce the following short-hands for the events partitioning the valuation space, represented
in Figure A1

A = {viB < P0, viR ≥ P0}

B = {viB > P0, viR ≥ c(viB)}

C = {viB > P0, P0 < viR < c(viB)}

D = {viB ≥ P0, viR < P0}

E = {viB < P0, viR < P0}

The (observed) probability distribution of bids submitted by bidders who entered auction
B only, denoted gB(v), must satisfy

gB(v) =
Pr(D)fB(v|D) + pPr(viR < c(v)|v ≥ P0, viR ≥ P0)fB(v|P0 ≤ viR ≤ c(v))

Pr(D) + p · Pr(C)
(14)

We show that all elements in Equation (14) are known except fB(v|D) and p. gB(v) is
identified from the data. Pr(viR < c(v)|v ≥ P0, viR ≥ P0) and fB(v|P0 ≤ viR ≤ c(v)) are
identified from the first step and knowledge of c(.). The probability of events D and C are ob-
tained by solving the system of four equations in four unknowns (Pr(B), P r(C), P r(A), P r(D)),

11With an infinite number of bidders—keeping QR/N and QB/N fixed—the market clearing price will be
a deterministic function of the primitives. As a consequence, a bidder can perfectly predict whether they will
win the auction if they enter, this will lead to unravelling of the entry equilibrium.

12In case of equilibrium multiplicity, we assume the same equilibrium c∗ is played in all auctions.
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Figure A1: Partition of the Valuation Space
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Notes: The figures plots the five areas, A through E,
corresponding to different combinations of (viB , viR)
that lead to different entry and bidding outcomes.
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E[nBR]/N = (1− p)(Pr(B) + Pr(C))

E[nB]/N = Pr(D) + pPr(C)

E[nR]/N = Pr(A) + pPr(B)

Pr(viR ≤ c(viB)|viB ≥ P0, viR ≥ P0) = Pr(C)/(Pr(C) + Pr(B))

(15)

For the last equation, we leverage knowledge of c(.) and the distribution of (viB, viR)
conditional on (viB ≥ P0, viR ≥ P0) identified in the first step.

This shows that, given p, the density function fB(vB|D) is identified. By following a
similar approach, we can show that the density function fR(vR|A) is identified. Therefore,
the distribution of valuations is identified for all relevant portions of the space: the joint
distribution F (., .) is identified conditional on events B and C, the distribution of valuations
for R is identified conditional on event A, and the distribution of valuations for B is identified
conditional on event D.

Finally, the probability p that a bidder is local is identified from exogenous variation in
the number of bidders N . The approach relies on the fact that an increase in the number
of bidders N is more detrimental to bidders’ payoffs if p is small. Intuitively, adding a
global bidder increases competition in both auctions B and R whereas adding a local bidder
increases competition in (at most) a single auction. Therefore, an increase in N will be more
detrimental to bidders’ payoff when the probability (1− p) a bidder is global is larger. Since
expected payoff are directly identified in the data, we can identify the parameter p from the
change in expected payoffs as N increases.

C Counterfactual Analysis: The Effect of Substitution

When the effect of substitution between B and R is considered (scenario 3 versus 1), the
profit-maximizing quantity is higher. This finding stands in contrast to economic intuition for
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a multi-product monopolist: in general, when accounting for cannibalization across products,
a monopolist should reduce the quantity produced relative to a status-quo where cannibal-
ization is ignored.

In our environment (simultaneous auctions with endogenous entry), however, the marginal
revenue from increasing QR is higher under scenario 3 than 1 for two reasons: first, for most
values of γ, entry into R is higher under scenario 3, which raises the marginal revenue of
QR because higher entry counters the drop in market clearing prices; second, the marginal
revenue from an additional bidder differs across auction B and R. In our case, it is higher
for the larger auction (in most cases QR > QB), so substitution away from B to R raises
marginal revenue and leads to a higher profit-maximizing quantity.

To gain intuition, we can compare the F.O.C. of a multi-product monopolist choos-
ing quantities (QB, QR) to that of the auctioneer in our setting. Denote RB(QB, QR) and
RR(QB, QR) the revenue obtained by the monopolist from selling goods B and R in the spot
market, the F.O.C. for QR is

∂RR

∂QR

+
∂RB

∂QR

= c

where the second term on the left-hand side represents cannibalization and reduces the
marginal revenue from increasing QR.

