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Abstract. Rational agents must perform backwards induction by thinking

contingently about future states and actions, but failures of backwards in-

duction and contingent reasoning are ubiquitous. How do boundedly-rational

agents make decisions when they fail to correctly forecast actions in the fu-

ture? We construct an individual decision-making experiment to collect a rich

dataset in which subjects must reason only about their own future actions.

We demonstrate substantial mistakes relative to the rational benchmark, and

use the rich dataset to estimate several possible models of boundedly-rational

foresight. We find that a model in which subjects expect to make more mis-

takes when the payoff consequences of their future actions are more similar

best explains behavior.

1. Introduction

Economic theory for multi-stage games relies on backwards induction - system-

atic reasoning about the optimal actions at all possible future events. Economic

theory for individual decision-making problems, such as job search or partner search

problems, as well as sequential portfolio choice, similarly require decision-makers to

contingently reason about how they will act in all future states of the world. Yet,

we have evidence that players in multi-stage games pay little attention to the payoff

consequences at future stages [Johnson et al., 2002] and fail to perform backwards

induction reasoning [Güth and Tietz, 1990, McKelvey and Palfrey, 1992, Binmore

et al., 2002]. Similarly, most people cannot reason contingently about others’ ac-

tions taken at hypothetical events, be it co-participants in auctions [Kagel and

Levin, 1986], or robots who play pre-defined strategies [Charness and Levin, 2009,

Esponda and Vespa, 2014].

How should we think about the decisions of people that don’t perform backwards

induction? Do they completely ignore the payoffs beyond some horizon, or do

they respond to changes in these payoffs in predictable ways albeit while making

mistakes? To date, we have few theoretical models that consider this problem (we
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discuss the exceptions below), likely because most tests of forward-looking behavior

have been well-designed to document reasoning failures, but not as well-designed

to elicit comprehensive patterns of behavior on which new theories can be built.

In this paper, we provide rich empirical evidence about how boundedly-rational

agents make decisions when they fail to perform backwards induction. We de-

sign an individual decision problem that requires subjects to understand only their

own decisions at hypothetical future events and to respond accordingly. Being an

individual decision problem, without any other real players, automated players,

or complicated mechanism, we are able to rule out many possible reasons for de-

partures from rational predictions, such as other-regarding preferences, incorrect

beliefs about others’ play, or misunderstanding the rules of a mechanism. Instead,

observed mistakes can cleanly be linked to a failure to think through one’s own

actions in the future.

Further, subjects make decisions in many versions of this problem, providing us

with comprehensive comparative statics with respect to all of the relevant param-

eters of the decision. We leverage this detailed empirical data to take some first

steps in understanding what types of models can explain the patterns we observe:

we build several variations of models proposed in the literature, and structurally

estimate them to determine which best fits the data.

The two-period version of our decision problem (Figure 1.1) is identical to the

Gneezy and Potters [1997] investment task, except for one additional feature. As

in the standard investment task, in the first period, subjects choose to withdraw

a fraction 1 − x of one dollar at some known return R1. The remaining fraction,

x, remains invested in an uncertain project which will provide the opportunity to

withdraw at a low or a high return (R−
F or R+

F , respectively). The critical additional

feature is that after subjects learn the realized return (R−
F or R+

F ) in the second pe-

riod, we allow them to choose not to withdraw, instead earning an outside option

with intermediate return rate RO
F ∈ [R−

F , R
+
F ). Subjects know about the outside

option before their first-period decision, so that a rational decision-maker would

perform backwards induction, reasoning that she will withdraw in the hypothet-

ical event that R+
F realizes, but not withdraw when R−

F realizes. Conditional on

understanding her future actions, a subject then faces a standard Gneezy-Potters

task: she decides how much to invest in a risky investment that returns either R+
F

or RO
F . We have subjects participate in twenty versions of this sequential decision

problem while varying the returns (R−
F , R

+
F , R

O
F ) and the probability of R+

F versus

R−
F , thereby constructing a rich dataset from which to identify individual behavior.

To measure and account for the role of risk preferences, we also have subjects

make investment decisions in five lottery tasks (see the right panel of Figure 1.1).

These ‘reduced’ lottery tasks are specially chosen to correspond exactly to the
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Figure 1.1. Two-Period Decision Problem
1. Withdraw (1− x) ∈ [0, 1]

P (R+

F
) = p P (R−

F
) = 1− p

RO

F

(1− x)R1 + xR
O

F

I
3

R+

F
RO

F R−

F

(1− x)R1 + xR
O

F

(1− x)R1 + xR
+

F
(1− x)R1 + xR

−

F

2. Take RO

F
?

Nature draws return

p 1− p

(1− x)R1 + xR
O

F(1− x)R1 + xR
+

F

Nature draws return

Notes: The two-period decision problem is on the left. The decision-maker decides once in each

period, at the circular decision nodes. First, she chooses the amount to withdraw, 1− x. Next,
Nature, at the square node, chooses the return (R+

F or R−
F ). Then, in the second period, the

decision-maker chooses between the realized return and the outside option return RO
F . With

R+
F > RO

F > R−
F , the decision-maker’s correct second period choices are marked with an arrow.

If the second-period choices are forecasted correctly, the two-period problem reduces to the

simpler one-period lottery task on the right.

decision problems conditional on optimal decisions being made in the second period.

Subjects’ choices in the lottery tasks therefore serve as a benchmark for behavior

in the decision problems - a rational subject would invest identically in a decision

problem and its corresponding lottery task.

We document widespread failures of backwards induction in this simplest of

settings: subjects invest systematically less in the decision problems than the cor-

responding lottery tasks. When we vary R−
F , always keeping it less than the outside

option, it should have no impact on decisions, but about 60% of subjects respond

to the changes. Critically, these responses to an irrelevant parameter change do

not reflect subjects actually making mistakes in the second period - mistakes in the

second period are rare.1 Perhaps more surprisingly, we find almost no evidence of

learning - even after having made rational decisions in the second periods of many

problems, subjects still fail to account for this behavior in the first period of the

next problem.

Although subjects respond irrationally to the irrelevant second period return,

other comparative statics match what we would intuitively expect, indicating that

although subjects fail to perform backwards induction, they are otherwise respond-

ing to economic forces in predictable ways: they invest more when R+
F or the

probability of it occurring increases, and less when the safe return, R1, increases.

1About 10% of subjects frequently make mistakes in the second period, choosing dominated
payoffs. We remove these subjects from the analysis because choosing less money over more money
almost certainly indicates inattention and violates the most basic tenet of reasonable choice.
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We conduct a second experimental treatment in which we extend the decision

problems to three periods. In these problems, subjects can withdraw any amount in

the first period and then can withdraw the remaining amount in either of two future

periods, so that they now have an extra round of hypothetical thinking to perform.

Importantly, we designed the three-period decision problems so that, from the per-

spective of a rational decision-maker, each is identical to a decision problem from

the two-period treatment (and therefore also identical to one of the lottery tasks).

Furthermore, we designed four different versions of the three-period problems that

are all identical to the same two-period problem for a rational decision-maker, such

that any observed variation provides additional evidence of what drives decision-

making.

One simple hypothesis is that, because the three-period decision problems re-

quire an additional round of backwards induction, subjects perceive them as more

complex, and hence invest less than in their two-period counterparts. Instead, we

find more nuanced patterns of behavior. As in the two-period decision problems,

subjects respond to the irrelevant final period return even though they rarely choose

to withdraw at this return. However, they don’t respond as strongly to this pa-

rameter as they do in the two-period problems. Subjects also invest more when

an irrelevant (to a rational decision-maker) return in the second period increases,

and invest differently when the probabilities of the highest possible return are ir-

relevantly swapped between the second and third periods.

The reduced-form evidence overall points to two regularities in the data: (i) sub-

jects respond to irrelevant payoffs and changes in probabilities, but (ii) also respond

to changes in other parameters as economic theory would predict. In addition to

ruling out rational behavior, this evidence rules out several other models that have

been put forth in the literature. It rules out completely ignoring payoffs beyond

some horizon [Jéheil, 1995], as well treating the payoffs beyond some finite horizon

as being random [Jehiel, 2001]. It also rules out any model in which a decision-

maker assumes a fixed distribution over future payoffs (e.g. with a Laplacian prior

or taking the average of the maximum and minimum payoffs as proposed in Rampal

[2018]) because of the fact that decisions respond to the probabilities with which

these payoffs are received.

We are led therefore to models in which subjects aggregate payoffs in the future

in some reasonable, but noisy way. We build five potential models of behavior,

leveraging ideas from the literature. Each model differs in how subjects aggregate

future payoffs. The ‘näıve’ model assigns zero probability to the outside option

(i.e. completely ignores it). The ‘tremble’ model assigns a constant probability of

making a mistake (trembling) at every future event. The ‘cursed’ model, à la Eyster

and Rabin [2005], assigns correct beliefs on average, but ignores the correlation
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between future actions and the realized contingencies. The ‘noisy self’ model is

a version of quantal response equilibrium but relaxes the assumption that beliefs

have to be consistent with actual future actions - correct actions are believed to

be taken proportionally to the difference in payoffs across future actions. Finally,

the ‘generalized mean’ model builds on the ideas in Ke [2019] - subjects aggregate

future payoffs using a generalized mean function.

