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with a cost per influenced person of about $3.41. Combining this result with an estimate of the 
relationship between survey outcomes and vaccination rates derived from observational data 
yields an estimated cost per additional vaccination of about $5.68. There is further evidence that 
campaigns are especially effective at influencing users’ knowledge of how to get vaccines. Our 
results represent, to the best of our knowledge, the largest set of online public health interventions 
analyzed to date.
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Introduction
Throughout the rapidly evolving COVID-19 pandemic, policymakers and public health agencies
needed to communicate with citizens about mitigation measures ranging from mask wearing and
social distancing to vaccines. Advertising on social media emerged as a popular channel to quickly
reach large numbers of people, and has been used by public health organizations in nearly every
country both to convey information and influence behavior. An understanding of the expected
impact of these campaigns is important as such organizations continue to engage in interventions
as the pandemic unfolds. Assessing these campaigns is further valuable as digital public health
interventions become increasingly used to address broader health-related outcomes.

To speak to these questions, this paper aims to evaluate the impact of social media adver-
tisements on a variety of COVID-19-related outcomes. Analyzing advertising campaigns run on
Facebook and Instagram by 174 public health organizations around the world, we investigate three
main questions. First, what effect did these social media advertising campaigns have? Second, how
cost effective were they? Third, which types of outcomes have the campaigns been most effective
at influencing?

The campaigns in our sample were run between December 2020 and November 2021, reached
users in nearly every country, and in aggregate consist of $39.4 million dollars of advertising
spending. They include a wide range of public health organizations that span major multinational
nonprofits, public health ministries, and local non-governmental organizations.1 Importantly, our
data set contains the near universe of relevant experiments that were run on Facebook and Insta-
gram over this period.2 This feature of our sample allows us to draw conclusions that are not
vulnerable to selection biases that commonly arise in meta-analyses, such as publication bias,
whereby experiments with positive outcomes are more likely to be included in the sample. To our
knowledge, the data set we analyze is the largest set of online public health interventions studied
to date.

The data have two key features relevant for our analysis. First, we have data from a large
number of the campaigns that conducted experiments where exposure to the ads was randomized
at the user level, allowing us to assess the causal effect of each campaign. This is especially
important in the context of online advertisements, where selection bias is a significant obstacle in
non-experimental data [27, 23, 12, 42]. Randomized experiments have become more common in
online advertising, and companies (including Meta) have developed standardized experimentation
tools to facilitate testing. The campaigns we analyze all used these tools to conduct experiments.

Second, we are able to combine the experiments with user-level survey data for a subset of
users. The surveys ask a variety of questions - namely, a user’s willingness to get a COVID-19
vaccine, belief in the importance of vaccination, belief in vaccine effectiveness, belief in vaccine

1The identities of the individual advertisers are not included in this article to protect their confidentiality.
2We discuss the nature of these experiments in more detail below and in the Supplemental Material (SM). We are

able to identify all campaigns that made use of the platform’s standardized “Brand Lift Study” infrastructure as defined
later, and asked one or more questions about COVID-19 vaccines. The vast majority of experiments identified this way
are included in our analysis; the only ones that were excluded were a small number of experiments that chose to ask
customized COVID-related questions that do not fall into the seven types that we study. We note a primary alternative
approach for advertisers to conduct randomized experiments is to randomize advertising exposure by geographical
region and then compare aggregate outcomes, measured separately, across geographies. We are aware of a handful of
such experiments that were run during the time window we consider; these are not included in our analysis because
we do not have access to the details of these experiments.
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safety, whether the advertiser is a trustworthy source of COVID-19 information, how knowledge-
able the user feels about how to get the vaccines, and whether they think vaccines are socially ac-
ceptable.3 While not all advertisers asked all questions, the survey questions were largely standard-
ized across campaigns, facilitating comparisons. As is common practice with such experiments,
we classify responses into a binary outcome according to whether respondents were engaging in
the public health behavior of interest (for instance, intending to get the vaccine) or had the relevant
public health information (for instance, knowing where to get the vaccine). Looking across all
studies, we can then see whether interventions had an impact on the binary outcome of interest.4

This approach is similar in spirit to the approach taken by other papers that aggregate a set of
experiments with distinct outcomes.5

Overall, our combined findings suggest that these campaigns were effective at influencing peo-
ples’ attitudes and beliefs about the vaccine. We find an average increase in the fraction of positive
responses of 0.55 percentage points (p = 2e-13) across all experiments, with a baseline 55.7%
positive rate. While this point estimate is small on a per person basis, the reach of the campaigns
implies that even under conservative assumptions, around 11.6 million individuals were influenced
by these campaigns alone, at a cost of about $3.41 per incremental person. Translating this esti-
mate into a cost for incremental vaccinations requires additional assumptions and data; the survey
outcome can be considered a “surrogate” for the outcome of interest, vaccination [5].6 In the SM,
we present the results of an analysis where we use data from the U.S. to estimate the correlation
between country-level vaccination rates and county-level survey responses, finding a correlation of
.6 (standard error .0174) in a sample of 2,710 counties with more than 20 survey responses. Using
this estimate together with the result of our meta-analysis implies that the cost an incremental vac-
cine is $5.68. These estimates suggest that campaigns may be an easily scalable intervention that
can in aggregate shape the public health outcomes of a large number of citizens.7

These results can be broadly compared to those from other initiatives aimed at influencing
vaccination decisions.8 [7] and [45] estimate a $68 and $49 cost per incremental COVID vacci-

3In this paper, we will refer to these questions shorthand as Willingness, Importance, Effectiveness, Safety, Trust-
worthy Source, Knowledgeable, and Social Norms, respectively.

4The wording of each question, possible responses, and how answers were classified are all listed in the SM.
5For instance, [22] aggregates a variety of distinct binary outcomes, corresponding to whether an action was taken

or not, from a large set of behavioral experiments. Examples include whether or not someone filled out a government
form or whether or not someone paid a fine. Two other studies that similarly use meta-analytic methods to combine
different treatments and outcomes are [10, 31].

6One required assumption is that the effect of the treatment is fully captured by the survey question; since the
treatment is unlikely to have a negative effect on vaccination, a violation of this assumption would likely lead to a
conservative estimate. A second requirement is that the treatment does not directly change the relationship between
the survey outcome and vaccination. This requirement could be violated if treatment induced individuals to respond
positively to the survey, e.g. in an attempt to please the experimenting organization. This problem is unlikely because
the survey is given at a separate time and format than the advertising exposure, and is not associated with the public
health organization. However, since we cannot link treatment to changes in vaccination status, we cannot directly
assess whether a change in survey responses due to treatment would lead to a change in vaccination rates that matches
the observed cross-sectional correlation. This requirement would fail if, for example, the effect of advertising was
very short-lived or if there are barriers to vaccinations among individuals close to the margin of getting vaccinated that
are not reflected in the average relationship between survey responses and vaccination decisions.

7This scalability includes not just reaching more people but also reaching individuals who may be hard or costly
to reach via other means. This may be particularly important for some subpopulations where there is evidence of a
disproportionate impact of the pandemic [2].

8A separate branch of literature has evaluated impacts of interventions on other COVID-related behaviors. For
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nation in Ohio from the Vax-a-Million lottery (though see [48, 46]); in a separate study, [17] find
a cost per incremental vaccination on the order of $400; and [35] estimate costs of $88-$380 for
incremental flu vaccinations in seniors in the US. [36] finds a much lower cost, specifically $1 per
incremental COVID vaccination from a location-randomized YouTube advertising experiment in
select counties in the US. [43] explores methods of effective communication for influencing health
outcomes, including through randomized experiments run on Meta. Since our data does not in-
clude information about actual vaccination decisions, it is hard to directly contrast our estimates to
those. However, such estimates highlight how challenging it can be to influence health behaviors,
and the potential value of identifying low cost, scalable interventions. When considering such in-
terventions to influence vaccine uptake, there has been much advocacy for behaviorally-informed
promotions [9, 47]. The campaigns we analyze broadly fit into this category.

