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rational) expectations. In the Calvo model, the expectational-passthrough can be made arbitrarily 
close to zero for sufficiently high stickiness, but in practice, for reasonable parameters, 
passthrough is close to its upper bound of 1. In the Taylor model, in contrast, the upper bound for 
passthrough is ½ instead of 1. For a general time-dependent model I show that: (i) passthrough is 
given by a measurable sufficient statistic: the ratio of the average duration of ongoing price spells 
to that of completed price spells; (ii) the lowest theoretically possible passthrough equals ½ by 
Taylor pricing; and (iii) passthrough can be theoretically greater than 1 with hazards that decrease 
over time; (iv) breaking down the passthrough across horizons, it is expectations in the near 
future that matters the most, expectations of long-run inflation are completely irrelevant; (v) I 
provide a generalized Phillips curve for current inflation as a linear function of expectations of 
future inflation and realized past inflations; (vi) I show that the sum of all coefficients, both past 
and future, sums to one, so that the long-run Phillips curve is vertical. Finally, I study state-
dependent “menu cost” models and show that passthrough in these models can be extremely low 
or extremely high, depending on the exact specification and inflation rate. I suggest a model 
where firms must pay a fixed cost for changing their sS pricing policy bands. This extension 
gives a passthrough of 0 for small enough changes in expectations.

Iván Werning
Department of Economics, E52-536
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
iwerning@mit.edu



1 Introduction

It is widely believed that inflation is strongly affected by the expectations of future infla-
tion, perhaps in a near one-to-one relationship. This tight reverse feedback mechanism
justifies considering the management of expectations a crucial part of monetary policy
playbook. As the story goes, if inflation expectations are stable or so-called “well an-
chored” at low levels, then inflation may remain stable and low; on the other hand, if bad
news or high inflation rates raise the specter of future inflation, then inflation inevitably
follows from the rise in expectations. The tail wags the dog. These are stories, but what
do we really know?1

Expectations no doubt matter to some degree, but just how direct and powerful is the
causal link from inflation expectations to current inflation? Is it long-run or short-run
inflation expectations that matters the most? Does the magnitude of this passthrough de-
pend on details of the economy or the way prices are set? Finally, how does past inflation
impact current inflation? Must past inflation matter more when expectations matter less?

I explore these questions through the lens of canonical economic models of firm price
setting. I calculate the passthrough for the ubiquitous Calvo-pricing setting first (the right
expression cannot simply be read off the usual Phillips curve), contrast this to Taylor-
pricing and then develop a result for more general time-dependent models. Finally, I also
explore a variety of state dependent “sS menu cost” models. As is well appreciated, it
is notoriously challenging to identify the effect of expectations on inflation empirically.
Studying the theoretically predicted values for passthrough is complementary to empiri-
cal approaches to this question.

Although the backbone of the models I employ are standard, the way I solve them
is less standard. I solve for the impact of a change in inflation expectations, holding
all other relevant variables fixed. Changing expectations in this way requires parting
ways with rational expectations, or, indeed, any other particular model of expectations
formation. Thus, a key element of my analysis is flexibly allowing for any arbitrary set of
expectations and solving for the “temporary equilibrium” at that point in time.

Allowing for arbitrary expectations in this way has additional advantage: the solution
for inflation as a function of expectations can always be combined, if desired, with any
model of expectations formation, including rational expectations as a special case. Even
if this is the ultimate goal, it is useful not to leap to this combination of assumptions in
one step: the intermediate temporary equilibrium that does not impose any particular

1Theoretically, early rational expectations models relating inflation and output such as Lucas Jr. (1972)
justified such a belief and captured the ideas from Friedman (1968) and Phelps (1967). As pointed out
below, a cursory approach to the Calvo model also reinforces such a belief.
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expectation formation theory sheds light into the economic mechanisms at play.2

My stated goal is to shed light on the short-run impact of inflation expectations on
current inflation. I go from inflation expectations to inflation. This complements an ex-
tensive and important body of theoretical and empirical work going in the opposite di-
rection, studying the formation of expectations, often drawing a link from past inflation
to expectations of future inflation.

The metric I focus on is the impact effect on inflation of a change in expectations of fu-
ture inflation. To keep things simple, I first start by assuming that firms expect a constant
inflation rate. This allows me to focus on a single “passthrough” coefficient to measure
the immediate impact of a change in expectations. I later complement this by studying
the effect of past realized inflation.

My results cast doubt on the firmly held view that the short-run passthrough from
inflation expectations to inflation is nearly one-for-one. In particular, I show that the
passthrough can take on a wide range of values and is plausibly much lower than unity.
On the other hand, for plausible values, the passthrough is greater or equal to 1/2 in
time-dependent setups, so one might also say that these theories put a non-trivial lower
bound on the effects of expectations. However, I also show that state-dependent setups
are capable of lower values.

I start with the widely adopted Calvo pricing model, where firms have a constant
probability of getting a chance to reset their price. For this model, it is extremely tempting
and common to read the passthrough off the linearized “Phillips curve” equation as being
equal to the discount factor, which then leads one to conclude that passthrough is close
to one. The logic is correct for computing the “long run slope of the Phillips curve”, i.e.
the steady solution with constant inflation, but is not right for deriving the independent
role of expectations themselves. One way to see this is that solving forward we can also
write inflation as a function of current and future output gaps. Should we conclude that
the passthrough is zero or one?

The paradox is resolved by recalling that both of these expressions for the Phillips
curve impose rational expectations. As a result, inflation expectations are not free and
tied down to the future evolution of other variables. With rational expectations one sim-
ply cannot consider the thought experiment of modifying expectations without also ma-

2This general idea is embraced in many contexts by economists. To take a microeconomic example,
the notions of supply and demand curves are beloved concepts, and nobody insist on leaping instead to
only solving for the equilibrium. Instead, one often pauses first to think about each curve’s determinants,
how elastic they are, their shape, etc. This is especially useful if we then wish to move from a competitive
analysis to, say, that of a monopolist—we now use the demand curve differently. This is akin to considering
different models of expectations formation.
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nipulating future primitives. My goal is, instead, to express inflation as a function of the
expectation of inflation when treated as free variables, holding constant the expectation
of future real marginal costs (which can be expressed in terms of output gaps) and any
other determinants of inflation.

Solving for the passthrough from expected inflation to inflation in the Calvo model, I
show that it has the potential for being very low. Indeed, for any given discount factor,
the passthrough approaches zero as prices become fully rigid. This theoretical possibility
notwithstanding, I show that, in practice, for plausible parameter values, the passthrough
is close to one. I show this by studying the limit without discounting and arguing that it
provides a good approximation.

We find ourselves back with the same conclusion of a near one-for-one passthrough
from inflation expectations to realized inflation, but this time on better logical footing.
However, my next results show that the one-for-one passthrough is special to Calvo and
not a robust economic conclusion.

I turn first to the Taylor-pricing case where firms set prices every fixed number of peri-
ods N. This form of price rigidity was initially popular in influential macroeconomic stud-
ies of monetary policy and nominal rigidities, introduced by Fischer (1977) and Taylor
(1980) for wages and prices. However, these fell out of favor after Calvo (1983) provided
a more tractable setup, with a constant probability of changing prices, which simplifies
the aggregation and dynamics. Models with nominal rigidities have a large state vari-
able: the entire distribution of prices, but this state can be dispensed with in the special
Calvo-pricing model.

Adopting the no discounting limit as an approximation, I show the passthrough of
future inflation expectations to current inflation in the Taylor model equals 1/2, rather
than 1; discounting gives lower values, but once again in practice this effect is minimal.

What is the economic mechanism behind these results and what explains this differ-
ence? Intuitively, when firm plan to have prices fixed for some time they want to set them
so that they average out to an ideal price. When firms anticipate positive inflation this
ideal price is rising. As a result, to get things right on average, they set their price ini-
tially above the ideal price and over time their price ends up below their ideal price. The
greater the expected inflation, the greater must be this initial price “overshoot”.

This overshooting mechanism is at the heart of the transmission mechanism from ex-
pectations of future inflation to current inflation. Overshooting is more aggressive in the
Calvo-pricing setup because the constant probability of a price change creates a right-
tailed risk, where prices remaining unchanged for very long periods of time. One mani-
festation of this is that the median price spell duration lower than the mean. In contrast, in
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the Taylor setup there is no such right-tailed risk; the median duration equals the average
age. Overshooting is less aggressive.

In both Calvo and Taylor, I show that the passthrough coefficient does not depend on
the frequency of price changes. Lower frequency makes firms overshoot inflation more,
but this is exactly offset by the having fewer firms changing prices at any point in time.

The Calvo and Taylor model constitute two historically important benchmarks, yet
they are both special. To dive deeper I study a general time-dependent pricing model,
with an arbitrary hazard rate schedule. The hazard gives the probability of a price change
as a function of the time elapsed since the last price change.

