
NBER WORKING PAPER SERIES

DYNAMIC PRICE COMPETITION:
THEORY AND EVIDENCE FROM AIRLINE MARKETS

Ali Hortaçsu
Aniko Oery

Kevin R. Williams

Working Paper 30347
http://www.nber.org/papers/w30347

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2022

We gratefully acknowledge financial and computational support from the Yale School of 
Management and the Becker Friedman Institute for Economics at the University of Chicago. We 
thank Jose Betancourt and Steve Li for their excellent research assistance. We thank seminar 
participants at NYU, Yale, and SICS 2022 for comments. The views expressed herein are those 
of the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official 
NBER publications.

© 2022 by Ali Hortaçsu, Aniko Oery, and Kevin R. Williams. All rights reserved. Short sections of 
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Dynamic Price Competition: Theory and Evidence from Airline Markets
Ali Hortaçsu, Aniko Oery, and Kevin R. Williams
NBER Working Paper No. 30347
August 2022
JEL No. C70,C73,D21,D22,D43,D60,L13,L93

ABSTRACT

We introduce a model of oligopoly dynamic pricing where firms with limited capacity face a 
sales deadline. We establish conditions under which the equilibrium is unique and converges to a 
system of differential equations. Using unique and comprehensive pricing and bookings data for 
competing U.S. airlines, we estimate our model and find that dynamic pricing results in higher 
output but lower welfare than under uniform pricing. Our theoretical and empirical findings run 
counter to standard results in single-firm settings due to the strategic role of competitor scarcity. 
Pricing heuristics commonly used by airlines increase welfare relative to estimated equilibrium 
predictions.

Ali Hortaçsu
Kenneth C. Griffin Department of Economics 
University of Chicago
1126 East 59th Street
Chicago, IL  60637
and NBER
hortacsu@uchicago.edu

Aniko Oery
Yale School of Management
165 Whitney Ave
New Haven, CT 06520
aniko.oery@yale.edu

Kevin R. Williams
Yale School of Management
165 Whitney Avenue
New Haven, CT 06520
and NBER
kevin.williams@yale.edu



1 Introduction

Dynamic pricing is commonly used by firms selling fixed inventory by a set deadline. Examples

range from seats on airlines and trains, tickets for entertainment events, reservations for cruises,

to inventory in retailing. In these markets, prices adjust for several reasons. First, prices reflect

changing opportunity costs—in the presence of scarcity, the cost of selling a unit of inventory

today depends on the ability to sell it in the future. Second, demand may change over time. This

can provide an incentive to hold inventory for certain customers. While in many of the afore-

mentioned examples firms face competition, the prior empirical literature on dynamic pricing

has studied it from a single firm’s perspective and has consistently found that it yields higher

welfare than under uniform pricing. With competition, today’s prices not only affect today’s

demand, but also all firms’ remaining inventories and hence, future equilibrium prices. These

forces can alter price dynamics significantly. It is an open theoretical and empirical question

how dynamic pricing affects market outcomes in an oligopoly.

In this paper we estimate the welfare effects of dynamic price competition in the airline

industry using new theoretical insights and granular data on competing airlines. We introduce a

general dynamic pricing game with multiple firms and products, and establish sufficient condi-

tions for equilibrium existence and uniqueness, and for convergence to a system of differential

equations. Our theoretical results show surprising departures from results established in single-

firm settings. For example, a firm with excess inventory may charge high prices in order to

induce a competitor to sell out early instead of offering low prices in order to reduce its excess

inventory. Or, a firm with low inventory may charge low prices in order to raise future equilib-

rium prices. We empirically investigate the impact of these strategic incentives by estimating

a model of air travel demand using unique and comprehensive pricing and bookings data of

competing airlines in U.S. duopoly markets. Applying the equilibrium characterization to es-

timated demand, we find that dynamic pricing expands output, increases firm revenues, lowers

consumer surplus, and decreases total welfare compared to uniform pricing. Our results con-

trast recent empirical studies, largely focused on a single firm, where dynamic pricing is found

to increase total welfare (Hendel and Nevo, 2013; Castillo, 2020; Williams, 2022).1

1Hendel and Nevo (2013) consider markets for storable goods, where buyers are faced with an inventory prob-
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We begin by extending earlier single-firm, dynamic pricing models (Gallego and Van Ryzin,

1994; Zhao and Zheng, 2000; Talluri and Van Ryzin, 2004) to oligopoly.2 In the main text we

focus on a duopoly where each firm offers a single product. In the appendix we extend our

results to many firms, each offering an arbitrary number of products. Firms are exogenously en-

dowed with limited capacity that must be sold by a deadline. Products are imperfect substitutes

and satisfy general regularity conditions. Consumers arrive randomly according to time-varying

Poisson rates and are allowed to have time-varying preferences. Each consumer decides whether

to purchase an available product or select an outside option. Our demand assumptions are mo-

tivated by recent empirical evidence (Hortaçsu et al., 2021b) that support short-lived buyers. In

every period, firms simultaneously choose prices after observing remaining inventories for all

products. Demand is realized, inventory constraints are updated, and the process repeats until

the perishability date or until all products are sold out. We call this game the benchmark model.

Our model produces a rich set of equilibrium strategies because prices affect both current

demand and opportunity costs of remaining inventory for all firms. Firms internalize that their

pricing decisions affect today’s demand, which firm sells, and future equilibrium prices. The or-

der of sales matters, creating novel incentives for how firms strategically set prices. We identify

how the importance of own and competitor inventory govern price paths. Limited own inventory

typically causes a firm to charge high prices (as in the single-firm setting), but it may result in

relatively low prices if it raises future equilibrium prices. Such fire sales in order to reduce own

inventory and soften future competition have also been identified by Dilme and Li (2019), where

a single firm competes with its future self for forward-looking buyers.3 In our model, this force

occurs across firms. Limited competitor inventory typically increases future prices. The desire

to create competitor scarcity is, however, particularly large for the firm with more inventory, as

the rival firm with less inventory is closer to selling out. This can cause a firm to set especially

lem. As a result, competition among sellers does not affect the features of dynamic pricing. Castillo (2020) studies
the matching of drivers and riders on the ride-hailing platform Uber, and Williams (2022) studies single-carrier
airline markets with collected data.

2There exists a large literature on dynamic price competition in other settings, e.g., Maskin and Tirole (1988);
Bergemann and Välimäki (2006) who do not consider limited capacity, and Sweeting et al. (2020) who study
limit pricing. In related work, Dana (1999a) and Dana (1999b) allow firms to choose prices and quantities before
demand uncertainty is resolved.

3Board and Skrzypacz (2016); Gershkov et al. (2018) consider forward-looking buyers when the firm can fully
commit to a selling mechanism and hence, resist the temptation to fire-sale.
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high prices in order to induce a rival with few units remaining to sell (out).4 Although we do not

endogenize the initial capacity choice (see Dana and Williams (2022) for a related example),

we show that our model can produce strategies commonly observed in quantity-choice games,

namely downward sloping (versus upward sloping) best-response curves.

We show that the marginal impact of own and competitor inventory on a firm’s continua-

tion payoff can be summarized by parameters in the stage game that we label “own-scarcity

effects” and “competitor-scarcity effects.” These scarcity effects are realized when a firm sells.

The competitor scarcity effect enters a firm’s payoff such that it is weighted by the competi-

tor’s demand. This makes the firms’ stage game payoffs difficult to analyze as they are not

(log) supermodular (Milgrom and Roberts, 1990), nor are they of the form considered in Caplin

and Nalebuff (1991) and Nocke and Schutz (2018). We derive sufficient conditions for exis-

tence and uniqueness of equilibria of the stage game using a theorem in Kellogg (1976) and

prove that close to the deadline, these conditions are satisfied for commonly used demand sys-

tems in empirical work, including (nested) logit demand. The conditions also ensure that the

continuous-time limit of the unique discrete-time equilibrium price paths satisfy a system of

differential equations.

The continuous-time characterization allows us to formalize the dynamic link between

scarcity in the stage game and remaining inventory. We show that firms prefer to have asym-

metric remaining capacities and that if the firm with the fewest number of units remaining sells,

this will have the biggest impact on future prices. As a result, both firms prefer that the firm

with less inventory sells first. In order to achieve this, the firm with more inventory tends to set

higher prices, and the firm with less inventory tends to set a low price. Finally, we show that

competition is fiercest when firms have the same number of units remaining, as any sale results

in a large price increase.

We use our theoretical framework to quantify the welfare effects of dynamic price competi-

tion in the airline industry. This industry has been noted for significant price dispersion within

and across routes (Borenstein and Rose, 1994; Stavins, 2001; Gerardi and Shapiro, 2009; Berry

4This force appears in Martínez-de Albéniz and Talluri (2011), where firms offer perfect substitutes. Shifting
demand to rivals also appears in Dana and Williams (2022), where firms do not face uncertain demand. Similar
incentives also arise in Edgeworth cycles (Dudey, 1992).
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and Jia, 2010; Puller et al., 2012; Sengupta and Wiggins, 2014; Siegert and Ulbricht, 2020). We

use new data sources that provide not only prices, but also all bookings (specifically, booking

counts) for all competing carriers on a given route.5 The booking counts include all tickets

sold, e.g., directly with the airline or via an online travel agency. As a result, we observe the

remaining inventory for every flight over time.

We estimate a Poisson demand model, where aggregate demand uncertainty is captured

through Poisson arrivals, and preferences are modeled through discrete choice nested logit de-

mand. Instead of fixing the market size, as commonly done in empirical work, we use search

data for one airline to inform arrival process parameters that are then scaled up to account for

unobserved searches, e.g., via online travel agencies or a competitor’s website. We show that

our results are robust to the choice in scaling parameter as well as the inclusion of unobserved

preferences that are potentially correlated with price (beyond a rich set of fixed effects). In

total, we estimate demand for 58 duopoly routes. We find significant variation in willingness to

pay across routes and days from departure. In general, demand becomes more inelastic as the

departure date approaches. Average own-price elasticities are -1.4.

With the demand estimates, we simulate equilibrium market outcomes using our differen-

tial equation characterization. This allows us to solve relatively large games (route-departure

dates)—some feature over 131 million potential states. We recover the own/competitor-scarcity

effects and firm strategies for all potential states. We verify equilibrium uniqueness and find

that overwhelmingly (but not all) of the realized stage games are of strategic complements, i.e.,

best-response curves are downward sloping.

We compare market outcomes of dynamic pricing to uniform pricing, where each firm com-

mits to a single price for each flight over time. We find the opposite welfare effect compared to

recent work by Hendel and Nevo (2013) in retailing, Castillo (2020) in ride-share, and Williams

(2022) for single-carrier airline markets.6 Accounting for the competitive interactions, we find

that dynamic pricing expands output but lowers total welfare compared to uniform pricing.

This occurs because dynamic pricing softens price competition toward the departure date where

5The data were provided to us by a large U.S. airline that has elected to remain anonymous.
6Cho et al. (2018) and D’Haultfœuille et al. (2022) also investigate dynamic pricing in the single-firm setting.

They report the revenue gains of dynamic pricing over uniform pricing, but do not consider total welfare.
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demand is most inelastic, despite featuring lower prices on average. Early-arriving, price sensi-

tive customers benefit from dynamic pricing, but late-arriving, price insensitive customers face

higher prices. High prices at the end occur not only due to price targeting but also because the

ability to react to competitors scarcity results in inefficiently low remaining inventory close to

the deadline. Our estimates suggest that uniform pricing would increase total welfare by 2.2%

but lower quantity sold by 6.4%.

We also investigate two pricing heuristics that mimic some industry pricing strategies.7 The

algorithms differ from recent work in economics that study reinforcement algorithms (Calvano

et al., 2020; Asker et al., 2021; Hansen et al., 2021) in that the heuristics pursued by airlines do

not incorporate additional information (learning) about demand or competitor strategies as the

departure date approaches. The heuristics use demand estimates and potential fares competitors

may charge, called fare buckets in the industry. We assume both firms use the same heuristic

(see Brown and MacKay (2021) for work on algorithm choice). We find that heuristics lead

to ambiguous effects on firm revenues but result in higher welfare than under the benchmark

model. Our results show that the benchmark model with full information and dynamic pricing

results in the lowest welfare among all counterfactuals.

2 Model of Dynamic Price Competition

We begin by detailing the demand assumptions that we use in our analysis in Section 2.1. Our

exposition of demand is for an arbitrary number of products. In Section 2.2 we introduce supply-

side notation by examining the single-firm case. We then present a duopoly pricing game with

two products in Section 2.3 which we analyze in Section 3. In Appendix A, we generalize all

formal results to a dynamic pricing game with arbitrary number of firms and products.

2.1 Demand Model

We consider firms selling a set of products denoted by J := {1, . . . , J }. Products are imperfect

substitutes and must be scrapped with zero value at a deadline T > 0. We analyze a discrete-

7We observe how one firm has modeled competition based on internal documentation.
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time environment with periods t ∈ {0,∆, . . . , T −∆}, ∆> 0, and later study the continuous-time

approximation as ∆→ 0. In every period t , a single consumer arrives with probability ∆λt ,

where λt is continuous in t . Therefore, each consumer can be indexed by her arrival time t .

If all products are available, then consumer t , facing a price vector p =
�

pj

�

j∈J , purchases

product j with probability s j (p;θ t ,J ), where θ t ∈T ⊂Rn is a vector of n ≥ 1 parameters that

are smooth and deterministic in t . We impose the following regularity conditions on demand.

Assumption 1. For all θ ∈T and p ∈RJ , the following hold:

i) Convergence for infinite prices: For any j , limpj→∞ s j (p;θ ,J )pj = 0. For any subset

A ⊂J and j ∈A , the limit8

s j (p
A ;θ ,A ) := lim

pj ′→∞
j ′ ̸∈A

s j (p;θ ,J ) ∈ [0, 1]

exists, where pAj ′ = pj ′ for all j ′ ∈A , pA ∈RA ;

ii) Products are imperfect substitutes: For all j , s j (p;θ ,J ) is strictly decreasing in pj and

strictly increasing in pj ′ for j ′ ̸= j ;

iii) The outside option is an imperfect substitute: For any subset A ⊂ J and j ∈ A ,

s j (pA ;θ ,A ) is smooth in θ and pA , and for all p ∈ RA there exists a C > 0 such

that for all pA ≥ p,

C s j (p
A ;θ ,A )<

∂ s0

∂ pj
(pA ;θ ,A ) for all j , (1)

where s0(pA ;θ ,A ) := 1−
∑

j ′∈A
s j ′(pA ;θ ,A ).

Assumption 1-i) ensures that demand is well-defined when products sell out and Assumption

1-ii) simply states that all products are imperfect substitutes. Assumption 1-iii) can be viewed

as a generalized concavity assumption as it makes sure that the profit maximizing prices of a

static multi-product problem are interior and well-behaved. First, it implies ∂ s0
∂ pj
(pA ;θ ,A )> 0,

8The limit takes all prices of products j ′ ̸∈A to infinity where the order does not matter.
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i.e., the outside option is an imperfect substitute. Denoting the vector of choice probabilities

by s(·) :=
�

s j (·)
�

j∈A , it implies that the Jacobian matrix of demand DpA s(pA ;θ ,A ) is diag-

onally dominant since ∂ s0
∂ pj
(pA ;θ ,A ) =

�

�

∂ s j

∂ pj
(pA ;θ ,A )

�

�−
∑

j ′∈A\{ j }

∂ s j ′

∂ pj
(pA ;θ ,A ) > 0.9 Then,

Dps(pA ;θ ,A ) is non-singular by the Levy-Desplanques Theorem (see, e.g., Theorem 6.1.10.

in Horn and Johnson (2012)). In addition, Assumption 1-iii) ensures that profit-maximizing

prices are uniformly bounded from above. It is a relatively weak assumption that essentially

asserts that ∂ s0
∂ pj
(pA ;θ ,A )/s j (pA ;θ ,A ) remains bounded from zero when pAj is large.

