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1 Introduction

A firm’s fundamental risk is closely linked to the joint dynamics of its revenue and costs. Variable
costs, which include expenses on intermediate inputs such as raw materials, energy, and wages
of production workers that are directly related to firm’s production, are economically large — at
approximately two-thirds of revenue on average — and highly correlated with aggregate revenue
fluctuations. Moreover, aggregate variable costs are more volatile than aggregate revenue: using
data on manufacturing industries from National Bureau of Economic Research - U.S. Census Bu-
reau’s Center for Economic Studies (NBER-CES) from 1958 to 2011, we find that a one percentage
change in aggregate revenue is associated with 1.14% change in aggregate variable costs, and only
0.74% change in the aggregate gross profit (measured by value added). Thus, variable costs create
an operating hedge effect in firms’ cash flows, which in turn generates predictable cross-sectional
differences in systematic stock return risk.!

We analyze quantitative implications of the operating hedge mechanism in a partial-equilibrium
dynamic structural model. Firms in our model produce output using a production function with a
constant elasticity of substitution (CES) between capital and variable inputs. Capital investment
decisions are lumpy and irreversible, while firms can adjust the quantity of their variable inputs
flexibly over time in response to both aggregate and firm-specific profitability shocks.? If the price
of variable inputs is pro-cyclical with respect to the aggregate profitability shocks, and variable
inputs complement physical capital in the production function, firms reduce their variable inputs
in response to a negative aggregate profitability shock to such an extent that their variable costs
fall more (in proportion) than their revenue. Variable costs thus offer a natural hedge against
aggregate profitability shocks.

The strength of the operating hedge effect in our model is naturally related to firms’ gross

'In this paper we analyze the operating hedge effect due to variable production costs, which stands in contrast to
the operating leverage effect driven by fixed operating costs. This concept is distinct from the strategic “operational
hedging” of risks, such as foreign exchange risk.

2Because our model is set in partial equilibrium, we do not delineate the exact origins of the aggregate profitabil-
ity shock affecting the entire population of firms. These shocks reflect the technological shocks affecting profitability
across all firms, as well as aggregate “demand” shocks, which may originate as shocks to investors’ beliefs or tastes,
or be driven by government spending shocks. What is important for our purpose is that such common profitability
shocks create correlated movements in firms’ profits relative to their output.



profitability. Consider the effect of heterogeneous firm-specific profitability. Because the market
price of variable inputs is not affected by the firm-specific profitability shocks, firm’s revenue
rises more with firm-specific profitability shocks than its variable costs when physical capital and
variable inputs are complements. Therefore, for more profitable firms (firms with higher gross
profit per unit of capital), variable costs constitute a lower fraction of revenue. Such firms thus
benefit less from the operating hedge, and have higher exposure of profits to aggregate profitability
shocks relative to less profitable firms. This result, combined with a positive premium on aggregate
profitability shocks, implies a positive gross profitability premium in our model.

Our empirical analysis confirms that variable costs act as an operating hedge, and that this
mechanism helps generate the gross profitability premium in stock returns. In particular, using
data from Compustat, we find that the aggregate gross profit is less volatile than aggregate revenue
and has elasticity with respect to revenue lower than one. In our model, this is sufficient for the
gross profitability premium to arise. We also find that the gross profitability factor in stock returns
covaries positively with the difference in profit growth between high- and low-gross-profitability
firms, which supports the central implication of the model — that high-gross-profitability firms
have higher exposure of their cash flows to the systematic profitability shock. Moreover, we show
that this pattern is driven primarily by the operating hedge mechanism: systematic risk of revenue
and variable costs is flatter across firms with different profitability, but high-gross-profitability
firms tend to have a lower ratio of variable costs to revenue.

In our model, the profitability and value factors, based on standard empirical sorts on gross
profitability and book-to-market ratios, are distinct and negatively correlated. This addresses an
empirical puzzle that has challenged many earlier models (see Novy-Marx, 2013), where highly
profitable firms tend to be growth firms, and the main mechanism for the value premium generates
counterfactual implications for the profitability premium. The value premium in our model arises
because firms with a higher value of growth opportunities relative to the value of their assets in

Y

place, the “growth firms,” are more exposed to the investment-specific (or capital-embodied) tech-
nology shocks, which follows the development in Kogan and Papanikolaou (2013, 2014). Sorting

firms in the model on their market-to-book ratios creates a value factor, which loads heavily on the



aggregate investment-specific technology shock. The value factor and the gross profitability factor
have different risk exposures. Both factors load negatively on the aggregate investment-specific
technology shock. However, the gross profitability factor loads positively on the systematic prof-
itability shock, while the value factor has a negative loading, because growth firms tend to be
more profitable on average. This negative loading accounts for the negative correlation between
the two factors in our model.

We estimate our model using the simulated method of moments, targeting the aggregate and
cross-sectional moments on quantities, firm characteristics, and stock prices and returns. Our
structural estimation implies a pro-cyclical variable input price in the model, with a loading
on aggregate profitability shocks of 0.309, and an elasticity of substitution between capital and
variable inputs of 0.696 — a combination of parameter estimates consistent with the sufficient
condition for more profitable firms to have higher systematic cash flow risk, stated in Section 2.1,
equation (8). Our model generates economically large and empirically plausible cross-sectional
differences in expected stock returns. The annualized gross profitability premium in the model,
based on the value-weighted quintile portfolio returns sorted on gross profitability, is 4.32%, which
is close to the empirical premium of 3.70% over our 1963-2019 period. Similarly, the value premium
is 3.11% in the model, relative to 4.21% in the data. Our model also reproduces the failure of
the CAPM to capture these two return premia. Importantly, as in the data, more profitable firms
have higher market-to-book ratios in our model, and the two corresponding return factors — the

gross profitability and the value factors — are negatively correlated.

Relation to the prior literature

We uncover a novel economic effect in firms’ cash flow risk — a natural hedge induced by the
cyclicality of variable costs. Our results complement several prior studies in the literature, which
analyzed the implications of operating leverage for systematic risk in cash flows and stock returns.
Carlson, Fisher, and Giammarino (2004) and Zhang (2005), two prominent early contributions to
this literature, show how operating leverage can generate a value spread in stock returns. Novy-

Marx (2010) proposes an empirical measure of operating leverage and documents its positive



predictive power for the cross-section of stock returns. Novy-Marx (2013) highlights an important
tension between the operating-leverage based explanations of the value premium and related return
patterns, and the profitability premium. Our paper does not rely on operating leverage as the
mechanism for the value premium, and thus does not suffer from the same limitation.

Our study is also related to the literature on the effects of labor costs on stock returns. Danthine
and Donaldson (2002) emphasize wage rigidity as an important source of operating leverage, and
show that this mechanism helps raise equilibrium equity premium and stock market volatility.
Favilukis and Lin (2016) study a dynamic general equilibrium model and find the interaction
between wage rigidity, labor-induced operating leverage, and financial leverage is quantitatively
important to understand the equity premium and the value premium. Donangelo, Gourio, Kehrig,
and Palacios (2019) document that firms with high labor shares have higher expected returns
than firms with low labor shares. Favilukis, Lin, and Zhao (2020) document that the labor
market frictions play a first-order role in the credit market. They show that wage growth and
labor share help forecast aggregate credit spreads and debt growth. All of the above papers
emphasize stickiness of wages of existing workers (selling, general, and administrative (SG&A)
expenses, which include a labor component, also tend to have low cyclicality). Our study offers a
complementary perspective that emphasizes the impact of highly cyclical variable input costs.

Our paper contributes to the growing literature on the relation between firm stock returns
and firm characteristics, such as firm profitability and valuation ratios. While the value premium
has been extensively studied in the literature,® the economic mechanism behind the profitability
premium is not as well understood. Kogan and Papanikolaou (2013) show that firm heterogeneity
in growth opportunities gives rise to a sizable profitability premium. All cross-sectional return
factors in their model are driven by investment-specific technological shocks, and hence their model
cannot generate a profitability factor in returns that has a low or even a negative conditional

correlation with the value factor. In our model, the operating hedge and the positive exposure

3Studies on the value premium include Lakonishok, Shleifer, and Vishny (1994), Berk, Green, and Naik (1999),
Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Zhang (2005), Lettau and Wachter
(2007), Garleanu, Kogan, and Panageas (2012), Choi (2013), Ai and Kiku (2013), Ai, Croce, and Li (2013), Kogan
and Papanikolaou (2014), Donangelo (2021), Kogan, Papanikolaou, and Stoffman (2020) among many others.



of the gross profitability factor to the aggregate profitability shocks are the primary sources of
the gross profitability premium. Ma and Yan (2015) extend the idea of Garlappi and Yan (2011)
and find that the performance of the value and gross profitability strategies varies with credit
conditions. Their model has a single firm-level state variable, and, like the models of the value
premium based on operating leverage (e.g., Carlson, Fisher, and Giammarino, 2004; Zhang, 2005),
cannot generate positive gross profitability and value premia simultaneously. Ai, Li, and Tong
(2021) find that a general equilibrium model with heteroneity in the persistence of productivity
shocks can account for the coexistence of profitability and value premiums. Dou, Ji, and Wu
(2020) develop a model for the industry profitability premium and industry value premium by
embedding oligopolistic competition within an endowment economy. Dou, Ji, and Wu (2021)
study the industry gross profitability premium in an asset pricing model with dynamic strategic
competition. In their model, firm’s tradeoff between short-term benefits of higher revenue and
long-term costs of being in a price war with its competitors gives rise to a higher profitability
for industries with more persistent leadership, as well as higher risk exposure to discount rate
variations. Wang and Yu (2015) and Lam, Wang, and Wei (2014) compare the risk-based and
behavioral explanations of the gross profitability premium and argue that the empirical evidence is
more consistent with investors’ under-reaction to news about firms’ fundamentals. Akbas, Jiang,
and Koch (2017) find that recent trajectory of a firm’s profits predicts future profitability and stock
returns. Bouchaud, Krueger, Landier, and Thesmar (2019) propose a theoretical explanation for

the profitability premium based on sticky expectations.