Our findings also connect to the literature on health nudges, which similarly tends to focus on
low cost, scalable interventions. Much of this literature has focused on text-based interventions,
which have shown potential across a number of domains, ranging from flu appointments to court
appearances [40, 16, 24]. Specifically in the context of COVID-19, [21] sent participants in Cal-
ifornia text-based reminders to make vaccination salient and easy to remember. They find that
reminders sent one day and eight days after notification of vaccine eligibility increased vaccination
rates by 3.57 percentage points and 1.06 percentage points, respectively. [6] analyze the effect of a
video message randomly distributed via SMS to millions of individuals in West Bengal, India; they
find substantial effects on both the treated individuals as well as non-treated community members
on a broad range of COVID-related outcomes. One advantage of text-based interventions is that
they may be more salient and thus have a larger effect relative to our effects. On the other hand,
advertising campaigns do not require gathering phone numbers and may thus be more easily scaled
to a large population.9

Our results can be related to prior large-scale meta-analyses of online advertising. The literature
has highlighted major challenges due to low statistical power [37]. Meta-analysis is a natural way
to address this challenge, but it requires access to data from the experiments of many advertisers
and also creates challenges comparing effectiveness across heterogeneous advertising objectives.
We are aware of only three other meta-analyses of digital advertisements that have comparable
scale to our study.10 First, [33] used internal data from Google’s display advertising platform to
study the effect of digital advertisements on website visits for 432 digital advertising campaigns,
finding effects of 8% of baseline website visits. Second, [25] analyzed 2,892 experiments carried
out by a brand research firm, each using a similar survey methodology and sample size to the
experiments considered here, finding an effect of about 10% of the baseline on survey responses
concerning intention to purchase. Third, [26] analyze more than 600 advertising experiments on

example, [19] use smartphone data from 10 million devices and find large effects of stay-at-home orders on both
movement and transmission rates.

9A related vein of literature has focused on identifying mechanisms for effective communication around COVID
that could then be implemented at scale. For example, holding a wide range of factors constant, [3] vary characteristics
of the messenger and signal content in a video infomercial and find evidence of substantial heterogeneity in effective-
ness only by shifting those attributes. Similarly, [34] find evidence that prosocial framings are important for shifting
COVID-related outcomes across a range of experiments. Insights from studies such as these two could help inform
both digital and non-digital interventions.

10[33] provides an overview of the literature, including related meta-analyses in other forms of advertising such
as online search advertising and television; see also [8] who analyze 54 mobile advertising campaigns, and [30] who
study social ads across 74 products.
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Facebook, comparing the estimated effects for different measures along what is referred to as a
“funnel” or a customer’s journey to a final action of interest. They find effects of 28%, 19%, and
6% for measured outcomes that capture consumer behavior at the top, middle, and lower parts of
the funnel. Our paper is the first we are aware of to conduct a large-scale meta-analysis of online
public health campaigns across multiple outcomes. Our estimated effects (about 1% over baseline)
are substantially smaller than the effects found in these studies, suggesting that it is more difficult
to change attitudes and beliefs about vaccination than it is to increase more standard advertising
outcomes. Similar to [26], we find smaller effects for outcome measures that are closer to the
ultimate outcome of interest, vaccination.

Building on our main results, we next look across the different survey outcomes to see which
ones are most impacted by the campaigns. We find significant effects on Knowledge, Safety, Social
Norms, and Importance (all have p < 0.001), while no significant effects on Willingness, Effective-
ness, or Trustworthy Source. There were individual campaigns that were able to significantly move
these last three metrics, but we could not detect an overall average effect. Finally, we find evidence
that the campaigns may have been particularly effective at shifting users’ knowledge around the
vaccines. Knowledge has the largest treatment effect point estimate (1.23 percentage points, p =
5e-7), and it is significantly higher than nearly all the other coefficients.11 This suggests that, on av-
erage, the digital advertisements in our sample may have been a particularly cost-effective channel
for information dissemination, or that information is easier to retain. In interpreting these compar-
isons, it is important to recall that different campaigns were designed for different purposes, and
some campaigns may have conducted experiments on both primary and secondary outcomes, so
that smaller impacts might be expected for secondary outcomes. For example, a campaign focused
on providing information might have evaluated its impact on Knowledge but also on Willingness.
If Knowledge was less commonly included as a secondary outcome, it might be expected that the
measured impact would be higher. In the SM, we investigate this hypothesis by manually classi-
fying advertisements as to which outcome is the best match as a primary outcome, and we find
similar patterns.12

Overall, our results suggest that social media advertising campaigns can be an important com-
ponent of public health initiatives. Over the course of the past two years, health oriented orga-
nizations have engaged in a wide range of tactics in an effort to shift attitudes and behaviors13;
key challenges with many of these include scalability, measurement, and generalizability. Digital
advertising can help overcome these challenges. However, the small per person impact highlights
that these campaigns are best thought of as part of a broader set of strategies. To this end, our paper
complements the growing literature on designing effective public health interventions on COVID.

The rest of our paper is organized as follows. The Data section describes our sample, the
outcome variables, and the approach we use to analyze the campaigns; the Results section presents

11In a two sided t-test, the coefficient for Knowledge is significantly greater than that for Effectiveness (p = 0.038),
Importance (p = 0.003), Safety (p = 0.034), Trustworthy Source (p = 0.002), Willingness (p = 0.020), and our overall
estimate (p = 0.008), including when dropping Knowledge studies (p = 0.006). It is not significantly different from
our estimate for Social Norms, though it is close in a one sided test (p = 0.109).

12Our manually labeled sample is smaller, but we see that the point estimate for Knowledge is again significantly
larger than that for Importance, Safety, and Willingness; it is non significantly different from that for Effectiveness and
Social Norms.

13See https://www.nga.org/center/publications/covid-19-vaccine-incentives/ for a
list of different incentives offered in the U.S. alone, ranging from Girl Scout cookies to laps on a NASCAR track.
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findings in greater detail; and the Conclusion summarizes. Additional analyses are provided in the
Supplementary Materials (SM).

Data

Overview
We analyze a set of 819 randomized experiments that were conducted between December, 2020
and November, 2021. The experiments in our sample are derived from 376 distinct advertising
campaigns and 174 organizations. There are often multiple experiments associated within a single
ad campaign, where each experiment corresponds to a specific survey outcome. For example, an
advertiser may take one campaign and run three separate experiments that measure the impact of
the campaign on Willingness, Importance, and Effectiveness. The average campaign in our data
ran slightly more than two experiments; in other words, advertisers measured the impact of their
campaigns on an average of about two outcome metrics each.14

The studies were all conducted using Meta’s infrastructure for conducting advertising effec-
tiveness experiments across Facebook and Instagram; through the rest of this paper, we refer to
this infrastructure as “the platform.” We focus specifically on experiments that measure the extent
to which advertisements affect individuals’ attitude or beliefs as measured by survey questions.15

We note that not all advertisers run these experiments, so our results are underestimates of the total
impact of digital advertising interventions on Facebook and Instagram.16

We limit the set of experiments to those measuring outcomes in one of seven categories men-
tioned earlier (see SM for details).17 Though not an exhaustive set of COVID-19 ad experiments,
these seven categories were selected because they are the most prevalent across COVID-19 vaccine
related experiments. We use all studies that asked these questions and, following the platform’s
policy18, restrict to users aged 18 and older.

The campaigns we study total $39.4 million in ad spend, with a reach of 2.1 billion unique users
translated across 15 languages. The average campaign cost more than $100,000 and reached nearly
13 million people; these were substantive efforts, but importantly also not beyond the budget of

14The platform normally caps the number of questions per campaign at three.
15These experiments are known as ‘Brand Lift Studies’ in advertiser-facing documentation. There are many compa-

nies that offer Brand Lift experiments to advertisers, each with slightly different implementations and methodologies.
These studies are commonly used to measure effects on outcomes such as ad recall, brand sentiment, or intent to pur-
chase, but have become popular during the pandemic to also look at health related outcomes that may not be observable
in log data.

16Meta imposes minimum budgets to run one of these studies that vary across country; for example, in the U.S. it is
currently $30,000, which is more than many advertisers’ budgets.

17While the platform proposed standardized questions to the advertisers, they did have autonomy to adjust the
language for the questions if they wished, so that we see some heterogeneity of questions asked within the seven
categories we study. In our data there are no instances where the same campaign ran multiple experiments that
each asked the exact same survey question. However, 38 campaigns ran multiple experiments measuring the same
outcome variable using distinct questions. For example, a campaign may have run two separate experiments that both
measured its impact on Knowledge, with different survey questions, such as Do you know your order of priority to
get the COVID-19 vaccine? and Do you know where to go to get a COVID-19 vaccine for yourself? Omitting these
campaigns yields no material shift in our results, and in the SM we conduct additional analyses that factor in this
within-campaign heterogeneity.

18See https://www.facebook.com/business/help/2396060560411130.
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what many public health organizations could conceivably spend on similar campaigns in the future.
Table 1 provides summary statistics.

Table 1. Summary statistics by outcome metric.

