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1 Introduction

Both digital and traditional media receive substantial revenues from selling consumer attention

to advertisers (e.g., Statista 2021). Prices per unit of attention in these markets vary widely. On

television, prices per impression can easily vary across programs or networks by a factor of three

or more (e.g., Crupi 2009). Prices for online advertising exhibit similarly large variation (e.g.,

AdStage 2020). Which consumers’ attention commands the highest prices is a key determinant of

the incentive to produce content (Spence and Owen 1977; Wilbur 2008; Veiga and Weyl 2016).

Pricing in advertising markets has become an important issue in antitrust policy (e.g., Competition

and Markets Authority 2019).

Industry observers have long been puzzled by the large variation in the price of attention

across different groups of consumers. Perhaps the most famous example is the premium paid

to advertise on television programs with younger audiences. The premium attached to younger

audiences—who are sometimes known as the “coveted” or “target” demographic—is widely re-

garded as a major influence on content and scheduling, and persists despite the fact that older

audiences tend to have greater purchasing power than younger audiences (Dee 2002; Surowiecki

2002; Einstein 2004; Pomerantz 2006; Goettler 2012; Gabler 2014).1 Other documented price

premia include a premium for advertising to men relative to women (Papazian 2009) and (on a

per-impression basis) for advertising on programs with larger relative to smaller audiences (Chwe

1998; Phillips and Young 2012; Goettler 2012).

In this paper, we develop an equilibrium model of an advertising market with competing out-

lets. The model implies that the price per viewer that an outlet charges for its advertisements in

equilibrium is decreasing in the activity level of the outlet’s audience, i.e., in the extent to which

members of its audience visit competing outlets. We show that the model’s predictions are borne

out in data from the US television market, and can help explain well-known and potentially puz-

zling patterns such as premia for younger, more male, and (on a per-impression basis) larger audi-

ences. The predictions of the model are also in line with less-well-known facts that we document

1Gabler (2014 pp. 3-4) writes that “We live in a culture of the young, for the young and by the young, and anyone
over 49—the demographic breakpoint of old age for most television advertisers—is tossed onto the trash heap of
history, all eighty million of them. In effect, these people, just under one-third of the American population, have
been steadily disenfranchised by a ruthless, self-serving, myopic and ignorant dictator. That dictator is the eighteen
to forty-nine demographic cohort, and it is the single most important factor in determining what we see, hear and
read.” An advertisement run by the American Association for Retired Persons highlights the value of advertising to
older audiences. Its text reads “I may be gray, but my money is as green as it gets. Why is it all about 18-34, when
they barely have a dime of their own?” (quoted in Newman 2012).
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for social media advertising. A quantitative version of the model whose only free parameter is a

scale normalization can explain 35.1 percent of the variation in price per impression across owners

of television networks, and aligns with recent trends in television advertising revenue.

Our model builds on a large theoretical literature on two-sided markets beginning with Ro-

chet and Tirole (2003) and Anderson and Coate (2005), and extends Anderson, Foros, and Kind’s

(2018) model of advertising pricing in markets with multi-homing. In the model, each of a set of

owners may own multiple outlets, and each outlet may have multiple advertising slots. Owners

simultaneously announce prices to advertise on the slots they own, after which each of a set of

advertisers decides which slots to purchase. Advertisers have homogeneous value functions that

are submodular in the set of outlets on which they advertise. The number of slots on each outlet

exceeds the number of advertisers, so slots are not rationed in equilibrium, and because advertis-

ers are homogeneous, equilibrium is efficient. In particular, equilibrium follows the incremental

pricing principle of Anderson, Foros, and Kind (2018): the price an owner commands for its slots

is determined by the difference in an advertiser’s value from advertising on all outlets versus all

outlets except those controlled by the given owner.

An important special case of a submodular value function arises when advertisers face dimin-

ishing returns from multiple impressions to a given viewer, and viewers multi-home in a pattern

that is invariant to advertisers’ choices. In this case, the incremental value of an outlet’s advertising

slots is determined by the overlap of its audience with those of other outlets. As a result, the price

per viewer that an outlet can charge in equilibrium is decreasing in the overall activity level of its

audience, and increasing in the overall size of its audience. In the special case of perfect diminish-

ing returns, where advertisers value only the first impression to a given viewer, each outlet’s price

per impression is determined solely by the fraction of its audience that is exclusive to that outlet.

We study the model’s predictions empirically using data on television audiences and advertising

prices from Nielsen’s Ad Intel database, and audience survey data from GfK MRI. Consistent with

the predictions of the model, we show that outlets whose audiences watch more television charge

a lower price per impression for their ads. Turning to the demographic patterns that have received

significant attention in the industry, we find that the younger, more male audiences that command

a price premium are also those that watch the least television. We also find, consistent with prior

evidence and with the predictions of the model, that outlets with larger audiences command higher

prices per impression, even after accounting for the viewing intensity of their audiences.

We then turn to social media advertising, using data on prices of Facebook advertisements col-
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lected as part of a series of experiments including our own. In contrast to television, the young

are the heaviest users of social media. Treating television and social media as distinct ad markets,

our model predicts that older users should be the more “coveted” group on social media. Alter-

native explanations for the youth premium, such as the young having more malleable preferences

(Surowiecki 2002), would not all share this prediction. We show that the age-price relationship is

indeed reversed on Facebook, with the oldest users commanding the highest prices.

We evaluate the fit of a quantitative version of the model. We consider a specification with

perfect diminishing returns in which a given viewer’s probability of seeing an ad on a given outlet

is proportional to the time that the viewer spends on the outlet. Based on this specification we use

the audience survey data to calculate the incremental value of advertising on each outlet, which in

turn yields a prediction for the equilibrium price charged by each owner for its advertising slots.

We find that the model’s predictions are a good fit to observed prices. Predicted prices explain

35.1 percent of the variation in price per impression across owners, with a slope close to unity, and

exhibit the same qualitative patterns as observed prices with respect to age, gender, and outlet size.

The model also rationalizes the fact that television advertising revenues have risen slightly in the

last several years despite a decline in audience and impressions. This is true despite the fact that

the model’s quantitative predictions for relative prices across owners, and for trends in revenues

over time, are based only on the audience survey data and therefore do not use any information on

observed advertising prices.

We apply the quantitative model to three questions. First, we study the effects of several recent

mergers of television network owners on the combined advertising revenues of the merging entities.

The model-predicted effects vary widely in ways that would be difficult to predict using standard

concentration measures such as the Herfindahl-Hirschman Index (HHI), but are well-approximated

by measures based on the overlap in the merging entities’ audiences. Second, we study the effect

of competition on the incentive of television network owners to invest in content to attract different

kinds of audience members. We find that impressions from those in the oldest age group are

more than 82.8 percent less valuable than those in the youngest, and that this gap would attenuate

significantly if television network ownership were more concentrated. Third, we study the effect

of Netflix carrying advertising on the price of attention on linear television. In a scenario where

Netflix carries ads across its platform, and there is no change in audience behavior, we estimate a

decline in price per impression of between 0.38 and 2.7 log points across television owners, with

owners whose audience overlaps more with Netflix tending to experience larger declines in price
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per impression.

The primary contribution of this paper is to show that the predictions of a model of a competi-

tive advertising market with multi-homing are a good match, both qualitatively and quantitatively,

to existing and novel facts about important real-world markets. In contrast to many prior studies

of advertising markets (e.g., Kaiser and Wright 2006; Bel and Domènech 2009; Wilbur 2008; Fan

2013; Chandra and Kaiser 2014; Jeziorski 2014; Berry, Eizenberg, and Waldfogel 2016; Zubanov

2020), our quantitative model explicitly derives the price of advertising on a given outlet from

a microfounded equilibrium model with a multi-homing audience.2 Multi-homing is essential to

the model’s implications. In contrast to prior work that incorporates audience demographics into a

model of advertiser demand (e.g., Wilbur 2008; Liao, Sorensen, and Zubanov 2020), our model can

explain demographic premia in advertising prices without assuming that advertisers intrinsically

value certain demographic characteristics.

Our analysis provides a unified explanation of several facts, some of which are new to the

literature. There is a folk wisdom in television advertising that it is more expensive to advertise

to groups that are harder to reach (Surowiecki 2002; Papazian 2009; Gabler 2014).3 Some have

questioned the logic of this proposition.4 We provide what is to our knowledge the first systematic

evidence on the relationship between an outlet’s advertising prices and the activity levels of its

audience, and the first depiction of this relationship grounded in a quantitative economic model.

We also systematically document advertising premia related to audience age, gender, and size. In

the case of social media, while some industry sources report a premium for older audiences on

social media (e.g., Ampush 2014), we are not aware of prior evidence in the academic literature

showing that transaction prices in the US are greater for Facebook ads targeted to older users.5

2Gentzkow, Shapiro, and Sinkinson (2014) incorporate a microfounded model of advertising with multi-homing con-
sumers into a structural model of newspapers’ choice of political affiliation, but allow for only a small number of
outlets, and do not study the cross-sectional variation in advertising prices implied by their model. Prat and Val-
letti (forthcoming, Section 5) simulate effects of platform mergers under various assumptions about overlap in their
audience, though using a microfoundation different from ours. Greenwood, Ma, and Yorukoglu (2021) calibrate a
macroeconomic model in which consumers can consume multiple media goods but do not receive multiple advertise-
ments from the same advertiser.

3Papazian (2009) writes that, “As a rule, shows that pull higher proportions of easy-to-get heavy tube watchers come
in at lower [cost per thousand impressions] than those that rely less on this preponderantly lowbrow segment and
more on upscale audiences” (p. 134).

4Surowiecki (2002) writes that, “by this logic, advertisers ought to pay top dollar to reach sheepherders in Uzbekistan.”
5Lambrecht and Tucker’s (2019, Table 7) analysis of average suggested bids for a STEM career information campaign
on the Facebook platform across 191 countries indicates that average suggested bids are higher for ads targeted
to females. The analysis does not show clear differences in average suggested bids by the age of the target users
(columns 1 and 2) but does show evidence of interactions between age and gender (column 3). Our analysis differs
in using transaction price data from campaigns in the US rather than suggested bid data from a campaign across 191
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Turning to time trends, the fact that television advertising revenues have grown despite a declining

audience has been noted as a puzzle, but is predicted by our quantitative model.6

The paper also makes a contribution to the theoretical literature on advertising in two-sided

markets with multi-homing. In particular, we generalize the incremental pricing result in Anderson,

Foros, and Kind (2018) to allow for arbitrary submodular value and ownership structure. Unlike

Ambrus, Calvano, and Reisinger (2016) and Anderson and Peitz (2020), we do not model the

determination of the number of advertising slots. Unlike Athey, Calvano, and Gans (2018), we do

not allow heterogeneity among advertisers in our baseline analysis, though in an extension we show

that incremental pricing holds when the extent of heterogeneity is small or when owners can charge

advertiser-specific prices. Unlike Prat and Valletti (forthcoming), we do not focus on the effects of

the ad market on competition among advertisers, though we do allow for some interactions among

advertisers in an extension. As in Anderson, Foros, and Kind (2018), our model allows for a very

rich description of viewers’ choices of which outlets to watch, a feature we take advantage of when

developing the model’s quantitative implications.7

None of the evidence we present constitutes a pure test of the forces in the model, which would

require changing the competitive environment while holding all other conditions constant. Ac-

cordingly, each individual piece of evidence is subject to alternative interpretations, some of which

we highlight in the paper and test in sensitivity analysis. However, to us, the fact that a model that

builds on a large body of economic theory can explain such a wide range of facts—both qualita-

tively and quantitatively, and across markets, outlets, and over time—suggests that the economic

forces we highlight are important for understanding pricing power in competitive advertising mar-

kets.

The remainder of the paper proceeds as follows. Section 2 presents our model and its impli-

cations. Section 3 describes our data and variable definitions. Section 4 presents our key findings

about the determinants of advertising prices on television and social media. Section 5 presents

our quantitative implementation of the model, its fit to the data, and its applications. Section 6

concludes.

countries.
6The Economist (2021) writes that, “The Tokyo games illustrate a puzzle: as audiences decline, the TV-ad market is
holding up.”

7As in Prat’s (2018) analysis of media outlets’ political power, our analysis of outlets’ pricing power emphasizes the
importance of individual viewers’ allocation of attention.
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2 Model

There is a set of outlets J . A given owner can own multiple outlets, and we define a partition Z
on the set of outlets that describes the ownership structure, using the notation Z ∈ Z to refer both

to a cell of the partition and to the owner of the outlets in that cell. Each outlet has available K

advertising slots, each of which can be sold to one of the N advertisers in the set N . We assume

that N ≤K, i.e., that advertising slots are not scarce. Section 2.2 and Appendix A.3 discuss settings

with N > K. We let P (·) denote the power set operator.

The game proceeds as follows. Each owner Z simultaneously announces, for each bundle

B ∈ P (Z) of its outlets, a price pB at which it will sell one slot on each outlet j ∈ B to any

advertiser, with pB = ∞ denoting that a given bundle B is unavailable. Advertisers then move

sequentially in random order and decide which, if any, bundles to buy. When all advertisers have

moved, ads are shown and the game ends.

The payoff of an owner is given by the sum of the prices pB of all bundles B that the owner

sells. The payoff of an advertiser that buys slots in a set of bundles S ⊆ P (J ) is given by

V ({ j : j ∈ B ∈ S})− ∑
B∈S

pB

where V (·) is a non-negative value function that is monotonic in set-inclusion order.8 We capture

the idea that there are diminishing returns to advertising by assuming that V (·) is submodular: an

advertiser derives less incremental value from an outlet when adding it to a larger bundle.9 Section

2.2 discusses settings with partially increasing returns and with heterogeneity in advertisers’ value

functions.

The following examples exhibit monotonic and submodular value functions.

Example 1. There is a set of viewers. Each viewer sees any ad slot on outlet j with some proba-

bility. Each advertiser gets value ai ∑
M
m=0 βm from viewer i that views its ad M ∈ N times, where

ai > 0, β0 = 0, β1 > 0, and βm ≥ 0 is non-increasing in m for m ≥ 1. The following settings are

nested in this one:
8That is,

J ′ ⊆ J ′′ ⊆ J =⇒ V
(
J ′
)
≤V

(
J ′′
)
.

9Formally,
J ′ ⊆ J ′′ ⊆ J , j ∈ J \J ′′ =⇒ V

(
J ′∪{ j}

)
−V

(
J ′
)
≥V

(
J ′′∪{ j}

)
−V

(
J ′′
)
.
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(a) (Anderson, Foros, and Kind 2018.) There is a set of viewers, each of which views all ad

slots on a subset of the outlets, and ai = a for all i.

(b) (Awareness advertising with forgetting.) Each advertiser gets value ai > 0 from viewer i that

remembers seeing its ad. Each viewer remembers each ad they have seen with some probability,

independently across ads.

Example 2. There is a set of viewers, each of which views all ads on a subset of the outlets. There

is a partition C that groups the outlets J into categories. For each viewer that views its ad on an

outlet in category C ∈ C, each advertiser gets value aC > 0.

Example 3. Each outlet consists of K programs. Each program has one ad slot. Each advertiser

that purchases an ad slot on a given outlet is randomly assigned to the slot in one of the outlet’s

programs. There is a set of viewers. Each viewer views a subset of programs. Whether a given

viewer views a given program depends on whether that program carries an ad, but not on whether

other programs do. For each viewer that views its ad on M ∈ N distinct outlets, each advertiser

gets value u(M)≥ 0 where u(·) is nondecreasing and exhibits decreasing differences.

Remark 1. In Examples 1 and 2, viewers’ choices of which outlets to view are not affected by the

outcome of the game. We may interpret this either as a scenario in which viewers do not care about

advertising or, following Anderson, Foros, and Kind (2018), as a scenario in which viewers make

viewing decisions without knowing the outcome of the game. In Example 3, viewers’ choices of

which outlets to view are affected by the outcome of the game. We may interpret this as a scenario

in which viewers care about advertising and make viewing decisions knowing the outcome of the

advertising game.

Remark 2. Content owners such as television networks sometimes charge fees to viewers, either

directly via “over the top” subscriptions or indirectly via bundlers like cable networks. Our model

and analysis are compatible with the presence of such fees provided they are invariant to the out-

come of the advertising game. This would be true if, for example, fees to viewers are set prior to

the advertising game, or prior to viewers’ knowledge of its outcome. Section 5.2 augments our

model to include a content investment stage.