2 Operating hedge and the gross profitability premium

In Section 2.1, we introduce the main element of our model, the production function, and show how
variable costs give rise to an operating hedge in firm’s profits, and why profits of more profitable
firms may have higher systematic risk. Our empirical analysis in Section 2.2 provides evidence in

support of the operating hedge mechanism.



2.1 The production function and operating hedge

Consider a firm using two types of inputs to produce output: physical capital K and variable
inputs £. The production function features a constant elasticity of substitution (CES) between
capital and variable inputs. The firm’s gross profit 11 is the difference between revenue and input

costs:

I = max(Y — PE) = max {Z (E* + (XK)"T’I) [ PE] , (1)

where Y is the output; P is the price of variable inputs; Z is an idiosyncratic, firm-specific shock;
X is the systematic shock to firm profitability, common to all firms, and n > 0 measures the
elasticity of substitution between capital and variable inputs.* Firms take the price of variable
inputs (P) as given and choose the quantity of variable inputs (E) to maximize their gross profit.

We assume that the price of the variable input is a function of the systematic profitability X:
1nP:p0+pllnX7 (2)

where py and p; capture the level and the cyclicality of the variable input price.

Proposition 1 With the production technology described above and assuming p; > 0, the risk

exposure to the systematic profitability shock is higher for gross profit than revenue, i.e.,

Olnll OlnY

OlnX OlnX <0, (3)

if and only if capital and variable inputs are complements in the production function, i.e., n < 1.

Proof: See Appendix.

This result describes the operating hedge effect in our model. When variable input price is

procyclical (p; > 0) and the two production inputs are complements (1 < 1), the firm’s expenditure

4We model the aggregate profitability X multiplying capital stock K to capture inputs being procyclical with
respect to aggregate profitability. The qualitative results on the operating hedge and gross profitability premium
n

-1 -1\ 7=1
remain if we use an alternative production function ¥ = ZX (EUT + K WT) T

6



on the variable input rises more than its revenue in response to a positive systematic profitability

J1Inll
Oln X

shock, lowering the systematic risk of its profit. In this static model, fx = is also the

systematic risk exposure of the firm, given by

_omn_ de<za)T

=gy~ T amx \ XKk

(4)

Next, consider how the firm’s revenue, variable cost, and gross profit respond to the idiosyncratic

profitability shock Z. The following proposition summarizes the results.

Proposition 2 When there is a positive idiosyncratic profitability shock, a firm’s cost of variable

mput rises less than its revenue, that is,

Oln(PE) 0OlnY

0lnZ _6an<0’ (5)
and its gross profit rises more than its revenue, that is,

Olnll  OlnY

oz omz (6)

if and only if capital and variable inputs are complements in the production function, i.e., n < 1.

Proof: See the Appendix.

The above result is intuitive: the magnitude by which the firm increases its use of the variable
input in response to a favorable firm-specific shock is muted because variable input and capital (a
fixed input) act as complements in the firm’s production function. Because variable input price
does not vary with the idiosyncratic shock, the variable cost responds less than revenue to the
firm-specific profitability shock. The gross profit responds more than revenue.

We now establish how the firm’s cash flow exposure to the systematic profitability shock is



correlated with its gross profitability (GP/A) . Note that gross profitability,

1
n—1

, (7)

b nT_lel
XK

is increasing in the idiosyncratic profitability shock Z. This leads to the following proposition.

GP/A=— =XZ

IT
K

Proposition 3 With the production technology described above and assuming p1 > 0, the risk
exposure of a firm’s gross profit to the systematic profitability shock increases with its gross prof-

itability, that 1s,
Ibx
oz " (8)

if and only if capital and variable inputs are complements in the production function, i.e., n < 1.

Proof: See Appendix.

As we establish above, in Equation (5), a firm with higher gross profitability (higher Z), spends
less on the variable input as a fraction of its revenue. As a result, the operating hedge effect from

variable costs is weaker for such a firm, resulting in higher systematic risk of its profit.

2.2 Empirical evidence on cash flow risk

In this section we summarize properties of firms’ cash flows relevant for our analysis. In particular,
in line with the operating hedge mechanism in Proposition 1, firms’ profits are less sensitive to
systematic profitability shocks than their revenue. The opposite being the case for firm-specific
shocks (see Proposition 2). Thus, as implied by the model in Equations (3) and (6), the operating
hedge mechanism operates with respect to the systematic profitability shocks, but not the firm-

specific shocks.

2.2.1 Data and variable definitions

We use two sources of data in this section. Our data on aggregate revenue, the price and value of

variable inputs, and gross profit (value added) are from the NBER-CES Manufacturing Industry
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Database, covering the 1958-2011 period. This database includes prices and costs related to
materials (Mat), energy (Eng), production worker wages (Prd), and office worker wages (Off)
across 459 four-digit 1987 SIC industries.® For each variable (revenue, input, gross profit), we
compute its aggregate value by summing up the corresponding values across industries, and its
aggregate price index as the weighted average of the price indices across industries using the
corresponding one-year lagged industry revenue as the weight. These value and price indices are
further deflated by the Consumer Price Index from U.S. Bureau of Labor Statistics. In line with
the definition of the cost of goods sold (COGS) in Compustat, we categorize material costs, energy
costs, and production worker wages that are directly related to the production of finished goods
as variable costs, and define the gross profit as the difference between revenue and variable cost.

We also use accounting data on publicly traded firms from the annual Compustat North Amer-
ica, and stock return data from the Center for Research in Security Prices (CRSP) (which we use
in our analysis in Section 3). Following Novy-Marx (2013), we define the gross profitability as
revenue (Compustat item REVT) minus cost of goods sold (Compustat item COGS), divided by
total asset (Compustat item AT), that is, (REVT — COGS)/AT (referred to as GP/A). We define
the book-to-market equity ratio (BM) following Fama and French (1992).% Consistent with prior
studies, we remove firms in the financial industries and only keep in our sample firms with a share
code (SHRCD) 10 or 11, and exchange code (EXCHCD) of 1, 2, or 3. Our final sample spans the

time period from July 1963 to December 2019.

2.2.2 Systematic profitability shocks and operating hedge

In this section we examine cyclicality of the aggregate revenue, variable costs, and gross profit.

These aggregate quantities are not affected by the diversifiable firm-specific shocks, and thus our

5We define the office worker wages as the difference between total payroll and the production worker wages.

6Qther variables include: financial leverage (Flev) is the sum of total debt in current liability (Compustat item
DLC) and total long-term debt (Compustat item item DLTT), divided by the sum of DLC, DLTT, and firm’s
market cap; operating leverage (Olev) is flow-based and is defined as XSGA/(REVT-COGS), where Compustat
item XSGA is the selling, general and administrative expense; Tobin’s Q (Q) is the sum of market value, long-
term debt (Compustat item DLC), preferred stock redemption value (Compustat item PSTKRV), minus the total
inventories (Compustat item INVT) and deferred tax in balance sheet (Compustat item TXDB), divided by gross
property, plant and equipment (Compustat item PPEGT); gross margin (GM) is the (REVT-COGS)/REVTS.



analysis applies to the effect of systematic profitability shocks on firms’ profits, and the basic
operating hedge mechanism, as described in Proposition 1. In Panel A of Table 1, we report
the main summary statistics — the mean and standard deviation of the ratio of various input
values to revenue (the first two rows) and the growth rate of the revenue (AlnV(Rev)), mate-
rial costs (AlnV(Mat)), energy costs (AInV(Eng)), production worker wage bills (A InV(Prd)),
total variable costs (AInV(COGS)), gross profit (AInV(GP)), and the office worker wage bills
(AInV(Off)) (the next two rows). We compute all of these using the NBER-CES Manufacturing
Industry Database. Of all types of inputs, material costs are the largest component, representing
on average 54.8% of revenue for the manufacturing industries. Production worker wages account
for about 10.8% of revenue, whereas the energy cost is about 1.9%. The ratio of the sum of these
three categories of variable costs (COGS) to revenue is about 67.6%, with a standard deviation of
3.6%. Therefore, variable cost is a highly economically important component in firm production.