Category Effectiveness Importance Knowledge Safety
Social
Norms

Trustworthy
Source Willingness Overall

# Experiments 64 237 94 218 107 59 40 819

# Unique Campaigns 48 234 73 218 107 59 40 376

# Unique Organizations 32 109 57 100 50 30 17 174

Earliest Campaign Start 2021-02-17 2020-12-08 2021-02-19 2020-12-15 2021-02-03 2021-02-24 2020-12-08 2020-12-08

Latest Campaign End 2021-11-15 2021-11-12 2021-11-03 2021-11-15 2021-11-14 2021-10-21 2021-06-15 2021-11-15

Avg. # People Reached 17,932,855 12,833,435 15,341,751 11,959,068 12,497,147 9,510,847 27,297,621 12,913,047
(3,216,101) (1,353,134) (2,957,774) (1,746,021) (2,396,430) (1,971,257) (6,773,069) (1,225,276)

Avg. # Survey Resp per Experiment 1,753.53 2,130.65 1,734.60 1,931.67 1,510.58 1,762.17 1,429.00 1,860.94
(151.09) (90.27) (128.96) (90.81) (120.24) (148.21) (155.72) (45.75)

Avg. Campaign Cost $136,807 $65,487 $122,796 $132,491 $63,556 $104,177 $392,678 $105,183
($41,543) ($6,376) ($36,000) ($26,694) ($13,409) ($24,353) ($142,627) ($16,872)

# Experiments Rejecting No Effect (0.1) 7 23 22 29 14 3 1 99

# Experiments Rejecting No Effect (0.05) 5 16 17 20 8 3 1 70

Implied False Discovery Rate (0.1) 0.914 1.000 0.427 0.752 0.764 1.000 1.000 0.827

Implied False Discovery Rate (.05) 0.640 0.741 0.276 0.545 0.669 0.983 1.000 0.585

# FDR Survivor Experiments (10% FDR) 2 14 5 5 1 2 0 27

Note: Standard errors in parentheses.# Experiments Rejecting No Effect (0.1) references the number of studies that
are significant at the 0.1 level in a two-tailed t-test against the null of no treatment effect. Implied False Discovery
Rate (0.1) estimates the false discovery rate if we accepted all experiments that were significant at the 0.1 level, as
FDR(0.1) = (0.1 ∗ ne)/(nrej), where 0.1 is the level of significance, ne is the number of experiments, and nrej

is the number of experiments rejecting no effect at 0.1. # FDR Survivor Experiments is the number of experiments
determined via the Benjamini-Hochberg algorithm to survive a false discovery rate of 10% [11].

Although the campaigns we study reached billions of users, as we can see in Table 1, we
observe a much smaller number of survey responses. The platform provides the experimentation
service to enable advertisers to estimate the incremental impact of their campaigns on survey-based
outcomes; however, the number of responses per experiment is limited by the platform. The limits
are presumably motivated by the fact that users may only be willing to engage in a small number
of surveys, and the user experience may be negatively impacted by too many surveys. Thus, the
platform caps the number of respondents per study to balance the tradeoff between statistical power
and user experience.19

In total, our dataset incorporates 1.5 million total responses across all experiments. Per ex-
periment, the number of responses ranges from 300 to 4507, split across test and control groups.
This does not give us too much power for each individual experiment. If an experiment of aver-
age sample size (1861 in our sample) and average baseline positive response rate (55%) were to
be analyzed using a difference in means between treatment and control, the minimum detectable

19See the SM for more details on how these experiments are implemented.
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effect size with 80% power and a 10% significance level would be about 0.06, close to 10% of the
baseline. The average effects we find below are an order of magnitude lower than that.20 Indeed,
we see only 99 out of the 819 experiments rejected the null at the 10% level, just slightly greater
than the 10% of experiments that would be expected if there were no treatment effects.

Only 27 experiments on their own are included in a set of experiments determined to have a
10% false discovery rate using the Benjamini-Hochberg procedure [11]. We also report the implied
false discovery rate for the set of experiments that are individually significant at the 5% level, and
we repeat this for the 10% level. This exercise is motivated by the idea that an organization might
choose to further scale a campaign after seeing a statistically significant impact. We see that if
organizations used the 5% threshold for scaling, for the Knowledge outcome the false discovery
rate would be about 1/4, while for the Importance outcome, the rate would be about 3/4. Although
such a false discovery rate might not be problematic, as it is unlikely the campaigns would be
harmful and in aggregate these campaigns would be cost-effective, our findings as a whole suggest
that we are not well powered to well identify individually effective campaigns. This motivates
the approach we pursue in this paper of conducting a meta-analysis of hundreds of experiments
together rather than seeking to identify individual campaigns with positive effects.

In the SM, we provide graphs of the CDFs of p-values both overall and for each metric, where
we can see that overall and particularly for the Knowledge outcome, the CDFs of p-values depart
from the uniform distribution that would be expected if there were no effects.

Survey Questions
We provide more detail on the questions, their possible responses, and their coding in the SM. In
Table 2 we provide text from our standardized survey questions as a reference.

Table 2. Overview of Survey Questions

Question Category Wording

Importance How important do you feel a vaccine is to prevent the spread of COVID-19?
Safety How safe do you think a COVID-19 vaccine is for people like you?
Willingness How likely are you to get vaccinated for COVID-19 when the vaccine is available to you?
Effectiveness How effective do you think the COVID-19 vaccination is in preventing COVID-19?
Knowledge Do you know where people in your local community can go to get a COVID-19 vaccine?
Social Norms When you think of most people whose opinion you value, how much would they approve

of people getting a COVID-19 vaccine?
Trustworthy Source Do you agree or disagree that [advertiser name] is a trustworthy source of COVID-19 vaccine

facts and information?

Validity of Survey-Based Outcomes
We now turn to consider the validity of the survey-based outcome measures, and in particular the
extent to which they (or changes in them) do not capture changes in beliefs or knowledge. Privacy

20In response to an early draft of this manuscript, the platform started granting more exceptions to the normal
response caps on these experiments in order to deliver better powered results.
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and legal constraints prevent advertisers from asking about or measuring some ultimate quantities
of interest on platform (e.g., health or vaccination status), but the self-reported measures may still
be meaningful.21 Here, we discuss two categories of potential concerns about these measures.

A first category of concerns relates to whether the survey outcomes as entered in the platform
reflect beliefs and behaviors in the physical world. There are several considerations. Following
established practice for social media brand campaigns, survey outcomes are a primary outcome
that public health organizations have been using to evaluate their campaigns. Campaigns start,
stop, and change based on the results of these experiments, dictating how entire ad budgets of
COVID interventions are spent. Hence, it is important to understand how these outcomes have
responded to campaigns to date, and to add to the understanding of public health organizations
whose individual experiments to date have been under-powered to detect small effects.

Relatedly, a common goal of public health organizations is to simply shift attitudes and beliefs.
Akin to traditional advertisers where campaigns may target different levels of the conversion fun-
nel, many of these advertisers are aiming to move awareness or basic beliefs, and may invest in
complementary tactics to change behavior once beliefs have been influenced. To the extent that
the implementation details and survey responses provide insight about awareness and beliefs, the
campaign experiment outcomes are informative.

Finally, for social media campaigns in general, there is evidence that responses to platform
surveys correlate reasonably well with behaviors of interest. [41] find an R2 of 0.83 in a regression
of country-level vaccine uptake on self-reported vaccine status collected from a survey on Face-
book. And [4] find correlation between survey metrics on Facebook and off-platform COVID-19
cases (see [14] and [44] for further discussions and caveats). [1] finds a high degree of correlation
between characteristics of businesses that Facebook users self-report to own and offline statistics
from the US Census. Although the contexts and analyses from these studies are different, together
they suggest that there does appear to be informative signal in social media survey outcomes.

In the SM we explore the relationship between survey response positivity and county-level
vaccine takeup and find that the two are strongly correlated. We use these findings to extrapolate
an estimated cost of each additional vaccination.

A second category of concerns about survey results relates to whether the differences in survey
outcomes between treated and control groups can be interpreted as the causal effect of the adver-
tisements [27]. One issue is that the there can be systematic differences between the treatment and
the control group due to the implementation of the randomized advertising experiment. Details are
provided in the SM, but in short, randomization of assignment to ads takes place just before an ad
was intended to be shown to a user, so that whether a user sees an ad is random within the exper-
iment. However, after seeing an ad, whether a user in the treatment group is subsequently shown
a survey depends on an additional factor that is not present for the control group. In particular, if
after randomization into the treatment group, the platform intends to show the user an ad but the
user scrolls past it or does not scroll to it at all, the user will not be sent a survey. This is done to
only capture survey responses from users in the treatment group who actually saw the ad, but to the
extent to which this behavior is correlated with the survey outcome, it could lead to confounding
and thus biased estimates of treatment effects.