The dataset we collected allows us to structurally estimate all five models, in

addition to the rational model, at the individual level. Doing so, we find that the

noisy self model is strongly favored by model selection tests, both at the individual

level and in the aggregate. The closely-related tremble model performs second best,

suggesting that models in which subjects forecast their future actions with noise

most accurately represent behavior.

Finally, we consider the possibility that subjects solve problems forward, placing

more weight on immediate payoffs than future payoffs - they behave as if they

discount payoffs received in future periods relative to those received in the current

period. Of course, any form of actual time preference is unlikely because all payoffs

are received at the same time, so we interpret this possibility as cognitive dis-

counting, the discounting originating from the cognitive noise present in the mental

simulation of future monetary amounts or utils [Gabaix and Laibson, 2017].2 Re-

estimating each of the five behavioral models and the rational model allowing for

discounting, we find that models with cognitive discounting are favored over those

without in 80 percent of cases. Estimation results with the noisy self model with

discounting suggest that about 90 percent of subjects imperfectly forecast future

actions, and about 70 percent cognitively discount future payoffs, so that a majority

of subjects are best explained by a combination of the two behavioral factors.

Our paper contributes to the experimental literature on failures of backwards in-

duction [Güth and Tietz, 1990, McKelvey and Palfrey, 1992, Johnson et al., 2002,

Binmore et al., 2002, Mantovani et al., 2014, Rampal, 2018] and contingent reason-

ing [Esponda and Vespa, 2014, 2019, Mart́ınez-Marquina et al., 2019]. A closely

related companion paper by the co-authors shows people don’t reason about their

future actions in dynamic elicitation mechanisms [Kendall and Chakraborty, 2022].3

One of our contributions is to demonstrate contingent reasoning failures in a very

simple (two-period) setting when subjects only have to reason about their own ac-

tions (and not the rules of some mechanism or the actions of other players). We

2In an experimental study of intertemporal preferences, Enke and Graeber [2021] find that
self-reported cognitive noise is highly correlated with behavioral patterns like high impatience over

short horizons, hyperbolic discounting, and transitivity violations
3Fragiadakis et al. [2016] and Bosch-Rosa and Meissner [2020] show that people also don’t

understand their own actions when taken in the past or concurrently, respectively.
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also contribute to the literature on decision-making by agents who use partially

myopic calculations [Gabaix and Laibson, 2000, Gabaix et al., 2006].

A small theoretical literature models players with limited foresight in dynamic

games. These models utilize different assumptions about how payoffs realized be-

yond a player’s foresight horizon influence her decisions. For example, Jéheil [1995]

and Mengel [2014] assume full discounting of all payoffs beyond the foresight hori-

zon. Jehiel [2001] assumes payoffs outside of the foresight horizon are perceived as

random. Rampal [2018] uses a curtailment rule where players with limited foresight

perceive payoffs beyond their foresight horizon as the average of the maximum and

minimum possible payoffs.4 None of these assumptions about payoffs beyond the

horizon can explain the behavior we observe but perhaps because with at most

three periods, all payoffs are within subjects’ horizons.

Ke [2019] uses a decision maker’s preferences over pairs of individual decision

trees to characterize how she evaluates what lies beyond her limited foresight. Our

investment games do not belong to the class of decision trees studied in Ke [2019],

because, in his model, the choice sets the decision-maker faces in every step of the

tree depend deterministically on past choices. However, we adapt our generalized

mean model from the functional form he axiomatically characterizes.

The noisy self model we construct is directly related to the concept of quantal

response equilibrium, QRE [McKelvey and Palfrey, 1995, Goeree et al., 2020], in

which players are more likely to choose best responses, but do not play them with

probability one. QRE and its extension to extensive form games (AQRE) have been

greatly successful in explaining departures from standard predictions in multi-player

games [McKelvey and Palfrey, 1998]. As an internally consistent equilibrium model,

AQRE requires players’ beliefs to match the equilibrium probability distribution of

actions. Herein lies the crucial difference between the noisy self model we construct

and AQRE: the noisy self model allows probabilistic beliefs about future actions

even when future selves play best responses with probability one, so that beliefs need

not match actions. This relaxation of rational expectations is critical for explaining

the data.

2. The Decision Problems

Figure 1.1 shows the two-period decision and its equivalent (under rationality)

lottery. We restrict the parameters to make the problem non-trivial: R+
F > R1 ≥

RO
F ≥ R−

F . R+
F > R1 guarantees that investing is not dominated and RO

F ≥ R−
F

4Rampal [2022] uses an open-ended curtailment rule that is common knowledge among players

to define an equilibrium concept where subjects can learn and best respond to their beliefs about
opponent’s limited foresight. See also Heller [2015] in which players choose their foresight horizon
subject to a cost.
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Figure 2.1. Three-Period Decision Problem
1. Withdraw (1− x) ∈ [0, 1]

P (R+

F
) = p1 P (R−

2 ) = 1− p1

Cont

(1− x)R1 + xR
+

F

I
3

R+

F

ContR−

2

(1− x)R1 + xR
−

2

2. Continue to period 3?

Nature draws return

p1 + p2 − p1p2 (1− p1)(1− p2)

(1− x)R1 + xR
O

F(1− x)R1 + xR
+

F

Nature draws return

3. Take RO

F
?

(1− x)R1 + xR
+

F

(1− x)R1 + xR
O

F

(1− x)R1 + xR
−

F

(1− x)R1 + xR
O

F

R+

F

RO

F

R−

F

RO

F

P (R+

F
) = p2 P (R−

F
) = 1− p2

R+

F

RO

F
RO

F

R−

F

(1− x)R1 + xR
+

F

(1− x)R1 + xR
O

F
(1− x)R1 + xR

O

F

(1− x)R1 + xR
−

F

Notes: The first and last periods of the three-period decision problem resemble those of the

two-period problem. In the intermediate second period, the subject can choose to withdraw

everything remaining in the investment, x, after learning the rate that withdrawals earn (R+
F or

R−
2 ).

guarantees that a rational player recognizes that withdrawing at R−
F is always

(weakly) dominated.

A rational decision-maker that is deciding how much to withdraw in the first

period, 1− x, must use backwards induction to first determine the possible returns

for the amount invested, x. Under the parameter restrictions given above, a ra-

tional decision-maker will realize that they will withdraw when R+
F realizes and

not withdraw (take the outside option) otherwise. The first-period maximization

problem is then

(2.1) max
x

pu
(
xR+

F + (1− x)R1

)
+ (1− p)u

(
xRO

F + (1− x)R1

)
assuming the decision-maker maximizes expected utility with utility function, u().

Critically, R−
F does not enter the problem - it is irrelevant because the decision-

maker never withdraws when it realizes. Varying R−
F to see whether or not it

affects initial investment is a key comparative static of interest.

In the three-period decision problem shown in Figure 2.1, the first and final

periods are identical to those in the the two-period problem. In the first period,

subjects start by deciding the amount 1 − x to withdraw at a return R1. In the

final third period, subjects can either withdraw at the realized rate (R−
F or R+

F ),

or take the outside option RO
F . We add an intermediate second period, where the



NOISY FORESIGHT 8

subject can choose to withdraw all of x.5 The withdrawal return in the second

period is either R+
F or R−

2 ,and is revealed immediately after the first period choice.

We make the highest possible return in the second period the same as in the third

period to ensure that we can choose the remaining parameters such that the three-

period problem is equivalent to a two-period problem while still requiring non-trivial

contingent reasoning in the second period.6 As before, we constrain the parameters

such that R+
F > R1 ≥ RO

F ≥ R−
F .

For a three-period problem, a rational decision-maker must apply two steps of

backwards induction. The first step is foreseeing choices in the final period. Based

on these forecasted choices, in the second period, the decision-maker must decide

to withdraw or not, conditional on the realization of the second period withdrawal

return, R+
F or R−

2 . Because R+
F is the highest return possible, withdrawing when

R+
F is realized first-order stochastically dominates (FOSD) continuing so that a ra-

tional decision-maker should withdraw. Under the additional restriction, R−
2 < RO

F ,

continuing when R−
2 realizes FOSD withdrawing so that a rational decision-maker

should continue. Imposing R−
2 < RO

F guarantees that the optimal second period

decisions are independent of a subject’s risk-preferences.7 The rational decision-

maker’s first-period maximization problem is then

(2.2)

max
x

(p1 + p2 − p1p2)u
(
xR+

F + (1− x)R1

)
+ (1− p1)(1− p2)u

(
xRO

F + (1− x)R1

)
From (2.1) and (2.2), it is clear that, under rationality, the three-period decision

problem is equivalent to a two-period decision problem when p = p1 + p2 − p1p2.

Yet, behaviorally, it may be more complex because the decision-maker first has to

recognize that R−
F is irrelevant in the final period in order to then recognize that

continuing in the second period when R−
2 realizes dominates withdrawing.

Note also that the expression in (2.2) is invariant to interchanging p1 and p2.