In contrast to variable costs, the office worker wages are only 6.6% of aggregate revenue on average.
[Insert Table 1 Here]

Panel A also shows that, in our sample, variable costs are generally more volatile than revenue.
The volatility of aggregate revenue is 5.47% per year, as compared to 6.73% for material costs,
7.95% for energy costs, and 4.99% for production worker wages. The combined variable costs
(COGS) have an annual standard deviation of 6.36%, about 16% higher than that for revenue. In
contrast, the volatility of office worker wages is only 3.27% per year.

Panel B reports the correlation matrix of the growth rates of aggregate revenue, variable costs,
and gross profit. Growth rates of revenue and variable costs have a high correlation coefficient,
0.98. Note that the operating hedge effect requires not only that variable costs are more volatile
than revenue, but also that the two are sufficiently highly correlated.

In Panel C, we estimate the elasticity of variable costs and gross profit with respect to aggregate
revenue. We regress the growth rate of COGS on the growth rate of revenue. The estimated
coefficient suggests that a one percent increase in gross output is associated with a 1.14% increase

in variable costs, and this coefficient is significantly higher than one, which explains the low
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volatility of gross profit relative to revenue (4.79% versus 5.47%, as reported in Panel A). Further,
because of the hedge effect from variable costs, the elasticity of aggregate gross profit with respect
to aggregate revenue is 0.73. Since 0fx/0In Z in Proposition 3 and 0lnY /0In X —dInIl/0In X
in Proposition 1 share the same sign — they both depend on the sign of p; and magnitude of 7
— the above estimate is consistent with systematic risk of the firm’s cash flow increasing with
firm-specific profitability.”

We find the properties of revenue and variable costs in the NBER-CES database to be quan-
titatively similar to the public firms covered in Compustat. When we focus on manufacturing
firms in Compustat, to better align firm coverage with the NBER-CES database, the average
COGS-to-Rev ratio is 69.8%, as compared to 67.6% reported above. The estimated elasticity
of the total variable cost (COGS) with respect to revenue in manufacturing firms in Compustat
is 1.09, with 0.8 for gross profit (GP), which is again close to what we find in the NBER-CES
dataset. Furthermore, the correlation between the growth rates of revenue, variable costs, and
gross profit between these two datasets is 0.83, 0.83, and 0.72, respectively (untabulated). Since
the Compustat database does not separate variables costs into different sources (material, energy,
and production worker wage), we only focus on the total variable cost (COGS) for the remainder
of the paper.

In Panel A1 of Table 2, we summarize the statistics of the aggregate sales growth (AlogASale)
and aggregate gross profit growth (AlogAGP), which are aggregated from our sample of Compustat
firms with a fiscal year end of December. Consistent with the finding based on the data from the
NBER-CES database (Table 1), the aggregate sales growth is more volatile than the aggregate
gross profit growth (5.95% versus 5.29% per year) in Compustat. When we regress the aggregate
gross profit growth onto the aggregate sales growth, the estimated coefficient from the time-series
regression is 0.77 and close to 0.73 in Table 1, although these two databases differ in their coverage.

The above results indicate that, unlike the fixed costs (such as selling, general, and adminis-

"Here we estimate the elasticity of aggregate variable cost and gross profit with respect to aggregate revenue. In
an untabulated analysis, we find same patterns when we use the utilization-adjusted TFP growth as the proxy for
the aggregate profitability shock. For example, the elasticity of aggregate variable costs w.r.t. TFP shocks is 1.39,
which is higher than that of aggregate revenues (1.17). The difference in their TFP exposure, 0.22, is statistically
significant from zero.
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trative costs) that tend to create an operating leverage effect, aggregate variable costs are more

cyclical than aggregate revenue and hence induce an operating hedge effect.

2.2.3 Firm-specific profitability shocks

Cash flow elasticities at the firm level behave qualitatively differently from those at the aggregate
level, suggesting a qualitatively different effect of firm-specific profitability shocks on firms’ profits:
relative to firm-specific shocks, variable costs tend to induce an operating leverage effect rather

than an operating hedge.
[Insert Table 2 Here]

Panel B1 of Table 2 shows that the firm-level gross profit growth is slightly more volatile
than the firm-level sales growth (35.02% versus 34.46%), in contrast to the reverse inequality in
the aggregate data in Panel A1. The estimated coefficient in the cross-sectional Fama-MacBeth
regression of the firm-level gross profit growth on the firm-level sales growth in Panel B2 is 1.07,
greater than one. Again, this stands in contrast to the estimate of 0.77 based on the aggregate
time-series.

To interpret the differences between the aggregate- and firm-level results through the lens of
our model, note that the idiosyncratic profitability shock is in general more volatile than the
aggregate profitability shock. With that, the impact of idiosyncratic shocks may overwhelm the
effect of aggregate shocks at the firm level, so the finding that the sales elasticity of gross profit

at the firm level is greater than at the aggregate level is consistent with Equation (6) and n < 1.

3 Quantitative analysis

In this section we formulate a dynamic model of the operating hedge and the profitability pre-
mium, and fit it to the data using the simulated method of moments (SMM). We thus address
several important questions about the quantitative implications of the proposed operating hedge

mechanism. These include whether the operating hedge due to cyclical input costs affects firm

12



cash flows sufficiently to generate cross-sectional differences in the average stock return of the
magnitude comparable to the observed empirical patterns, and whether sorting firms in the model
on gross profitability and book-to-market ratios gives rise to distinct and negatively correlated

factors in returns — the profitability and the value factors — and the corresponding return premia.

3.1 The model

Our model is set in partial equilibrium, and combines the basic structure of the model in Kogan and
Papanikolaou (2014) with the CES production function and variable input costs. There is a large
number of competitive firms in the economy. Each firm derives its value from existing projects
(i.e., assets in place) and growth opportunities associated with adoption of new projects. Firms
operate in a complete, frictionless financial market. We first describe the production and value
maximization of the existing projects in Section 3.1.1. We then discuss the process of new project
arrival and calculate the present value of growth opportunities in Section 3.1.2. We describe the

stochastic discount factor in Section 3.1.3.

3.1.1 Assets in place

The basic unit of production is projects. Each project j uses capital K, of vintage 7, which is
optimally determined at the installation time 7 and remains constant throughout the life of the
project, and Ej; units of variable inputs optimally chosen for production at time ¢ (¢ > 7). The
production function of a project takes the CES form. For each installed project j in firm f, the
gross profit 11, at time ¢ is the difference between revenue and variable input costs:

Hjt = Imax (}/;t — PtEjt)

jt

n—1 no1
— x| 27 (B + (6t )

= max K,

gt
E;

-1 n=1\ 7-1 R
th (E" +th ) _PtEjt

13



where Z;, and X; are the firm-specific and aggregate profitability processes, respectively. P, is the
price of variable inputs and 1 measures the elasticity of substitution between capital and variable
inputs. The last line of Equation (10), where we have defined Ejt = FE;;/Kj;, indicates that the
revenue, variable cost, and gross profit are all proportional to K;,. Firms take the process for
P, as given and choose variable inputs to maximize profit within each period. Furthermore, all
projects of the same vintage within a firm choose the same Ejt, and they differ only in scale K.

We define the lower-case variables x and z as the logarithmic transformation of the productivity

processes X and Z, respectively, and assume that they follow independent AR(1) processes:

1
Tt = Prli—1 + O'xa’ff — 509207 (10)
z 1 2
Zft = Po2fr1 + OEpy — 30 (11)

Let ijp be the value of project j. Given the processes for the input price, In P, = pg + p12,
and the aggregate and idiosyncratic profitabilities, the project value normalized by its capital

stock (V7 = Vi{P/K;;) can be written recursively as

VA7 = M (1= OBV, -

where ﬂjt = II,,/K;;, and 0 < § < 1 is the depreciation rate capturing that projects become
obsolete randomly, and M, is the stochastic discount factor which we specify below. Note that
both f[jt and ijp are functions of only exogenous state variables z; and 2y, so they are identical
for all projects within a firm. We substitute the subscript j by f and denote them as I s and
fo}P I 71 measures the firm-level gross profitability (GP/A), and Vf’;‘P measures the market-to-
book ratio of existing projects in firm f.

The total value of assets in place of firm f, fogp ,

AP AP
Vft - Zje Projects(f) V;t ’

is the sum of values across all existing projects:
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3.1.2 Growth opportunities

Each period, identical new projects arrive with a profitability equal to its current firm-level prof-
itability (i.e., z; = zp). Specifically, when a new project j arrives at time 7, a firm needs to
choose the size of the project (). Assuming the cost of creating a project of capital size K,
is KfT /E., where =, captures the aggregate investment-specific technology level, as in Kogan and
Papanikolaou (2014), and # > 1 parameterizes the adjustment costs of investment, the firm’s

decision is to choose K, to optimize the net project value:

max ‘A/jfp(xﬂ 20) K — K?T/ET. (13)

K;

The first order condition implies the optimal capital stock is:

~ 1/(6-1)
VAP (24, 24) 2,
Kﬁk:<ﬂ (@1, 251) ) (14)

g 0
_0
.. . . AP 0—1 — _1_ . .
and the maximized project value is (6 — 1) ( V2" (2, zft)/0> =,7-1. Note the optimal capital
stock and project value depend only on z,, =, and zp.