21[15] ran a location-randomized experiment where different regions were targeted with ad campaigns on Facebook.
This experimental design allowed measurement and detection of significant effects on off platform outcomes (namely,
travel and actual COVID cases). This result, though from a single experiment, demonstrates the potential for relevant
offline effects from similar digital ads.
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In addition, even if the set of users who were sent surveys was perfectly randomized within
each experiment, there still is the potential for differential survey response between the treatment
and the control group. This might occur if individuals influenced by the ads were more likely
to respond to the survey. We address both of these issues in the SM, where we show that along
several observable dimensions, the treatment and control group are similar. We further address
these concerns by adjusting for several observable characteristics of individual respondents in our
analysis, as described below.

A final concern is that the population answering the surveys differs from the overall target
population along unobservables correlated with our outcome variable. For example, certain age
groups may be more likely to answer the surveys. Post-stratifying our results by age and gender
(as we do) is an industry standard approach to address this concern; in addition, in the SM we also
compare observables from a post-stratified sample with those from the target population and find
reasonable overlap.

Results
We now turn to our main results, which we break into three categories. First, we describe for each
survey outcome, the average effect across all experiments that focused on that outcome. Second,
we combine the treatment effect estimates with data about the number of unique people who re-
ceived advertisements as well as the total cost of the campaigns to estimate how many people have
been influenced and what the cost per influenced person is. Finally, we discuss characteristics of
successful campaigns.

Meta-Analysis of Experiments
We begin by analyzing each experiment separately using the following weighted linear model:

responsei = (X̃ ′
iβ + β0)Wi + X̃ ′

iγ + εi (1)

where responsei is an indicator for whether individual i gave a positive response, X̃i is a matrix
of de-meaned controls that could potentially be related to outcomes (age bucket, gender, expected
click through rate, and expected conversion rate), and Wi is a dummy variable denoting whether
i was in the treatment or control group. The expected click through and conversion rates are
platform-generated estimates of how likely a user is to click on and complete the survey; age
buckets are 18-24, 25-34, 35-44, 45-54, 55-64, and 65+. We de-mean and interact our covariates
with the treatment indicator so that β̂0 remains an unbiased and consistent estimate of the average
treatment effect even in the presence of heterogeneous treatment effects by our covariates [32].

In our regression, each response is weighted with post-stratification weights by age bucket and
gender within the treatment and control group, such that both arms of each experiment are repre-
sentative of the population reached by the relevant campaign. That is, we obtain the proportion
of users in each age bracket and gender group reached by the campaign associated with a given
experiment and divide it by the proportion of responses to obtain the weight for each response.22

We post-stratify by these two variables as age and gender are basic demographics that advertisers

22To reduce variance, they are trimmed to an upper bound of 3 and a lower bound of 0.3 to decrease the influence
of outlying observations. Rerunning without any trimming yields no material difference in the results.
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are both frequently interested in and where heterogeneous effects are often observed.23 In the SM
we explore robustness to different weighting schema and find no material difference in the results.

This procedure is based off the one that Meta uses to analyze results from these survey-based
experiments for advertisers. Repeating this approach for each of the experiments in our dataset,
we are left with 819 estimates of average treatment effects and standard errors. The next step in
the analysis is to combine these point estimates into estimated effects by outcome metric and to
generate an overall, combined estimate, following standard meta-analytic methods [13, 28].

Specifically, to generate the average effect for each outcome and overall, we combine the re-
spective experiments using inverse variance weighting (Table 2). This approach estimates a single,
homogeneous effect per category while minimizing variance. We present this approach due to its
simplicity and the fact that there is not evidence of heterogeneity across all outcomes; in the SM
we report several alternative specifications that allow for greater heterogeneity across experiments
and outcomes and find very similar results.

Table 3. Meta-analysis of experiments by outcome.

Category Effectiveness Importance Knowledge Safety
Social
Norms

Trustworthy
Source Willingness Overall

Treatment Coefficient 0.0045 0.0043*** 0.0123*** 0.0062*** 0.0081*** 0.0012 0.0010 0.0055***
(0.0029) (0.0012) (0.0025) (0.0016) (0.0024) (0.0027) (0.0042) (0.0008)

p-value 0.114 0.0004 5e-7 8e-5 0.0006 0.639 0.807 2e-13

Cost per Influenced Person $2.43 $2.41 $0.77 $3.20 $1.00 $11.79 $17.14 $3.41

Baseline Positive Response Rate 0.505 0.672 0.575 0.501 0.556 0.365 0.517 0.557

Treatment Effect as % of Baseline 0.89% 0.64% 2.14% 1.24% 1.46% 0.33% 0.19% 0.99%

Power Calculations (Approximate)

Minimum Detectable Effect 0.0071 0.0030 0.0061 0.0039 0.0059 0.0066 0.0104 0.0019

Power to Detect Given Effect Size 0.474 0.973 1.000 0.989 0.962 0.120 0.081 1.00

# Experiments Needed for 80% Power 159 115 23 87 57 1,660 4,133 94

# Survey Resp. per Exp for 80% Power 4,349 1,036 426 770 801 49,567 147,635 214

Note: Standard errors in parentheses. For each column, we consider the set of associated experiments and calculate
the inverse-variance weighted average treatment effect (row 1). The Baseline % Positive Response is an unweighted
mean across all the relevant experiments; calculating it using fixed or random effects models changes the numbers
only slightly. The Cost per Influenced Person for each subset is calculated using the spend and number of unique
people reached across all campaigns in the relevant subset. Finally, we include power calculations based on the
standard error of the treatment effects (abstracting away from heterogeneity across experiments). Power to detect
a given effect size is calculated at the α = .1 level; for the last two rows, we want to convey how power could
be improved by either increasing the number of experiments or the number of surveys per experiment. For those
calculations we ask how much of either we would need holding the other fixed to have 80% power to detect the given
estimated treatment effect. See SM for details.

Several comments are salient to the interpretation of these results. First, this dataset is very
broad. Past efforts to understand what has and has not worked with shifting behaviors around
COVID have often by necessity studied a small number of treatments at modest scale or been

23At the experiment level, we observe many significant positive and negative coefficients on our age and gender
interaction terms; rerunning our meta-analyses on these coefficients yields insignificant average effects, however.
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one off ex post analyses. External validity with such studies is frequently a concern and potentially
helps explain why studies to date have found conflicting results (e.g., [18, 17, 46, 48, 45] on effects
of financial incentives on vaccination rates). In contrast, here, pooling hundreds of studies from
a broadly representative population, we find a positive and statistically significant average main
effect. The evidence may not be conclusive yet on what kinds of behavioral nudges work, but this
is evidence that these digital advertising campaigns can help move the needle on COVID-related
attitudes.

Second, consider results about the specific outcomes. We find that Importance, Knowledge,
Safety, and Social Norms showed highly statistically significant effects. In contrast, we do not
detect an effect for Effectiveness, Trustworthy Source, or Willingness. (Though Effectiveness is
close to marginally significant in our main specification above.)

We note that these last three metrics, particularly Effectiveness and Willingness, are arguably
lower in the vaccine conversion funnel (that is, they are better proxies for a final desired action) than
the first four metrics. A stylized fact from advertising is that such “lower-funnel” behaviors often
see smaller effect sizes than more upper level outcomes, and are generally challenging to study
as they may be influenced by a variety of unmeasured factors. While our finding thus accords
with this intuition, a limitation of our study is that even with a very large sample size, we are not
powered to generate more precise estimates of these averages (see the final rows of Table 2).

Third, we note that there is evidence the estimated lift for Knowledge (1.23pp) is significantly
higher than our other metrics. Our estimate for Knowledge is significantly greater than that for
Effectiveness (p = 0.038), Importance (p = 0.003), Safety (p = 0.034), Trustworthy Source (p =
0.002), Willingness (p = 0.020), and our overall estimate (p = 0.008), including when dropping the
Knowledge experiments (p = 0.006). It is nearly significantly greater than Social Norms in a one
sided t-test (p = 0.109). We note that Knowledge is a distinct outcome here in that the other out-
comes relate more to persuasion, whereas Knowledge focuses simply on conveying information.
These results suggest that social media campaigns may be particularly attractive for public health
organizations interested in the latter.24,25

Finally, we note that in the SM we explore different specifications and find broadly similar
results. In addition, the standard output provided to advertisers on Meta comes from a Hierarchical
Bayesian Model; we chose a frequentist approach due to its simplicity, but in the SM we show
robustness to using a similar Bayesian approach.
Number of influenced people, cost per influenced person. Conditional on our results, how many
people were influenced by these campaigns, and how cost effective were they? As aforementioned,
the survey data only comes from a subset of the overall users who saw the ads; to calculate the
number of influenced people, we follow the common industry practice and scale the point estimate
of the treatment effect from each experiment by the size of the overall population that saw the
campaign. In our case, since we have data across many advertisers and some users were shown ads
from multiple campaigns, to generate a (conservative) estimate of the number of influenced people
per campaign, we can treat these collective campaigns as effectively one large one. Specifically,

24In thinking about the effects for Knowledge as well as the other metrics, a relevant data point is the baseline
positive response rate for Trustworthy Source (36.5%). While this question was only asked in a subset of campaigns
it is still revealing that the effects we are seeing are despite a relatively low user trust level with some advertisers. This
suggests that health organizations with strong brand values may be well positioned to see particularly large effects, a
topic we leave to future research.

