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1 Introduction

Productivity growth in advanced economies has slowed markedly over the past two decades. This

slowdown has renewed longstanding debates about which policies can possibly raise productivity

and output. While there is now extensive empirical evidence on the short-run effects of fiscal policy,

there is far less evidence on whether tax policy can sustainably drive aggregate productivity. Does

cutting corporate income taxes stimulate innovation and productivity? This paper provides new

evidence that it does.

Our first contribution is empirical. Building on the influential narrative identification strategy

of Romer and Romer (2010), Ramey (2011), and Mertens and Ravn (2013), we extend the analysis

of postwar U.S. tax shocks beyond the short-term horizons that dominate existing studies. Looking

at a full decade after the shock proves key. We find that temporary corporate tax cuts lead to a

sustained increase in innovation activity, in terms of expenditure —both R&D and broader measures

of intangible investment not captured in national accounts— as well as outcomes, measured by

patents and trademarks. These responses, in turn, translate into persistent gains in total factor

productivity and GDP.

Our second contribution is theoretical. We develop and estimate a semi-endogenous growth

model that highlights a previously overlooked mechanism through which corporate income taxes

discourages innovation investment. When innovating, firms create intangible assets that reflect

the ownership of new ideas. Under U.S. tax law, which allows purchased intangible assets to be

amortized over fifteen years rather than fully expensed, corporate taxes lower the market value of

ideas by reducing the after-tax profits that they generate without providing offsetting tax relief. A

cut in the corporate tax rate reduces this distortion by increasing profits by more than it reduces the

value of amortization deductions, making intangible assets more valuable and thereby encouraging

innovation. Using model-based counterfactual simulations that vary the tax amortization period, we

show that this mechanism can account for the persistent effects of corporate tax cuts on innovation.

Importantly, the distortion persists even in the presence of other provisions of U.S. tax law that

favor innovation, such as R&D tax credits and full expensing of R&D expenditures, which are both

featured in our model.

Quantitatively, the model yields implications that align with notable benchmarks in the litera-

ture. The knowledge spillovers and the elasticity of aggregate productivity to innovation intensity

implied by our estimates are consistent with the statistics computed by Atkeson and Burstein

(2019). The model-implied social returns to R&D are close to those in Bloom et al. (2013), and the

long-run elasticity of innovation with respect to corporate taxation is within the range reported by
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Akcigit et al. (2021) across U.S. states. Taken together, these results suggest that our model yields

plausible estimates of the response of aggregate productivity to innovative investment, with the

large effects of corporate tax changes reflecting the significant distortions that this taxation creates

for innovation incentives.

We provide firm-level evidence that is consistent with the model’s mechanism. Following a cor-

porate tax cut, firms with a high share of intangible asset value —measured by the book value of

patents and other intangibles relative to market capitalization— experience a significantly larger

increase in stock market valuation relative to companies with low intangible intensity. This imme-

diate price response reflects the asset-pricing channel: tax cuts raise the market value of intellectual

property, thereby strengthening incentives to innovate. To examine this link more directly, we an-

alyze the responses of various innovation expenditure measures. As emphasized by Corrado et al.

(2009) and Atkeson (2020), national accounts likely understate the scale of intangible investment.

We therefore study not only R&D spending, but also broader measures of intangible investment

outside the national accounts, as well as patent filings. In line with our theory, all three measures

rise gradually and persistently following a tax cut. In contrast, tangible investment and sales re-

spond immediately. These firm-level dynamics mirror the aggregate evidence and underscore the

central role of intangible asset valuation in transmitting corporate tax policy to long-run innovation

and productivity growth.

Our estimated effects are economically significant. A temporary 1% reduction in the corporate

tax rate lasting four years raises total factor productivity by 0.5% after eight years. Using Com-

pustat data, we calculate that in 2023 physical capital expenditures and depreciation accounted

for 6.4% and 4.4% of GDP, while intangible expenditures and amortization accounted for 5.5%

and 1.3%, respectively. The incidence of intangible investment and its tax amortization on cor-

porate balance sheets is therefore comparable to that of physical capital and its tax depreciation.

Yet, while accelerated depreciation and full expensing of capital investment have become stan-

dard instruments of corporate tax policy, accelerated amortization of intangibles remains largely

overlooked. Moreover, the tax treatment of intangibles is not unique to the United States. Amorti-

zation of intellectual property products is a feature of corporate tax systems across both advanced

and emerging economies (Appendix A). Amortization periods for purchased patents typically range

from 10 to 25 years (compared with 15 years in the United States), suggesting that the mechanism

identified in this paper is likely to operate internationally, with effects of corporate tax changes on

innovation and productivity that may be even larger than those we estimate for the United States.

3



Related literature. Our analysis is related to several strands of work. An influential empirical

literature pioneered by Romer and Romer (2010), Barro and Redlick (2011), Mertens and Ravn

(2013), Cloyne (2013), Caldara and Kamps (2012), among many more studies in macroeconomics

(e.g. Ramey, 2016) and accounting (e.g. Shevlin et al., 2019), estimate the short-term response of

GDP to tax shocks. However, these contributions do not examine productivity and R&D expen-

diture, nor the responses of macro variables at medium-term horizons, both of which are a main

focus of our analysis.

A long-standing tradition in macroeconomics, dating back to Samuelson (1964), Hall and Jor-

genson (1967), Auerbach (1983, 2006), and Abel (2007), emphasizes that a system that taxes capital

income without providing for immediate expensing of capital purchases distorts investment deci-

sions. With these studies, we share the insight that incomplete expensing makes investment sensitive

to tax rate changes. A key distinction, however, is that the capital expenditure analyzed in these

earlier works is characterized by diminishing marginal returns, whereas the purchase of intangible

assets that we focus on here is most likely associated with increasing aggregate returns due to the

non-rival nature of ideas.

Several studies focus on the link between tax changes and innovation. Jaimovich and Rebelo

(2017) study an endogenous growth model with non-linear tax effects on growth. Jones (2022)

studies optimal taxation for top earners in a model where innovation cannot be perfectly targeted by

subsidies. Akcigit et al. (2021) estimate that permanent tax cuts have a sizable impact on patenting

across U.S. states and inventors. Ferraro et al. (2023) report significant effects of personal income

tax changes on productivity, looking at horizons up to four years. Dechezleprêtre et al. (2023)

and Bloom et al. (2013) document large responses of R&D and patenting to changes in R&D tax

incentives. Auerbach (2018), Sedlacek and Sterk (2019) study the macroeconomic effects of reforms

introduced in TCJA 2017, including the expensing of capital investment. We complement these

studies by (i) documenting the persistent economy-wide effects of corporate tax cuts on innovation

and productivity, and (ii) focusing on the role of intangible asset amortization in the transmission

of corporate taxes.

Growing research efforts, surveyed by Cerra et al. (2022) and including Comin and Gertler

(2006), Benigno and Fornaro (2018), Anzoategui et al. (2019), de Ridder (2019), Beaudry et al.

(2020), Jordà et al. (2020), Queraltó (2022), Furlanetto et al. (2021), Antolin-Diaz and Surico

(2025), Fieldhouse and Mertens (2023), and Fornaro and Wolf (2025), among many others, examine

the long-term effects of non-technology shocks. A distinctive feature of our empirical and theoretical

analyses is the focus on the medium-term effects of corporate income tax changes.
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Structure of the paper. In Section 2, we present the narrative identification strategy and the

empirical framework. Section 3 summarizes the main findings and reports extensive sensitivity

analyses in which we vary the sample, estimation method, specification, and controls. In Section

4, we lay out a semi-endogenous productivity model with tax depreciation on physical capital, tax

amortization on intellectual property and distortionary taxes on corporate and personal income. In

Section 5, we estimate the structural model, while in Section 6, we provide firm-level evidence on

the novel mechanism highlighted by our analysis. Section 7 presents a discussion of our findings,

aiming to clarify the most salient economic, accounting, and legislative features of our mechanism.

Conclusions are drawn in Section 8. The Appendix contains further results and robustness analyses.

2 Empirical Framework

In this section, we describe the narrative approach to identify exogenous variation in income taxes.

We then present the empirical models to estimate their dynamic effects and provide details of the

estimation procedure. Finally, we present the data that we use in the empirical analysis.

2.1 Identification

Our goal is to examine the effects of different tax policy reforms on productivity and innovation.

We face at least three empirical challenges. First, we need information on when and how different

types of taxes were changed. Second, tax policy is often endogenous because policy levers tend to

be adjusted in response to changes in current or prospective economic conditions. Third, given the

focus on productivity and innovation, we need econometric methods that are well-suited to elicit

any medium-term effect.

We address the first two challenges using the identified corporate and personal income tax

changes from Mertens and Ravn (2013). These data are based on the original data set of Romer

and Romer (2010), which identified tax changes for the United States from 1950 to 2006. To

isolate changes in tax policy that are plausibly “exogenous”, Romer and Romer (2010) examine the

motivations given by policymakers for all major pieces of Federal tax legislation over this period.

Tax changes that were not implemented for reasons related to changes in current or prospective

future economic conditions are considered “exogenous”. We extend the original sample of Romer

and Romer (2010) to 2019, using the distinction between corporate and personal income taxes

proposed by Mertens and Ravn (2013). In Appendix B, we provide details of the new bills that we

have included and a discussion of the policy makers’ motivations that we regard as “exogenous”,

following the classification pioneered by Romer and Romer (2010).
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A quantitative measure of each exogenous reform is constructed using historical revenue pro-

jections for the impact of the policy change, as announced at the time of the intervention. These

are scaled by nominal GDP, and thus approximate changes in the average tax rate (all else equal).

Mertens and Ravn (2013) refine this series by excluding potentially anticipated reforms, defined as

tax changes implemented more than 90 days after the announcement. Key for our purpose, Mertens

and Ravn (2013) subdivide the Romer and Romer (2010) shocks into corporate and personal tax

reforms. This so-called “narrative” approach of looking for quasi-natural experiments from histori-

cal episodes has a long tradition in macroeconomic research, as exemplified by Ramey and Shapiro

(1998), Ramey (2011), Barro and Redlick (2011), Cloyne (2013), Mertens and Ravn (2012, 2014),

Guajardo et al. (2014), and Cloyne et al. (2023), among many others.1

2.2 Econometric method

As for the econometric method, we need an approach that allows us to draw inference about medium-

term effects. Recent studies, including Jordà et al. (2020) and Li et al. (2021), show that this can

be achieved by estimation of impulse response functions using local projections (LPs), following

Jordà (2005). This is a direct estimate of the impulse response function and does not use coefficient

estimates on all the lagged controls to construct the IRF. As a result, this approach is less sensitive

to the choice of lag structure and to lag truncation issues that plague VAR methods in finite samples.

Moreover, Montiel-Olea et al. (2025) argue that LPs provide a more robust assessment of estimation

uncertainty than VARs.2

As a starting point, we consider a simple LP where the outcome variables Zi are regressed

directly on the narrative tax measures and controls. In our setting, such a LP can be written as:

Zi,t+h = c(h) + β
(h)
ct ϵct,t + β

(h)
pt ϵpt,t + b(h)Xt−1 + ut+h, ut+h ∼ N(0, σh) (1)

where ϵct,t (ϵpt,t) denotes the narrative measure of exogenous corporate (personal) tax change of

Mertens and Ravn (2013) and Xt denotes the control variables.3 We refer to Equation (1) as the

‘Direct’ LP model because it treats the narrative measures as the structural shocks and, thus, the

1The narrative approach arguably dates back to, at least, Friedman and Schwartz (1963) who examine episodes of
unusual monetary policy in the United States. In a modern setting, the approach has been popularized by Romer and
Romer (1989) and Romer and Romer (2004). On the government spending side, a number of papers have employed
a narrative approach to examine the impact of defence (Ramey and Shapiro, 1998, Ramey, 2011, Crafts and Mills,
2013, Ramey and Zubairy, 2018, Barro and Redlick, 2011) and nondefence spending (Fieldhouse and Mertens, 2023).

2As shown by Antolin-Diaz and Surico (2025), Montiel-Olea et al. (2025), Baumeister (2025), the performance of
VARs improves once sufficiently long lags are included in the model. In Appendix K.5, we consider a long-lagged
VAR with Bayesian shrinkage (Antolin-Diaz and Surico, 2025) as a robustness check. Results are very similar.

3For the controls we use lags of the narrative tax measures and lags of the baseline variables in Mertens and Ravn
(2013): the personal and corporate tax rates and their tax bases, GDP, government spending, and federal debt.
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estimates of β
(h)
ct (β

(h)
pt ) provide the response to the exogenous corporate (personal) tax change under

the assumption that the contemporaneous impact on the personal (corporate) tax shock is zero.

The parameters of the direct LP can be estimated by OLS, with heteroscedasticity-robust standard

errors as in Montiel-Olea et al. (2025). To keep this preliminary evidence as transparent as possible,

we consider a specification with only one lag in the main text and report the estimates using more

lags in Appendix Figure K.4.

A concern with this ‘Direct’ model, however, is that it does not take into account the possibility

of measurement error in the narrative tax proxies. This can be dealt with by using the narrative

measures as instruments for the latent tax shocks. However, as discussed in Mertens and Ravn

(2013), the two tax instruments are contemporaneously correlated (as corporate income taxes and

personal income taxes are sometimes changed together in the same piece of legislation). This implies

that the information from the instruments is only sufficient to identify a convolution of the latent

tax shocks and further restrictions are required to disentangle their effects. We use the methods

and specifications described in Mertens and Ravn (2013) to calculate the contemporaneous impulse

response matrix A0. We use a Cholesky factorization of the covariance matrix of the identified

structural shocks and order last the tax rate that is perturbed in this decomposition. This restricts

the direct contemporaneous effect of this shock on the remaining tax rate to be zero while still

allowing for indirect effects. In the robustness section, we show that our results are not sensitive to

the ordering assumptions.

To construct impulse responses for subsequent horizons, we depart from the VAR framework

of Mertens and Ravn (2013). Instead, we estimate a sequence of local projections jointly for the

vector of outcome variables Zt in the Mertens and Ravn (2013) VAR.4

Zt+h = c(h) +B
(h)
1 Zt−1 +

P∑
j=2

b
(h)
j Zt−j + d(h)xt−1 + ut+h, var(ut+h) = Ωh (2)

where h is the impulse response horizon. At horizon 0, the residuals ut are related to the structural

shocks ϵt via ut = A0ϵt. Given the knowledge of the relevant elements of A0, Jordà (2005) shows

that the impulse response at horizon h can be calculated as B
(h−1)
1 A0.

5 We estimate Equation

(2) with Bayesian methods and four lags of the controls (Ferreira et al., 2025).6 This offers three

4Mertens and Ravn (2013)’s VAR includes: the two tax rates and tax bases, GDP, government spending and
federal debt. We add additional variables of interest to this specification one by one. The control variables xt account
for the Great Financial Crisis and ensure information sufficiency. See Section 2.3 and Appendix D for details.

5This formulation of the LP in Jordà (2005) allows us to remain as close as possible to the setup in Mertens and
Ravn (2013) while still conducting estimation via local projections. Indeed, the shorter-term effects we estimate below
are very close to the short-run IRFs estimated by Mertens and Ravn (2013), which provides a useful benchmark.

6Unlike Ferreira et al. (2025), we use agnostic priors. Furthermore, we follow the recommendations by Montiel Olea
and Plagborg-Møller (2021) and rely on lag augmentation to correct for serial correlation and draw robust inference
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main advantages in our setting. First, the error bands incorporate uncertainty regarding the A0

matrix. Second, the Markov chain Monte-Carlo approach allows us to easily compute joint posterior

distributions that can be used to assess statistical differences across shocks and horizons. Third,

in Section 5, we use the IRFs produced by model (2) to estimate the structural parameters of an

endogenous growth model through IRF matching, for which Bayesian methods are routinely used.

2.3 Data

The data set covers the sample 1950Q1-2019Q4, and in its baseline form consists of seven variables

as in Mertens and Ravn (2013). The average personal and corporate tax rates are denoted by

APITRt and ACITRt, respectively, while ln
(
BPI

t

)
and ln

(
BCI

t

)
are the corresponding tax bases.

Government spending is ln (Gt), while ln(DEBTt) stands for federal debt and GDP is represented by

ln (GDPt). Given our focus on the medium term, we expand this dataset with utilization-adjusted

Total Factor Productivity (TFP), hours worked, Research and Development (R&D) expenditure,

non-residential investment, personal consumption expenditures, and real wages. All variables, ex-

cept APITRt and ACITRt, are expressed in real per capita terms. In Appendix C, we provide a

detailed description of all variables and data sources.

3 Empirical results

The empirical literature on the macroeconomic effects of tax changes using narrative methods

finds large effects on GDP, but only focused on the shorter-term effects over 2 to 5 years without

considering at all the responses of productivity and innovation, neither at short nor long horizons.

A sizable part of the policy debate, however, is centered around the potential longer-term effects

of corporate tax reforms. Despite this, there is little direct evidence on whether tax cuts can boost

productivity over the medium-term. In this section, we estimate the dynamic effects of a corporate

income tax cut on innovation, productivity, and GDP over a forecast horizon of up to 10 years.

3.1 Main findings

Using the models of Section 2, we present the estimated dynamic effects of corporate tax changes

on TFP, R&D expenditure and GDP, respectively, as rows of Figure 1. The left column refers to

the simple frequentist direct method of Equation (1) while the right column stands for the more

sophisticated Bayesian LP specification of Equation (2). Red shaded areas represent confidence sets

around the point estimates, which are displayed as solid red lines.

on IRFs at longer horizons. A detailed description of the estimation method is provided in Appendix G.
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Despite the very significant differences between the estimation approaches, a consistent picture

emerges from Figure 1. First, the corporate tax shock is temporary, reverting to zero after a few

years. Second, in sharp contrast, the responses of TFP and GDP are delayed: they increase after

three to four years and remain significant until at least year 8, extending well beyond the duration of

the tax change itself. Third, the effects on R&D are frontloaded: they rise on impact, persist until

year 8, and eventually lose statistical significance. In Appendix H, we further show that corporate

tax changes explain up to 25% of medium-term variation in productivity, 20% for GDP, and 15%

for R&D expenditure.