The gross profitability of project j upon installation at time 7 is

I, -
Kfj = 4F (2, 2p). (15)

GP/A,, =

Note that the gross profitability of a newly installed project only varies with z, and z; and does
not depend on =,. Therefore, the project and firm gross profitability in the model is stationary
despite the stochastic trend in Z;, which we introduce below.

We specify ay, the logarithm of the project arrival rate for firm f, to follow a mean-reverting
process:

1
ape = Palsi—1+ (1 — pa)a + oac — 502. (16)
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We assume that & = InZ, follows a random walk:®

1
A& = g + oee} — 507 (17)

The present value of growth opportunities VijO is given by the following recursive form:

Vﬁo(xm Eta th7 aft)

. o
VAP (21, 20001) \ O 1
= B¢ | My |explagea) (0 —1) | L 7 7 BT + VAL (@1, B 2041, )

(18)

1 . 1
Because V€ is linear in Z{~", we define V{° = V{°/Z/" and the above equation becomes:

[
AP 0—1
Vft+1(xt+17 Zfet1)

0

VEO (w1, 2p0,ap0) = By | Myg | explags) (0 — 1)
(19)
e + U£5§+1 - %052
0—1

+ Vf?—&(-)l ($t+1, Zft+1, aft—i—l) exp

Taken together, firm value is equal to the sum of the values of assets in place and growth
opportunities:

~ ~ 1
Vie =V + Ve = VA K+ VEOET, (20)

where we have defined K =) je Projects(f) 8jr- Firm gross profitability is

. . 11,
(mMzzm?mﬁ, 21)
t

80ur parameter e is lower than the overall rate of capital-embodied technological change in the economy,
because it applies only to the incumbent firms. These firms suffer from displacement due to technological advances
introduced by the new entrants into the market, which our model does not capture. Thus, as it affects the value of
firms’ growth opportunities, j1¢ captures both the direct impact of investment-specific technological progress and
the associated displacement effects.
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and firm log book-to-market equity ratio is

Ky
losgBM,, =In{ — | . 22
E N = ( Vit ) (22)

In this model we abstract from modeling financial leverage and real leverage arising from fixed
operating costs. All of these effects are subsumed by the effective leverage ratio ¢, which we
use to scale excess stock returns (i.e., Ret®™(Levered) = ¢xRet®™(Unlevered)) — this essentially
creates a wedge between asset return volatility and cash flow volatility that we target in the model
estimation. We analyze the effect of operating leverage on asset returns and the dynamics of real

quantities in Kogan, Li, Zhang, and Zhu (2020).

3.1.3 Stochastic discount factor

We specify the stochastic discount factor (SDF) M; to be a function of the two aggregate shocks,
e} and o

N 1 1
M1 = exp (—rf — VoS — Ve€iry — 5%3 - 57?) ; (23)

where 7, and ~¢ are the prices of risks for the aggregate profitability shock and the aggregate
investment shock, respectively, and 7, is the risk-free rate. For simplicity, we assume that the
SDF is homoscedastic, and therefore prices of risk associated with the two systematic shocks do
not vary over time. Because our analysis is in partial equilibrium, the above specification of the
SDF is agnostic about the origins of the premia on the systematic shocks: these could be consistent
with a traditional, “rational” model of investor behavior, or with a behavioral model (see Kozak,
Nagel, and Santosh, 2018). This SDF simply reflects absence of arbitrage in the market with two

systematic shocks, €} and z—:f, and imposes constant prices of risk for simplicity.

3.2 Estimation of the model parameters

There are 18 parameters in our model. We calibrate three parameters as reported in Panel A of

Table 3. Specifically, we set the constant monthly risk-free rate to be 0.24%, corresponding to an
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annualized value of 2.92% as in Campbell and Cochrane (1999). The project depreciation rate is
set to 1% per month (or 12% per year), consistent with the literature on the real business cycles
(e.g., Kydland and Prescott (1982), Cooper and Haltiwanger (2006)). The average of the log of
the project arrival rate a is set to 0.3, which implies an average of about 83 projects per firm.
Since the profitability shocks across projects within a firm are identical, the number of projects

has little impact on the asset pricing properties.®
[Insert Table 3 Here]

We estimate the remaining 15 parameters, listed in Panel B of Table 3, using the simulated
method of moments (Lee and Ingram (1991)). Given a vector ¥ of target moments in the data,

we obtain parameter estimates by

1S 1
p = arg min, <\Il —3 Z%(p)) w (\Il —- 3 Z\I/Z(p)> , (24)

where W;(p) is the vector of moments computed in one out of S simulations of the model. We
choose the weighting matrix W = diag(¥¥’)~! to penalize proportional deviations of the model
statistics from their empirical counterparts. We solve the model numerically using value function
iterations at a monthly frequency. We simulate the model 100 times (S = 100) with each sample
representing 1,000 firms and 600 months. Following Bloom (2009), we solve the above minimization
problem using an annealing algorithm to find the global minimum.

The 28 target moments in our estimation include moments of asset returns and economic
variables at the aggregate, portfolio, and firm levels. Aggregate moments such as the properties
of aggregate GP/A, In(BM), and investment are informative about the processes of aggregate
profitability shocks and aggregate investment shocks. The elasticity of aggregate variable input

prices with respect to aggregate revenue, the relative volatilities of aggregate sales, variable costs,

9In the Online Appendix, we report the moments using alternative values of a, while keeping other parameters
unchanged. The result shows that all target moments are quantitatively close to those from the benchmark
parameterization (a = 0.3), and the difference is mainly numerical due to more or fewer projects being simulated.
We chose a = 0.3 to balance the need for a sufficient number of projects in a firm and computational cost in the
SMM estimation.
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and gross profit also contain information about the elasticity of substitution between capital and
variable inputs (n) and the level and cyclicality of aggregate variable input prices (py and p;). In
the cross-section, the moments of firm-level sales growth, variable cost growth, GP/A, In(BM),
as well as the dispersions in GP/A, In(BM), and gross margin across different portfolios help
identify the dynamics of firm-level and project-level processes. The relation between the gross
profit margin and gross profitability, in particular, helps identify 7, as can be seen from Equation
(6). Specifically, the positive relation between these two variables, which can also be seen in Table
5 below, implies that n < 1. Lastly, we include the Sharpe ratios and return volatilities of the
market factor, gross profitability factor, and value factor, respectively. In particular, we define the
value and gross profitability factors as long-short portfolio based on the quintiles of firms sorted on
the corresponding characteristic. Because our model abstracts from inter-industry heterogeneity,
we construct the empirical gross profitability factor by an intra-industry sort with 30 industries,
based on the classification by Fama and French (see Section D of the Online Appendix for a
comparison of the intra-industry and the unconditional profitability premia). Restrictions from
the Sharpe ratios of the market, gross profitability, and value factors help pin down prices of risk
of the two systematic shocks.!?

The last two columns of Panel B Table 3 report the parameter estimates and standard errors.!!
In the model, the estimated price of risk (Sharpe ratio) for the aggregate profitability shock is

0.297, whereas the price of risk for the aggregate investment shock is —0.403. The signs of the

10To shed light on the sources of information about specific model parameters, we plot the Andrews, Gentzkow,
and Shapiro (2017) measure of sensitivity of parameters to moment values in Figure A1 of the Online Appendix. We
compute this measure as an elasticity, i.e., a percentage change in a parameter associated with a percentage change
in a moment. Figure Al shows, in particular, that the average aggregate sales/COGS ratio and the elasticity of
aggregate variable input prices with respect to aggregate revenues are highly informative about p; (the cyclicality
of variable input prices), and the average aggregate sales/COGS ratio and the relative volatility of aggregate sales
and GP are particularly informative about 7 (the elasticity of substitution between capital and variable inputs).
This should not be surprising because these moments are linked to the core mechanism of the operating hedge.

HFollowing Lee and Ingram (1991), the variance-covariance matrix of parameter estimates can be computed using

(1 + NLS) (JWI)LTWQW J(J'W.J)~", where Ng = 100 is the number of simulations, .J is the score matrix that

measures the sensitivity of simulation moments with respect to parameters, and € is the variance-covariance matrix
of moments. To estimate the score matrix J, we calculate four values of the numerical derivative from perturbing
each parameter by four different amounts in percentage, i.e., €, and then take the average value of these four
numerical derivatives. For the persistence parameters p;, p., and p,, we choose ¢ = —0.1%, 0.1%, —0.05%, 0.05%.
For all other parameter, ¢ = —1%, 1%, —0.5%,0.5%. The standard errors of the parameter estimates are the
diagonal elements of the variance-covariance matrix of parameter estimates.
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prices of risk for these two factors are consistent with the prior results in Kogan and Papanikolaou
(2013, 2014) and Kogan, Papanikolaou, and Stoffman (2020). The two critical parameters that
affect the relation between gross profitability and systematic risk of cash flows are the elasticity
of substitution between capital and variable input (i.e., n), and the elasticity of variable inputs
price with respect to aggregate profitability shocks (i.e., p;). We estimate n to be 0.696 (with a
standard error of 0.0175). The estimated elasticity of substitution between capital and variable
inputs is lower than one, which means that the variable input and capital are complements in
the firms’ production function. The estimated value of p; is 0.309 and statistically significantly
greater than 0, which means that the price of the variable input is procyclical: p; > 0. Lastly, the
estimated effective leverage ratio ¢ = 2.946. This value is close to 3.0 in Bansal and Yaron (2004).