Given Assumption 1, we can define for any θ , A , and p ∈ RA the vector of inverse quasi

own-price elasticities of demand as

ε̂(p;θ ,A ) :=
� �

Dps (p;θ ,A )
�⊺ �−1

s (p;θ ,A ).

Assumption 2 details the assumption that we place on demand elasticities.

Assumption 2. The vector of inverse quasi own-price elasticities ε̂(p;θ ,A ) satisfies

det
�

−Dpε̂(p;θ ,A )− I
�

̸= 0

for all p ∈RA , θ ∈T , andA ⊂J , where I ∈RA×A is the identity matrix.

As discussed above, Assumption 1-iii) guarantees that for any marginal cost vector c ∈

RA , maxp∈RA s(p;θ ,A )⊺(p− c) has an interior solution. Given Assumption 2, the system of

first-order conditions (FOCs) has a unique solution. Together, these assumptions replace the

commonly made assumption of quasi-concavity or log-concavity which is, for example, not

satisfied for multinomial logit (see e.g., Hanson and Martin (1996)). We show in Appendix C

that (nested) multinomial logit demand functions satisfy Assumptions 1 and 2.

We omit the conditioning arguments θ and/orA in all expressions whenever the meaning is

unambiguous. When the time index is relevant, we write s j ,t (p) := s j (p;θ t ,At ) for j ∈At ∪{0}.

9Consistent with the common convention, the Jacobi matrix of a vector-valued function f (x) ∈ Rn , x ∈ Rn is
Dx f (x) :=

�

∂ fi
∂ x j

�

i , j
, i denoting rows and j columns, and bold vectors x are column vectors.
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We illustrate theoretical insights with a multinomial logit demand specification

s j ,t (p) =
exp

�

δ j−αt pj

ρ

�

1+
∑

j ′∈At

exp
�

δ j ′−αt pj ′

ρ

� , (2)

where αt /ρ is the time-variant marginal utility to income, and ρ > 0 is a scaling factor. The

parameter δ j/ρ is the product-specific value of product j . Note that as ρ → 0, competition

collapses to standard Bertrand. As ρ →∞, products become perfectly differentiated. In our

empirical analysis, we consider the more flexible nested logit demand model.

2.2 Single Firm Model

We discuss the single-firm, multi-product dynamic pricing model with two goals in mind. The

first is to introduce supply-side notation that we carry over to the competitive model. The second

is to showcase that the single-firm problem is well behaved and exhibits nice properties. These

properties can fail in the oligopoly model.

A single firm M offers J products for sale with initial inventory K j ,0 ∈ N of each product

j . Let Kt =
�

K j ,t

�

j∈J denote the capacity vector at time t .10 The firm’s continuation payoff at

time t ≤ T −∆, given capacity vector K, satisfies the dynamic program

ΠM ,t (K;∆) =

max
p
∆λt

∑

j∈J

s j ,t (p)
�

pj +ΠM ,t+∆(K−e j ;∆)
�

︸ ︷︷ ︸

payoff from selling product j

+
�

1−∆λt

∑

j∈J

s j ,t (p)
�

︸ ︷︷ ︸

probability of no purchase

ΠM ,t+∆(K;∆),

where e j ∈NJ is a vector of zeros with a one in the j th position. The firm faces three boundary

conditions: (i) ΠM ,T (K;∆) = 0 for all K, (ii) ΠM ,t (0;∆) = 0 for all t , where 0 is a vector of

zeros, and (iii) ΠM ,t (K;∆) =−∞ if K j < 0 for a j ∈J . The dynamic program captures that the

continuation profits only depends on the capacity vector and time, where today’s prices govern

the probabilities of selling each product today. The boundary conditions ensure that remaining

10The capacity vector at time t captures at time t the remaining inventory.
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inventory is scrapped with zero value after the deadline T and that the firm cannot oversell.

Since continuation values in period t +∆ are independent of past prices, the optimal price

in each period solves a static maximization problem parameterized by ω = (ω j ) j∈J , where

ω j = ΠM ,t (K;∆)−ΠM ,t (K− e j ;∆) is commonly referred to as the opportunity cost of selling

product j .11 In particular, profit-maximizing prices are given by

pM (ω,θ ) := arg max
p

∑

j∈J

s j (p;θ ,J )
�

pj −ω j

�

.

By Kellogg (1976), Assumption 2 implies that there is a unique optimal price vector which is

continuous in ω and θ . Then, by Lemma 4 in Appendix B, the continuous-time limit of this

dynamic program exists, and solves the differential equation specified in the following lemma.

The lemma formalizes that the loss in continuation profit if no sale occurs is given by the forgone

expected flow payoff.

Lemma 1. Let Assumptions 1 and 2 hold. Then, ΠM ,t (K;∆) converges uniformly to ΠM ,t (K) as

∆→ 0, which satisfies

Π̇M ,t (K) =−λt max
p

∑

j∈J

s j ,t (p)

�

pj −
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

�

(3)

with boundary conditions (i) ΠM ,T (K) = 0 for all K, (ii) ΠM ,t (0) = 0 for all t , and (iii) ΠM ,t (K) =

−∞ if K j < 0 for a j ∈J .

Given a capacity vector K, corresponding available products A = { j : K j ̸= 0}, and the

vector of opportunity costs ωM ,t (K) :=ΠM ,t (K)−ΠM ,t (K− e j ) of products j ∈A , the FOC for

profit-maximizing prices can be written in matrix form,

p= ωM ,t (K)
︸ ︷︷ ︸

opportunity costs

−
��

Dps(p;θ t ,A )
�⊺�−1

s(p;θ t ,A )
︸ ︷︷ ︸

= ε̂(p;θ ,A )
inverse quasi own-price elasticities

. (4)

11Note that strictly speaking, the opportunity cost of selling product j is given by ω j −
∑

j ′ ̸= j

s ′j (p)
1−s j (p)

ω j ′ as by
selling product j , the firm forgoes the opportunity to sell any other product to the customer.
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Hence, the optimal pricing policy pM
t (K) is continuous in time.12 The evolution of pM

t (Kt ) is

governed by the evolution of quasi own-price elasticities of demand and the evolution of the

opportunity costs. The following proposition summarizes properties of the solution.

Proposition 1. The solution to the continuous-time single-firm revenue maximization problem

in Lemma 1 satisfies the following:

i) ΠM ,t (K) is decreasing in t for K ̸= 0 and increasing in K j , for all j ∈J and t < T ;

ii) ω j ,t (K) is decreasing in t for K ̸= 0 and decreasing in K j , for all j and t < T ;

iii) The stochastic process ω j ,t∧τ(Kt ), τ := inf{t ≥ 0|K j ,t ≤ 1}, is a submartingale.

Statements i) and ii) of Proposition 1 imply that more inventory and more time remaining in-

crease continuation profits, every additional unit of inventory increases profits by less (concavity

of profits in capacity), and opportunity costs are decreasing towards the deadline if K is held

fixed. These properties have been established in the seminal paper by Gallego and Van Ryzin

(1994) for the single-product setting. Statement (iii) says that, on average, opportunity costs

are increasing. This formal result implies that given constant θ t ≡ θ , or if αt is non-decreasing

in t in a (nested) multinomial logit specification, price paths are on average increasing in time

by Equation 4. An important implication is that rational consumers should not wait to purchase

because prices rise in expectation. As a result, long-lived buyers and short-lived buyers would

behave the same upon arrival. Statement (iii) is not inconsistent with earlier work, e.g., McAfee

and Te Velde (2006) and Williams (2022), where close to the deadline, observed average prices

decline. The reason is that once a product sells out, its price is excluded from the average price,

i.e., observed prices decline when there is one unit remaining.

2.3 Duopoly Model

We introduce a duopoly pricing game with two firms f ∈ {1, 2}. Each firm controls exactly one

product, i.e., J = {1, 2}. Therefore, we set j = f and use the subscript f to denote both the firm

12Note that we abuse notation slightly by denoting the optimal price policy pM
t (K), while also denoting the static

optimal price parameterized by (ω,θ ) by pM (ω,θ ).
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and product of interest. We generalize the results in this section to many firms with multiple

products in Appendix A. Our exposition here focuses on the duopoly case with two products

since this case is sufficient to highlight the key forces relevant for our analysis. Each firm f is

initially endowed with K f ,0 units of its own product. In every period, firms simultaneously set

prices pf ,t , and then a consumer arrives with probability ∆λt . If a consumer arrives, she buys a

product from firm f with probability s f ,t (p1,t , p2,t ).

As in the single-firm case, the payoff-relevant state is given by the vector of inventories

K := (K1, K2) at time t . We study Markov perfect equilibria in which each firm’s strategy is

measurable with respect to (K1, K2, t ). We denote a Markov strategy of firm f by pf ,t (K). Given

equilibrium price vectors p∗t (K) := (p
∗

1,t (K), p ∗2,t (K)), firm f ’s value function satisfies13

Π f ,t (K;∆) =∆λt

�

s f

�

p∗t (K)
�

�

p ∗f ,t (K) +Π f ,t+∆(K−e f ;∆)
�

︸ ︷︷ ︸

payoff from own sale

+

s f ′
�

p∗t (K)
�

Π f ,t+∆(K−e f ′ ;∆)
︸ ︷︷ ︸

payoff if f ′ sells

�

+
�

1−∆λt

∑

h∈{1,2}

sh

�

p∗t (K)
�

�

︸ ︷︷ ︸

probability of no purchase

·Π f ,t+∆(K;∆),
(5)

where we denote the competitor by f ′ ̸= f . The key difference to the single-firm’s dynamic

program is the additional term representing the payoff if the competitor sells. The boundary

conditions are analogous to the single-firm case: (i) Π f ,T (K;∆) = 0 for all K, (ii) Π f ,t (K;∆) = 0

if K f = 0, (iii) Π f ,t (K;∆) =−∞ if K f < 0, (iv) Π f ,t (K−e f ′ ;∆) =Π f ,t (K;∆) if K f ′ = 0, K f ≥ 0.

Similar to the single-firm setup, given Markov pricing strategies, the continuation payoffs

in period t +∆ are not impacted by past prices. Hence, p∗t (K) is an equilibrium of a stage game

in which firm f ’s payoff is given by Π f ,t (K;∆)−Π f ,t+∆(K;∆). To describe this stage game, we

denote for each firm f ∈ {1, 2} the change in continuation profit if product j ∈ {1, 2} is sold by

ω
f
j ,t (K;∆) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−e j ;∆),

which we call the scarcity effect of product j on firm f . We refer to ω f
f ,t as the own-scarcity

13Formally, equilibrium prices are a function of ∆, which we omit in the main text for readability.
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effect and ω f
f ′,t , f ′ ̸= f , as the competitor-scarcity effect. We set ω f

f ′,t := 0 if K f ′ = 0. Then, the

stage game is parameterized by the matrix of scarcity effects

Ωt (K;∆) =





ω1
1,t (K;∆) ω1

2,t (K;∆)

ω2
1,t (K;∆) ω2

2,t (K;∆)



 ,

where by Equation 5, firm f ’s expected flow payoff is equal to14

Π f ,t (K;∆)−Π f ,t+∆(K;∆) =∆λt

�

s f ,t

�

p∗t (K)
�

�

p ∗f ,t (K)−ω
f
f ,t (K)

�

− s f ′,t

�

p∗t (K)
�

ω
f
f ′,t (K)

�

.

Hence, in the stage game, firms simultaneously choose prices to maximize payoffs

s f ,t (p) ·
�

pf −ω
f
f ,t (K)

�

− s f ′,t (p) ·ω
f
f ′,t (K), f ′ ̸= f .

Intuitively, the firm incurs an opportunity cost of selling its own product as in the single-firm

setting, but future prices are also affected by the future degree of competition. For example, firm

f benefits from a sale of the competitor if ω f
f ′,t < 0. This provides the firm an incentive to shift

demand to the competitor. The stage game can have different strategic properties depending on

the size and sign of the scarcity effects (see Section 3.2).

For a stage game withω f
f ′,t ̸= 0, we cannot apply results from Caplin and Nalebuff (1991) or

Nocke and Schutz (2018). Payoffs are neither super-modular nor log-supermodular (Milgrom

and Roberts, 1990). The stage game is also not a potential game.

3 Analysis of the Duopoly Model

In this section, we derive theoretical properties of the dynamic pricing game. We start with an

analysis of uniqueness and continuity of stage game equilibria, which allows us to generalize

Lemma 1 to oligopoly. Uniqueness of equilibria is useful to make theoretical and empirical

predictions, and the continuous-time approximation allows us to efficiently compute equilibria

of the dynamic pricing game—which can reach a very large number of states (K, t ) even with
14We omit the “∆” in the scarcity effects and equilibrium prices for readability.

13



only two firms, two products, and a realistic number of units. Convergence to a system of differ-

ential equations is not guaranteed, even with well-behaved and commonly used demand models

such as logit. Therefore, we provide conditions that can be checked to assure convergence. We

discuss the unique economic forces of this dynamic pricing game in Section 3.2.

3.1 Equilibrium Existence, Uniqueness, and Continuity

3.1.1 Sufficient Condition for Equilibrium Uniqueness in the Stage Game

In this section, we consider the stage game for an arbitrary matrix of opportunity costs Ω.

We drop the time index and capacity argument in all expressions temporarily. Our first result

presents sufficient conditions for existence and uniqueness of an equilibrium of the stage game.

We show in the proof of Lemma 2 that the boundedness and regularity conditions in Assumption

1 guarantee that firm best-responses are solutions to the FOCs of each firm’s maximization

problem. We can write the FOC of firm f ’s profit maximization problem as

g f (p) = pf ,

where

g f (p) := ω
f
f +

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
ω

f
f ′

︸ ︷︷ ︸

net opportunity cost
of selling

− s f (p)

�

∂ s f (p)

∂ pf

�−1

︸ ︷︷ ︸

inverse quasi
own-price elasticity

. (6)

By Konovalov and Sándor (2010) (which is based on Kellogg (1976)), the following assumption

guarantees that there is a unique solution to this system of equations.

Assumption 3. Suppose the following two conditions hold:

i) ∂ g f

∂ pf
(p)−1 ̸= 0 for all p and f = 1, 2;

ii) det

�

�

Dpg(p)
�⊺− I

�

̸= 0 for all p, where g(p) := (g1(p), g2(p))⊺.

Assumption 3-(i) is always satisfied for demand functions that are log-concave in each di-

mension. Further, note that if the competitor-scarcity effect is zero, one can see from Equation 6
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that Assumption 2 implies Assumption 3. In the presence of competitor-scarcity effects, the net

opportunity cost of selling depends on the ratio of derivatives of the demand of the two firms.

Then, Assumption 3-(i) makes sure that the best response of each firm is always unique and

3-(ii) guarantees that g(p) = p has exactly one solution. Together, these two assumptions imply

that the unique solution to the system of FOCs must be an equilibrium.

Lemma 2. Let Assumptions 1, 2 and 3 hold. Then, the stage game admits a unique equilibrium.

Even though Lemma 2 does not provide necessary conditions for uniqueness, it guides our

construction of an Ω that violates Assumption 3 and yields multiple equilibria in Section 3.1.2.

We will also demonstrate that, in general, there might not exist a well-behaved equilibrium

price path if competitor-scarcity effects are strong. For example, any equilibrium could involve

large price changes even if no product is being sold due to a switch in the equilibrium regime.