Our main result is that each owner is able to extract the incremental value of the outlets it

controls. To state this result, for a bundle B⊆ J , let the incremental value vB be given by

vB =V (J )−V (J \B) ,
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i.e., the value to an advertiser of advertising on all outlets rather than all outlets except those in B.

We assume that every outlet in J has positive incremental value, v j > 0 for all j ∈ J . We take an

equilibrium to be a subgame perfect equilibrium in pure strategies.

Theorem 1. (Incremental pricing) There exists an equilibrium. In any equilibrium, all advertisers

buy slots on all outlets, and the payment by each advertiser to each owner Z is given by p∗Z = vZ .

All proofs are given in Appendix A. Section 2.2 discusses settings with alternative market institu-

tions, including unbundled pricing, bargaining over or auctioning of ad slots, and viewer-level ad

pricing and targeting.

2.1 Comparative Statics

Consider a special case of Example 1 in which every owner owns a single outlet j ∈ J , and

diminishing returns are strict in the sense that β2 < β1. Suppose that there is a unit mass of

viewers subdivided into a set G of mutually exclusive demographic groups, with group g having

mass µg, so that ∑g∈G µg = 1. Members of group g ∈ G see ads on outlet j with probability

ηg j ∈ (0,1), independently across outlets. We assume that all viewers have the same intrinsic

value to advertisers, i.e. that ai = a for all i. Let

λ j = ∑
g∈G

µgηg j, σg j =
µgηg j

λ j

denote, respectively, the total mass of outlet j’s audience, and the share of this audience that comes

from group g. Then p∗j/λ j is the price per viewer charged by the owner for an ad slot.

Applying Theorem 1 with the structure of the value function V (·) in this case, we show two

comparative statics results. The first result is that, all else equal, an outlet commands a larger price

premium for its viewers if its viewers come from less active groups.

Proposition 1. Suppose that group g∈G is less active than group h∈G in the sense that ηg j ≤ ηh j

for all j ∈ J . Suppose that outlet j ∈ J draws a larger share of its audience from group g and

a smaller share of its audience from group h than outlet k ∈ J , in the sense that σg j ≥ σgk and

σh j ≤ σhk, and that the two outlets have equal total audience sizes, λ j = λk, and equal shares of

audience from groups other than g and h, σg′ j = σg′k for all g′ 6= g,h. Then outlet j has a higher

equilibrium price per viewer than outlet k, p∗j/λ j ≥ p∗k/λk.
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The inequality in the conclusion of Proposition 1 is strict if ηg j′ < ηh j′ for some j′ 6= j,k and

σg j > σgk.

Intuitively, Proposition 1 holds because, given diminishing returns, the incremental value of

showing an ad to a viewer who watches more outlets is lower than the incremental value of showing

an ad to a viewer who watches fewer outlets. Since more active viewers tend to watch more outlets,

this force puts competitive pressure on the prices that outlets can charge to show ads to these

viewers.

Remark 3. Multi-homing is essential to the result in Proposition 1. If there were only a single

outlet (J = 1), or if each group were to watch only one outlet with positive probability, then each

outlet’s price per viewer would be invariant to the group composition of its audience.

Remark 4. Appendix A.3 shows that a statement analogous to Proposition 1 holds for multi-outlet

owners when diminishing returns are perfect, i.e., βm = 0 for m ≥ 2. Competition is essential for

this result. If a single owner were to own all outlets, then the owner’s price per viewer would be

invariant to the group composition of its outlets’ audiences.

We next show that, all else equal, an outlet commands a larger price premium for its viewers if

the outlet attracts a larger share of the total audience.

Proposition 2. Suppose that outlet j has a larger audience than outlet k in the sense that for

some δ ≥ 1, ηg j = δηgk for all g ∈ G. Then outlet j has a higher price per viewer than outlet k,

p∗j/λ j ≥ p∗k/λk.

The inequality in the conclusion of Proposition 2 is strict if δ > 1. Intuitively, Proposition 2 holds

because viewers of the larger outlet tend to watch fewer other outlets, leading to less competitive

pressure on the price that the larger outlet can charge to show ads to its viewers. Appendix A.3

shows that a statement analogous to Proposition 2 holds for multi-outlet owners when diminishing

returns are perfect.

2.2 Extensions

Rationing of ad slots. Suppose that we may have N > K and assume that bundle prices can only

take on values in the set {0,∆,2∆, · · ·} where ∆ > 0 is some fixed increment.

Proposition 3. There exists a subgame perfect equilibrium, possibly in mixed strategies, and in

any subgame perfect equilibrium each owner Z earns an expected revenue per slot between (vZ−
∆)/|Z| and ∑ j∈Z V ({ j})/|Z|.
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Allowing for mixed strategies helps to guarantee existence of an equilibrium in this setting.

Partially increasing returns. Theorem 1 relies on submodularity of V (·). Under strict mono-

tonicity the conclusion of Theorem 1 obtains under a weakening of submodularity.

Proposition 4. Suppose V (·) is strictly monotone and that V (J ′∪Z)−V (J ′)≥V (J )−V (J \Z)
for all Z ∈ Z,J ′ ⊆J \Z. Then there exists an equilibrium, and in any equilibrium, all advertisers

buy slots on all outlets, and the payment by each advertiser to each owner Z is given by p∗Z = vZ .

The decreasing differences condition on V (·) in the hypothesis of Proposition 4 is strictly weaker

than submodularity. Suppose, for example, that owners are singletons, each of a set of viewers i

views at least L outlets, and an advertiser’s value for viewer i seeing its ad M times is ai ∑
M
m=0 βm

where ai > 0 for all i, β0 = 0,βm > 0 for all m, βm is non-increasing for all m ≥ L, and βL ≤
min1≤m<L βm. This setting satisfies the hypotheses of Proposition 4 but not necessarily those of

Theorem 1, and allows increasing returns to advertising for viewers receiving few impressions

(as in, e.g., Dubé, Hitsch, and Manchanda 2005). Appendix A.3 establishes that analogues of

Propositions 1 and 2 hold in this setting, and that the setting continues to satisfy the hypotheses of

Proposition 4 if a small number of viewers view fewer than L outlets.

Heterogeneous advertisers. Suppose now that each advertiser n ∈ N has a monotone and sub-

modular value function Vn (·). If outlets can post advertiser-specific prices, then the result is par-

allel to that in Theorem 1, in the sense that the equilibrium price of owner Z’s bundle to adver-

tiser n is given by vn,Z = Vn (J )−Vn (J \Z). If outlets cannot post advertiser-specific prices,

then incremental pricing holds if heterogeneity among the advertisers is sufficiently small com-

pared to the incremental value of a single outlet. Let vZ = minn∈N vn,Z and vZ = maxn∈N vn,Z

denote the minimum and maximum values of vn,Z , respectively, with respect to n. Let ϕ(Z) =

minn∈N , j∈Z Vn((J \Z) ∪ { j})−Vn (J \Z) denote the minimal incremental value of any one of

owner Z’s outlets. In the special case where Z is a single-outlet owner, ϕ(Z) = vZ .

Proposition 5. Suppose that heterogeneity in the value functions Vn (·) is small in the sense that

vZ − vZ ≤ 1
N ϕ(Z) for all Z ∈ Z . Then there exists an efficient equilibrium, and in any efficient

equilibrium, all advertisers buy slots on all outlets, and p∗Z = vZ for all Z ∈ Z .

It is immediate that, in the setting of Section 2.1, any efficient equilibrium obeys the comparative

statics in Propositions 1 and 2.
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The hypothesis of Proposition 5 restricts the incremental values rather than the level of Vn (·),
in the sense that it allows for Vn(·) = V (·)+ cn for any cn that preserves non-negativity.10 The

restriction on incremental values becomes more demanding as the number of advertisers, N, grows

large.

Unbundled pricing. It is useful to be able to characterize the price of an owner’s individual

outlets. To do this we can imagine that some owners are not allowed to bundle slots on all of their

outlets together. Formally, each owner Z is endowed with a partition FZ of Z such that they are

only allowed to bundle outlets in the same cell of the partition. Denote by vS
B = V (S)−V (S\B)

the incremental value of bundle B in S⊆J . We refine the notion of equilibrium by assuming that,

when indifferent, owners break ties in favor of offering fewer bundles, and each advertiser breaks

ties by favoring owners according to a prespecified ordering.

Proposition 6. In any equilibrium satisfying the tie-breaking rule, each bundle sold has a price of

p∗B = vS
B, where S⊆ J is the set of all outlets sold.

In general, existence of an equilibrium is not guaranteed. Appendix A.3 establishes the existence

of an equilibrium in a special case in which the comparative statics of Proposition 2 hold.

Bargaining between owners and advertisers. Suppose that rather than simultaneously posting

prices, owners bargain with advertisers a la Nash-in-Nash (Lee, Whinston, and Yurukoglu 2021).

Proposition 7. If all owners have identical bargaining weights, there exists a Nash-in-Nash equi-

librium in which all advertisers buy slots on all outlets, and the payment by each advertiser to each

owner Z is proportional to vZ . If V (·) is strictly monotone, then this outcome is unique.

The proof of Proposition 7 shows that, in the more general case where owners have different

bargaining weights, there exists an equilibrium in which the payment to each owner Z is given by

the product of the owner’s bargaining weight and vZ . If, further, V (·) is strictly monotone, then

this outcome is unique.

Auctioning of advertising slots. Suppose that rather than simultaneously posting prices, owners

simultaneously set reserve prices for each of their bundles, and then conduct simultaneous first-

price auctions.
10When there are two or more owners, it also allows for Vn( /0) = V ( /0) and Vn(J ′) = V (J ′)+ cn for /0 6= J ′ ⊆ J ,

where cn ≥ 0.
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Proposition 8. If owners simultaneously set reserve prices and then conduct simultaneous first-

price auctions, there exists an equilibrium, and in any equilibrium all advertisers buy slots on all

outlets, and the payment by each advertiser to each owner Z is given by vZ .

Appendix A.3 further characterizes equilibrium in a model where owners conduct auctions, adver-

tising slots are scarce, and advertisers’ valuations are heterogeneous.

Viewer-level ad pricing and targeting. Suppose that each owner can post viewer-specific prices

for each bundle. Suppose that V (·) = ∑iVi (·), where Vi (·) is the value function if viewer i were

the only viewer, and vi,B =Vi (J )−Vi (J \B) is the viewer-specific incremental value of bundle B.

Proposition 9. Suppose that Vi (·) is monotone and submodular and that vi, j > 0 for all i and j.

Then there exists an equilibrium. In any equilibrium, for any viewer i, all advertisers buy slots on

all outlets, and the payment by each advertiser to each owner Z is given by p∗i,Z = vi,Z .

In the setting of Proposition 9, the total payment ∑i vi,Z = vZ by each advertiser to each owner Z is

equivalent to that under Theorem 1. Note that Example 1 satisfies the hypotheses of Proposition 9

if βm > 0 for all m ≥ 1, and each viewer i views any ad slot on each outlet j with strictly positive

probability.

Competition between advertisers. Appendix A.3 provides additional conditions under which a

modified incremental value pricing equilibrium exists when an advertiser’s value for advertising

depends not only on the slots they purchase but also on those purchased by other advertisers.

3 Data

3.1 Television Advertising Prices, Audience, and Ownership

We obtain data on broadcast and cable television viewership and advertisement pricing in 2015

from Nielsen’s Ad Intel product (The Nielsen Company 2019). For each advertisement the data

includes the telecast (e.g., NBC Nightly News, June 1), program (e.g., NBC nightly news), daypart

(e.g., early fringe), and network (e.g., NBC). It also includes the duration (e.g., 30 seconds) of

the advertising spot, an estimate of its cost, and an estimate of the number of impressions (live

viewers) for the associated telecast. We omit from all calculations any advertisements with zero
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cost or duration. We standardize the cost to a 30-second-spot basis by dividing the cost by the

duration of the advertisement (in seconds) and multiplying by 30.

Advertising cost estimates in the AdIntel data are based on information obtained at the month-

network-daypart level for cable television and at the month-program level for broadcast television

(The Nielsen Company 2017). For consistency we therefore define our notion of an outlet j to be

a network-daypart.11 Appendix Figure 1 reports results when using network as our notion of an

outlet, and also (for broadcast television) when using program.

For each outlet, we calculate total impressions across all advertisements and divide by the num-

ber of hours in the corresponding daypart in a 52-week year to get a measure of total impressions

per hour, which we take as analogous to the concept λ j defined in Section 2.1. For each outlet,

we also calculate the total (standardized) cost of all advertisements and divide by the number of

hours in the corresponding daypart in a 52-week year to get a measure of total cost per hour, which

we take as analogous to the concept p∗j defined in Section 2.1. Finally, for each outlet we divide

total cost per hour by total impressions per hour to obtain the average price per impression of a

30-second spot on the outlet, which we take as analogous to the concept p∗j/λ j defined in Section

2.1.

For each advertisement we also have information on the number of impressions by age (in

bins) and gender for the associated telecast.12 From this information we compute the share of

each outlet’s impressions that are to adults (aged 18 and over) and the share among impressions to

adults that are to females. We also compute the average age of each outlet’s adult impressions by

imputing each bin to its midpoint value and imputing the oldest bin (65+) to age 75.13

For a subset of advertisements representing 99.9 percent of all impressions, we also have in-

formation on the distribution of impressions across household income bins for the associated pro-

gram.14 From this information we compute the average household income of each outlet’s adult

11In cases where a telecast spans multiple dayparts, we assign it to the daypart that contains the largest share of
broadcast time.

12The age bins are 2-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-64, and
65+ years.

13Using information on each advertisement’s advertiser, we also compute the share of each outlet’s adult impressions
that are to advertisements in each of a set of industry categories, which we use in sensitivity analysis.

14The bins are 0-20, 20-30, 30-40, 40-50, 50-60, 60-75, 75-100, 100-125, and 125+, all in thousands of dollars. For
programs representing 96.2 percent of all impressions, we have information on the distribution of impressions across
household income bins for each month, from which we compute an annual average for the program. For programs
representing 3.7 percent of all impressions, we have information on the distribution of impressions across household
income bins for each of a subset of the program’s telecasts, from which we compute an average for the program. We
associate each advertisement with the average distribution of impressions for its respective program.
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impressions (among those for which we measure income) by imputing each bin to its midpoint

value, and imputing the highest-income bin ($125,000+) to $175,000.

We obtain from SNL Kagan, a product of S&P Global Market Intelligence, information on the

ownership of cable networks in 2015 (S&P Global Market Intelligence 2019). We supplement this

with other publicly available information, including on the owners of broadcast networks. We form

the ownership partition Z by assigning each outlet to its majority owner, treating joint ventures as

independent ownership groups. We perform analogous calculations to those at the outlet level to

compute the price per impression and audience demographics of each owner Z ∈ Z .

We conduct our main analysis of the television market using data from 2015, but for sensitivity

analysis and extensions we use data from 2014 through 2019, with concepts defined and calculated

in an analogous manner to those we have described for 2015. Appendix Figure 2 reports sensitivity

analysis replacing data from 2015 with data from 2014 or 2016.

3.2 Social Media Advertising Prices

We obtain data on the cost of advertising to different audiences on Facebook via an original exper-

iment conducted for this study and a separate advertising campaign conducted for a different study

(Allcott et al. 2020a). In both cases advertisements were placed through Facebook’s Ad Manager.

In the Facebook advertisement structure, an advertisement set is a group of one or more advertise-

ments with a defined audience target, budget, schedule, bidding, and placement. An advertising

campaign is a group of one or more advertisement sets corresponding to a single campaign objec-

tive (Facebook 2022). All advertisements targeted English speakers in the United States.

For our experiment, we administered an advertising campaign from July 15, 2017 through July

22, 2017 in partnership with GiveDirectly. The campaign consisted of 14 separate advertisement

sets targeting each combination of gender and age group in {Men, Women}×
{13-17, 18-24, 25-34, 35-44, 45-54, 55-64, 65+}. Each advertisement set included just one ad-

vertisement, with fixed budgets of $20 a day using automated cost-per-click bidding. For each

advertisement set, we obtain the price per impression.

From Allcott et al. (2020b), we obtain data from 32 advertisement sets purchased on September

24, 2018: four each targeting each combination of gender and age group in {Men, Women}×
{18-24, 25-44, 45-64, 65+}. We compute the total cost and total number of impressions for each

demographic group, and take the ratio of these to obtain the price per impression.