In Table 4, we compare the values of the targeted moments to their empirical counterparts.
Specifically, we compare the values of these moments in the data with the mean, 2.5th, 25th,
75th, and 97.5th percentiles of the corresponding moments in model simulations. Most of the
empirical moments are close to their model counterparts, and fall within the 2.5th-97.5th intervals
from simulations. The annualized market Sharpe ratio and volatility are 0.473 and 17.3% in our
simulations, compared with 0.428 and 15.2% in the data, respectively. In the data, the standard
deviation of the aggregate sales growth is 6%, while in simulations this number is 6.3% on average.
The model matches well the volatility of gross profit and the volatility of variable costs relative
to the aggregate sales (0.82 and 1.11 in the model, compared to 0.89 and 1.12 in the data). This
difference in the cyclicality of aggregate sales and variable costs is essential for the operating hedge
effect. The elasticity of the aggregate input prices to aggregate revenue is positive at 0.333, which
is somewhat lower than the estimate in the data (0.482).

The model has some difficulty matching the large cross-sectional dispersion in book-to-market
ratios in the data, with the average value of 0.81 in the model versus the spread of 2.09 in the
data. The fit of the gross profitability spread is much closer, with the average of 0.422 for the
model compared to 0.54 in the data. Table 4 shows that the model-implied GP/A factor has a
Sharpe ratio of 0.532 with the volatility of 8.12% relative to the Sharpe ratio of 0.397 with the

volatility of 9.32% in the data. The model-implied value factor has the Sharpe ratio of 0.355,
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which is comparable to the 0.31 in the data, and a lower volatility (9.06% relative to 13.6% in the
data).'? Overall, however, the model is rejected by the overidentification test (Lee and Ingram

(1991)).

[Insert Table 4 Here]

3.3 Implications for the gross profitability and value factors

Our model reproduces the empirical relation between firms’ gross profitability and their book-to-
market ratios, as we show in Table 5. This table summarizes average firm characteristics and stock
returns across the gross-profitability quintile portfolios, and the results of CAPM tests. Panel A
uses historical data, and Panel B shows analogous results in the simulated data from the model.
Panel B1 shows that high-GP /A firms in our simulations have a In(BM) of —0.99, as compared to
—0.68 for low-GP/A firms. The corresponding empirical values are —0.76 and —0.29, respectively
(Panel A1).

[Insert Table 5 Here]

Panel B1 confirms that the cross-sectional variation in GP/A is mainly driven by the idiosyn-
cratic profitability shock and that gross margin increases with GP/A, as it does in the data. The
relation between gross profitability and gross margin is central to the operating hedge effect: more
profitable firms have higher gross margin, i.e., lower variable costs relative to revenue, than less
profitable firms. Because of that, more profitable firms experience lower operating hedge. The
higher profitability of high-GP/A firms raises the value of assets in place, giving rise to a lower
average VGO/VAP than for low-GP/A firms. In the data (Panel Al), gross profitability has a
slightly negative correlation with financial leverage (Flev) and weak correlation with operating

leverage (Olev).

12The estimated average rate of the aggregate investment-specific technological progress, fi¢, is slightly negative.
As we discuss above in Footnote 8, our parameter pg is likely lower than the overall rate of capital-embodied
technological change in the economy, because our model abstracts from firm displacement due to investment-
specific technological progress. For instance, asset pricing implications of the model remain virtually unchanged if
we allow for firm death (displacement) at the annual constant rate of 4%, raising the value of p¢ from —0.177% to
0.048% (corresponding to 0.576% per year).
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Panels A2 and B2 of Table 5 present the value-weighted returns and CAPM tests of the gross
profitability portfolios. The model generates a positive gross profitability premium of 4.32% per
year, compared with 3.7% in the data. The pattern in the market beta across GP/A quintiles
is weak, and the CAPM alpha of the gross profitability factor — the long-short Hi-Lo quintile
portfolio — is 3.61% per year (with a t-statistic of 3.21). The CAPM alpha is 4.98% per year in
the data (with a t-statistic of 3.97).

Table 6 shows the results of the same analysis on In(BM) quintiles. Panel B1 shows that
the cross-sectional variation in In(BM) in the model is primarily associated with the firm-specific
project arrival rate a. Compared to value firms, growth firms have a higher project arrival rate
on average and a greater value of growth opportunities relative to assets in place (VGO/VAP).
The finding that VGO/VAP is higher among growth and low-GP/A (Table 5) firms is consistent
with Kogan and Papanikolaou (2014). Our model also reproduces the empirical finding that the
gross profit margin tends to be higher in growth firms than in value firms. Intuitively, firms with
higher idiosyncratic profitability also have a higher valuation ratio (low In(BM)) than firms with

low profitability.!3

[Insert Table 6 Here]

Panels A2 and B2 of Table 6 show the average returns and CAPM test results of the In(BM)
quintiles. Our model generates a value premium of 3.11%, slightly lower than 4.21% in the data.
The CAPM beta goes in the wrong direction (a negative market beta of the value factor) both in
the data and in the model, so that the abnormal return spread is even greater than the raw return
spread. Above results show that the profitability premium and the value premium coexist in our

model, and the unconditional CAPM fails to explain them.

13Panel A of Table 6 also reports the average financial leverage and operating leverage across In(BM) quintiles.
Value stocks have a higher financial leverage than growth stocks, consistent with the findings in Ozdagli (2012)
and Favilukis and Lin (2016).
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3.4 The economic mechanism

To understand the drivers of the profitability premium and the value premium in our model, we
examine the exposures of the GP/A and In(BM) portfolios to the aggregate profitability shock
(X) and the aggregate investment shock (Z). We summarize the results in Table 7, for GP/A
portfolios in Panel A, and for In(BM) portfolios in Panel B. We find that high-GP/A firms have
higher exposures to the aggregate profitability shock than low-GP/A firms, with a significant
difference in Bx of 0.14. Thus, the aggregate profitability shock is an important risk factor behind
the positive gross profitability premium in the model. The asset composition channel in Kogan
and Papanikolaou (2013) also contributes to the gross profitability premium: firms with low
profitability tend to be growth firms, with higher VGO/VAP, and hence are more exposed to the
aggregate investment-specific shocks. The difference in the = between high- and low-GP /A firms
is —0.46.

[Insert Table 7 Here]

For the value premium, our results show that value firms have an exposure to the aggregate
investment shock of 0.96, much lower than that of growth firms (1.85), consistent with the asset
composition channel in Kogan and Papanikolaou (2014). In addition, the exposure of the book-
to-market portfolios to aggregate profitability shocks decreases from 1.28 from growth firms to
1.11 for value firms. There are two competing effects driving the relation between the book-to-
market ratio and Sx. First, value firms tend to have lower idiosyncratic profitability (Z) and are
therefore more affected by the operating hedge effect. This effect implies lower Sx for value firms.
Second, value firms have a lower share of growth opportunities relative to assets in places, which
gives rise to a higher exposure to aggregate profitability shocks. This is because assets in place
are more sensitive to aggregate profitability shocks than growth opportunities. For our estimated
parameter values, the first effect is stronger. Overall, the positive value premium in our model is
mostly driven by the differences in firms’ exposures to aggregate investment-specific shocks.

Although both the gross profitability factor and the value factor have negative loadings on

the aggregate investment shock, Panel B of Table 7 shows that their opposite exposures to the
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aggregate profitability shock generate a negative correlation of —19% (compared to —40% in the
data) between these two factors with a standard error of 1.3% across simulations. Furthermore,
because gross profitability and book-to-market ratios are also negatively correlated, portfolios
constructed by conditional double sorting based on these two characteristics can further enhance
the performance of these factors. Indeed, Table 8 shows that based on sequential double sorts,
the gross profitability premium conditional on book-to-market is 6.07% (versus 6.4% in the data),
and the value premium conditional on GP/A is 5.59% (versus 7.16% in the data). Therefore, the
conditional return premium associated with both the gross profitability and the book-to-market
ratio is substantial higher than its unconditional counterpart. Further, the model-implied Sharpe
ratio is 0.76 for the conditional gross profitability premium and 0.65 for the conditional value

premium. These values are quantitatively close to 0.65 and 0.56, respectively, in the data.
[Insert Table 8 Here|

We find that our production-based model is able to reproduce the interaction between GP/A
and logBM in predicting future stock returns, even though we do not explicitly target the con-
ditional return premia in estimation. In the data, the GP/A premium is 13.08% among growth
stocks and only 2.5% in value stocks. In the model simulations, the GP/A premium is 8.32%
among growth stocks vs. 3.37% among the value stocks. Similarly, our model generates the

empirical pattern that the value premium is substantially stronger among low profitability stocks.