However, we will later show in Proposition 2 that the conditions in Assumption 3 are satisfied in

all stage games that are sufficiently close to the deadline. Furthermore, in our empirical analysis,

the stage game always remains in a neighborhood of Ω where the equilibrium is unique.

Finally, note that Lemma 2 establishes uniqueness and existence simultaneously. Under the

assumption of independence of irrelevant alternatives (see Section 3.3.1 for a formal definition),

that is satisfied by a classic logit demand system and that is a commonly made assumption in

theoretical analysis of oligopolies, we can establish equilibrium existence directly.

3.1.2 Continuity of Equilibrium Prices in Scarcity Effect Matrix Ω

Next, we study the stage game parameterized by scarcity effects Ω and demand parameters θ .

To generalize the convergence result of Lemma 1 to an oligopoly, we need to show continuity

of the equilibrium price p∗(Ω,θ ). In particular, we need to show that if Ω and θ remain in

a compact neighborhood in which the stage game admits a unique solution, then equilibrium

prices denoted by p∗(Ω,θ ) are continuous in Ω and θ . Consequently, a small change in the

opportunity costs does not change prices substantially. In the dynamic game, this makes sure

that as long as no sales occur, price paths do not make sudden significant changes over time.

Lemma 3. Let Assumptions 1, 2 and 3 hold for a compact, path-connected set O of (Ω,θ ).

Then, the unique equilibrium price vector p∗(Ω,θ ) is continuous in (Ω,θ ) on O .
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We require path-connectedness of the space of (Ω,θ ) since it allows us to use Browder’s

Theorem (see e.g., Solan and Solan (2021)) after parametrizing the multidimensional parameter

space with a one-dimensional variable.

As discussed in Section 3.1, Assumption 3-ii) can be violated for non-zero values of scarcity

effects. This can lead to multiplicities of equilibria and a failure of Lemma 5. In the dynamic

pricing game, this can potentially translate to equilibrium price jumps that are not caused by

a change in inventory in the dynamic game. We illustrate this point in the following example.

Consider logit demand such that δ1 =δ2 = 1, and ρ = 1. Then, Assumption 3 is equivalent to

�

s1(p) +αω
1
2s0(p)

��

s2(p) +αω
2
1s0(p)

�

̸= 1+
1− s1(p)− s2(p)

s1(p)s2(p)
.

Note that this condition does not depend on the firms’ own-scarcity effects ω1
1 and ω2

2. There-

fore, we set own-scarcity effects equal to zero and parameterize competitor-scarcity effects

using a continuous function. We plot the parameterization of (ω2
1,ω1

2) in Figure 1-(a). The

corresponding equilibrium prices for both firms are plotted in Figure 1-(b). It shows that (1)

multiplicity of equilibria can occur and (2) any price path along x contains a price jump.

Figure 1: Multiplicities in stage-game equilibria

(a) Parametrization of (ω1
2(x ),ω

2
1(x ))
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(b) Multiplicity in equilibrium prices
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π
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,−15 sin
�

π
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��

, x ∈ [0, 1], where we set
(ω1

1,ω2
2) = (0, 0), and assume logit demand with δ = (1, 1), αt = 1 and scaling factor ρ = 1. Panel (a) depicts the parameterized curve and

panel (b) equilibrium prices of both firms given (ω2
1,ω1

2) at varying values of x .

This example indicates that the dynamic pricing game might not converge to a system of

differential equations and Lemma 4 cannot be immediately generalized to an oligopoly. How-
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ever, given Assumption 2, Assumption 3-ii) is satisfied for any matrix of scarcity effects Ω in a

neighborhood O that contains the zero matrix Ω= 0 by continuity. This allows us to generalize

Lemma 1 to an oligopoly as long as the time horizon is not too long.

3.1.3 Characterization of Continuous-time Limit

Using Lemma 5 and Lemma 4 in Appendix B, we can generalize Lemma 1 to an oligopoly

as long as the time horizon is not too long. We state the result formally in the proposition

below. The equilibrium characterization is useful because it allows us to simulate equilibrium

outcomes in our empirical analysis for high-dimensional games.

Proposition 2 (Continuous-time Limit). Let Assumptions 1, 2, and 3 hold for a compact, path-

connected set O containing (Ω,θ ) = (0,θ T ). For every K, there exists a T0(K)> 0, non-increasing

in K, so that for any T ≤ T0(K), there exists a unique equilibrium for any dynamic pricing game

with sufficiently small ∆ (holding all other parameters of the game fixed). The corresponding

value function Π f ,t (K;∆) converges to a limit Π f ,t (K) as ∆ → 0 that solves the differential

equation

Π̇ f ,t (K) =−λt

�

s f (p∗(Ωt (K),θ t ))
�

p ∗f (Ωt (K),θ t )− (Π f ,t (K)−Π f ,t (K−e j ))
�

−s f ′,t (p∗(Ωt (K),θ t ))
�

Π f ,t (K)−Π f ,t (K−e f ′ )
�

�

,

where f ′ ̸= f , with boundary conditions (i) Π f ,T (K) = 0 for all K, (ii) Π f ,t (K) = 0 if K f = 0, (iii)

Π f ,t (K) =−∞ if K f < 0, and (iv) Π f ,t (K−e f ′) =Π f ,t (K) if K f ′ = 0, K f ≥ 0.

Using this equilibrium characterization, we can illustrate that the general insights from the

single-firm setting (Proposition 1) do not hold in an oligopoly. In Figure 2, we consider a

simulation using logit demand. We fix the capacity of firm 2 to be K2 = 3 and vary the level

of firm 1 capacity K1 (either 2 or 4). In panel (a), we plot firm 1 profits over time for given

capacities. The figure shows that firm 1 expects higher profits with K1 = 4 than with K1 = 2 far

from the deadline, however, the firm expects higher profits with K1 = 2 versus K1 = 4 close to

the deadline. That is, the value function is non-monotonic in own capacity. In panel (b), we plot

the own-scarcity effect of firm 1. Contrary to the single-firm case, we see that the own-scarcity

effect is also not monotonic in own capacity. In addition, note that the own-scarcity effect is
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actually negative close to the deadline but positive well before the deadline. We discuss the

different forces in detail in Section 3.2. In Figure 10 in Appendix D, we show that all scarcity

effects can be positive or negative (even within a single dynamic pricing game).

Figure 2: Simulated profits and own-scarcity effects when K2 = 3 and K1 varies

(a) Firm 1 equilibrium profit, Π1
t (K1, 3)
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(b) Firm 1 own-scarcity effect, ω1
1,t (K1, 3)
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Notes: The simulations assume δ = (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05. Panel (a) shows firm 1’s profits over time,
t ∈ [0, 1], for K= (2, 3) and K= (4, 3). Panel (b) shows firm 2’s profits over time, t ∈ [0, 1], for the same states.

3.2 Economic Forces of the Game

3.3 Illustrative example

We start with an illustrative example that highlights how competitor-scarcity effects affect

market outcomes before turning to formal results. Consider the dynamic game where only

one firm is subject to scarcity, e.g., K1 =∞, K2 <∞. In that case, a sale of firm 1 does

not create scarcity, i.e., ω1
1 ≡ ω

2
1 ≡ 0, since the capacity vector remains unchanged even if

firm 1 sells. A sale of firm 2 unambiguously creates scarcity and softens competition, so

ω1
2(∞, K2) = Π1,t (∞, K2)−Π1,t (∞, K2 − 1) < 0, as once firm 2 sells out, firm 1 can charge

p M := arg maxp s1(p ,∞)p1. Typically ω2
2(∞, K2) = Π2,t (∞, K2)−Π2,t (∞, K2 − 1) > 0. Thus,

the stage game payoffs are given by







Firm 1: s1(p)p1− s2(p)ω1
2,

Firm 2: s2(p)(p2−ω2
2).
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Firm 1 has an incentive to shift demand to the competitor. It does so by charging a high price

p1 to increase the term −s2(p)ω1
2. Thus, firm 1’s competitor-scarcity effect ω1

2 increases best-

response prices (given any p2 fixed). Firm 2 faces a single-firm optimization problem with

residual demand s2(p1, ·) that is increasing the competitor price. Thus, in equilibrium, the

competitor-scarcity effect faced by firm 1 results in higher residual demand for firm 2. This

indirect equilibrium effect further brings up overall equilibrium prices today.

This example highlights how competitor-scarcity effects directly affect best-response prices,

but also indirectly lead to an increase in equilibrium prices. In general, when both firms have

finite capacity the intuition is more complicated in two ways. First, a sale of a firm might

strengthen future competition, leading to a positive competitor-scarcity effect ω f ′

f . We can

construct examples where this is the case, but typically firms set equilibrium prices that result

in continuation payoffs that involve negative competitor-scarcity effects. We confirm this in our

empirical application. Second, even if any sale softens future price competition, the indirect

equilibrium effects are nuanced as long as both firms are subject to nonzero competitor-scarcity

effects. This is because the equilibrium outcomes also depend on how the scarcity effects

compare to each other and which firm’s sale softens competition more.

In the following subsections, we discuss the implications of competitor-scarcity effects on

the price level of the best response by fixing the competitor price. We then investigate equilib-

rium implications by studying how a firm responds to a competitor’s price change strategically.

We discuss how competitor prices can be strategic complements or strategic substitutes in the

stage game. Finally, we show that close to the deadline, a sale of the product with minimum

remaining inventory left softens competition the most, leading to the largest equilibrium price

jump.

3.3.1 Scarcity Effects and Mark-ups

The effect of own- and competitor-scarcity are reflected in the first-order conditions of firms

given by g f (p) = pf , where g f is defined in Equation 6. It shows that the net opportunity cost

of selling given a price vector p is given by the sum of the own-scarcity effect ω f
f and the
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competitor-scarcity effect ω f
f ′ weighted by

∂ sf ′
∂ pf
(p)

∂ sf
∂ pf
(p)
< 0. It is immediate that the intuition of the

illustrative example carries over: If competitor scarcity softens competition (ω f
f ′ < 0), then the

best-response price of firm f is higher than if there was no competitor-scarcity effect.

We can describe the opportunity cost in the presence of competition more concretely for

demand systems that satisfy the commonly made assumption of “Independence of Irrelevant

Alternatives (IIA).” In that case, the weight in front of the competitor-scarcity effect has an

intuitive interpretation and does not depend on the firm’s own price. Logit demand, for example,

satisfies IIA. We state the assumption formally below.

Assumption 4 (Independence of Irrelevant Alternatives (IIA)). Suppose the following holds,

∂

∂ p1

s2(p)
s0(p)

=
∂

∂ p2

s1(p)
s0(p)

= 0.

Given Assumptions 1, 2 and 4, we establish the following proposition:15

Proposition 3 (Mark-up formula under IIA). Let Assumptions 1, 2 and 4 hold and − ∂
∂ pf

s f (p)
∂ sf
∂ pf

̸= 1

for all p. Then, there exists an equilibrium of the stage game for any scarcity matrix Ω. Any

equilibrium price vector p∗(Ω,θ ) solves

p ∗f (Ω,θ ) ∈ arg max
pf

s1(pf , p ∗f ′(Ω,θ ))(pf − c f (pf ′ ;Ω,θ ))

for f ∈ {1, 2}, f ′ ̸= f , where c f (pf ′ ;Ω,θ ) :=ω f
f + s̃ f ′(pf ′)ω

f
f ′ , and s̃ f ′(pf ′) :=

s f ′ (p)
1−s f (p)

is the demand

of firm f ′ conditional on firm f not selling.

Proposition 3 implies that equilibrium prices p∗(Ω,θ ) satisfy a markup formula

p ∗f (Ω,θ )− c f (p ∗f ′(Ω,θ );Ω,θ )

p ∗f (Ω,θ )
=−

1

ε f (p∗f (Ω,θ ))
, (7)

where ε f (p) =
∂ s f (p)
∂ pf

pf

s f (p)
is the elasticity of demand and the opportunity cost c f does not depend

on the own price. The weight in front of the competitor-scarcity effect has a natural interpreta-
15The general result in Appendix A additionally shows that with multiple products for each firm, the game can

be transformed to a game in which each product is managed by its own firm given transformed payoff functions.
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tion: it is the relative market share of the competitor relative to the outside option. Thus, if the

outside option share is large and/or the competitor is small, a firm’s decision is less affected by

the competitor. If the competitor is large, the competitor-scarcity effect has a larger weight.

3.3.2 Prices as Strategic Substitutes vs Strategic Complements

Next, we study the stage game equilibrium implications of competition. In a static Bertrand

game with imperfect substitutes, prices are strategic complements for commonly used demand

specifications, including (nested) logit demand systems. Hence, competition unambiguously

lowers prices. In the presence of competitor-scarcity effects, our model results in pricing games

featuring strategic substitutes or strategic complements, even for simple demand systems.16

To see this, note that an increase in the competitor price increases firm f ’s best response

price if ∂ g f

∂ pf ′
> 0, i.e., the competitor’s price is a strategic complement. On the other hand, if

∂ g f

∂ pf ′
< 0, then an increase in the competitor price decreases firm f ’s best response price, i.e.,

the competitor’s price is a strategic substitute. Hence, to determine whether prices are strategic

complements versus substitutes, we calculate

∂

∂ pf ′
g f (p) =

∂

∂ pf ′

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
ω

f
f ′ −

∂

∂ pf ′

�

s f (p)

�

∂ s f (p)

∂ pf

�−1

︸ ︷︷ ︸

inverse quasi
own-price elasticity

�

. (8)

For logit demand, the weight in front of the competitor-scarcity effect in the best-response

function corresponds to the relative market share of the competitor relative to the outside option
s f ′ (p)

1−s f (p)
=− exp(δ f ′−αpf ′)

1+exp(δ f ′−αpf ′) .By Assumption 1,
exp(δ f ′−αpf ′)

1+exp(δ f ′−αpf ′) is decreasing in pf ′ , so

∂

∂ pf ′

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
=−

∂

∂ pf ′

exp
�

δ f ′ −αpf ′
�

1+exp
�

δ f ′ −αpf ′
� > 0.

Then, Equation 8 implies that if the competitor-scarcity effect ω f
f ′ is positive, an increase in

16As noted in Vives (2018) and Nocke and Schutz (2018), static oligopoly games in multi-product environments
are generally not games of strategic complements.
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competitor price increases a firm’s cost of selling a product. We retain strategic complemen-

tarity. In contrast, for negative ω f
f ′ , the cost is decreasing in the competitor’s price. This is

because if the competitor increases its price, it loses market shares, which decreases the upward

pressure on the own price. When ω f
f ′ is very negative, it might be that ∂ g f

∂ pf ′
< 0. As a result,

the competitor’s price can become a strategic substitute to the firm’s own price. Figure 11 in

Appendix D plots best-response functions for an example using logit demand. In the left panel,

the competitor-scarcity effects are positive, that is, price are strategic complements, and in the

right panel, competitor scarcity effects are negative, so that prices are strategic substitutes.

All in all, positive own-scarcity effectsω f
f and negative competitor-scarcity effectsω f

f ′ shift

best response functions upwards, but competitor-scarcity effects additionally change the slope

of the best response functions (illustrated in Figure 12 in Appendix D).

3.3.3 The Influence of Remaining Inventory on Prices

Finally, we link remaining inventory to incentives to soften competition. We focus on demand

that is constant over time (λt ≡ λ, θ t ≡ θ ) to single out the effects of remaining capacities.

Similar forces occur with time-dependent demand, as we show in our empirical analysis.