We deliberately designed this feature into the three-period problems so that we

could observe decisions under both versions, interchanging the values of p1 and

p2. Without loss, assume p1 < p2. We call the problem front-loaded when it

offers the highest return, R+
F , in the second-period with the larger probability p2.

Conversely, when the higher return occurs with the lower probability, p1, in the

5Forcing this decision to be binary greatly simplifies the problem.
6There exist three-period problems that are equivalent to two-period problems that require

only trivial contingent reasoning in the second period. For example, if both second period with-

drawal returns are less than the outside option in the final period, a rational decision-maker only
needs to reason contingently about the final period to recognize that the second period is irrelevant

(withdrawal is always dominated).
7If R−

2 > RO
F , the final period lottery between R+

F and RO
F may or may not be preferred to

withdrawing at R−
2 .
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second period, we call it back-loaded. Figure A.1 in Appendix A illustrates a pair

of decision problems, one of which is front-loaded and one of which is back-loaded.

Rational decision-makers will find the two problems equivalent, but a boundedly-

rational decision-maker that only looks forward one period, would invest more in

front-loaded problems than in the corresponding back-loaded problems.

3. Experimental Design

We designed two treatments, one for the two-period decision problems and one

for the three-period decision problems in a between subjects design. We refer to

the treatments simply as the two-period and three-period treatments, respectively.

We varied the withdrawal returns and their associated probabilities using the pa-

rameters shown in Table 1.

For the two-period treatment, we designed twenty two-period decision problems,

divided into five major groups numbered 1-5 in Table 1. Each problem within a

group (for example, problems 1a to 1d), has the same (p,R1, R
+
F , R

O
F ) parameter

combination. Only R−
F varies within the group, the parameter that should be

irrelevant to a rational investor’s choice. Given this fact, for a rational investor,

each decision problem within a group reduces to the same lottery task, one in which

the safe return is R1 and the risky return is R+
F with probability p and RO

F with

probability 1− p. Subjects in the two-period treatment therefore complete twenty

two-period decision problems and five lottery tasks. We placed the lottery tasks

after the decision problems, but within each set of tasks (decision problems and

lottery tasks), randomized the order across subjects.8

The parameters for the two-period decision problems were chosen to satisfy the

constraints discussed in Section 2 but also to meet several other goals. First, for

groups 1-3, we set the expected value of the lottery to be just higher than R1.

As such, any deviations from rationality for a risk-neutral decision-maker should

result in large decreases in investment. Across these three groups, we varied the

probability of the highest return and its value jointly, holding the expected value

fixed. Decision problems in group 4 are instead such that the expected value of

the the lottery is slightly lower than R1. This group therefore provides variation

that allows us to identify risk-neutral subjects as those that withdraw everything

in the first period. The decision problems in group 5 are such that investing first

order stochastically dominates (FOSD) withdrawing, thereby providing a strong

test for rationality - any deviation from investing everything indicates irrationality

regardless of risk preferences. Finally, note that the parameters allow for several

comparative static tests (e.g. the only difference between groups 2 and 4 is in R+
F ).

8We placed the lottery tasks after the decision problems because we did not want to cue
subjects that the decision problems might be reducible to a lottery.
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In the three-period treatment, we chose six of the two-period investment prob-

lems from Table 1 to construct three-period problems. We sacrificed intermediate

values of R−
F in order to generate additional variation along other dimensions. For

each of the six problems, we used the parameters of the two-period problem along

with p1 = .1, p2 = .44, and R−
2 = 0 or 0.9 to create four different three-period

decision problems in a 2x2 design: two had R−
2 = 0 and two had R−

2 = 0.9, and

two were such that the probability of R+
F in the second period was p1 (back-loaded)

and the other two were such that it was p2 (front-loaded). As with the two-period

decision problems, a rational decision-maker would reduce each decision problem

to a simple lottery. Doing so in this case, however, requires subjects to both reason

contingently and to reduce compound lotteries. Because subjects may have diffi-

culty doing the latter, in the lottery tasks, we described the lottery over R+
F and

RO
F as a compound lottery with probabilities p1 and p2. Thus, we had six lottery

tasks in total: two for each of the groups of problems labeled 1, 3, and 5. As in

the two-period treatment, the order of decision problems was randomized across

subjects, as was the order of the lottery tasks, but the lottery tasks were performed

after the decision problems.

In the three-period treatments, we vary R−
2 between the two values of 0 and

0.9 because these are (almost) at the two extreme ends of the parameter range

that satisfies the constraints discussed in Section 2. We chose p1 and p2 such that

p1 + p2 − p1p2 = p (to a high degree of precision) so that the three-period decision

problems are equivalent to the two-period decision problems in the same group for

a rational decision-maker. Furthermore, we made the difference between p1 and p2

quite large so that we would be able to pick up any difference across the front-loaded

and back-loaded problems.9

Summarizing, the design allows a rich set of comparisons to be made (on top the

parameter comparative statics not listed here):

(1) The two-period decision problems can be compared to their lottery coun-

terparts.

(2) The three-period decision problems can be compared to:

(a) their two-period decision problem counterparts.

(b) their compound lottery counterparts.

(3) The lotteries from the two-period treatment can be compared to the com-

pound lotteries from the three-period treatment.

9It is for this reason that we chose not to construct three-period problems equivalent to the
two-period problems with p = 0.2: p1 and p2 either have to be very similar or one of them has to
be close to zero (in which case it might be ignored completely).
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Decision Problem Two-period Three-period
p R1 R+

F R−
F RO

F p1 p2 R−
2

1a 0.5 1.5 2.2 0 1 0.1 .44 0,0.9
1b 0.5 1.5 2.2 0.3 1
1c 0.5 1.5 2.2 0.7 1
1d 0.5 1.5 2.2 1 1 0.1 .44 0,0.9
2a 0.2 1.5 4 0 1
2b 0.2 1.5 4 0.3 1
2c 0.2 1.5 4 0.7 1
2d 0.2 1.5 4 1 1
3a 0.3 1.5 3 0 1 0.05 0.26 0,0.9
3b 0.3 1.5 3 0.3 1
3c 0.3 1.5 3 0.7 1
3d 0.3 1.5 3 1 1 0.05 0.26 0,0.9
4a 0.2 1.5 3 0 1
4b 0.2 1.5 3 0.3 1
4c 0.2 1.5 3 0.7 1
4d 0.2 1.5 3 1 1
5a 0.3 1 3 0 1 0.05 0.26 0,0.9
5b 0.3 1 3 0.3 1
5c 0.3 1 3 0.7 1
5d 0.3 1 3 1 1 0.05 0.26 0,0.9

Table 1. Decision Problem Parameters

Differences in (1) and (2) identify failures of backwards induction, while differences

in (3) indicate a failure to reduce compound lotteries (on average, across subjects

only).

3.1. Implementation. We recruited gender-balanced groups of subjects from the

U.S. population for each treatment using the Prolific platform in April and May

of 2022.10 Subjects were directed to a website which used Qualtrics and custom

JavaScript coded by the the authors to run the experiment. Subjects first read in-

structions (replicated in Appendix C) for the decision problems and then answered

a series of comprehension questions which they had to answer correctly (with un-

limited attempts) to proceed. After completing the decision problems,they then

read further instructions for the lottery tasks, and again answered comprehension

questions before proceeding to the lottery tasks. We targeted 250 subjects for

each treatment, but ended up with 249 in the two-period treatment and 251 in the

three-period treatment. Average earnings were $4.15 for about 19 minutes of time

($13.13/hour) in the two-period treatment and $4.71 for about 25 minutes of time

($11.56/hour) in the three-period treatment, exceeding the minimum wage rate on

Prolific ($8/hour) by about 50%.

10Average age: 39.6 in two-period and 41.1 in three-period.



NOISY FORESIGHT 12

4. Results

In Section 4.1, we present the results of the two-period decision problems, estab-

lishing that subjects fail to correctly predict their own future actions. In Section

4.2, we show similar results for three-period decision problems, finding that in-

vestment does not simply decrease in these more complicated problems. Instead,

additional interesting comparative static results emerge. Finally, in Section 5, we

structurally estimate several potential models of behavior, finding that a model in

which subjects noisily forecast their future actions and cognitively discount future

payoffs best explains the patterns in the data.

4.1. Two-Period Results. We begin by testing whether or not subjects understand

that they will never choose the low return, R−
F , in the second period when making

first period choices. To simplify the interpretation of these results, we remove all

subjects that actually do choose dominated payoffs in the second period more than

twice - approximately 15% of subjects.11 We focus on the resulting dataset of 214

subjects for the remainder of the analysis.

Figure 4.1 summarizes investment choices in the first period of the two period

decision problems, plotting investment in the R−
F ∈ {0, 0.3, 0.7} problems against

that for the R−
F = 1 problem. We use investment in the R−

F = 1 decision problem as

the benchmark, instead of the lottery, because it holds constant the framing across

problems.12 In Figure A.2 of Appendix A, we provide a similar figure comparing

investment in the decision problems to investment in the lottery tasks, showing

similar, but somewhat noisier results.

Rational individuals, recognizing that R−
F < 1 will never be chosen in the second

period, would invest independently of R−
F so that all investments would lie on

the 45 degree line. Instead, for all five groups of decision problems and all three

R−
F values, we observe less investment when R−

F < 1. The 95 percent confidence

intervals indicate that each of the differences is significant at the 5% level, providing

our first main result.