3.5 Additional empirical evidence

3.5.1 Cash flow risk of GP/A portfolios

The main mechanism for the profitability premium in our model is that cash flows of profitability-
sorted portfolios load differently on systematic profitability shocks, and therefore the gross prof-
itability factor also loads strongly on the systematic profitability shock. Note that this factor also
loads on aggregate investment shocks. However, near-term profits are relatively insensitive to the

investment-specific shock (which affects investment and long-term cash flows of the firm). We
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should therefore observe that high-gross-profitability firms have higher cash flow loadings on the
gross profitability factor returns.!4

Table 9 quantifies differences in systematic cash flow risk of profitability-sorted portfolios in
the model. It shows the relation between the growth rates of gross profit, revenue, and the cost
of goods sold (COGS) of the gross-profitability quintile portfolios, from ¢ to t + K (K =0, 1, 2),
and the gross profitability factor return in year ¢ (we normalize the return process to have a unit
standard deviation). Consistent with the model mechanism discussed above, the returns on the
gross profitability factor reflect differences in systematic cash flow shocks (gross profit beta) of
low- and high-profitability firms, and the gross profit beta increases with gross profitability.

The gross profit beta of the lowest-GP/A portfolio is negative, albeit typically insignificant.
To see how the negative exposure arises in the model, note that according to Equation (4), firms
with low firm-specific profitability Z may have negative systematic cash flow risk. Since variable
inputs and capital stock are complements (n < 1), as idiosyncratic profitability falls, firms are
reluctant to reduce their variable input use, which leads their gross margins to decline. Firms’
cash flow exposures to the aggregate profitability shock may then turn negative due to a strong
hedge effect from variable costs.

Table 9 also shows that betas of both revenue and variable costs increase with gross profitability,
but not as much as the betas of gross profit. These results reflect the main operating hedge
mechanism in the model — high-profitability firms have more cyclical profit primarily because

their variable costs, which are procyclical, are lower relative to their revenue.!®

[Insert Table 9 Here]

Next, we examine the relation between gross profit, revenue, and the cost of goods sold of the

gross profitability quintile portfolios, and the gross profitability factor return in the data. We find

4Our empirical results below are similar when we control for measures of investment shocks such as the
investment-minus-consumption portfolio return (Kogan and Papanikolaou, 2014).

15The cost of goods sold is slightly less cyclical than revenue in the high GP/A quintile in Table 9. This is due
to the fact that the GP/A factor in our model is driven by both aggregate profitability and aggregate investment
shocks. In Table A6 (Panel A) of the Online Appendix, we examine cash flow responses to the aggregate profitability
shock in simulated data. We find that the cost of goods sold is more cyclical than revenue in the high GP/A quintile,
whereas the other results discussed above still hold.
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that the difference in cash flow risk between low- and high-gross-profitability firms is economically
and statistically significant, and close in magnitude to the corresponding patterns in the model.
Table 10 shows that a one-standard-deviation unexpected positive return of the GP/A factor
portfolio is associated with a 0.92% contemporaneous decline in the growth rate of gross profit
for the low-GP/A portfolio, and a contemporaneous increase of 1.42% in the gross profit growth
for the high-GP /A portfolio, so the difference between the high- and low-GP /A portfolio is 2.35%
(with a t-statistic of 2.76). The difference in cumulative growth increases further to 4.32% and

5.41% over two-year (K = 1) and three-year (K = 2) periods, respectively.

[Insert Table 10 Here]

Looking into the source of the cash flow beta difference among the portfolios in Table 10, we
find that the pattern in the sales beta and COGS beta is much weaker. The difference in the sales
beta between low- and high-GP /A firms is quantitatively similar to that for the COGS beta, and
both differences are substantially smaller than the difference in gross profit betas. These patterns
are similar to those in the model, as we show in Table 9. Therefore, consistent with the economic
mechanism of our model, cross-sectional differences in gross profit betas arise mainly from the
compositional difference between revenue and costs, rather than from the difference in cyclicality

of sales and COGS across the gross profitability portfolios.

3.5.2 Risk premium on the systematic profitability shock

Next, we provide additional evidence on the risk premium associated with the aggregate profitabil-
ity shock. Our structural parameter estimates imply a positive price of risk for the systematic
profitability shock, which is essential for matching the gross profitability premium in stock re-
turns. To evaluate this result empirically, we start by using the gross-profitability factor as a
factor-mimicking portfolio for the gross profitability shock, and estimate its price of risk using
an alternative set of test assets: the Fama-French 17 and 30 industry portfolios. We specify the

stochastic discount factor as a linear function of the market factor and the profitability factor,
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and estimate prices of risk of these two shocks in the GMM framework.! Panel A of Table 11
shows that the two-factor model describes risk premia on the industry portfolios quite well. The
annualized mean absolute error in the risk premia implied by the model across the test assets
is close to 1.1% in both cases. The over-identification test fails to reject the two-factor model.
Observed good performance of the pricing model is nontrivial since the factor-mimicking portfolio
is constructed within industries, whereas the test assets are industry portfolios. More importantly,
the estimated price of risk for the aggregate profitability shock is positive and statistically signifi-
cant. The estimated SDF also matches closely the average excess returns on the stock market and
the gross profitability factor in our sample.

Our analysis above builds on the profitability factor in stock returns loading strongly on the
systematic profitability shock, which is supported by the evidence on cash flow risk in Table 9.
Next, we approximate the aggregate profitability shock directly using the utilization-adjusted total
factor productivity shock (dTFP) from Basu, Fernald, and Kimball (2006) and Fernald (2014).
Panel B of Table 11 confirms that returns on the profitability-sorted portfolios have an increasing
profile of betas with respect to the dTFP series.!” This implies, in particular, that a positive risk
premium on TFP shocks would help generate a positive profitability premium in stock returns.

In Panel C of Table 11, we follow the same design as in Panel A. We find that TFP growth
shocks command a positive risk premium, which is close in magnitude to the premium in Panel A
estimated using the profitability factor returns as the second factor. Collectively, results in Table
11 help support an important exogenous element of our model — that systematic profitability

shocks enter the SDF with a positive price of risk.

[Insert Table 11 Here]

16We only report the results using the identity weighting matrix, but results are quantitatively similar with the
efficient GMM weighting matrix.

1"We use TFP growth over a two-year period, because we find that stock returns on the profitability-sorted
portfolios partly reflect the news about TFP growth over the next year. Because of their forward-looking nature,
stock returns commonly lead the realization of growth in real variables. In a closely related context, this idea has
been advanced in Parker and Julliard (2005), who use the multi-quarter consumption growth (which they term the
ultimate consumption risk) to measure SDF shocks.

27



4 Conclusion

In this paper we explore a novel economic channel for heterogeneity in cash flow risk among
firms — the operating hedge effect arising from procyclical variable input costs. This operating
hedge effect implies that firms’ exposures to aggregate profitability shocks correlate with their
firm-specific profitability: less profitable firms benefit more from risk reduction due to variable
costs, and thus exhibit lower cash flow risk and lower average stock returns.

We analyze this phenomenon quantitatively using a dynamic structural model, in which the
profitability premium coexists with the value premium. The two premia are generated by different
economic channels. The value premium largely reflects cross-sectional differences in firms’ growth
opportunities, and thus their different exposures to the aggregate investment-specific shock. The
profitability factor is driven primarily by the systematic profitability shocks and the profitability
premium reflects differential operating hedge effect of firms with different profitability. Our model
produces gross profitability and value factors that are negatively correlated with each other, and
reproduces the failure of the CAPM to explain expected returns on the two factors — these
patterns have been difficult to reconcile within the existing structural models of stock returns.

Our results complement the existing literature focused on operating leverage as the source of
the cross-sectional differences in expected stock returns. We show that the impact of production
costs on firms’ cash flow risk is more nuanced than suggested by the operating leverage channel
alone, and variable costs give rise to a first-order operating hedge effect on firm cash flows. Further
research is needed to better understand the properties of firms’ costs, including their relation to the
input-output structure of the economy and cross-sectional differences in production technologies
and market power. This is likely to offer useful insights into the fundamental properties of stock

returns and firm dynamics.
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Appendix

Proof of Proposition 1:

The first order condition of Equation (1) implies that

—1 n—1 n—1 1
P=XZE7 x (B + K% )i, (A1)
At the optimum, the share of the variable inputs (ES) is given by

ES - £ . (A.2)

This implies that the firm’s gross profit satisfies
1

=27 (E* + (XK)"n;l> XK (A.3)

and therefore the gross profitability is given by

GP/A=— =XZ (A.4)

==

—1 —_—
E o
— 1
(x) "

Taking the partial derivative of the logarithm of both sides of Equation (A.1) with respect to

()7 A5)

Differentiating the firm’s gross profit (II) and revenue (Y') in logarithm with respect to the

In X, we have:
OmE
olnX

1 —pin

logarithm of profitability shock (X) and using Equation (A.5), we obtain the profitability shock

elasticities of firm’s gross profit and revenue as follows:

Olnll E \ #
Jnx LT (ﬁ) ’ (4.6)
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n—1

olnY E n
- 1—pin (—) . (A7)

olnx XK

In this static model, Sx = gllg)ré is also the firm’s systematic risk exposure.