25See also our additional analysis in the SM with manually labeled ads.
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we combine the total spend, total unique reach, and our estimate of the average treatment effect
to generate a back of the envelope estimate of the number of people who were influenced by this
combined effort.

Doing this calculation, we estimate that about 11.6 million people were influenced by these
campaigns. To be clear, by ‘influenced’ we mean shifted self-reported beliefs to a positive out-
come; this does not capture people who, for example, moved along the intensive margin of these
categories.26

Conditional on estimates of how many people were influenced, how much does it cost to influ-
ence someone? For this, we divide the number of influenced people by the ad spend, again as is
typical in the industry. From Table 2 we can see the average cost per influenced person was $3.41.

To understand how cost effectiveness translates to real-world public health outcomes, in the
SM we explore the relationship between survey positivity rate and vaccine series completion rate
at the county level in the US. Across survey outcomes, we find that for each additional positive
survey response, we would expect to see about 0.6 increase in vaccination takeup in the CDC data.
Applying this to our average cost per influenced person from Table 2, this implies an estimated
cost per additional vaccine of about $5.68.

While we are hesitant to extrapolate substantially outside our sample, these magnitudes suggest
running even a few million dollars’ worth of additional campaigns could achieve relatively large
shifts in the baseline fraction of outcome variables.

Conclusion
Over the course of the pandemic, public health agencies increasingly leveraged social media adver-
tising to pursue public health goals. Our results show that public health interventions via digital ad-
vertising are an effective medium for changing important self-reported beliefs and attitudes around
COVID-19. Combining with non-experimental data on vaccination rates, our results suggest that
these campaigns were a cost effective approach to increasing rates as well. The cost-effectiveness
and scale of these campaigns can make them appealing to a broad range of organizations around
the world. The use of social media advertising more broadly has the potential to aid in the pursuit
of other health policy goals, ranging from childhood vaccination to hand washing).

26In the SM we explore a less conservative way of estimating the number of influenced people (and thus the cost
per influenced person).
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Supplementary Text
This section has eight parts: (i) we provide an overview of the advertising experimentation infras-
tructure at Meta and how our studies were implemented; (ii) we run various robustness checks on
our main analyses; (iii) we provide graphs of the CDFs of the p-values overall and by metric; (iv)
we explore a less conservative way of calculating the cost-effectiveness of our campaigns; (v) we
document characteristics of survey respondents across groups to provide insight into any possible
bias; (vi) we rerun our analysis on a subsample of manually labeled ads to analyze differences
in effectiveness by campaign characteristics; (vii) we explore the relationship between survey re-
sponses and real-world vaccination uptake using county-level vaccine data from the Centers for
Disease Control; and (viii) we list the questions asked, possible responses, and bucketing into
positive responses and not.

Overview of Advertising Campaign Experiments at Meta
“Lift” studies are the core tool advertisers use to assess the impact of their campaigns on Meta.
Within such studies, “Brand Lift Studies” are those which focus on survey-based outcomes and
are the ones we focus on in this paper. Meta has an external-facing self-service tool for Brand
Lift Studies, though large enough advertisers have access to a liaison within Meta who can set
up more sophisticated studies (e.g., ones that have multiple treatment arms, custom questions, and
varying holdout sizes). Despite this heterogeneity in how advertisers interact with the platform, the
technical implementation of the lift studies is standardized. This greatly facilitates analysis across
studies.

Each time such a campaign experiment is created, all users are hashed into treatment and
control for that campaign. When an auction is run for a specific user, if an ad from the study in
question wins the auction and the user is in the treatment group, the ad is sent to the user, but if
the user is in the control group, the ad is held back. Both treated and control users are eligible to
be sent a poll 4-48 hours after the corresponding (potential) exposure event. Given a total desired
number of responses, surveys are sent to users spaced out over the course of the campaign, where
each user may only be polled once per study. Natural variation in response rates means responses
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are not always uniform across time within the course of the campaign, but in practice the variation
tends to be minimal.

A complication here is even if Meta’s servers send a user an ad, that does not necessarily
guarantee she will see it. The physical layout of the delivery surfaces themselves may mean, for
example, that a user may be sent an ad but they may not scroll down far enough to see it, or may
scroll too fast. In the experimental setup, only users in the treatment group who saw an ad are
eligible to receive surveys. This avoids sending surveys to users assigned to test but who did not
see the ad, which would capture an ITT advertisers arguably may care less about. In contrast, any
user in the control group where the treatment ad won the auction and was held out from being
sent is eligible to receive a survey, whether or not they saw the slot where the ad would have
been. This ensures that no user who is sent a survey in the control group was exposed the test ad
(at least on their account), but it does create a slight difference in the survey-eligible populations
across treatment and control. For example, users who scroll quickly may be more likely to be sent
surveys if they are in the control. In practice, the differences between the two populations has
proven slight – our results, as do those reported out to advertisers, contain controls for activity bias
which is by far the largest source of differential exposure across groups, and even unconditional on
that, internal analyses have shown that the two populations do not significantly differ along a wide
range of observables. For completeness, however, we perform an additional check later in the SM.

Conditional on this data generating process, we have the data on respondents, their demo-
graphic characters, and those of the target population that we use in our main analyses. We note
this is the same raw data that Meta analyzes and reports out to advertisers, though as aforemen-
tioned, we do our own, custom analysis.

Robustness of Results to Different Specifications and Weighting Schemes
Below we report on different specifications for our main results. We run three broad categories of
alternative analyses: (i) we vary the controls, weighting, and linear specification in our experiment-
level analysis; (ii) we allow for heterogeneity in our treatment effect estimates across experiments
(‘random effects’ meta-analysis methods); and (iii) we explore how our results differ under a
Bayesian analysis. We present the respective results in turn. Unless otherwise noted, conditional
on experiment-level results, estimates are combined using inverse variance weighting to generate
the main point estimates.

Varying the controls, weights, and linearity
Recall our main specification:

responsei = (X̃ ′
iβ + β0)Wi + X̃ ′

iγ + εi (2)

with variables described as in the main text. In particular, within X̃i we have platform-generated
controls for expected click through and expected completion rates of the survey. One may be
concerned that these are rather black box and may be correlated with our treatment variable in a
way that may affect inference. Hence, we rerun our main results dropping these platform-generated
controls.

Second, in our main specification, the individual responses are weighted based on their age and
gender category and the frequency of those buckets in the campaign’s target population, such that
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the treatment and control groups are both representative of the campaign demographics in each
experiment. To explore the sensitivity of our results to this weighting, below we rerun our baseline
model with different weights (only gender and only age).

Finally, while we estimate the above using OLS, logistic regressions are commonly used in
these settings (e.g., due to their bounded range), so we report results out using that as well. Specif-
ically, for each experiment we estimate the average marginal effect of our treatment and then
combine those across experiments. Across all these specifications, which are reported in Table S1,
our results are broadly similar – or stronger.

Table S1. Varying the controls, weights, and linearity.