We extend the analysis in Figure 1 based on variables in the national accounts to additional mea-

sures of intangible investment and innovation. These enter the benchmark vector Z one at a time

to limit the number of estimated parameters. The top panel of Figure 2 shows the response of the

intangible investment measure by Ewens et al. (2023), which infers firm-level intangible investment

at yearly frequency from ‘Selling, General, and Administrative’ expenses in Compustat. The second

and third rows display the responses of the two stocks of firm-owned intangible assets—patents and

trademarks. Aggregate real stocks are constructed by aggregating patent and trademark values

from Kogan et al. (2017) and Desai et al. (2025) respectively at quarterly frequency, and applying

the perpetual inventory method. Patents, as shown by Kogan et al. (2017), capture technological

progress and productivity-enhancing innovation; trademarks, according to Desai et al. (2025), cap-

ture product innovation, differentiation, and market expansion. Across the three measures and the

two estimation methods of Figure 2, corporate tax cuts generate a delayed response, which peaks

significantly at the medium-run horizons of 5 to 8 years, consistent with the findings in Figure 1

using national accounts.

In Appendix Figure I.1, we look at investment, consumption, and wages. This extends both

the sample, from 2006 to 2019, and the forecast horizon, from 5 to 10 years, in Mertens and Ravn

(2013). The response of investment resembles that of R&D in Figure 1: it is hump-shaped, peaks

after four years, and reverts to zero by the end of the horizon. The effects on consumption, real

wages and labour productivity are also persistent, and similar to GDP and TFP. In Appendix

Figure J.1, we show that, in sharp contrast, the responses of TFP, R&D expenditure and GDP

to a personal income tax cut are short-lived, and insignificant at horizons beyond three years. In

summary, this section establishes that personal tax changes have short-lived effects while corporate

tax changes exert their maximum impact over the medium term. The former finding is consistent

with the evidence from earlier studies, while the latter result is, to the best of our knowledge, new.
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Figure 1: Response of Tax Rate, TFP, R&D spending and GDP to a Corporate Income Tax Cut
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Figure 2: Response of Innovation Measures to a Corporate Income Tax Cut
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3.2 Sensitivity Analysis

In this section, we report a wide range of sensitivity analyses showing that the medium-term effects

of corporate tax changes on productivity and output are a robust feature of postwar U.S. data.

Frequentist Estimates. Frequentist estimates of the responses of GDP, TFP, and R&D to the tax

shocks can be obtained using either the ‘direct’ model of Equation (1) or a LPIV specification.7 In

Appendix Figure K.1 we present the estimated IRFs using LPIV. While the two-stage least squares

estimate produces erratic responses (in grey), their pattern broadly aligns with the smooth LPIV

of Barnichon and Brownlees (2019) (in dotted red). The effects of corporate tax cuts on GDP and

TFP are evident after about four years and continue out to 40 quarters. The effects of corporate

tax changes on R&D spending are evident at medium horizons.

Weak Instruments. Instrument strength is tested using a robust F-test for the regression of the

endogenous variable on the instrument and controls. For the narrative corporate tax instrument,

this delivers a test statistic of 11.38 if a correction for heteroscedasticity is used and 30.33 if a HAC

covariance is employed.8 For the corporate tax shock derived from the SVAR, we obtain 45.37 and

24.01, respectively, under the two assumptions. These statistics exceed the Stock and Yogo (2005)

threshold, and are larger than the Montiel-Olea and Pflueger (2013) critical value of 23.1 in most

cases. Given the test’s sensitivity to the method used to account for contemporaneous correlation

between the narrative proxies and the properties of the residuals, we follow Anderson and Rubin

(1949) to compute weak instrument robust error bands for the LPIVs in Figure K.2. Corporate tax

shocks are confirmed to have a significant medium-term impact on GDP, productivity, and R&D.9

Alternative Estimators. In Appendix Figure K.3, we present the impulse responses obtained

using the mutually orthogonal structural shocks from the Mertens and Ravn (2013) VAR as instru-

ments. The impact on output, productivity, and R&D expenditure from these LPIV models is very

similar to the results from the Bayesian LPs. In Figure K.4, we use the estimator by Herbst and

Johannsen (2020) that corrects the LP small-sample bias noted by Li et al. (2024). These responses

are close to the OLS estimates. Finally, in Appendix Figure K.5, we report impulse responses to

a corporate tax shock employing the same proxy-SVAR setup of Mertens and Ravn (2013) but

7In the direct model, both proxies are added as contemporaneous regressors. In the LPIV case, we account for the
contemporaneous correlation among the narrative proxies of Mertens and Ravn (2013) using two strategies. First,
we use the relevant narrative proxy as an instrument for the shock of interest, and then add the contemporaneous
value of the proxy for the other tax shock as a control. It is worth noting that the identification of the shocks in this
LPIV differs from the scheme used by Mertens and Ravn (2013) and therefore the responses from these regressions are
not directly comparable to the results in Section 3.1. Second, we employ the mutually orthogonal structural shocks
estimated from the Mertens and Ravn (2013) VAR as an instrument for the corresponding tax rate.

8Lags for the Newey and West (1987) correction are set to 1 plus the maximum impulse response horizon of 40.
9The test statistics for the personal tax instrument are 7.29 (heteroscedasticity) and 4.90 (serial correlation). In

contrast, the VAR-derived personal tax shock appears to be a strong instrument with statistics of 78.51 and 104.14.
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extended to very long lags (32), using Bayesian shrinkage as in Antolin-Diaz and Surico (2025) to

draw reliable inference about medium-term effects. We obtain very similar results.

Additional Specifications. Finally, we implement a range of additional sensitivity analyses, de-

tailed in Appendix K. In Figure K.6, we use Bayesian LPs with residuals modelled as an MA process.

In Appendix Figure K.7, we (i) vary the lag length for the controls in Z, (ii) use the optimal prior

strategy described in Giannone et al. (2015), (iii) include the defence news shock from Ramey (2011)

as a further control, and (iv) change the causal ordering of the two taxes as in Mertens and Ravn

(2013). The main takeaway from Appendix K and this section is that our main finding of significant

medium-term effects of corporate income tax changes on TFP and GDP is not easily overturned.

4 A structural model with endogenous productivity

In the previous section, we documented that temporary corporate income tax cuts have significant

medium-term effects on productivity and output, and that the response of aggregate TFP to a

corporate tax shock is more persistent than the response of R&D expenditure. In this section, we

develop a theoretical framework that blends elements of semi-endogenous growth and business-cycle

analysis to account for these empirical results. In the next sections, we estimate this structural model

by matching the empirical IRFs of Section 3 and then run counterfactual simulations to highlight

the transmission mechanism of corporate income tax shocks to productivity and output.

4.1 The tax treatment of intangible assets and R&D

The distinction between tangible and intangible capital—and their different tax treatment—plays

a central role in our analysis. Intangible assets are non-physical assets with quantifiable economic

value: patents, copyrights, trademarks, and goodwill. These assets can be created internally or

purchased externally. Under U.S. tax law, the costs of developing intangibles internally are typically

expensed on the income statement and therefore deducted in full when calculating taxable profits.

In contrast, the costs of externally purchased intangibles are capitalized on the balance sheet and

deducted gradually over time. For example, expenditures on an internally developed innovation are

recorded as R&D expenses, while the purchase of an existing patent is accounted for as an intangible

asset on the balance sheet.

We model purchases of intangible assets as conceptually analogous to purchases of tangible cap-

ital. In analogy to the stock of physical capital, which can be produced internally or acquired from

specialized good producers, firms can build intangible capital either through in-house investment
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—such as R&D— or by purchasing intellectual property from outside sources. In this framework,

purchased intangibles represent a form of investment whose market valuation determines the incen-

tives for creating new ideas. Tax policy, therefore, matters for innovation through its effect on the

market price of these assets.

Amortization—the gradual deduction of the cost of an intangible asset from taxable income—works

similarly to depreciation for tangible capital. Under Section 197 of the Internal Revenue Code, en-

acted in 1993, purchased intangible assets, including goodwill, must be amortized over fifteen years,

regardless of their actual economic life. Before Section 197, only intangibles with a well-defined life

could be amortized under Section 167, which, for newly issued patents, implied a period of seventeen

years. By contrast, since 1954, Section 174 allows firms to deduct the full amount of research and

experimental expenditures in the year they are incurred, even when those expenditures do not yield

a specific intangible asset.

Consistent with these provisions, in our model, we assume that R&D spending is fully and imme-

diately expensed (and that innovators receive R&D tax credits). In contrast, purchased intangibles

are amortized over fifteen years. This long amortization period implies that corporate taxation

creates a distortion in the market price of ideas and, consequently, in innovation incentives. We

discuss the institutional background and historical details of these tax rules in Appendix L.10

4.2 Endogenous productivity: basic and applied research

Our model blends elements of endogenous growth theory and business-cycle analysis as in An-

zoategui et al. (2019).11 We introduce innovation as a two-stage process consisting of ‘basic’ and

‘applied’ research. ‘Basic research’ refers to activities that uncover fundamental truths about the

world in the form of new ideas and technologies. Innovation, however, is not just about new ideas

or technologies; effort and expenditure are also required to turn those ideas into new products and

processes. We refer to this type of innovation activity as ‘applied research’ (Akcigit et al., 2020,

Jones, 2022), or ‘adoption’ (Comin and Gertler, 2006).

In the economy, there exists a continuum of measure At of monopolistically competitive inter-

mediate goods firms. As we explain below, potential entrants compete to buy technologies that

enable them to become monopolistic producers of a differentiated good. At is therefore both the

measure of intermediate goods firms and the stock of adopted technologies. Each firm manufactures

10In line with the U.S. tax code, we also model depreciation allowances for physical capital. As for personal income
taxes, we introduce a proportional tax on workers’ labor income.

11Growth in our model is semi-endogenous rather than fully endogenous. In our context, this is a more “conservative”
approach because it does not build in permanent level effects from transitory changes. Furthermore, a semi-endogenous
model is consistent with the observation that the trend in U.S. GDP growth has been relatively stable even as the
average corporation tax rate has trended consistently lower in the postwar era.
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a differentiated product using capital and labor with a standard production function. In Appendix

O, we show that aggregate output is given by:

Yt = Aθ−1
t (UtKg,t)

α(Lg,t)
1−α, (3)

where Y is aggregate output; Kg and U are the capital stock in the final goods sector and its

utilization rate, respectively; and Lg is labor in the final goods sector, measured in efficiency units.

In this section, we describe how R&D and adoption drive the dynamics of the endogenous TFP term,

At. Let Zt be the total stock of known technologies. Since At is both the measure of intermediate

goods firms and the stock of adopted technologies, (Zt−At) is the unadopted technology stock. Basic

research expenditure (R&D for short) increases Zt while applied research expenditure (adoption)

increases At.

Basic Research. There is a continuum measure 1 of innovators who hire R&D-specific labor and

capital to discover new technologies. Let Xz,j,t = Lγ
z,j,tK

1−γ
z,j,t be R&D expenditure by innovator

j, where Lz,j,t and Kz,j,t are labor and capital hired by innovator j, and γ is the labor share in

innovation expenditure. The number of new technologies created by a unit of R&D expenditure

(equivalently, total factor productivity in R&D), φt, is given by:

φt = Z1+ζ
t Xρz−1

z,t , (4)

where Xz,t is aggregate R&D spending and Zt is the stock of technology, both of which an individual

innovator takes as given. Following Romer (1990), the presence of Zt reflects public learning-by-

doing in the R&D process; as in Jones (1995), the degree of returns is parameterized by ζ.12 In

the next section, we estimate ρz < 1, implying that higher aggregate R&D spending reduces R&D

efficiency at the individual level.

Let Pz,t denote the market price of an unadopted technology. As explained below, the relation-

ship between the market price of an idea and the present value of ownership is determined by the

tax treatment of intellectual property. Denoting rz,t and wz,t the rental rates of R&D capital and

labor, respectively, we can express innovator j’s decision problem as choosing Lj,z,t and Kj,z,t to

12The existence of a balanced growth path requires ζ = −ρz
(

θ−1
1−α

)(
gy

gy−gn
− γ

)
, where gy and gn are the growth

rates of GDP and the population, and the other parameters are described in the text. In estimating the model, we use
average GDP and population growth rates over our sample period and estimate or calibrate the remaining parameters.
See Tables 1 and 2 for the estimated value of ζ and other parameters.
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maximize period t after-tax profit:

max
Lz,j,t,Kz,j,t

(1− τc,t)
(
Pz,tφtL

γ
z,j,tK

1−γ
z,j,t − wz,tLz,j,t − rz,tKz,j,t

)
, (5)

where the first term inside the brackets is innovator j’s period t revenue, given by the product of

the market price of technology (Pz,t) and the number of technologies produced (φtXz,j,t). Innovator

j pays corporate income tax τc,t on profits, given by revenues minus the costs of hiring workers and

R&D-specific capital. Note that taxes are paid on revenues net of all costs (i.e., the wage and rental

bills) so that, consistent with the U.S. tax code in the sample period we study, R&D expenses are

fully tax deductible.13

The optimality conditions for R&D (aggregated over the unit measure of innovators) equate the

marginal cost and product of each factor:

wz,t = γPz,tφt
Xz,t

Lz,t
(6)

for labor and rz,t = (1− γ)Pz,tφt
Xz,t

Kz,t
for capital. In aggregate, φXz,t new technologies are dis-

covered in period t. Denoting by ϕ the one-period survival rate for any given technology, we can

express the evolution of the stock of technologies as:

Zt+1 = φtXz,t + ϕZt (7)

Combining equations (7) and (4) yields the following expression for the growth of new technologies:

Zt+1

Zt
= Zζ

tX
ρz
z,t + ϕ. (8)

Applied Research. We next describe how unadopted technologies become adopted, and thus

enter productive use. There is a competitive group of “adopters”, indexed by j, who buy the rights

to the (still unadopted) technology from the innovator at the competitive price Pz,t and convert it

into use by employing adoption-specific labor and capital. This process takes time on average, and

the conversion rate may vary endogenously. In particular, the rate of adoption depends positively

on the level of resources devoted: an adopter succeeds in making a product usable in any period t

with probability λt, which is an increasing and concave function of expenditure, Xa,j,t = Lγ
a,j,tK

1−γ
a,j,t ,

13To fully capture the tax treatment of R&D in the U.S. during our sample period, our estimated model also
includes a static proportional R&D tax credit τz, which adds the term τzτc,t (wz,tLz,j,t + rz,tKz,j,t) to Equation 5,
and corresponding terms to the first order conditions for R&D inputs. For empirically plausible values of τz, (5%-7%
for the U.S. per OECD calculations, Appelt et al., 2019), the effect of this static R&D credit on first-order dynamics
conditional on a corporate tax cut is negligible, and we therefore omit it from the discussion to economize on notation.
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according to the following function:

λt = λ

(
Zt

Nγ
t Ψ

1−γ
t

Xa,j,t

)
, (9)

where λ′ > 0, λ′′ < 0, La,j,t and Ka,j,t are labor and capital hired by innovator j, and γ is the labor

share in innovation expenditure.

To ensure the existence of a balanced growth path, we multiply Xa,j,t by a spillover effect coming

from the total stock of technologies Zt (implying that the adoption process becomes more efficient

as the technological state of the economy improves) and Nγ
t Ψ

1−γ
t , where Ψt is a scaling factor that

grows at the same rate of GDP on the balanced growth path; Nt refers to the population. Once in

usable form, the adopter sells the rights to the technology at price Pa,t, determined in a competitive

market, to a monopolistically competitive intermediate goods producer that makes the new product

using a Cobb-Douglas production function (described in Appendix Equation (46)). Letting Πi,t be

the profits that an intermediate goods firm makes from producing a good under monopolistically

competitive pricing, the present value of after-tax monopolistic profits is given by:

Vt = (1− τc,t)Πi,t + βϕEt [Λt,t+1Vt+1] , (10)

where τc,t is the tax rate on corporate income. An adopter’s problem is choosing inputs to maximize

the value Jt of an unadopted technology, namely:

Jt = max
La,j,t,Ka,j,t

Et [(1− τc,t) (λtPa,t − wa,tLa,j,t − ra,tKa,j,t) + ϕβ (1− λt) Λt,t+1Jt+1] , (11)

where λt is as in Equation (9), Pa,t is the market price of an adopted technology, and wa,t and

ra,t are the rental rates of adoption-specific labor and capital, respectively. The first term in the

Bellman equation reflects expected after-tax profits (expected revenues λtPa,t minus the costs of

hiring adoption-specific labor and capital), while the second term stands for the discounted expected

continuation value: (1−λt) times the discounted continuation value. As with R&D expenditure, we

assume that the costs of technological adoption are fully tax-deductible. The first-order conditions

for labor and capital are:

(1− τc,t)wa,t =
∂λt
∂La,j,t

βϕEt [(1− τc,t)Pa,t − Λt,t+1Jt+1] , (12)

and (1− τc,t) ra,t =
∂λt

∂Ka,j,t
βϕEt [(1− τc,t)Pa,t − Λt,t+1Jt+1] . The terms on the right are the marginal

benefits of adoption expenditures: the increase in the adoption probability, λt, times the discounted
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difference between the value of an adopted and an unadopted technology. The left side is the

marginal cost. Since λt does not depend on adopter-specific characteristics, we can sum across

adopters to obtain the following law of motion for the aggregate evolution of adopted technologies:

At+1 = λtϕ [Zt −At] + ϕAt (13)

which crucially depends on Zt −At, the stock of unadopted technologies.

4.3 Corporate taxes and the market price of intellectual property

The price of (un)adopted technologies (which we refer to as intellectual property, IPP) is determined

in competitive markets and, as in the model of Hall and Jorgenson (1967), is given by the sum of

the present value of after-tax service flows plus the tax deductions associated with IPP ownership.