When p; > 0 and n < 1,

Olnll  0InY T
dnx omx 0D (ﬁ) <0 (4.8)

Q.E.D.

Proof of Proposition 2:

To prove Proposition 2, we take the partial derivative of the logarithm of both sides of Equation

Ol E BN\

Then differentiating the logarithms of revenue, variable cost, and gross profit with respect to the

(A.1) with respect to In Z:

logarithm of idiosyncratic profitability Z and using Equation (A.9), and we have

giig :1+n(%)n, (A.10)
TPl ()| A1)
and -
gizg — 1+ (%) . (A.12)
Therefore, when n < 1,
and -
iz~ omz =" (xx)  >° (a1
Q.E.D.
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Proof of Proposition 3:

The elasticity of firm GP/A with respect to Z is

(A.15)

oln (GP/A) ENS
oInZ _H(ﬁ) >

Therefore, gross profitability always increases with idiosyncratic profitability Z. To examine how

a firm’s risk exposure of gross profit to the aggregate profitability shock varies with its gross

profitability, we inspect gleZ:
9Px E N\ EN\T
=pi(1— — 1 — ) A.16
ginz ~ =) <XK> [ i (XK) ] (A.16)
The last two terms in Equation (A.16) are always positive. When p; > 0 and n < 1, ;fl = > 0,

that is, profitable firms are more exposed to systematic profitability shocks. Q.E.D.

35



(90°6) (e8°9z)  yeis
€L 0 P T 980
(dD)™ g (sH0D)* Ny

1yoad SSOIS pue $9500 d[qeLIeA JO A}JDIISe]H] ) [oUR]

00T 1L°0 €8°0 (dH)ASory
1.0 00T 860 (SH0D)ABOY
€80 860 00'T (A0y) ASOTY

(dD)ABOIY (SHOD)ABOY (a0Y) ASOIY
XIIJeUW UOTIIR[AILIO)) :{ [oueJ

LT°€ 6.7 9¢°9 667 G6'L €L'9 L¥'G (%) P3S

98°0 katé 69'1 00 8°0¢ 96'T 18T (%) weay
(BO)ASOIY (dD)AB0IV (SHOD)ASOTY (PId)ASOIY (Sui)ASOIY (¥RIN)ASOIY (A0Y)ASOTY

1870 z9°¢ 18°C 70 112 (%) pP3s

09°9 9529 08°0T €6'T €86 (%) ueoly

() A/(BO)A  (209)A/(SOOD)A  (AOU)A/(PII)A  (20g)A/(Bum)A (a0 A/ (3N A
so1ys19R)S Arewung [y [pueq

"TT0C O} {GET WOIJ [eNUUR dIB BIeD O, "UOI}R[DII0I0)NE
pue A}01)SRPONSOI91SY 0] [0IJU0D 0} STe[ F [IM Pajnduiod SO1IS1yR)s-1 1SOAN-A0MON O} oIe sosor[juared U] "SUOISSOIFOI SOLIOS-OUIL)
OJRLIBAIUNL WO} PIJRWIISO oIe YoIym ‘(Apanoodser (d5)* g pue ($H0D)™NY) (a0yg)A 03 adsor yym (dH)A Pue (SHOD)A
jo Ayorysee o) sproda1 ) [pueJ “jyoid sso18 pur ‘S)S00 d[(RLIBA ‘ONUDAII 9)839I33R JO Son[eA oY) Ul $ojel [IMOI3 oY) JO XLIyeul
UOTIR[DLIOD 1]} sy10dal ¢ [oued ‘sedejusdtad Ul ((JO)ASO[Y) sodem Ieszom ao1o pue ‘((JH)AS0[y) 1goxd sso1s ‘((SHOD)ASOY)
1800 o[qeLIeA [e10 A1) ‘((Suy)AS0[y) $1500 A3I10u0 ‘((1RI\)ASOIY) S1S00 [RLIDIRW ‘((AdY)ASO[Y/) ONUSALI JO S9JRl [)MOIF [eNUUR
o[} Sk oM St ‘OnuoAdl Te}0} 0} 1goid ssoid pue 3800 Jo odA) Yowd JO ORI O} JO UOIJRIASD pIRPUR)S PUR UeaW o1) sjrodol Y
[oueJ "Xopu[ 90l IoWnsuoy) o) A Pajepop IoYInJ oIk sanfes asoy ], "(JO) soSem IoNIom 9dLJO I9PISU0D os[e am ‘uostreduiod e
sy (p1d) seSem Iaxrom uorponpolid pue ‘(Suy) ASI1ous ‘(1eJ\) S[RLISJRU I0J S)S0D JO WIS A} S8 PAUYep aIe (§5H()))) SIS00 J[(RLIRA
‘syuewdIys JO an[eA [RJ0O} ) SB POINSLall SI (A9Y]) anueAsy] -oseqeje(] Amsnpuj Sunmpoemue]N SHO-YHIN oY) woly a1e jgoid
SSOIS puR ‘S1S00 ‘ONUSASI 9)eFI33R JO sonfea oy, "1Jold $s0I13 pur ‘s)S00 ‘OnuoAdl 9)vSaIS3R JOo AJedIDAD o) sprodor sjqey Sy J,
1go1d ss0a3 puer ‘s)S0O ‘anuoAal 9)1e3aId3e Jo AJIedI[DAD oY, T 9[qel

36



Table 2: Cash flow elasticities at aggregate and firm levels

This table reports the cash flow elasticities at the aggregate level and the firm level. In Panel A1,
we report the mean and standard deviation of the aggregate-level sales growth (AlogASale) and
the aggregate-level gross profit growth (AlogAGP). In Panel A2, we estimate the elasticity of AGP
with respect to ASale by running the time series regression: AlogAGP = a 4+ b x AlogASale. In
Panel B1, we report the mean and standard deviation of the firm-level sales growth (AlogSale) and
firm-level gross profit growth (AlogGP). In Panel B2, we report the elasticity of GP with respect to
Sale by running value-weighted Fama-MacBeth regressions AlogGP,, = a; + b, x AlogSale;, using
lagged revenue as the weight and report the time series average of b;. The Newey-West t-statistics
computed with 4 lags in Panels A2 and B2 control heteroskedasticity and autocorrelation. The
sample is annual from 1964 to 2019.

Panel A: Sales growth and gross profit growth at the aggregate level

Panel Al Panel A2
AlogASale AlogAGP Basale(AGP)
Mean (%) 2.82 3.12 Est. 0.77
Std (%) 5.95 5.29 t-stat  (14.61)
Panel B: Sales growth and gross profit growth at the firm level
Panel B1 Panel B2
AlogSale  AlogGP Bsale(GP)
Mean (%) 7.9 7.06 Est. 1.07
Std (%) 34.46 35.02 t-stat  (13.01)
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Table 3: Model parameters
This table reports model parameters. Panel A lists the calibrated parameter values. Panel B lists
the parameters that are estimated from the simulated method of moments (SMM). We solve and
simulate the model at a monthly frequency.

Panel A: Calibrated parameters

Parameter Symbol  value
Risk-free rate T 0.243%
Depreciation rate ) 0.01
Average log of the project arrival rate a 0.3

Panel B: Parameters estimated via SMM

Parameter Symbol  Est. S.E.

Price of risk for aggregate profitability shocks Ve 0.297 0.0744
Price of risk for aggregate investment shocks Ve -0.403 0.183
Persistence of aggregate profitability shocks Px 0.996 0.0015
Conditional volatility of aggregate profitability shocks Oy 0.037 0.0047
Average growth rate of aggregate investment shocks pe  -0.26% 0.07%
Conditional volatility of aggregate investment shocks O¢ 0.013 0.0048
Logarithm of the level of variable inputs price Do 0.298  0.040
Elasticity of variable inputs price w.r.t. aggregate profitability shocks  p; 0.309 0.0354
Persistence of idiosyncratic profitability shocks P 0.969 0.0015
Conditional volatility of idiosyncratic profitability shocks o 0.059 0.0032
Persistence of project arrival rate Pa 0.996 0.0019
Conditional volatility of project arrival rates Oq 0.115 0.0219
Capital adjustment cost coefficient 0 1.857 0.143
Elasticity of substitution between capital and variable inputs i 0.696 0.0175
Effective leverage ratio ) 2.946  0.400
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Table 7: Risk exposures and factor correlation: model-based simulations

Panel A reports the risk factor exposures to the aggregate profitability shock (fx) and aggregate
investment shock (fz) of the GP/A quintiles and In(BM) quintiles from simulations of the model.
Panel B reports the correlation between the gross profitability factor and the value factor from
the empirical data and from the model. The standard error (S.E.) for the model is estimated
from the standard deviation across simulations. We simulate 100 independent samples from the
model, with each sample representing 1,000 firms over 600 months. The historical sample is from
July 1963 to December 2019. The Newey-West t-statistics are computed with 4 lags to adjust for
heteroskedasticity and autocorrelation.