Starting at the deadline, where all scarcity effects are equal to zero, equilibrium prices,

p∗T , are equal to the stage game equilibrium prices. As we move away from the deadline,

remaining inventory can influence pricing dynamics. We establish that the order of change of

prices towards the deadline is determined by the product with the minimum remaining inventory

in the market. The order of change is reduced by one only if a unit of the product with the

minimum remaining inventory is sold. The proposition is formally stated below.

Proposition 4. Let λt ≡λ, θ t ≡ θ . Then, for K with K :=min
f

K f , the following holds:

pf ,t (K) = p ∗f ,T +O (|T − t |K ), t → T for f = 1, 2,

i.e., price changes close to the deadline are at most of order K . If lim
t→T

∂ K

(∂ t )K Π f ,t (K− eh ) ̸= 0 for
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all f and h with Kh = K , then17

pf ,t (K) = p ∗f ,T +Θ(|T − t |K ), t → T for f = 1, 2,

i.e., price changes are exactly of order K .

This proposition implies that close to the deadline, price paths with capacity vectors with the

same minimum remaining inventory K are close to each other, while after a sale of the firm with

the lower remaining inventory price paths jump. This is because the prospect of softening future

price competition is manifested in the scarcity effects of the product with minimum remaining

inventory . If capacities are asymmetrically distributed, the competitor-scarcity effect of the firm

with more remaining inventory is relatively large and negative because a sale of the competitor

will increase future prices. In equilibrium, firms will set prices that induce the firm with the

least inventory to sell with higher probability. If firms have the same capacity, then any sale

leads to a price jump, regardless of which firm sells. Hence, a sale by either firm softens future

price competition, leading to fierce price competition today as both firms want to leave the

competitive state quickly. This can lead to both firms setting low prices, possibly even lower

than the competitive price p∗T absent scarcity effects.

We illustrate these price competition effects in Figure 13 in Appendix D. We consider

firms with K =(5,4); (4,4); and (3,4) capacities. Note that (4,4) prices are the lowest (panel d).

Own scarcity effects are higher (more positive) and competitor-scarcity effects are lower (more

negative) with (3,4) versus (5,4) capacities.18 Finally, Figure 14 in Appendix D illustrates both

firm’s price paths if starting from a capacity vector K= (3, 5), firm 1 sells versus if firm 2 sells.

17Recall that f (t ) = O (g (t )) as t → T if ∃δ, C1 > 0 so that for all t with 0 < |T − t | < δ, | f (t )| ≤ C1g (t ).
f (t ) =Θ(g (t )) if additionally ∃C2 > 0 so that C2g (t )≤ | f (t )|.

18The relationship between prices and competing firms’ inventories has been explored in other contexts, e.g.,
see Israeli et al. (2022) on car dealership pricing.
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4 Data and Descriptive Evidence

4.1 Data Description

Our empirical insights are derived from data provided to us through a research partnership with

a large U.S. airline.19 The core data set contains booking and pricing information covering

competing airlines and was assembled by third parties that collect and combine contributed

data. The data have strong parallels with other contributed data sets, such as the the Nielsen

scanner data used to study retailing, in that we observe prices and quantities for competing

firms. Our data cover the first nine months of departures in 2019.

The bookings data track flight-level sales counts over time. We use the tuple j , t , d to denote

an airline-flight number, day before departure, departure date combination. The frequency of

the data is daily. We observe separate booking counts for passengers flying between an origin-

destination pair (OD) and consumers making connections. We call these consumers local and

flow passengers, respectively. Our structural analysis focuses on local, nonstop traffic. We do

not model the potential for consumers to connect while flying between an origin-destination

pair. The data contain bookings for consumers who purchased directly with the airline and on

other booking channels, e.g., online travel agencies. We label these bookings direct and indirect,

respectively. Because we observe all booking counts, we can construct the load factor for each

flight over time. We do not know the exact itinerary involved for each booking, e.g., a round-trip

versus a one-way booking. Therefore, we assume that the price paid for each nonstop booking

corresponds to the lowest available nonstop, one-way fare for that flight.

Our pricing data come from a separate third-party data provider that gathers and dissemi-

nates fare information for the airline industry. We observe daily prices at the flight level. We

observe all fares, even when there are no bookings, including tickets of different qualities (cab-

ins, fully refundable, etc.). Travelers overwhelmingly purchase the lowest available economy

class fare offered (Hortaçsu et al., 2021b), which motivates our choice to concentrate our analy-

sis on the lowest available economy class ticket. We do not model consumers choosing between

cabins (economy vs. first class) nor the pricing decision for different versions of tickets.

19The airline has elected to remain anonymous.
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In order to gauge the dynamics of market sizes, we use clickstream search data provided to

us by the air carrier. See Hortaçsu et al. (2021a) and Hortaçsu et al. (2021b) for more details.

Observed searches understate true arrivals because some consumers may search and purchase

through online travel agencies or directly with competitors. We extrapolate total arrivals by

scaling up observed searches using hyperparameters that we describe below.

4.2 Route Selection

Our analysis concentrates on nonstop flight competition. We limit ourselves to routes where

nonstop service is provided by exactly two airlines—by our data provider and one competitor.

Our data contain more than one competitor airline, however, we will always refer to the com-

peting airline of an OD pair as “the competitor.” We eliminate routes where the third-party data

is incomplete, e.g., where a carrier provides direct bookings to the data provider but indirect

bookings are missing. In addition to these criteria, we select routes in which most local traffic

is traveling nonstop. These selection criteria allow us to avoid the additional complexity of

modeling connecting traffic within an OD pair.

Figure 3: Summary Analysis from the DB1B Data
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(b) CDF of Passenger-Weighted Fares
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Note: Panel (a) records the PDF of nonstop traffic among local traffic in the DB1B data (orange) and for selected routes (blue). Panel (b) plots
the CDF of prices for selected routes (blue) and all dual-carrier markets (orange). Panel (c) reports the number of aggregate monthly departures
for the routes in our sample.

In Figure 3 we provide summary analysis of the 58 routes in our data using the publicly

available DB1B data. These data contain 10% of bookings in the U.S. but lack information on

the booking date, departure date, and flights involved. In panel (a), we show the distribution of

local traffic flying nonstop. For the selected markets, most local traffic is traveling nonstop. In
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panel (b) we show that the distribution of fares in our markets is similar to the universe of dual-

carrier markets. Finally, in panel (c) we use the publicly available T100 segment data to plot

the total number of monthly departures for the routes in our sample. Over half of our sample

contains routes in which there are less than five daily frequencies (across both airlines) between

the origin and destination. Several routes feature twice daily service (one flight per airline). At

the other extreme, one route in our data contains nearly 10 flights per day.

4.3 Descriptive Evidence

Table 1: Summary statistics

Data Series Variable Mean Std. Dev. Median 5th pctile 95th pctile

Fares
One-Way Fare ($) 233.7 111.4 218.6 92.1 390.7
Num. Fare Changes 6.4 2.4 6.0 3.0 11.0

Bookings
Booking Rate-local 0.2 0.6 0.0 0.0 1.0
Booking Rate-all 0.5 1.2 0.0 0.0 3.0
Ending LF (%) 72.1 19.8 76.0 32.9 98.0

Note: One-Way fare is for the lowest economy class ticket available for purchase. Number of fare changes records the number of price
adjustments observed for each flight. Booking rate-local excludes flow traffic. Booking rate-all includes both local and flow traffic. Ending
load factor (LF) reports the percentage of seats occupied at departure time.

We provide a summary of the main data in Table 1. We focus on the last 90 days before

departure due to sparsity in bookings beyond 90 days.20 Average fares across airlines in our

sample are $233. On average, each flight experiences about six price adjustments within 90

days. The average daily booking rate is less than one. Roughly 40% of observed bookings are

for local traffic, the remaining are flow bookings. At the departure time, average load factors

are 72%, which is lower than the industry average of about 80% for this time period. Roughly

3.5% of flights in our sample sell out.

In Figure 4 we plot average fares and booking rates by day before departure. The left panel

(a) shows that average fares are fairly flat between 90 and 21 days before departure. The top

end of the distribution is decreasing in this time window. There are noticeable “steps” in the

20The average load factor 90 days before departure is 10.0%.
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Figure 4: Prices and Bookings by Day Before Departure

(a) Prices over Time
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(b) Bookings per Route-Departure Date over Time
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Note: Panel (a) shows the average and interquartile range of flight prices over time. Panel (b) shows the average and interquartile range of flight
booking rates per route-departure date over time. Greater than 30 days before departure, the 25th and 75th percentiles coincide.

last 21 days before departure which highlights the use of advance purchase (AP) discounts in

the industry. In the routes examined, we observe AP requirements at 21, 14, 7, and 3 days

before departure. Note that fares increase by over 70% in three months. In the right panel

(b) we highlight that bookings increase as the departure date approaches. This coincides with

increasing prices and suggests that demand becomes more inelastic over time. The booking rate

is greater than one per flight over the last month before departure.

In Figure 5 we compare outcomes across competitors. The left panel (a) provides a scatter

plot of ending load factors at the route-departure date level for our data sample. The orange

squares present route-level load factors. Note there exists a large mass of points both above

and below the 45-degree line—no carrier consistently sells a larger fraction of capacity than

the other carrier for all routes. The scatter plot also shows days where flights are sold out.

In our analysis, we restrict firms to selling at most their capacity (recall, 3.5% of flights sell

out). In the right panel (b) we plot the average fare difference across competitors (firm 1 minus

firm 2) over time when exactly two flights are offered. Note that fares tend to be similar across

competitors—the average difference is less than $10. However, the gradient of the prices differs.

One competitor has relatively higher prices well in advance of departure and relatively lower

prices close to departure. Prices across airlines are nearly equal 50% of the time. This occurs

because airlines have filed the same discrete fare(s), and the pricing heuristics have selected that
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fare to offer to consumers (Figure 16 in the Appendix presents an example fare menu for one

carrier-route).

Figure 5: Load Factor and Price Differences across Carriers

(a) Load Factors
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Note: Panel (a) shows the average load factor (across all flights) at the route-departure date level for both competitors in blue. The orange
squares report average route-level load factors. The diagonal line is the 45-degree line. Panel (b) shows the average and the 25th and 75
percentiles of the difference in prices for markets in which each firm offers exactly one flight.

5 Demand Model and Estimates

5.1 Empirical Specification

We model nonstop air travel demand using a flexible nested logit demand model. Our approach

differs from recent empirical work on airlines that uses a mixed-logit specification to model

“business” and “leisure” travelers (Lazarev, 2013; Williams, 2022; Aryal et al., 2021; Hortaçsu

et al., 2021b). Instead, we allow for time-varying elasticity as it better maps to our theoretical

model and results in unique equilibrium price paths. We have found that mixed-logit models

yield multiple equilibria in our setting, thus requiring an equilibrium selection mechanism.21

Define a market as an origin-destination (r ), departure date (d ), and day before departure

(t ) combination. Each flight j , leaving on date d , is modeled across time t ∈ {0, ..., T }. The first

period of sale is t = 0, and the flight departs at T . Demand is modeled at the daily level over

21We have found up to four equilibria in a single stage game and nine fixed points of the system of first-order
conditions using the mixed-logit model.
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a 90-day horizon. Arriving consumers choose a flight that maximizes their individual utilities

from the choice set Jt ,d ,r , or select the outside option, j = 0. Products are partitioned into two

nests. The outside good belongs to its own nest, and all inside goods to the second nest.

We specify consumer arrivals to be

λt ,d ,r = exp
�

τOD
r +τ

DD
d +τ

SD
t ,d + f (t )

�

,

where the τs denote fixed effects for the route, departure date, and search date; f (·) is a polyno-

mial series of degree three. We scale up these estimated arrival rates using hyperparameters to

account for unobserved searches. Smoothness of f (·) allows us to use the differential equation

equilibrium characterization.

Conditional on arrival, we specify consumer utilities as

ui , j ,t ,d ,r = x j ,t ,d ,rβ −αt pj ,t ,d ,r +ζi ,J + (1−σ)ϵi , j ,t ,d ,r ,

where ζi ,J + (1−σ)ϵi , j ,t ,d ,r follows a type-1 extreme value distribution, and ζi ,J is an idiosyn-

cratic preference for the inside goods. The parameter σ ∈ [0, 1] denotes correlation in prefer-

ences within the nests. We allow the price sensitivity parameter to vary over time (αt ) using

three-day intervals of time; hence, we estimate 30 price sensitivity parameters.22 We include a

number of covariates in x where preferences are assumed to not vary across t : departure week

of the year, departure day of the week, route, carrier, and departure time fixed effects. In our

baseline model, we do not include an additional unobservable (ξ) that is potentially correlated

with price. We discuss this extension in Section 5.4.

Arriving consumers solve their utility maximization problem such that consumer i chooses

flight j if and only if

ui , j ,t ,d ,r ≥ ui , j ′,d ,t ,r , ∀ j ′ ∈Jt ,d ,r ∪{0}.

22We will later smooth these parameters in order to use the differential equation equilibrium characterization
(R 2 = 97.4%). Another approach would be to use constrained maximum likelihood.
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Temporarily dropping the t , d , r subscripts, we define

DJ :=
∑

j∈J

exp

�

x jβ −αpj

1−σ

�

,

so that the probability that a consumer purchases j within the set of inside goods is equal to

s j |J :=
exp

�

x jβ−αpj

1−σ

�

DJ
.

It follows that the probability that a consumer purchases any inside good product is equal to

sJ :=
D 1−σ
J

1+D 1−σ
J

.

Overall product shares are equal to s j = s j |J ·sJ , which are implicitly at the market level (t , d , r ).

Our assumptions imply that demand is distributed Poisson with a product purchase rate of

min
�

λt ,d ,r · s j ,t ,d ,r , K j ,t ,d ,r

	

, where K j ,t ,d ,r denotes the remaining inventory. Note as the length

of a period decreases, at most one seat will be sold in any period.

5.2 Estimation Procedure

We estimate the model in two steps. In the first step, we estimate the arrival process parameters

using Poisson regressions. We then estimate preferences of the Poisson demand model using

maximum likelihood. We estimate standard errors using bootstrap.

We follow Hortaçsu et al. (2021b) in constructing arrivals using clickstream data for one

airline. These data track all “clicks” or interactions on the firm’s websites. We first sum the

number of searches corresponding to each market (r, d , t ), and then scale up estimated arrival

rates to account for unobserved searches. This follows from the property of the Poisson distribu-

tion that the sum of Poisson variables is Poisson with added intensities, and from the assumption

that consumers who search/purchase through alternative platforms (travel agents, other carriers’

websites) have the same underlying preferences. We use the fraction of direct bookings by day

before departure as weights when we scale up the estimated arrival rates. This adjusts arrivals
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for a single carrier. In our preferred specification, we then double these arrival rates to account

for competitor indirect and direct searches, both of which are unobserved to us. Our demand

estimates do not vary substantially under alternative scaling parameters (see Section 5.4).

5.3 Identification

In empirical work, it is customary to treat the market size as given. We use arrivals data to

discipline our demand estimates and recover changes in willingness to pay over time. Without

access to arrivals data, it is difficult to estimate preferences in models with demand uncertainty

because a given booking could be observed due to many arrivals and price sensitive consumers,

or few arrivals and price insensitive consumers. Consequently, researchers have resorted to

supply-side optimality conditions in order to address this identification challenge (Williams,

2022; Aryal et al., 2021). Our arrivals data show that market participation increases over time

in all routes studied, which informs how consumer preferences evolve. For example, if we

assumed market sizes were constant over time, we would estimate early demand as being too

elastic and late demand as being too inelastic.