Consistent with the U.S. tax code over our sample, we assume that the value of purchased IPP

assets is amortized over time, resulting in future tax deductions. Following Auerbach (1989), we

model amortization as a geometric process: in every period, an owner of an IPP asset can deduct a

fraction δ̂IP of the purchase price of the asset from taxable profits. The remaining portion (1-δ̂IP )

is carried into the next period.

With this assumption, the present value of profits, net of the purchase price Pa,t, for an entrant

monopolist that buys a newly adopted technology at time t and starts production at t+ 1 is:

ΠM
t = −Pa,t + Et

[
βϕΛt,t+1Vt+1 +

∞∑
s=0

βsΛt,t+sδ̂
s+1
IP

(
1− δ̂IP

)s
τc,t+sPa,t

]
(14)

The first term on the right-hand side is negative because the entrant monopolist is purchasing the

technology from an adopter. The second term captures the present value of after-tax monopolistic

profits starting in period t + 1, as per Equation (10). The third term is the present value of

amortization allowances. Potential monopolists compete to buy adopted technologies and therefore,

in equilibrium, lifetime profits are zero (ΠM
t = 0). Rearranging terms and exploiting the zero-profit

condition, we can express the price of an adopted technology as:

Pa,t (1− dIP,t) = ϕβEtΛt,t+1Vt+1, (15)

where the present value of amortization allowances is denoted by:

dIP,t =

∞∑
s=0

βsΛt,t+sδ̂
s+1
IP

(
1− δ̂IP

)s
τc,t+s (16)
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As adopters compete to buy unadopted technologies and unadopted technology purchases are

amortized in the same way, analogous derivations yield the market price of an unadopted technology:

Pz,t (1− dIP,t) = ϕβEtΛt,t+1Jt+1. (17)

According to equations (10), (11), (15) and (17), changes in current and expected future corporate

tax rates generate variation in the present value of both after-tax service flows and the amortization

allowances associated with the IPP purchase. This leads to price fluctuations in Pz,t and Pa,t, which

in turn directly affect incentives to discover new technologies and adopt existing ones. As we show

in Section 6, the tax amortization rate (which corresponds to the time span over which amortization

is allowed in the tax code) is crucial for the ability of the structural model to generate fluctuations

in the market price of IPP in response to corporate tax changes, and thereby to account for the

estimated responses of output and productivity to a corporate tax cut.14

4.4 Labor supply and the rest of the model

Labor supply. Variable labor utilization is modelled as an effort choice, following Gaĺı and van

Rens (2020). The household chooses hours one period in advance and faces a quadratic adjustment

cost (increasing in the change in hours) in doing so. After observing the period wage, the household

chooses the effort per hour, and the effective labor supply is given by hours times the effort. The

first order condition for labor effort of type j labor (j ∈ goods, R&D, adoption) is standard and

given by −eje
χj

j,t+uc,t ((1− τp,t)wj,t) = 0, where ej is a constant, χj is the inverse elasticity of effort,

uc,t is the marginal utility of consumption, τp,t is the personal income tax rate and wj,t is the wage

rate per unit of effort. Labor effort is unobserved in the data, such that variation in effort per hour

explains the response of labor productivity (output per observed hour) to a cut in personal income

tax. Although our focus is on the effect of corporate income tax cuts, to reduce our degrees of

freedom in estimating the model, we match simultaneously the responses to corporate and personal

income tax cuts, and therefore we require this additional complexity in the labor supply block to

match the muted empirical response of hours to the personal tax cut (see Figure I.1). We provide

a detailed description of the household optimization problem in the Appendix.

Rest of the model. The remaining block of our framework is relatively standard and described

in Appendix O. Several features are common to many existing models: quadratic adjustment costs

14As in the canonical model of Hall and Jorgenson (1967), if all margins of corporate expenditure (on both physical
capital and intellectual property) were fully tax deductible (i.e., δ̂IP = δ̂K = 1), permanent cuts in corporate income
taxes would only affect the government budget constraint but have no real effect on output at either short or long
horizons. See Abel (2007) for an intuitive explanation of this neutrality result in a general equilibrium setting.
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on capital (used in R&D, adoption, and goods production), sticky prices à la Calvo, an interest rate

rule, and habits in consumption. We model depreciation allowances for physical capital following

Winberry (2021) (with tax depreciation parameter δ̂K). The definitions of corporate income and

taxable corporate income are in the Appendix. The government budget constraint is balanced

in every period, with lump-sum taxes adjusting to balance out any difference between exogenous

government consumption and the revenues raised by corporate and personal income taxation.

5 Structural estimation

In this section, we describe the estimation of the structural model of Section 4 using a limited-

information Bayesian approach and show that it can rationalize the evidence in Section 3 on the

joint responses of TFP, R&D, and GDP to narratively-identified income tax changes. In the next

section, we will shed light on the mechanism behind our results by decomposing the output and

productivity responses into the contributions of the various channels at play in our model.

5.1 Econometric framework

We estimate the structural model in Section 4 using the limited-information Bayesian approach

described in Christiano et al. (2010). We refer to the vector of structural parameters in the theo-

retical model as Υ and to the associated impulse responses as Φ (Υ). The structural parameters are

estimated by minimizing the distance between the theoretical model impulse responses, Φ (Υ), and

the median of the empirical LP impulse response posterior distributions to both tax shocks, which

we denote by Φ̂.

The limited-information approach fulfills our desire to focus on the responses of the economy to

corporate and personal tax cuts jointly, and to isolate the theoretical mechanism(s) that are most

likely to drive the empirical evidence of Section 3. It is therefore important that the estimated pa-

rameters maximize the likelihood that the structural model generates the data not only conditional

on both income tax shocks, but also across short and long horizons. In the next section, we will

conduct a series of counterfactual experiments in which we artificially change the value of one set

of structural parameters at a time to evaluate the importance of different channels. To implement

this approach, we first set up the quasi-likelihood function:

F (Φ̂|Υ) =

(
1

2π

)N
2

|V |−
1
2 exp

(
−1

2

(
Φ̂− Φ (Υ)

)′
V −1

(
Φ̂− Φ (Υ)

))

where N denotes the number of elements in Φ̂, and V is a diagonal weighting matrix with posterior
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variance of Φ̂. Denoting by p (Υ) the prior distributions, the quasi-posterior distribution is then:

F
(
Υ|Φ̂

)
∝ F (Φ̂|Υ)p (Υ)

We use a random walk Metropolis-Hastings algorithm to approximate the posterior distribution.

The number of iterations is set to 1,100,000, and we save every 50th draw after a burn-in of 100,000.15

The vectors Φ̂ —which is based on the LPs of Section 3— and the vector Φ(Υ) —which is based on

the theoretical model of Section 4— contain the IRFs (to both shocks) of the following variables:

R&D, investment, consumption, GDP, hours worked and (utilization-adjusted) TFP. It is worth

emphasizing that, by simultaneously targeting the effects of both corporate and personal taxes, we

seek to match several key moments jointly, across both shocks and forecast horizons.

5.2 Calibrated parameters and prior distributions

We partition the structural parameters into calibrated (Table 1) and estimated sets (Table 2). The

discount factor, capital depreciation, and the capital share are set at 0.99, 0.02, and 0.35. The

markup is calibrated to target the steady-state share of profits in GDP. The coefficients of the

Taylor interest rate rule for monetary policy are borrowed from Anzoategui et al. (2019). Following

Wen (2004), the employment adjustment cost for the three types of labor is set to ψ = 0.35 (whereas

the elasticities of labor effort are estimated). The government spending share and the steady state

tax rates are set to their sample averages. To calibrate the tax depreciation rate for capital (δ̂K),

we average the estimated present value of depreciation deductions employed by Hall and Jorgenson

(1967) and House and Shapiro (2008), since those two sets of estimates bookend the time period

covered by our data. We calibrate the tax depreciation for purchased intangible assets (δ̂IP ) to

match the 15-year amortization period allowed by the U.S. tax code. Turning to the technological

parameters, we calibrate the steady technology adoption rate λ̄ to 0.05 (quarterly), implying an

average diffusion lag of five years, in line with the evidence in Comin and Hobijn (2010); the rate

of technological obsolescence, (1− ϕ), is 0.08 based on the estimates in Li and Hall (2020); and the

labor share of production in R&D and adoption, γ, is set to 0.9, consistent with R&D expenditure

data from the NSF.

In Table 2, we report the prior distributions of the estimated parameters, along with posterior

moments that will be discussed in the next section. Priors are chosen to be diffuse and centered

15The starting values of the parameters are obtained by maximizing the log posterior using the covariance matrix
adaption algorithm (CMA-ES). Then, an initial run of the Metropolis algorithm is used to approximate var (Υ). A
scaled version of var (Υ) is used to calibrate the variance of the proposal distribution for the main run of the Metropolis
algorithm. We choose the scaling so that the acceptance rate is about 20%.
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Table 1: Calibrated Parameters

Parameter Description Value Source
β Discount factor 0.99
ψ Employment adjustment 0.35 Wen (2004)
gy 100*SS GDP growth rate 0.91 Sample average
gn 100*SS population growth rate 0.35 Sample average
GY Government spending/GDP 0.16 Sample average
α Capital share 0.35
δ Capital depreciation 0.02
ς Markup 1.087 Profits/GDP=8%
λ̄ SS technology adoption rate 0.05 Anzoategui et al. (2019)
1− ϕ Technology obsolescence 0.08 Li and Hall (2020)
γ R&D expenditure labor share 0.9 NSF data
τ̄c SS Corp. Tax 0.19 Sample average
τ̄p SS Lab. Tax 0.3 Sample average

δ̂K Tax depreciation (capital) 0.0165 Hall and Jorgenson (1967), House and Shapiro (2008)

δ̂IP Tax depreciation (IP) 0.0285 US tax code (15y amortization period)
ρr Smoothing 0.83 Anzoategui et al. (2019)
ϕy Output 0.385 Anzoategui et al. (2019)
ϕπ Inflation 1.638 Anzoategui et al. (2019)

Table 2: Estimated Parameters

Parameter Description Prior Posterior
Distr Mean Std. Dev. Median 90% int.

h Consumption habit beta 0.5 0.2 0.34 [0.12, 0.59]
χg Inverse effort elasticity (goods) gamma 1 0.5 0.47 [0.22, 0.93]
χa Inverse effort elasticity (adoption) gamma 1 0.5 0.67 [0.29, 1.4]
χz Inverse effort elasticity (R&D) gamma 1 0.5 2.04 [1.37, 3.04]
f ′′a Adoption adjustment normal 4 1.5 3.86 [1, 6.4]
f ′′z R&D adjustment normal 4 1.5 3.33 [0.82, 5.87]
f ′′I Investment adjustment normal 4 1.5 0.36 [0.05, 0.94]
ν′′ Capital utilization adjustment beta 0.6 0.15 0.74 [0.66, 0.82]
ξp Calvo prices beta 0.5 0.2 0.2 [0.07, 0.33]
θ-1 Dixit-Stiglitz parameter gamma 0.15 0.1 0.58 [0.43, 0.79]
ρλ Adoption elasticity beta 0.5 0.2 0.78 [0.66, 0.87]
ρZ R&D elasticity beta 0.5 0.2 0.2 [0.12, 0.29]
ζ R&D returns to scale product -0.08 0.07 -0.13 [-0.17, -0.09]
ρτ,c Corporate taxes AR beta 0.85 0.07 0.95 [0.95, 0.96]
ρτ,p Labour taxes AR beta 0.85 0.07 0.83 [0.8, 0.85]
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on values typically found in the literature. For conventional parameters —habit formation, price

stickiness, and investment adjustment costs— the prior means align with estimates and priors

in earlier empirical studies (e.g., Smets and Wouters, 2007, Justiniano et al., 2010). The prior

distributions for the tax processes follow Leeper et al. (2010), imposing smooth adjustment of the

tax rates over time.

A number of parameters are specific to our R&D, adoption, and utilization mechanisms, and

therefore, we discuss them here in more detail. Estimates of the elasticity of patenting to R&D

expenditures, analogous to ρZ in the model, vary widely in the empirical literature (Danguy et al.,

2013) but are typically below 1. Accordingly, we use a beta prior distribution centered at 0.5. We

employ the same prior for the elasticity of adoption with respect to adoption spending, ρλ. The

prior mean for the Dixit-Stiglitz parameter θ implies an elasticity of substitution across goods of 7.6,

consistent with the estimates provided by Broda and Weinstein (2006). While we do not directly

estimate ζ (footnote 12), we do compute and report moments of its implied prior distribution. To

avoid tilting the balance in favor of any particular adjustment cost mechanism, we use the same prior

for capital investment adjustment costs across all sectors. We are not aware of existing estimates

of the (inverse) elasticity of effort, χ. Consequently, we choose a relatively uninformative prior

centered at 1.

In Appendix M, we report the distributions of the impulse response functions for output, pro-

ductivity, R&D expenditure, investment, and consumption, implied by our prior distributions. The

goal of this prior predictive analysis is to check whether any of the prior choices made in this section

may build in a tendency for our posterior estimates to detect significant effects at long horizons

spuriously. As shown in Appendix Figure M.1, our prior distributions for the structural parameters

are centered around values that imply: (i) income tax changes have no long-term effects on the

economy; (ii) productivity does not move much after a corporate income tax shock.

5.3 Posterior distributions

In this section, we discuss the posterior distributions of the model structural parameters, which are

estimated by minimising the difference between the IRFs of the theoretical model, Φ(Υ), and the

IRFs of Section 3 LPs, Φ̂, to the tax shocks. The posterior median and central 90% credible set

of the key parameters of interest are reported in the last two columns of Table 2. The model IRF

(evaluated at the posterior medians of Table 2) are shown in Appendix Figures N.1 and N.2 as blue

lines with circles. The estimates of the parameters on R&D and technological adoption in the third

block of Table 2 are broadly consistent with the available evidence. All these parameters are inputs
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to the three external validation exercises we present below, which jointly provide a useful way to

relate our estimates to the existing literature. The inverse effort elasticity is close to the value of

0.3 that Gaĺı and van Rens (2020) calibrate to match second moments of the U.S. labor market.

The estimation places a modest weight on investment adjustment costs, habit persistence, and

price stickiness. In particular, adjustment costs associated with investment in physical capital are

estimated to be significantly lower than the values reported by Christiano et al. (2005), Smets and

Wouters (2007), Justiniano et al. (2010). Unlike conventional medium-scale business cycle models,

however, our framework incorporates additional sources of endogenous persistence: the estimation

appears to favor much larger adjustment costs on R&D and technological adoption than on physical

capital investment, consistent with the evidence from aggregate data in Bianchi et al. (2019) and

from firm-level data in Bernstein and Nadiri (1989), Bond et al. (2005), Chiavari and Goraya (2023),

and Bloesch and Weber (2024). Finally, we also estimate a restricted version of our structural model

in which we switch off all the endogenous growth mechanisms (Appendix Table R.1). The estimates

of physical capital investment adjustment costs in this restricted specification become significantly

larger, aligning with those reported in earlier studies. We interpret this as suggestive evidence that

the omission of R&D spending and technological adoption from business-cycle models routinely

used for policy analyses may distort inferences on the importance of physical capital investment

and its adjustment costs for business-cycle fluctuations.

5.4 External validation of the estimated model

In this section, we provide external validation of our estimated structural model relative to three

influential studies: Atkeson and Burstein (2019), Akcigit et al. (2021), and Bloom et al. (2013).

Statistics from Atkeson and Burstein (2019). Using a framework that nests a range of growth

models, Atkeson and Burstein (2019) (AB19) show that two statistics are crucial in shaping the

response of productivity and other aggregates to policy-induced changes in the economy’s innovation

intensity: (i) the degree of intertemporal knowledge spillovers in research, 1 + ζ in our notation;

and, (ii) the impact elasticity of aggregate productivity with respect to innovative investment. Our

parameter estimates imply a 90% posterior interval for ζ of [−0.17,−0.09] which is within the range

of values considered by AB1916.

AB19 provide a detailed analysis of the impact elasticity of productivity with respect to innova-

tive investment, Θ in their notation, in a large class of models. Their framework does not nest our

16Our estimate of ζ is, by construction, consistent with average real GDP per capita growth over the estimation
period, but does not directly map to the calibrated values in AB19 due to the presence in our model of i) congestion
externalities (ρz < 1), ii) reproducible capital in the ideas production function (γ < 1).
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expanding varieties model with a two-stage innovation investment process, so we cannot directly

apply the formulas in the paper. However, we can use our estimated model to compute a conditional

estimate of Θ based on the first-order approximation in Equation (16) of AB19:

(θ − 1)
(
log Ãt+1 − log Ãt

)
≈ Θ

(
log X̃z,t − log X̄z

)
, (18)

where tildes denote detrended variables; the left-hand side (expressed in our notation) is the change

in aggregate productivity between t and t+ 1, and the right-hand side is the log deviation of R&D

investment from the steady state. Note that, for the case of a corporate tax cut, the right-hand

side of Equation (18) is exactly the IRF for R&D investment from our estimated structural model,

whereas the left-hand side is the (differenced) IRF for TFP. We can therefore estimate Θ conditional

on a corporate income tax shock, by a linear regression of the (first differenced) IRF of TFP on

the IRF of R&D expenditure (the second and third rows in the left column of Figure N.1). As

our model has two margins of innovation, we apply the same approach to the IRF for adoption

expenditure, Xa,t, and for total innovation expenditure, Xa,t + Xz,t. In Table 3, we compare the

calibrated Θ in AB19 to our estimated values.

Table 3: Θ from Atkeson and Burstein (2019) and Θ̂ implied by model IRFs

R&D Investment Adoption Investment R&D + Adoption

Atkeson–Burstein Θ (with business stealing) 0.01
Atkeson–Burstein Θ (no business stealing) 0.026

Θ̂ Estimated from Model IRFs 0.0293 0.0220 0.0284

All estimated Θ̂ in the last row are remarkably close to the calibration by AB19 for the case of no

business stealing.17 We conclude that the sizable effects of corporate income tax cuts on productivity

and output—both in the data and in our model—do not arise from assuming implausibly large

elasticities of productivity with respect to innovation. Instead, they are driven by the magnitude

of the innovative investment response itself. This supports our thesis that corporate taxes impose

significant distortions on innovative activity.