For this relatively general setup, I obtain a surprisingly simple result: passthrough
equals the ratio of two duration measures. The numerator is the average duration of
ongoing price spells. The denominator is the average duration of completed spells. Re-
visiting Taylor, it is easy to see that this ratio is 1/2 since the average age of ongoing prices
is N/2. In the Calvo case, both averages are equal to each other. More generally, if one
thinks of the average duration of ongoing prices as a proxy for that of completed prices
there are two sources of “bias”. On the one hand, for a given spell, the age of an ongoing
price is lower than its eventual duration. On the other hand, short spells are underrepre-
sented relative to longer spells. From the duration literature, it is well known that with
an exponential distribution these two effects offset each other, which is why passthrough
equals one in Calvo.

I then show that across all time-dependent hazard rates (in the limit with no discount-
ing) the lowest possible passthrough is 1/2 attained by Taylor. Intuitively, all other spec-
ifications have greater right-tail risk for firms. Passthroughs above 1 are also possible for
distributions with fatter tails than the exponential, such as a Pareto distribution, obtained
with falling hazard rates.

I then extend the analysis to allow for general expectations of future inflation, that de-
pend on the horizon of the forecast, as well for nonzero past realized inflation. I produce
a general Phillips curve, with two sets of coefficients, those on expected future inflation
rates and on past realized inflation rates. I show that the coefficients on expectations are
largest at shorter horizons. Thus, expectations of short run inflation dominate. Indeed,
expectations of inflation for the very long run are shown to be irrelevant.

The coefficients on past inflation are generally non-zero, except in the Calvo case. In-
deed, the sum of both sets of coefficients, past and future, add up to one. In this sense, the
“long-run Phillips curve” can be said to be vertical: any steady state inflation is possible
(at a “natural” real marginal cost). Although long-run neutrality is sometimes taken for
granted, it is not immediately apparent in this general setup.
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This more general analysis highlights the spirit of my analysis, as well as its advan-
tage and limits. I am purposefully seeking to elaborate on the determination of inflation,
focusing on price setting firms and allowing for flexible expectations of future inflation as
well as past inflation, and other real determinants. In this way, my analysis can be seen as
characterizing a more flexible Phillips curve. The spirit of the analysis is not to “close the
model” and combine this condition with a theory of expectation formation, or with other
pieces of a greater macroeconomic model and a specification of policy. Any such exercise
would be special or open up a plethora of options and can be carried out in other studies.
Put starkly, I seek to further our understanding of one important equilibrium condition
and leave using it in combination with other equilibrium conditions for another day.

Finally, I turn to state dependent “menu cost” models. I first show that the standard
set of these models produce extreme results: inflation can jump discontinuously up or
down when expected inflation rises! This has the potential for making passthrough very
small (even negative) or very large. However, behind this result is the prediction that
the frequency of price changes dramatically in the very short run. In my view, this is an
unrealistic feature of these basic models.

Thus, I consider two variations. In the first, the frequency of price changes is assumed
fixed in the very short run. The motivation is that the resources of goods and time to
change prices is difficult to adjust in the short run. I show that this can produce a more
reasonable passthrough, potentially below 1/2.

In the second extension, I elevate the main feature of menu cost models to another
level: I consider fixed costs of changing the sS pricing bands. I argue that it is difficult
to entertain costs to changing prices, for given pricing rules, and not also consider the
costs of changing the bands themselves. If the change in expectations is not too large, the
firm will not find it profitable enough to pay the fixed cost to change the bands. If the
bands do not change, then there is no change in inflation and the passthrough is zero.
Numerical explorations show that reasonable values of the fixed cost produce relatively
wide ranges of inaction. For example, if the fixed cost of changing bands is 5 times that
of a price change then it takes a 12% rise in expected inflation to trigger a change in the
pricing bands.

Related Literature. There is a vast empirical literature on the determinants of inflation
related to the estimation or testing of so-called Phillips curve. In the context of a hybrid
New Keynesian Phillips Curve Galı́ and Gertler (1999) estimate time-series regressions
coefficients on future inflation and past inflation and find a non trivial role for future
inflation (about 0.6–0.7). These findings and their interpretation have been debated; see
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example Rudd and Whelan, 2005 and a response by Gali, Gertler and David Lopez-Salido
(2005).3 More important, however, for the purposes of the present paper, is that these esti-
mates do not use data on actual expectations, but instead use future realized inflation, as
justified under the rational-expectations model they lay out. Thus, they cannot separate
the role of expectations of inflation from that of other determinants.

There is a large body of empirical and theoretical work on the formation of expecta-
tions, as well as a growing recent body of work on the implications of these expectations.4

Among the later, the most pertinent attempt to estimate causal impacts of inflation expec-
tation based on surveys of firms. These papers exploit randomized information provision
and find relatively small passthrough (Coibion et al., 2020, 2018b) or zero (Rosolia, 2021).

There is a large literature studying departures from rational expectations, of various
particular kinds. Perhaps closest in spirit to the approach of the present paper are Preston
(2005), Garcı́a-Schmidt and Woodford (2019) and Farhi and Werning (2019) and others,
who use the notion of a temporary equilibrium to allow for arbitrary beliefs. However,
these papers do so mostly in passing, as a stepping stone on their way to explore partic-
ular departures from rational expectations (adaptive, reflective and level-k expectations,
respectively), combining Calvo pricing and consumption decisions to study particular
features of monetary policy. They do not summarize features of the passthrough of infla-
tion expectations to inflation or how it depends on the pricing model outside of Calvo.

2 Calvo 1 vs. Taylor ½

It is useful to understand the general spirit of my exercise starting with the most familiar
models of price setting. The Calvo model features a constant hazard probability of a price
changes each period; it is very tractable and for this reason often used as part of the New
Keynesian model. The Taylor model, introduced before Calvo, has a constant interval
of time between price changes. The assumption is relatively natural, especially for some
goods and labor, but it is somewhat less tractable. For both these models we shall reach
very simple and stark conclusions.

2.1 Calvo Pricing

I start with the most familiar form for price stickiness, the Calvo-pricing setup. Before
jumping into the calculations it is useful to define what the question is and is not.

3Rudd (2021) is a recent paper collecting arguments against the impact of expectations of inflation.
4For the former, see For examples, see the surveys by D’acunto, Malmendier and Weber (2022) and

Coibion, Gorodnichenko and Kamdar (2018a).
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The Passthrough Question. The goal is to compute the passthrough going from expec-
tations of future inflation to current actual inflation. I hold fixed current and future real
marginal costs and do not impose rational expectations or any other particular form of
expectations (adaptive, learning, inattentive, level-k, imperfect information, etc.). I will
also start by imposing that firms expect the inflation rate to be constant over time. This
allows me to focus on a single passthrough coefficient. I later extend the analysis relaxing
this assumption.

Taking expectations as given, at any point in time, I study the best response of firms
and aggregate them to compute a “temporary equilibrium”. This allows one to contem-
plate the impact effect at that point in time of a change in expectations, a comparative
static exercise.

Studying a dynamic response may require adopting a particular model of expectations
formation, as well as specifying the household and policy side of the model. But these
are not required to study the impact effect which is my focus. In any case the Phillips
curve I develop must hold at any point in time, even as expectations evolve. Thus, in
characterizing this object, I am providing an essential input into any dynamic analysis
that must be carried out with a fuller model.

NK Phillips Curve Cannot Provide Answer. To see why this distinction is important,
let us review standard practice, which does not separately condition on expectations and
other determinants of inflation. With Calvo pricing one can show that in equilibrium
inflation satisfies

πt = κxt + βEtπt+1.

Here πt is aggregate inflation and xt is the “output gap” (departure from the flexible-
price value of output), κ is a parameter summarizing price stickiness, and β is the time
discount factor. This equilibrium condition is often labeled the “New Keynesian Phillips
Curve”. From this equation, it is tempting to conclude the the discount factor β ∈ (0, 1) is
the sought after passthrough going from inflation expectations to inflation. Furthermore,
assuming β near 1 one is then led to conclude a near one-for-one passthrough.

However, this reasoning is misleading in that it does not answer the passthrough ques-
tion as stated above. The reason is that the Phillips curve equilibrium condition is derived
under the assumption of rational expectations. Thus, the term Etπt+1 is doing double
duty: it is capturing expected inflation but also the effect of future output gaps and these
must both be related. Indeed, one can solve forward to express inflation as being propor-
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tional to the discounted sum of expected output gaps

πt = κ
∞

∑
s=0

βsEt[xt+s].

which might now, equally misleadingly, suggest a zero passthrough from expected infla-
tion to inflation.5

These observations simply help underscore the spirit of our exercise: to separate the
role of future primitives from the expectation of future inflation. To do so requires aban-
doning rational expectations and deriving equilibrium conditions for inflation that allow
for any expectation of inflation and other determinants. I now turn to these calculations
in the Calvo setting.