Panel A: Risk exposures

GP/A quintiles Lo 2 3 4 Hi Hi-Lo
Bx 1.13 1.16 1.18 1.21 1.27 0.14
(70.87) (66.63) (64.51) (63.48) (60.44) (5.89)
B= 1.52 1.40 1.31 1.22 1.06 -0.46
(33.24) (28.64) (25.15) (22.36) (17.69) (-6.28)
In(BM) quintiles Lo 2 3 4 i HiLo
Bx 1.28 1.26 1.23 1.19 1.11 -0.17
(64.45) (63.10) (63.61) (62.72) (62.80) (-6.68)
b= 1.85 1.51 1.33 1.17 0.96 -0.89

(30.85) (25.74) (24.12) (22.24) (19.88) (-11.95)

Panel B: Correlation between the gross profitability factor and the value factor

Data Model
Correlation -0.40 -0.19
S.E. 0.013
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Table 8: Double sorts and conditional factor premiums: data vs. model

This table reports the average excess returns of 5-by-5 portfolios double-sorted on logBM and then
GP/A (Panel A) and double-sorted on GP/A and logBM (Panel B) and the average annualized
conditional GP/A and value premiums, both in the data and in the simulations. The conditional
GP/A premium is the average Hi-Lo GP/A premium across the five logBM groups, and the
conditional value premium is the average Hi-Lo value premium across the five GP/A groups.
Besides the average conditional premiums, we also report their annualized Sharpe ratios (SR).
The historical sample is from July 1963 to December 2019. We simulate 100 independent samples
from the model, with each sample representing 1,000 firms over 600 months.

Panel A: Double sorts on logBM and then GP/A

Data Model
Lo 2 GP/A 4 Hi Hi-Lo Lo 2 GP/A 4 Hi Hi-Lo
Lo -4.89 2.77 398 6.50 819 13.08 Lo 0.98 2.30 4.11 599 9.30 8.32
2 1.89 513 6.43 7.63 9.60 7.71 2 2.86 4.65 6.43 8.10 10.13 7.27
logBM 4.91 547 9.00 10.22 10.55 5.64 logBM 4.18 5.51 6.85 8.82 10.26 6.08
4 6.81 6.94 11.04 13.02 9.87 3.06 4 497 641 799 8.82 10.26 5.29
Hi 8.74 9.05 12.40 13.32 11.24 2.50 Hi 6.65 7.65 845 894 10.02 3.37
Conditional GP/A Prm. 6.40 Conditional GP/A Prm. 6.07
SR 0.65 SR 0.76
Panel B: Double sorts on GP/A and then logBM
Data Model
Lo 2 logBM 4 Hi Hi-Lo Lo 2 logBM 4 Hi Hi-Lo
Lo -244 161 478 649 9.06 11.50 Lo 1.15 353 498 6.15 7.68 6.53
2 3.52 4.07 6.57 828 10.10 6.58 2 2.02 465 591 6.95 8841 6.82
GP/A 4.75 573 9.68 11.14 12.87 8.11 GP/A 297 548 6.92 827 9.17 6.20
4 4.63 8.84 10.18 12.30 11.83 7.20 4 451 6.96 793 907 995 544
Hi 871 9.16 10.16 10.86 11.11 240 Hi 7.60 9.37 10.15 10.04 10.54 2.94
Conditional value Prm.  7.16 Conditional value Prm.  5.59
SR 0.56 SR 0.65
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Table 9: Cash flow betas of gross profitability quintiles: model-based simulations
This table reports the cash flow exposures of GP/A quintile portfolios to the gross profitability
factor return using the simulated model output. We regress the cumulative growth rate of gross
profit, sales, and cost of goods sold of the quintile portfolios from year t to t + K onto the gross
profitability factor return in year t. We consider K = 0, 1, and 2, where K = 0 corresponds
to contemporaneous annual regressions. We simulate 100 independent samples from the model,
with each sample representing 1,000 firms over 600 months. We standardize the gross profitability
factor return to have a unit standard deviation. The Newey-West t-statistics are computed with
K + 4 lags to adjust for heteroskedasticity and autocorrelation.

Exposures of gross profit

K= Lo 2 3 4 Hi  HiLo
0 179 062 073 081 311  4.90
(-1.81) (0.70) (0.89) (0.91) (3.76) (4.80)
1 234 104 089 099 477 7.12
(-1.68) (0.84) (0.71) (0.74) (4.06) (5.03)
2 155 095 073 077 348  5.03

(-0.95) (0.62) (0.47) (0.47) (2.36) (2.72)
Exposures of sales

0 088 096 1.02 108 292 381
(-0.96) (1.08) (1.16) (1.13) (3.11) (4.97)

1 117 150 139 146 452 5.69
(-0.87) (1.17) (1.02) (0.99) (3.32) (5.37)

2 069 132 115 118 342 411

(-0.48) (0.80) (0.66) (0.64) (2.01) (2.91)
Exposures of cost of goods sold

0 056 110 115 122 282 3.38
(-0.58) (1.17) (1.22) (1.18) (2.75) (4.79)
1 071 170 162 170 439  5.10
(-0.50) (1.25) (1.12) (1.08) (2.94) (5.16)
2 034 149 135 139 340 3.74

(-0.26) (0.84) (0.72) (0.70) (1.82) (2.87)
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Table 10: Cash flow betas of GP/A quintiles

This table is an empirical counterpart of Table 9, and reports the cash flow exposures of the
GP/A quintile portfolios within the Fama-French 30 industries to the gross profitability factor
return. We regress the cumulative growth rate of gross profit, sales, and cost of goods sold of the
quintile portfolios from year ¢t to t + K onto the gross profitability factor return in year t. We
consider K =0, 1, and 2, where K = 0 corresponds to contemporaneous annual regressions. We
standardize the gross profitability factor return to have a unit standard deviation. The Newey-
West t-statistics are computed with K +4 lags to adjust for heteroskedasticity and autocorrelation.
The sample is annual from 1964 to 2019.

Exposures of gross profit
K = Lo 2 3 4 Hi  Hi-Lo
0 -0.92 0.78 0.69 069 142 235
(-0.80) (1.11) (1.13) (1.09) (1.98) (2.76)

1 372 -026  -0.73  0.04 059  4.32
(-2.31) (-0.25) (-0.96) (0.04) (0.80) (2.99)
2 453  -037 -150 040 087 5.4l

(-1.88) (-0.28) (-1.66) (0.34) (1.05) (2.53)
Exposures of sales

0 036 126 161 138 170 134
(0.44)  (1.93) (1.90) (1.78) (1.73) (2.46)

1 092 060 048  0.84 051 143
(-0.95)  (0.61) (0.57) (1.04) (0.59) (1.80)

2 121 021 010 131 057 178

(-1.01) (0.15) (0.08) (1.05) (0.60) (2.32)

Exposures of cost of goods sold

0 064 145 206 1.80 193 1.29
(0.76)  (2.18) (1.93) (1.89) (1.64) (1.91)
1 031 091  1.03 130 054 085
(-0.33)  (0.92) (0.99) (1.36) (0.52) (0.98)
2 049 042 081 183 048 097

(-0.41) (0.29) (0.60) (1.35) (0.41) (0.99)
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Table 11: Stock return betas of GP/A quintiles and pricing of aggregate profitability
shocks

This table reports the stock return betas of GP/A quintiles and pricing of the aggregate prof-
itability shock. In Panel A, we estimate a two-factor linear SDF model, with the market portfolio
and the gross profitability factor, defined by sorting firms on GP/A within the Fama-French 30
industries. In Panels B and C, the second factor is the total factor productivity shock (dTFP),
defined as the cumulative utilization-adjusted TFP growth (e.g., Basu, Fernald, and Kimball,
2006; Fernald, 2014) over the current and subsequent year. In Panels A and C, we report the
results from a GMM test. We use the Fama-French 17 and 30 industry portfolios as test assets.
We normalize the intercept of the SDF to one, and standardize the gross profitability factor re-
turns and dTFP shocks to a unit standard deviation. We report the annualized mean absolute
pricing errors (MAE) in percent, the p-value associated with the over-identification test, and the
estimated annualized price of risk (b). Panel B reports the stock return betas of GP/A quintile
portfolios. The Newey-West t-statistics are computed with 4 lags to adjust for heteroskedasticity
and autocorrelation. The sample is monthly from January 1964 to December 2019 in Panel A,
and annual from 1964 to 2019 in Panels B and C.

Panel A: GMM with Profitability factor

Industry 17 30
MAE 1.04 1.15
p-value 0.85 0.70
b(MKT) 0.66 0.71

(3.78) (3.88)
b(GP/A factor)  0.55 0.64

(2.36) (2.45)

Panel B: Stock return betas
Lo 2 3 4 Hi Hi-Lo

MKT 114 100 095 096 092 -022
(18.23) (26.31) (31.85) (31.47) (25.54) (-2.53)
dTFP  -1.03 -0.36 -0.20 -0.10 081 184
(-1.54) (-1.34) (-1.00) (-0.51) (2.14) (2.20)

Panel C: GMM with dTFP

Industry 17 30
MAE 0.63 0.95
p-value 0.92 1.00

b(MKT)  0.20 0.22
(2.02)  (1.91)
b(dTFP)  0.58 0.48
(2.77)  (4.51)

46