Stochastic demand allows us to measure demand response to price changes. In the model,

every booking changes the opportunity cost for the next unit and results in a discontinuous

price jump. This is also reflected in our empirical application where a booking results in a

“fare bucket” closing at a random time (see Hortaçsu et al. (2021b)). Our identification of

demand uses a regression discontinuity type argument. When prices adjust within the three day

interval of time where αt is fixed, we can observe the resulting demand response, and estimate

interval-specific price elasticities. A price change for one firm informs substitution patterns to

other products versus the outside good (σ). The fixed effects are identified by booking rate

differences across weeks of the year, route, times of the day, and airlines.

5.4 Demand Estimates

We summarize the demand estimates in Table 2. The nesting parameter is estimated to be 0.5

implying substantial substitution within inside goods. The price sensitivity parameters vary by
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nearly a factor of ten over time. We present a time series plot of αt in Figure 6-(b). Almost all

of our controls are significant, with day of the week and week of the year having the strongest

influence on market shares. The competitor FEs are less important in driving variation in shares.

We estimate the average own-price elasticity to be -1.44 (s.d. = 0.81), indicating slightly more

elastic demand than in Hortaçsu et al. (2021b), which uses similar data for routes with a single

carrier only.

Table 2: Demand Estimates Summary Table

Variable Symbol Estimate Std. Error. Range % Sig.

Nesting Parameter σ 0.498 0.010 − −

Price Sensitivity α − − [-0.511 ,-0.074 ] 100.0

Competitor FE − − − [0.000 ,0.071 ] 100.0

Day of Week FE − − − [-1.637 ,-0.961 ] 100.0

Departure Time FE − − − [-0.462 ,-0.050 ] 100.0

Route FE − − − [-0.177 ,0.226 ] 94.4

Week FE − − − [-0.953 ,0.699 ] 86.0

Sample Size N 2,814,686

Average Elasticity e D -1.438

Note: Demand estimates for the 58 routes in our sample.

In Figure 6-(a), we plot average adjusted arrival rates as well as different percentiles (5%,

25%, 75%, 95%) across markets. For each route, we estimate just a few arrivals 90 days before

departure that rise to over 10 passengers per day close to departure. Recall that the average

booking rate across flights is less than 2.0 (see Figure 4) so that market shares are low. An

increase in interest in travel is a general finding across all of the routes in our sample. Note

that while the 75th percentile closely followed the mean, the top part of the distribution is

substantially higher, which corresponds to the routes with a larger number of departures.

Before turning to counterfactuals, we briefly discuss additional demand results. Our demand

estimates are robust to the choice in scaling factor. Average demand elasticities with scaling
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Figure 6: Arrival Rates and the Price Sensitivity Parameters

(a) Arrival Rates
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(b) Price Sensitivity Parameters
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Note: Panel (a) shows fitted values of arrival rates over time adjusted for unobserved searches. The mean is the average arrival rate across all
markets. The percentiles are also over markets. Panel (b) shows our estimates of the price sensitivity parameters in 3-day groupings.

parameters between 1.0 and 3.5 are between -1.40 and -1.46.23 We have also estimated a demand

model that incorporates an additional unobservable (ξ) that is potentially correlated with p . We

use a 2-step estimation procedure where we first estimate the arrival process parameters and

then use a control function to estimate the demand parameters using quasi-maximum likelihood

estimation. Included in our set of instruments is a polynomial expansion of remaining inventory,

indicators for AP fares, and the number of flights offered. With this approach, we estimate

average demand elasticities to be -1.59, with a standard deviation of 0.87. These estimates are

also robust to the choice in scaling parameter.

6 Counterfactual Analysis

With our demand estimates, we quantify the welfare effects of dynamic price competition by

comparing equilibrium outcomes with dynamic pricing—the benchmark model—with the equi-

librium outcomes with uniform pricing. Under uniform pricing, firms charge a single price for

all seats on a given flight. We also discuss the use of pricing heuristics at the end of this section.

In the main text, we focus on 18 duopoly markets where each airline offers a single flight,

i.e., each airline offers exactly a single flight on any given day. In Appendix D.5, we report

23With a scaling parameter equal to 0.5, average demand elasticities are −1.28.
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results for all routes. The reason we separate the counterfactuals is that with more than two

flights, solving for equilibria of the dynamic pricing game becomes computationally challeng-

ing. In order to run counterfactuals for all routes in our sample, we must reduce the number of

flights studied. To do this, we adjust the choice set, utilities, and capacities for routes where an

airline offers multiple flights a day. The appendix contains details of the procedure as well as

the counterfactual results. We note that both the direction and magnitude of the welfare effects

for the entire sample are consistent with the 18 routes reported here. Moreover, the direction of

the welfare effect is the same for each route, but the magnitude differs.

Benchmark Model

We approximate the continuous-time model to solve for equilibrium prices for every route-

departure date. We consider hourly decisions over 90 days. Both firms start with initial capaci-

ties K f and K f ′ . We solve for the equilibrium via backward induction, as outlined here.

In the last period, t = T , we have ΠT (K) = 0. Therefore, in the last pricing period, t = T −∆,

ΩT−∆(K) = 0 and both firms solve static revenue maximization problems. We set the first-order

conditions corresponding to the best-response functions equal to zero and solve for the fixed

point. We denote the fixed-point price vector by pT−∆ = p∗(ΩT−∆,αT−∆), where ΩT−∆ = 0. We

denote the stage-game payoff in period t by π f ,t (p,Ω). Then, using the differential equation, we

can write Π̇ f ,T (K) = −λTπ f ,T (pT (K), 0), which allows us to calculate Π f ,T−∆(K) = Π f ,T (K)−∆ ·

Π̇ f ,T (K) andω f
f ′,T−2∆(K) =Π f ,T−∆(K)−Π f ,T−∆(K−e f ′). Given the updated own- and competitor-

scarcity effect parameters, we again solve for equilibrium prices, pT−2∆ = p∗(ΩT−2∆,αT−2∆).24

We continue the induction backwards in time until the first period using the recursion







Π f ,t−∆(K) = Π f ,t (K)−∆ · Π̇ f ,t−∆(K) ∀ f

ω
f
f ′,t−2∆(K) = Π f ,t−∆(K)−Π f ,t−∆(K−e f ′) ∀ f , f ′

.

Due to the large number of state variables, we store Ωt and pt every 24 hours. This means

prices are constant within a day, which maps well to our empirical setting as prices are adjusted

24We use a modified Powell method from MINPACK’s hybrid routine to solve the system of first-order condi-
tions corresponding to the best-response functions.

34



daily. We then appeal to modeling demand via multinomial distributions after drawing arrivals

from a Poisson distributions in lieu of modeling each consumer’s individual choice after draw-

ing arrivals from Bernoulli distributions (as in the theoretical model). When demand exceeds

remaining inventory and demand is censored, we assume random rationing in all counterfactu-

als.

Uniform Pricing

For the uniform pricing counterfactual, we assume that each firm sets a single price for each

route-departure date independent of the timing of purchase. This is analogous to Williams

(2022) who considers the single-firm setting. Holding the competitor price fixed, we simulate

10,000 flights to compute expected revenues for each route-departure date. We solve for the

optimal price and iterate across best-response functions until convergence.

Implementation

To implement all counterfactuals, we conduct 10,000 Monte Carlo experiments for every route,

departure date combination. We smooth αt using a polynomial regression in order to avoid

discontinuities in the time derivatives which allows us to solve for equilibria (R 2 = 0.974).

We simulate all counterfactuals twice, once where flow traffic is subtracted from initial ob-

served capacity in advance, and once where flow traffic is modeled through Poisson processes

that make inventory units disappear independent of the price. We report the latter specifica-

tion here as it approximates how our airline considers flow traffic. The appendix contains the

former approach. Both the direction and magnitude of the welfare effects are similar across

specifications.

6.1 Welfare Effects of Dynamic Price Competition

Before reporting our welfare numbers, we briefly describe the pricing forces of the benchmark

model. We confirm in our empirical application that the sign of the scarcity effects can be

positive or negative, and in fact, can vary within a particular game (route-departure date). Fig-

ure 15-(a) in the Appendix shows an example flight where the the own-scarcity effect changes
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from negative to positive to near zero over time. However, in our data, the scarcity effects tend

to not change signs frequently, and we find less than 0.5% of states result in a game that is not

one of strategic complements. Own-scarcity effects tend to remain positive. This can be seen in

Figure 7. Average own-scarcity effects are largest close to the departure date. This is because

selling a unit decreases a firm’s continuation payoff the most when inventory is scarce. Average

competitor-scarcity effects tend to be negative. This is because the sale of a competitor typically

increases future prices. Therefore, both scarcity effects tend to raise average equilibrium prices

in the stage game relative to a stage game that does not endogenize firm scarcity.

Figure 7: Benchmark Model Scarcity Effects
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(b) Competitor Omega
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect over
time for both firms.

Scarcity effects are asymmetric across firms. Competitor-scarcity effects tend to be larger

for firm 1 relative to firm 2. This asymmetry implies that the sale of firm 2 softens competition

more than a sale of firm 1. At the same time, the own-scarcity effect is larger for firm 2. This is

because firm 2 typically offers planes with lower capacities than firm 1.

Our other theoretical predictions are reflected in the counterfactuals and demonstrate how

firms adjust prices over time. For example, Figure 15-(b) in the Appendix shows that close

to the deadline, the predictions of Proposition 4 hold. We highlight in panel (c) that prices

increase the most when the firm with minimum remaining inventory sells. In fact, the average

price increase is over five times ($30) greater than the price increase ($5) if the firm with more

seats remaining sells.
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Table 3: Counterfactual Results for Single Product, Duopoly Routes

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 226.3 5571.5 5759.4 16698.2 28029.0 20.0 70.6 9.2

Uniform 250.8 4629.6 4925.7 19042.4 28597.6 19.2 69.7 7.9

% Diff. 10.8 -16.9 -14.5 14.0 2.0 -3.8 -0.9 -1.3

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

We report market outcomes in Table 3. Average prices in our benchmark simulations

($226.3) are close to the average observed prices ($233.7). Prices are 10% higher under uni-

form pricing ($250.8). Although uniform pricing features higher average prices, revenues are

substantially lower for both firms (columns 2 and 3). Firm 1 benefits more from dynamic pric-

ing because it has on average a larger (in size) competitor-scarcity effect. The revenue effects

are driven by relatively higher fares for early-arriving, price sensitive customers and relatively

lower for late-arriving, price insensitive customers under uniform pricing. Dynamic pricing ex-

pands output due to lower prices early on. This can be seen in panels (a) and (b) in Figure 8,

which show purchase probabilities and cumulative load factors over time. Panel (c) shows that

higher output also leads to more sell outs. Notably, the gap in load factors begins to close near

the departure date when dynamic prices are high.

A key empirical finding of our analysis is that total output is higher, but total welfare is

lower under dynamic pricing compared to uniform pricing. Hence, competition effects flip

the results found in the single-firm case where dynamic pricing increases welfare (Hendel and

Nevo, 2013; Castillo, 2020; Williams, 2022). Consumer surplus is 14% higher with uniform

pricing, which is larger in magnitude than the associated revenue losses (between 14-17%) of

not adjusting prices based on demand and scarcity. The welfare loss is driven by high fares

close to the departure date, when most demand arrives. This can be seen in Figure 8-(d), which

plots the ratio of welfare under dynamic pricing over uniform pricing.

Our welfare results are robust to how we handle local traffic. In Figure 18 and Table 5 in the

Appendix, we show these welfare effects still hold if we first subtract off flow traffic in the first
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period. In Table 7 in the Appendix, we show that these welfare effects also hold for the entire

sample under additional assumptions that make the equilibrium analysis tractable.

Figure 8: Counterfactual Summary Plots

(a) Shares over Time
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(c) Sellouts over Time
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(d) Cumulative Welfare Comparison

020406080
Days from Departure

100

105

110

115

120

W
el

fa
re

 ra
tio

Benchmark/Uniform

Note: Panel (a) shows the average shares over time for the benchmark and uniform models. Panel (b) shows the average load factors over
time for the same two models. Panel (c) shows the average sellouts over time for the same two models. Panel (d) shows the ratio of average
cumulative welfare for the benchmark model with respect to the uniform one.

6.2 Analysis of Pricing Heuristics

We contrast our results with two pricing heuristics where firms do not internalize the scarcity

of their competitor and do not explicitly account for the fact that their competitor is a strategic

agent solving a dynamic pricing problem. These heuristics are based on documentation at one

airline that outlines how it has considered incorporating competition into its pricing decisions.25

25Due to confidentiality reasons, we do not divulge which heuristic has been studied internally.
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We assume both firms use the same heuristic.

For both heuristics, we consider discrete prices as they are used in actual airline pricing

practices. Applied theory work, e.g., Asker et al. (2021), also consider discrete prices. We do

not endogenize the pricing menu (set of discrete prices for all time periods), instead, we use the

actual observed pricing menus for each carrier-route as an input. Typically, each carrier files

between seven and fifteen “buckets” (prices) per route.26 Oftentimes, a fare is restricted for a

certain time period before departure, which is commonly referred to as an advance purchase

discount. Figure 16-(a) in Appendix D shows an example fare menu for a given carrier-route in

the data. Observed fares vary from less than $200 to over $3,000.

We label the heuristics “Lagged Model” and “Deterministic Model,” respectively.27 In the

lagged model, each firm, having observed its competitor’s last period price bucket, assumes this

bucket will also be charged in the current and all future periods. Each firm then calculates its

residual demand curves in all remaining periods and solves a single-firm dynamic programming

problem. In the deterministic model, each firm simply assumes its competitor will price at the

lowest possible bucket in all remaining periods.

Table 4: Heuristic Counterfactuals for Single Product, Duopoly Routes

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Lagged 104.6 104.1 105.3 103.3 103.9 100.0 100.1 101.0

Deterministic 98.0 99.4 100.8 108.2 104.9 103.9 101.4 109.2

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

Counterfactual results appear in Table 6. Figure 9 plots market outcomes over time. We

normalize market outcomes of the benchmark model to 100 and report percentage differences

for the heuristics. We find that the use of heuristics can on average lead to higher or lower
26Bucket prices can change by day before departure, which can result in an increase in the fare for a given

bucket. However, the data suggests that a more consequential change in buckets over time is their availability.
27These heuristics can also produce ambiguous welfare effects. Figure 17 in Appendix D provides simulations

where price levels with heuristics can be higher or lower than in the benchmark model depending on demand
parameters.
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prices compared to the benchmark model. As a result, revenues can also be higher or lower

compared to the benchmark model. Both models result in significant price matching, at the

same frequency observed in the data (between 45-47%).

With the deterministic model, firms start out with low prices and sell too many units to

price elastic early customers, instead of late-arriving price-insensitive customers. This results in

more frequent sellouts. However, prices remain low close to the deadline, leaving late-arriving

customers with more surplus. Instead, the lagged model allows firms to soften stage-game

competition. As a result, more seats are saved for late-arriving, price-insensitive customers.

However, firms extract less surplus close to the deadline because the algorithm bounds how

quickly firms can increase prices. Thus, we conclude that the use of heuristics can lead to

ambiguous revenue effects but both produce higher welfare relative to the benchmark model.28

Figure 9: Heuristic Counterfactuals Results over Time
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Note: Panel (a) shows the average shares over time for the two heuristic models. Panel (b) shows the ratios of cumulative consumer surplus
for the two models with respect to the benchmark. Panel (c) shows the ratios of cumulative revenue for the two models with respect to the
benchmark.