Result 1. Average investment significantly decreases when the irrelevant second-

period return is less than that of the outside option, inconsistent with subjects ra-

tionally forecasting their own future actions.

11These subjects are likely simply not paying attention because choosing a smaller monetary
payment over a larger one is difficult to reconcile with any theory.

12We find that investment in the R−
F = 1 problem is actually significantly greater than that

in the lottery task, on average. This result suggests that framing as a decision problem versus a
lottery is consequential.
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Figure 4.1. Two-Period Investments

Notes: Each dot plots the investment in decision problems from groups 1-5, averaged across all
subjects, under R−

F = 1 on the x-axis, and under R−
F ∈ {0, 0.3, 0.7} on the y-axis. The error bars

indicate 95% confidence intervals in both dimensions.

The results of Figure 4.1 suggest that subjects, at least on average, do not

correctly forecast their future actions. One might conjecture that subjects should

rapidly learn away from this failure of contingent reasoning: after participating in

several problems, a subject should come to understand that they never actually

receive R−
2 and thus learn to ignore it. However, we find almost no evidence of

learning. Figure A.3 of Appendix A provides a figure corresponding to Figure 4.1,

but restricting the data to only the second half of the decision problems, after 10

repetitions have already been completed. There, we see very similar patterns of

reduced investment with R−
F < 1.

We also explore learning paramaterically. Regardless of risk preferences, we

would expect investment to increase as subjects learn that R−
2 is irrelevant and

therefore expect investment to increase over time if learning plays a role. However,

when we regress investment at the individual level on an indicator for the order of

the task, while controlling for individual and problem fixed effects, we find a very

precisely estimated zero coefficient on the task order (−0.007; p = 0.84). If we

include interactions between the subject fixed effect and task order, only 3% of the

interaction coefficients are significantly positive at the 5% level, suggesting that at

most a handful of subjects learn to any significant extent.13 Given little evidence

13We also ran regressions at the individual level, finding that only 6% of subjects have signif-
icantly increasing investment. We prefer the aggregate regressions because the individual results
could be spurious due to the particular order of the investment problems they observed.
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of learning, we continue to pool results across the order in which the problems were

observed.

Result 2. Subjects fail to learn to forecast their future actions at hypothetical events,

despite repeated play.

The comparative static with respect to R−
2 suggests some degree of irrationality,

but other comparative statics are as standard theories would predict.14 Specifically,

problems from group 5 should have higher investment than those in group 3 because

the parameters are identical except for R1, the outside option is lower in group 5

problems. Using a paired t-test with the average (across R−
2 values) individual

investment as an observation, we find a highly statistical difference (p < 0.001), as

visible in Figure 4.1. Similarly, problems in group 2 should have higher investment

than those in group 4 because R+
F is larger, and those in group 3 should have higher

investment than those in group 4 because p, the probability of R+
F , is larger. These

predictions are both seen to be correct in Figure 4.1, although neither difference

is statistically significant at the 5% level. Subjects therefore seem to respond to

the parameters of the environment as predicted, apart from irrationally responding

to changes in R−
F . These results immediately rule out theories in which subjects

hold constant beliefs about the probability of each return in the second period (e.g.

Laplacian beliefs).

Result 3. Subjects significantly respond to R1 and respond to R+
F and p in direc-

tions consistent with standard theory, thus ruling out theories in which subjects hold

constant beliefs about the probability of each return.

Looking at average investments masks individual heterogeneity - what percent-

age of individual subjects invest less when R−
F decreases? Figure 4.2 plots the

empirical cdf of the average (across decision problems) difference between an in-

dvidual’s investment when R−
F = 1 and each of the other three values. For all

three values, we observe that roughly 60% of subjects have negative average dif-

ferences, indicating less investment at lower R−
F values. Averaging over all R−

F

values less than one (dashed line), we find that the differences across different R−
F

values are correlated - the same subjects appear to invest less across all three R−
F

values. These results provide evidence that the average deviations from rationality

are concentrated among a subset of subjects, but those that make up a majority.

We explore this heterogeneity further when estimating models in Section 5.

The behavioral theories we consider in Section 5 require subjects to respect mono-

tonicity in payoffs and in probabilities. The lottery task corresponding to problem

14We formally show that the intuitive comparative statics we consider do indeed hold in a
general behavioral model. See Proposition 1 of Appendix B.
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Figure 4.2. Two-period Investments by Individual

Notes: Empirical cdf of the individual differences between investment with R−
2 = 1 and the

other three values (solid lines). Each difference is averaged across decision problems. The dashed

line represents the individual differences averaged across R−
F = 0, R−

F = 0.3, and R−
F = 0.7.

5 provides a test for monotonicity in probabilities: the investment return first-order

stochastically dominates (FOSD) the first-period withdrawal return. 44% of sub-

jects invest one in this lottery task, thus satisfying FOSD. Given that a majority of

subjects violate FOSD, one may wonder if the results thus far are being driven by

this subset of subjects. Figures 4.3 and 4.4 provide plots corresponding to Figures

4.1 and 4.2 for the 44% of subjects that do not violate FOSD.

Comparing the figures, we find that the results are actually stronger among the

subset of subjects that satisfy FOSD. All of the average investments in Figure 4.3

with R−
F < 1 remain significantly less than those with R−

F = 1 even though the

confidence intervals are wider. Furthermore, Figure 4.4 shows that close to 90% of

this subset of subjects invest lower amounts when R−
F < 1 (compared to only 60%

in the full dataset). One interpretation of this result is that subjects that violate

FOSD are likely inattentive and thus introducing noise.

Result 4. Even subjects that satisfy FOSD in the lottery tasks do not forecast their

own future actions correctly, investing less when the irrelevant second-period return

is less than the outside option.

4.2. Three-Period Results. As before, we exclude subjects that choose dominated

payoffs in the third period more than twice - 10% of subjects - resulting in a dataset

of 226 subjects. Figures 4.5 and 4.6 plot average investments and the empirical cdf
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Figure 4.3. Two-Period Investments (Subjects Satisfying FOSD)

Notes: Each dot plots the investment in decision problems from groups 1-5, averaged across all

subjects that satisfy FOSD in the lottery task, under R−
F = 1 on the x-axis, and under

R−
F ∈ {0, 0.3, 0.7} on the y-axis. The error bars indicate 95% confidence intervals in both

dimensions.

Figure 4.4. Two-period Investments by Individual (Subjects Sat-
isfying FOSD)

Notes: Empirical cdf of the individual differences between investment with R−
F = 1 and the

other three values (solid lines) for the subset of subjects that satisfy FOSD in the lottery task.
Each difference is averaged across decision problems. The dashed line represents the individual
differences averaged across R−

F = 0, R−
F = 0.3, and R−

F = 0.7.
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Figure 4.5. Three-Period Investments

Notes: Each dot plots the investment in decision problems from groups 1, 3, and 5, averaged
across all subjects, under R−

F = 1 on the x-axis, and under R−
F = 0 on the y-axis. For each

decision problem, we plot the front-loaded (F) and back-loaded (B) versions of the problem

separately. The left plot corresponds to R−
2 = 0 and the right to R−

2 = 0.9. The error bars

indicate 95% confidence intervals in both dimensions.

of individual differences in investment, respectively.15 Recall from Table 1 that for

the three-period decision problems, we have only two R−
F values, 0 and 1, but we

also have variation across two R−
2 values, 0 and 0.9. Also, we only have problems

1, 3, and 5 with two versions of each, one of which the probability of the highest

return is front-loaded (F) in the second period and one in which it is back-loaded

(B) in the third period.

The three-period treatment replicates the major patterns from the two-period

treatment. Figure 4.5 shows that, as in the two-period treatment, subjects react

to the inconsequential return: they invest less when R−
F = 0 than when R−

F = 1,

although not always significantly. They also rationally invest more in decision prob-

lems from group 5 than group 3 because R1 is lower in group 5, a finding we confirm

is significant at the 5% level. We again find little evidence of learning - Figure A.5

of Appendix A shows similar patterns to Figure 4.5 when we restrict to the second

half of the data after 13 decision problems have been completed. Parametrically,

the coefficient on task order in an aggregate regression is −0.004 (p = 0.781) and

with interaction effects, only 4.4% of subjects significantly increase investment over

15We include the comparison between lotteries and decision problems in Figure A.4 of Appendix
A.
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Figure 4.6. Three-period Investments by Individual

Notes: Empirical cdf of the individual differences between investment with R−
F = 1 and R−

F = 0

separately for R−
2 = 0 and R−

2 = 0.9 (solid lines). Each difference is averaged across decision

problems. The dashed line represents the individual differences averaged across R−
2 = 0 and

R−
2 = 0.9.

time.16 Finally, Figure 4.6 shows that the differences across decision problems with

different R−
F values are again concentrated among a subset of subjects.

Result 5. Three-period problems replicate the main results from the two-period prob-

lems. Investment significantly increases when R1 decreases. Investment decreases,

although not always significantly, when the irrelevant final period return is less than

the outside option. Subjects fail to learn with experience.