Effectiveness Importance Knowledge Safety
Social
Norms

Trustworthy
Source Willingness Overall

Main results

Treatment Coefficient 0.0045 0.0043*** 0.0123*** 0.0062*** 0.0081*** 0.0012 0.0010 0.0055***
(0.0029) (0.0012) (0.0025) (0.0016) (0.0024) (0.0027) (0.0042) (0.0008)

p-value 0.114 0.0004 5e-7 8e-5 0.0006 0.639 0.807 2e-13

Dropping platform-generated controls

Treatment Coefficient 0.0006 0.0032* 0.0124*** 0.0044* 0.0076** 0.0031 -0.0005 0.0044***
(0.0034) (0.0015) (0.0033) (0.0017) (0.0028) (0.0030) (0.0054) (0.0007)

p-value 0.858 0.030 2e-4 0.011 0.007 0.303 0.921 2e-9

Post stratification weighting by age bracket only

Treatment Coefficient 0.0034 0.0041** 0.0112* 0.0065*** 0.0083** 0.0028 0.0012 0.0057***
(0.0038) (0.0016) (0.0044) (0.0018) (0.0028) (0.0031) (0.0042) (0.0008)

p-value 0.364 0.008 0.011 0.0003 0.003 0.367 0.782 7e-14

Post stratification weighting by gender only

Treatment Coefficient 0.0050 0.0045** 0.0119** 0.0065*** 0.0079** 0.0039 0.0017 0.0060***
(0.0035) (0.0015) (0.0042) (0.0017) (0.0027) (0.0032) (0.0040) (0.0007)

p-value 0.147 0.002 0.005 0.0002 0.004 0.224 0.683 2e-16

Logistic regression

Average Marginal Effect 0.0025 0.0056*** 0.0141*** 0.0052*** 0.0089*** 0.0061* 0.0048 0.0064***
(0.0030) (0.0013) (0.0026) (0.0017) (0.0026) (0.0032) (0.0057) (0.0008)

p-value 0.395 3e-5 4e-8 0.002 0.001 0.060 0.406 6e-15

Note: Standard errors in parentheses.
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Incorporating heterogeneous effects across experiments
Conditional on our experiment-level results, the analysis in the main text combines them to-

gether using inverse variance weighting. This assumes a homogeneous treatment effect across all
pooled studies (a ‘fixed effects’ meta-analysis). In practice, however, we may think treatment ef-
fects may vary substantially across campaigns or advertisers, motivating an analysis that estimates
a distribution of treatment effects (a ‘random effects’ meta-analysis). We report the results in the
main text given their simplicity and the fact that for some metrics the heterogeneity does not seem
very substantial [29]. Further, incorporating distributions of effect sizes, as we do below, the results
do not change substantively.

In particular, we run two separate analyses below, which are both reported in Table S2. First,
we do a standard random effects meta-analysis within each outcome. Specifically, for experiment i
that asks question q with observed effect size β̂qi and observed standard error σqi, we allow the true
effect size, βiq to vary around a true, grand average effect for that question, β̄q, with variance τ 2q . As
is common in such models, we parametrize the true treatment effect for the experiment, βiq, to be
drawn from a normal distribution N(β̄q, τ

2
q ) and then the observed treatment effect β̂qi to be drawn

from a normal N(βiq, σ
2
iq). We do not want to lean on this too heavily, but we note past work has

found such Gaussian assumptions in random effects meta-analyses can perform reasonably well
even if the true data are non-Gaussian [38]. We fit this via maximum likelihood for each outcome
separately, reporting the results for the grand mean and its corresponding prediction interval below.
For the Overall column, we repeat this procedure but across all experiments.

Second, given the same campaign is often involved with multiple experiments, we can allow
correlation within effects for each campaign. This is mainly an issue for estimating the Overall
effect, though there are campaigns that did ask slight variants of the same question (as discussed
in the main text). This constitutes a three-level random effects meta-analysis where we allow a
distribution over campaign effects, a distribution within each campaign across questions, and then
a final distribution over observed experiment effects conditional on the true treatment effect. We
parametrize this similarly as three nested normals: for a campaign i and question q, the distribution
of true campaign effects, βi, is N(β̄, τ 21 ); the distribution over question true effects, βiq, within each
campaign is given by N(βi, τ

2
2 ); and the distribution of realized experiment treatment effects, β̂iq,

is N(βiq, σ
2
iq). We again fit this via maximum likelihood for each outcome separately and then for

Overall.
Finally, we do not report it as it is only for the Overall outcome, but we also ran a three-level

random effects model with a distribution over questions, a distribution over experiments within
each question, and then a distribution over realized effects. This yields an estimate of 0.56pp,
which is again significant from zero (p < 0.0001).

Below we also include estimates of Cochran’s Q [20], a common statistic in meta-analyses
to test for heterogeneity across experiments. Cochran’s Q is a weighted sum of squares across
experiments – specifically, it is defined as Q =

∑
k(θ̂k − θ̂)2/σ̂2

k where the summation is taken
over all experiments in question, θ̂k is the estimated treatment effect in study k, θ̂ is the estimated
treatment effect of the studies derived via a fixed effects model, and σ̂2

k is the estimated variance
of the treatment effect estimate in study k. Note that intuitively higher Q values mean there is
greater dispersion in treatment effect estimates around the pooled estimate, evidence of hetero-
geneity. Cochran’s Q follows a Chi-squared distribution, with low p-values meaning a rejection of
the null of homogeneity. While suggestive, this test in isolation should not be used to determine
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between fixed and random effects meta-analyses (see [29] for more details).

Table S2. Random effects models.

Effectiveness Importance Knowledge Safety
Social
Norms

Trustworthy
Source Willingness Overall

Main results

Treatment Coefficient 0.0045 0.0043*** 0.0123*** 0.0062*** 0.0081*** 0.0012 0.0010 0.0055***
(0.0029) (0.0012) (0.0025) (0.0016) (0.0024) (0.0027) (0.0042) (0.0008)

p-value 0.114 0.0004 5e-7 8e-5 0.0006 0.639 0.807 2e-13

Random effects within each outcome

Treatment Coefficient 0.0033 0.0040*** 0.0106** 0.0065*** 0.0077*** 0.0030 0.0010 0.0056***
(0.0038) (0.0015) (0.0044) (0.0018) (0.0028) (0.0032) (0.0042) (0.0010)

p-value 0.382 0.009 0.015 0.0003 0.006 0.337 0.806 9e-9

Cochran’s Q (p-value) 96 (0.004) 424 (<1e-4) 232 (<1e-4) 412 (<1e-4) 167 (<1e-4) 113 (<1e-4) 39 (0.468) 1497 (<1e-4)

Three-level random effects

Treatment Coefficient 0.0027 0.0043*** 0.0118** 0.0062*** 0.0077*** 0.0030 0.0010 0.0052***
(0.0040) (0.0012) (0.0049) (0.0016) (0.0028) (0.0032) (0.0042) (0.0011)

p-value 0.493 0.0004 0.015 <1e-4 0.006 0.337 0.807 <1e-4

Cochran’s Q 96 (0.004) 424 (<1e-4) 232 (<1e-4) 412 (<1e-4) 167 (<1e-4) 113 (<1e-4) 39 (0.468) 1516 (<1e-4)

Note: Standard errors in parentheses.

5



Bayesian Analysis
Finally, we use a Bayesian approach to rerun one of our earlier specifications as a sanity check.

Bayesian meta-analyses have become popular recently for a number of reasons (e.g., [39, 29]), but
a general advantage in random effects settings is an ability to directly model the uncertainty in the
between study variance. Hence, below we run a Bayesian version of the first random effects model
we outlined above to see if there is any evidence the Bayesian approach produces substantively
different estimates.

Specifically, we assume a hierarchical likelihood as follows. For all experiments i, with es-
timated treatment effect β̂i and estimated standard error σ̂i, we assume β̂i ∼ N(βi, σ̂

2
i ), where

βi ∼ N(β, τ 2). Following the defaults of [49], we specify weak priors of β ∼ N(0, 100) and
τ ∼ U [0, 10σ̄] where σ̄ is simplistically defined as the standard deviation of the estimated β̂i’s.
Given this set up, we then run the Bayesian model for all of the experiments that correspond to
each outcome as well as all of them collectively for the Overall estimate. In Table S3 we report
estimates of the hypermeans and corresponding uncertainty intervals; we can see that compared to
the above, there is reassuringly little difference in the estimates.

Table S3. Bayesian analysis.

Effectiveness Importance Knowledge Safety
Social
Norms

Trustworthy
Source Willingness Overall

Main results

Treatment Coefficient 0.0045 0.0043*** 0.0123*** 0.0062*** 0.0081*** 0.0012 0.0010 0.0055***
(0.0029) (0.0012) (0.0025) (0.0016) (0.0024) (0.0027) (0.0042) (0.0008)

p-value 0.114 0.0004 5e-7 8e-5 0.0006 0.639 0.807 2e-13

Bayesian Analysis.

Hypermean Estimate 0.0032 0.0040** 0.0106** 0.0065** 0.0077** 0.0030 0.0012 0.0056**
[-0.0048, 0.0108] [0.0010, 0.0071] [0.0015, 0.0190] [0.0030, 0.0101] [0.0023, 0.0132] [-0.0032 0.0100] [-0.0078, 0.0103] [0.0037, 0.0075]

Note: 95% uncertainty intervals in parentheses. Two asterisks denotes 0 is not contained in the 95% uncertainty
interval.
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CDFs of p-values
To further explore evidence on the potential rate of false positives in our study, in Figures S1 and
S2 we plot CDFs of the p-values across studies, both overall and for each metric. For both the
overall distribution of p-values and the four questions for which we detected a significant effect,
we can see there is more density at p-values less than 0.05 compared to the null of no effect (uni-
form distribution of p-values). Values less than 0.05 are highlighted in red.