Long-run elasticity of innovation to corporate taxes. The analysis so far has focused on the

effects of temporary corporate tax cuts, as in Section 3. However, our estimated model can also

be used to study permanent tax changes. Accordingly, we compute the model-implied elasticities

of innovation and compare them with those reported by Akcigit et al. (2021). Their study exploits

historical variation in corporate and personal income tax rates across individual inventors and U.S.

17We also estimate Θ̂ using our empirical estimates of model (2) by drawing from the posterior distribution of the
empirical IRFs of TFP and R&D and find a mean estimate of 0.014 with a 95% interval of [−0.017, 0.049].
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states to estimate the long-run effects of taxation on patenting, controlling for state and time fixed

effects and other confounding factors. They report a 95% confidence interval of [1.5, 2.46] for the

elasticity of patenting with respect to corporate taxes, but emphasize that their estimates partly

reflect reallocation of innovative activity across states rather than changes in aggregate innovation.

When we compute the model-implied long-run elasticity of the stock of knowledge (Z) with respect

to the corporate tax rate (see Appendix P for details), we obtain an elasticity of 1.71 in response to

a permanent corporate income tax cut. This value falls within the 95% confidence interval reported

by Akcigit et al. (2021).18 Our empirical and theoretical analysis captures aggregate effects rather

than cross-state reallocation, indicating that the aggregate elasticity to federal tax changes is of

similar magnitude to the state-level responses.

Social returns to R&D. An additional instructive way to benchmark our structural model is to

compute the social returns to investment in innovation that are implied by our estimates. To this

end, we follow the variational approach of Jones and Williams (1998), modified to account for the

two margins of innovation expenditure featured in our model (as detailed in Appendix Q). The 95%

credible interval for the social return to investment in innovation implied by our model spans 20.8%

to 74.5%. This estimate, based on changes in U.S. federal taxes over time, aligns closely with the

55% reported by Bloom et al. (2013) using cross-state and time variation in R&D tax credits.

6 Inspecting the transmission of corporate income tax changes

A key finding from the previous sections is that temporary corporate tax changes generate persistent

effects on productivity and output, extending well beyond business-cycle horizons. In this section,

we unpack the central mechanism underlying this result, in both the data and the model. We first

provide firm-level evidence on differential effects across more and less innovative firms. We then

use the estimated model to conduct counterfactual simulations, highlighting the role of endogenous

productivity and the tax amortization of purchased intangible assets.

6.1 Firm-level evidence

In Figure 3, we illustrate the mechanism that links corporate taxes to innovation using CRSP and

Compustat firm-level data. A lower corporate tax rate raises the present value of after-tax cash

flows from owning intellectual property products (IPP) by more than the decrease in tax allowances,

which rises the market price of IPP and strengthens incentives for R&D and adoption. We evaluate

18The model-implied elasticities with respect to personal tax cuts, reported in Appendix P, also fall within the
confidence intervals reported by Akcigit et al. (2021)
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this channel in two complementary ways. First, we construct stock market portfolios sorted by

ex-ante IPP intensity and track the relative performance of high- versus low-IPP firms following

corporate tax cuts. Second, using the same ranking, we aggregate firm-level flows and stocks within

IPP-intensity groups to compare how innovation inputs, outputs, and broader economic activity

respond across firms with different IPP intensity. Details of data sources and variable construction

are in Appendix C.

The top-left panel of Figure 3 employs CRSP stock returns. For each firm-year, we compute

annual returns by aggregating monthly returns. In each year, firms are sorted by lagged IPP

intensity, defined as the sum of patent portfolio value and intangible capital stock scaled by market

capitalization. Patent portfolios are valued with the perpetual inventory method following Kogan

et al. (2017), while intangible capital is constructed by accumulating a sector-specific share of SG&A

as recommended by Ewens et al. (2023). To isolate IPP intensity from firm size, we scale by market

capitalization. Within each IPP quartile, we form market-cap-weighted annual return chain-linked

indices; the figure reports the IRF of the top-minus-bottom quartile index spread. The top-quartile

index rises sharply relative to the bottom quartile on impact, and the high–low spread remains

positive and persistent. This pattern shows that corporate tax cuts immediately reprice existing

intangible assets by capitalizing the new tax environment, consistent with the theoretical model

mechanism.19

The remaining panels use Compustat firm-year accounts merged with the same measures of

patents and intangibles that we have presented above to study the response of quantities. Intangible

investment is constructed following Ewens et al. (2023) as a sector-specific fraction of SG&A. We

also compile R&D outlays, patent filings, tangible investment, and sales. All series are expressed

in real per-capita terms. Each year, firms are ranked by lagged IPP intensity, and we compute

aggregates for the top and bottom quartiles. As in other panels, we estimate the relative effect

as the IRFs of the difference between top- and bottom-quartile groups. Two regularities emerge.

First, innovation inputs and innovation outputs —such as R&D, intangible investment, and patent

filings— rise gradually and persistently for the most IPP-intensive firms. In contrast, tangible

investment and sales increase immediately. These dynamics mirror the aggregate evidence reported

in Figures 1 and 2, and align with our theoretical mechanism. The tax change first operates through

the asset-pricing margin: the market value of IPP jumps on impact, captured by the stock market

response. Because idea creation and adoption face high adjustment costs, innovation responses are

19While the numerator of our IPP intensity index is closer to a book-value measure of IPP, our interpretation
holds as long as the tax cut-induced revaluation of IPP assets scales with book value. Consistent with our findings, a
high-frequency event study around the announcement of a global minimum corporate tax in 2021 finds that intangible-
intensive firms exhibit significantly negative stock price responses (Gómez-Cram and Olbert, 2022).

27



Figure 3: Firm-Level Evidence on the Mechanism

Notes: this figure plots the responses of the market price of IP, R&D expenditure, intangible investment, patent
filings, tangible investment, and sales for the top versus bottom quartile of firms sorted by intangibility to a 1% cut
in the average rate of corporate income taxes. Red shadow bands represent central posterior 68th and 90th credible
sets. Responses are estimated using the Bayesian local projection model described in Section 2, with the quarterly
shocks aggregated to annual frequency. Data sources and definitions are described in Appendix C.
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delayed and hump-shaped relative to prices, intangible investment, and sales.

6.2 Endogenous productivity

In the next two sections, we use the estimated model to conduct counterfactual simulations that

isolate the role of endogenous growth (this section) and the amortization period of tax benefits on

intangible assets (next section). Specifically, we compare the GDP response in the baseline model

with that in an otherwise identical specification that excludes the endogenous productivity block.20

Figure 4 reports the responses of log GDP in both models, decomposed into the contributions of

TFP, capital and capital utilization, and labor and labor utilization, using the final-goods production

function (Equation 3):

∆ log Y = (θ − 1)∆ logA+ α (∆ logU +∆ logKg) + (1− α) (∆ log eg +∆ logHg) . (19)

In the baseline model (left panel), TFP accounts for the bulk of the medium-term effects, with the

remainder explained by capital accumulation. A corporate tax cut raises after-tax profits, which

increases the market value of IPP and strengthens incentives to both discover new technologies

and adopt existing ones. Higher adoption effort raises the probability of success and shortens the

expected time to market, further amplifying innovation incentives. In general equilibrium, this surge

of innovation also promotes capital accumulation by increasing the marginal product of capital. By

contrast, the counterfactual model with exogenous productivity (right panel of Figure 4) fails to

reproduce the medium-term persistence of GDP observed in Figure 1, underscoring that endogenous

productivity drives the majority of the medium-term response of GDP to corporate tax changes.

6.3 The amortization period of tax benefits on intangible investment

In Section 5, we set the tax amortization period for IPP to 15 years (δ̂IP = 0.0285), consistent

with Section 197 of the U.S. IRS Code, which mandates straight-line amortization of intellectual

property over 15 years.21 Here, we examine how the tax treatment of IPP shapes the effects of

corporate income taxes by varying the amortization horizon from full expensing to no deductibility.

Using the estimated model, we compute the long-run GDP response and the impact response of

IPP prices to a temporary tax cut.

In Figure 5, both responses rise monotonically with the amortization period. Short horizons yield

20To ensure comparability, we re-estimate the exogenous productivity model by matching the same variables as
in the baseline, except for R&D expenditure, which plays no role in the exogenous productivity case. Parameter
estimates for this latter model are reported in the last two columns of Table R.1.

21In our model, using straight-line or a geometric approximation as in Auerbach (1989) produces very similar results.
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Figure 4: GDP Decomposition and Counterfactual Analyses
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Notes: this figure plots the model impulse responses of aggregate output and its components (see Equation 3) to a
corporate income tax shock. The left panel shows the response of the baseline model, and the right panel that of a
model with no innovation. To construct the counterfactual plots, we re-estimate the restricted model following the
procedure described in Section 5. Parameter estimates for the restricted model are in Appendix R.

Figure 5: GDP and price of IPP response as a function of the tax amortization period on IPP
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Notes: this figure shows the responses of GDP at the 10 year horizon (Panel A) and of the market price
of IPP on impact (Panel B) to a 1% cut in the average rate of corporate income taxes as a function of the
tax amortization period on intangible capital purchases, implied by the estimates of the structural model
presented in Section 4. Vertical lines represent the value of the tax amortization period used in Hall and
Jorgenson (1967) and House and Shapiro (2008) for tangible assets.
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modest or negative long-run effects, while non-deductibility maximizes the impact.22 The steepest

changes occur between 1 and 10 years; then, the curve flattens: values implied by Hall and Jorgenson

(1967), House and Shapiro (2008) for tangible capital yield similar results. In Equations (15) and

(17), the present value of deductions, dIP , enters as a wedge that falls with longer amortization.

With full expensing, dIP=τc, after-tax and pre-tax profits coincide; with no amortization, dIP=0,

the wedge disappears. In other words, shorter amortization boosts steady-state innovation and

GDP, but longer amortization increases the sensitivity of GDP to tax changes off steady-state.

7 Discussion

In this section, we provide some intuition for the drivers of the mechanism highlighted by the

structural model. For the sake of exposition and of eliciting the different moving parts, we take the

unusual (but hopefully clarifying) step of structuring the discussion in the form of a Q&A.

Q: Why do corporate income tax cuts have positive medium-term effects?

A: Because they foster intangible investment, which is characterized by increasing aggregate returns.

Q: Why does R&D respond at all to corporate tax changes if R&D is subject to full expensing?

A: Corporate tax changes can exert direct and indirect effects on R&D. The tax treatment of R&D

expenditure governs the direct effect: with full and immediate deductibility, as in our model and

over most of the post-WWII U.S. sample we consider, this direct effect is zero (the corporate tax

rate does not appear in the FOCs for R&D inputs, see Equation 6). But, in general equilibrium,

corporate tax cuts also influence the market price of intangible assets: a main indirect effect of a

corporate tax cut is to increase the market price of intangibles, which stimulates R&D spending.

Q: Why does the market price of intangibles respond to corporate tax changes?

A: The market price of intangibles is made of two components: the Present Value (PV) of after-

tax profits and tax amortization benefits (Equation 17). A cut in the corporate tax rate increases

the PV of after-tax profits, but decreases the PV of amortization benefits. Whenever intangible

purchases are not subject to full expensing, the change in the PV of profits is larger than the change

in the PV of tax amortization benefits, leading to a response in the market price of intangible assets.

Q: Since capital investment is not fully expensed, why does a corporate tax cut not lead to large

22The negative values for the responses of GDP and the market price of IP near full expensing (zero years) are due
to other distortions in the model (notably less than full expensing of capital investment). Allowing for full expensing
of all investment, the response of GDP and the market price of IPP to a permanent tax cut are exactly zero.
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medium-term effects on GDP through capital accumulation?

A: Because physical capital investment is characterized by a diminishing marginal product.

Q: Is increasing aggregate returns versus diminishing marginal product the only difference between

the role of intangible and physical capital investment in the transmission of corporate tax changes?

A: No: in our estimated structural model, the direct effect dominates physical capital response

whereas the indirect effect drives the R&D response. The reason is that the effects of tax changes

on asset prices depend on the supply elasticity of the asset, which in turn is a function of the

adjustment costs associated with its accumulation. According to the estimates in Table 2, the

adjustment costs on intangibles are an order of magnitude larger than the adjustment costs on

physical capital investment, consistent with the firm-level evidence in Bernstein and Nadiri (1989),

Bond et al. (2005), Chiavari and Goraya (2023), and Bloesch and Weber (2024). This implies that

the elasticity of supply of intellectual property is much lower than the capital supply elasticity, in

line with the findings that the effects of corporate income tax changes are significant on the market

price of IPP (Figure 3) but are insignificant on the price of capital (House and Shapiro, 2008).23

Q: Why do personal income tax changes have no medium-term effects?

A: In theory, personal income tax changes could also have medium-term effects, working (to a first

order) through the response of the scientists’ labor supply. However, our estimates do not reveal

significant medium-term effects of personal taxes on productivity or GDP. Using the estimated

structural model, we have verified that this is due to the combination of two factors in our sample:

personal tax shocks are short-lived, and scientists’ labor supply is relatively inelastic.

8 Conclusions

This paper identifies an overlooked channel through which fiscal policy affects innovation and pro-

ductivity. We show that temporary corporate income tax cuts, far from being short-lived stimulus,

generate sizable and persistent increases in innovation, productivity, and output. The key mecha-

nism is the tax treatment of intangible assets: the long amortization horizon in the U.S. tax code for

purchased patents, trademarks, and other intellectual property amplifies the medium-term effects

of corporate taxation.

The policy implications are immediate. Just as bonus depreciation has become a standard

instrument to stimulate tangible investment, our findings point to tax amortization allowances on

23It should be noted that, in the endogenous productivity model, the indirect effects of corporate tax changes on
physical capital investment are boosted by the presence of increasing aggregate returns from innovation, as can be
seen by comparing the contribution of capital investment in the two panels of Figure 4.
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intangibles as a powerful and underused lever for productivity growth. Accelerated amortization

of intangible capital would reduce corporate tax distortions and provide a new, targeted tool for

stimulating productivity growth in advanced economies over the long-run.
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Dechezleprêtre, A., E. Einiö, R. Martin, K.-T. Nguyen, and J. Van Reenen (2023):

“Do Tax Incentives Increase Firm Innovation? An RD Design for RD, Patents, and Spillovers,”

American Economic Journal: Economic Policy, 15, 486–521.

Desai, P., E. Gavrilova, R. Silva, and M. Soares (2025): “The Value of Trademarks,”

Conditionally accepted at the Journal of Financial Economics.

Douglass, M. J. (1994): “Tangible Results For Intangible Assets: an Analysis of New Code

Section 197,” The Tax Lawyer, 47, 713–762.

Driscoll, J. C. and A. C. Kraay (1998): “Consistent Covariance Matrix Estimation with

Spatially Dependent Panel Data,” The Review of Economics and Statistics, 80, 549–560.

Ernst & Young (2024): “Financial reporting developments: A comprehensive guide. Intangibles

— goodwill and other,” Technical report, Ernst & Young.

Ewens, M., R. H. Peters, and S. Wang (2023): “Measuring Intangible Capital with Market

Prices,” Working Paper 25960, National Bureau of Economic Research.

Fernald, J. (2012): “A quarterly, utilization-adjusted series on total factor productivity,” Working

Paper Series 2012-19, Federal Reserve Bank of San Francisco.

Ferraro, D., S. Ghazi, and P. F. Peretto (2023): “Labour Taxes, Market Size and Produc-

tivity Growth,” The Economic Journal, 133, 2210–2250.

Ferreira, L. N., S. Miranda-Agrippino, and G. Ricco (2025): “Bayesian Local Projections,”

The Review of Economics and Statistics, 1–15.

Fieldhouse, A. J. and K. Mertens (2023): “The Returns to Government R&D: Evidence from

U.S. Appropriations Shocks,” Working Papers 2305, Federal Reserve Bank of Dallas.

Fornaro, L. and M. Wolf (2025): “Fiscal Stagnation,” CEPR Discussion Papers 20149,

C.E.P.R. Discussion Papers.

Forni, M. and L. Gambetti (2014): “Sufficient information in structural VARs,” Journal of

Monetary Economics, 66, 124–136.

36



Francis, N. and V. A. Ramey (2009): “Measures of per Capita Hours and Their Implications

for the Technology-Hours Debate,” Journal of Money, Credit and Banking, 41, 1071–1097.

Friedman, M. and A. J. Schwartz (1963): A Monetary History of the United States, 1867-1960,

Princeton University Press.

Furlanetto, F., A. Lepetit, Ørjan Robstad, J. Rubio-Raḿırez, and P. Ulvedal (2021):
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Gaĺı, J. and T. van Rens (2020): “The Vanishing Procyclicality of Labour Productivity,” The

Economic Journal, 131, 302–326.

Geweke, J. (1993): “Bayesian treatment of the independent student-t linear model,” Journal of

Applied Econometrics, 8, S19–S40.

Giannone, D., M. Lenza, and G. E. Primiceri (2015): “Prior Selection for Vector Autoregres-

sions,” The Review of Economics and Statistics, 97, 436–451.
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A Tax amortization of Intangible Assets around the World

In Table A.1, we report the legal tax amortization periods (in years) for the main types of intangible

assets in selected countries as of 2016. The tax treatment of intangible assets varies widely across

jurisdictions. Interestingly, advanced economies typically have longer tax amortization periods on

intellectual property products than developing countries.