Optimal Pricing In the Calvo model firms have a constant hazard probability 1− λ of
getting a price reset opportunity each period. We will be approximating around a zero
inflation steady state with a constant (nominal and real) interest rate of 1

1+r = β. The log
linearized reset price is then given by

p∗t = µ + (1− βλ)Et−1

∞

∑
s=0

(βλ)s(Pt+s + mct+s)

The interpretation of this condition is that firms set their price so that they are at their
ideal value on average; note that ωs = (βλ)s(1− βλ) is indeed a weighted average with

∑∞
s=0 ωs = 1. The ideal price, in turn, equals a constant markup µ over the nominal

marginal cost Pt+s + mct+s. In this section, I have jumped directly to this relatively stan-
dard and familiar condition. But I later justify this log-linearized expression and gener-
alize it in the context of a general time-dependent model, while also allowing for more
general shocks, such as shocks to markups.

In what follows, Et−1 must not be interpreted as an objective expectation, but rather

5Hazell et al. (2022) use the NK Phillips curve, with rational expectations, and decompose it in a way
that a casual reader may interpret as a passthrough of 1, but it is important to understand why this is
not the case. They assume inflation and output gaps are stationary and define long run expected inflation
and output gaps as π̄ = Etπt+s and x̄ = Etxt+s (which are independent of t because of stationarity).
They then write the demeaned condition πt − π̄ = κ(xt − x̄) + βEt(πt+1 − π̄) and solve it forward πt =
π̄ + κ ∑∞

s=0 βsEt[x̂t+s] where x̂t = xt+s − x̄ is the deviation of the output gap from its long run average.
This suggests a zero passthrough for short- or medium-run expectations, but a one-to-one passthrough for
long-run inflation. However, here once again a change in expected inflation π̄ requires a change in future
output gaps x̄. In other words, this is a correct decomposition that is useful for some purposes, but it does
not isolate the expectational passthrough.

In the present paper I explore the impact of changes in expectations even when the expectation of very
long-run inflation is constant. Indeed, I find that expectations for the very long-run are entirely irrelevant,
but that expectations for the short run do matter.
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firms’ own subjective expectations. As discussed above, I will purposefully stay away
from placing restrictions on expectations or modeling their evolution. Taking expecta-
tions as given, at any point in time, I study the best response of firms and aggregate them
to compute a “temporary equilibrium”. This allows one to contemplate the impact effect
at that point in time of a change in expectations, a comparative static exercise.

A brief word about the conditioning information Et−1 instead of Et: this notation is
meant as a reminder that firms do not have the price level Pt in their information set
when they set prices: the fraction of firms that are resetting prices for period t are doing
so simultaneously and do not observe the prices set by others until after they have set
their own. Thus, they know the previous period price level Pt−1 and have an expectation
for the period price level Pe

t = Pt−1 + πe
t . For these reasons, it is useful to imagine price

reseting happening at the end of a period and selecting the price that will be in place the
at the beginning of the next period.

To focus on the contribution from inflation expectations let I write

p∗t − Pt−1 = (1− βλ)Et−1

∞

∑
s=0

(βλ)s(Pt+s − Pt−1) + at

where at ≡ µ + Et−1 ∑∞
s=0(βλ)smct+s collects all the non inflation expectation items.

Constant Expectations. To simplify, we first consider expectation of future expectation
that are constant at some πe across all horizons6

Et−1Pt+s − Pt−1 = πe(1 + s)

We later relax this assumption to break down inflation expectations across different hori-
zons. Substituting this constant expectation into the price setting condition and carrying
out the calculations gives

p∗t − Pt−1 = (1− βλ)
∞

∑
s=0

(βλ)s(1 + s)πe + at =
1

1− βλ
πe + at.

Our focus is on the first term involving expected inflation πe. Thus, from now on when-
ever it simplifies the discussion set at = 0; it is trivial to bring back any sequence of {at}.
Note that as long as prices are sticky (λ > 0) the coefficient on πe is greater than one: the
firm overshoots its price, relative to the static optimum price at t. The economic rationale
for overshooting is that future inflation erodes its price p∗t relative to the rising ideal price.

6This is implied but weaker than assuming the one period ahead inflation expectation is constant and
unchanging over time: Et+sPt+s+1 − Pt+s = πe and that the law of iterated expectations holds.
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In the flexible price limit as λ→ 0 or as firms become myopic β→ 0 we see the coefficient
becomes one: firms do not overshoot their price, and simply set it at the static optimum
p∗t = Pe

t = Pt−1 + πe. Conversely, as βλ→ 1 the overshooting becomes infinitely large.

Inflation. Inflation is the weighted average of inflation across firms that cannot change
their prices 0 with weight λ and those that do reset prices p∗t − Pt−1 with weight 1− λ,

πt ≡ Pt − Pt−1 = (1− λ)(p∗t − Pt−1)

Combining the two previous equations then gives

πt = φπe + (1− λ)at

where
φ =

1− λ

1− βλ

As is well known, inflation is entirely forward-looking in the Calvo model; thus, past
inflation does not appear in the above expression. This reflects the fact that reset-pricing
behavior is forward looking and firms that get to reset prices are randomly drawn from
the pool of all firms, so there is no selection effect. This is a special property of the Calvo
assumption of a constant hazard rate.

The next proposition is based on the above expression for passthrough.

Proposition 1. In the Calvo model passthrough φ satisfies

φ ∈ (0, 1)

and any value can be attained in this interval for some parameters. Indeed, in the limit of no
discounting β → 1 or flexible prices λ → 0: passthrough attains its upper bound φ → 1;
conversely, in the limit of rigid prices λ→ 1 then passthrough attains its lower bound φ→ 0.

Any value for φ between zero and one can be obtained by varying the degree of price
stickiness only, for fixed given β. This once again dispels the notion, that passthrough
equals β, as in the standard expression for the New Keynesian Phillips curve.

However, we next argue that in practice, for reasonable parameter values, passthrough
φ is quite close to its upper bound of 1. It is simplest to make this argument in the contin-
uous time limit, to which we now turn.

Continuous Time. The expression for passthrough becomes particularly simple in the
continuous-time version of the model. This can be done by using the discrete time ex-
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pression and setting β = e−ρ∆ and λ = e−δ∆ and then taking the limit as the period length
shrink ∆ → 0 or by setting up the model in continuous time directly.7 Either way one
arrives at

φ =
1

ρ/δ + 1
,

so that passthrough only depends on the ratio ρ/δ.
Using the continuous time condition we easily see that for reasonable values of pa-

rameters φ will be relatively close to 1. For example, for ρ ≤ 0.05 and δ ≥ 1 (i.e. average
duration of a year or less) then φ ≥ 0.95. Although theoretically φ can be very low, in
practice this requires significant amounts of impatience or stickiness. We conclude that
the limit with no discounting giving φ = 1 is a good approximation in the Calvo model.
This conclusion also applies to the discrete time version of the model.8

2.2 Taylor Pricing

In the Taylor setting prices are changed every N periods, with firms staggered over time
so that a fraction 1/N changes prices each period. Once again, we write the reset price as
a weighted average of the expected prices

p∗t =
∑N−1

s=0 βsPe
t+s

∑N−1
s=0 βs

+ at = Pt−1 +
∑N−1

s=0 βs(s + 1)

∑N−1
s=0 βs

πe + at

where at ≡ µ + Et−1 ∑N−1
s=0 βsmct+s/ ∑N−1

s=0 βs. Combining this with

πt =
1
N
(p∗t − Pt−1)

we arrive at
πt = φπe +

1
N

at

7In continuous time, price setters set

p∗t − Pt =

∫ ∞
0 e−(δ+ρ)ss ds∫ ∞
0 e−(δ+ρ)s ds

πe + at =
1

δ + ρ
πe + at

where at =
∫ ∞

0 e−(δ+ρ)smct ds/
∫ ∞

0 e−(δ+ρ)s ds and the result for φ then follows by computing πt = δ(p∗t −
Pt).

8To see this, set a period to a year and use β = 0.95 and λ = 1/2 (giving a relatively large average
duration of 2 years): then φ = 1−0.5

1−0.95×0.5 = 0.5/0.525 = 0.952. Setting a period to a quarter instead with
β = 0.99 and λ = 0.75 (i.e. average duration of 4 quarters) gives φ = 1−0.75

1−0.99×0.75 = 0.25/0.2575 = 0.97.
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with

φ =
1
N

∑N−1
s=0 βs(s + 1)

∑N−1
s=0 βs

and φ is increasing in β.9 In the limiting case without discounting β → 1 then φ =
1
2(1 + 1

N ).10 Note that if we separate expectations current and future inflation then we
could write

πt =
1
N

πe
0 +

1
2

πe +
1
N

at.

where πe
0 = Pe

t − Pt−1. Thus, the value on expected future, rather than current, inflation is
always 1/2. Relatedly, if we think of periods as being very short and increase N accord-
ingly to maintain the same calendar time, then as we take the continuous time limit with
N → ∞ we see that φ→ 1/2.