15



3.3 Audience Survey

From GfK MRI’s 2015 Survey of the American Consumer we obtain, for each of 23978 adult

respondents, information on times of day spent watching television in the form of a week-long

diary, as well as the implied total weekly television viewing time (GfK Mediamark Research and

Intelligence 2017). We compute a measure of total viewing time in each daypart by allocating

viewing time in each time slot to AdIntel dayparts in proportion to the share of the time slot

that is contained within each daypart. We also obtain measures of viewership of each of 227

broadcast television programs,15 and time spent watching each of 115 cable television networks

in the preceding week. We successfully match 173 broadcast programs and 97 cable television

networks to their counterparts in AdIntel.16

We use the data on viewership by daypart, broadcast program, and cable network to construct

a measure of the time that each respondent viewed each outlet (network-daypart) j. To do this, we

first allocate the viewing time of broadcast programs to their respective network-dayparts.17 If in

a given daypart there is viewing time that cannot be attributed to broadcast programs, we allocate

that time to the cable networks in proportion to the respondent’s reported viewing time of each

network.18

We thus arrive at a measure of the time each respondent viewed each outlet j. We compute each

respondent’s total weekly viewing time by summing over outlets. For each outlet j, we compute

the weighted average log of total weekly viewing time of its viewers, weighting each viewer by

her viewing time on outlet j.19 We treat average log total weekly viewing time as a measure of the

15The data record the number of times a respondent watches a broadcast program in a typical week (for some broadcast
programs) or month (for others). We convert the latter into weekly viewing by allocating monthly viewing time
evenly across weeks.

16The broadcast programs we match span 6 networks. Some programs (e.g. those on PBS) and some cable television
networks (e.g., the Disney Channel, QVC) are excluded from AdIntel because they do not carry standard advertising
spots.

17Specifically, we associate each program with a network-daypart following the 2014–15 United States Network Tele-
vision Schedule (Wikipedia 2022). We supplement this source with information from the Sunday News Journal (The
News Journal 2015) and other publicly available information on the program’s network and airtime, and use infor-
mation on the respondent’s geographic location to adjust for time zones. If the total duration of broadcast programs
allocated to a given daypart exceeds the respondent’s total viewing time of that daypart, we assume that all viewing
during that daypart was to broadcast programs, and we allocate the respondent’s viewing time during that daypart
to broadcast networks in proportion to the respondent’s viewing time of each broadcast network’s programs. We
assume that each broadcast program viewing has the same duration, and choose that duration so that the ratio of
average total broadcast viewing hours and average total cable viewing hours is equal to the one in Nielsen Local TV
View (The Nielsen Company 2021).

18If the respondent reports zero viewing time for all cable networks, we instead allocate all viewing time during that
daypart to broadcast networks in proportion to the respondent’s viewing time of each network.

19We exclude from this calculation any respondent with zero total weekly viewing time.
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overall activity level of outlet j’s audience.

We also obtain information for each respondent on the total time spent using the internet in

an average week (calculated based on reported time spent on three recent days), and on the share

of five social media sites (Facebook, Instagram, Reddit, Twitter, and YouTube) visited in the pre-

ceding 30 days. In addition, we obtain information on each respondent’s gender, age (in bins),20

household income (in bins),21 reported attentiveness to different broadcast and cable programs,

and attitudes towards television advertising.

As with the television data described in Section 3.1, we conduct our main analysis using data

for 2015, but for sensitivity analysis and extensions we use data from 2014 through 2019, with

concepts defined and calculated in an analogous manner to those for 2015. For 2019, we addition-

ally obtain data on time spent watching Netflix, which we use in counterfactual analysis in Section

5.

4 Evidence on the Determinants of Advertising Prices

4.1 Television

Proposition 1 predicts that outlets with a more active audience will command a lower advertising

price per impression. Figure 1 shows that this prediction is borne out in the case of television

advertising. Each panel shows a binned scatterplot of an outlet’s log(price per impression) against

the average log(weekly viewing time) of the outlet’s audience. Panel A includes baseline controls

including for daypart; Panel B additionally includes controls for log(impressions per hour).

Both panels of Figure 1 show a clear negative relationship between log(price per impression)

and average log(weekly viewing time). The magnitude of the relationship is large: in Panel B, for

example, moving from the bottom to the top decile of average log(weekly viewing time) corre-

sponds to a decline in log(price per impression) of roughly 163 log points.

Proposition 1 also makes predictions about which demographic groups should command a

price premium in the advertising market. Appendix Figure 4 shows that older viewers watch more

20The age bins are 18, 19, 20, 21, 22-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, and
75+ years. We impute each individual’s age to the midpoint of the corresponding bin, imputing the highest bin to
77.

21The household income bins are 0-4999, 5000-9999, 10000-14999, 15000-19999, 20000-24999, 25000-29999,
30000-34999, 35000-39999, 40000-44999, 45000-49999, 50000-59999, 60000-74999, 75000-99999, 100000-
149999, 150000-199999, 200000-249999, and 250000+ US dollars. We impute each household’s income to the
midpoint of the corresponding bin, imputing the highest bin to $300,000.
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television than younger viewers and that female viewers watch more television than male viewers.

The logic of Proposition 1 would lead us to expect that outlets with an older audience would

command a lower advertising price than outlets with a younger audience, and likewise for outlets

with a more female audience. Figure 2 shows that these predictions are borne out in the data:

outlets with older, more female audiences tend to exhibit both lower log(price per impression) and

higher average log(weekly viewing time). The price differences between outlets with different

demographics are large.

Proposition 2 predicts that outlets with a larger audience will command a higher advertising

price per impression. Figure 3 shows that this prediction is borne out in the data. Panel A shows

a binned scatterplot of log(price per impression) against log(impressions per hour) with baseline

controls. Panel B additionally controls for average log(weekly viewing time). Both plots show

that a larger audience is associated with a higher price per impression, consistent with the logic of

Proposition 2. The association is economically meaningful: in Panel B, for example, moving from

the bottom to the top decile of log(impressions per hour) corresponds to an increase in log(price

per impression) of roughly 37 log points.

Columns (1) and (2) of Table 1 summarize the patterns in Figures 1 through 3. Table 1 and Ap-

pendix Figure 3 report results controlling for the average household income of an outlet’s audience.

Appendix Figure 3 additionally shows sensitivity to controlling for measures of the attentiveness

to television and attitudes toward advertising of the outlet’s audience,22 and the industry mix of the

outlet’s advertisers.

4.2 Social Media

Whereas older people are the heaviest television viewers, younger people are the heaviest users of

the internet and social media. Appendix Figure 5 shows that time online (Panel A) and visits to

social media sites (Panel B) are decreasing in age. This sets up an interesting test of the predictions

of Proposition 1. Treating television and social media advertising as separate markets, Proposition

1 predicts that social media advertising prices should be increasing in audience age, in contrast to

the decreasing pattern we see for television advertising prices.

Figure 4 shows that the direction of the age-price gradient is indeed reversed on social media.

This is true both according to data we collected in our own experiment (Panel A) and according to
22McGranaghan, Liaukonyte, and Wilbur (forthcoming) find that younger audiences pay less attention to television

advertising than older audiences. Alwitt and Prabhaker (1994) find that demographic characteristics are not strong
predictors of attitudes toward television advertising.
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data collected as part of Allcott et al.’s (2020a) study (Panel B). These differences are large, with

the oldest group commanding a premium of 122 log points (Panel A) or 57 log points (Panel B)

relative to the youngest group, on average across genders. We view this evidence as consistent

with the mechanism underlying Proposition 1, and more difficult to square with some alternative

explanations for the differential value of older vs. younger viewers to advertisers, such as intrinsic

differences in the malleability of their preferences (Surowiecki 2002).23 Appendix Figure 6 repeats

the analysis in Figure 4 using data on price per click rather than price per impression.

Differences in the age premium between television and social media advertising make sense

only if advertisers view ads in the two media as imperfect substitutes. Otherwise, we would expect

television and social media to function as a single ad market, with identical relative prices for

different groups of viewers. Several facts are consistent with imperfect substitutability. First,

industry sources often suggest that television and social media ads tend to serve different functions,

with the former best suited to “top of funnel” brand building strategies and social media ads best

suited to “low funnel” activities like acquiring customers and inducing immediate purchases (e.g.,

The Nielsen Company 2018, p. 38). Second, consistent with this, the firms that advertise the

most online are often different from those that advertise the most on television. In 2015 the top

50 television advertisers accounted for 44 percent of television spending but only 17 percent of

spending online; the top 50 online advertisers accounted for 36 percent of online spending but only

27 percent of spending on television (see Appendix Table 1). Finally, as we discuss in more detail

in Section 5, the dramatic rise in online advertising since the early 2000s has not corresponded

with any significant decrease in television advertising spending. Television advertising spending

continued to increase through the mid-2010s and has only begun to decline in recent years, in

contrast to print advertising spending which fell consistently as online advertising grew (Kitterman

2020). The evidence in Figure 4 supports the joint hypothesis of imperfect substitutability and price

determination consistent with our model.

Unlike age, gender is not strongly associated with activity levels online. Appendix Figure 5

shows that males tend to report spending more time on the internet (Panel A), but visiting fewer

social media sites (Panel B). Correspondingly, Figure 4 does not show a consistent price premium

for advertising to male or female audiences on social media.

Appendix Figure 7 shows the relationship between estimated log(price per impression) of dis-

23Smith, Moschis, and Moore (1985) find that older consumers rely more on advertising when making purchasing
decisions than do younger consumers, though DeLorme, Huh, and Reid (2006) find no evidence of age differences
in overall behavioral responses to direct-to-consumer prescription drug advertisements.
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play advertisements and audience demographics across a sample of platforms. The data on prices

are imputed from a statistical model that is estimated on data from a range of sources (The Nielsen

Company 2017). The data on audience demographics come from a survey and do not reflect view-

ership intensity. The advertisements in the sample are likely more heterogeneous than those in our

controlled buying experiment. The plots show no clear relationship between price per impression

and the age or gender composition of the platform’s audience.

5 Quantification and Applications of the Model

Consider the special case of Example 1 with perfect diminishing returns (βm = 0 for m ≥ 2). For

viewer i∈ I who spends time Ti j viewing outlet j, suppose the probability of seeing an ad placed in

one of that outlet’s slots is given by ηi j = Ti j/Tj independently across outlets j, where Tj is outlet

j’s total broadcast time. Given data on viewing times, an ownership partition Z , and a vector

of advertisers’ value of reaching each viewer (a1,a2, . . . ,a|I|), it is then possible to calculate the

equilibrium price p∗Z = V (J )−V (J \Z) implied by Theorem 1, as well as the price per viewer

p∗Z/λZ defined analogously to Section 2.1. In particular,

p∗Z =
1
|I|∑i∈I

aiηiZ ∏
Z′ 6=Z

(1−ηiZ′) , λZ =
1
|I|∑i∈I

ηiZ, ηiZ = 1−∏
j∈Z

(
1−ηi j

)
where ηiZ is the probability of viewer i seeing an ad placed in one of owner Z’s slots.

We perform this calculation in the audience survey data, letting Ti j be the number of hours

that respondent i spent watching outlet j in the last week. We implement two specifications, a

specification in which ai = a for all i, and a specification in which ai is proportional to household

income for all i. For each specification, we calculate the predicted price per viewer p∗Z/λZ for

each owner. We treat the value 1
|I|∑i∈I ai of reaching an average viewer as an unknown scale

normalization, and therefore do not use any data on advertising prices in calculating the price per

viewer predicted by the model. We perform inference via a nonparametric bootstrap over survey

respondents with 100 replicates.

Figure 5 shows that the model does a good job predicting relative advertising prices across

owners of television networks. Panel A shows a scatterplot of the observed log(price per impres-

sion) against the predicted log(price per viewer) for the specification with homogeneous values.

Predicted log(price per viewer) explains 35.1 percent of the variation in observed log(price per im-
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pression). Panel B shows the analogous scatterplot for the specification with values proportional

to household income. Predicted log(price per viewer) explains 34.0 percent of the variation in

observed log(price per impression). In the latter case, the slope of the relationship between ob-

served and predicted prices is economically similar to 1, and statistically indistinguishable from

1. Across both specifications, the model is able to rationalize very large differences in advertising

prices between owners.

We can evaluate the fit of the model to the patterns we documented in Section 4. To do this,

we calculate the predicted price per viewer p∗j/λ j for each outlet, treating outlets as if they were

independently owned. Columns (3) and (4) of Table 1 report estimates of the same regression

models as in columns (1) and (2), replacing the observed log(price per impression) with log(price

per viewer) ln
(

p∗j/λ j

)
predicted from the model in which advertisers’ value ai is homogeneous

across viewers. The model matches the qualitative patterns in the data well, but predicts weaker

relationships on some dimensions than those observed in the data. Columns (5) and (6) repeat the

exercise in columns (3) and (4), with ln
(

p∗j/λ j

)
predicted from the model where ai is proportional

to viewer i’s household income. This specification’s predictions align better on some dimensions

with the patterns observed in the data. Both specifications underpredict the magnitude of the rela-

tionship between price and average age of impressions. A possible interpretation is that audience

age influences advertising prices through other channels in addition to those captured in the model.

We can also evaluate the fit of the model to time trends in television advertising revenues. Panel

A of Figure 6 shows that annual revenues increased slightly between 2014 and 2019 while total

impressions fell, a pattern that some have regarded as puzzling (The Economist 2021). Panel B

shows that our baseline model predicts this pattern. In the model, a decline in impressions can

increase the value captured by television owners if it results in less overlap in audience across

owners. Panel B shows that, in the model as in the data, the price per impression rose substantially

over this period. The patterns in Panel B provide a reasonable qualitative and quantitative match to

those in Panel A, even though the revenue calculations underlying Panel B are based only on audi-

ence survey data, and in particular do not use any information on advertising prices.24 Competition

is important for the findings in Panel B of Figure 6: with a single monopoly owner of television

networks, our model predicts declining, rather than increasing, advertising revenue over the period

we study.

24The ratio of price per impression in 2019 to price per impression in 2014 is 1.17 in the data and 1.22 (SE = 0.01)
in the model prediction. Appendix Figure 10 includes an alternative version of Panel B in which impressions are
imputed from the audience survey data.
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We conclude that the quantitative model provides a reasonable match to variation in advertis-

ing prices across owners, demographic groups, and over time. We therefore apply the model to

questions of economic and policy interest.

5.1 Application to Mergers of Television Network Owners

Figure 7 visualizes the implications, under the model with homogeneous values, of each possible

pairwise merger among the top eight owners of television networks by audience. For each merger,

we calculate the log of the predicted change in revenue, the log of the predicted change in the

Hirschman-Herfindahl index (HHI) of audience shares, and the log of the size of the overlapping

audience between the two merging owners. Panel A plots the log of the predicted change in revenue

against the log of the predicted change in HHI. Panel B plots the log of the predicted change in

revenue against the log of the overlapping audience. In both panels, we highlight three mergers

that occurred after 2015: Discovery and Scripps (2018), CBS and Viacom (2019), Disney and Fox

(2019).

Comparing Panels A and B of Figure 7 shows that, according to the model, the revenue effects

of a given merger are more strongly related to the overlap in audience between the merging entities

than to the change in HHI induced by the merger. Among the three mergers that occurred, for

example, the CBS-Viacom merger is roughly midway between the Discovery-Scripps merger and

the Disney-Fox merger in terms of its impact on HHI, but is much closer to the Discovery-Scripps

merger in terms of both audience overlap and revenue impact.