7 Conclusion

In this paper we estimate the welfare effects of dynamic pricing for oligopolies in an important

industry—airline markets featuring nonstop flight competition. We develop new theoretical in-

sights on dynamic pricing in an oligopoly when firms are endowed with limited initial capacity

and compete in prices toward a sales deadline. The stage game differs from commonly studied

28These findings are also robust to how we handle flow traffic. See Table 6 and Figure 19.
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oligopoly pricing games such as Caplin and Nalebuff (1991) and captures dynamic incentives

through scarcity effects. We establish conditions for equilibrium existence and uniqueness, and

for continuity of equilibrium prices in the continuous-time limit. We show that little intuition

from the single-firm case carries over to an oligopoly; for example, firm payoffs are not mono-

tonic in own remaining inventory. We then use unique and comprehensive booking and pricing

data for competing airlines to estimate a model of air travel demand. With demand estimated

and the equilibrium characterization, we find that dynamic pricing expands output, but lowers

total welfare compared to uniform pricing. This contrasts with recent empirical work exam-

ining the single-firm case where dynamic pricing has been found to increase welfare. Finally,

we show that pricing heuristics used by airlines result in ambiguous revenue effects but higher

welfare than the benchmark dynamic pricing model.
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A General Model with Many Firms and Many Products

In Appendix A, we formulate the generalized results stated in Section 3 for the duopoly case.

We directly prove those general statements in Appendix B.

A.1 General Model of Dynamic Price Competition

Consider a market with F ≥ 1 firms and J ≥ F products, denoting the set of firms by F :=

{1, . . . , F } and the set of products by J := {1, . . . , J }. Each firm f sells products in J f , where
�

J f

�

f ∈F is a partition of J ; that is, J =
⋃

f ∈F
J f and J f ∩J f ′ = ; for f ̸= f ′, i.e., each product

is sold by exactly one firm. Each firm f is equipped with an initial inventory K j ,0 ∈ N of each

of its products j ∈J f . Demand is as specified in Section 2.1, satisfying Assumptions 1 and 2.

The dynamic pricing game is the canonical generalization of the duopoly game introduced

in Section 2.3. In every period t , each firm f simultaneously sets prices pj ,t for its products

j ∈ J f , and then a consumer arrives with probability ∆λt . If a consumer arrives, she buys

product j with probability s j ,t (pt ). Let s f (p) =
�

s j (p)
�

j∈J f
be the demand of firm f .

Like for the duopoly, the payoff-relevant state is given by the vector of inventories

K := (K j ) j∈J and time t . We study Markov perfect equilibria in which each firm’s strat-

egy is measurable with respect to (K, t ). We denote a Markov pricing strategy of firm f by

p f ,t (K) =
�

pj ,t (K)
�

j∈J f
.

Given equilibrium price vectors p∗t (K) :=
�

p ∗j ,t (K)
�

j∈J
, firm f ’s value function satisfies29

Π f ,t (K;∆) = ∆λt

�

∑

j∈J f

s j ,t (p
∗
t (K)) (p

∗
j ,t (K) +Π f ,t+∆(K−e j ;∆))

︸ ︷︷ ︸

payoff from own sale

+

∑

j ′ ̸=J \J f

s j ′,t (p
∗
t (K))Π f ,t+∆(K−e j ′ ;∆)

︸ ︷︷ ︸

payoff if j ′ sells

�

+
�

1−∆λt

∑

j ′∈J

s j ′(p
∗
t (K))

�

︸ ︷︷ ︸

probability of no purchase

Π f ,t+∆(K;∆),

with boundary conditions (i) Π f ,T (K;∆)≡ 0 for all K, (ii) Π f ,t (K;∆)≡ 0 if K j = 0 for all j ∈J f

29Formally, equilibrium prices are a function of ∆, which we omit here for readability.
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and (iii) Π f ,t (K;∆) =−∞ if K j < 0 for a j ∈J f , (iv) Π f ,t (K−e j ;∆) =Π f ,t (K;∆) if K j = 0 for a

j ̸∈ J f , K j ≥ 0 for all j ∈J f . The scarcity effect of product j on firm f in state (K, t ) is then

ω
f
j ,t (K) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−e j ;∆).

Then, the stage game is parameterized by the matrix of scarcity effects

Ωt (K) =
�

ω
f
j ,t (K)

�

f , j
∈RF×J ,

where firm f ’s flow payoff Π f ,t (K;∆)−Π f ,t+∆(K;∆) is equal to

∆λt

 

∑

j∈J f

s j ,t

�

p∗t (K)
�

�

p ∗j ,t (K)−ω
f
j ,t (K)

�

−
∑

j ′ ̸∈J f

s j ′,t

�

p∗t (K)
�

ω
f
j ′,t (K)

!

.

Hence, the equilibrium prices in period t correspond to equilibria of the stage game where each

firm f simultaneously chooses prices to maximize payoffs

∑

j∈J f

s j ,t (p)
�

pj −ω
f
j ,t (K)

�

−
∑

j ′ ̸∈J f

s j ′,t (p)ω
f
j ′,t (K).

This payoff function can be written as s f (p)⊺p f − s(p)⊺ω f in matrix form, where we adopt the

convention that bold vectors are column vectors.

A.2 Analysis of General Oligopoly Market

We follow closely the structure of Section 3 and state the generalized results here.

A.2.1 Equilibrium Existence, Uniqueness, and Continuity

Analogously to Equation 6, we define

g f (p) :=
� �

Dp f
s f (p)

�⊺ �−1
Dp f

�

s(p)⊺ω f
�⊺

︸ ︷︷ ︸

net opportunity costs
of selling

−
� �

Dp f
s f (p)

�⊺ �−1
s f (p)

︸ ︷︷ ︸

inverse quasi
own-price elasticities

∈RJ f (9)
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Then, we can generalize Assumption 3 and Lemma 2 as follows.

General Assumption 3. The following two conditions hold,

i) det
�

Dp f
g f (p)− IJ f

�

̸= 0 for all p and f ;

ii) det

�

Dp

�

g(p)
�

− IJ

�

̸= 0 for all p, where g(p) :=
�

g f (p) : f ∈F
�

∈RJ .

General Lemma 2. Let Assumptions 1, 2, and General Assumption 3 hold. Then, the stage

game admits a unique equilibrium. The equilibrium price vector is finite for all available prod-

ucts.

A.2.2 Continuity of Equilibrium Prices in Scarcity Effect Matrix Ω

General Lemma 3. Let Assumptions 1, 2, and General Assumption 3 hold for a compact, path-

connected set O of (Ω,θ ). Then the unique equilibrium price vector p∗ (Ω,θ ) is continuous in

(Ω,θ ) on O .

A.2.3 Characterization of Continuous-time Limit

General Proposition 2 (Continuous-time Limit). Let Assumptions 1, 2, and General Assump-

tion 3 hold for a compact, path-connected set O containing (Ω,θ ) = (0,θ T ). For every K, there

exists a T0(K) > 0, non-increasing in K, so that for any T ≤ T0(K) there exists a unique equilib-

rium of the dynamic pricing game for sufficiently small ∆. The corresponding value function

Π f ,t (K;∆) converges to a limit Π f ,t (K) as ∆→ 0 that solves the differential equation

Π̇ f ,t (K) =−λt

�

∑

j∈J f

s j (p∗(Ωt (K);θ t ))
�

p ∗j (Ωt (K);θ t )− (Π f ,t (K)−Π f ,t (K−e j ))
�

−
∑

j ′ /∈J f

s j ′ (p∗(Ωt (K);θ t ))
�

Π f ,t (K)−Π f ,t (K−e j ′ )
�

�

where f ′ ̸= f , with boundary conditions (i) Π f ,T (K) = 0 for all K, (ii) Π f ,t (K) = 0 if K j = 0 for

all j ∈J f , (iii) Π f ,t (K) = −∞ if K j < 0 for a j ∈J f , and (iv) Π f ,t (K− e j ′) =Π f ,t (K) if K j ′ = 0

for a j ′ ̸∈ J f , K j ≥ 0 for all j ∈J f .
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A.2.4 Economic Forces of Dynamic Price Competition

General Assumption 4 (Independence of Irrelevant Alternatives (IIA)). ∂
∂ pj

s j1 (p)
s j2 (p)

= 0 for j ̸=

j1, j2 ∈J ∪{0}.

Given Assumptions 1, 2 and General Assumption 4, we can show that the game with multi-

product firms can be transformed into a game of single-product firms.

General Proposition 3 (Mark-up formula under IIA). Let Assumptions 1, 2 and General As-

sumption 4 hold and − ∂
∂ pj

s j (p)
∂ s j
∂ pj

̸= 1 for all p. Then, there exists an equilibrium of the stage game

for any scarcity matrix Ω. All equilibrium prices p∗(Ω,θ ) coincide with the equilibrium prices

of a game with a set J of players who each simultaneously choose a price pj maximizing

s j (p)
�

pj − c j

�

p− j ;Ω,θ
��

with a cost function

c j

�

p− j ;Ω,θ
�

:=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(p− j )(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(p− j )ω
f
j ′ (10)

and s̃ j , j ′(p− j ) :=
s j ′ (p)

1−s j (p)
.

Proposition 3 implies that even with multiple firms and products, the first-order conditions

(FOCs) that implicitly define the best response functions of the firms, can be written in a markup

formulation for each product, with ε j (p) =
∂ s j (p)
∂ pj

pj

s j (p)
being the elasticity of demand, as

p ∗j (Ω,θ )− c j (p− j ;Ω,θ )

p ∗j (Ω,θ )
=−

1

ε j (p∗(Ω,θ ))
. (11)

General Proposition 4. Let λt ≡λ, θ t ≡ θ . Then, for K with K :=min
j

K j , the following holds:

pj ,t (K) = p ∗j ,T +O (|T − t |K ), t → T for all j ,

i.e., price changes close to the deadline are at most of order K . If lim
t→T
(Π f ,t )(K )(K− e j ′) ̸= 0 for
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all f and j ′ with K j ′ = K , then

pj ,t (K) = p ∗j ,T +Θ(|T − t |K ), t → T for all j ,

i.e., price changes are exactly of order K .

B Proofs

B.1 Technical results

B.1.1 Continuous time limit

We use the following result for the proofs of Lemma 1 and General Proposition 2.

Lemma 4. Consider a continuous price function (Ω,θ ) 7→ p∗(Ω,θ ) = (p ∗j (Ω,θ )) j on a compact

set O , and a bounded and continuous function A :RJ ×RF×J ×T →RF . Let Π f ,t (K;∆), f ∈F ,

be a solution to the difference equations

�

Π f ,t+∆(K;∆)−Π f ,t (K;∆)

∆

�

f

=−λt A
�

p∗
�

Ω(K;∆)),θ t

�

, Ω(K;∆), θ t

�

where Ω(K;∆) = (ω f
j ,t (K;∆)) f , j , ω

f
j ,t (K;∆) := Π f ,t+∆(K;∆)−Π f ,t+∆(K− e j ;∆), with boundary

conditions (i) Π f ,T (K;∆) = 0, (ii) Π f ,t (K;∆) = 0 if K j = 0 for all j ∈ J f , (iii) Π f ,t (K;∆) = −∞

if K j < 0 for a j ∈J f , and (iv) Π f ,t (K−e j ;∆) =Π f ,t (K;∆) if K j = 0 for a j ̸∈ J f , K j ′ ≥ 0 for all

j ′ ∈J f . Then, (Π f ,t (K;∆)) f converges and any limit (Π f ,t (K)) f satisfies

�

Π̇ f ,t (K)
�

f
=−λt A

�

p∗
�

Ω(K),θ t

�

, Ω(K), θ t

�

,

where Ω(K) = (ω f
j ,t (K)) f , j , ω

f
j ,t (K) := Π f ,t (K) −Π f ,t+∆(K − e j ), with boundary conditions (i)

Π f ,T (K) = 0, (ii) Π f ,t (K) = 0 if K j = 0 for all j ∈J f , (iii) Π f ,t (K; ) =−∞ if K j < 0 for a j ∈J f ,

and (iv) Π f ,t (K−e j ′) =Π f ,t (K) if K j ′ = 0 for a j ′ ̸∈ J f , K j ≥ 0 for all j ∈J f .

Proof. Since A is bounded, the difference equations show that (Π f (K;∆)) f ∈F ,K≤K0
is equicontin-

uous and equibounded in t as ∆→ 0. Hence, by the Arzela-Ascoli Theorem, there exist limit
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points (Π f (K)) f ∈F ,K≤K0
. We claim that

�

Π f ,t (K)
�

f
=

T
∫

t

λu A
�

p∗
�

Ωu (K),θ u

�

, Ωu (K), θ u

�

d u . (12)

To this end, we note that if we let ⌈u ⌉∆ to be the smallest number that is divisible by ∆ and

larger or equal than u

�

Π f ,t (K;∆)
�

f
=

T
∫

t

λ⌈u ⌉∆ A
�

p∗
�

Ω⌈u ⌉∆(K;∆),θ ⌈u ⌉∆
�

, Ω⌈u ⌉∆(K;∆), θ ⌈u ⌉∆
�

d u . (13)

We take the limit ∆→ 0 on both sides. The left-hand side of (13) converges to the left-hand

side of (12). On the right-hand side, Ω⌈u ⌉∆(K;∆) converges to Ωu (K). Hence, by continuity of p∗

and A the integrand in (13) converges to the integrand in (12). By the dominated convergence

theorem the right-hand side of (13) converges to the right-hand side of (12). Thus, any limiting

value function exists and must satisfy (12). ■

B.1.2 Continuity of stage game prices

Lemma 5. Let P ⊂RJ be compact and convex and O a path-connected set of (Ω,θ ). Further,

let g :P ×O →P , (q;Ω,θ ) 7→ p be (i) continuously differentiable in q, (ii) continuous in Ω and

θ , (iii) such that it implicitly defines a unique p∗(Ω,θ ) satisfying g (p∗(Ω,θ );Ω,θ ) = p∗(Ω,θ )

for all (Ω,θ ) ∈ O , (iv) where p∗(Ω,θ ) is uniformly bounded on O . Then, p∗(Ω,θ ) depends

continuously on Ω and θ .

Proof. To show continuity, we consider a sequence (Ωn ,θ n )n≥1 converging to some (Ω∞,θ∞).

Thanks to path-connectedness of O there exists a continuous path r : [0, 1]→O and a sequence

an ↑ 1 such that r(an ) = (Ωn ,θ n ) and r(1) = (Ω∞,θ∞). By Browder’s Theorem (Theorem 1.1

in Solan and Solan (2021)), the set G := {(p∗(r(a )); a ) : a ∈ [0, 1]} ⊂ P × [0, 1] is connected.

Further, note that G is the pre-image of {0} × [0, 1] under the continuous function (q, a ) 7→

(g (q, r (a ))−q, a ), so it is closed. Since p∗(r(a )) is uniformly bounded for all a , G is compact.

By the main theorem of connectedness, each set G j := {(p ∗j (r(a )); a ) : a ∈ [0, 1]} ⊂ R× [0, 1]
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is connected, for all j because p∗(Ω,θ ) is the unique solution to g (p∗(Ω,θ );Ω,θ ) = p∗(Ω,θ ).

Furthermore, as projections of a compact set, G j are compact for all j . Then, by Burgess (1990),

the function a 7→ p ∗j (r(a )) is continuous, so p ∗j (Ωn ,θ n ) = p ∗j (r(an ))→ p ∗j (r(1)) = p ∗j (Ω∞,θ∞).

Hence p∗(Ω,θ ) is continuous in Ω,θ on O . ■

B.2 Proofs of Single Firm Model

B.2.1 Proof of Lemma 1

In the following we omit the conditioning argumetA .