Table A.1: An International Perspective on Tax amortization of Intangible Assets

Country Patents Technology Trademark

Australia 20 5 no TAB

Austria RUL RUL 15

Canada 20 20 20

China RUL (≥10) RUL (≥10) RUL (≥10)

France RUL (≥5) RUL (≤5) no TAB

Germany 15 RUL (≤3) 25

Greece RUL (≤5) 5 20

Hungary RUL 5 10

India 10 RUL (≤3) 10

Indonesia 10 10 10

Ireland 20 15 no TAB

Italy RUL (≥3) 5 RUL (≤5)

Japan RUL RUL 20

Malaysia 20 20 no TAB

Mexico 20 20 10

Netherlands 20 5 no TAB

New Zealand 15 5 no TAB

Norway 20 RUL 10

Poland RUL 5 5

Portugal RUL (≤5) RUL (≤5) no TAB

Romania 20 5 15

Russia 15 15 10

Singapore 5 5 no TAB

Slovakia 15 4 no TAB

Slovenia RUL 5 no TAB

South Africa 20 5 no TAB

Spain RUL (≥5) RUL (≤5) RUL (≤5)

Sweden 10 10 10

Switzerland 20 5 no TAB

Taiwan 20 15 no TAB

Thailand 20 5 20

Turkey 20 10 no TAB

UK 25 20 20

USA 15 15 15

Vietnam 10 10 10

Notes: RUL: for Remaining Useful Lifetime; TAB: tax amortization benefit. The table reports the legal tax
amortization life time in years of the main types of intangible assets across selected countries in 2016. Source:
http://www.taxamortization.com/tax-amortization-benefit.html
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B Narrative Identified Exogenous Tax Changes 2007–19

The original Mertens and Ravn (2013) narrative identified corporate and personal income tax shocks

were derived from the Romer and Romer (2010) dataset and span the period 1950 to 2006. Our

paper considers the sample period up to 2019. We therefore construct an extended version of the

Mertens and Ravn (2013) shocks by drawing on two sources. For the period 2007-2017 we use the

analysis of legislated U.S. tax reforms from Liu and Williams (2019). Between 2007 and 2017, they

identify two Acts that can be regarded as “exogenous” following Romer and Romer (2010) and

Mertens and Ravn (2013). Specifically:

• Tax Relief, Unemployment Insurance Reauthorization and Job Creation Act 2010. This con-

tained a payroll tax cut amounting to $67.239 billion. The implementation date is assigned to

2011Q1. Liu and Williams (2019) provide evidence that this tax cut was motivated by long-run

considerations and is exogenous following the Romer and Romer (2010) classification.

• American Taxpayer Relief Act 2012: This included an exogenous reduction in personal income

taxes of $5.901bn and a reduction in corporate income taxes of $63.033 billion. These are

assigned to 2013Q1. Liu and Williams (2019) argue that this was motivated by concerns

about the inherited deficit, and is exogenous but “deficit driven” according to the Romer and

Romer (2010) classification.

Over the period 2017 to 2019, we include one exogenous tax reform: the Tax Cuts and Jobs Act

2017. Liu and Williams (2019) note “Exogenous for sure, but not in our estimation time frame”

(Online Appendix p.5) and their paper therefore does not include any further analysis of the TCJA.

We therefore use the estimates and analysis from Mertens (2018). Specifically:

• We treat the TCJA as exogenous following Mertens (2018): “Since almost all of the provisions

in TCJA become effective in the 2018 tax year, the Act clearly fits into the category of

reforms with short implementation lags included in the Mertens and Ravn (2012) version

of [the exogenous tax changes]. The motivation for the 2017 Act also seems predominantly

ideological, such that it appears reasonable to make use of the estimated effects derived from

the exogenous Romer and Romer (2010) tax reforms” (Mertens (2018), p.5).

• In keeping with the usual Romer and Romer (2010) approach, Mertens (2018) reports the

revenue estimates for the TCJA. From Mertens (2018) Table 1 we use -$75 billion as the

estimate of the personal income tax change and -$129 billion as the estimate of the corporate

income tax change. The Act also included various changes to international corporate taxation,

which are listed separately in Mertens (2018) Table 1 and in the original Joint Committee

on Taxation budget effects table (JCT, December 18 2017 JCX-16-17). These reforms were

estimated to raise $69 billion. As a robustness check (see Figure K.8 in Appendix K) we

therefore consider a broader measure of the TCJA corporate income tax shock by summing

the two categories (-$129 billion and $69 billion). The Act was passed in December 2017

and most measures were effective after December 31, 2017. Following Mertens (2018) we use

2018Q1 as the implementation date.

As in Mertens and Ravn (2013), all revenue estimates for corporate and personal income taxes

are scaled by corporate profits and personal taxable income in the previous quarter. As discussed

below, the macroeconomic data are updated versions of the series described in Mertens and Ravn

(2013).
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C Data Appendix

C.1 Macroeconomic data

Table C.1: Macroeconomic variables definitions

Variable Description Source

Consumption Real personal consumption expenditure
per-capita

U.S. BEA, Real Personal
Consumption Expendi-
tures divided by popula-
tion

Investment Real Non-residential investment per-
capita

NIPA 1.1.3 line 9 divided
by population

Productivity Output per hour (Non-Farm business
sector)

U.S. BLS, Nonfarm
Business Sector: Labor
Productivity (Out-
put per Hour) for All
Workers

R&D spending Investment in Research and Develop-
ment

U.S. BEA, Gross Pri-
vate Domestic Invest-
ment: Fixed Investment:
Nonresidential: Intellec-
tual Property Products:
Research and Develop-
ment divided by IPP de-
flator and population

TFP Utilization Adjusted TFP Fernald (2012)

Employment Total economy employment per-capita U.S. BLS, All Employ-
ees, Total Nonfarm sea-
sonally adjusted and di-
vided by population

Population Total Population over age 16 Data from Francis and
Ramey (2009) spliced
with 8 Qtr moving av-
erage of data from U.S.
BLS, Civilian noninsti-
tutional population

The main macroeconomic variables are updated versions of the series described in Mertens and

Ravn (2013): (1) APITRt, (2) ACITRt, (3) ln
(
BPI

t

)
, (4) ln

(
BCI

t

)
, (5) ln (Gt) , (6) ln (GDPt) , (7)

ln(DEBTt). The personal and corporate tax rates are denoted by APITRt and ACITRt, respec-

tively while ln
(
BPI

t

)
and ln

(
BCI

t

)
are the corresponding tax bases in real per-capita terms. ln (Gt)

denotes real per-capita government spending, while ln(DEBTt) is real per-capita federal debt. Real

per-capita GDP is denoted by ln (GDPt). For a detailed description of these series and data sources,

see the appendix of Mertens and Ravn (2013). The table above provides a list of the additional

macroeconomic data used in our analysis and provides links to the appropriate series in the FRED

database.

Data on R&D intensity is obtained from the Business Enterprise Research and Development

Survey of the National Science Foundation for the period 1999 to 2007. R&D intensity is defined
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as funds for industrial R&D as a percent of net sales of companies. The R&D intensity data from

this survey can be matched to 28 industries in the Gross output data set. These 28 industries are

used in the sectoral analysis presented below.

C.2 Data and definitions for Figures 2 and 3

C.2.1 Figure 2

Intangible Investment. We estimate intangible investment at the firm level at annual frequency

using data on Selling, General and Administrative expenses (Compustat variable xsga) and the

industry-level parameters provided by Ewens et al. (2023). We aggregate this measure at annual

frequency and divide by population and the GDP deflator from FRED. Sources: Compustat, Ewens

et al. (2023), FRED.

Stock of Patents. We aggregate real patent values from the extended Kogan et al. (2017) database

at quarterly frequency and the perpetual inventory method with 8% depreciation (Li and Hall

(2020)) and divide by population. Sources: Kogan et al. (2017) database, Li and Hall (2020).

Stock of Trademarks. We aggregate trademark values from the Desai et al. (2025) (kindly pro-

vided by the authors) and the perpetual inventory method with 8% depreciation (Li and Hall

(2020)), deflated using the GDP deflators, and divide by population. Sources: Desai et al. (2025),

Li and Hall (2020).

Stock Market. Dow Jones Industrial Average data from WRDS. The model response is the ag-

gregate value of assets (IPP and the capital stock). Source: WRDS.

Trade in IPP. Count of trademark transactions from USPTO Trademark Transactions Database.

Source: USPTO.

IPP Investment (excluding R&D). Intellectual property products investment (excluding R&D)

from the national accounts. Source: BEA.

C.2.2 Figure 3

Market Price of IP We construct portfolios sorted by firm-level intangibility to study differ-

ences in cumulated returns between high- and low-intangibility firms. The firm-level measure of

intangibility is the sum of intangible capital plus patent stock value divided by market capitaliza-

tion. Intangibility is computed at the firm level following Ewens et al. (2023) by capitalizing an

industry-specific part of SG&A from Compustat (xsga), depreciated at 20%. Patent stock values

are computed at the firm level from the extended Kogan et al. (2017) database, computed using the

perpetual inventory method with an 8% depreciation rate (Li and Hall (2020)). Market capitaliza-

tion data is from CRSP. At each point in time, firms are sorted into quartiles based on their ratio

of intangible assets plus patent stock value to market capitalization. We form two market capital-

ization–weighted portfolios corresponding to the top and bottom quartiles of this distribution and

compute their cumulative return indices using CRSP data. The empirical response plotted in the

top left panel of Figure 3 is the log difference between the cumulative return indices of the high-

and low-intangibility portfolios, which captures the differential market performance of intangible-

intensive firms. Sources: Center for Research in Security Prices (CRSP), Compustat, Kogan et al.

(2017), Li and Hall (2020), Ewens et al. (2023).

R&D, Sales, and Tangible Investment. We merge CRSP–Compustat at the gvkey–year level

and build a gvkey–permno bridge (monthly links collapsed to year) to align accounting and market

data. Each year, firms are sorted by the intangibility intensity metric defined in the previous

paragraph. R&D, sales and tangible investment correspond to the Compustat variables xrd, sale and
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capx+acqppe, respectively. We aggregate by year within each group (sum across firms), construct

cumulative indices, and take the empirical response as the log difference between the top– and

bottom–quartile aggregates. Sources: CRSP, Compustat, Kogan et al. (2017).

Intangible Investment. We estimate intangible investment at the firm level at annual frequency

using data on Selling, General and Administrative expenses (Compustat variable xsga) and the

industry-level parameters provided by Ewens et al. (2023). After forming the same top– and

bottom–quartile intangibility groups, we sum intangible investment within each group. Sources:

Compustat, Ewens et al. (2023), FRED.

Patent Filings. We pull patent–event microdata from the extended Kogan et al. (2017) dataset

and construct firm–day counts of filings, then collapse to gvkey–year using the CRSP–Compustat

link. After forming the same top– and bottom–quartile intangibility groups, we sum annual filing

counts within each group. Sources: CRSP, Compustat, Kogan et al. (2017).

C.3 Sectoral Data

Gross output (GO) by industry and Gross Value added (GVA) by industry is obtained from the

Bureau of Economic Analysis (BEA) and is provided at annual frequency from 1947 to 1997 (avail-

able at the following link). We deflate Gross output by its deflator. This historical data is combined

with the more recent data real GO and GVA to produce an annual time series for 87 sectors from

1950-2019. The series are divided by population.

Data on R&D intensity is obtained from the Business Enterprise Research and Development

Survey of the National Science Foundation for the period 1999 to 2019. R&D intensity is defined

as funds for industrial R&D as a percent of net sales of companies. The R&D intensity data from

this survey can be matched to 28 industries in the GO/GVA data set. These 28 industries are used

in the sectoral analysis presented below, in Appendix S.

D Specification of the Benchmark Bayesian Local Projection

The benchmark Bayesian Local Projection (following Equation 2) is defined as:

Zt+h = c(h) +B
(h)
1 Zt−1 +

P∑
j=2

b
(h)
j Zt−j + dhxt−1 + ut+h, var(ut+h) = Ωh (20)

Note that following Jordà (2005), the model is estimated jointly for the all the variables in the

vector Zt. As noted in the main text, in the benchmark case Zt includes 7 variables: (i) APITRt,

(ii) ACITRt, (iii) ln
(
BPI

t

)
, (iv) ln

(
BCI

t

)
, (v) ln (Gt) , (vi) ln (GDPt) , (vii) ln(DEBTt). We add

additional variables of interest to this set of benchmark variables one by one. For example, the

response of TFP is estimated from a LP that includes 8 variables-i.e. TFP in addition to the 7

variables listed above. xt denotes two additional controls included in the model:

1. An initial estimation of the structural tax shocks for h = 0 reveals that the estimated personal

tax rate shock can be predicted by the lags of a principal component obtained from a large

quarterly data set of macro and financial variables for the U.S. economy, which extends the

panel used in Mumtaz and Theodoridis (2020). To implement the “structuralness” test of Forni

and Gambetti (2014), we use up to 4 lags of the first 5 principal components obtained from

this data set. The personal tax shock can be predicted by the first lag of the third principal

component which is highly correlated with interest rates included in the panel. Detailed test

results are presented in Appendix E. Following Forni and Gambetti (2014), we add one lag of
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the third principal component as a control variable in our LPs to ameliorate concerns about

information insufficiency.

2. Finally, we also include a dummy variable that equals 1 from 2008 Q3-2009 Q1 to account for

volatility associated with the Great Financial Crisis.

E Structural shocks and controls in the benchmark model

Figure E.1: Test for information sufficiency

k
(a) Personal tax shock (b) Corporate tax shock

Notes: this figure shows P-value that the coefficients on the lags of the principal components are jointly equal to zero.
P-values less than 0.05 are denoted by red dots

To select additional controls for the benchmark model we implement the following steps

1. We estimate a Bayesian VAR (i.e. a local projection at horizon 0 using the 7 endogenous

variables of Mertens and Ravn (2013) and identify the corporate and personal tax shocks

using the benchmark scheme. We obtain the estimated structural disturbances.

2. Following Forni and Gambetti (2014), we regress the structural shocks on up to 4 lags of the

first 5 principal components taken from a data set of 83 macroeconomic and financial variables

for the U.S.. The data set covers real activity, inflation, employment, production, lending,

interest rates, exchange rates and stock prices. The regressions take the following form for

m = 1, . . . , 5:

ϵit = c+

4∑
k=1

βkFm,t−k + vt

where ϵi is the structural shock to personal and corporate taxes respectively and Fm,t denotes

the mth principal component. As shown in figure E.1, the third principal component has a

significant lagged impact on the personal tax shock. This component has the highest corre-

lation with the 2 year government bond yield. In contrast, the corporate tax shock is not

predicted by the lagged principal components.

3. We include the first lag of the third principal component as an additional control in the

benchmark model. This eliminates this problem and the structural shocks from this model

are not predicted by the principal components.
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F Monte-Carlo evidence on Local Projections estimates of impulse

response functions at medium and long-run horizons

In this section, we investigate the ability of LPs and VARs to estimate impulse response functions at

medium and long-run horizons. Our Monte-Carlo analysis complements that of Jordà et al. (2020)

as we consider the performance of multi-variate models.

F.1 Data Generating Process and models

The data generating process is designed to mimic the broad features of the impulse responses of key

variables to corporate tax shocks. The estimated response of variables such as GDP, consumption

and productivity to corporate shocks is characterised by small increases at short horizons with larger

positive changes arriving after about 20 periods. We replicate this shape by generating data from

a bi-variate VAR(20)

Yt = B1Yt−1 +B2Yt−2 + ...+B20Yt−20 +A0Et, Et ∼ N(0, 1) (21)

We assume that B1 =

(
0.7 0

0 0.75

)
and B20 =

(
0.1 0.1

0.1 0

)
while B2 = B3 = ... = B19 =(

0 0

0 0

)
. The contemporaneous impact matrix is fixed at A0 =

(
1 0

0.05 1

)
We generate T1 =

T + T0 observations from this model where T0 = 50 and T = 280. The first T0 observations are

discarded to account for initial values. We estimate two models using this artificial data: (i) A

VAR(4) and (ii) A LP that includes 4 lags of the two variables as controls. The models are used to

estimate the response to the first shock. Note that we do not attempt to estimate A0 which is kept

fixed at the true value for both models.

F.2 Results

The top panel of Figure F.1 displays the main results. Consider first the true impulse response

of Variable 2. The features of this function are similar to those reported in our empirical analysis

for variables such as GDP, consumption and productivity. That is, a distinctive feature of this

response is that the main effect occurs in the medium run rather than immediately. The VAR(4)

model captures the short-run impact well. However, it completely misses the increase in the variables

at horizon 20. In contrast, the LP that includes the same number of lags captures both the initial

increase in the variables and the subsequent rise at horizon 20. The bottom panel of Figure F.1 shows

the effect of increasing the lag length. Even with 10 lags, the VAR response of the second variable

is far from the truth at long horizons. When the lag length is increased to 20, the performance of

the VAR improves substantially. In the case of the LP, increasing the lag length does not materially

affect the response after horizon 20. However, there is some evidence that longer lags reduce the

discrepancy between the LP response and truth between horizons 10 and 20. In short, this simple

stylised simulation demonstrates that VARs with a small number of lags are likely to be unreliable

in estimating responses where the bulk of the movement occurs at long horizons. The LP appears

to be more robust to lag truncation.

G Estimation of the Local Projections

We estimate the local projections in Equation(2) via Bayesian methods. The Bayesian approach

offers three main advantages in our setting. First, the error bands incorporate uncertainty regarding
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Figure F.1: Monte-Carlo results
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Notes: Monte-Carlo estimates of impulse responses of the two variables in Y to the first shock. In the bottom panel,
the experiment is repeated for different lag lengths

the A0 matrix. Second, the Markov chain Monte-Carlo approach allows us to easily compute joint

posterior distributions that can be used to assess statistical differences across shocks and horizons.

Third, in Section 5, we use the IRFs produced by LPs to estimate the structural parameters of an

endogenous growth model via IRF matching, for which Bayesian methods are routinely used.

The local projections in Equation (2) can be written compactly as:

Zt+h = βhXt + ut+h, var(ut+h) = Ωh (22)

where Xt = (1, Zt−1, .., Zt−P ) collects all the regressors and β
h =

(
ch, Bh

1 , b
h
1 , .., b

h
P

)
is the coefficient

matrix. When the horizon is h = 0, the model reduces to a Bayesian VAR. Given a Normal prior for

β0 and an inverse Wishart prior for Ω0, the conditional posterior distributions of these parameters

are known in closed form and the posterior distribution can be approximated via Gibbs sampling.