Figure S1. Empirical CDF of treatment effect p-values across experiments.
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Figure S2. Empirical CDFs of treatment effect p-values across experiments, by outcome. Note
how the four questions we observe significant effects for (Importance, Knowledge, Safety, Social
Norms) each have CDFs with substantial mass above the uniform distribution for p < 0.05.
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Alternative Estimates of Cost Effectiveness
There are multiple ways one could think about trying to quantify an aggregate effect across these
campaigns in terms of the total number of influenced people and the cost per influenced person.
Our preferred approach, as detailed in the main text, is to treat the set of campaigns effectively as
one aggregated campaign. Specifically, we can look at the total number of unique users who were
exposed to these campaigns and scale that by our treatment effect estimate to get a back of the
envelope sense of how many people may have been influenced. To derive an estimate of cost per
influenced person, we can then divide total spend for those campaigns by this number.

As a numerical example, to derive the overall estimate of cost per influenced person, we take
$39.4 million (total spend) and divide it by .0055 (ATE estimate) times 2.1 billion (unique reach),
which gives $3.41. We note at the individual campaign level, this procedure is a common industry
practice and how advertisers are used to estimating total campaign effects.

One issue with this approach is that it ignores the fact that there were users who were in multi-
ple campaigns. If a campaign changed a person’s mind about Willingness and a separate campaign
changed her mind about Importance, some would argue that should count as two influenced events
instead of one. This would be an argument for scaling up each individual campaign by its reach,
and then summing those estimates across all campaigns; here, instead of influenced ‘people’ ar-
guably influenced ‘opinions’ would be more appropriate. In Table S4 we report out results from
this method as well; unsurprisingly, the cost per influenced outcome droops substantially.

Finally, we note because there are individuals who were exposed to multiple campaigns, when
we sum the total number of influenced people across columns it will not add up to the overall
estimate (the overall estimate will be smaller). This is because a person will appear in as many
columns as they were exposed to campaigns that asked a given question; in the overall calculation
we are only counting such people once, weighed by the average treatment effect estimate.

Table S4. Alternative Approaches to Calculating Cost per Outcome Influenced.

Category Effectiveness Importance Knowledge Safety
Social
Norms

Trustworthy
Source Willingness Overall

Main results

Treatment Coefficient 0.0045 0.0043*** 0.0123*** 0.0062*** 0.0081*** 0.0012 0.0010 0.0055***
(0.0029) (0.0012) (0.0025) (0.0016) (0.0024) (0.0027) (0.0042) (0.0008)

p-value 0.114 0.0004 5e-7 8e-5 0.0006 0.639 0.807 2e-13

# Total Reach 791,144,678 2,985,622,768 123,2041,831 2,595,117,781 1,312,200,394 561,139,998 1,091,904,828 4,842,392,644

# Unique People Reached 623,509,126 1,424,954,066 859,760,237 1,472,804,702 828,296,583 411,859,697 835,456,995 2,094,285,077

# Total Spend $7,072,815 $14,676,490 $8,294,165 $28,750,458 $6,673,498 $6,146,421 $15,707,139 $39,443,567

Preferred Approach

Number of Influenced People 2,815,542 6,128,713 10,596,845 9,061,267 6,723,167 511,803 854,596 11,583,543

Cost per Influenced Outcome $2.51 $2.39 $0.78 $3.17 $0.99 $12.01 $18.38 $3.41

Alternative Approach

Number of Influenced People 3,572,524 12,841,133 15,185,346 15,966,173 10,650,947 697,309 1,116,919 26,783,394

Cost per Influenced Outcome $1.98 $1.14 $0.55 $1.80 $0.63 $8.81 $14.06 $1.47
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Characteristics of Survey Respondents Across Groups
Below we compare how the sample of survey respondents may differ (i) across treatment and
control, and (ii) versus the overall population who was exposed to the campaign. The aim of
the first analysis (Table S5) is to mitigate concerns that differences in survey outcomes between
the groups may be due to a factor other than the treatment ad (e.g., differential response rates).
If we observed imbalances in any observable that may be cause for concern given our exposure
randomization. Due to data retention limitations, we unfortunately could not recover this data
from the same set of experiments in our sample; however, the data below are pulled from 15
COVID-related Brand Lift Studies that were run more recently (these are from the same collection
we analyze, just more recent). We can see that at least in this sample, the demographics are not
significantly different other than for age, which we control for.

Table S5. Balance of demographics across treatment and control for survey respondents. The p-
value is from a two-sided t-test comparing the difference in means across treatment and control;
the adjusted p-value uses the same Benjamini-Hochberg procedure as in the main text.

Demographic x̄control − x̄test
Std. Error

of Diff. p-value Adj. p-value

Age (years) -0.71 0.23 0.002 0.0374
Gender -0.01 0.01 0.389 1.000
Friend Count 0.01 15.81 0.9995 1.000
# Friendships Initiated -2.96 7.58 0.6965 1.000
Subscription Count -6.75 13.82 0.6251 1.000
Subscriber Count -7.86 11.06 0.4774 1.000
Long term user 0.00 0.01 0.6196 1.000
Android user -0.01 0.01 0.1864 1.000
Profile Photo Present 0.00 0.00 0.9974 1.000
Birthday Privacy setting 0.00 0.00 0.5651 1.000
Contact Email Confirmed 0.00 0.00 0.2604 1.000
# Days Active on Platform last 7d 0.00 0.00 0.9724 1.000
Month of birth -0.01 0.05 0.8029 1.000
Single -0.01 0.00 0.1341 1.000
US Based 0.00 0.01 0.4413 1.000

Note: Long term users are defined as having been on the site more than five years. Birthday privacy setting is a
dummy indicating whether other users on platform can see it or not. These are common, well-populated descriptives
of users, either from self-report on their profiles or log data.

The aim of the second analysis (Table S6) is to address representativeness of our sample, and
how well we think it might generalize to the broader target population. For this, we take a sam-
ple of survey respondents that has been post-stratified by age bucket and gender category back to
the population that the campaign reached (as we do in the main text) and compare the reweighted
demographics versus those of the target population. To the extent that the reweighted demograph-
ics match those of the target population, we can feel more comfortable in how generalizable our
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survey-based answers are to the broader population. We note here that in this comparison it is
less paramount to see close matching along all demographics; indeed, conditional only on age and
gender, we would still expect to see differences across populations. To the extent that the two may
differ along a demographic that we think may be correlated with our treatment variable represents
a concern, however.

Again due to data retention issues, we cannot use data from our broader study, but report
results here for a recent COVID Brand Lift Study where we were able to obtain the relevant data.
We can see below that along a relatively large number of demographics the reweighted sample and
population means are not significantly different.

The variable which has the largest difference between the groups and which we may be con-
cerned about as correlating with our treatment effect is the Android user indicator. We note that
rerunning our main specification for Android users only, we do not detect a significant difference
versus our current estimated treatment effect (p=0.79).

Table S6. Balance of demographics across campaign population and age bracket and gender post-
stratification weighted survey responses. The last column reports the p-value for a two-sided t-test
comparing the difference in means across treatment and control.

Demographic x̄pop − x̄sample
Std. Error

of Diff. p-value Adj. p-value

Age (years) 0.03 0.10 0.779 1.000
Gender -0.00 0.00 0.617 1.000
Friend Count 47.34 30.43 0.120 1.000
# Friendships Initiated 27.16 14.38 0.059 0.589
Subscription Count -83.10 27.56 0.002 0.036
Subscriber Count -28.20 26.30 0.284 1.000
Long term user 0.05 0.02 0.003 0.043
Android user 0.23 0.01 0.000 0.000
Profile Photo Present -0.01 0.00 0.031 0.366
Birthday Privacy setting (=not visible) -0.01 0.01 0.317 1.000
Contact Email Confirmed -0.01 0.01 0.302 1.000
# Days Active on Platform last 7d -0.02 0.01 0.038 0.416
Month of birth -0.14 0.13 0.267 1.000
Single -0.01 0.01 0.419 1.000
US Based -0.00 0.00 0.288 1.000
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Analysis by Campaign Characteristics: Manually labeled ads
Our main results suggest that effects were larger on knowledge relative to other survey outcomes.
In principle, this could be because these campaigns tended to be aimed at providing information to
people. Alternatively, it could be that knowledge is easiest to influence or retain. While we are not
able to fully disentangle these two possibilities, we were able to conduct an exploratory analysis
by looking at the features of campaigns.