Just as in the Calvo case, the continuous time limit offers some advantages. As we
see next, in continuous time 1/2 serves as an upper bound on φ, one that also provides
a very good approximation in practice. Taking the limit ∆ → 0 to continuous time by
setting β = e−ρ∆ and Nδ = 1

δ where 1/δ denotes the time interval between price changes
(δ is the frequency of price changes) or directly solving the model in continuous time
gives11

π = φ
(ρ

δ

)
πe

with the decreasing function φ given by

φ(ρ/δ) =
1

ρ/δ
− 1

eρ/δ − 1
.

Here 1/δ denotes the time interval between price changes and δ is the frequency of price
changes. Note that only the ratio ρ/δ matters, just as in the Calvo case.

9The expression ∑N−1
s=0 βs(s+1)

∑N−1
s=0 βs is a weighted average of the sequence 0, 1, 2, . . . , N − 1 and an increase in

β puts relative more weight on higher values.
10Note that with β = 1 we have φ = 1

N
∑N−1

s=0 (s+1)
N and ∑N−1

s=0 (s + 1) = 1
2 N(N + 1) so φ = 1

2 (1 +
1
N )

11In the continuous time model price setting is given by

p∗ − P =

∫ 1/δ
0 e−ρssds∫ 1/δ
0 e−ρsds

πe =
1
ρ

(1− e−ρ/δ(1 + ρ/δ))

1− e−ρ/δ
πe

where I am using ∫ ∆

0
e−ρssds = −1

ρ
e−ρ∆∆ +

1
ρ2 (1− e−ρ∆) =

1
ρ2 (1− e−ρ∆(1 + ρ∆))

and
∫ ∆

0 e−ρsds = 1
ρ (1− e−ρ∆). Inflation is then π = δ(p∗ − P).
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Proposition 2. In the Taylor-pricing case

φ ∈ (0, 1
2)

and φ → 1
2 in the limit of no discounting or flexible prices ρ/δ → 0; whereas φ → 0 in the limit

of rigid prices ρ/δ→ ∞.

Although the result shows that φ near zero is a theoretical possibility and that 1
2 is

an upper bound, for reasonable values of parameters, the passthrough φ once again lies
close to this upper bound. For example, if ρ < 0.05 and δ ≤ 1 then one calculates that
φ ≥ 0.495. Once again, as with Calvo, we conclude that the no-discounting case is a good
approximation for reasonable parameters.

The coefficient of 1
2 on future inflation stands in contrast with some well known deriva-

tions for the Taylor model in the New Keynesian literature. For the special case of N = 2
Roberts (1995) works out a condition for inflation under rational expectations. The ex-
pression features the expectation of inflation in the next period with a unit coefficient.
In addition to this derivation being carried out under rational expectations, unlike my
analysis, the coefficient in Roberts (1995) cannot be easily interpreted to think about the
reaction of inflation to shocks, including shocks that affect the expectations term. The
reason is that the equation also contains an expectation error term that will systematically
co-move with inflation.12

2.3 Intuition: Calvo vs Taylor

Why is expectational passthrough lower in the Taylor price setting relative to Calvo?
Firms set their price initially above their ideal price, but over time their price ends

up below their ideal price. The greater the expected inflation, the greater must be the
price over the currently ideal price. This “overshooting” mechanism is at the heart of the
transmission mechanism from expectations of future inflation to current inflation.

12Roberts (1995) equation (8) can be written as

πt = Etπt+1 + at + ηt

where xt collects terms related to the real economy and ηt is an expectations error given by

ηt = Et−1Pt − Pt = Et−1πt − πt

It follows that
πt =

1
2

Etπt+1 +
1
2

at +
1
2

Et−1πt.
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Intuitively, price overshooting is more aggressive in the Calvo-pricing setup. The rea-
son is that with a constant price-change probability the distribution of price ages is ex-
ponential. This creates a non-trivial right-tailed risk of prices remaining unchanged for
very long periods of time. In contrast, in the Taylor setup where firms change their prices
every fixed number of periods, there is no such right-tailed risk. Firms overshoots their
ideal price, but do so less aggressively. Indeed, the price will be too high exactly half the
time, too low the rest. This leads to a lower passthrough, that exactly equals 1/2.

It is interesting to note that in both cases the passthrough coefficient does not depend
on the frequency of price changes. Lower frequency makes firms overshoot inflation pro-
portionally more, but this is exactly offset by the fact that there are fewer firms changing
prices.

3 Sufficient Statistics for General Time Dependent Pricing

I now consider a general time dependent model. As we shall see, the more general results
I obtain can still be stated rather simply in terms of two sufficient statistics. The more
general formulation also helps sheds further light on the two previous special cases.

3.1 Preliminaries

We take as given a hazard function hs giving the probability of getting a price reset s + 1
periods since the previous reset (e.g. h0 denotes the probability of resetting a price if
the price was also reset in the previous period). It is useful to imagine price reseting
happening at the end of a period and selecting the price that will be in place the at the
beginning of the next period.

The hazard rate determines the survival probability Ss for each age s = 0, 1, . . .

Ss+1 = Ss(1− hs)

with S0 = 1. Note that Fs = 1− Ss+1 (F−1 = 0) represents the cumulative distribution
function for the duration of completed spells i.e. the probability a spell will be s or less is
given by Fs. The associated density is fs = Fs − Fs−1 = Ss − Ss+1 = Sshs.

Rescale the survival probability so that it adds up to one defines the distribution of
ongoing spells

ωs =
Ss

∑∞
s=0 Ss

,

where I assume ∑∞
s=0 Ss < ∞. This distribution has two economic interpretations. First, it

15



represents the unique invariant distribution under the Markov process for age s, defined
by s′ = s + 1 with probability 1− hs and s′ = 0 with probability hs.13 Under this inter-
pretation ωs represents the fraction of firms with age s in a cross-section of firms as well
as the “long run” average time spent at age s for a given firm. A second interpretation is
also possible, one that holds for a single firm and a single price spell: ωs represents the
expected amount of time spent at age s divided by the expected time spent at all other
ages. In this way, it captures the relative importance of age s relative to all other ages for
a given spell.

Using the distributions of completed and ongoing spells fs and ωs I define the average
hazard h̄ ≡ ∑s hsωs, the average duration of completed spells d̄ ≡ ∑∞

s=0 fs(s + 1) and the
average duration of ongoing spells d̂ ≡ ∑∞

s=0 ωs(s + 1).14 I assume all these averages are
finite valued. One can show that15

h̄ = ω0 =
1
d̄

.

These relations are intuitive. The average frequency of price changes h̄ must equal the
density of firms that are resetting their price ω0. Likewise, the average duration of com-
pleted price spells d̄ equals the reciprocal of the frequency of price changes 1/h̄, a relation
familiar in the special Calvo case with hs = h̄.

Calvo and Taylor Again. For reference, in the Calvo model the probability of a price
change is constant so that hs = h̄ and Ss = (1− h̄)s, yielding ωs = h̄(1− h̄)s. In the Taylor
model, instead, prices are stuck for N periods (over t = 0, 1, . . . N − 1) so that hs = 0 for
s < N − 1 and hs = 1 for s ≥ N − 1 so that Ss = 1 for s ≤ N − 1 and Ss = 0 for s ≥ N,
yielding ωs =

1
N for s ≤ N − 1 and h̄ = 1

N .
Note that in the Calvo case the distribution of completed spells is the same as that of

13This follows because ωs+1 = ωs(1− hs) and ω0 = ∑∞
s=0 hsωs. The invariant distribution is unique

because s′ = 0 is a recurrent point. Under relatively weak conditions, so that Ss ∈ (0, 1) for some s, the
unique invariant distribution is also stable, i.e. we converge to it starting from any other distribution. The
Taylor case is a knife-edged case lacking stability, starting from any distribution we cycle endlessly every
N periods.

14We take the expectation of s + 1 not s because a spell that is reset at s = 0 is a spell of duration 1.
15Using the definitions above we have that ωs = hsωs + ωs+1 implying ω0 = ∑T

s=0 hsωs + ωT+1 =
∑∞

s=0 hsωs = h̄ where I have used that ωT+1 → 0 because ST+1 → 0 is implied by the assumption that
∑∞

s=0 Ss < ∞. Next

d̄ ≡
∞

∑
s=0

fs(s + 1) =
∞

∑
s=0

(Ss − Ss+1)(s + 1) =
∞

∑
s=0

Ss(s + 1)−
∞

∑
s=1

Sss =
∞

∑
s=0

Ss =
1

ω0
.