As before, we can also filter out subjects that violate FOSD in the lottery tasks.17

Here, subjects make decisions in two lotteries, corresponding to decision problems

5a and 5d, for which the investment returns first order stochastically dominate the

safe return. We filter out subjects that violate FOSD in either lottery task but

note that 80% of subjects that violate FOSD in either lottery violate it in both.

Figures 4.7 and 4.8 provide the plots corresponding to Figures 4.5 and 4.6 for the

42% of subjects that do not violate FOSD in either lottery. We find similar levels of

16In individual regressions, only 4.4% have significantly positive coefficients on task order in-

dicating learning. In three-period decision problems, subjects may be learning about rational

decisions both in the second and third periods, but we expect learning to increase investment as
in the two-period decision problems.

17Subjects can also violate FOSD in their second period decisions. 21% of decisions are to

continue when R+
2 is realized and 21% of decisions are to withdraw when R−

2 = 0 is realized (26%

when R−
2 = 0.9 is realized). To facilitate comparisons with the two-period problems, we do not

filter out these violations of FOSD.
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Figure 4.7. Three-Period Investments (Subjects satisfying FOSD)

Notes: Each dot plots the investment in decision problems from groups 1, 3, and 5, averaged

across subjects that satisfy FOSD in the lottery tasks, under R−
F = 1 on the x-axis, and under

R−
F = 0 on the y-axis. For each decision problem, we plot the front-loaded (F) and back-loaded

(B) versions of the problem separately. The left plot corresponds to R−
2 = 0 and the right to

R−
2 = 0.9. The error bars indicate 95% confidence intervals in both dimensions.

irrationality among those that satisfy FOSD. Overall, the results of the three-period

decision problems provide additional support for Results 1-4 that were based on the

two-period data.

The three-period problems generate additional comparative statics of interest.

Here, we focus on the subset of subjects that satisfy FOSD (the results are similar

in the overall sample, but noisier). Rational subjects should not respond to the

dominated second period return R−
2 or to the probability of the best return being

front-loaded versus back-loaded.18 However, we find more investment with R−
2 =

0.9 (0.63) than with R−
2 = 0 (0.58), a difference that is significant (p < 0.001 with

paired t-test of average individual investments).

We find no difference between the front-loaded and back-loaded decision prob-

lems (0.61 and 0.60, respectively; p = 0.82 with paired t-test) when averaging

across all R−
F and R−

2 values, but we can observe a clear pattern in Figure 4.7: the

front-loaded versions generally lie up and to the left of the back-loaded versions.

The average investment in front-loaded problems is 0.58 versus 0.53 in back-loaded

problems when R−
F = 0, but 0.63 versus 0.68 when R−

F = 1, both of which are

18When comparing the front-loaded versus back-loaded versions of the lotteries, we find no

difference, and also no difference with the corresponding reduced lotteries from the two-period
treatment, suggesting that subjects seem to reduce compound lotteries correctly (p > 0.44 for all
three comparisons via t-tests).
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Figure 4.8. Three-period Investments by Individual (Subjects
satisfying FOSD)

Notes: Empirical cdf of the individual differences between investment with R−
F = 1 and R−

F = 0

separately for R−
2 = 0 and R−

2 = 0.9 (solid lines) for the subset of subjects that satisfy FOSD in

the lottery tasks. Each difference is averaged across decision problems. The dashed line

represents the individual differences averaged across R−
2 = 0 and R−

2 = 0.9.

significant differences (p = 0.01 for each with two-sample t-tests). Thus, contrary

to the rational prediction, subjects do respond to front versus back-loading the

probability of getting the high return, but in a subtle way that depends upon the

lowest possible return in the final period.

Result 6. Subjects respond to the second-period returns and to how the probability

of the highest possible return is distributed across the second and third periods in

ways a rational subject would not.

To make comparisons between the two-period and three-period decision prob-

lems, we use only the comparable decision problems across the two treatments,

those from groups 1, 3, and 5 and with R−
F ∈ {0, 1}, and we continue to focus on

the subsets of subjects that do not violate FOSD in the lottery tasks. We find no

overall difference between the two and three-period problems: average investment

is 0.62 and 0.60, respectively (p = 0.62 via two-sample t-test), contrary to the

hypothesis the complexity is driving the difference across treatments.

However, when we break the average investment down by R−
F as in Table 2, we see

that the lack of a difference on average masks substantial heterogeneity: when R−
F =

0, subjects invest less in the two-period decision problems (although not significantly
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Table 2. Comparison of Two and Three-Period Problems

Two-period Three-period

R−
F= 0 0.49 0.55

R−
F= 1 0.75 0.66

Notes: Average investment across comparable decision problems in the two and three-period

treatments.

so, p = 0.17 in two-sample t-test), but when R−
F = 1, subjects significantly invest

more (p < 0.001 in two-sample t-test). Thus, subjects respond less to changes in

the final period return in the three-period problems. The differences in average

investments between problems with R−
F = 0 and R−

F = 1 are −0.26 in two-period

decision problems and −0.10 in three-period problems. The difference in differences

is highly significant in a two-sample t-test (p < 0.001). Combining these results with

the fact that investment is higher in the three-period problems with R−
2 = 0.9 versus

R−
2 = 0 provides some suggestive evidence for a form of discounting, something

which we consider further in the following section.

5. Model Estimation

The reduced-form results of the previous sections paint a picture of bounded ra-

tionality. On one hand, subjects do not forecast their future actions correctly when

making initial investment decisions. They respond to the irrelevant worst-case re-

turn in the final period and respond to changes in probabilities and intermediate

returns in the three-period problems in ways not predicted by a rational model. On

the other hand, they respond to changes in other returns as a rational actor would.

Over the next five subsections, we describe several candidate models of boundedly

rational behavior (5.1), and estimate and compare them. We first estimate CRRA

risk-preference parameters from the lottery tasks (5.2) and then use those to esti-

mate the models parametrically by individual (5.3). We then compare the models

(5.4) and show that the fit is better when we allow for cognitive discounting (5.5).

We conclude with a discussion of the model that fits best (5.6).

5.1. Models. We start by specifying a somewhat general behavioral model for a

two-period decision problem, in which, in the first period, the subject believes that

she chooses R+
F and R−

F with probabilities q1 and q2 conditional on each return

realizing.19 This model nests the fully rational model with q1 = 1 and q2 = 0, but

allows the subject to imperfectly perceive second-period choices. The first-period

19Thus the outside return RO
F is chosen with probabilities 1− q1 and 1− q2 when the R+

F and

R−
F returns realize, respectively.
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maximization problem is

max
x

pq1u
(
xR+

F + (1− x)R1

)
+ (1− p)q2u

(
xR−

F + (1− x)R1

)
+ [p(1− q1) + (1− p)(1− q2)]u

(
xRO

F + (1− x)R1

)
(5.1)

In it’s full generality, it is difficult to behaviorally interpret q1 and q2 in this model,

but additional assumptions generate popular classes of behavioral models. We

consider five such models here, and discuss how each can be extended to three

periods.

1) The rational model: q1 = 1, q2 = 0. This has an obvious extension to the

three-period case and has zero free parameters.

2) The näıve model in which the decision-maker ignores the outside option,

RO
F completely: q1 = 1, q2 = 1. This model also has zero free parameters. The

extension to three periods is straightforward - we assume the decision-maker applies

backwards induction, subject to the constraint that the outside option in the final

period is ignored.

3) The cursed model, a model based upon Eyster and Rabin [2005]’s concept of

cursedness. A fully cursed subject has correct beliefs ‘on average’ but ignores the

correlation between her future action and realized return. Thus, she thinks that

both of the high and low returns are chosen at the true unconditional probability,

q1 = q2 = p× 1 + (1− p)× 0 = p

As in Eyster and Rabin (2005), we allow a decision-maker to be partially cursed:

fully cursed with probability χ and fully rational with probability 1 − χ, so that

beliefs become

q1 = χp+ 1− χ, q2 = χp

χ is the single free parameter.

In three-period games, we assume that the decision-maker is either fully cursed

and understands none of the correlations between actions and payoffs (in neither

the second nor third periods) or is fully rational and understands them perfectly.

A fully cursed decision-maker’s beliefs about her final period action are exactly

as described above for the two-period fully cursed agent with p2 replacing p. Her

belief about her second period actions is that she continues with probability 1−p1,

the probability with which a rational decision-maker continues, irrespective of the

realized return. For a partially-cursed decision-maker, the probability of continuing

in the second period is the χ-weighted average of the fully cursed and fully rational

cases: that is, χ(1−p1) when R+
2 realizes and χ(1−p1)+(1−χ) when R−

2 realizes.

4) The ϵ-tremble or tremble model is one in which a subject thinks that at every

decision node, she takes the rational action with probability 1 − ϵ and takes the
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other action with probability ϵ. Thus, q1 = 1 − ϵ and q2 = ϵ. This model has one

free parameter, ϵ.