5.2 Application to the Incentive to Invest in Content

We can also quantify the effects of competition on the incentives of network owners to invest in

content to attract different kinds of audience members. To do this we augment the model in Section

2 to incorporate a content investment game. Specifically, suppose that each viewer i is attracted to

each owner Z’s content with probability αiZ ∈ [0,1]. If the viewer is attracted to owner Z’s content,

the viewer again sees ads on outlets j ∈ Z with probability ηi j, independently across j. Prior to the

game specified in Section 2, each owner simultaneously announces a choice of αiZ for all viewers

i, paying a content cost ∑i∈I CiZ (αiZ) where CiZ (0) =C′iZ (0) = 0 and C′iZ (1)> ai.
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Proposition 18 in Appendix A.3 implies that in any equilibrium we must have that

C′iZ (αiZ) = p∗iZ, p∗iZ = aiηiZ ∏
Z′ 6=Z

(1−αiZ′ηiZ′)

where we can think of C′iZ (αiZ) as owner Z’s marginal willingness to pay to attract viewer i, p∗iZ as

viewer i’s contribution to the value of owner Z’s advertising slots, and

mi =
∑Z∈Z C′iZ (αiZ)

∑Z∈Z ηiZ

as the television market’s total marginal willingness to pay per impression to attract viewer i. To

operationalize the calculation of mi, for each owner Z we consider the limiting case where αiZ′ = 1

for all Z′ 6= Z, so that the resulting value m̂i represents the total marginal willingness to pay per

impression to attract viewer i when each owner believes all other owners will attract the viewer

with certainty.

Figure 8 depicts the average value of ln(m̂i) across viewers i in different age categories under

different ownership partitions, including the factual partition (“baseline”), a counterfactual parti-

tion in which a single owner owns all networks (“concentrated”), and counterfactual partitions in

between “baseline” and “concentrated” in which the top two, three, or four owners by audience

are merged. Panel A uses the model in which advertisers’ value ai is homogeneous across view-

ers; Panel B uses the model in which ai is proportional to viewer i’s household income. Under

the factual ownership partition, these models imply that willingness to pay per impression is 82.8

(Panel A, SE = 3.18) or 88.8 (Panel B, SE = 4.83) log points lower to attract the average member

of the oldest group than to attract the average member of the youngest group. These differences

attenuate with reduced competition, down to 0 (Panel A, SE = 0) or 6.0 (Panel B, SE = 3.07) under

concentrated ownership. Figure 8 thus illustrates a sense in which the competitive forces that we

study can influence the direction of content investment, and suggests that television network own-

ers would have a stronger incentive to target content to older viewers if the television market were

less competitive.

Appendix Figure 8 reports the results assuming content investment is made on the network

or outlet level, i.e., each network or outlet is an independent player in the content investment

game and sets its own α . Appendix Figure 9 reports the results where m̂i is calculated assuming

αiZ′ = α ∈ {0.5,0.75,1} for all Z′ 6= Z.
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5.3 Application to Netflix Carrying Advertising

Netflix has said that it may introduce a service that carries advertising (Flint and Jacob 2022).

Figure 9 visualizes the implications, under the model with homogeneous values, for television

network owners of Netflix counterfactually adding advertising to its platform in 2019, assuming

no change in audience behavior and that Netflix shows advertisements across all of its content and

subscribers. Across the owners, we estimate that Netflix ad carriage would reduce the price per

viewer by between 0.38 and 2.7 log points, with a mean reduction of 1.68 (SE = 0.04).25 As the

plot illustrates, owners whose outlets have greater audience overlap with Netflix tend to experience

greater proportional declines in price per viewer in this counterfactual, though there is substantial

variation in the effect of Netflix for a given level of audience overlap, owing to variation across

owners in the overlap of their outlets’ audience with that of other owners. Our estimates imply that

Netflix itself would have a relatively high price per impression—about 24.4 log points larger than

the average of the five largest TV owners—consistent with its relatively young audience.

6 Conclusions

We extend existing theoretical results on competitive advertising markets with a multi-homing

audience. Our model predicts that the equilibrium price per viewer that an outlet charges for its ads

is lower the more active is the outlet’s audience. We show that this prediction is borne out in data on

television advertising. The prediction can help us understand why there is a premium for younger

viewers on television and a premium for older viewers on social media. A disciplined, quantitative

implementation of the model rationalizes a meaningful portion of the variation in advertising prices

across television outlets and owners, the premia associated with specific demographic groups, and

recent trends in television advertising revenue.

We conclude that the model captures important competitive forces in the advertising market.

We therefore apply the quantitative model to questions of economic and policy interest, including

the effects of mergers of television network owners on advertising prices, the effect of competition

on the incentive to invest in content to attract different kinds of viewers, and the effect of Netflix

25Dividing the total daily US Netflix viewing minutes implied by values reported in MoffettNathanson (2022, Exhibit
11) by the 2020 US Population (Census 2021) yields daily viewing of 22.7 minutes per capita, close to the average of
24.4 we calculate from the audience survey data. If, due to coviewing and other factors, Netflix viewing time is larger
than what we estimate, then we expect our calculations to understate the effect Netflix ad carriage on advertising
prices.
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ad carriage on linear television advertising prices.
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Dubé, Jean-Pierre, Günter J. Hitsch, and Puneet Manchanda. 2005. “An empirical model of adver-
tising dynamics.” Quantitative Marketing and Economics 3: 107–144.

The Economist. 2021. “The Olympics is a ratings flop. Advertisers don’t care.” The Economist,
August 11. Accessed at https://www.economist.com/business/the-olym
pics-is-a-ratings-flop-advertisers-dont-care/21803502 on June 16
2022.

Einstein, Mara. 2004. “Broadcast network television, 1955-2003: The pursuit of advertising and
the decline of diversity.” Journal of Media Economics 17(2): 145-155.

Facebook. 2022. Documentation of Marketing API. Accessed at https://developers.fac
ebook.com/docs/marketing-api/reference/ad-campaign-group/#Rea

ding on July 11 2022.
Fan, Ying. 2013. “Ownership consolidation and product characteristics: A study of the US daily

newspaper market.” American Economic Review. 103(5): 1598-1628.
Flint, Joe and Denny Jacob. 2022. “Netflix explores a version with ads as subscriber base shrinks.”

Wall Street Journal, April 19. Accessed at https://www.wsj.com/articles/net
flix-earnings-q1-2022-11650325682 on June 10 2022.

Gabler, Neal. 2014. “The tyranny of 18 to 49: American culture held hostage.” The Norman Lear

Center. Accessed at https://learcenter.org/wp-content/uploads/2014/1
0/Gabler18to49.pdf on July 5 2021.

GfK Mediamark Research and Intelligence. 2017. “Survey of the American Consumer, Respondent-
Level Data for 2015.” GfK Mediamark Research and Intelligence. https://www.mrisim
mons.com/our-data/national-studies/survey-american-consumer/.
(accessed August 2017).

GfK Mediamark Research and Intelligence. 2019. “Survey of the American Consumer, Respondent-
Level Data for 2017.” GfK Mediamark Research and Intelligence. https://www.mrisim
mons.com/our-data/national-studies/survey-american-consumer/.
(accessed March 2022).

GfK Mediamark Research and Intelligence. 2021. “Survey of the American Consumer, Respondent-
Level Data for 2019.” GfK Mediamark Research and Intelligence. https://www.mrisim

27

https://www.hollywoodreporter.com/business/business-news/cable-guy-says-ratings-dont-82305/
https://www.hollywoodreporter.com/business/business-news/cable-guy-says-ratings-dont-82305/
https://www.nytimes.com/2002/10/13/magazine/the-myth-of-18-to-34.html
https://www.nytimes.com/2002/10/13/magazine/the-myth-of-18-to-34.html
https://www.economist.com/business/the-olympics-is-a-ratings-flop-advertisers-dont-care/21803502
https://www.economist.com/business/the-olympics-is-a-ratings-flop-advertisers-dont-care/21803502
https://developers.facebook.com/docs/marketing-api/reference/ad-campaign-group/#Reading
https://developers.facebook.com/docs/marketing-api/reference/ad-campaign-group/#Reading
https://developers.facebook.com/docs/marketing-api/reference/ad-campaign-group/#Reading
https://www.wsj.com/articles/netflix-earnings-q1-2022-11650325682
https://www.wsj.com/articles/netflix-earnings-q1-2022-11650325682
https://learcenter.org/wp-content/uploads/2014/10/Gabler18to49.pdf
https://learcenter.org/wp-content/uploads/2014/10/Gabler18to49.pdf
https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/
https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/
https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/
https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/
https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/
https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/


mons.com/our-data/national-studies/survey-american-consumer/.
(accessed in May 2022).

Gentzkow, Matthew, Jesse M. Shapiro, and Michael Sinkinson. 2014. “Competition and ideo-
logical diversity: Historical evidence from US newspapers.” American Economics Review.
104(10): 3073-3114.

Goettler, Ronald L. 2012. “Advertising rates, audience composition, and competition in the net-
work television industry.” University of Chicago Working Paper. Accessed at http://go
ettler.simon.rochester.edu/research/papers/adrates.pdf on May 31
2022.

Greenwood, Jeremy, Yueyuan Ma, and Mehmet Yorukoglu. 2021. “‘You will:’ A macroeconomic
analysis of digital advertising.” NBER Working Paper No. 28537.

Jeziorski, Przemysław. 2014. “Effects of mergers in two-sided markets: The US radio industry.”
American Economic Journal: Microeconomics. 6(4): 35-73.

Kaiser, Ulrich and Julian Wright. 2006. “Price structure in two-sided markets: Evidence from the
magazine industry.” International Journal of Industrial Organization. 24(1): 1-28.

Kitterman, Ted. 2020. “Research snapshot: Mobile marketing drives digital ad spending.” PR

Daily. Accessed at https://www.prdaily.com/mobile-marketing-drives-
digital-ad-spending/ on October 5 2021.

Lambrecht, Anja and Catherine Tucker. 2019. “Algorithmic bias? An empirical study of apparent
gender-based discrimination in the display of STEM career ads.” Management Science 65(7):
2647-3448.

Lee, Robin, Michael Whinston, and Ali Yurukoglu. 2021. “Structural empirical analysis of con-
tracting in vertical markets.” In Kate Ho, Ali Hortacsu, and Alessandro Lizzeri, eds., Hand-

book of Industrial Organization Volume 4, 1st ed. Amsterdam: Elsevier.
Liao, Lu, Alan Sorensen, and Andrey Zubanov. 2020. “Measuring the value of targeted television

advertising.” University of Wisconsin Working Paper. Preliminary draft accessed at https:
//www.ssc.wisc.edu/˜sorensen/papers/targeted advertising jun20

20.pdf on May 31 2022 and cited with author permission.
McGranaghan, Matthew, Jura Liaukonyte, and Kenneth C. Wilbur. Forthcoming. “How viewer

tuning, presence, and attention respond to ad content and predict brand search lift.” Marketing

Science. Accessed at https://papers.ssrn.com/sol3/papers.cfm?abstrac
t id=3815349 on February 1 2021.

Media Intelligence and Kantar Media. 2021. Ad$pender. Accessed at http://edu.adspen
der.kantarmediana.com on October 4, 2021.

MoffetNathanson. 2022. Netflix and Disney: Mad Men to the Rescue? MoffettNathanson (An
SVB Company).

28

https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/
https://www.mrisimmons.com/our-data/national-studies/survey-american-consumer/
http://goettler.simon.rochester.edu/research/papers/adrates.pdf
http://goettler.simon.rochester.edu/research/papers/adrates.pdf
https://www.prdaily.com/mobile-marketing-drives-digital-ad-spending/
https://www.prdaily.com/mobile-marketing-drives-digital-ad-spending/
https://www.ssc.wisc.edu/~sorensen/papers/targeted_advertising_jun2020.pdf
https://www.ssc.wisc.edu/~sorensen/papers/targeted_advertising_jun2020.pdf
https://www.ssc.wisc.edu/~sorensen/papers/targeted_advertising_jun2020.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3815349
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3815349
http://edu.adspender.kantarmediana.com
http://edu.adspender.kantarmediana.com


Newman, Andrew Adam. 2012. “In AARP’s view, advertisers need to focus.” The New York Times

July 19. Accessed at https://www.nytimes.com/2012/07/19/business/me
dia/aarp-campaign-tries-to-persuade-advertisers.html on June 18,
2022.

The News Journal. 2015. Sunday News Journal Sep. 13 - 19, 2015. Wilmington, Delaware.
Accessed at https://www.newspapers.com/image/127413547/ on May 19
2022.

The Nielsen Company. 2017. Ad Intel Methodology by Medium. Report by The Nielsen Company.
Accessed at http://en-us.nielsen.com/sitelets/cls/documents/AdIn
tel/AdIntel-Methodology-by-Medium-Info-Kit.pdf on February 24 2021.

The Nielsen Company. 2018. CMO report. Accessed at https://www.nielsen.com/wp-
content/uploads/sites/3/2019/04/nielsen-cmo-report-2018-2.pdf

on January 7 2022.
The Nielsen Company. 2019. “Ad Intel dataset.” The Nielsen Company [publisher], Kilts Center

for Marketing, University of Chicago Booth School of Business [distributor]. https://ww
w.chicagobooth.edu/research/kilts/datasets/nielsenIQ-nielsen.
(accessed March 2019).

The Nielsen Company. 2021. Nielsen Local TV View. Custom report accessed at
https://www.nielsen.com/us/en/client-learning/tv/local/nltv/ in
February 2021.

The Nielsen Company. 2022. “Ad Intel dataset.” The Nielsen Company [publisher], Kilts Center
for Marketing, University of Chicago Booth School of Business [distributor]. https://ww
w.chicagobooth.edu/research/kilts/datasets/nielsenIQ-nielsen.
(accessed March 2022).

Organization for Economic Co-operation and Development. 2022. “Consumer Price Index: Total
All Items for the United States [CPALTT01USA661S].” FRED, Federal Reserve Bank of St.
Louis [publisher]. https://fred.stlouisfed.org/series/CPALTT01USA66
1S. (accessed June 2022).

Papazian, Ed, editor. 2009. TV Dimensions 2009. New York, NY: Media Dynamics, Inc.
Phillips, Robert and Graham Young. 2012. “Television advertisement pricing in the United States.”
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Figure 1: Advertising Prices and Audience Activity Levels of Television Outlets

Panel A: Not controlling for impressions
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Panel B: Controlling for impressions
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Notes: Each plot is a binned scatterplot of a dependent variable against an independent variable of interest. To construct
each plot, we regress the dependent variable on indicators for deciles of the independent variable of interest and a set
of controls. The unit of analysis in the regression is an outlet. The y-axis values in the plot are the coefficients on
the decile indicators, recentered by adding a scalar so that their mean value is equal to the sample mean value of the
dependent variable. The x-axis values in the plot are the mean values of the independent variable of interest within the
corresponding decile. In both plots, the dependent variable is the log price per impression of a 30-second spot on the
outlet; the independent variable of interest is the weighted average log weekly viewing time of the outlet’s viewers;
and the controls include the share of the outlet’s impressions that are to adults, and indicators for the outlet’s daypart.
In Panel B, the controls additionally include deciles for the log of the outlet’s impressions per hour.
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Figure 2: Advertising Prices and Activity Levels by Audience Demographics of Television Outlets
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Notes: Each plot is a binned scatterplot of a dependent variable against an independent variable of interest. To construct
each plot, we regress the dependent variable on indicators for deciles of the independent variable of interest and a set
of controls. The unit of analysis in the regression is an outlet. The y-axis values in the plot are the coefficients on
the decile indicators, recentered by adding a scalar so that their mean value is equal to the sample mean value of the
dependent variable. The x-axis values in the plot are the mean values of the independent variable of interest within
the corresponding decile. In all plots, controls include the share of the outlet’s impressions that are to adults, and
indicators for the outlet’s daypart. In the upper row of plots, the independent variable of interest is the average age of
the outlet’s adult impressions, and the controls additionally include indicators for deciles of the share of the outlet’s
adult impressions that are to females. In the lower row of plots, the independent variable of interest is the share of the
outlet’s adult impressions that are to females, and the controls additionally include indicators for deciles of the average
age of the outlet’s adult impressions. In the left column of plots, the dependent variable is the log price per impression
of a 30-second spot on the outlet. In the right column of plots, the dependent variable is the weighted average log
weekly viewing time of the outlet’s viewers.