Note that these same calculations also justify the second interpretation for ωs mentioned above, since ωs =
Ss/d̄.
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ongoing spells, since both are exponential. In contrast, in the Taylor case the distribution
of ongoing spells is uniform, whereas that of completed spells has full mass at N. In
particular, the average duration of completed spells is greater than that of ongoing price
spells in Taylor but identical in Calvo. This will play a role in interpreting our previous
results on expectational passthrough.

Prices and Inflation. The price level (in logs) is defined as the average across firms,
which equals the weighted average of past reset prices

Pt =
∞

∑
s=0

ωs p∗t−s.

Inflation is then given by
πt = Pt − Pt−1.

A bit of algebra shows that

πt =
∞

∑
s=0

ωshs(p∗t − p∗t−1−s)

inflation is a weighted average of the inflation rate associated with each firm (note that,
mechanically, a fraction 1− h̄ firms produce zero inflation).

3.2 Price Setting Approximation

I first provide a simple formal result justifying and generalizing the type of log-linearized
calculations used in the Calvo and Taylor settings.

The firm faces a path of interest rates qt+s. And a path of θt shocks to its profit func-
tion. These shocks can capture changes in their production functions or the demand firms
face—leading to variations in desired prices and markups. A firm resetting its price in pe-
riod t then solves

max
p∗t

Et−1

∞

∑
s=0

qt+sωsΠ(p∗t − Pt+s, θt+s)

with first-order condition

Et−1

∞

∑
s=0

qt+sωsΠp(p∗t − Pt+s, θt+s) = 0

Consider a small variation in the firms’ problem {Pt+s, θt+s, qt+s, ωs}. Assume the ap-
proximation is carried out around constant primitives θt = θ̄ with zero inflation Pt+s = Pt

and with perfect foresight expectations.
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Proposition 3. To a first-order approximation, around a zero inflation steady state, the reset price
satisfies

p∗t =
Et−1 ∑∞

s=0 qt+sωs Pe
t

Et−1 ∑∞
s=0 qt+sωs

+ at

where
at =

Πpθ

Πpp

Et−1 ∑∞
s=0 qt+sωs θt

Et−1 ∑∞
s=0 qt+sωs

.

Further setting qt+s = βs gives the desired result.

Proof. Totally differentiating gives

0 = Et−1

∞

∑
s=0

qt+sωsΠpp,t (dp∗t − dPe
t+s)

+ Et−1

∞

∑
s=0

Πp,t(dqt+sωs + qt+sdωs)

+ Et−1

∞

∑
s=0

qt+sωsΠpθ,t dθt+s

Around a steady state with zero inflation Πpp,t and Πpθ,t are constant over time and
Πp,t = 0 from the first order condition. Thus, the middle term cancels and rearranging
the remaining terms and setting gives

dp∗t =
Et−1 ∑∞

s=0 qt+sωs dPe
t

Et−1 ∑∞
s=0 qt+sωs

+ dat

At a zero inflation steady state we also have that the constants p∗ = Pe and a = 0 satisfy

p∗ =
Et−1 ∑∞

s=0 qt+sωs Pe

Et−1 ∑∞
s=0 qt+sωs

+ a.

Adding these two conditions gives the desired result, where pt = p∗+ dp∗t , Pe
t = P∗+ dPe

t

and at = a + dat up to first order.

My analysis takes the sequence for {θt} and hence {at} as given and is focused on the
effects of expectations {Pe

t }.

3.3 Sufficient Statistics for Passthrough

I now calculate the impact of a sudden change in inflation expectations. I do so approxi-
mating around a zero inflation rate steady state and also focus on the no discounting limit
β→ 1.
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Without discounting the optimal reset price is a weighted average of the marginal cost.
Thus, abstracting from shifters to real marginal costs to focus on expected inflation, we
have:

p∗t =
∞

∑
s=0

ωsPe
t+s =

∞

∑
s=0

ωsπ
e(1 + s) + Pt−1

This gap between the reset price and the price level is one element that is needed to
calculate inflation.

We assume inflation has been zero in the past (we later study the effects of past infla-
tion) and that all firms have the initial price p∗t−s = Pt−1 for all s = 1, 2, . . . and change
their price to p∗t at t = 0 when the shock to expectations occurs. Inflation, then is simply
πt = h̄(p∗t − Pt−1). Combining the above expression then gives the following result.

Proposition 4. Up to a first-order approximation around a zero inflation steady state with zero
past inflation

πt = φπe + at

where

φ = h̄
∞

∑
s=0

ωs(1 + s) = ∑∞
s=0 ωs(1 + s)

∑∞
s=0 fs(1 + s)

=
d̂
d̄

The passthrough φ equals the ratio of the duration of ongoing spells d̂ to that of com-
pleted spells d̄. This is a very simple formula in terms of two sufficient statistics that are
in principle directly observable in the data.

The duration of ongoing spells controls the incentive firms have to overshoot their
price, relative to their current ideal price, in the face of expected inflation. Indeed, the
weights ωs for ongoing spells captures the average time firms their price will be at dif-
ferent durations. This average duration determines how much expected inflation will
impact its pricing decision today. In contrast, the duration of completed spells is not rele-
vant for this decision, but appears in the numerator because its captures the frequency of
price changes.

We now use this general result to revisit the two special cases considered earlier.

Two important cases: Calvo and Taylor. In Calvo d̄ = d̂ = 1
h̄ while in Taylor d̄ = N 6=

d̂ = N+1
2 implying

φCalvo = 1

φTaylor →
1
2

N → ∞
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Extension with Heterogeneity. The result extends easily with heterogeneity in the haz-
ard rates. Let firms of type i have hazard h(s; i) with associated h̄(i),d̂(i) and d̄(i) =

1/h̄(i), then one can show that
π = φπe + āt

φ =
∫

d̂(i)
d̄(i) di =

∫
h̄(i)d̂(i) di

Note that φ is generally different from
∫

d̂(i)di∫
d̄(i)di as well as different from

∫ 1
d̄(i)di ·

∫
d̂(i) di =∫

h̄(i)di ·
∫

d̂(i) di. Indeed h̄ and d̂ may be correlated in the population of firms. Indeed,
this correlation may be negative so that heterogeneity of h̄ and d̂ cancels out. For example,
heterogeneity in the hazard h̄ in Calvo is irrelevant, we always have φ = 1. Likewise,
heterogeneity in the length of rigidity N within Taylor is irrelevant and always gives
φ = 1/2. So in these cases heterogeneity of the frequency of price changes does not
affect φ. However, other forms of heterogeneity in the hazard function may matter: for
example, if a fraction of firms have a Calvo hazard and another have a Taylor hazard.

How Low Can We Go? How High? What is the range of possible passthrough φ? In
particular, how low can we make φ by choice of the hazard function? I now show that the
lowest possible passthrough is 1/2 achieved by the Taylor pricing case.

Proposition 5. Let φ be given by Proposition 4 then for any {hs} we have

φ ≥ 1
2

.

Moreover, any value of φ can be attained by some choice of the hazard function. In particular,
φ > 1 and arbitrarily large is possible.

Proof. One can show that

d̂ =
∞

∑
s=0

(
1− ∑s

n=0(1− Fn)

d̄

)
Next we show that for any duration d̄ ∈ {0, 1, 2, . . . } the distribution {Fn} that minimizes
d̂ subject to d̄ = ∑∞

n=0(1 − Fs) is the Dirac distribution {F∗n} with full mass at d̄. Any
alternative distribution {F̃n} with ∑(1− F̃n)ds = d̄ second order dominates F∗n implying
that ∑s

n=0(F̃n − F∗n ) ≥ 0 for all s. This then implies

φF̃ − φF∗ =
1
d̄

∞

∑
s=0

s

∑
n=0

(F̃n − F∗n ) ≥ 0

Moreover φF∗ = 1/2. The Dirac F∗ corresponds to the Taylor case. For d̄ /∈ {0, 1, 2, . . . }
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a similar result holds but with a distribution with mass only at the two closest values
s ∈ {0, 1, 2, . . . }.

Next I show that arbitrarily large value φ > 1 are possible. Fix the average completed
duration d̄. Now pick any whole number s̃ ≥ d̄ and set f s̃ = d̄/s̃ and f0 = 1− d̄/s̃ and
fs = 0 otherwise; this gives a bimodal distribution with average duration of completed
spells d̄. Next, we compute the average duration of ongoing spells. Then S0 = 1, Ss = d̄/s̃
for s = 1, 2, . . . , s̃ and

ωs =
Ss

∑ Ss
=

d̄/s̃
1 + d̄

> 0

so that

d̂ = 1 +
d̄

1 + d̄
s̃ + 1

2
.