This model has an additional interpretation in terms of ambiguity. Suppose that

subjects perceive the true future return R∗
2(+) from the hypothetical event when

R+
2 realizes, as being ambiguous and distributed over the range [RO

2 , R
+
2 ] with full

support. Similarly, they perceive the true future returnR∗
2(−) from the hypothetical

event when R−
2 realizes, as being ambiguous and distributed over the range [R−

2 , R
O
2 ]

with full support. Then, an α-maxmin [Ghirardato et al., 2004] subject who assigns

probability α = ϵ to the best case scenario (best returns from the ranges realizing)

and 1−α to the worst case scenario (worst returns from the ranges realizing), would

behave exactly as in the ϵ-tremble model.

In three-period games, the extension is straightforward - trembles in the second

period occur with probability ϵ, but the ambiguity interpretation in this case is not

as straightforward.

5) The noisy self mode is similar to quantal response equilibrium: a decision-

maker believes that she will make correct decisions in future periods in proportion

to utility differences, but relaxes the assumption of her future actions matching

those beliefs.20 Thus, in this model, q1, q2 depend on the expected utilities from

the two choices in the following way:

q1 =
exp

(
νu

(
xR+

F + (1− x)R1

))
exp

(
νu

(
xR+

F + (1− x)R1

))
+ exp

(
νu

(
xRO

F + (1− x)R1

))
q2 =

exp
(
u
(
λxR−

F + λ(1− x)R1

))
exp

(
νu

(
xR−

F + (1− x)R1

))
+ exp

(
νu

(
xRO

F + (1− x)R1

))(5.2)

Contrary to quantal response equilibrium, our model allows subjects to make correct

decisions with probability 1 in the future, despite holding probabilistic beliefs. This

model has one free parameter, ν, which measures the sensitivity to payoffs. ν → ∞
corresponds to rational choice.

In the three-period game, the beliefs about third-period actions are the same as

above. We derive beliefs about second-period actions recursively again using the

logistic function. The expected utility of withdrawing is simply a function of the

realized withdrawal rate, R+
F or R−

2 . The expected utility of continuing depends

upon the beliefs over final period returns, q1 and q2, and the objective probability,

p2. The probabilities of continuing are then formed as in (5.2).

In addition to these belief-based models, we consider a sixth model inspired by

the work of Ke [2019]. The generalized mean model differs from the above models

20We use utility differences rather than payoff differences, because in the three-period model,

the extension to using payoffs would be to use expected value for second-period choices. But,
using expected utility would mean that subjects ignore their own risk preferences when forming
beliefs. Qualitatively, none of our conclusions change if we use payoffs instead of utilities.
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in that the decision-maker’s misperceptions enter through aggregations in payoffs

(utilities) in a way which cannot be modeled through expected utility with mis-

taken beliefs. Specifically, the decision-maker aggregates utilities using a generalized

mean. For the two-period decision problem, when R+
F realizes, the decision-maker

perceives the utility

u+ =

(
1

2

(
u(xR+

F + (1− x)R1)
)
γ +

1

2

(
u(xRO

F + (1− x)R1)
)
γ

)1/γ

Here, γ captures the degree of rationality, encompassing several possibilities. When

γ = 1, we have the average of the two possible utilities, when γ → ∞ we have

the maximum utility (rational), and when γ → −∞ we get the minimum utility

(deciding with the worst case scenario in mind), assuming utilities are positive.21

We can similarly define u− when R−
F realizes by replacing R+

F by R−
F in the above

expression. The decision-maker then maximizes the expected utility, pu+ + (1 −
p)u−. For the three-period problems, we define the overall utility recursively.22

5.2. Estimating risk-preferences. We begin by estimating the risk preferences of

each subject from their investment choices in the lottery tasks only.23 We follow

Friedman et al. [2022] who show how to transform the lottery problem in a way

that allows preferences to be estimated via OLS, assuming a CRRA utility function,

u(x) = x1−α

1−α . In this case, the first-order condition for the investment, x, that

maximizes expected utility in a reduced lottery task is24

p
(
R+

2 −R1

) (
xR+

2 + (1− x)R1

)−α
+ (1− p) (RF −R1) (xRF + (1− x)R1)

−α
= 0

After rearranging and taking the logarithm, this first-order condition can be written

(5.3) log
(xRF + (1− x)R1)(
xR+

2 + (1− x)R1

) = − 1

α
log

p
(
R+

2 −R1

)
(1− p) (R1 −RF )

21When utilities are negative, which for the CRRA utility function we specify below will occur
when α > 1, the generalized mean becomes undefined. Because when α > 1, all utilities are

negative, we handle this case in estimation by defining the generalized mean as the negative of the
generalized mean of the negative of the utilities. In this case, γ → −∞ corresponds to rational
behavior.

22For example, in the second period, when R−
2 realizes, utility is u− =(

1
2

(
u(xR−

2 + (1− x)R1)
)

γ + 1
2

(
uO

)
γ
)1/γ

where uO is the utility from continuing to the

third period which is constructed as in the two-period model, uO = p2u+ + (1− p2)u−.
23We experimented with estimating risk aversion along with the other parameters via maximum

likelihood, but ran into convergence problems and thus adopted the two-step procedure.
24Given evidence that subjects reduced the compound lotteries in the three-period treatment,

we simply estimate the reduced-form lottery.
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Figure 5.1. Risk Preferences

Notes: Empirical cdfs of the estimates of the CRRA coefficient, α, for each subject estimated
from the lottery choices in each treatment.

The left-hand side of (5.3) can be constructed from the investment choices observed

in the data. Positing a normally-distributed error term, we can then regress the left-

hand side on the logarithmic term on the right-hand side to obtain an estimate of α.

Note that we must exclude the lotteries in which the investment returns first-order

stochastically dominate the safe return (R1 = RF ), but these are uninformative

about risk preferences in any case. We therefore have four data points for each

subject in each treatment. We continue to exclude subjects which we excluded

from the reduced-form analysis - those who chose dominated payoffs more than

twice in the final period. Figure 5.1 plots empirical cdfs of the estimated risk

preferences in each treatment.

With the exception of four subjects in the two-period treatment, all subjects are

estimated to be risk-averse to varying degrees. The median estimate of α is 1.02 in

the two-period treatment and 0.66 in the three-period treatment.25

5.3. Estimating Model Parameters. Taking the estimated risk preferences as fixed,

we then use the data from the decision problems to estimate each of the twelve

candidate models.26 We estimate each model separately by individual.27

25The fact that subjects are estimated to be more risk-averse in the two-period treatment is

likely due to the inclusion of a lottery in which the probability of the high return is only 0.2 - this

lottery does not appear in the three-period treatment.
26To avoid numerical issues with the estimation procedure, we bound α between -1 and 5.

These limits bind for about 10% of subjects in each treatment.
27We estimated finite mixture models as well, obtaining qualitatively similar results and reach-

ing the same conclusions in terms of which models do best. But, given that we have sufficient

data at the subject level, we prefer the individual estimates.
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For the two-period treatment, we use only the twenty first-period investment

decisions (i.e. we ignore the second-period decisions because they are almost always

rational given we have removed subjects that make dominated choices). For each

candidate model, we calculate the expected utility for each possible investment,

x ∈ [0, 1], on a grid-size of 0.01, as in the data. We then use a logit error structure

to calculate the probability of observing the actual investment choice, x̂ :

(5.4) P (x̂) =
exp (λEU(x̂))∑

x=0,0.01,...,1 exp (λEU(x))

λ parameterizes the level of noise in the investment data - choices are random

when λ = 0 and the model fits perfectly as γ → ∞. This approach has been used

in estimating quantal response equilibrium models [McKelvey and Palfrey, 1995,

1998] and has been suggested by Harrison and Rutström [2008] to be favorable

to some from of non-linear least squares when corner choices are present because

it treats corner choices identically to others. It also has the distinct advantage

of not having to calculate optimal investment levels, which cannot be analytically

calculated for some of the models. Given the individual choice probabilities, the

log-likelihood in expression (5.4) is constructed simply by taking the logarithm of

each choice probability and summing them (thus assuming independent errors in

each problem, as is standard). We then estimate the parameters via maximum

likelihood.

For the three-period model, we use both first-period investment choices and the

second-period continuation decisions from the twenty-five decision problems. For

the second-period continuation decisions, we construct the choice probability as in

expression (5.4) using the amount invested in the first period, but for the binary

choice of continuing versus withdrawing. We allow for a different noise parameter, λ,

than that for first-period choices because we don’t expect the distributions of noise

to be similar for first and second-period choices. We then construct the likelihood

assuming independent errors across choices in the first and second periods and

across tasks so that the log-likelihood is again the summation of the logarithm of

the probabilities of each choice.28

Figure 5.2 plots empirical cdfs of the estimates of the rationality parameters

for each of the cursed, noisy self, tremble, and generalized mean models. In these

figures, we restrict to subjects with estimated noise parameters, γ > 0.001, because

for very noisy subjects, the other parameters of the model are not identified.29

Overall, the figures indicate significant heterogeneity across subjects. About 40 to

28If nothing is invested in the first period, the second-period choice is irrelevant so contributes

nothing to the likelihood.
297.5 to 48 percent of subjects are estimated to have γ < 0.001, depending on the model.
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Figure 5.2. Rationality Parameters Estimates

Notes: Empirical cdfs of the rationality parameters for each subject (χ, ν, ϵ, γ from left to

right), estimated from the decision problems in the two-period and three-period treatments.
Only estimates for subjects with noise parameter λ > 0.001 are included because the rationality

parameters are not identified for small values of λ.