32



Figure 3: Advertising Prices and Audience Size of Television Outlets

Panel A: Not controlling for viewing time of outlet’s audience
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Panel B: Controlling for viewing time of outlet’s audience
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Notes: Each plot is a binned scatterplot of a dependent variable against an independent variable of interest. To construct
each plot, we regress the dependent variable on indicators for deciles of the independent variable of interest and a set
of controls. The unit of analysis in the regression is an outlet. The y-axis values in the plot are the coefficients on
the decile indicators, recentered by adding a scalar so that their mean value is equal to the sample mean value of the
dependent variable. The x-axis values in the plot are the mean values of the independent variable of interest within the
corresponding decile. In both plots, the dependent variable is the log price per impression of a 30-second spot on the
outlet; the independent variable of interest is the log of the impressions per hour of the outlet; and the controls include
the share of the outlet’s impressions that are to adults, and indicators for the outlet’s daypart. In Panel B, the controls
additionally include deciles for the weighted average log weekly viewing time of the outlet’s viewers.
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Figure 4: Demographic Premia and Viewing Time on Facebook

Panel A: Data from our experiment
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Panel B: Data from Allcott et al. (2020b)
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Notes: The plot shows the log(price per impression) for advertisement sets targeted to a given gender and
age group. In Panel A, the data are taken from our own experiment, and the groups are {Men, Women} ×
{18-24, 25-34, 35-44, 45-54, 55-64, 65+}. In Panel B, the data are taken from Allcott et al. (2020b), and the groups
are {Men, Women}×{18-24, 25-44, 45-64, 65+}. In both panels, the y-axis value is the log(price per impression) for
advertisement sets targeting the given group, and the x-axis value is the midpoint of the age range for the given group,
treating 70 as the midpoint for ages 65+.
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Figure 5: Observed and Predicted Television Advertising Prices

Panel A: Baseline model with homogeneous value
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Panel B: Model with value proportional to income
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Notes: Each plot is a scatterplot of the log(price per impression) of a 30-second spot observed in the data (y-axis), as
described in Section 3.1, against the log(price per viewer) predicted by the model (x-axis), as described in Section 5.
Panel A uses log(price per viewer) predicted from the baseline model in which advertisers’ value of a first impression
is homogeneous across viewers. Panel B uses log(price per viewer) predicted from the model in which advertisers’
value of a first impression is proportional to a viewer’s income. The unit of analysis is an owner Z. Variables are
residualized with respect to the share of the owner’s impressions that are to adults and recentered by adding a scalar so
that the mean value of each recentered variable is equal to the sample mean of the log(price per impression) observed
in the data. The dot-dashed line depicts a 45-degree line. The solid line depicts the line of best fit. The box reports the
slope of the line of best fit and the R2 of the associated linear model, with standard errors in parentheses obtained via
a nonparametric bootstrap over survey respondents with 100 replicates.
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Figure 6: Observed and Predicted Television Advertising Revenues

Panel A: Observed trends
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Panel B: Predicted trends
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Notes: Each plot depicts trends in the television advertising market over the sample period. We plot trends in total
revenue, total impressions, and price per impression (total revenues divided by total impressions), all normalized
relative to their 2015 value. In Panel A, all series are as observed in the data, as described in Section 3.1, and
revenue is deflated to 2015 dollars using the US Consumer Price Index (Organization for Economic Co-operation and
Development 2022). In Panel B, the trend in revenue is predicted by the baseline model in which advertisers’ value
of a first impression is homogeneous across viewers, as described in Section 5; the trend in impressions is identical to
that in Panel A; and the price per impression is the ratio of the two.
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Figure 7: Predicted Effects of Mergers on Advertising Revenue
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Panel B: Change in revenue vs. overlap in audience
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Notes: For each of a set of simulated mergers, Panel A plots the log of the simulated change in revenue (y-axis) against the log of the simulated
change in HHI (x-axis), and Panel B plots the log of the simulated change in revenue (y-axis) against the log of the overlapping audience (x-axis).
Larger, more lightly shaded circles indicate mergers that occurred after 2015; smaller, more darkly shaded circles indicate hypothetical mergers
that have not occurred. We construct the plots as follows. For each owner we compute the audience size as the probability of an average viewer
seeing an ad on at least one of the owner’s outlets, as described in Section 5. We select the top eight owners by this metric, excluding joint ventures,
and form all possible pairs of these eight. For each pair, we compute the overlapping audience, defined as the share of the audience seeing an ad
on both owners’ outlets. For each pair we also simulate the effect of a pairwise merger on the pair’s total advertising revenue, using our model
of advertising-market equilibrium as described in Section 5. We also simulate the effect of the merger on the Herfindahl-Hirschman Index (HHI),
where the HHI is computed with respect to the probability of an average viewer seeing an ad on at least one of the owner’s outlets. We exclude
from the plots any merger that changes the HHI by less than 0.001. For simulated mergers between two owners each of which owns one of the
broadcast networks {ABC, CBS, FOX, NBC}, we exclude one of the two owners’ broadcast networks from the simulated merger and treat it as a
separate entity for all calculations. For mergers that took place we exclude the broadcast network that was excluded in practice; for other mergers
we exclude the broadcast network owned by whichever owner had a smaller total pre-merger audience. For the mergers that took place, the log of
the simulated change in revenue is −6.34 for Disney-Scripps (SE = 0.03), −6.35 for CBS-Viacom (SE = 0.02), and −5.31 for Disney-FOX (SE =
0.02), where standard errors in parentheses are obtained via a nonparametric bootstrap over survey respondents with 100 replicates.
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Figure 8: Marginal Willingness to Pay to Attract Older vs. Younger Viewers

Panel A: Baseline model with homogeneous value
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Panel B: Model with value proportional to income
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Notes: In each plot, the y-axis value corresponds to the average log(total marginal willingness to pay per impression),
ln(m̂i), as described in Section 5.2, for viewers in the age bin listed on the x-axis, under different ownership scenarios.
These scenarios include: the “baseline” ownership corresponding to the observed partition Z; the “concentrated”
ownership corresponding to the counterfactual scenario in which one entity owns all television networks; and three
counterfactual ownership partitions in between, in which the top two, three, or four owners by audience are merged.
Panel A uses the baseline model in which advertisers’ value of a first impression is homogeneous across viewers. Panel
B uses the model in which advertisers’ value of a first impression is proportional to a viewer’s income. In both plots,
darker colors correspond to more concentrated ownership scenarios, and the y-axis value is normalized by adding a
scalar so that its average value is zero in the youngest age group.
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Figure 9: Predicted Effect of Netflix Advertising on Advertising Prices
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Notes: The plot shows a scatterplot, across owners of television networks, of the change in the owner’s log(price
per viewer) predicted by the model if Netflix were to carry ads (y-axis), against the log of the overlapping audience
between the owner’s audience and Netflix’s audience (x-axis). To construct the plot, we compile audience data from
GfK MRI’s 2019 Survey of the American Consumer (GfK Mediamark Research and Intelligence 2021), analogous
to the data described in Section 3.3 for the 2015 survey, and treating Netflix as an additional television outlet. To
calculate the probability of a viewer seeing an ad spot on Netflix, we divide the number of hours the viewer reports
spending watching Netflix over the last seven days (topcoded at 21 hours) by the number of hours in the week. We
compute the difference in log(price per viewer) implied by the baseline model in which advertisers’ value of a first
impression is homogeneous across viewers, as described in Section 5, between the scenarios with and without Netflix
included in the advertising market (y-axis). We also compute the log of the share of the television audience seeing an
ad on both the given owner’s outlets and Netflix (x-axis).
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Table 1: Advertising Prices, Audience Demographics, and Audience Activity Levels of Television Outlets

Dependent variable: Observed Predicted
log(price per impression) log(price per viewer)

Value homog. Value prop. to income
(1) (2) (3) (4) (5) (6)

Average log(weekly viewing hours) of audience -1.5556 . -1.6799 . -1.8388 .
(0.2913) . (0.0607) . (0.1027) .

Average age of impressions . -0.0285 . -0.0028 . -0.0020
. (0.0079) . (0.0024) . (0.0029)

Share female among adult impressions . -0.4690 . -0.3056 . -0.5230
. (0.2599) . (0.0933) . (0.1228)

log(impressions per hour) 0.0973 0.1221 0.0082 0.0418 0.0198 0.0628
(0.0292) (0.0306) (0.0044) (0.0109) (0.0075) (0.0125)

Average household income of impressions 0.0124 0.0152 0.0002 0.0057 0.0102 0.0152
($1000) (0.0031) (0.0034) (0.0004) (0.0016) (0.0008) (0.0018)

Number of networks 103 103 103 103 103 103
Number of network-dayparts 809 809 809 809 809 809

Notes: Each column reports estimates of a linear regression. The unit of analysis is an outlet (network-daypart). In columns (1) and (2), the dependent
variable is the log(price per impression) of a 30-second spot observed in the data, as described in Section 3.1. In columns (3) through (6) the dependent
variable is the log(price per viewer) predicted by the model, as described in Section 5. Columns (3) and (4) use log(price per viewer) predicted from
the baseline model in which advertisers’ value of a first impression is homogeneous across viewers. Columns (5) and (6) use log(price per viewer)
predicted from the model in which advertisers’ value of a first impression is proportional to a viewer’s income. All models include controls for
the share of the outlet’s impressions that are to adults, and indicators for the outlet’s daypart. The sample includes only those outlets for which all
variables are available. Standard errors in parentheses are clustered by network.
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A Proofs and Additional Theoretical Results

A.1 Preliminaries

Lemma 1. Write SPEPS to abbreviate subgame perfect equilibrium in pure strategies.

(i) For any V (·), not necessarily monotone or submodular, in any SPEPS all advertisers make

the same total payment to any given owner. This holds even if each owner Z is endowed with

an arbitrary partition FZ of Z such that they are only allowed to bundle outlets in the same

cell of the partition.

(ii) If V (·) is either monotone and submodular or strictly monotone and not necessarily sub-

modular, then in any SPEPS each advertiser buys slots on all outlets.

Proof. Fix any SPEPS. First, observe that because the advertisers are homogeneous, they must
have the same equilibrium payoff (say W ).

For part (i), suppose for contradiction that there exists some owner Z ∈ Z such that not all
advertisers make the same total payment to Z. Let n be an advertiser who pays the most to owner
Z. Let Sc be the set of outlets that advertiser n buys slots on in the cell c ∈ FZ . Let owner Z

deviate by offering the bundles B := {Sc : Sc 6= /0,c∈FZ} with prices {p∗Sc
−ε : Sc 6= /0,c∈FZ} for

any ε > 0, where p∗S denotes the minimum price to buy slots on the outlets in a given set S in the
SPEPS. Note that |B| ≥ 1 since advertiser n pays a positive amount to owner Z. By buying all the
bundles offered in this deviation of Z (and imitating advertiser n’s choices in the original SPEPS),
any advertiser can obtain a payoff of W + ε|B|. Note that any set of outlets an advertiser wants to
buy slots on after this deviation is also a valid choice in the original equilibrium. Therefore, if an
advertiser does not buy all the bundles in B, then the advertiser gets at most W +ε(|B|−1). Hence
after this deviation, all advertisers buy the bundles in B offered by Z. But then this is a profitable
deviation for owner Z when ε is small enough. Contradiction.

For part (ii), suppose for contradiction that there exist some owner Z ∈ Z , some outlet j ∈ Z,
and some advertiser n who does not buy a slot on outlet j. By part (i), all advertisers pay the same
total amount to owner Z (say t). Let T ⊂ Z be the set of outlets that advertiser n buys slots on from
owner Z. Let R be the set of outlets in J \Z that advertiser n buys slots on. The equilibrium payoff
for each advertiser is thus given by

W =V (T ∪R)− p∗R− t.

Let owner Z offer a single bundle Z with a price p̃Z = t + ε , for some ε > 0 (recall that here
we assume the owner can bundle anything). If V (·) is strictly monotone, then we clearly have
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V (Z∪R)−V (T ∪R)> 0. If V (·) is submodular and monotone, then we also have

V (Z∪R)−V (T ∪R)≥V (J )−V (J \(Z\T ))≥V (J )−V (J \{ j}) = v j > 0

where the strict inequality is due to our assumption that every outlet has positive incremental value.
Therefore, for ε small enough, we have

V (Z∪R)− p∗R− (t + ε)>V (T ∪R)− p∗R− t =W.

Pick any such ε . Every advertiser would buy the bundle Z at the price t + ε , because any strategy
not doing so is a feasible strategy in the equilibrium and generates a payoff less than or equal to
W . But this is then a profitable deviation for owner Z. Contradiction.

A.2 Proofs Omitted From the Main Text

Example 1. Let i denote a viewer uniformly drawn from the set of viewers. Let XS denote the
random number of outlets in S⊆ J watched by i. We can write

V (S) = E

[
ai

XS

∑
m=0

βm

]
.

To show V is monotone and submodular, it suffices to fix a realization of viewer i’s decision, and
show the realized value function

Ṽ (S) := ai

XS

∑
m=0

βm

is monotone and submodular, since averaging preserves monotonicity and submodularity. For any
S⊆ J and j ∈ J \S, we have

Ṽ (S∪{ j})−Ṽ (S) = ai1i→ jβXS+1

where i→ j denotes the event that viewer i views outlet j. This shows monotonicity as ai > 0 and
βm ≥ 0 for all m. For submodularity, fix any S ⊆ T ⊆ J , and j ∈ J \T . Since S ⊆ T , we have
1≤ XS +1≤ XT +1. Since βm is non-increasing in m for m≥ 1, it follows immediately that

Ṽ (S∪{ j})−Ṽ (S) = ai1i→ jβXS+1 ≥ ai1i→ jβXT+1 = Ṽ (T ∪{ j})−Ṽ (T ),

which shows submodularity.
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Example 2. We can write
V (S) = ∑

C∈C
V (S∩C;aC)

where V ( · ;a) is the value function given in the proof for Example 1 with βm = 0 for m≥ 2. Since
V ( · ;a) is monotone and submodular for any a > 0, and both monotonicity and submodularity are
preserved under restriction and addition, we have that V (·) is monotone and submodular.

Example 3. Let K be the set of programs with a generic element denoted by k, and let K j ⊆ K
be the programs associated with outlet j. Let i denote a viewer uniformly drawn from the set of
viewers. Let i→ k;A denote the event that viewer i watches program k and program k carries an
ad. For a set of programs K′ ⊆K, let

XK′ = ∑
k∈K′

1i→k;A

be the number of programs in K′ watched by i when each program carries an ad. Let

R=
{
K′ ⊆K : |K′∩K j|= 1 for all j ∈ J

}
consist of sets of representative programs (i.e., one program for each outlet). Let KS = ∪ j∈SK j.
Note that for each advertiser, the value of a set of outlets S⊆ J can be written as

V (S) = E

[
1
|R| ∑

K′∈R
u(XK′∩KS)

]

where the expectation is taken over a fixed probability distribution (regardless of the choice of S)
which specifies that every program carries an ad. As in Example 1, it suffices to show that for any
realization and any K′ ∈R fixed, we have

Ṽ (S) := u(XK′∩KS)

is monotone and submodular. It is clear that Ṽ (·) is monotone since u(·) is nondecreasing. For
submodularity, note that for any S⊆ T ⊆ J and any j ∈ J \T ,

Ṽ (S∪{ j})−Ṽ (S) = u
(

XK′∩KS∪{ j}

)
−u
(
XK′∩KS

)
≥ u

(
XK′∩KT∪{ j}

)
−u
(

XK′∩KS +
(

XK′∩KT∪{ j}−XK′∩KS∪{ j}

))
= u

(
XK′∩KT∪{ j}

)
−u
(
XK′∩KT

)
= Ṽ (T ∪{ j})−Ṽ (T )
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where the second line follows from the assumption that u(·) has decreasing differences.

Proof of Theorem 1. We first construct a SPEPS. Let each owner Z offer a single bundle con-
sisting of all outlets in Z with a price pZ = vZ . For any profile of posted prices (including off-the-
equilibrium-path histories), let every advertiser solve in the second stage the problem,

max
S⊆J

V (S)− p∗S,

where p∗S denotes the minimum price to buy slots on all of the outlets in S for a given profile of
prices p. The problem may have multiple solutions. Pick a solution S∗ such that |S∗| is the largest.
Let advertisers buy slots on all outlets in S∗.

It remains to verify that no owner has a profitable deviation. Observe that if pZ = vZ is
offered by some owner Z and there is no proper subset W ⊂ Z being offered, then any advertiser
will buy the bundle Z regardless of the prices p−Z of other owners’ bundles. This is because for
any S⊆ J \Z, submodularity of V (·) implies

V (S∪Z)−V (S)≥V (J )−V (J \Z) = vZ.