The result then follows by choosing s̃ large enough. Note that using the same construction
we have

φ =
d̂
d̄
=

1
d̄
+

1
2

1 + s̃
1 + d̄

.

This implies that we can attain any value for φ in a limiting sense. Choosing any desired
value for φ we can send d̄→ ∞ and s̄→ ∞ so that 1

2
1+s̃
1+d̄ → φ. Small perturbations of this

construction can attain any value of φ without taking limits.

The intuition for this result is as follows. The duration of ongoing spells suffers from
two “biases” that make it generally different from that of completed spells. Firstly, for any
given spell the age at which we sample an ongoing spell is by definition below that of the
completed spell; a downward bias. Secondly, unless spells are all of the same duration
there is also an upward bias because we oversample relatively longer spells. Intuitively,
Taylor minimizes the ratio at 1/2 because it has the downward bias, but not the upward
bias.

The proposition not only rules out φ < 1/2, but shows that any value φ ≥ 1/2 is pos-
sible. Since Taylor attains ½ and Calvo 1, it should be intuitive that we can get anything
in between by mixing these two models. But φ > 1 arbitrarily large is perhaps less obvi-
ous. The intuitive idea is that we can make average duration of ongoing spells very large
relative to the completed ones by having most spells end as soon as they start, but have
a small fraction end after a very long time. Ongoing spells are then the selected sample
of “survivors” with very long durations. Effectively, we can make the second positive
“bias” described in the previous paragraph arbitrarily large.

Discounting. What happens away from the no discounting case, when β < 1? With
discounting, firms set prices that are a weighted average including the discounting. As a
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result, discounting lowers passthrough.

Proposition 6. The passthrough φβas a function of β is increasing in β and

φβ =
d̂β

d̂
φβ=1

where d̂β = ∑∞
s=0 ω̂s,βs and ω̂s,β = βsωs/ ∑∞

s=0 βsωs is a weight with the property that ω̂s,β is
increasing in a first order stochastic dominance (FOSD) sense. Thus, d̂β is increasing and d̂1 = d̂.

For Calvo and Taylor we saw that the no-discounting case provided a very good ap-
proximation. Based on this proposition, we now see that this conclusion is more general
as long as d̂β/d̂ lies close to 1. For reasonable discount rates and hazard rates this must
be the case: for price stickiness lasting a year or so, discounting within that year does not
change the relative weights ω̂s,β significantly, thus it will not change d̂β and φβ signifi-
cantly.

4 General Phillips Curve: Short vs Long Run Expectations

and Past Inflation

I now develop the equilibrium condition for current inflation while relaxing the simpli-
fying assumptions imposed previously. Since this equilibrium condition is informally
termed a “Phillips curve” one can see this section as developing a Phillips curve for a
general-time dependent model.

I relax two assumptions from the previous section. First, expectations for inflation at
different horizons are no longer assumed to be flat: expectations are given by an arbitrary
sequence {πe

t+s}∞
s=0 where πe

t+s represents the expectations of inflation for period t + s
held at time t; previously πe

t = πe constant. Second, I study the impact of past realized
inflation taking any given any sequence {πt−s}∞

s=0; previously πt−s = 0 for s > 0.
The next proposition writes current inflation as a linear function of expectations of

future inflation rates and past realized inflation rates. It also provides some properties of
the coefficients on these variables. After stating the result, I discuss the results, provide
the sketch of the proof and its associated economic intuition.

Proposition 7. Suppose the hazard function is strictly positive hs > 0 for all s then to a first-order
approximation in the limit of no discounting we have

πt =
∞

∑
s=0

φsπ
e
t+s +

−∞

∑
s=−1

φsπt+s + at
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with φs decreasing for s > 0 and
∞

∑
s=−∞

φs = 1

and {at} a sequence dependent on the expectation of future real variables given by at = α ∑∞
s=0 ωs θe

t+s.

The previous section characterized φ = ∑∞
s=0 φs the sum of the coefficients on expec-

tations of future inflation. This proposition generalizes this result, breaking down φ over
different horizons. It also considers non-zero past inflation, the most interesting aspect of
which is that it allows us to see that the sum of both sets of coefficients is unity. This can
be interpreted as saying that the “long-run Phillips curve is vertical”, or more precisely
that steady-state inflation is not determined.

Proof and Intuition. To see how this result is derived we first compute the reset price.
This satisfies the usual condition but this time we do not impose Pe

t+s = πe(1+ s) (setting
at = 0 to simplify expressions)

p∗t =
∞

∑
s=0

ωsPe
t+s =

∞

∑
s=0

ωs

s

∑
j=0

πe
t+j + Pt−1 =

∞

∑
s=0

(1−Ωs−1)π
e
t+s + Pt−1

where the cumulative distribution is Ωs = ∑s
n=0 ωn with the convention that Ω−1 = 0.

Using πt = ∑∞
s=0 ωshs(p∗t − p∗t−1−s) we arrive a

πt =
∞

∑
s=0

ωshs(p∗t − Pt−1) +
∞

∑
s=0

ωshs(Pt−1 − p∗t−1−s)

= h̄
∞

∑
s=0

(1−Ωs−1)π
e
t+s +

∞

∑
s=0

ωs(h̄− hs)p∗t−1−s

The first set of terms provides the required coefficients φs = h̄(1−Ωs−1) for expectations
of future inflation s ≥ 0. We see that that φs are decreasing since the cumulative distribu-
tion Ωs−1 is increasing. Intuitively, when resetting their prices, firms care relatively more
about earlier inflation because it affects the price level over more periods. In fact, if Ss = 0
for s ≥ N for some N then inflation expectations beyond N are completely irrelevant.

The second backward-looking set of terms depend on past reset prices {p∗t−s−1}. Us-
ing ωs as probabilities we have ∑∞

s=0 ωshs = Ehs = h̄, so that

∞

∑
s=0

ωs(h̄− hs)p∗t−1−s = −Cov
(
hs, p∗t−1−s

)
We see immediately that if hs = h̄ is constant as in Calvo then this backward-looking
term is zero. It is also zero if one starts at a zero inflation steady state with constant past
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reset prices p∗t−1−s = p∗; our working assumption in the previous sections. In contrast, if
the reset price p∗t has been rising in the past and the hazard rate hs is increasing then the
covariance is negative, and the new term contributes towards positive current inflation.

To next step in the proof is to convert the expression in terms of past reset prices into
one involving past inflation rates. The price level is a weighted average of past reset
p?rices

Pt =
∞

∑
s=0

ωs p∗t−s.

The key idea is to prove that this can be inverted to solve for

p∗t =
∞

∑
s=0

αsPt−s

with ∑∞
s=0 αs = 1. This is possible by applying the Eneström–Kakeya Theorem (Gardner

and Govil, 2014), noting that the hypothesis are satisfied because ωs ≥ 0 and ωs+1 ≤ ωs.
Substituting this expression for p∗ and rearranging then provides a linear expression in
terms of past inflation. I omit the details here, but collect the relevant expressions in an
Appendix.

Finally, to see that ∑∞
s=−∞ φs = 1 we can work through the effects of constant past

inflation π 6= 0, noting that this can only emerge from constant inflation in the reset price
p∗t−s = p∗t − sπ.16 Evaluating the second term then gives

π
∞

∑
s=−1

φs =
∞

∑
s=0

ωs(h̄− hs)p∗t−1−s = π
∞

∑
s=0

ωs(h̄− hs)s = πh̄
∞

∑
s=0

(ωss− fss) = π(1− φ).

Cancelling π we obtain ∑∞
s=−1 φs = 1− φ and the result follows.

Economically this result can be interpreted as saying that the “long-run Phillips curve
is vertical”. That is, if at = 0 for all t then any constant solution for πt = π is possible; if
instead at = ā > 0 then π = ∞ and if āt = ā < 0 then π = −∞. .

16To see this note that if p∗t−s − p∗t−s−1 = π for all s = 0, 1, . . . then

Pt+1 − Pt =
∞

∑
s=0

ωs(p∗t+1−s − p∗t−s) =
∞

∑
s=0

ωsπ = π

The same is true for all earlier dates. Thus, constant reset price inflation produces constant past inflation.
But since we can invert p∗ from P this must be the only possible sequence of p∗ consistent with constant
inflation in P.
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5 Menu Costs: State Dependent Models

I now explore the implications of “menu cost” state-dependent models. The key differ-
ence between these models and the ones studied earlier is that the frequency of price
adjustments is endogenous. In particular, firms can be seen as using so-called “sS bands”
characterizing regions of inaction where the price is left unchanged.

I first explore the simplest setting introduced by Sheshinski and Weiss (1977), a de-
terministic economy with positive inflation, where there are only price increases. As I
will show the predictions of this model are quite extreme. In particular, an increase in
expected inflation can actually reduce inflation all the way to zero. This is due to extreme
movements in the frequency of price adjustments brought about by discrete changes in
the sS bands. This may not be realistic, so I study a version of the model where the fre-
quency of price changes cannot be changed in the very short run. This model produces a
passthrough that is positive but lower than the Taylor one of ½.