60 percent of subjects are estimated to be rational, depending on the model.30 At

the other extreme, approximately 10 to 30 percent of subjects are estimated to be

completely irrational (but consistently so given that we are excluding very noisy

subjects).

5.4. Model Comparisons. We use likelihood ratio tests to compare nested models

(i.e. each model with and without cognitive discounting, as well as the rational

models to the cursed, noisy self, and tremble models). We use Vuong tests to

compare non-nested models (i.e. naive to the other four models and pairs of the

cursed, noisy self and tremble models). We do comparisons both at the individual

level and by aggregating the likelihoods. By comparing each model to the rational

model, we avoid the need to calculate standard errors for the estimated rationality

parameters, which is problematic in our setting for two reasons. First, due to noise

in the estimate of risk-aversion, α, which would have to be accounted for and,

second, due to the fact that standard errors cannot be calculated using standard

(outer product of gradient) methods when an estimate is at a corner.

30The levels of the rationality parameters required for a subject to be deemed rational in the

noisy self and generalized mean models is somewhat arbitrary. In Section 5.6, we look at the
probabilities with which subjects believe that they will make mistakes in the noisy self model,
which are more easily interpreted.
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Table 3. Model Comparisons : Two-period

Model Rational Näıve Cursed Noisy Self Tremble Generalized mean

Rational - 0.07 - - - -
Näıve 0.16 - 0.53 0.23 0.53 0.50
Cursed 0.22 0.08 - 0.02 0.01 0.07

Noisy self 0.55 0.22 0.46 - 0.38 0.37
Tremble 0.24 0.08 0.15 0.02 - 0.08

Generalized mean 0.35 0.12 0.16 0.05 0.08 -
Notes: Fraction of subjects for which the row model beats the column model by a model

comparison test at the five percent level. For nested models, only a one-way comparison is done
via a likelihood ratio test. For non-nested models, two-way comparisons are done using Vuong

tests. Boldface entries indicate the row model beats the column model in the aggregate at the

five percent level.

Table 4. Model Comparisons : Three-period

Model Rational Näıve Cursed Noisy Self Tremble Generalized mean

Rational - 0.22 - - - -
Näıve 0.04 - 0.31 0.18 0.24 0.11
Cursed 0.01 0.14 - 0 0.08 0.14

Noisy self 0.52 0.39 0.39 - 0.42 0.35
Tremble 0.15 0.18 0.10 0.05 - 0.15

Generalized mean 0.34 0.17 0.15 0.10 0.13 -
Notes: Fraction of subjects for which the row model beats the column model by a model
comparison test at the five percent level. For nested models, only a one-way comparison is done

via a likelihood ratio test. For non-nested models, two-way comparisons are done using Vuong

tests. Boldface entries indicate the row model beats the column model in the aggregate at the
five percent level.

Table 3 reports the results of the model comparison tests for the two-period

decision problems. Each entry indicates the fraction of subjects for which the row

model is better than the column model, and boldface entries indicate that the model

is better in the aggregate (at five percent levels of significance). The clear winner is

the noisy self model, which outperforms all of the other models in the aggregate. At

the other extreme, the cursed model is outperformed by all of the other behavioral

models. The tremble, näıve and generalized mean models are in the middle, with

the näıve model outperforming the other two: the extra parameter in each of the

tremble and generalized mean models does not significantly improve their fit.

Table 4 reports the results of the model comparisons for the three-period decision

problems. We again see that the noisy self model is the clear front-runner. It beats

every other model in the aggregate and explains at least 35 percent of individuals

better than any other model. The tremble model, followed by the generalized mean

model, are the only other models which fit better than the rational model in the

aggregate.
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One possibility is that some of the behavioral models fit better than others

because of inattentive subjects. To test for this possibility, we redo the model

comparison tests excluding subjects that violated FOSD in the lottery choices and

those with risk-aversion estimates greater than one (very high risk aversion may be

an artifact of choosing ‘middle’ values in the lottery tasks). After excluding these

subjects, we have 57 and 66 subjects in the two-period and three-period treatments,

respectively. Within these selected subsets of subjects, our results continue to hold:

the noisy self model dominates all of the other models in both the two-period and

three-period decision problems as before. In fact, the results are actually stronger

than in the full sample: in the three-period decision problems, noisy self beats each

of the other five models for at least 58 percent of these subjects.

One last way to see the dominance of the noisy self model is to look at the

fraction of subjects each model cannot explain at all (we use λ < 0.001 to identify

such subjects). In the two-period decision problems, this fraction varies from 7.5

percent with noisy self to 48 percent with näıve. But, more interestingly the 7.5

percent of subjects whose behavior the noisy self model cannot explain, can also not

be explained by any of the other models. In the three-period decision problems, the

noisy self model cannot explain behavior of 19 percent of subjects, but the fraction

of subjects that can’t be explained by any model is 5.8 percent. In almost all cases,

it is the generalized mean model that can explain the behavior of a subject that the

noisy self model cannot explain, which likely reflects the fact that the generalized

mean model allows subjects to choose the dominated payoff more than 50 percent of

the time, while the noisy self model does not. Overall, the model estimates strongly

suggest that the noisy self model best explains the data.

Result 7. A model in which subjects believe they will make the correct choice more

often when the payoff differences are larger (noisy self) best explains the data.

An obvious question is why is it that the noisy self model does so much bet-

ter than the other models? Given that the tremble model performs second best

in the three-period decision problems, it seems important that a model allow for

(perceived) probabilistic behavior in the second period. The other three models

only allow mistakes in the second period when the perceived value of continuing

to the third period is less than the realized second period payoff, which can only

happen when R−
2 is higher (0.9). However, given that the noisy self model outper-

forms all of the other models in the two-period decision problems, this advantage

does not appear to be the only reason for its success. Instead, note that the only

difference between the tremble and noisy self models is that in the noisy self model,

the decision-maker believes that the probability of taking the correct action in the
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future is proportional to the difference in utilities across actions rather than being

constant. Given that the noisy self model fits much better than the tremble model,

this proportionality seems to be crucial.

5.5. Cognitive Discounting. Intuitively, if subjects solve the decision problems for-

wards instead of backwards, they may place more weight on immediate payoffs than

future payoffs. The fact that subjects invest more in the three-period problems

when R−
2 increases, and respond less to R−

F in these problems than the two-period

problems is suggestive of some form of cognitive discounting or myopia.

To explore this possibility further, we consider variants of the previous models in

which payoffs are exponentially discounted by some discount factor, δ < 1: payoffs

one period ahead are multiplied by δ and those two periods ahead by δ2.31 We

emphasize that multiplying payoffs by δ is a simple, reduced-form way to capture a

lowering of perceived future payoffs due to working forwards or due to uncertainty

about which payoff will be received - we do not believe δ reflects literal discounting

over time given that all payoffs are received at the same time.

Figure 5.3 plots the estimated discount parameters, δ, for all fix models in the

two-period problems (left panel) and three-period problems (right-panel). The frac-

tion of subjects with δ < 1 varies from around 30% to 80% depending on the model

and type of problem, but the estimates are highly correlated across models. Across

the 30 possible pairs of correlations (15 for two-period and 15 for three-period),

the average Spearman correlation is 0.60 and all of the correlation coefficients are

significantly positive (p < 0.001 with one-sided test). These results suggest that

the estimates of the exponential discounting parameter are driven by some inherent

characteristic of data, and not by some regularity in the data that one particular

model is not capturing.

Further evidence for cognitive discounting comes from comparing the models

with and without discounting via likelihood ratio tests. For 4 out of 6 of the

models in two-period problems (the exceptions being the tremble and generalized

mean models) and all 6 models in three-period problems, the tests reject the model

without discounting at the 5 percent level.

Result 8. Estimates of structural models provide evidence for cognitive discount-

ing: every model in the three-period decision problems is improved by incorporating

cognitive discounting.

31In the noisy self model, we also use discounted payoffs when calculating the utilities that
enter the logistic function that determines beliefs. Our conclusions do not change if we instead
use payoffs that are not discounted.
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Figure 5.3.

Notes: Empirical cdfs of the amount by which final period payoffs are cognitively discounted (δ

in two-period problems and δ2 in three-period problems) for each subject, estimated from the

decision problems in the two-period treatment (left panel) and three-period treatment (right
panel). Only estimates for subjects with λ > 0.001 are included, because δ is not identified for

small values of λ.

5.6. Noisy Self Model Results. Given that the noisy self model with cognitive dis-

counting best explains results, we investigate it in greater depth. Because the

rationality parameters of the noisy self model are difficult to interpret, we calculate

the probabilities with which each subject believes they will make a rational choice in

the final period given the decision problem parameters and estimated model param-

eters. Figure 5.4 plots the empirical cdfs of the average (across decision problems)

beliefs of rational choice by subject (restricting to subjects with λ > 0.001).