Fix any owner Z. Suppose all other players follow the proposed strategy. Fix any advertiser.
By the above observation we know that the advertiser would always buy slots on all outlets not in
Z. Then the maximal amount that owner Z can extract from this advertiser is vZ because for any
S⊇ J \Z, monotonicity of V (·) implies

V (J )−V (J \Z)≥V (S)−V (J \Z)

where the right hand side is the maximal price that the advertiser is willing to pay for the slots on
outlets in S\(J \Z). Therefore, following the proposed strategy is optimal for owner Z. Since Z is
an arbitrary owner, our construction is a SPEPS.

To prove the second part of the statement, fix any SPEPS of the game. By Lemma 1(ii),
all advertisers buy slots on all outlets in J . Therefore, each advertiser pays p∗Z to each owner
Z. If p∗Z > vZ for any owner Z, then any advertiser can profitably deviate by only buying slots
on all outlets in J \Z. If p∗Z < vZ for any owner Z, then, by the earlier observation, owner Z can
profitably deviate by offering a single bundle Z with a price vZ− ε for ε > 0 sufficiently small to
extract vZ− ε > p∗Z from each advertiser. Thus p∗Z = vZ for all Z ∈ Z .

Proof of Proposition 1. With a slight abuse of notation, for any group g, let g denote both the
group and a randomly sampled viewer from the group. By Theorem 1, we can write
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p∗j = a∑
g

µgE[1g→ jβXg
j +1]

where g→ j denotes the event that a randomly sampled viewer g views outlet j and Xg
j counts the

random number of outlets viewed by g that are not j. For any g′ 6= g,h, we have

ηg′ j =
λ jσg′ j

µg′
=

λkσg′k

µg′
= ηg′k.

Therefore, for any g′ 6= g,h, by independence and symmetry,

E[1g′→ jβXg′
j +1

] = E[1g′→kβ
Xg′

k +1
].

To prove p∗j/λ j ≥ p∗k/λk, it then suffices to show

µgE[1g→ jβXg
j +1−1g→kβXg

k +1]≥ µhE[1h→kβXh
k +1−1h→ jβXh

j +1].

Using independence, we can write the above as

µg
[
ηg j(1−ηgk)−ηgk(1−ηg j)

]
E[βXg+1]≥ µh

[
ηhk(1−ηh j)−ηh j(1−ηhk)

]
E[βXh+1]

where Xg counts the random number of outlets viewed by viewer g that are not in { j,k}. Since
λ j = λk, this reduces to

(σg j−σgk)E[βXg+1]≥ (σhk−σh j)E[βXh+1].

It follows easily from our assumptions that σg j − σgk = σhk − σh j ≥ 0. So it suffices to show
E[βXg+1]≥ E[βXh+1]. Since ηg j ≤ ηh j for all j ∈ J and viewing decisions are independent across
outlets for both g and h, there exists a monotone coupling of the viewing decisions by g and h in
the sense that for all j ∈ J ,

1g→ j ≤ 1h→ j.

Under this coupling, we have Xg ≤ Xh pointwise. The claim then follows directly by noting that
βm is non-increasing in m for m≥ 1.

Now suppose σg j > σgk and ηg j′ < ηh j′ for some j′ 6= j,k. Using integration by parts, we
have

E[βXg+1]−E[βXh+1] =
∫

∞

0
P(βXg+1 > s)ds−

∫
∞

0
P(βXh+1 > s)ds
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=
∞

∑
m=1

(βm−βm+1)
(
P(Xg +1≤ m)−P(Xh +1≤ m)

)
> 0

where the strict inequality follows from the fact that each term in the summation is nonnegative,
β1 > β2, and P(Xg = 0) = ∏l 6= j,k(1−ηgl) > ∏l 6= j,k(1−ηhl) = P(Xh = 0). Since σg j > σgk, we
then have (σg j−σgk)E[βXg+1]> (σhk−σh j)E[βXh+1] and hence p∗j/λ j > p∗k/λk.

Proof of Proposition 2. We follow the same notation as in the proof of Proposition 1. By Theo-
rem 1, we can write

p∗j = a∑
g

µgE[1g→ jβXg
j +1]

= a∑
g

µg(ηg jηgkE[βXg+2]+ηg j(1−ηgk)E[βXg+1])

= a∑
g

µg(ηgkηg jE[βXg+2]+δηgk(1−
1
δ

ηg j)E[βXg+1])

= a∑
g

µg(ηgkηg jE[βXg+2]+ηgk(1−ηg j)E[βXg+1]+ηgk(δ −1)E[βXg+1])

= a∑
g

µgηgk(E[βXg
k +1]+ (δ −1)E[βXg+1])

≥ a∑
g

µgηgk(E[βXg
k +1]+ (δ −1)E[βXg

k +1]) = δ p∗k =
λ j

λk
p∗k

where we have used independence, δ ≥ 1, Xg
k ≥ Xg, and βm is non-increasing for m ≥ 1. Now

suppose δ > 1. For any group g, using integration by parts, we have

E[βXg+1]−E[βXg
k +1] =

∫
∞

0
P(βXg+1 > s)ds−

∫
∞

0
P(βXg

k +1 > s)ds

=
∞

∑
m=1

(βm−βm+1)
(
P(Xg +1≤ m)−P(Xg

k +1≤ m)
)
> 0

where the strict inequality follows from that each term in the summation is nonnegative, β1 >

β2, and P(Xg = 0)− P(Xg
k = 0) = ηg j ∏l 6= j,k(1− ηgl) > 0. Since δ > 1, we then have (δ −

1)E[βXg+1]> (δ −1)E[βXg
k +1] and hence p∗j/λ j > p∗k/λk.

Proof of Proposition 3. We prove the second part of the statement first. Fix any subgame perfect
equilibrium allowing for mixed strategies (SPEMS) and any owner Z. Suppose, for contradiction,
the expected revenue per slot rZ is strictly higher than ∑ j∈Z V ({ j})/|Z|. Then the expected total
revenue is strictly higher than K ∑ j∈Z V ({ j}). Thus with positive probability, the owner earns
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a realized revenue strictly higher than K ∑ j∈Z V ({ j}). In any such event, there is at least one
advertiser who buys slots on a set of outlets B⊆ Z and pays strictly more than ∑ j∈BV ({ j}) to the
owner. Let S ⊆ J be the set of outlets that the advertiser buys slots on. Since any non-negative
submodular function is also sub-additive, we have

V (S)−V (S\B)≤V (B)−V ( /0)≤ ∑
j∈B

V ({ j}).

So simply not buying anything from Z is a profitable deviation for the advertiser. Contradiction.
Now, for contradiction, suppose rZ < (vZ−∆)/|Z|. Then the expected total revenue is strictly

lower than K(vZ −∆). Let the owner deviate by offering a single bundle Z with a price p̃Z =

dvZ −∆e, where dxe denotes the operator that rounds x up to the closest value in {0,∆,2∆, · · ·}.
Note that

vZ−∆≤ dvZ−∆e< vZ.

Since p̃Z < vZ , by the argument in the proof of Theorem 1, submodularity of V (·) implies that, in
any realization, the owner would be able to sell all the slots and secure revenue K p̃Z . But this is
then a profitable deviation. Contradiction.

To show the existence of a SPEMS, we construct an auxiliary finite game in normal form,
apply the standard existence result, and then recover a SPEMS in the original game. Consider a
simultaneous-move game between all the owners. Let

A(Z) = {0,∆,2∆, · · · ,dV (J )e,∞}|P(Z)|

be the set of pure strategies that an owner can choose from. Clearly, A(Z) is finite for any Z. For
each pure strategy profile p, draw a random order for the advertisers and then let the advertisers,
in that order, choose which slots to buy given the posted prices specified in p. Then assign the
resulting expected revenue (averaged over different orders) for owner Z as the payoff to owner
Z in the auxiliary game given the pure strategy profile p. This constructs a finite normal-form
game among the owners, and thus a Nash equilibrium (possibly in mixed strategies) exists (say E).
Now let each owner play the strategy prescribed by E in the original game, followed by advertisers
choosing which slots to buy in the same way as before. Evidently, this constructs a SPEMS for the
original game.

Proof of Proposition 4. We first construct a SPEPS. We use the same construction as in the proof
of Theorem 1. Note that when verifying the construction, the only properties of V (·) used in the
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proof of Theorem 1 are that V (·) is monotone and that for any S⊆ J \Z,

V (S∪Z)−V (S)≥V (J )−V (J \Z)

which we assume.
To prove the second part of the statement, fix any SPEPS of the game. By Lemma 1(ii) and

strict monotonocity of V (·), all advertisers buy slots on all outlets in J . The rest is the same as in
the proof of Theorem 1.

Proof of Proposition 5. As in the proof of Theorem 1, we first construct a SPEPS. Let each
owner Z offer a single bundle consisting of all outlets in Z with a price pZ = vZ . For any pro-
file of posted prices (including off-the-equilibrium-path histories), let each advertiser n solve the
following problem in the second stage

max
S⊆J

Vn(S)− p∗S

where p∗S denotes the minimum price to buy slots on all of the outlets in S for a given profile of
prices p. Pick a solution S∗n such that |S∗n| is the largest. Let advertiser n buy slots on outlets in S∗n.

We only need to check that each owner has no profitable deviation. Observe that if pZ = vZ

is offered by some owner Z and there is no proper subset W ⊂ Z being offered, then any advertiser
will buy the bundle Z regardless of p−Z . This is because for any S⊆ J\Z, submodularity of Vn(·)
implies

Vn(S∪Z)−Vn(S)≥Vn(J )−Vn(J \Z)≥ min
n′∈N

Vn′(J )−Vn′(J \Z) = vZ.

Fix an owner Z. Suppose all other players follow the proposed strategy. We claim that offering
a single bundle Z with a price vZ is an optimal strategy for owner Z. To see this, consider two cases.

Case 1: Suppose Z offers some set of bundles BZ such that every advertiser buys a slot on
every outlet in Z. Then the minimal price to buy all outlets in Z must be no more than vZ because
otherwise there is one advertiser who can profitably deviate by simply not buying anything in BZ .
Hence the owner cannot do better than simply offering the bundle Z with a price vZ .

Case 2: Suppose Z offers some set of bundles BZ such that there exist at least one outlet j ∈ Z

and one advertiser n ∈ N who does not buy a slot on outlet j. We claim that the total revenue that
owner Z extracts is no more than

max
n, j

{
∑

n′ 6=n
vn′,Z + vn,Z\{ j}

}
.

Indeed, this is the maximal revenue that owner Z can possibly get, even if the owner price dis-
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criminates using the identities of the advertisers but is subject to the constraint that at least one
advertiser does not buy on some outlet j ∈ Z. Now note that

max
n, j

{
∑

n′ 6=n
vn′,Z + vn,Z\{ j}

}
≤max

n, j

{
NvZ−

(
vn,Z− vn,Z\{ j}

)}
=NvZ−min

n, j
{Vn ((J \Z)∪{ j})−Vn (J \Z)}

=NvZ−ϕ(Z)

≤NvZ−N(vZ− vZ) = NvZ

where we have used the assumption that vZ− vZ ≤ 1
N ϕ(Z). Hence the owner also cannot do better

than simply offering the bundle Z with a price vZ .
Thus the construction is a SPEPS. The outcome is efficient because all advertisers buy slots

on all outlets.
To prove the second part of the statement, fix any efficient SPEPS. Note that all outlets must

sell N slots, because the preferences for each player are quasilinear in money and thus the total
surplus is maximized only if all potential trades are realized (recall K ≥ N). Then by the argument
in Case 1, we know that p∗Z ≤ vZ for all Z ∈ Z . Moreover, p∗Z cannot be strictly lower than vZ for
any owner Z, because if this were the case then it would be a profitable deviation for owner Z to
offer a single bundle Z with a price vZ− ε for ε > 0 small enough. Hence p∗Z = vZ for all Z ∈ Z .

Proof of Proposition 6. Let On denote advertiser n’s tie-breaking ordering over owners; that is,
if indifferent among one or more sets of bundles, advertiser n chooses in a manner that maximizes
the payoffs of the owners according to a lexicographic preference over owners defined by On.

Fix any SPEPS. Fix any owner Z and any advertiser n. Let Sc be the set of outlets that
advertiser n buys slots on in the cell c∈FZ . Consider owner Z offering the bundles B := {Sc : Sc 6=
/0,c ∈ FZ} with prices {p∗Sc

: Sc 6= /0,c ∈ FZ}, where p∗S denotes the minimum price to buy slots on
the outlets for any set S ⊆ J in the SPEPS. We claim that owner Z weakly increases the payoff
with this strategy. Note that for each advertiser, this change restricts the set of possible choices
while keeping at least one choice that maintains the equilibrium payoff (imitating the choice of
advertiser n in the original SPEPS). Because in the original SPEPS all advertisers pay the same
total amount to Z by Lemma 1(i), this change can only decrease owner Z’s payoff if there is some
advertiser n′ (not necessarily different from n) who now breaks ties in favor of some owner that
ranks higher than Z in On′ . However, that choice must also be made in the original SPEPS by
advertiser n′ due to the tie-breaking rule. But then advertiser n′ pays strictly less than advertiser n

to owner Z in the original SPEPS, contradicting Lemma 1(i).
Because an owner chooses to offer fewer bundles when indifferent, the above observation
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implies that every advertiser must buy the same set of bundles from any given owner Z and that
owner Z offers at most one bundle from each cell in FZ . (Otherwise, owner Z may simply pick
an advertiser n who buys the smallest number of bundles from Z and offer the set of bundles
B as defined above to strictly decrease the total number of bundles offered without decreasing
payoff.) Then all advertisers buy slots on the same set of outlets (say S) and any owner Z offers
BZ := {S∩B : S∩B 6= /0,B ∈ FZ} as the available bundles.

Therefore, in the second stage, the set of feasible bundles that advertisers can choose is a
partition of S. In particular, bundles not contained in S are not offered by the owners. For any
bundle B offered by any owner Z, by rationality of the advertisers,

pB ≤V (S)−V (S\B) = vS
B.

Now, for contradiction, suppose there exist some owner Z and some bundle B′ ∈ FZ , B′ ⊆ S such
that pB′ < vS

B′ . Consider the following deviation. Let owner Z offer all bundles in BZ as in the
equilibrium but change the price for each bundle B to p̃B = vS

B− ε for some ε > 0. We claim that
after this deviation, all advertisers continue buying slots on the same outlets from owner Z as in
the equilibrium. Indeed, if an advertiser stops buying some bundle B ∈ BZ , then the advertiser can
only choose S′ ⊆ S\B since the set of available bundles is a partition of S. But submodularity of
V (·) implies

V (S′∪B)−V (S′)≥V (S)−V (S\B) = vS
B > p̃B.

Therefore owner Z can extract vS
B− ε for each bundle B ∈ BZ from each advertiser. For ε suf-

ficiently small, this is then a profitable deviation for owner Z since in the equilibrium we have
pB ≤ vS

B for all B ∈ BZ and pB′ < vS
B′ for some bundle B′ ∈ BZ . Contradiction.

Proof of Proposition 7. We follow the notation in Lee, Whinston, and Yurukoglu (2021). For
each owner Z and each advertiser n, let

CZn := {(B, p) : B⊆ Z, p ∈ R+}

be the contract space, with an element denoted by CZn. For a contract CZn, let B(CZn) and p(CZn)

denote the associated bundle and price. Let C0 = {( /0,0)} denote the null contract. For a given set
of contracts C := {CZn}Z∈Z,n=1,...,N , owner Z’s payoff is given by

ΠZ(C) = ∑
n

p(CZn)
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and advertiser n’s payoff is given by

Πn(C) =V

(⋃
Z∈Z

B(CZn)

)
− ∑

Z∈Z
p(CZn) .

Given the set of contracts C−Zn excluding pair (Z,n), let

C+Zn (C−Zn) = {CZn ∈ CZn : Πn({CZn,C−Zn})−Πn({C0,C−Zn})≥ 0}

be the set of contracts between Z and n that give non-negative gains from trade to owner Z and
advertiser n (note that only the constraint for the advertiser is relevant as any contract would give
non-negative gains from trade to owner Z). Recall that a set of contracts Ĉ is a Nash-in-Nash

equilibrium if:
(i) For all Z,n such that ĈZn 6= C0,

ĈZn ∈ argmax
CZn∈C+Zn(Ĉ−Zn)

[ΠZ({CZn, Ĉ−Zn})−ΠZ({C0, Ĉ−Zn})]ξZ [Πn({CZn, Ĉ−Zn})−Πn({C0, Ĉ−Zn})]1−ξZ ,

where ξZ ∈ [0,1] denotes the bargaining weight for owner Z.
(ii) For all Z,n such that ĈZn = C0, there is no contract in C+Zn

(
Ĉ−Zn

)
that gives strictly

positive gains from trade to both Z and n.
We first show that Ĉ := {(Z,ξZ(V (J )−V (J \Z)))} is a Nash-in-Nash equilibrium. Condi-

tion (ii) clearly holds. For (i), note that

ΠZ({CZn, Ĉ−Zn})−ΠZ({C0, Ĉ−Zn}) = p(CZn)

and

Πn({CZn, Ĉ−Zn})−Πn({C0, Ĉ−Zn}) =V (B(CZn)∪ (J \Z))−V (J \Z)− p(CZn) .