5.1 Setup

It is useful to move to a continuous time setup. At any point in time t a firm has price pi
t

and aggregate price Pt =
∫

pi
tdt. It useful to define the price gap xi

t = pi
t − Pt.

Firms profits are a function of their price gap f (x). They discounted profits at a con-
stant rate ρ, although we often take the limit as ρ→ 0. Firms must pay a fixed cost c each
time they change their price, as a result they change their price only at discrete intervals
of time and use an (s, S) rule keeping x in the interval [s, S] with s < 0 < S adjusting
the price up to x = S when x = s. We are interested in characterizing the (s, S) rule and
deriving its implications for the passthrough from expected inflation to realized inflation.

Consider a steady state where expected inflation is given by πe > 0. Let V∗ denote the
stationary value of a firm that has just optimally changed its price. Then the firm problem
at time t is

V(xt; πe) ≡ max
T

∫ T

0
e−ρs f (xt+s)dt + e−ρT(V∗(πe)− c)

xt+s = xt − πet

with xt given. The first order condition for T gives

f (x) = ρ(V∗(π)− c)

a condition for the lower bound on the sS policy x = xte−πT. The upper bound of the
sS policy is the optimal reset price x∗ ∈ arg maxx V(x; π). This reset price x∗ actually
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satisfies a condition akin to the Taylor model: the price is set so that the average marginal
profit is zero

1
ρ

∫ T∗

0
e−ρs f ′(x∗ − πs)dt = 0.

Taking a quadratic approximation of f (x) around the maximal value x̂ = arg maxx f (x)
gives f ′ linear, and in the limit ρ → 0 gives x∗ = 1

T

∫ T∗

0 πt + x̂ = 1
2 T∗ + x̂. The x̂ shifter

plays the same role as at did in the time-dependent model; we set x̂ = 0. The bands are
then symmetric around zero: x = −x∗.

(Sheshinski and Weiss, 1977) proved that firms will expand their bands, so that x∗(πe) =

−x(πe) is increasing in πe. Moreover, firms anticipate that prices will be set for a shorter
amount of time T = πe

2x∗(πe)
is decreasing in πe.17

5.2 A Shock To Expectations with Full Adjustment

Now suppose we are at a steady state with constant expected and actual inflation that
coincide πe

0 = π0. At a steady state we have an invariant cross-sectional distribution of
firms distributed with density ω(x).18 In equilibrium we must have

∫
xω(x) = 0. The

invariant distribution is uniform between [x, x∗] with constant density ω = 1
x∗−x .19

The rate of inflation pushes firms down to the boundary x making them change prices;
the higher is inflation the greater the flow of firms hitting the boundary. The density of
firms, or frequency of price changes, equals h̄ = ωπ. These firms change their price by a
discrete positive amount ∆+ = x∗ − x. Thus, inflation is given by the product

π = h̄∆.

One then observes that π = h̄∆ = ωπ 1
ω = π a consistency condition.20

Now from this steady state position, imagine firms anticipate higher inflation πe >

π0. Thus, when expectations change firms will expand their bands immediately. As a
result the distribution of firms is strictly away from the bands and no firms adjust prices,
resulting in zero inflation. A decrease in the inflation expectations shrinks the optimal
bands, calling on a mass of firms to adjust prices.

Proposition 8. In the Sheshinski-Weiss menu cost model, starting from a steady state with π0,
17This latter result requires imposing a condition that is satisfied with our quadratic approximation for

f .
18In equilibrium we require the consistency condition that

∫
ω(s)xds = 0

19This is the unique invariant distribution and one can ensure stability by perturbing this model slightly,
e.g. allowing some small Poisson arrival of free price changes.

20For given bounds inflation is indeterminate, but this conclusion is knife-edged and dependent on the
simplifying assumptions we have adopted; thus, we will not be concerned with it.
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an increase in inflation expectations at t = 0 πe > π0 lowers realized inflation on impact to zero
π = 0.

Conversely, a decrease in inflation expectations πe < π0 induces at a mass of firms to change
their price immediately. This results in an upward jump in the price level that is greater the larger
the change in expectations π0 − πe.

For an increase in πe the passthrough is initially negative infinity. Once inflation is
at zero further increases in πe have no effect, so the marginal passthrough becomes zero.
On the other hand, for a decrease in inflation expectations the immediate passthrough is
also negative infinity, but even more extreme since it is the price level, not inflation, that
jumps up. These results are obviously extreme, but they illustrate the possibilities when
the fraction of firms changing their price becomes endogenous.

5.3 Adjustment Frictions for Price Frequency

The results above are extreme and probably not realistic. Across steady states one can
imagine firms adjusting the frequency of price changes, taking as given a “menu cost” of
each price change, i.e. the cost is linear in frequency. But in the short run the resources
devoted to changing prices may not be perfectly adjustable. For example, if we think of a
retail store, managing many products and prices, then changing prices requires employee
time devoted to this task. Staffing and training of these employees cannot be immediately
adjusted so the retail store cannot suddenly increase the rate at which they change prices
arbitrarily; nor will they want to stop adjusting prices altogether since that would leave
idle time and resources devoted to that task.

On the other hand, given enough time the frequency of price changes can be changed,
staffing rearrangements or hiring can be done.

Now let us revisit the result from the previous section, focusing on a rise in inflation
expectations. If inflation expectations rise, the bands are widened, and the frequency of
price adjustments was predicted to fall to zero. However, let us now instead entertain
that in the very short run this frequency is held constant at its previous value, due to
the notion that resources devoted to price changes are fixed in the very short run. On
the other hand, the firm anticipates that it will be able to adjust the frequency of price
changes over the medium term. Indeed, suppose the firm anticipates that if it is resetting
its price today, then by the time it has to reset it again, it will have been able to freely adjust
its price adjustment frequency. The next result shows that under these assumptions the
passthrough is positive, but below 1/2 the value with Taylor pricing.
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Proposition 9. In a Sheshinski-Weiss menu-cost model where frequency of price adjustment is
fixed in the very short run, the marginal passthrough from inflation expectations to inflation sat-
isfies

0 < φ < 1/2.

The calculations behind this result are as follows. If the frequency of price adjustment
is fixed then inflation on impact satisfies

π = h̄(π0)(x∗(πe)− x(π0))

with h̄ and x held fixed at its previous value. Now this is the same calculation for the
Taylor model except for the value that x∗(πe) = p∗(πe)− P. In the Taylor case we have

p∗ − P =
1
2

Tπe

with T = T∗(π0) fixed at its original value. Instead, we now have the same formula
but with πe > π0 the anticipated value of T∗(πe) is lower. Intuitively, firms anticipate
that they do not need to overshoot due to inflation as much because they will increase
the frequency of price adjustment in the near future. Thus, the price spell that is just
starting is anticipated to be of lower duration. Since the Taylor case gave 1/2 we now get
a passthrough below 1/2.

5.4 Idiosyncratic Uncertainty

In the simple Sheshinski and Weiss (1977) menu cost model, all price changes are prompted
by inflation. The desired relative prices are constant and in the absence of inflation there
are no price changes. This is obviously a simplification. These models have been ex-
tended in various ways to incorporate idiosyncratic uncertainty at the product level. We
now consider these extensions. Departing from the basic benchmark opens a host of op-
portunities. These models have been extended not just to include uncertainty, but also to
allow for free opportunities to change prices, to consider firms managing multiple prod-
ucts and prices, etc.

We take a small step and keep things simple, discussing the setup in Alvarez et al.
(2019). The model is cast is once again cast in continuous time, except that now due to
shocks to marginal costs we postulate that firms keep track of xt = −πtdt + σdWt where
Wt is a Brownian motion process, so that dWt can be interpreted as an iid shock across
periods, permanently impacting xt with standard deviation σ. Once again the firm sets
up pricing bands, except that now they are characterized by three numbers: x, x∗ and a
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new upper bound x̄. the firm adjusts prices whenever xt hits x or x̄, in which case it resets
x to x∗.

This model is more general than the one we studied earlier. The Sheshinski-Weiss
case sets σ = 0, but, intuitively, similar results obtain when σ is small enough relative to
inflation π0. However, when π0 = 0 and σ > 0 or, more generally, when σ is large and
π is small then we get different results. First, the distribution is no longer uniform, but it
peaks at x∗ instead. Secondly and most importantly, an increase in πe does not widen the
sS bands, instead: it shifts them to the right (see the proof of Proposition 1 in Alvarez et
al., 2019). This induces an increase in price increases from the bottom at x—indeed a mass
of firms instead of a flow—and a drop to zero in the flow of price adjustments downward,
at the upper bound x̄. As a result, one obtains an extreme result: a discrete upwards jump
in the price level.