We see that beliefs about making a rational choice when R−
F is realized are

systematically smaller than when R+
F is realized, consistent with the difference in

utilities being smaller in this case.32 Furthermore, the beliefs are smaller in the three

period decision problems than two period decision problems which is consistent with

the lower rationality parameter estimates in these decision problems (see Figure

5.2. On average, subjects believe they will make the correct choice 75 percent of

the time in two-period decision problems and 70 percent of the time in three-period

decision problems. Importantly, except for a small fraction of subjects that the

model cannot explain, these results imply that, on average, subjects believe they

will make mistakes, but not that their future actions will be completely noisy.

32In fact, the beliefs about rational choice when R−
F is realized are lowered by the fact that,

when R−
F = RO

F , subjects are indifferent independent of their rationality parameter.
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Figure 5.4. Noisy Self Beliefs

Notes: Empirical cdfs of the beliefs about the probability of rational choice in the final period.

For each subject, beliefs are averaged across decision problems. Only estimates for subjects with

λ > 0.001 are included.

Finally, we ask whether the explanatory power of the noisy self model with

cognitive discounting is driven by heterogeneity, with some subjects being explained

by cognitive discounting and others being explained by incorrect beliefs about future

mistakes. Figure 5.5 plots the cognitive discounting parameter estimate versus the

rationality parameter estimate for both the two-period (left panel) and three-period

(right panel) decision problems. To ensure differences in the rationality parameter

at low values are visible, we have capped the rationality parameters at 50.

From Figure 5.5, particularly in the three-period decision problems, we can

clearly see a mass of subjects for which both mistaken beliefs are important (ratio-

nality parameter is small) and cognitive discounting is also important (parameter

less than one). In fact, in these problems, 64 percent of subjects believe that they

will make mistakes when R+
F is realized more than 5 percent of the time and also

discount payoffs by more than 5 percent. Thus, even at the individual level, both

mistaken beliefs and cognitive discounting appear to be important.33

6. Discussion

We designed an experiment to capture rich behavioral data in which failures of

backwards induction can be attributed to failures to correctly predict one’s own

future actions, isolating failures of backwards induction itself from other causes of

departures from standard theory found in multi-player games (strategic ambiguity,

33We also looked for correlations between risk-aversion and rationality, and risk-aversion and
cognitive discounting, but found no obvious relationships.
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Figure 5.5. Noisy Self Parameters

Notes: Parameter estimates from noisy self model with cognitive discounting. The rationality

parameters have been capped at 50. Only estimates for subjects with λ > 0.001 are included.

other-regarding preferences, etc.). In perhaps the simplest possible setting requiring

backwards induction (our two-period decision problems), we find extensive failures

of backwards induction reasoning - subjects fail to predict their own future actions

even after extensive experience taking those actions. In more complex, three-period

problems, failures are also common, but, contrary to the hypothesis that subjects

simply ‘play it safe’ in more complicated problems, we find more subtle patterns in

the data.

From both reduced-form results and structural estimates, we find that subject

behavior can best be described by two intertwined reasoning failures: (i) subjects

imperfectly forecast their future actions, and (ii) they treat payoffs received in later

period as if they are discounted (cognitive discounting). Exploring several models

of incorrect foresight, we find that a model in which subjects believe that they will

make mistakes less often when the difference in utilities is larger best fits behavior

(the noisy self model).

We do not claim that the noisy self model with cognitive discounting is the

best model possible model of behavior. But, we do believe that its two features

are somewhat natural. The noisy self part of the model says that big differences

between the payoffs of future actions makes it more likely subjects will recognize the

correct action, forming correct beliefs. The cognitive discounting part of the model

says that when future actions, and thus payoffs are more certain, subjects place

more weight on payoffs that they can obtain immediately. It suggests that subjects

search forward through the decision problem, rather than backwards as standard
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theory would have them do (something which Johnson et al. [2002] provide direct

evidence for through MouseLab).

We hope theorists will take up the task of creating other models of behavior

that can explain the data we have collected. One plausible means of unifying

mistaken beliefs and cognitive discounting is through noisy perception. Gabaix and

Laibson [2017] have shown that noisy perception induces a form of myopia. And,

Frydman and Jin [2022] have shown that noisy perception can lead to dominated

payoffs being chosen. If subjects, when thinking about their future plan perceive

future payoffs noisily, it would then seem to lead to both a form of discounting and

mistaken beliefs. Producing a tractable model of noisy foresight that can be applied

in decision-making problems and games alike is a challenging, but worthy goal.
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Appendix A. Additional Figures

Figure A.1. Three-Period Decision Problems Which Interchange
p1 and p2
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Notes: With p1 > p2,the decision problem on the left is back-loaded while that on the right is

front-loaded. The parameters are from Table 1.
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Figure A.2. Two-period Investments Compared to Lottery Investments

Notes: Each dot plots the investment in lotteries from groups 1-5, averaged across all subjects,

on the x-axis, and for decision problems on the y-axis. The error bars indicate 95% confidence
intervals in both dimensions.

Figure A.3. Two-period Investments (Second Half of Data)

Notes: Each dot plots the investment in lotteries from groups 1-5, averaged across all subjects,

on the x-axis, and for decision problems on the y-axis. Only the second half of the data is used -
data for the first 10 problems is dropped. The error bars indicate 95% confidence intervals in
both dimensions.
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Figure A.4. Three-period Investments Compared to Lottery Investments

Notes: Each dot plots the investment in lotteries from groups 1, 3, and 5, averaged across

subjects, on the x-axis, and for decision problems on the y-axis. For each decision problem, we
plot the front-loaded (F) and back-loaded (B) versions of the problem separately. The left plot

corresponds to R−
2 = 0 and the right to R−

2 = 0.9. The error bars indicate 95% confidence
intervals in both dimensions.

Figure A.5. Three-period Investments (Second Half of Data)

Notes: Each dot plots the investment in lotteries from groups 1-5, averaged across all subjects,

on the x-axis, and for decision problems on the y-axis. Only the second half of the data is used -
data for the first 13 problems is dropped. The error bars indicate 95% confidence intervals in

both dimensions.
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Appendix B. Theoretical Results

Proposition 1. Assume a unique interior optimal solution, x∗, exists to the general

model in (5.1) with u′ > 0, u′′ < 0, q1 > 0, q′1 = 0, and q′2 = 0. The following

statements hold:

i) x∗ is strictly decreasing in R1. x∗ is strictly increasing in R+
F and p.

ii) x∗ is strictly increasing in RO
F for any q1, q2 such that max{q1, q2} < 1, including

for the rational case of q1 = 1, q2 = 0.

iii) x∗ is strictly decreasing in R−
F if and only if q2 > 0.

Proof. Proof of Proposition 1: Assuming an interior solution, the first order condi-

tion is

pq1(R
+
F −R1)u

′ (x∗R+
F + (1− x∗)R1

)
+ (1− p)q2(R

−
F −R1)u

′ (x∗R−
F + (1− x∗)R1

)
+[p(1− q1) + (1− p)(1− q2)](R

O
F −R1)u

′ (x∗RO
F + (1− x∗)R1

)
= 0

Next, we derive the comparative static with respect toR+
F . Differentiating implicitly

with respect to R+
F , we get

pq1u
′ (x∗R+

F + (1− x∗)R1

)︸ ︷︷ ︸+pq1(R
+
F −R1)

2u′′ (x∗R+
F + (1− x∗)R1

) dx∗

dR+
F

+(1− p)q2(R
−
F −R1)

2u′′ (x∗R−
F + (1− x∗)R1

) dx∗

dR+
F

+[p(1− q1) + (1− p)(1− q2)](R
O
F −R1)

2u′′ (x∗RO
F + (1− x∗)R1

) dx∗

dR+
F

= 0

As u′′ < 0, we have that dx∗

dR+
F

> 0 if and only if the underbraced term is strictly

positive which happens if and only if q1 > 0 as assumed. Similarly, one can show

that dx∗

dR−
F

, dx∗

dRO
F

≥ 0 and dx∗

dR1
≤ 0 under the relevant conditions.

We also derive the comparative static with respect to p, as it requires one extra

step. Differentiating the first order condition implicitly with respect to p, we get

q1(R
+
F −R1)u

′ (x∗R+
F + (1− x∗)R1

)
+ pq1(R

+
F −R1)

2u′′ (x∗R+
F + (1− x∗)R1

) dx∗

dp

−q2(R
−
F −R1)u

′ (x∗R−
F + (1− x∗)R1

)︸ ︷︷ ︸+(1− p)q2(R
−
F −R1)

2u′′ (x∗R−
F + (1− x∗)R1

) dx∗

dp

+(q2 − q1)(R
O
F −R1)u

′ (x∗RO
F + (1− x∗)R1

)︸ ︷︷ ︸
+[p(1− q1) + (1− p)(1− q2)](R

O
F −R1)

2u′′ (x∗RO
F + (1− x∗)R1

) dx∗

dp
= 0

The sum of the underbraced terms are positive, as q2(R1−R−
F ) ≥ (q2−q1)(R1−RO

F ),

and u′ is a decreasing function. Thus, dx∗

dp must be positive. □
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Appendix C. Instructions

The instructions for the two-period treatment are reproduced on the following

pages.
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The instructions for the three-period treatment are reproduced on the following

pages.
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