We use the draws of these parameters to construct the posterior for the contemporaneous impact

matrix A0.

For longer horizons, the estimation of the model is more complex. As discussed in Jordà (2005),

the residuals ut+h are nonspherical when h > 0. We deal with this issue in two ways. In the

benchmark specification, we allow elements of ut+h to have a non-normal distribution. Following

Chiu et al. (2017), we define ut+h = A−1et+h where A−1 is a lower triangular matrix. The vector

et+h = (e1,t+h, .., eM,t+h) denotes the orthogonalised residuals that follow Student’s t-distributions

with degrees of freedom νj and variances σ2j for j = 1, ..,M . As discussed in Geweke (1993) and

Koop (2003), this assumption is equivalent to allowing for heteroscedasticity of an unknown form. In

the frequentist case, Montiel Olea and Plagborg-Møller (2021) show that heteroscedasticity robust

confidence intervals for LPs that control for lags of the regression variables deliver satisfactory
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coverage rates. In Appendix F, we report a simple Monte-Carlo experiment showing that: (i) the

results in Montiel Olea and Plagborg-Møller (2021) extend to the Bayesian LPs with Student’s

t-disturbances, and (ii) the estimated error bands display reasonably good coverage rates even at

long-horizons. We provide details of the estimation algorithms in Appendix G below.

Furthermore, we attempt to account for autocorrelation in ut+h by modelling it directly. In a

recent study, Lusompa (2021) show that the ut+h follows anMA(h) process. Therefore, we consider

the following extended model:

Zt+h = βhXt + ut+h (23)

ut+h = ϵt+h + θ1ϵt+h−1 + ..+ θqϵt+h−q, ϵt+h ∼ N(0,Ωh) (24)

where we allow q to grow with the horizon. As ϵt is unobserved, the estimation of this model is

computationally intensive. In Appendix K, we show that the IRFs estimated using (23) and (24)

corroborate our main findings.

Finally, in the benchmark specification, the prior for βh is centred on a mean that implies that

each variable in Zt+h follows an AR(1) process. The prior variance follows the Minnesota prior,

with tightness set to a large number. As discussed in Appendix G, we use a non-informative prior

for the free elements of A and σ2j .
1

As for the ‘Direct’ model in (1) that is used in one of the sensitivity analyses of Section 3.2, we

present frequentist estimates based on OLS. In the robustness checks we also consider LPIV models

as used in Jordà and Taylor (2015):

Zi,t+h = c(h) + β
(h)
i τj,t + θ(h)ϵk,t + b(h)Xt−1 + ut+h, ut+h ∼ N(0, σh) (25)

where τj,t for j=ct, pt denotes the tax rate, which is instrumented by the narrative measure ϵj,t. The

regression also includes the narrative measure for the other tax rate ϵk,t, k ̸= j as a contemporaneous

control.

The LPIV in (25), is estimated using the ridge estimator of Barnichon and Brownlees (2019)

with smoothing parameter set via cross-validation.2

G.1 Estimation of the Benchmark Bayesian LP model

The model used to produce the benchmark Bayesian LP results (Equation 2) is defined as:

Zt+h = βhXt + ut+h, var(ut+h) = Ωh (26)

where Xt = (1, Zt−1, .., Zt−P , xt−1) collects all the regressors and βh =
(
c(h), B

(h)
1 , b

(h)
1 , .., b

(h)
P , d(h)

)
is the coefficient matrix. For h = 0, the model is a Bayesian VAR and estimation is standard

(see for e.g. Bańbura et al. (2010)). When h > 0, we allow for non-normal disturbances. The

covariance matrix Ωh is decomposed as Ωh = A−1HtA
−1′ where A is a lower triangular matrix while

Ht = diag
(

σ2
1

λ1t
,
σ2
2

λ2t
, . . . ,

σ2
M

λMt

)
. Note that 1

λit
for i = 1, . . . ,M denotes the time-varying volatility of

the orthogonal disturbances et+h = Aut+h Geweke (1993) shows that assuming a Gamma prior for

1Following Bańbura et al. (2010), we set the prior mean for βh by running AR(1) regressions for each endogenous

variable. The diagonal elements of the prior variance matrix corresponding to own lags p are defined as
µ2
1

p2
and as

si
sj

µ2
1

p2
for coefficients on lags of other variables. The variances si

sj
account for the differences in scale between variables

and are obtained as residual variance from the preliminary AR(1) regressions. We set the tightness parameter µ1 to
10 which implies a loose prior belief.

2Plagborg-Møller and Wolf (2021) show that smooth local projections imply a reduction in the variance while
leading to only a small increase in the bias of LPs. We present the unsmoothed 2SLS estimate in Appendix K. Our
main findings of a significant response of GDP and TFP at longer horizons are unaffected by these modifications.
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λit of the form P (λi) =
∏T

t=1 P (λit) =
∏T

t=1 Γ(1, νi) leads to scale mixture of normal distributions for

the orthogonal residuals (Γ(a, b) denotes a Gamma distribution with mean a and degrees of freedom

b). As shown in Geweke (1993), this is equivalent to assuming that each orthogonal residual eit
follows a Student’s T-distribution with degrees of freedom equal to νi. This setup is used for VAR

models in Chiu et al. (2017).

G.1.1 Priors

We employ the following prior distributions:

• We set a hierarchical prior for λit and νi (see Koop (2003)):

P (λit) = Γ(1, νi) (27)

P (νi) = Γ(ν0, 2) (28)

Note that the prior for ν is an exponential distribution, which is equivalent to a Gamma

distribution with 2 degrees of freedom. We set ν0 = 10 which gives prior weight to the

possibility of fat tails in the distribution of eit

• The prior for σ2i is inverse Gamma : IG(T0, D0). We assume a flat prior setting the scale and

degrees of freedom to 0.

• The free elements of each row ofA have an independent prior of the form: P (Ak) ∼ N(ak,0, sk,0)

where Ak is the kth row of this matrix. We set the mean of the prior to zero and the diagonal

elements of sk,0 to 1000

• We set a Minnesota type prior for the coefficients β̃h = vec(βh): P (β̃h) ∼ N(β0, S0). The

mean β0 implies that each variable in Zt+h follows an AR(1) process. The diagonal elements of

the variance matrix S0 corresponding to own lags are defined as
µ2
1

p2
and as si

sj

µ2
1

p2
for coefficients

on lags of other variables. Here p denotes the lag length while the ratio of variances si
sj

accounts

for differences in scale across variables. We set the tightness parameter µ1 to 10 which implies

a loose prior belief.

G.1.2 Gibbs Sampler

We use a Gibbs sampling algorithm to approximate the posterior distribution. The algorithm is

based on the samplers presented in Geweke (1993), Koop (2003) and Chiu et al. (2017). In each

iteration, the algorithm samples from the following conditional posterior distributions (Ξ denotes

all other parameters):

• G(λit|Ξ). Given a draw for A, the orthogonal residuals are constructed as et = Aut. The

conditional posterior distribution for λi,t derived in Geweke (1993) applies to each column

of et. As shown in Koop (2003) this posterior density is a gamma distribution with mean

(νi + 1) / 1
σi
e2i,t + νi and degrees of freedom νi + 1. Note that ei,t is the ith column of the

matrix et.

• G(νi|Ξ). The conditional posterior distribution of νi is non-standard (see Koop (2003)) and

given by:

G (νi|Ξ) ∝
(νi
2

)Tνi
2

Γ
(νi
2

)−T
exp

(
−

(
1

ν0
+ 0.5

T∑
t=1

[
ln
(
λ−1
i,t

)
+ λi,t

])
νi

)
(29)
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As in Geweke (1993) we use the Random Walk Metropolis-Hastings Algorithm to draw from

this conditional distribution. More specifically, for each of the M equations of the VAR, we

draw νnewi = νoldi + c1/2ϵ with ϵ ∼ N(0, 1). The draw is accepted with probability
G(νnew

i |Ξ)
G(νoldi |Ξ)

with c chosen to keep the acceptance rate around 40%.

• G(A|Ξ): Given a draw for the coefficients βh the model can be written as: Aut+h = et+h

where ei,t+h ∼ N(0,
σ2
i

λit
) for i = 1, ..,M . This is a system of K linear regressions with known

error variances. The first equation is an identity u1,t+h = e1,t+h. The second equation is:

u2,t+h = A2(−u1,t+h) + e2,t+h, the kth equation is uk,t+h = xuAk + ek,t+h and so on, where

xu = (−u1,t+h, . . . ,−uk−1,t+h). By dividing both sides of the equations by the respective error

standard deviation, i.e. (
σ2
k

λkt
)(0.5), the residual variance is normalised to 1. Given the normal

prior for Ak, the conditional posterior is also normal with variance v =
(
s−1
0,k + x̃u

′x̃u

)−1
and

mean v
(
s−1
0,ka0,k + x̃u

′ũk,t+h

)
where x̃u and ũk,t+h denote the regressors and the dependent

variable after the GLS transformation described above.

• G(σ2i |Ξ): The orthogonal residuals et+h can be transformed as follows: ˜et+h = et+hλ
0.5
i,t . The

conditional posterior for σ2i is inverse Gamma with scale parameter ˜et+h
′ ˜et+h+D0 and degrees

of freedom T + T0

• G(βh|Ξ) We use the algorithm of Carriero et al. (2022) to draw from this conditional posterior

distribution. Carriero et al. (2022) show that the system can be re-written as:

AZt+h = AβhXt + et+h, eit,t+h ∼ N

(
0,
σ2i
λi,t

)
(30)

Given the lower triangular structure of A, the coefficients of the jth equation can be sampled

using blocks of the last M − j + 1 equations, conditional on the remaining blocks. Carriero

et al. (2022) show that these conditional posterior distributions are normal and they provide

expressions for the mean and variance. This algorithm is substantially faster that drawing the

coefficients of all equations in the model, jointly.

We employ 51000 iterations and drop the first 1000 as burn-in. We keep every 5th draws of the

remainder for inference.

G.1.3 Lag augmentation and coverage

Following Montiel Olea and Plagborg-Møller (2021), we carry out a Monte-Carlo experiment to

check the coverage properties of the error bands produced the Bayesian LP described above. We

generate data from a 4-variable VAR(4) model. The coefficients and variance-covariance of the error

terms is set equal to the OLS estimates of a VAR(4) model using data on 4 variables employed in our

benchmark LP: (1) ACITR, (2) BCI , (3) ln(G) and (4) ln(GDP ). We generate 280 observations

after discarding an initial sample of 100 observations to account for starting values. Using this

artificial data, we estimate two Bayesian LPs: (1) a model with 4 lags of all 4 variables included as

controls and (2) a model that is not lag-augmented and only the first lag that is required to generate

the IRF is included. We employ 51000 Gibbs iterations and drop the first 1000 as burn-in. We

keep every 5th draw of the remainder for inference. The experiment is repeated 1000 times and we

compute coverage probabilities using the estimated 90 percent highest posterior density intervals.

Figure G.1 Panel A shows that the benchmark model produces reasonably good coverage rates with

distortions that remain below 10% even at long horizons. In contrast, when the lag augmentation
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is removed, the performance deteriorates substantially and coverage rates fall below 50% for all

variables.

G.1.4 Convergence

To assess convergence of the Gibbs algorithm, we examine the inefficiency factors calculated using

the impulse responses from the benchmark model. These estimates are below 20 for all variables

and horizons (see Figure G.1 Panel B) providing support for convergence of the algorithm.

G.2 Bayesian LP with MA residuals

Our alternative specification directly models the autocorrelation in the residuals. In a recent paper

Lusompa (2021) has shown that the ut+h follows an MA(h) process. We therefore consider the

following extended model:

Zt+h = βhXt + ut+h (31)

The residuals of each equation follow the MA process:

ut+h = ϵt+h + θ1ϵt+h−1 + ..+ θqϵt+h−q, ϵt+h ∼ N(0,Ωh) (32)

As noted in Chan (2020), this type of model can be re-written as:

Zt+h = βhXt + H̃ϵt+h, ϵt+h ∼ N(0,Ωh) (33)

where H̃ is T ×T banded matrix with ones on the main diagonal and the MA coefficients appearing

below the main diagonal. For example, the process ut+h = ϵt+h + θ1ϵt+h−1 can be written as

ut+h = H̃ϵt+h where H̃ =


1 0 . . . 0

θ1 1 . . . 0
...

. . .
. . .

...

0 . . . θ1 1


The model is estimated using a Gibbs sampling algorithm that is based on the methods described

in Chan (2020).

G.2.1 Priors

We employ the following prior distributions:

• The prior for Ω is inverse Wishart: IW (Ω0, T0). We employ a flat prior and set both the scale

matrix and degrees of freedom to 0.

• We set a Minnesota type prior for the coefficients β̃h = vec(βh): P (β̃h) ∼ N(β0, S0). The

mean β0 implies that each variable in Zt+h follows an AR(1) process. The diagonal elements

of the variance matrix S0 corresponding to own lags are defined as
µ2
1

p2
and as σi

σj

µ2
1

p2
for the

coefficients on the lags of other variables. Here p denotes the lag length while the ratio of

variances σi
σj

accounts for differences in scale across variables. We set the tightness parameter

µ1 to 10 which implies a loose prior belief.

• The prior for MA coefficients Θ̃ = (θ1, . . . , θq) is normal: N(Θ0, V0). The mean of the prior

is set to 0. The variance is set using the Minnesota procedure (described above) with the

coefficients on higher MA terms shrunk to 0 more quickly. We set the tightness parameter of

the prior to 0.1
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G.2.2 Gibbs Sampler

The Gibbs sampling algorithm for this model samples from the following conditional posterior

distributions (Ξ denotes all other parameters):

• G(β̃h|Ξ): Given a draw for Θ̃, the model can be written as

Z̃t+h = βhX̃t + ϵt+h, ϵt+h ∼ N(0,Ωh) (34)

Z̃t+h = H̃−1Zt+h (35)

X̃t = H̃−1Xt (36)

This is simply a system of linear equations with iid residuals. Let Z̃ and X̃ denote the matrices

holding the transformed dependent and covariates, respectively. The conditional posterior is

normally distributed with mean M and variance V :

V =
(
S−1
0 +Ω−1

h ⊗ X̃ ′X̃
)−1

(37)

M = V
(
S−1
0 β0 +

(
Ω−1
h ⊗ X̃ ′X̃

)
βols

)
(38)

βols = vec

((
X̃ ′X̃

)−1 (
X̃ ′Z̃

))
(39)

• G(Ωh|Ξ): Given a draw for βh, the residuals ϵt+h can be easily calculated. The conditional

posterior of Ωh is inverse Wishart with scale matrix ϵ′t+hϵt+h + Ω0 and degrees of freedom

T + T0.

• G(Θ̃|Ξ): The model can be written in state-space form:

Zt+h = βhXt +
(
Im Im × θ1 . . . Im × θq

)


ϵt
ϵt−1
...

ϵt−q

 (40)


ϵt
ϵt−1
...

ϵt−q

 =


0 0 . . . 0

1 0 . . . 0
...

. . .
...

...

0 . . . . . . . . .




ϵt−1

ϵt−2
...

ϵt−q−1

+


ϵt

...

0

 (41)

var



ϵt
0
...

0


 =


Ω 0 . . . 0

0 0 . . . 0
...

. . .
...

...

0 . . . . . . . . .

 (42)

We use a random walk Metropolis-Hastings step to draw Θ̃. We generate a candidate

draw using Θ̃new = Θ̃old + e, e ∼ N(0, τ). The draw is accepted with probability α =
F(Zt+h|Θ̃new,Ξ)×P(Θ̃new)
F(Zt+h|Θ̃old,Ξ)×P(Θ̃old)

where the likelihood function F
(
Zt+h|Θ̃,Ξ

)
is calculated using the

Kalman filter and the Normal prior P
(
Θ̃
)
is evaluated directly. We adjust the variance τ to

ensure an acceptance rate between 20 and 40%.
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We employ 51000 Gibbs iterations and drop the first 1000 as burn-in. We keep every 5th draw of

the remainder for inference.

Figure G.1: Coverage probabilities and inefficiency factors
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(b) Inefficiency Factors
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Notes: this figure shows the coverage probabilities for the Bayesian LP with and without lag augmentation (Panel
A) and inefficiency factors calculated using the MCMC draws of the impulse responses from the benchmark model
(Panel B).
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H Forecast Error Variance Decomposition

In this section, we use the LP estimates of Section 3 to assess the contribution of each shock to

the variance of endogenous variables at different forecast horizons. The results of this exercise are

summarised in Figure H.1, which reports the median estimates and 90% central credible sets of the

forecast error variance decomposition for the corporate income tax shock (in red) and the personal

income tax shock (in blue).3

Two main results emerge. First, at the shorter horizon of one year, the contribution of the

corporate shock is smaller relative to the personal shock, accounting for around 5 % of the variance

of GDP, as well as the variation in productivity and R&D spending. In general, the short-run

contribution of the personal tax shock is larger, estimated to be about 10% for these variables. But

as the forecast period increases, and especially at longer horizons, the contribution of the corporate

income tax shock becomes dominant, peaking around year 9 and accounting for around 20% of

the variance of GDP and investment, and 30% for productivity. In contrast, the contribution of

personal income tax changes to longer-term fluctuations tends to be lower.4

3By estimating the Mertens and Ravn (2013) VAR-type structure using local projections, we sidestep practi-
cal issues associated with computing forecast error variance decompositions using local projection IV methods (see
Plagborg-Møller and Wolf, 2022).