Such extreme results can no longer be so easily arrested by freezing the frequency of
price adjustments in the short run. If we assume that both the frequency of price increases
and the frequency of price decreases must remain constant, in the short run, then we can
get a passthrough below 1/2 as before. However, one may assume instead that the total
frequency must remain unchanged in the short run, but that the firm can reallocate this
frequency between price increases and decreases. It may then be optimal to reallocate all
price changes to the price increases, leading to a discrete jump in inflation in response to
a small increase in πe.

6 mc2

The spirit of state dependent models is that firms are often inactive and do not adjust
prices frequently because there is a “menu cost”. Sometimes this cost is taken literally in
terms of the goods and time cost of printing menus, catalogs or relabeling sticker prices
on physical goods in supermarkets. However, an important component is also the man-
agerial decision of changing prices.

In this section I take the idea of managerial costs seriously and push it one step further.
During normal times the firm may have converged on certain sS policies that are optimal
for some steady state inflation rate. The bands may simply embed the idea that prices
should be ±5% of some desired markup over marginal costs. It seems natural to think that
there are managerial costs to reconsidering and changing these bands to a new situation.
Doing so requires reviewing the available information, weighing the tradeoffs, holding
meetings, making marketing decisions and communicating them.

Following the menu cost literature, we formalize these ideas in a stylized way, assum-
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ing there is a fixed cost cB > 0 that must be paid to modify some preexisting pricing
bands. If the cost is not paid, the firm can continue using its previous pricing bands.

For any arbitrary bands x and x∗ let us denote by V(x, x∗, πe) the anticipated value
obtained by a firm with expectations πe. Let V∗(πe) denote the value function using
optimal bands x(πe) and x∗(πe) given πe. Then if

V(x(π0), x∗(π0), πe) ≥ V∗(πe)− cB

the firm will choose to maintain its old bands. If the inequality is violated then the new
bands are implemented. For given π0 this induces a region of inaction for πe around π0.

Proposition 10. Consider the Sheshinski-Weiss menu cost model extended so that, in addition to
menu costs for changing prices, there are also fixed costs cB for changing the pricing bands (x, x∗).

Then starting from an steady-state with inflation and expected inflation equal to π0 and associ-
ated optimized bands x(π0) and x∗(π0), there is an interval of inaction [π, π̄] with π < π0 < π̄

such that the the firm maintains its bands unchanged. Then for any πe ∈ I0 inflation remains
unchanged, so the passthrough from inflation expectations to inflation is zero.

Moreover, the inaction region increases in cB and ∂
∂cB

π → −∞ and ∂
∂cB

π̄ → ∞ as cb → 0.

If the bands do not changed then inflation expectations has no effect on firm behavior
and hence no effect on inflation. The last part of the proposition suggests that the bands
can be quite significant even for small fixed costs. The reasoning is the same as in Akerlof
and Yellen (1985) and Mankiw (1985): if the bands were initially optimal the loses from
not changing them are only second order.

Next, I perform a quantitative exploration. Annual inflation is initially 2% and the
real discount rate is 2%. The size of the menu cost and idiosyncratic shocks is calibrated
to match the observed size and frequency of price adjustments (in their sample from Ar-
gentina, those values are 10% and 2.7 adjustments per year during low inflation times).

I benchmark the costs of changing the pricing bands relative to the menu costs. It
seems natural to imagine that the costs of changing the bands may be significantly higher
than changing a single price, following a pre-established rule. Thus, I compute the upper
inaction region π̄ − π0 as a function of cB/c between 1–10. The result with and without
idiosyncratic shocks is plotted in Figure (1).

For example, with idiosyncratic uncertainty, if costs are five times greater than menu
costs, then the change in inflation expectations must be upwards of 12% for the firm to
find it worthwhile to re-optimize the pricing bands. The implied costs of following a
sub-optimal policy are small so that large changes in expectations are required to trigger
changes in the bands for these range of costs.
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Figure 1: Upper inaction region π̄ − π0 as a function of relative fixed costs cB/c. Left
panel σ = 0.1641; right panel σ = 0.

7 Conclusions

In this paper I take a step towards understanding the effect of inflation expectations on
pricing and inflation, holding all other determinants of these fixed. I show that the com-
mon perception that optimizing models imply a 1-to-1 passthrough is generally mislead-
ing. My results uncover that this passthrough depends quite a bit on the pricing model.
Exploring a wide range of cases I try to make the case that much lower values of the
passthrough are possible and plausible.

Casting aside these results, I believe that a side-product of the analysis is that it lends
a greater economic intuition and understanding for the transmission mechanism of the
inflationary process, often ignored in formal analyses or the subject of speculation. In
particular, expectations matters to the extent that individual firms “overshoot” their ideal
relative price or if the frequency of price increases rises in the short run (the overall fre-
quency of price changes is not relevant, as I show). Understanding this mechanism sug-
gests new empirical or theoretical directions. Can we measure this overshooting directly
at the microeconomic level? Theoretically, are there other important economic considera-
tions shaping the degree of overshooting such as price complementarities or the shape of
demand?
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A First Order Approximation for General Time Dependent

Model

Consider a general time-dependent model defined by the hazard rate function {hs}. Let
ωs+1 = ωs(1 − hs) (the value of ω0 will be inconsequential). The firm faces a path of
interest rates qt+s. And a path of θt shocks to its profit function.

The firm then solves

max
p∗

Et−1

∞

∑
s=0

qt+sωsΠ(p∗t − Pt+s, θt+s)

with first-order condition

Et−1

∞

∑
s=0

qt+sωsΠp(p∗ − Pt+s, θt+s) = 0

We consider a small variation in the firms’ problem {Pt+s, θt+s, qt+s, ωs}. Totally differen-
tiating gives

0 = Et−1

∞

∑
s=0

qt+sωsΠpp,t (dp∗ − dPe
t )

+ Et−1

∞

∑
s=0

Πp,t(dqt+sωs + qt+sdωs)

+ Et−1

∞

∑
s=0

qt+sωsΠpθ,t dθt

Let us assume the approximation is carried out around a constant θt = θ̄ and with zero
inflation Pt+s = Pt then Πpp,t and Πpθ,t are constant and Πp,t = 0 (from the first order
condition) so the middle term cancels. We are left with

dp∗ =
Et−1 ∑∞

s=0 qt+sωs dPe
t

Et−1 ∑∞
s=0 qt+sωs

+ at

where
at =

Πpθ

Πpp

Et−1 ∑∞
s=0 qt+sωs dθt

Et−1 ∑∞
s=0 qt+sωs

.

Further setting qt+s = βs gives the desired result.
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B Coefficients on Past Inflation

The inverse has coefficients satisfying the recursion

αs =

 1
ω0

s = 0

−∑s
j=1 Sjαs−j s ≥ 1

Writing p∗t in terms of past inflation rates gives

p∗t =
∞

∑
s=0

αsPt−s

=Pt −
∞

∑
s=1

αs (Pt − Pt−s)

=Pt −
∞

∑
s=1

αs

(
s−1

∑
j=0

πt−j

)

=Pt −
∞

∑
s=1

(
∞

∑
j=s

αj

)
πt−s+1

Define γs = ∑∞
j=s αj.

p∗t = Pt −
∞

∑
s=1

γsπt−s+1 (1)

Equivalently

p∗t−s−1 − Pt−1 = p∗t−s−1 − Pt−s−1 + Pt−s−1 − Pt = −
∞

∑
z=1

γzπt−s−z − (Pt−1 − Pt−s−1)

Since ∑∞
s=0 ωs

(
h̄− hs

)
= 0 then

∞

∑
s=0

ωs
(
h̄− hs

)
p∗t−s−1 =

∞

∑
s=0

ωs
(
h̄− hs

) (
p∗t−s−1 − Pt−1

)
=

∞

∑
s=0

δs
(

p∗t−s−1 − Pt−1
)

some calculations

∞

∑
s=0

δs
(

p∗t−s−1 − Pt
)
=

∞

∑
s=0

δs

[
−

∞

∑
z=1

γzπt−s−z + Pt−s−1 − Pt−1

]

= −
∞

∑
s=0

∞

∑
z=1

δsγzπt−s−z −
∞

∑
s=0

δs (Pt−1 − Pt−s−1)
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define θs = −∑s
z=1 δs−zγz and µs = ∑∞

z=s δz, then

∞

∑
s=0

δs
(

p∗t−s−1 − Pt
)
=

∞

∑
s=1

θsπt−s −
∞

∑
s=1

µsπt−s

thus

∑
s=0

ωs
(
h̄− hs

)
p∗t−s−1 =

∞

∑
s=1

φ−sπt−s (2)

with
φ−s = θs − µs.

This provides the desired expressions to compute φs for all s < 0.
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