In multi-unit auctions with endogenous entry (assuming here that the number of bid-
ders is continuous), revenue depends on the quantity auctioned and the number of bidders:
Rj(Qj, nj) for j ∈ {B,R}. In scenario 3, the number of bidders n∗

j is endogenous and a
function of auctioned quantities. The corresponding F.O.C. is

∂RR(QR, n
∗
R)

∂QR

+
∂RR

∂nR

∂n∗
R

∂QR

+
∂RB

∂nB

∂n∗
B

∂QR

= c (16)

Raising quantity QR changes the marginal revenue (first term), but also attracts ad-
ditional competition into auction R (second term), at the cost of reducing competition in
auction B (third term). Because the total number of bidders is fixed: ∂nR

∂QR
= − ∂nB

∂QR
. The

optimality condition simplifies to

∂RR

∂QR

+
∂nR

∂QR

[
∂RR

∂nR

− ∂RB

∂nB

]
= c

If substitution is ignored, as in scenario 1, the corresponding optimality condition reads

∂RR(QR, nR)

∂QR

= c (17)

where nR is fixed. The marginal revenue from QR can be either higher or lower in scenario
3 relative to 1 depending on the shape of the demand curve. In our specific setting, the

marginal revenue is higher under scenario 3 because (i)
∂RR(QR,n∗

R)

∂QR
> ∂RR(QR,nR)

∂QR
if n∗

R > nR

and (ii)
∂Rj

∂nj
is increasing in Qj.

D Supplementary Tables and Figures
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Figure A2: Ben Baller Slides in Red and Black

.

Notes: The figure displays the shoes sold in
the IPO.

Figure A3: (N, p) by shoe size
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Notes: This figure shows the number of potential entrants N (bars) and the
share of local bidders p (squares) by size.
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Table A1: Reduced Form Results: Alternative Treatments of Outliers

Dependent variable: Bid (log)

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Top 7 percent of bids trimmed
Constant 4.530 4.779 4.687 4.284 4.727 4.561

(0.007) (0.044) (0.064) (0.020) (0.078) (0.114)
Red (indicator) 0.053 0.029 0.030 0.096 0.053 0.055

(0.011) (0.015) (0.017) (0.020) (0.026) (0.031)
Quantity (log) -0.057 -0.037 -0.035 -0.101 -0.065 -0.061

(0.011) (0.015) (0.021) (0.020) (0.027) (0.037)
Observations 6,207 6,207 6,207 6,207 6,207 6,207 6,207 6,207

Panel B. Top 3 percent of bids trimmed
Constant 4.597 4.848 4.770 4.247 4.738 4.583

(0.008) (0.049) (0.071) (0.026) (0.095) (0.138)
Red (indicator) 0.051 0.024 0.022 0.102 0.049 0.045

(0.012) (0.016) (0.019) (0.024) (0.032) (0.038)
Quantity (log) -0.058 -0.041 -0.045 -0.112 -0.079 -0.086

(0.012) (0.017) (0.023) (0.024) (0.032) (0.045)
Observations 6,618 6,618 6,618 6,618 6,618 6,618 6,618 6,618

Panel C. Bids capped at $1,000
Constant 4.664 4.940 4.846 3.856 4.593 4.337

(0.010) (0.058) (0.084) (0.059) (0.156) (0.227)
Red (indicator) 0.058 0.030 0.031 0.156 0.082 0.085

(0.014) (0.019) (0.023) (0.039) (0.052) (0.061)
Quantity (log) -0.063 -0.043 -0.039 -0.168 -0.112 -0.106

(0.015) (0.020) (0.028) (0.039) (0.052) (0.074)
Observations 6,909 6,909 6,909 6,909 6,909 6,909 6,909 6,909

Shoe size FE No No No Yes No No No Yes
Model OLS OLS OLS OLS MLE MLE MLE MLE

Notes: Standard errors are in parenthesis. Shoe size FE are dummies for three size categories: small (5-

7), medium (8-10), large (11-13). MLE gives the maximium likelihood estimator assuming log-normally

distributed bids and accounts for truncation at the reserve price.
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