4These findings also echo results in earlier studies that focused more on short-term impact. Mertens and Ravn
(2012) find that Romer and Romer (2010) tax shocks explain around 20% of the output fluctuations at business
cycle frequencies, consistent with the short-term results in Appendix Figure H.1. Cloyne (2013) finds that narrative-
identified tax shocks in the U.K. account for around 25% of productivity variation, 20% of GDP, 15% of investment
and consumption at the ten-year horizon. McGrattan (1994) finds that labor taxes account for around 25% of the
in-sample variance of output and capital taxes around 5% at business cycle frequencies, using a completely different
VAR-based identification approach.
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Figure H.1: Forecast Error Variance decomposition
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bution of corporate tax changes are shown in the red lines (posterior median and 68 percent band) and the shaded
area (90% band). The line with circles shows the contribution of the personal tax shock, with the posterior 68 % (90
%) bands shown by the dotted (dashed) lines.
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I Response of Consumption, Investment and labor market

Figure I.1: Response of Investment, Consumption Expenditure, Real Wages and Labour Produc-
tivity to a Corporate Tax Shock
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Notes: responses to a 1% cut in the corporate income tax. Shadow areas show the 68% and 90% confidence intervals/central
68th and 90th credible sets.
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J The Effects of Personal Income Tax shocks

Figure J.1: Response of Tax Rate, TFP, R&D spending and GDP to a Personal Income Tax Cut
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cut. The left (right) column plots responses estimated via direct (Bayesian) local projections; see Section
2.2 for details on methodology and Appendix C for data description. Shadow areas show the 68% and 90%
confidence intervals/central 68th and 90th credible sets.
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K Robustness checks

Frequentist estimates of the Direct model and LPIV. We present two cases:

1. using narrative measures as instruments. In Figure K.1, we present impulse responses

estimated using the frequentist approach. The figure shows estimates obtained using the

standard (2SLS) and the smoothed version of LPIV (Barnichon and Brownlees (2019)). As

noted in the text, these regressions use the narrative measures of Mertens and Ravn (2013)

as regressors/instruments.

Figure K.1: Responses of GDP, TFP and R&D expenditure to Corporate and Personal Tax Changes
using alternative local projection models
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Notes: responses of the average tax rates, real GDP, and TFP to a 1% cut in the average rate of corporate income taxes
(left column) and the average rate of personal income taxes (right column). Red and grey shadow bands represent 90
percent confidence intervals using robust standard errors.

Weak instrument robust error bands. Figure K.2 shows LPIV estimates with error

bands constructed by inverting the Anderson and Rubin (1949) test statistic. While these

error bands are generally wider, the medium-term effects of corporate tax shocks are still

significant.

2. using VAR shocks as instruments. In this exercise, we use the structural tax shocks

estimated by the VAR of Mertens and Ravn (2013) as instruments. One advantage of this

approach is that the VAR shocks are orthogonal by construction and each of them can be

used to instrument the two tax rates separately. We proceed in the following steps:
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Figure K.2: LPIV estimates with Anderson and Rubin (1949) error bands

Quarters

5 10 15 20 25 30 35 40

-10

-5

0

5

10

ACITR

Quarters

5 10 15 20 25 30 35 40

-2

0

2

4

6

8

10

12

14
GDP

Quarters

5 10 15 20 25 30 35 40

0

5

10

15

20

TFP

Quarters

5 10 15 20 25 30 35 40

-5

0

5

10

15

20

R&D

Notes: Impulse responses using IV estimates of local projections. The shaded areas are the Anderson and Rubin
(1949) 90% error bands, respectively.

(a) estimate Mertens and Ravn (2013) VAR and obtain the estimates of structural corporate

and personal tax shocks (zct and zpt, respectively), which are orthogonal by construction.

(b) we then estimate the following regression:

Zi,t+h = c(h) +B
(h)
1 xt +

L∑
j=1

b
(h)
j Zt−j + ut+h, ut+h ∼ N(0, σh) (43)

where xt is the endogenous variable (i.e. either the corporate or the personal tax rate)

which is instrumented by the appropriate shock obtained in step 1. As the instruments

are orthogonal by construction, the remaining shock does not need to be included as

a contemporaneous control. The matrix Z denotes the 8 variables considered in the

benchmark specification and L is set equal to 1.

The IRFs are given by B
(h)
1 ; error bands use Robust standard errors. Figure K.3 reveals that

the LPIV estimates broadly support the benchmark results. We reach similar conclusions

when we employ the smooth local projections (SLP) of Barnichon and Brownlees (2019).

Bias correction and control lags in the frequentist Direct model. In small sample, OLS

estimates of impulse responses from LPs can be biased (Herbst and Johannsen, 2020, Li et al.,

2024). In this Appendix, we also report the IRFs from model (1) using the bias correction proposed

by Herbst and Johannsen (2020) and different lag lengths. Appendix Figure K.4 below shows that

the responses of the average tax rate, TFP, R&D and GDP are close to those reported in Figure 1

and virtually never outside their 90% confidence intervals.
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Figure K.3: LPIV estimates using Mertens and Ravn (2013) VAR shocks as instruments
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Notes: Impulse responses using IV estimates of local projections.The black lines show TSLS estimates, while the
dotted red lines are smoothed local projections. The shaded areas are the the 90% error bands, respectively. These
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Impulse response from a BVAR with long-lags In this section we present impulse responses

from a Bayesian VAR model that includes 32 lags. The choice of the lag length reflects our interest in

the response at medium/long-run horizons (see Baumeister (2025), Antolin-Diaz and Surico (2025)).

The VAR model is defined as:

Zt = c+

32∑
l=1

BlZt−l +A0ϵt (44)

where Zt denotes matrix of endogenous variables that includes the following 5 variables in our basic

model: (i) APITRt, (ii) ACITRt, (iii) ln (Gt) , (iv) ln (GDPt) , (iv) ln(DEBTt). We successively

add R&D and TFP to this basic model to obtain the response of these additional variables. We

follow Antolin-Diaz and Surico (2025) and use a Minnesota prior on the VAR coefficients along with

the dummy initial observation prior of Sims (1993). The parameters governing the tightness of these

priors are assumed to be unknown and estimated along with the VAR parameters (see Giannone

et al. (2015)). We show exactly the same identification scheme as in the benchmark Bayesian LP,

using the narrative proxies and the approach of Mertens and Ravn (2013) to obtain the relevant

columns of the A0 matrix.

Figure K.5 shows that the VAR responses are qualitatively similar to the benchmark LP. Impor-

tantly, they support the assertion that that the corporate tax shock has a persistent and long-lasting
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Figure K.4: Response of real GDP, TFP and R&D to corporate tax shocks using Herbst and
Johannsen (2020)’s bias correction and up to six lags of control variables
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Notes: shaded areas and solid red lines are point estimates and 90% bands of the Direct LP estimates in Figure 1.

impact on real GDP, TFP and R&D.

Bayesian LP with MA residuals. In Figure K.6, we use the Bayesian LPs described in section

G.2. While the response of GDP, TFP and R&D to corporate shocks is more volatile than the

benchmark, the results confirm that this shock has long-lasting effects on output and productivity.

In contrast, the estimated impact of personal tax shocks is short-lived.

Alternative Specifications. In Figure K.7, we show that our main findings of persistent effects

of corporate tax changes on GDP and TFP are also robust to varying the number of lags, using

optimal priors, adding the measure of government spending shocks proposed by Ramey (2011), and

changing the ordering of the tax shocks.
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Figure K.5: Response of real GDP, TFP and R&D to corporate tax shocks using a BVAR(32)
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L Accounting and Tax Treatment of Intangibles and R&D

The treatment of intangible assets in U.S. GAAP. Intangible assets are non-physical assets

that have a quantifiable economic value and are expected to generate future benefits for a company.

Examples include patents, copyrights, trademarks, goodwill, and brand recognition. U.S. GAAP

(Generally Accepted Accounting Principles) distinguish between internally created and externally

purchased intangible assets (Ernst & Young (2024)):

• Internally created intangible assets: in most cases, the cost of developing these assets is

expensed on the income statement as it is incurred. This reflects the difficulty of reliably

measuring the value of internally generated intangibles.

• Externally purchased intangible assets: these assets are usually capitalised on the balance

sheet, meaning their cost is recorded as an asset. This occurs when a company acquires these

assets through a purchase or merger.

Amortization of purchased intangibles. Amortization refers to the systematic allocation of

the cost of an intangible asset over its estimated useful life. It’s a way of recognising the gradual
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Figure K.6: IRFs using Bayesian LP with MA residuals
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Notes: this figure shows impulse responses estimated using the Bayesian LP with residuals modelled as an MA process.
The thin lines and shaded areas are the 68% and 90% error bands.

decline in the value of an intangible asset over time, similar to how depreciation works for tangible

assets. Under Section 197 of the U.S. Internal Revenue Code (IRC), enacted as part of the Omnibus

Budget Reconciliation Act of 1993, purchased intangible assets, including goodwill, are amortized

over a 15-year period. This applies regardless of the actual estimated useful life of the asset. For

example, even if a patent has a legal life of 20 years, it will be amortized over 15 years for tax

purposes. In practice, this means that firms deduct a constant fraction of the cost of purchasing

the intangible asset from their taxable profits over 15 years. This 15-year amortization rule aims to

simplify the tax treatment of intangible assets and prevent disputes over their useful lives. Before

1993, the tax code did not contain specific provisions for the amortization of intangible assets. Still,

intangibles that had a well-defined useful life could be amortized under Section 167 of the IRC

(Douglass (1994)), which, for newly issued patents, implied an amortization period of 17 years.

Tax treatment of R&D expenditures pre-TCJA. Prior to the Tax Cuts and Jobs Act (2017)

(TCJA), IRC Section 174(a), enacted in the Internal Revenue Code of 1954, allowed companies

to deduct the full amount of Research and Experimental Expenditures (REE) in the year when

they were incurred, even if the R&D activities did not lead to the creation of a specific, identifiable

intangible asset. Prior to 1954, the U.S. tax code did not have specific provisions addressing R&D

expenditures (Guenther (2022)).
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Figure K.7: Response of real GDP, TFP and R&D: Different Specifications
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ordering of the tax shocks. See text for more discussion.

Changes introduced by the TCJA. The TCJA introduced a major change to the tax treatment

of REEs, effective for tax years beginning after December 31, 2021 (i.e., after the end of our

sample). The key change was the repeal of the option to expense REEs. Companies are now

required to capitalise all REEs and amortize them over a specified period: 5 years for domestic

research expenditures and 15 years for foreign research expenditures. The TCJA did not make

any significant changes to the tax treatment of acquired intangibles. These assets continue to be

amortized over 15 years under Section 197 of the IRC. The changes to the REE expensing regime

were reversed (for domestic R&D) with the passage of P.L. 119-21 in July 2025.
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Figure K.8: Response of real GDP, TFP and R&D to corporate tax shocks using alternative instru-
ment
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M Prior Predictive Analysis

Prior predictive analysis involves drawing a candidate Υi from the marginal prior distributions of

the parameters. For each candidate Υi, the associated set of IRFs, Φ (Υi), are computed. This is

repeated 100,000 times, thereby generating a distribution of impulse responses.5 Prior predictive

analysis allows us to elicit a number of useful insights. First, we can see the range of different possible

outcomes that the model is likely to generate given our prior distributions. Second, we can see what

our priors imply about the shorter and longer-term effects of tax changes. In Appendix Figure M.1,

we report the distributions of the model impulse responses implied by our prior distributions. The

light and dark shaded red areas report the central 68% and 90% prior credible sets of the IRF prior

distribution. The blue line with circles refers to the impulse responses of the model evaluated at

the estimated posterior median of the parameters. The main takeaway from this exercise is that

our prior distributions give far more weight to an economy in which the effects of both personal

and corporate income taxes are quite short-lived and productivity is virtually a-cyclical. As shown

in Section 5, however, the posterior distributions paint a quite different picture.

5For more details on prior predictive analysis, we refer interested readers to Leeper et al. (2017).
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Figure M.1: Prior and Posterior Distributions of the response of the main variables in the model

Notes: this figure shows the response of the average tax rates, real GDP, productivity, consumption, investment, and
R&D to a 1% cut in the average tax rate of corporate income taxes (left column) and the average tax rate of personal
income taxes (right column). Red shadow bands and solid lines represent the 90th and 68th percentiles of the prior
distribution of impulse response functions. Blue lines with circles represent the impulse responses of the model in
Section 4 evaluated at the posterior median of estimated model parameters.

27



N The Effects of Income Tax Changes in the Estimated Model

Figure N.1: Responses to Corporate Income Tax Changes

Notes: responses to a 1% cut in the corporate income tax rate. Red shadow bands represent central posterior credible sets. Blue
lines with circles represent the estimated structural model impulse responses.
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Figure N.2: Responses to Personal Income Tax Changes

Notes: responses to a 1% cut in the personal income tax rate. Red shadow bands represent central posterior credible sets. Blue
lines with circles represent the estimated structural model impulse responses.

In Figure N.2, we report that personal income tax changes are typically short-lived and their

significant effects on GDP and TFP tend to disappear by the time the shock reverts to zero, after

about three to four years. The response of R&D expenditure is modest and insignificant at all

times.

O Model Appendix

O.1 Production Sector and Endogenous Productivity

There exists a continuum of measure At of monopolistically competitive intermediate goods firms.

Each of them manufactures a differentiated product: intermediate goods firm i produces output
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Yi,t. The endogenous state variable At is the mass of intermediate goods adopted in production

(equivalently, the stock of adopted technologies). As detailed in the text, At grows as a result of

expenditures on applied research, which we call adoption. The final goods composite is the following

CES aggregate of individual intermediate goods, with θ > 1:

Yt =

(∫ At

0
(Yi,t)

1
θ di

)θ

(45)

Let Kg,i,t be the stock of capital that firm i uses, Ut denotes capital utilization (described

below), and Lg,i,t represents the stock of labor employed. Firm i produces output Yi,t according to

the following Cobb-Douglas technology:

Yi,t = (UtKi,t)
α (Li,t)

1−α . (46)

Given a symmetric equilibrium for intermediate goods, the aggregate production function is:

Yt = Aθ−1
t · (UtKg,t)

α(Lg,t)
1−α. (47)

Lg,t and Kg,t are aggregate capital and labor employed in the goods production sector.

O.2 Households and the Corporate Sector

The representative household consumes, supplies labor, saves and receives dividends from the corpo-

rate sector (described below). There is habit formation in consumption. The model differs from the

standard setup in the specification of labor supply. There are three types of labor: goods production

(g), R&D (z) and adoption labor (a). Households supply the three types of labor competitively but

choose hours Hj,t+1 one period in advance, and face a quadratic adjustment cost when changing

hours. Following the realization of uncertainty in period t, the household chooses effort, ej,t, and

we assume that the effective labor supply is given by Lj,t = Hj,tej,t. The household’s maximization

problem and budget constraint are:

max
Ct,St+1,Hj,t+1,ej,t

Et

∞∑
t=0

βt

log

(
Ct

Nt
− b

Ct−1

Nt−1

)
−

∑
j∈{g,a,z}

1 + ēje
1+χj

j,t

1 + χj

Hj,t

Nt

 , (48)

and

Ct + PS,tSt+1 =
∑

j∈{g,a,z}

[
(1− τp,t)wj,tej,tHj,t −

ψj

2

(
Hj,t+1

(1 + gn)Hj,t
− 1

)2

Ψt

]
+ Tt + St (PS,t +Dt) ,

(49)

where Ct is consumption, St are shares in the corporate sector (which trade at price PS,t), Dt are

dividends from the corporate sector, wj,t are real wages, and Tt are government transfers.6 The

symbol Ψt denotes a scaling factor that grows at the same rate as aggregate output, required to

ensure that labor adjustment costs do not vanish along the balanced growth path. The household’s

investment decisions are managed on their behalf by a representative investment fund that invests in

the physical capital stock (with associated quadratic adjustment cost), rents capital to intermediate

goods firms, finances innovation costs, and chooses the rate of capital utilization in the goods

sector, Ut, with associated cost ν(Ut)Kg,t, where ν(U) is increasing and convex. The objective

is to maximize lifetime dividends to households, discounted using the household’s discount factor,

6Changes in dividend taxes are a small part of the personal income tax measure in the Mertens and Ravn (2013)
data set. As a result, we abstract from explicitly modelling dividend taxes.
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Λt,t+1. The investment fund owns all firms in the economy. Individual firms and innovators make

the specific production, R&D and technological adoption decisions, as described earlier.

Dividends in period t are given by overall corporate sector income minus corporate taxes due:

Dt = CIt − τc,tCI
TAX
t , (50)

where CIt is net corporate income, which is GDP net of wages, investment and utilization:

CIt = Yt −
∑

j∈{g,a,z}

[
wj,tLj,t + Ij,t

(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

))]
− ν (Ut)Kg,t (51)

τc,t is the corporate income tax rate and CITAX is corporate income minus deductions for depreci-

ation and amortization. As with intellectual property assets (described above), we follow Auerbach

(1989), Mertens and Ravn (2011) and Winberry (2021) in modelling depreciation allowances for the

capital stock as a geometric process: in every period, a fraction δ̂ of investment can be deducted

from taxable profits, with the remaining portion 1-δ̂ carried into the next period. Details of the

derivation of amortization allowances and taxable corporate income are in Appendix O.3.

Factor demands. Intermediate goods firm i chooses capital services UtKi,t, and labor Li,t to

minimize costs, given the rental rate rkt , the real wage wt and the desired markup ς. Expressed in

aggregate terms, the first-order conditions from firms’ cost minimization problem are given by:

α
MCtYt
UtKg,t

= rg,t, (52)

(1− α)
MCtYt
Lg,t

= wg,t, (53)

where MCt is the real marginal cost of production. We allow the actual markup ς to be smaller

than the optimal unconstrained markup θ due to the threat of entry by imitators, as is common in

the literature (e.g Aghion and Howitt, 1998, Anzoategui et al., 2019).

Investment good producers. There are three types of capital goods in the economy, used in the

goods-producing, R&D and adoption sectors. Competitive producers use final output to produce

these goods which they sell to the investment fund, which in turn rents capital to firms. Following

Christiano et al. (2005), we assume flow adjustment costs of investment for the three types of

capital goods. The adjustment cost functions (for j ∈ {g, z, a})are fj
(

Ij,t
(1+gy)Ij,t−1

)
, with each

function increasing and concave, with fx (1) = f
′
x (1) = 0 and f

′′
x (1) > 0; and Ij,t is new capital of

type i produced in period t. The first-order conditions are:

Qj,t = 1 + fj

(
Ij,t

(1 + gy) Ij,t−1

)
+

Ij,t
(1 + gy) Ij,t−1

f ′j

(
Ij,t

(1 + gy) Ij,t−1

)
−βEtΛt,t+1

(
1− τc,t+1

1− τc,t

)
(1 + gy)

(
Ij,t+1

(1 + gy) Ij,t

)2

f ′j

(
Ij,t+1

(1 + gy) Ij,t

)
,

(54)

where Qj,t is the price of type j capital.