Because V (·) is monotone, a solution to the Nash bargaining problem is given by B(CZn) = Z and
p(CZn) = ξZ(V (J )−V (J \Z)). This proves that Ĉ is a Nash-in-Nash equilibrium.

For uniqueness, suppose that V (·) is strictly monotone and fix any Nash-in-Nash equilibrium
C̃. Note that for any Z and n, regardless of C̃−Zn, given that V (·) is strictly monotone, any solution
to the Nash bargaining problem must have B(CZn) = Z. Therefore, for any Z and n, any solution
to the Nash bargaining problem must have p(CZn) = ξZ(V (J )−V (J \Z)), proving the claim.
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Proof of Proposition 8. Fix any profile of announced reserve prices p := {pB : B⊆ Z,Z ∈ Z}.
Note that, for any advertiser, bidding strictly above the reserve price for any bundle B is strictly
dominated by bidding at the reserve price pB, because in both cases the advertiser is guaranteed to
win the bundle (as K ≥N). Thus, for any bundle, every advertiser either bids at the reserve price for
that bundle, or bids below the reserve price and loses the auction. Therefore, after eliminating the
strictly dominated strategies for the advertisers, this game is strategically equivalent to the pricing
game of our main model. Hence, the claim follows directly from Theorem 1.

Proof of Proposition 9. This follows directly from Theorem 1, treating each viewer i as a sepa-
rate market.

A.3 Additional Results

Comparative statics for multi-outlet owners. Consider a setting identical to that of Section 2.1
except that each owner Z may own multiple outlets. Suppose diminishing returns are perfect in the
sense that βm = 0 for m ≥ 2. Members of group g ∈ G see ads on outlet j with probability ηg j,
independently across outlets. For a given owner Z, let

ηgZ = 1−∏
j∈Z

(
1−ηg j

)
, λZ = ∑

g∈G
µgηgZ, σgZ =

µgηgZ

λZ

denote the share of group g that is in the owner’s audience, the total mass of the owner’s audience,
and the share of this audience that comes from group g, respectively. Then p∗Z/λZ is the price per
viewer collected by owner Z for an ad slot on each of its outlets. By Theorem 1, we know that

p∗Z = aβ1 ∑
g

µgηgZ ∏
j/∈Z

(1−ηg j) = aβ1 ∑
g

µgηgZ ∏
Z′ 6=Z

(1−ηgZ′).

Note that the equilibrium prices above are identical to those in the setting of Section 2.1, replacing
outlets with owners, if we specify perfect diminishing returns. Therefore our results on compara-
tive statics apply immediately.

Proposition 10. Suppose that group g ∈ G is less active than group h ∈ G in the sense that ηgZ ≤
ηhZ for all Z ∈Z . Suppose that owner Y ∈Z draws a larger share of its audience from group g and

a smaller share of its audience from group h than owner Z ∈ Z , in the sense that σgY ≥ σgZ and

σhY ≤ σhZ , and that the two owners have equal total audience sizes, λY = λZ , and equal shares of

audience from groups other than g and h, σg′Y = σg′Z for all g′ 6= g,h. Then owner Y has a higher

equilibrium price per viewer than owner Z, p∗Y/λY ≥ p∗Z/λZ .

Proposition 11. Suppose that owner Y has a larger audience than owner Z in the sense that for
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some δ ≥ 1, ηgY = δηgZ for all g ∈G. Then owner Y has a higher price per viewer than owner Z,

p∗Y/λY ≥ p∗Z/λZ .

Partially increasing returns.

Example 4. Owners are singletons, each of a set of viewers i views at least L outlets, each outlet
has a strictly positive mass of viewers, and an advertiser’s value for viewer i seeing its ad M times
is ai ∑

M
m=0 βm where ai > 0 for all i, β0 = 0,βm > 0 for all m, βm is non-increasing for all m ≥ L,

and βL ≤min1≤m<L βm.

Proposition 12. The value function V (·) in Example 4 satisfies the hypotheses of Proposition 4.

Proof. As in the proof of Example 1, let i→ j denote the event that a random viewer i watches
outlet j, XS count the number of outlets viewed in set S, and Ṽ denote the realized value function.
Strict monotonicity follows because

Ṽ (S∪{ j})−Ṽ (S) = ai1i→ jβXS+1

is strictly positive with positive probability. For the decreasing differences condition, consider any
j and any S⊆ J \{ j}, and note that

Ṽ (S∪{ j})−Ṽ (S) = ai1i→ jβXS+1 ≥ ai1i→ jβXJ \{ j}+1 = Ṽ (J )−Ṽ (J \{ j}).

To see the above, consider the event i→ j. Then, XJ \{ j}+1=XJ ≥ L. Note that XS+1=XS∪{ j}≤
XJ . If XS∪{ j} ≥ L, then βXS∪{ j} ≥ βXJ because βm is non-increasing for m≥ L. If XS∪{ j} < L, then
we have

βXJ ≤ βL ≤ min
1≤m<L

βm ≤ βXS∪{ j}.

So in either case, the claimed inequality holds.

Example 5. Owners are singletons. Let I be the set of viewers who view at least L number
of outlets, and ε = P(i 6∈ I). For every pair of outlets { j,k}, P(i views j and k|i ∈ I) > 0. An
advertiser’s value for viewer i seeing its ad M times is ai ∑

M
m=0 βm where ai ∈ (0,a) for all i, β0 =

0,βm > 0 for all m, βm is strictly decreasing for all m≥ L, and βL < min1≤m<L βm.

Proposition 13. There exists ε > 0 such that for all ε ∈ [0,ε] the value function V (·) in Example

5 satisfies the hypotheses of Proposition 4.

Proof. Strict monotonicity follows by the same argument as in the proof of Proposition 12. Now,
fix any j and any S ⊂ J \{ j}, and any k ∈ J \(S∪{ j}). Note that because P(i views j and k|i ∈
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I)> 0, we have
P(i→ j,XS < XJ \{ j}|i ∈ I)> 0.

Thus, since βm is strictly decreasing for all m≥ L, and βL < min1≤m<L βm, by the argument in the
proof of Example 1, we have

E[ai1i→ jβXS+1|i ∈ I]> E[ai1i→ jβXJ \{ j}+1|i ∈ I].

Let
τS, j := E[ai1i→ jβXS+1|i ∈ I]−E[ai1i→ jβXJ \{ j}+1|i ∈ I]> 0.

Let
τ := min

j,S⊂J\{ j}
τS, j > 0.

Let β = max1≤m<L βm. Now, we claim that for any ε such that

0≤ ε ≤ τ

τ +aβ

we have that V (·) satisfies the decreasing differences condition. To see this, consider any j and any
S⊂ J \{ j}. Note that

V (S∪{ j})−V (S)≥ (1− ε)E[ai1i→ jβXS+1|i ∈ I]

≥ (1− ε)(E[ai1i→ jβXJ \{ j}+1|i ∈ I]+ τ)

≥ (1− ε)E[ai1i→ jβXJ \{ j}+1|i ∈ I]+ εaβ

≥ (1− ε)E[ai1i→ jβXJ \{ j}+1|i ∈ I]+ εE[ai1i→ jβXJ \{ j}+1|i 6∈ I]

=V (J )−V (J \{ j}),

where the second inequality follows from the construction of τ and the third inequality follows
from 0≤ ε ≤ τ

τ+aβ
.

Proposition 14. Consider a special case of Example 4 with ai = a for all i, and further impose the

structure in Section 2.1, where for each group g, there are at least L many outlets (denoted by set

Lg) such that ηg j = 1 for all j ∈ Lg. Then the conclusions of Propositions 1 and 2 hold.

Proof. We follow the same arguments and notation as in the proofs of Propositions 1 and 2. By
Propositions 4 and 12, we have the equilibrium prices equal to the incremental values.

For the conclusion of Proposition 1, recall that we use a monotone coupling. Under that
coupling we have Xg ≤ Xh pointwise. Recall that Xg counts the random number of outlets viewed
by viewer g that are not in { j,k} and hence Xg,Xh ≥ L−2. Hence Xg +1,Xh +1≥ L−1. Since
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βL ≤ min1≤m<L βm ≤ βL−1 and βm is non-increasing in m for m ≥ L, βm is non-increasing in
m for m ≥ L− 1. Since Xg + 1 ≤ Xh + 1 pointwise, we have βXg+1 ≥ βXh+1 pointwise and so
E[βXg+1]≥ E[βXh+1], which concludes the proof as before.

For the conclusion of Proposition 2, recall that Xg
k counts the random number of outlets viewed

by viewer g that are not k. So Xg
k + 1 ≥ Xg + 1 ≥ L− 1. Because βm is non-increasing in m for

m ≥ L− 1, we have βXg+1 ≥ βXg
k +1 pointwise and so E[βXg+1] ≥ E[βXg

k +1], which concludes the
proof as before.

Existence of unbundled pricing equilibrium.

Proposition 15. Consider the setting of Section 2.1 with G = 1, FZ being the finest partition (i.e.,

the owners are not allowed to bundle), and βm = β m−1 for some constant β ≥ 0. Then, there exists

a SPEPS satisfying the tie-breaking rule, and the conclusion of Proposition 2 holds.

Proof. We construct the set of outlets S that all advertisers buy slots on. Let i denote a viewer
uniformly drawn from the population. Let XT denote the random number of outlets in T viewed
by viewer i. Since βm = β m−1, for any T ⊆ J we can write

V (T ) = aE

[
XT

∑
m=1

β
m−1

]

where the sum is interpreted as zero when XT = 0. Fix an owner Z. Let F ⊆ Z denote the menu Z

offers. Since we assume no owner can bundle any outlets, every outlet j in F is sold individually
at some price. Let Z solve

max
F⊆Z

∑
j∈F

V (F)−V (F\{ j}).

Let F∗Z be a maximizer of the above problem. For any T ⊆ J \Z, we claim that F∗Z also solves

max
F⊆Z

∑
j∈F

V (T ∪F)−V ((T ∪F)\{ j}).

Indeed, for any F ⊆ Z and any j ∈ F ,

V (T ∪F)−V ((T ∪F)\{ j}) =aE

[
XT∪F

∑
m=1

β
m−1−

X(T∪F)\{ j}

∑
m=1

β
m−1

]
=aE[1i→ jβ

XT∪F−1]

=aE[1i→ jβ
XT+XF−1]

=aE[β XT ]E[1i→ jβ
XF−1]

=E[β XT ](V (F)−V (F\{ j}))
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where we have used the fact that viewing probabilities are independent across outlets. Therefore,

max
F⊆Z

∑
j∈F

V (T ∪F)−V ((T ∪F)\{ j}) = E[β XT ]max
F⊆Z

∑
j∈F

V (F)−V (F\{ j})

and thus is also solved by F∗Z . Now let S =
⋃

Z∈Z F∗Z . We can then construct a SPEPS using the
set S and equipping outlets in S with the prices identified in Proposition 6: p j = vS

j for all j ∈ S

and p j = ∞ for all j 6∈ S. By the proof of Proposition 6, we know that with the proposed bundles
and prices, it is optimal for any advertiser to buy slots on all outlets in S. We also know that given
these prices, for any owner Z, regardless of what owner Z does, the advertisers buy slots on outlets
in S\Z (in this construction, for any advertiser n, we may let the tie-breaking ordering On be any
complete ordering over the owners). Therefore, owner Z simply solves the problem

max
F⊆Z

∑
j∈F

V ((S\Z)∪F)−V ((S\Z)∪F\{ j})

which has a maximizer F∗Z as shown earlier. So it is optimal for owner Z to offer menu F∗Z in which
each outlet j ∈ F∗Z has a price vS

j . Since this holds for any owner, the construction is a SPEPS.
To see how the conclusion of Proposition 2 holds, note that

p∗j =V (S)−V (S\{ j}) = a∑
g

µgE[1g→ jβXg
j +1]

where we use the notations in the proof of Proposition 2, except that Xg
j now counts the number of

outlets in S\{ j} that are viewed by g. The rest follows verbatim.

Auctioning of scarce advertising slots to heterogeneous advertisers. Each owner owns one
outlet, and each outlet has K slots, where K < N (so ad slots are scarce). The advertisers are
heterogeneous, with value functions given by anV (·) (with V ( /0) normalized to 0). We order the
advertisers so that a1 > a2 > · · ·> aN > 0. We assume that aK+1 is sufficiently smaller than aK in
the sense that for all j,

aK+1V ({ j})< aK(V (J )−V (J \{ j})). (A1)

Each owner runs a uniform price auction (i.e., the K slots are sold at the (K + 1)-th highest
bid) with ties broken in favor of advertisers with higher an. The auctions happen simultaneously.
Each advertiser simultaneously submits bids to every auction. We take an equilibrium to be a
Nash equilibrium in pure strategies. We say an equilibrium is owner-optimal if there is no other
equilibrium that gives weakly higher payoffs to all owners and strictly higher payoffs to at least
one owner. We say an equilibrium is efficient if the equilibrium allocation maximizes total surplus
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among all possible allocations.

Proposition 16. Suppose that (i) V (·) is monotone and submodular; and (ii) Assumption (A1)
holds. Then, there exists an efficient owner-optimal equilibrium, and in every efficient owner-

optimal equilibrium, for every owner j, the clearing price of auction j is aK(V (J )−V (J \{ j})).

Proof. Consider the following strategy profile: in every auction j, each advertiser n with n ≤ K

bids an(V (J )−V (J \{ j})); advertiser K +1 bids aK(V (J )−V (J \{ j})); and advertiser n with
n > K +1 bids 0.

We show that this is an equilibrium. Fix any j and any advertiser n with n≤K. Because this is
a (K+1)-th price auction, the advertiser cannot influence the price it pays conditional on winning.
Note that regardless of the choices the advertiser makes on other auctions, the advertiser weakly
prefers to win auction j at the price of aK(V (J )−V (J \{ j})) because for any S ⊆ J \{ j}, we
have

an(V (S∪{ j})−V (S))≥ aK(V (S∪{ j})−V (S))≥ aK(V (J )−V (J \{ j})),

where we have used submodularity of V (·). Therefore, advertiser n has no profitable deviation, for
any n≤ K.

Next, fix any j and any advertiser n with n > K. Note that advertiser n loses every auc-
tion under the proposed strategy profile. Also note that to win auction j, advertiser n has to pay
aK(V (J )−V (J \{ j})). However, regardless of the choices the advertiser makes on other auc-
tions, the advertiser strictly prefers not to win auction j at this price, because for any S ⊆ J \{ j},
we have

an(V (S∪{ j})−V (S))≤ anV ({ j})≤ aK+1V ({ j})< aK(V (J )−V (J \{ j})),

where we have used submodularity of V (·) and Assumption (A1). Therefore, advertiser n has no
profitable deviation, for any n > K.