Step 1: All profit-maximizing prices pM are interior. First, we show that given ω and θ ,

pM ∈ arg max
q

∑

j∈J

s j (q;θ )(q j −ω j )

is bounded from below by a vector p= (p +ω1, . . . , p +ωJ ), p ∈R. We proceed with a proof by

contradiction. Suppose such a p did not exist. Then, for any p ∈R there exists an optimal price

vector pM and a j such that p M
j −ω j =min j ′(p M

j ′ −ω j ′)< p . At this optimal price pM (which

could include (minus) infinite prices), the derivative of the stage game profit with respect to

any price dimension has to be smaller than or equal to zero by optimality. The derivative with

respect to pj at pM (or as we converge to pM if it includes (minus) infinite prices) is

lim
p→pM

∑

k ̸= j

∂ sk

∂ pj
(p;θ ) (pk −ωk ) + s j (p;θ ) +

∂ s j

∂ pj
(p;θ )(pj −ω j ) ≥

lim
p→pM
−(pj −ω j )

 

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k ̸= j

∂ sk

∂ pj
(p;θ )

!

︸ ︷︷ ︸

= ∂ s0
∂ pj
(p;θ )>0 by Assumption 1-iii)

+s j (p;θ ) ≥

lim
p→pM
−p
∂ s0

∂ pj
(p;θ ) + s j (p;θ )−−−−→

p→−∞
∞ by Assumption 1-iii).

Thus, for sufficiently small p , this yields a contradiction, i.e. any optimal price vector pM is

bounded by a vector p from below.
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Next, we show that given ω and θ , any profit maximizing price vector pM is bounded by

a vector p̄ = (p̄ +ω1, . . . , p̄ +ωJ ), p̄ ∈ R. We again proceed with a proof by contradiction.

Suppose such a p̄ did not exist. Then, for any p̄ ∈ R, there exists an optimal price vector pM

and a j such that p M
j −ω j = max j ′

�

p M
j ′ −ω j ′

�

> p̄ . At the optimal price pM (which could

include (minus) infinite prices), the derivative of the stage game profit with respect to any price

dimension has to be greater than or equal to zero by optimality. There exists a constant C > 0

satisfying Assumption 1-iii) as we have established a lower bound p for pM . The derivative

with respect to pj at pM (or as we converge to pM if it includes (minus) infinite prices) is

lim
p→pM

∑

k ̸= j

∂ sk

∂ pj
(p;θ )

︸ ︷︷ ︸

≥0

(pk −ωk ) + s j (p;θ ) +
∂ s j

∂ pj
(p;θ ) (pj −ω j ) ≤

lim
p→pM

∑

k ̸= j

∂ sk

∂ pj
(p;θ ) (pj −ω j ) +C −1 ∂ s0

∂ pj
(p;θ ) +

∂ s j

∂ pj
(p;θ )(pj −ω j ) =

lim
p→pM

∂ s0

∂ pj
(p;θ )

︸ ︷︷ ︸

>0

(C −1− (pj −ω j ))≤ lim
p→pM

∂ s0

∂ pj
(p;θ )(C −1−p )−−−→

p→∞
−∞ .

by Assumption 1-iii). Thus, for sufficiently large p̄ , this yields a contradiction. Hence, any

optimal price vector pM is bounded by a vector p̄ from above.

Step 2: Uniqueness of profit-maximizing price pM . It follows from Step 1 that any profit-

maximizing price pM of the stage game must satisfy the FOCs of the firm. Assumption 1

ensures that the Jacobian matrix Dps (p;θ ) is non-singular by the Levy-Desplanques Theorem

(see e.g. Theorem 6.1.10. in Horn and Johnson (2012)). Hence, the FOCs can be written as

Equation 4. Because of Assumption 2 there is a unique solution to this system of equations by

Lemma 2 (Kellogg (1976)) in Konovalov and Sándor (2010).

Step 3: Convergence. We can apply the Implicit Function Theorem to Equation 4 by As-

sumption 2 and it follows that the unique optimal price pM (Ω,θ ) is continuous in Ω and θ .

Convergence to Equation 3 follows by Lemma 4.
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B.2.2 Proof of Proposition 1

Proof. i) To see that ΠM ,t (K) is decreasing in t , note that in Equation 3, setting pj > (ΠM ,t (K−

ΠM ,t (K−e j ))) results in a positive stage-game payoff, so Π̇M ,t (K)< 0.

Next, we show that ΠM ,t (K)>ΠM ,t (K−e j ) for all j by induction in
∑

j
K j .

Induction start: It is immediate that ΠM ,t (e j )≥ΠM ,t (0) = 0 for all j and t ≤ T .

Induction hypothesis: Assume that ΠM ,t (K)>ΠM ,t (K−e j ) for all K with
∑

j
K j = K̄ and j ∈J .

Induction step: Now, consider a capacity vector K with
∑

j
K j = K̄ + 1. The solution of the

differential equation for the profits is

ΠM ,t (K) =

T
∫

t

λz

∑

j

s j (p
M
z (K)) (p

M
j ,z (K) +ΠM ,z (K−e j )) · e

−
z
∫

t
λu

∑

j ′
s j ′ (pM

u (K))d u

d z .

By sub-optimality of the prices pM
t (K−ek ) given capacity vector K, we have for all k

ΠM ,t

�

K
�

≥
T
∫

t

λz

∑

j

s j

�

pM
z (K−ek )

� �

p M
j ,z (K−ek ) + ΠM ,z (K−e j )

︸ ︷︷ ︸

>ΠM ,z

�

K−ek −e j

�

by induction hypothesis

�

· e
−

z
∫

t
λu

∑

j ′
s j ′ (pM

u (K−ek ))d u

d z

>ΠM ,t

�

K−ek

�

.

ii) Next, we show that ΠM ,t (K)−ΠM ,t (K− e j ) ≤ ΠM ,t (K− e j )−ΠM ,t (K− 2e j ) for all j . To

this end, let

H (x;θ ) =−max
p

∑

j

s j (p;θ )(pj − x j ).

Note that H is concave as a minimum of affine functions, strictly increasing in x. Since H is

concave and continuous, by the Fenchel-Moreau Theorem, it admits the representation

H (x;θ ) = inf
s
(s ·x−H ∗(s;θ ))
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where H ∗(s;θ ) = inf
x
(x · s−H (x;θ )) is the concave conjugate of H . Moreover,

Π̇M ,t (K) =λt H (∇Πt (K);θ t )

where∇ΠM ,t (K) =
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

j
. Thus, ΠM ,t (K) is the value function for the optimal

control problem

ΠM ,t (K) = sup
s∈A
E
�

T
∫

t

λu H ∗(su ;θ u )d u

�

�

�

�

Xs
t =K

�

=: sup
s

Jt (K, s)

where Xa
t is the process which jumps by −e j at rate λt s j ,t and s ∈ A are processes adapted

with respect to the filtration on the probability space supporting Xs, with the property s j ,t = 0

if X s
j ,t = 0 (Theorem 8.1 in Fleming and Soner (2006)). Let s∗K be the optimal control in the

previous equation and s∗K −2 be the optimal control when K is replaced by K−2e j . Then, note that

since s∗K, s∗K−2e j
∈A ,

s∗K+s∗K−2e j

2 ∈A because the process
�

X
s∗K+s∗K−2e f

2
s

�

s
can be chosen as

�

X
s∗K
s +X

s∗K−2e f
s

2

�

s

(“coupling argument”). Hence,

ΠM ,t (K) +ΠM ,t (K−2e j )−2ΠM ,t

�

K−e j

�

≤

Jt (K, s ∗K) + Jt (K−2e j , s ∗K−2e j
)−2 Jt

�

K−e j ,
s∗K+ s∗K−2e j

2

�

≤

E
�

T
∫

t

λu

�

H ∗(s∗K,u ) +H ∗(s∗K−2e j ,u )−2H ∗
�s∗K,u + s∗K−2e f ,u

2

�

�

d u

�

�

�

�

X
s∗K
t =K, X

s∗K−2e j

t =K−2e j ,

�

≤0.

iii) To show that ωM
j ,t∧τ(Kt ) is a submartingale, we show that for any capacity vector K̄ with

K̄ j ≥ 2:

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )
�

�Kt = K̄
�

∆
≥ 0.

To this end, first, note that Kt is right-continuous in t . Consider K̄ with K̄ j ≥ 2. Then, we have
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that

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt+∆)|Kt = K̄]

∆
+ lim
∆→0

E0

�

ωM
j ,t (Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

ω̇M
j ,t (K̄) +λt

∑

j ′

s j ′,t (p
M
t (K̄))

�

ωM
j ,t (K̄−e j ′)−ωM

j ,t (K̄)
�

by right-continuity of the process Kt . By (3), we can write

ω̇M
j ,t (K̄) = −λt

�

∑

j ′

s j ′,t (p
M
t (K̄))

�

p M
j ′,t (K̄)−ω

M
j ′,t (K̄)

�

− s j ′,t (p
M
t (K̄−e j ))

�

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
�

�

.

and we know that

−ωM
j ′,t (K̄) +ω

M
j ,t (K̄)−ω

M
j ,t (K̄−e j ′) = ΠM (K̄−e j ′)−ΠM (K̄−e j )−ΠM (K̄−e j ′) +Π

M (K̄−e j ′ −e j )

= ωM
j ′,t (K̄−e j )

Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt=K̄]

∆ is equal to

−λt

�

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

− s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
��

Then, note that by optimality of pM
t (K̄−e j ),

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

≤
∑

j ′

s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j ))−ωM

j ′,t (K̄−e j ′)
�

.

Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt=K̄]

∆ ≥ 0. ■
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B.3 Proofs of General Oligopoly Model

B.3.1 Proof of General Lemma 2

Step 1: All equilibrium prices p∗ are interior. First, we show that for fixed Ω and θ , any

equilibrium price vector p∗ is bounded from below by a vector p̄= ((p̄+ω f
j ) j∈J f

: f ∈F ), p̄ ∈R.

We proceed with a proof by contradiction. Suppose such a p did not exist. Then, for any p there

exists an equilibrium price vector p∗ and a j such that p ∗j −ω
f
j =min f ′mink∈J f ′

p ∗k −ω
f ′

k < p .

Additionally, let k ∗ = argmaxk ̸∈J f
ω

f
k . At this equilibrium price vector p∗ (which could include

(minus) infinite prices), the derivative of firm f ’s stage game profit with respect to all firm f ’s

prices has to be smaller or equal to zero by optimality. The derivative with respect to pj at p∗

(or as we converge to p∗ if it includes (minus) infinite prices) is

lim
p→p∗

∂ s j

∂ pj
(p;θ )(pj −ω

f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )(pk −ω

f
k )−

∑

k ̸∈J f

∂ sk

∂ pj
(p;θ )ω f

k + s j (p;θ ) ≥

lim
p→p∗
−













�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

︸ ︷︷ ︸

≥0 by Assumption 1-iii)

































pj −ω
f
j +

∑

k ̸∈J f

∂ sk
∂ pj
(p;θ )

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk
∂ pj
(p;θ )

︸ ︷︷ ︸

∈(0,1) by Assumption 1-iii)

|ω f
k ∗ |





















+ s j (p;θ ) ≥

lim
p→p∗
−

 

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

!

�

p + |ω f
k ∗ |
�

+ s j (p;θ )−−−−→
p→−∞

∞

by Assumption 1-iii). Thus, for sufficiently small p , this yields a contradiction, i.e. any equi-

librium price vector p∗ is bounded by a vector p from below.

Next, we show that for fixed Ω and θ , any equilibrium price vector p∗ is bounded from

above by a vector p̄ = ((p̄ +ω f
j ) j∈J f

: f ∈ F ), p̄ ∈ R, by contradiction. Suppose such a p̄

did not exist. Then, for any p̄ , there exists an equilibrium price vector p∗ and a j such that

p ∗j −ω
f
j = max f ′maxk∈J f ′

p ∗k −ω
f ′

k > p̄ , j ∈ J f . At the equilibrium price p∗ (which could

include (minus) infinite prices), the derivative of firm f ’s stage game profit with respect to all
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firm f ’s prices has to be greater or equal to zero by optimality. There exists a constant C > 0

satisfying Assumption 1-iii) as we have established a lower bound p for p∗. Additionally, let

k ∗ = argmaxk ̸∈J f
|C −1+ω f

k |. The derivative of firm f ’s payoff with respect to pj at p∗ (or as we

converge to pM if it includes (minus) infinite prices) is

lim
p→p∗

∂ s j

∂ pj
(p;θ )(pj −ω

f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )(pk −ω

f
k )−

∑

k ̸∈J f

∂ sk

∂ pj
(p)ω f

k + s j (p) ≤

lim
p→p∗

 

∂ s j

∂ pj
(p;θ ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

!

(pj −ω
f
j ) +C −1

 

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

!

+
∑

k ̸∈J f

∂ sk

∂ pj
(p)
�

�−C −1−ω f
k

�

� ≤

lim
p→p

 

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk

∂ pj
(p;θ )

!

�

C −1− p̄ +

∑

k ̸∈J f

∂ sk
∂ pj
(p)

�

�

�

�

∂ s j

∂ pj
(p;θ )

�

�

�

�

−
∑

k∈J f \{ j }

∂ sk
∂ pj
(p;θ )

︸ ︷︷ ︸

∈(0,1)

�

�C −1+ω f
k ∗

�

�

�

−−−→
p̄→∞
−∞.

Thus, for sufficiently large p̄ , this yields a contradiction. Hence, any equilibrium price vector

p∗ is bounded by a vector p̄= ((p̄ +ω f
j ) j∈J f

: f ∈F ) from above.

All in all, it follows that the best response of each firm must be within a box with extreme

points p̄ and p.

Step 2: Uniqueness of equilibrium price p∗. It follows from Step 1 that any equilibrium

price p∗ of the stage game is a solution to the system of FOCs. Assumption 2 ensures that the

Jacobi matrix Dp f s (p f ;θ ) non-singular by the Levy-Desplanques Theorem (see e.g. Theorem

6.1.10. in Horn and Johnson (2012)). Hence, the FOCs can be written as g(p) = p where g is as

defined in General Assumption 3. By General Assumption 3-ii), there is a unique solution to this

system of equations by Lemma 2 (Kellogg (1976)) in Konovalov and Sándor (2010). Further,

by General Assumption 3-i) and Kellogg (1976), there is a unique solution of the first order

condition of each firm’s optimization problem, given by gf(p) = p f . Thus, for any competitor
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prices, there exists a unique best response of each firm f , which solves g f (p) = p f and the

unique solution to g(p) = p must be an equilibrium.

B.3.2 Proof of General Lemma 3

Let Assumptions 1, 2, and General Assumption 3 hold for a compact, path-connected set O of

(Ω,θ ). Then, by General Lemma 2, all stage games with parameters (Ω,θ ) ∈ O admit a unique

and finite equilibrium that are unifomly bounded on O . Hence, we can apply Lemma 5.

B.3.3 Proof of General Proposition 2

Let Assumptions 1, 2, and General Assumption 3 hold for a compact, path-connected set O

containing (Ω,θ ) = (0,θ T ). By General Lemma 2 and General Lemma 3, the stage games for

(Ω,θ ) ∈ O have a unique solution p ∗(Ω,θ ) that is continuous in (Ω,θ ). Then, convergence

follows by Lemma 4.

B.3.4 Proof of General Proposition 4

Let λt = λ, θ t = θ . So, we will drop the parameter θ in the notation in this proof. For t close

to T , we know from General Lemma 2 that the equilibirum of the stage game is unique and the

price vectors p∗t (K) = p∗(Ωt (K)) are implicitly defined by a system of equations given by

�

Dp f
s f

�

p∗t (K)
��⊺

p∗t (K)−
�

Dp f
s(p∗t (K))

�⊺
ω f

t (K) + s f

�

p∗t (K)
�

= 0 ∀ f .