Price Setting. Nominal prices are set on a staggered basis following the Calvo adjustment rule.

Denoting by ξp the probability that a firm cannot adjust its price, by π̂t the inflation rate and by m̂ct
the marginal cost in log-deviation from steady state, the Phillips curve reads π̂t = κpm̂ct+βEt[π̂t+1]

with slope κp =
(1−ξpβ)(1−ξp)

ξp
.
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Fiscal Policy. The government’s budget constraint is given by:

Ḡ (1 + gy)
t − Tt = τp,t

 ∑
j∈{g,a,z}

wj,tLj,t

+ τc,tCI
TAX
t , (55)

For simplicity, the government finances consumption using personal and corporate income taxes;

lump sum taxes adjust to balance the budget every period. The process of tax rates τc,t and τp,t

log (τxt ) = (1− ρτx) τ̄
x + ρτx log

(
τxt−1

)
+ ετxt , (56)

follows an AR(1) process in logs for x ∈ {c, p}, with ρτx ∈ (0, 1), and ετxt ∼ N (0, 1) is i.i.d..

Monetary Policy. The nominal interest rate Rn,t+1 is set according to a Taylor rule Rn,t+1 =((
πt
π̄

)ϕπ
(
Lt

L̄

)ϕy
Rn

)1−ρR

(Rn,t)
ρR where Rn is the steady state nominal rate, π̄ the target rate of

inflation, Lt total effective labor supply and L̄ steady-state labor supply; ϕπ and ϕy are the feedback

coefficients on, respectively, the inflation gap and the capacity utilization gap, measured as in

Anzoategui et al. (2019).

Resource Constraint. Finally, the aggregate resource constraint is given by:

Yt = Ct+
∑

j∈{g,a,z}

[(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

))
Ij,t +

ψj

2

(
Hj,t+1

(1 + gn)Hj,t
− 1

)2

Ψt

]
+ν (Ut)Kt+Ḡ (1 + gy)

t .

(57)

O.3 Derivation of Taxable Corporate Income

Taxable corporate income is corporate income minus amortization and depreciation allowances for

capital and intellectual property assets. To derive this, we start by defining corporate income:

CIt = Yt − wg,tLg,t − rg,tKg,t − Pa,t∆At︸ ︷︷ ︸
Goods-producing firms

+
∑

j∈{g,a,z}

(rj,tKj,t −Qj,tIj,t)− ν (Ut)Kt︸ ︷︷ ︸
Investment firm

+
∑

j∈{g,a,z}

(
Qj,tIj,t − Ij,t

(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

)))
︸ ︷︷ ︸

Capital-producing firms

+Pz,t∆Zt − wz,tLz,t − rz,tKz,t︸ ︷︷ ︸
R&D firms

+Pa,t∆At − wa,tLa,t − ra,tKa,t − Pz,t∆Zt︸ ︷︷ ︸
Adoption firms

,

(58)

where ∆At ≡ At+1−ϕAt and ∆Zt ≡ Zt+1−ϕZt are the measures of newly adopted and discovered

technologies, respectively, such that the terms in red are the aggregate entry costs in the goods-

producing and adoption sectors (which are equal to the aggregate revenues of the adoption and

R&D sectors). Netting out terms, corporate income is given by:

CIt = Yt −
∑

j∈{g,a,z}

[
wj,tLj,t − Ij,t

(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

))]
− ν (Ut)Kg,t, (59)

which is real output minus wages and the cost of investment in each of the goods-producing, adoption

and R&D sectors, and utilization cost in the goods-producing sector. Consistent with the U.S. tax
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code, in the model firms deduct depreciation and amortization from taxable profits to arrive at

taxable income. We model these allowances as a geometric process in which a fraction δ̂ of the

value of investments can be deducted from profits each period. Denoting amortization allowances

by Ξ, the laws of motion for aggregate allowances in capital and intellectual property products are

given respectively by:

ΞIP,t+1 =
(
1− δ̂IP

)
(ΞIP,t + PZ,t∆Zt + PA,t∆At) (60)

ΞK,t+1 =
(
1− δ̂K

)ΞK,t +
∑

j∈{g,a,z}

Qj,tIj,t

 (61)

Depreciation allowances at t + 1 are 1 − δ̂• times the sum of depreciation allowances at t and the

value of new investments in the three types of capital and the two types of intellectual property

products. Using this notation, taxable corporate income is:

CITAX
t = CIt + ν (Ut)Kg,t − δ̂K

ΞK,t +
∑

j∈{g,a,z}

Qj,tIj,t

− δ̂IP (ΞIP,t + PZ,t∆Zt + PA,t∆At)

(62)

To arrive at taxable corporate income, we add back a non-deductible expense (capital utilization)

and subtract the depreciation allowances that reduce the corporate sector tax liabilities.

P Long-run elasticities

In the paper, we study responses to temporary tax changes. In this Appendix, we examine the

model’s ability to generate plausible magnitudes in response to permanent tax changes. For this

purpose, we use our estimated model (Table 2) to compute the elasticities of the stock of knowledge

(Z) to a 1% permanent change in the marginal rates on corporate and personal taxes, and compare

them to the estimates reported in Akcigit et al. (2021).

Table P.1: Long-run elasticity of innovation to permanent tax rate changes

Estimated Model Literature

Corporate Income Tax 1.71 1.98∗∗∗
[1.50,2.46]

Top Personal Income Tax 1.34 1.452∗∗∗
[1.22,1.68]

Bottom Personal Income Tax -0.17 1.668
[-0.69,4.03]

Note: This table compares the effects of permanent tax shocks on the stock of unadopted technology (Z) in our
estimated structural model to the effects on patents reported in Akcigit et al. (2021), Table 3, panel A (corporate
– corp. MTR – and top personal income tax – MTR90) and Table C8 (bottom personal income tax – MTR50).
Innovation workers pay the highest personal income tax in the model, while workers in the goods production sector
pay the bottom personal income tax. The first column reports elasticities implied by the estimated model (see Table
2). The second column reports the estimates in Akcigit et al. (2021). As in that paper, elasticities are computed with
respect to the ‘keep’ rate (1-tax rate).

Our findings are reported in Table P.1. The first row reports elasticities to a 1% permanent

change in the marginal corporate tax rate, whereas the second (third) row refers to a 1% permanent

change in the marginal personal tax rate at the top (bottom) of the income distribution. The
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first column refers to the elasticities implied by the estimated model, where scientists (workers)

exemplify top (non-top) earners. The second column reports the elasticities of patents in Akcigit

et al. (2021), who exploit historical variation across U.S. states to estimate the effects of permanent

changes in marginal tax rates.

For the marginal tax rates on corporate income and top personal incomes (the first two rows),

our baseline structural model generates elasticities of the stock of knowledge that are within the

95% intervals for patent elasticities estimated by Akcigit et al. (2021). The model also predicts that

patents should not move much following a tax rate change at the bottom of the income distribution,

which is consistent with the insignificant coefficient estimated by Akcigit et al. (2021).

Q Social Returns to R&D

The social returns to innovation are calculated as the return in additional units of consumption

relative to the balanced growth path of reallocating one unit of output from consumption to R&D

today, and consuming the proceeds in the future. In our model, the future proceeds from an increase

in R&D today are the sum of the two components in the Jones and Williams (1998) calculation,

plus a novel dimension due to the adoption margin: (i) the additional output generated, (ii) the

future reduction in R&D such that the subsequent stock of unadopted technologies is unchanged,

and (iii) the future reduction in adoption expenditure such that the subsequent stock of adopted

technologies is unchanged.

Following Jones and Williams (1998), the production function for new unadopted technologies

is given by a function G of research efforts and the stock of unadopted technologies:

Zt+1 − ϕZt = G (Xz,t, Zt) = Z1+ζ
t Xρz

z,t

The increase in technology associated with a marginal change in research effort is

∇Zt+1 =

(
∂G

∂Xz

)
t

,

where ∇ denotes the change relative to the balanced growth path. Note that Xz,t is in units of the

R&D good, which is produced using R&D labor and capital. Denoting by PXz,t the price of this

composite good, 1 unit of consumption yields P−1
Xz,t units of the R&D good. Since we are computing

the return in terms of consumption, the relative prices of R&D and adoption will be used in the

calculation.

To determine how much consumption is gained in time t + 1 from the reduction in R&D that

returns Z to its balanced growth path, note that Zt+2 − ϕZt+1 = G (Xz,t+1, Zt+1) and that the

deviation of Z from its balanced growth path is given by:

∇Zt+2 = ∇Zt+1 +

(
∂G

∂Xz

)
t+1

∇Xz,t+1 +

(
∂G

∂Z

)
t+1

∇Zt+1

where the terms are, respectively: the deviation in Z occasioned by the increase in research effort;

the reduction in Z from a cut in research effort; and the change in research efficiency as a result of

additional technologies. The gain in consumption from returning Z to its balanced growth path is
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found by setting ∇Zt+2 = 0:

∇Xz,t+1 = −

(
∂G
∂Xz

)
t(

∂G
∂Xz

)
t+1

((
∂G

∂Z

)
t+1

+ 1

)
.

Following the same logic, the change in adopted technologies at t+1, which determines the change

in output, is given by At+2 − ϕAt+1 = ϕλt (Zt+1 −At+1).

Note that, because there is a one period delay between when technologies are discovered and

when adopters can start working to adopt them, the initial change in R&D affects the stock of

adopted technologies, and therefore output, at time t + 2. Defining ∇At+2 as the deviation in

adopted technologies from the balanced growth path,

∇At+2 = ∇Zt+1
∂At+2

∂Zt+1
= ∇Zt+1

(
ϕ

(
(Zt+1 −At+1)

(
∂λ

∂Z

)
t+1

+ λ

))
.

The change in technologies has two components: (i) an increase in Zt increases adoption efficiency, so

any technology is more likely to be adopted; (ii) λ∇Zt+1 extra technologies are adopted. At t+ 2,

the contribution to output of these additional technologies is given by ∇Yt+2 =
(
∂Y
∂A

)
t+2

∇At+2

Furthermore, at t+ 2, the deviation in the stock of adopted technologies is given by:

∇At+3 = ∇At+2 +

(
∂λ

∂Xa

)
t+2

∇Xa,t+2,

and as with R&D, we compute the reduction in adoption expenditure that returns the economy to

the balanced growth path by solving for the value of ∇Xa,t+2 such that ∇At+3 = 0:

∇Xa,t+2 = − ∇At+2(
∂λ
∂Xa

)
t+2

Grouping all terms, the social return to R&D is given by

1 + r̃RD = β2
(
∂Y

∂A

)
t+2

∇At+2

PXz,t
+ β2

PXa,t+2

PXz,t

∇At+2(
∂λ
∂Xa

)
t+2

+ β
PXz,t+1

PXz,t

(
∂G
∂Xz

)
t(

∂G
∂Xz

)
t+1

((
∂G

∂Z

)
t+1

+ 1

)
,

where β and β2 terms appear because the gains happen at different times, and each of the terms is

scaled by the relative price of the R&D goods at t and t+1 or the adoption good at t+2, which con-

verts all terms into units of consumption in the given time period, relative to price of R&D goods at

time t. Defining the social cost of a new idea in units of consumption as P̃Z,t =
(
∇Zt+1

PXz,t

)−1
, and gP̃Z

as the growth rate of the social cost, and d̃t =
β

P̃Z,t

(
β ∂At+2

∂Zt+1

((
∂Y
∂A

)
t+2

+
PXa,t+2(
∂λ

∂Xa

)
t+2

)
+ P̃Z,t+1

(
∂G
∂Z

)
t+1

)
,

we obtain the expression in the main text,

r̃RD =
d̃t

P̃Z,t

+ gP̃Z . (63)

The “social dividend” of R&D has three components: the increase in output, the decrease in

adoption expenditures, and the change in the efficiency of R&D. The social return on R&D is a
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function of (i) model parameters, namely gn (the population growth rate) and β (the discount

factor), plus the parameters of the endogenous growth block of the model (θ, ρz, ρλ, ϕ, ζ, λ̄; see

Tables 1 and 2 for definitions); and (ii) the expenditure shares of R&D and adoption, which are in

turn also functions of parameters, including the tax parameters (τ̂c, δ̂IP , and to a lesser extent τ̂p
and δ̂K).

Endowed with Equation (63), we use the posterior distributions in Table 2 to calculate the social

returns to R&D implied by our structural model. We estimate that the social returns to investment

in innovation, r̃RD, range from 20.8% to 74.5% (95% confidence level), with a posterior median of

35.9%. Excluding the consumption gains to adoption from the social dividend lowers this interval

to [14.9%,40%] with a median value of 22%, highlighting the importance of the complementarity

between R&D and adoption in determining the social returns to innovation.

R Estimates of the model with no endogenous growth

This section reports the prior and posterior distributions of the parameters in the structural model’s

restricted specification, excluding technological adoption and R&D expenditure. The main differ-

ence relative to Table 2 is that the investment adjustment cost parameter is significantly higher than

the estimates based on the model with endogenous growth. Furthermore, and in sharp contrast to

Table 2, the estimate of this parameter in Table R.1 is in line with the available estimates in the

business cycle literature on DSGE model (see for instance Smets and Wouters, 2007, Justiniano

et al., 2010), which typically assume an exogenous growth path.
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Table R.1: Estimated Parameters - No technological adoption or R&D spending

Parameter Description Prior Baseline No Adoption No R&D
Distr Mean Std. Dev. Median 90% int. Median 90% int. Median 90% int.

Preference & HHs
h Consumption habit beta 0.5 0.2 0.34 [0.12, 0.59] 0.41 [0.15, 0.66] 0.48 [0.2, 0.72]
χg Inverse effort elasticity (goods) gamma 1 0.5 0.47 [0.22, 0.93] 0.44 [0.19, 0.89] 0.47 [0.22, 0.96]
χa Inverse effort elasticity (adoption) gamma 1 0.5 0.67 [0.29, 1.4] - - - -
χz Inverse effort elasticity (R&D) gamma 1 0.5 2.04 [1.37, 3.04] 0.2 [0.06, 0.56] - -

Frictions & Production
f ′′
a Adoption adjustment normal 4 1.5 3.86 [1, 6.4] - - - -
f ′′
z R&D adjustment normal 4 1.5 3.33 [0.82, 5.87] 4.59 [2.13, 6.96] - -
f ′′
I Investment adjustment normal 4 1.5 0.36 [0.05, 0.94] 0.31 [0.04, 0.84] 1.62 [0.88, 2.66]
ν′′ Capital utilization adjustment beta 0.6 0.15 0.74 [0.66, 0.82] 0.65 [0.56, 0.75] 0.52 [0.44, 0.6]
ξp Calvo prices beta 0.5 0.2 0.2 [0.07, 0.33] 0.18 [0.06, 0.31] 0.16 [0.06, 0.3]

Endogenous Technology
θ-1 Dixit-Stiglitz parameter gamma 0.15 0.1 0.58 [0.43, 0.79] 0.39 [0.23, 0.65] - -
ρλ Adoption elasticity beta 0.5 0.2 0.78 [0.66, 0.87] - - - -
ρZ R&D elasticity beta 0.5 0.2 0.2 [0.12, 0.29] 0.67 [0.48, 0.86] - -

Shocks
ρτ,c Corporate taxes AR beta 0.85 0.07 0.95 [0.95, 0.96] 0.94 [0.93, 0.95] 0.95 [0.94, 0.95]
ρτ,p Labour taxes AR beta 0.85 0.07 0.83 [0.8, 0.85] 0.83 [0.81, 0.85] 0.86 [0.84, 0.88]
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S Sectoral Evidence

We consider the impact of corporate income tax shocks on Gross Output and Gross value added

in 28 industries using BEA sectoral annual data. Our goal is to investigate whether the effects of

corporate taxes are different for industries classified as R&D intensive. We adopt a simple approach

and estimate the following frequentist panel LPIV model for high- and low-R&D intensive sectors:

ZK
i,t+h = c

(h)
i + β(h)τct,t + θ(h)ϵpt,t + b(h)Xt−1 + ui,t+h

where K denotes either the low- or high-R&D intensity group of industries. High R&D intensity is

defined as sectors where the time-average of R&D intensity is above the median across all industries.

i = 1, . . . , N indexes the N sectors in each group and t denotes the time dimension. The model

allows for fixed effects and uses the narrative measure of Mertens and Ravn (2013) of corporate

tax changes to instrument the tax rate τct. We control for personal tax shocks by adding the

narrative measure for personal tax shocks ϵpt,t as a contemporaneous control. We add a lag of the

dependent variable, real GDP, debt to GDP ratio, the two tax rates and aggregated version of the

principal component as lagged controls X. The model also includes a dummy variable that equals

1 in 2008 and 2009 to account for the Great Financial Crisis. The confidence intervals are based

on Driscoll and Kraay (1998) standard errors. Solid lines refers to median estimates while shaded

areas represent 68% and 90% confidence intervals.

In Figure S.1, we report the dynamic effects of a corporate tax cut on Gross Output (top panel)

and Gross Value Added (bottom panel) in the two groups of industries. The medium-term response

of the high-R&D sectors, in red, is larger and more persistent than the change among low-R&D

industries, in black, at horizons beyond 5 years.

Figure S.1: GO and GVA responses to corporate tax shocks by high- and low-R&D intensity sectors
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Notes: 68% (90%) bands are shown as the lines and shaded area, respectively. The response to a 1% cut in the average
corporate tax rate is displayed in red for high-R&D intensity sectors and in black for low-R&D intensity industries.
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