Now, we show that this equilibrium is owner-optimal. Suppose toward contradiction that there
is another equilibrium that gives some owner j a strictly higher payoff and all other owners weakly
higher payoffs. Fix any such equilibrium E ′. By the argument above, no advertiser n with n > K

would want to win auction j at a price strictly higher than aK(V (J )−V (J \{ j})). Therefore, the
K winning bidders in auction j must be advertisers 1, . . . ,K. However, at a price strictly higher
than aK(V (J )−V (J \{ j})) for auction j, advertiser K must lose some auction j′ 6= j, because
otherwise the advertiser can profitably deviate to losing auction j. Then, since there are K winners
in auction j′, there must be an advertiser n′ with n′ > K who wins auction j′. For owner j′ to
have a weakly higher payoff in equilibrium E ′ than in the original equilibrium, the clearing price
in auction j′ must be weakly higher than aK(V (J )−V (J \{ j′})). But then advertiser n′ can

57



profitably deviate to losing auction j′ by the argument above. A contradiction.
We claim that the allocation of ad slots to advertisers under this equilibrium is the unique

efficient allocation. To see this, fix any efficient allocation x. Suppose toward contradiction that
x is not the equilibrium allocation (i.e., the ad slots are not all allocated to advertisers 1, . . . ,K).
Then, it must be that some advertiser n ≤ K is not allocated to an ad slot on some outlet j, which
means that some advertiser n′ > K is allocated to an ad slot on outlet j. Consider an allocation x̃

that is the same as x except that it allocates the ad slot on outlet j to n instead of n′. We claim that
this change strictly increases the total surplus. Indeed, let S be the set of outlets whose slots are
assigned to advertiser n under allocation x, and similarly define S′ for advertiser n′. Then,

an (V (S∪{ j})−V (S))≥ aK (V (J )−V (J \{ j}))

> aK+1V ({ j})≥ an′
(
V (S′)−V (S′\{ j})

)
,

where we have used submodularity of V (·) and Assumption (A1). Therefore,

anV (S∪{ j})+an′V (S′\{ j})> anV (S)+an′V (S′),

and hence x̃ gives a strictly higher total surplus than x. But x is assumed to be an efficient allocation.
A contradiction.

Finally, fix any efficient owner-optimal equilibrium. By efficiency and the argument above,
the winning bidders in every auction must be advertisers 1, . . . ,K. If there is any auction j in which
the clearing price is strictly higher than aK(V (J )−V (J \{ j})), then advertiser K can profitably
deviate to losing auction j. Therefore, in every auction j, the clearing price must be weakly lower
than aK(V (J )−V (J \{ j})). Now, if there is any auction j′ in which the clearing price is strictly
lower than aK(V (J )−V (J \{ j′})), the equilibrium cannot be owner-optimal, because we have
just shown an equilibrium that has clearing prices equal to aK(V (J )−V (J \{ j})) for all j. Thus,
in every efficient owner-optimal equilibrium, the clearing price in every auction j must be exactly
aK(V (J )−V (J \{ j})).

Competitors’ ad effect. We consider a setting in which each owner owns a single outlet, and
modify the value function V (·) as follows. Let advertiser n’s value for buying ads on the set of
outlets Sn be V (Sn,~S−n), where ~S−n is the vector of outlets bought by other advertisers. We say
~S−n ≤ ~S′−n if each entry of the vector is smaller in the set-inclusion order. Since all owners are
single-outlet owners, we use j to denote both an outlet and the owner associated with the outlet.
Let ~J be the vector of length N−1 with J in each entry, and

−−−−→
J\{ j} be the vector of length N−1
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with J \{ j} in each entry. We impose two assumptions:

V (J ,~S−n)−V (J \{ j},~S−n)≥V (J ,~S′−n)−V (J \{ j},~S′−n) for any ~S−n ≤~S′−n and j; (A2)

V (J ,
−−−−→
J\{ j})−V (J \{ j},

−−−−→
J\{ j})≤ (1+

1
N
)
(

V (J , ~J )−V (J \{ j}, ~J )
)

for any j. (A3)

Let ṽ j =V (J , ~J )−V (J \{ j}, ~J ) denote the modified incremental value of outlet j in this setting.

Proposition 17. Suppose V ( · ,~S) is monotone and submodular for any~S, and V (·, ·) satisfies (A2 )
and (A3). Then there exists a SPEPS in which all advertisers buy slots on all outlets, and the price

for outlet j is p∗j = ṽ j.

Proof. We construct a SPEPS as follows. Let each owner j announce price ṽ j. For each profile of
prices p announced (including off-the-equilibrium-path histories), the subgame in the second stage
is a finite extensive-form game and hence admits a SPEPS by backward induction. When doing the
backward induction, if an advertiser is indifferent between different sets of outlets to buy slots on,
we pick one with the largest cardinality. Now we verify that no owner has a profitable deviation.

Observe that if p j = ṽ j is offered by an owner, then any advertiser will buy a slot on outlet
j regardless of p− j and what other advertisers do. This is because for any S ⊆ J\{ j} and any
~S−n ≤ ~J ,

V (S∪{ j},~S−n)−V (S,~S−n)≥V (J ,~S−n)−V (J \{ j},~S−n)≥V (J , ~J )−V (J \{ j}, ~J )

where we have used submodularity of V (·,~S−n) and Assumption (A2 ). Further, when all other
advertisers buy slots on all outlets, the incremental value for an advertiser to buy a slot on some
outlet j is exactly V (J , ~J )−V (J \{ j}, ~J ). Therefore, at the proposed price profile, for any outlet
j, each advertiser is indifferent between buying and not buying a slot on outlet j holding everything
else fixed (including other advertisers’ decisions).

Now fix any owner j. Suppose all other players follow the proposed strategy. Note that
owner j is selling N slots by announcing price ṽ j and clearly has no incentive to decrease the
price. Consider the deviation of raising the price. By the earlier observation, all advertisers would
continue buying slots on outlets in J \{ j}. Therefore, by (A2 ), the maximal amount owner j can
extract from an advertiser is at most V (J ,

−−−−→
J\{ j})−V (J \{ j},

−−−−→
J\{ j}). Further, we claim that

at least one advertiser would stop buying the slot on outlet j after the price increase. Suppose
not. Then all advertisers buy slots on all outlets. But the last advertiser moving in sequence has
a profitable deviation of buying only the slots on outlets in J \{ j}. Thus there are at most N− 1
advertisers buying a slot on outlet j. Hence owner j’s revenue is at most

(N−1)
(

V (J ,
−−−−→
J\{ j})−V (J \{ j},

−−−−→
J\{ j})

)
≤ (N−1)(1+

1
N
)
(

V (J ,
−→
J )−V (J \{ j},

−→
J )
)
≤Nṽ j
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where the first inequality is due to (A3). So there is no profitable deviation for owner j. Since this
holds for any owner, the construction is a SPEPS.

Incentive to invest in content. For a given investment profile {(αiZ)i∈I}Z∈Z , a viewer i, and an
owner Z, let V Z

i ( · ;α) denote the value function induced by the viewing probabilities of viewer i

conditional on viewer i being attracted to owner Z.

Proposition 18. Suppose the investment profile {(αiZ)i∈I}Z∈Z is an equilibrium. Then,

C′iZ(αiZ) =V Z
i (J ;α)−V Z

i (J \Z;α),

which, under perfect diminishing returns, is equivalent to

C′iZ(αiZ) = aiηiZ ∏
Z′ 6=Z

(1−αiZ′ηiZ′) .

Proof. For a given investment profile α , by Theorem 1, the equilibrium prices in the subgame are
given by

p∗Z(α) = ∑
i

αiZ
(
V Z

i (J ;α)−V Z
i (J \Z;α)

)
.

So the payoff to owner Z when making investment choices is given by

∑
i

αiZ
(
V Z

i (J ;α)−V Z
i (J \Z;α)

)
−∑

i
CiZ(αiZ),

which is a continuous and strictly concave function in (αiZ)i∈I (note that V Z
i (J ;α)−V Z

i (J \Z;α)

does not depend on αiZ). For owner Z, the first order condition for αiZ is given by

C′iZ(αiZ) =V Z
i (J ;α)−V Z

i (J \Z;α).

Since C′iZ(1) > ai ≥ V Z
i (J ;α)−V Z

i (J \Z;α) for all α , i, and Z, in any equilibrium no owner Z

will choose αiZ = 1 for any viewer i. Then, since C′iZ(0) = 0, in any equilibrium no owner Z will
choose αiZ = 0 for any viewer i. Hence, in any equilibrium, the above first order condition must
hold for all i and all Z.
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B Additional Empirical Results
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Appendix Figure 1: Sensitivity to Alternative Outlet Definitions
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 1 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 3. The rows under the header “Alternative definition of outlet” consider different
outlet definitions. In the row labeled “Network” an outlet j is a network. In the “Network” row, the “Price per impression vs. audience activity”
specification includes controls for the share of total impressions that are to adults and for indicators of deciles of audience size, and the “Price per
impression vs. audience size” specification includes controls for the share of total impressions that are to adults and for indicators of deciles of
audience activity. In the row labeled “Broadcast program” an outlet j is a broadcast program, with bins corresponding to 15 quantiles of the full
sample of broadcast programs (3060 programs) colored black and bins corresponding to deciles of the subsample of broadcast programs included
in the audience survey (173 programs) colored gray. In the “Broadcast program” row, the “Price per impression vs. audience activity” specification
includes controls for the share of total impressions that are to adults and for indicators of deciles of audience size, and the “Price per impression vs.
audience size” specification includes a control for the share of total impressions that are to adults.
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Appendix Figure 2: Sensitivity to Alternative Samples
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 1 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 3. The rows under the header “Alternative Sample Years” present results for
alternative sample years.
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Appendix Figure 3: Sensitivity to Alternative Controls

Price per impression vs.
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 1 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 3. The rows under the header “Alternative controls” consider different sets of
control variables. The row labeled “Income” adds controls for indicators for deciles of the average household income of adult impressions. The row
labeled “Attentiveness” adds controls for indicators for deciles of the time-weighted average attentiveness of the outlet’s viewers, where a viewer’s
attentiveness is the viewer’s average self-reported attentiveness across broadcast and cable programs, coded as some (0.5), most (0.75), or full (1),
and measured for each program relative to the mean among all respondents who rate the program. The row labeled “Attitude” adds controls for
indicators for deciles of the time-weighted average of viewers’ attitudes toward television advertising, where a viewer’s attitude toward advertising
is measured as the first principal component of the viewer’s responses (on a five-point scale) to a series of eight questions about TV advertising.
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Appendix Figure 3: Sensitivity to Alternative Controls (continued)

Price per impression vs.
audience activity audience size
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Notes: Within a given row, both plots are based on the same regression specification. The row labeled “Baseline” corresponds to the main
specification in the paper, with the plot “Price per impression vs. audience activity” corresponding to Panel B of Figure 1 and the plot “Price per
impression vs. audience size” corresponding to Panel B of Figure 3. The rows under the header “Alternative controls” consider different sets of
control variables. The row labeled “Industry” adds controls for the share of the outlet’s adult impressions that are to ads whose advertisers are in
each of 11 industry categories: automotive; business and consumer services; business supplies; drugs and remedies; entertainment; food and drink;
home and garden; insurance and real estate; retail; travel; and other.
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Appendix Figure 4: Average Television Viewing Hours Per Day by Age and Gender
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Notes: The figure shows the average daily viewing hours spent on television across age groups by gender.
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Appendix Figure 5: Measures of Online Activity by Age and Gender

Panel A: Average internet hours per day
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Panel B: Share of social media sites visited in the past 30 days
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Notes: Panel A shows average daily hours spent on the internet across age groups by gender. Panel B shows
the average share of five social media sites (Facebook, Instagram, Reddit, Twitter and YouTube) visited in
the past 30 days across age groups by gender.
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Appendix Figure 6: Demographic Premia (Per Click) and Viewing Time on Facebook

Panel A: Data from our experiment
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Panel B: Data from Allcott et al. (2020b)
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Notes: The plot shows the log(price per click) for advertisement sets targeted to a given gender and age
group. In Panel A, the data are taken from our own experiment, and the groups are {Men, Women} ×
{18-24, 25-34, 35-44, 45-54, 55-64, 65+}. In Panel B, the the data are taken from Allcott et al. (2020b), and the
groups are {Men, Women}×{18-24, 25-44, 45-64, 65+}. In both panels, the y-axis value is the log(price per click)
for advertisement sets targeting the given group, and the x-axis value is the midpoint of the age range for the given
group, treating 70 as the midpoint for ages 65+.
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Appendix Figure 7: Advertising Prices and Demographics of Digital Platforms

Panel A: Average age
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Panel B: Share female
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Notes: Each plot is a scatterplot of the log(price per impression) of display advertising on a platform against the de-
mographic characteristics of the platform’s viewers. We construct the price per impression by computing the ratio of
total revenue to total impressions across all display ads on the platform reported in AdIntel 2017 (The Nielsen Com-
pany 2022). The sample of platforms is the set of platforms that AdIntel 2017 (The Nielsen Company 2022) classifies
as Entertainment, Finance, Information/Reference, News/Commentary, Spanish, Sports, Technology, or Weather, ex-
cluding some platforms such as those that focus primarily on direct sales of products or services. The x-axis shows
the average age (Panel A) or share female (Panel B) of those who report visiting the platform in the previous 30 days
in GfK MRI’s 2017 Survey of the American Consumer (GfK Mediamark Research and Intelligence 2019).
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Appendix Figure 8: Marginal Willingness to Pay to Attract Older vs. Younger Viewer Under Alterna-
tive Levels of Investment Decision-Making

Panel A: Baseline model with homogeneous value
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Panel B: Model with value proportional to income

−1.0

−0.5

0.0

0.5

18−24 25−34 35−44 45−54 55−64 65+
Age

lo
g(

m
ar

gi
na

l W
T

P
 p

er
 im

pr
es

si
on

),
 n

or
m

al
iz

ed

level where investment
decision is made

market (concentrated)
owner (baseline)
network
outlet

Notes: In each plot, the y-axis value corresponds to the average log(total marginal willingness to pay per impression),
ln(m̂i), as described in Section 5.2, for viewers in the age bin listed on the x-axis, under models in which the content
investment decision is made at different levels. Panel A uses the baseline model in which advertisers’ value of a first
impression is homogeneous across viewers. Panel B uses the model in which advertisers’ value of a first impression
is proportional to a viewer’s income. In both plots, “market (concentrated)” corresponds to the model in which
investment is made by a single entity owning all television networks, “owner (baseline)” corresponds to the model in
which investment is made by each owner of the observed partition Z , “network” corresponds to the model in which
investment is made by each individual network, and “outlet” corresponds to the model in which investment is made by
each individual outlet (network-daypart). In both plots, and for each level of investment, the y-axis value is normalized
by adding a scalar so that its average value is zero in the youngest age group.
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Appendix Figure 9: Marginal Willingness to Pay to Attract Older vs. Younger Viewers Under Alter-
native Values of αiZ′

Baseline model with homogeneous value Model with value proportional to income
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Notes: The plots show the calculations described in Section 5.2 when using different values of αiZ′ for Z′ 6= Z when calculating m̂i. Each row
corresponds to a different value of αiZ′ , with the first row corresponding to the baseline case of αiZ′ = 1 depicted in in Figure 8. The left column
uses the baseline model in which advertisers’ value of a first impression ai is homogeneous across viewers, whereas the right column uses the model
in which ai is proportional to a viewer i’s income. In each plot, the y-axis value corresponds to the average log(total marginal willingness to pay per
impression), ln(m̂i), as described in Section 5.2, for viewers in the age bin listed on the x-axis, under different ownership scenarios. These scenarios
include: the “baseline” ownership corresponding to the observed partition Z; the “concentrated” ownership corresponding to the counterfactual
scenario in which one entity owns all television networks; and three counterfactual ownership partitions in between, in which the top two, three,
or four owners by audience are merged. In all plots, and for each ownership scenario, the y-axis value is normalized by adding a scalar so that its
average value is zero in the youngest age group.
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Appendix Table 1: Overlap in Advertising Spending, TV vs. Online

Share of TV advertising Share of online advertising

Top 50 TV advertisers 44 17
Top 50 online advertisers 27 36

Notes: Each column shows the share of advertising spending on the given medium (TV or online) in 2015
coming from the top 50 television advertisers by spending and the top 50 online advertisers by spending.
Each advertiser is a parent company that can advertise for multiple brands. Online advertising includes
non-mobile display advertising. Television advertising includes cable and broadcast. These values were
computed using data from Media Intelligence and Kantar Media (2021).
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Appendix Figure 10: Observed and Predicted Television Advertising Revenues, Alternate Estimates of
Impressions

Panel A: Observed trends
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Panel B: Predicted trends
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Notes: Each plot depicts trends in the television advertising market over the sample period. We plot trends in total
revenue, total impressions, and price per impression (total revenues divided by total impressions), all normalized
relative to their 2015 value. In Panel A, all series are as observed in the data, as described in Section 3.1, and
revenue is deflated to 2015 dollars using the US Consumer Price Index (Organization for Economic Co-operation and
Development 2022). In Panel B, the trends in revenue and impressions are predicted by the baseline model in which
advertisers’ value of a first impression is homogeneous across viewers, as described in Section 5.
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