Specifically, we pulled the 4,057 English-language ads from across our sample and manually
labeled each according to which of our outcome variables was likely to be influenced by the ad.27

This encompassed 461 of the 819 experiments in our sample; hence, this is a selected sample but
still attains relatively broad coverage.28

If an ad addressed multiple outcome questions simultaneously, it could be coded as such. For
example, if an ad spoke to how safe and effective COVID vaccines are, it would be scored as
affecting each outcome. For a specific example, see the Figure.

Figure S3. An ad from the Kaiser Family Foundation’s Greater Than COVID initiative that was
in our study. This was scored as a ‘Knowledge’ ad given the clear statement of facts, the links to
additional information, and the Learn More call to action.

Once each ad was scored, a campaign would be designated as influencing any outcome that its
ads addressed. So for example, if a campaign had 10 ads, three were for Knowledge and 7 were
for Effectiveness, this campaign would be coded as designed for each.

27To aid objectivity, the manual review was done with only random identifiers available for the campaigns and ads
so no study-level treatment effects were known when the labelling was occurring.

28No ads explicitly invoked making users trust the advertiser more, let alone as a source of COVID-related infor-
mation. The Trustworthy Source outcome variable captures more baseline sentiment toward an advertiser and so we
do not analyze it here.
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Given this scoring of campaigns, we could then reprise our main analysis where for each out-
come variable we restrict to experiments that were labeled as addressing that question. Our results
are in Table S7.

While some of the point estimates are different from the estimates from our main analysis, we
again see that many of the outcomes (including the pooled, overall analysis) have highly significant
average effects.

Comparing the coefficients across the relevant row in Table S7, we find that the Knowledge
coefficient is significantly higher than those for Importance (p = 0.0215), Safety (p = 0.0959), and
Willingness (p = 0.0032), while it is not significantly different from Effectiveness (p = 0.1226)
and Social Norms (p = 0.1835). We note that the point estimate for Effectiveness has increased
substantially versus that in our main text. However, the impact on Knowledge is similar in the
subset of campaigns coded as geared toward influencing Knowledge as it is for the full set of
campaigns. While not dispositive, this exploratory analysis suggests that Knowledge might be able
easier to be influenced, and that targeted campaigns are more important for impacting perceived
effectiveness, but leave it to future research to disentangle further.

Table S7. Labeled Ads Analysis

Category Effectiveness Importance Knowledge Safety
Social
Norms Willingness Overall

Main results

Main Treatment Coefficient 0.0045 0.0043*** 0.0123*** 0.0062*** 0.0081*** 0.0010 0.0055***
(0.0029) (0.0012) (0.0025) (0.0016) (0.0024) (0.0042) (0.0008)

Coefficients from Labeled Campaigns 0.0242*** 0.0027 0.0117*** 0.0048*** 0.0196*** -0.00999 0.00589***
(0.0074) (0.0019) (0.0034) (0.0023) (0.0048) (0.0065) (0.00079)

# labeled experiments 199 379 392 256 216 400 461

Correlation with Vaccine Takeup
To understand how our survey-based outcomes relate to actual behavior, we compare survey re-
sponses at the county level to Center for Disease Control (CDC) data on vaccine series completion
rate. For each county, we aggregate survey responses and calculate a rate of positivity (e.g., the
percent of positive responses). Then, we combine this with county-level vaccine series completion
estimates from the CDC from November 15, 2021, when the final campaigns in our sample con-
cluded. We find a positive association between survey positivity rate and vaccine uptake, which
can be seen in Figure S4.

To evaluate the magnitude of the correlation, we estimate ordinary least squares regressions
where the outcome is survey positivity rate and the independent variable is vaccination rate, where
each variable is aggregated at the county level:

yi = β0 + β1ri + β2pi + β3ripi + εi (3)
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Figure S4. Scatterplots of county-level positive survey response rate versus vaccine series comple-
tion rate from the CDC. Note that the sample is limited to counties with at least 20 survey responses
for each outcome.
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For each county i, yi represents the vaccine series completion rate, ri is the positive survey response
rate, and pi is the demeaned log population for that county. We further include each county’s
demeaned logged population and its interaction with survey positivity rate as controls. These
adjustments are designed to address the concern that smaller counties have fewer survey responses,
while county size is also correlated with yi and ri. We further consider specifications excluding
counties with fewer than 10 and 20 survey responses, and as well as specifications with log-odds
transformations of the positivity rate and vaccine completion rate.

Table S8. Analysis of Pooled Survey Responses vs. Vaccine Takeup Rate

Linear vs. Log-Odds Linear Linear Linear Log-Odds Log-Odds Log-Odds

Min. Response Count None 10 20 None 10 20

Coefficient on
Positivity Rate 0.5236*** 0.5632*** 0.5967*** 0.4495*** 0.5516*** 0.6011***

(0.0150) (0.0163) (0.0174) (0.0185) (0.0229) (0.0196)

Counties in Sample 3119 2931 2710 3119 2931 2710

Note: Standard errors in parentheses. For each column, we consider the designated model specification for the set of
pooled county-level data, across all survey outcomes.

These results suggest that for every additional percent of positive survey responses, we would
expect to see an incremental increase in vaccine takeup rate of about 0.6 percent, if we rely on
the sample restricting to counties with at least 20 responses. Applying this to the average cost per
influenced person of $3.41, we estimate that the effective cost per incremental vaccinated person
is about $5.68.

To understand variation between survey outcomes, we also restrict the sample of counties to
those for which we have at least 10 survey responses for the four outcome categories (including
a grouped ’Other’ category) with the most counties with at least 10 responses, and run the same
linear specification for each outcome. Since not every county in our sample has survey responses
for each category, restricting the sample to those counties which do have sufficient responses allows
us to compare across outcomes.

These results suggest that for every additional percent of positive survey responses, we would
expect to see an incremental increase in vaccine takeup rate of about 0.51 percent for Importance,
0.57 percent for Safety, 0.22 percent for Willingness, and 0.42 for Other outcomes. Applying this
to the average cost per influenced person for each outcome, we estimate that the outcome-specific
effective cost per incremental vaccinated person is about $4.73 for Importance, $5.61 for Safety,
and $77.91 for Willingness.
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Table S9. Analysis of Survey Responses vs. Vaccine Takeup Rate, by Outcome

Outcome Category Pooled Importance Safety Willingness Other

Coefficient on
Positivity Rate 0.6988*** 0.5088*** 0.5714*** 0.2227*** 0.4151***

(0.0284) (0.0253) (0.0242) (0.0225) (0.0265)

Counties in Sample 815 815 815 815 815

Note: Standard errors in parentheses. For each column, we assess the positivity rate for the designated survey outcome.

Survey Details
We note that exact wording within a language was largely the same across experiments, but adver-
tisers did have autonomy to tweak if they wanted. Questions for Knowledge, Social Norms, and
Trustworthy Source had a bit more variation than the others, but the questions still targeted the
same concept. Questions were translated into the languages specified by a user’s settings. Core
questions are noted below, with responses and coding as desired/not in parentheses after each re-
sponse:

Importance

• How important do you feel a vaccine is to prevent the spread of COVID-19?

– Very important (1)

– Somewhat important (1)

– Barely important (0)

– Not important (0)

– I don’t know (0)

Safety

• How safe do you think a COVID-19 vaccine is for people like you?

– Very safe (1)

– Somewhat safe (1)

– Barely safe (0)

– Not safe (0)

– I don’t know (0)
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Willingness

• How likely are you to get vaccinated for COVID-19 when the vaccine is available to you?

– Very likely (1)

– Somewhat likely (1)

– Somewhat unlikely (0)

– Very unlikely safe (0)

– I don’t know/I already got vaccinated (0)

Effectiveness

• How effective do you think the COVID-19 vaccination is in preventing COVID-19?

– Very effective (1)

– Somewhat effective (1)

– Barely effective (0)

– Not effective (0)

– I don’t know (0)

Knowledge

• Do you know where people in your local community can go to get a COVID-19 vaccine?

– Yes (1)

– No (0)

– I don’t know (0)

Social Norms

• When you think of most people whose opinion you value, how much would they approve of
people getting a COVID-19 vaccine?

– Definitely approve (1)

– Mostly approve (1)

– Somewhat approve (0)

– Not at all approve (0)

– I don’t know (0)

Trustworthy Source
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• Do you agree or disagree that [advertiser name] is a trustworthy source of COVID-19 vaccine
facts and information?

– Strongly agree (1)

– Somewhat agree (1)

– Somewhat disagree (0)

– Strongly disagree (0)

– I don’t know (0)
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