The only time-dependent variables are then Ωt (K) = (ω
f
t (K)) f ∈F . Hence, p∗t and Ωt are continu-

ous in t . Due to the ODE, Ωt is continuously differentiable, so p∗t is continuously differentiable.

Inductively it follows that as we take derivatives of the ordinal differential equation, if Ωt is n

times continuously differentiable, then p∗t is n times continuously differentiable. The n-th time

derivative (p ∗t )
(n )(K) depends on the time derivatives Ωt (K), . . . ,Ω(n )t (K) and is well defined be-

cause the implicit function is smooth in p and Ω. We are interested in the limit as t → T . We

show by induction in n that if K j > n for all j , then as t → T , (ω f
j ,t )
(n )(K) = 0 for all f , j which

implies the claim by Taylor’s theorem.
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Induction start: First, lim
t→T
Ωt = 0. Furthermore, we can write for all f and j :

ω̇
f
j ,t (K) =Π̇ f ,t (K)− Π̇ f ,t (K−e j )

=−λ
�

s f (p
∗ (Ωt (K)))

⊺p∗f (Ωt (K))− s(p∗ (Ωt (K)))
⊺ω f

t (K)
︸ ︷︷ ︸

=:G 1
f (Ωt (K))

−
�

s f

�

p∗
�

Ωt (K−e j )
��⊺

p∗f
�

Ωt (K−e j )
�

− s f

�

p∗
�

Ωt (K−e j )
��⊺
ω f

t (K−e j )
�

︸ ︷︷ ︸

=:G 1
f (Ωt (K−e j ))

�

Thus, as t → T , ω̇ f
j ,t (K) = 0 if K j > 1. If j ∈ J f and K j = 1, then ω̇ f

j ,t (K) < 0. If j ̸∈ J f and

K j = 1, then by the competition effect ω̇ f
j ,t (K) > 0. This implies that ṗ ∗j ,T (K) < 0 if K j = 1 and

ṗ ∗j ,T (K) = 0 otherwise.

Induction assumption: Letting for Ω(m )t (K) be that matrix of m-th derivatives of ω f
j (K), we

can write for all f and j

(ω f
j ,t )
(n−1)(K) =−λ

�

G n−1
f

�

�

Ω(m )t (K)
�n−2

m=0

�

−G n−1
f

��

Ω(m )t (K−e j

��n−2

m=0
)
�

where G n−1
f ((Ω(m )t (K − e j ))n−2

m=0) =
∂ n−2

(∂ t )n−2 G 1
f (Ωt (K)). If K j > n − 1 for all j , then as t → T ,

(ω f
j ,t )
(n−1)(K) = 0 for all f , j .

Induction step: Given the induction assumption, we can also calculate the next order deriva-

tive recursively

(ω f
j ,t )
(n )(K) =−λ

�

G n ((Ω(m )t (K))
n−1
m=0)−G n (Ω(m )t (K−e j ))

n−1
m=0))

�

.

Then, note if min
i

Ki > n , then (ω f
j ,t )
(n )(K) = 0 by the Induction Assumption. If min

i
Ki = n ,

(ω f
j ,t )
(n )(K) =−λ

�

−G n (Ω(m )t (K−e j ))
n−1
m=0))

�

=−λ
∂ n−1

(∂ t )n−1
G 1

f ((K−e j )).
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B.3.5 Proof of General Proposition 3

Let Assumptions 1, 2, and General Assumption 4 hold. First, note that General Assumption 4

implies that for j1, j2 ̸= k

s j1
(p)

s j2
(p)
=

∂ s j1
∂ pk
(p)

∂ s j2
∂ pk
(p)

.

By Step 1 in the proof of General Lemma 2 and by Assumption 2, any equilibrium price vector

of the stage game p∗(Ω;θ ) must satisfy for all j ∈J f the FOCs of firm f ’s payoff given by:

pj −ω
f
j +

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

(pj ′ −ω
f
j ′)−

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

ω
f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

.

Since ∂ s j

∂ pj
(p) =−

∑

k∈J \{ j }

∂ sk
∂ pj
(p)− ∂ s0

∂ pj
, this can be rewritten as

pj −ω
f
j −

∑

j ′∈J f \{ j }

1
∑

k∈J \{ j }

sk (p)
s j ′ (p)
+ s0(p)

s j ′ (p)

(pj ′ −ω
f
j ′) +

∑

j ′ ̸∈J f

1
∑

k∈J \{ j }

sk (p)
s j ′ (p)
+ s0(p)

s j ′ (p)

ω
f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

⇔pj −ω
f
j −

∑

j ′∈J f \{ j }

s j ′(p)

1− s j (p)
(pj ′ −ω

f
j ′) +

∑

j ′ ̸∈J f

s j ′(p)

1− s j (p)
ω

f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

.

By Assumption 4, for j ′ ̸= j , ∂
∂ pj

s j ′ (p)
1−s j (p)

= 0, we can define s̃ j , j ′((pj ′) j ′ ̸= j ) :=
s j ′ (p)

1−s j (p)
and

c ((pj ′) j ′ ̸= j ;Ω) :=ω f
j +

∑

j ′∈J f \{ j }

s̃ j , j ′((pj ′) j ′ ̸= j )(pj ′ −ω
f
j )−

∑

j ′ ̸∈J f

s̃ j , j ′((pj ′) j ′ ̸= j )ω
f
j ′ .

Thus, the FOCs of the stage game are equivalent to the first order conditions of a game with J

players where each player j ’s payoff is given by

s j (p)
�

pj − c ((pj ′) j ′ ̸= j ;Ω)
�

.
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We call this game the “auxiliary game with J players.” Note that the derivative of player j ’s

payoff is greater or equal than zero if and only if

∂ s j (p)

∂ pj

�

pj − c
�

(pj ′) j ′ ̸= j ;Ω
��

+ s j (p)≥ 0.

Hence any equilibrium of the stage game is an equilibrium of a game with J players with the

above payoffs and vice versa.

In order to show existence of equilibria of the stage game, it is sufficient to show existence

of equilibria of the auxiliary game with J players and the above payoffs. First, recall that by

Step 1 in the proof of General Lemma 2, all best response prices are interior and hence, if an

equilibrium exists, it must satisfy the FOCs. Further, since we assume − ∂
∂ pj

s j (p)
∂ sf
∂ pf

̸= 1 for all p,

the first-order condition has a unique solution which must be a maximizer of player j ’s payoff

function. All in all, the best response function of player j , R j , maps a compact set of prices q

into a compact set of prices p. For ε> 0, consider the mapping

Φ : (p, q) 7→
�

pj −ε
�

pj − c j (q− j ;Ω,θ ) +
s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

�

�

j∈J

Then DpΦ is a diagonal matrix with diagonal entries

φ j := 1−ε
�

1+
∂

∂ pj

s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

︸ ︷︷ ︸

≥0

�

Let ε> 0 be so that φ j > 0 for all j . Then all diagonal entries are in (0, 1−ε) and Φ is Lipschitz

continuous with Lipschitz constant max
j
φ j . Further DqΦ is bounded because it is continuous.

Then, the implicit function theorem in the form of Theorem 1.A.4 in Dontchev and Rockafellar

(2009) implies continuity ofR = ((R j ) j ). Hence, by Brouwer’s fixed-point theoremR = ((R j ) j )

has a fixed point.
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C Nested Logit Calculations

Since our empirical application uses a nested logit specification, we verify in the following that

all assumptions made in the model are satisfied for a nested logit demand model given by

s j (p) =
e
δ j −αpj

1−σ

∑

j∈J
e
δ j −αpj

1−σ

︸ ︷︷ ︸

=:s j |J (p)

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ

1+

�

∑
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e
δi −αpi

1−σ

�1−σ s0(p) =
1

1+

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ .

Note that the same properties follow for regular logit by setting σ = 0 and replacing α with α
ρ .

To simplify notation, let DJ :=
∑

i∈J
e
δi −αpi

1−σ . Then,

∂ s j

∂ pj
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�
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∂ pj ′
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α

1−σ
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�

σs j |J + (1−σ)s j

�

.

It is easy to check that Assumptions 1-i) and ii) are satisfied. We show that Assumption 1-iii) is

satisfied. Letting s 0 ≡ s0

�

p
�

, the constant in Equation 1 is given by C =αs 0 > 0 since then

∂ s0
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=αs j s0 >C s j .
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Hence, ε̂= ((Dp s(p;θ ))⊺)−1s(p;θ ) =− 1
αs0

1 and noting that ∂
∂ pj

�

1
s0

�

=−α s j

s0
,

Dpε̂=









s1
s0

. . . sJ

s0

...
s1
s0

. . . sJ

s0









.

It follows that Assumption 2 is satisfied:

det
�

−Dpε̂− I
�

= (−1)J
1

s0
̸= 0.

It follows immediately hat the properties are satisfied for all subsetsA ⊂J .
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D Additional Tables and Figures

D.1 Simulations

Figure 10: Simulated scarcity effects for K2 = 3, K1 varying
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(b) Firm 2 own-product ω2
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(c) Firm 1 competitor ω1
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(d) Firm 2 competitor ω2
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.
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Figure 11: Strategic complements and substitutes in the stage game

(a) Strategic complements
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(b) Strategic substitutes
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Notes: The simulations assume δ = (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 1, as well as ω1
1 =ω

2
2 = 4. Panel (a) shows both

firms’ best response functions for ω1
2 =ω

2
1 = 4. Panel (b) shows both firms’ best response functions for ω1

2 =ω
2
1 =−4.

Figure 12: Effects of own and competitor scarcity on prices

(a) Exogenous Ω
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(b) Dynamic game Ω
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Notes: The simulations assume δ = (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 4. Panel (a) shows both firms’ best response
functions for ω1

1 =ω
2
1 = 2 and ω1

2 =ω
2
2 =−6 when no ωs are considered in the profits (orange), when only the own ωs are considered (blue),

and when both ωs are considered (grey). Panel (b) shows an analogous figure for the Ω matrix obtained at t = 0 in the dynamic duopoly game
with T = 2 and λt ≡ 10 at the state K= (20, 1).
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Figure 13: Simulated prices and scarcity effects

K= (5, 4)
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(c) Competitor ω over time
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(d) Price paths over time
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(e) Own ω over time
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(f) Competitor ω over time
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(g) Price paths over time
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(h) Own ω over time
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(i) Competitor ω over time
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.
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Figure 14: Price paths for varying levels of capacity

(a) Sale of a product with minimum inventory
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(b) Sale of a product without minimum inventory
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Notes: These simulations correspond to logit demand with parameter values δ j = 1, α = 1, λ = 10 and scale factor ρ = 0.05. Panel (a) shows
both firm’s price paths for K= (3, 5) and K= (2, 5). Panel (b) shows both firm’s price paths for K= (3, 5) and K= (3, 4).

D.2 Empirical Evidence of Dynamic Pricing Forces

Figure 15: Example of a negative own Opportunity Costs

(a) Example own Omega over Time
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(c) Average Price Jumps over Time
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Note: Panel (a) shows the own ω over time for a given state in one of our benchmark solutions. Panel (b) shows the log of the absolute value
of the own ω over time for three states in one of our Benchmark solutions. The dotted lines represent the behavior these curves would follow
if the omegas were proportional to |T − t |min(K). Panel (c) shows the price change if the firm with the minimum and maximum capacities sell a
unit.
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D.3 Pricing Heuristics

Figure 16: Fare Menu Example
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Note: Example pricing menu over time. Prices rounded to nearest $20.
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Figure 17: Price Path Realizations comparing Benchmark model to Heuristics

(a) Price paths for the benchmark model
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(b) Price paths for the lagged algorithm

0 1
t

1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

Pr
ic

e
Firm 1 sellsFirm 1 sells

Firm 2 sells Firm 1
Firm 2

(c) Price paths for the deterministic algorithm
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Notes: We assume demand follows a logit specification with an initial capacity vector of K0 = (2, 2). Time is continuous for t ∈ [0, 1]. There
are three panels: panel (a) depicts the equilibrium price path for the benchmark model, panel (b) considers prices if firms use the lagged model,
and panel (c) considers prices if firms use the deterministic model. The vertical lines mark realized sales times; the color denotes the firm that
received the sale. These simulations correspond to the parameter values δ j = 1, α = 1, ρ = 1, λ = 10 and K0 = [2, 2]. In the heuristic model,
firms assume that the competitor prices at the level given by the grey line.
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D.4 Welfare Calculations with Restricted Capacities

Figure 18: Counterfactual Summary Plots, Restricted Capacities

(a) Shares over Time
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(c) Sellouts over Time
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(d) Cumulative Welfare Comparison
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Note: Panel (a) shows the average shares over time for the benchmark and uniform models. Panel (b) shows the average load factors over
time for the same two models. Panel (c) shows the average sellouts over time for the same two models. Panel (d) shows the ratio of average
cumulative welfare for the benchmark model with respect to the uniform one.
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Table 5: Counterfactual Results for Single Product, Duopoly Routes, Restricted Capacities

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 228.0 5407.2 5731.4 17186.4 28325.1 19.6 70.1 2.1

Uniform 244.4 4521.7 4693.6 19513.1 28728.4 19.2 69.7 4.1

% Diff. 7.2 -16.4 -18.1 13.5 1.4 -2.0 -0.4 2.0

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

Table 6: Heuristic Counterfactuals for Single Product, Duopoly Routes, Restricted Capacities

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Lagged 103.2 102.7 104.8 103.6 103.7 99.6 100.0 98.9

Deterministic 97.3 99.3 100.5 107.5 104.5 102.9 101.2 125.8

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.

Figure 19: Heuristic Counterfactuals Results over Time, Restricted Capacities

(a) Shares over Time
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(c) Cumulative Rev. Comparison
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Note: Panel (a) shows the average shares over time for the two heuristic models. Panel (b) shows the ratios of cumulative consumer surplus
for the two models with respect to the benchmark. Panel (c) shows the ratios of cumulative revenue for the two models with respect to the
benchmark.
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D.5 Welfare Calculations for Entire Sample

i) In our counterfactuals we consider only two products. In order to include routes that have

more than one flight per carrier per day, we adjust the choice set, utilities, and capacities

for all routes.

ii) We take the mean utilities (δ) across observed flights for each route-carrier-departure date.

iii) We use the maximum observed capacity for each route-carrier-departure date. Although

it may be natural to sum the capacities when restricting the choice set, we have found that

large capacities presents a significant computational burden.

iv) We use the observed arrival process for each route-departure date. We do not adjust the

estimated arrival processes as the inside good shares tend to be small. That is, because

most consumers choose the outside good, we do not scale down arrival rates to account

for smaller choice sets.

Table 7: Counterfactual Results for Entire Sample

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 220.4 5566.9 6007.6 16742.7 28317.2 20.4 80.3 20.7

Uniform 262.3 4797.5 5266.0 18979.5 29043.0 19.1 78.8 15.1

% Diff. 19.0 -13.8 -12.3 13.4 2.6 -6.4 -1.5 -5.6

Note: Price is the average across routes (r ) after computing the average across firms ( f ), departure dates (DD), days before departure (DFD)
and simulation number (n) within a route. Firm revenues are similarly defined, except aggregated over DFD. CS is the expected consumer
surplus, computed the same way as revenues. Welfare is the sum of revenues and CS. Q is the total number of seats sold. LF is the average
fraction of seats sold (including flow traffic) at the departure time. Sellouts is the fraction of flights sold out.
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