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We illustrate the potential applicability of our results with an empirical estimation that uses data 
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parameters. We then conduct a laboratory experiment based on the estimated parameters to 
examine the effect of such pooling on subjects’ behavior. The findings generally support our 
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1 Introduction

College and university admissions in many countries are determined by students’ perfor-

mance on a centrally-administered test. This is the case, for example, for most colleges

and universities in Brazil, China, Russia, South Korea, and Turkey. The students with the

highest performance are admitted to the best colleges, those ranked slightly below them

are admitted to the next best colleges, and so on. In many other countries factors such as

high-school grades are also considered, but centralized test results are still of paramount

importance in the college admissions process.

Consequently, students invest a great deal of time and effort preparing for these tests. In

many Asian countries, including China, Japan, South Korea, and Taiwan, students attend

specialized “cram schools,”1 which focus on improving students’ performance on the tests.

This often consists of rote learning, solving a large number of practice problems, and prac-

ticing test-taking strategies tailored to the specific test. In other countries, students hire

tutors, buy books, and take specialized courses, all geared entirely toward improving their

test scores. These activities likely improve students’ performance on the test, but are far less

likely to generate substantial long-term improvements in students’ productive human capi-

tal. These activities do, however, carry significant costs in terms of time, money, and effort.

In South Korea, for example, it is not uncommon for high school students to spend several

hours a day in cram schools, and the high stakes competition for college admissions is seen

as one of the main causes for the high rates of unhappiness and suicide among teenagers.2

Similar concerns have also been raised in the United States.3

Addressing this issue is more difficult than it might initially appear. Passing laws to pro-

1The term comes from the word “cramming,” which also attests to the style and content of the instruction.

2See, for example, Matthew Carneys’ discussion “South Korean education success has its costs in unhap-
piness and suicide rates” from June 15, 2015 on the Australian Broadcasting Corporation. The high suicide
rate among teenagers is frequently attributed to their and others’ expectations for them to do well in the
competition for college admissions (Ahn and Baek (2013)).

3For example, Hsin and Xie (2014) report that the high academic effort Asian-Americans exert leads to
lower subjective well being and to psychological and social difficulties. Schwartz (2016) discusses (without
modeling formally) the psychological and other costs to students, and suggests that a lottery among those
passing a threshold might increase welfare relative to the current admissions process. Bodoh-Creed and
Hickman (2019) provide additional references, and also estimate the cost of competition in monetary terms.
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hibit or limit test-preparation activities may be both difficult and ineffective.4 Changing the

admissions process may also be impractical. First, it is not clear what a better system would

look like. For example, accurate tests lead to better students being admitted to better col-

leges, and other systems may lead to different outcomes, which may or may not be preferred.

Second, implementing a new system may be expensive and technically difficult. Third, a new

system that makes some students worse off would likely face significant resistance, even if it

made other students better off.

This paper investigates simple modifications to admissions processes based on central-

ized tests that can make all students better off. We model college admissions as a contest

with many players (students) and many prizes (college seats). Students exert costly effort

and are admitted to colleges based on the rank order of their performance.5 We consider

performance-disclosure policies, which coarsen students’ rank order by pooling together in-

tervals of performance and assigning the same score to all performances in an interval. If

many students obtain the same score, they are randomly admitted to the corresponding

fraction of colleges.6 For example, a “top pooling” policy that pools some fraction (an in-

terval) of the top performing students leads to these students being randomly assigned to

the same fraction of the top college seats.7 An attractive property of performance-disclosure

policies is that they do not require changing the tests or introducing new components to

4For example, In a 2014 New York Times article, (https://www.nytimes.com/2014/08/02/opinion/
sunday/south-koreas-education-system-hurts-students.html), Se-Woong Koo reports that many South Ko-
rean presidents tried to limit cram schools’ activities, including passing a 10 p.m. mandatory closure time.
But even this restriction was circumvented “by operating out of residential buildings or blacking out windows
so that light cannot be seen from outside.”

5While our focus is on college admissions, our model may also be applied to other settings. One example
is large corporate promotion contests, in which effort could correspond to “gaming” by smoothing store level
sales numbers, distorting subordinate activity, or redirecting marketing resources. We thank a referee for
suggesting this example.

6Such coarsening can be viewed as a particular way of making performance on the test noisier. Morgan
et. al. (2022), in closely related independent research, suggest that other forms of noise can also be socially
beneficial.

7A similar policy was proposed by Barry Schwartz in a 2007 LA times article
(http://articles.latimes.com/2007/mar/18/opinion/op-schwartz18/2) in order “to dramatically reduce
the pressure and competition that our most talented students now experience.” “Then the names of all
the ‘good enough’ students could be placed in a metaphorical hat, with the ‘winners’ drawn at random for
admission. Though a high school student will still have to work hard to be ‘good enough’ for Yale, she
won’t have to distort her life in the way she would if she had to be the ‘best.’ The only reason left for
participating in all those enrichment programs would be interest, not competitive advantage.” We provide
a framework to formalize, evaluate, and compare top pooling and other performance-disclosure policies.
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the admissions process. They also respect the property that a higher score leads to a better

college assignment than a lower score. These two properties may help make such policies

appealing to policy makers.

A real-world example of a coarse performance-disclosure policy is the one recently adopted

by the South Korean Ministry of Education for the College Scholastic Ability Test (CSAT),

which determines college admissions in South Korea. Until 2018, each part of the test was

graded on a 0-100 or 0-50 scale. Starting in 2018, scores of 90-100 in the English component

of the CSAT are reported as one grade, scores of 80-89 as another grade, etc. “Students

in the same graded classification will all be considered on an equal playing field in the

college admissions process, regardless of their numerical scores.”8 The goal is to reduce costly

competition between students,9 while recognizing that the assortativity of the admissions

process will be reduced as well.10 One possible concern with such a policy, however, is that

even if its overall effect on student welfare is positive, it may be that some students are

harmed while others benefit.

We are interested in performance-disclosure policies that benefit all students, and refer

to such policies as Pareto improving. In particular, we do not need to consider welfare trade-

offs across students. A key finding of our analysis is that Pareto improving policies often

exist. This may seem surprising, since a fixed set of college seats implies that a student

can be admitted to a better college only if another student is admitted to a worse college.

The crucial element that makes Pareto improvements possible is that test preparation is

costly. The costs students incur, as well as the resulting college assignment, are determined

in equilibrium, and the equilibrium is affected by the performance-disclosure policy. Relative

to the baseline contest with no coarsening, introducing a performance-disclosure policy leads

to some students being admitted to better colleges; this makes them better off even if they

incur higher costs, as long as the cost increase is not too large. Other students are admitted

8Korea JoongAng Daily, October 10, 2015. “CSAT English section to take absolute grade scale.”

9 This “... grading system aims to reduce excessive competition among test-takers.” “‘We are trying to
alleviate unnecessary and exorbitant competition between students who are competing with one another to
gain one or two points more,’ said Kim Doo-yong, a ministry official.” Ibid.

10“In the last mock exam..., 23 percent of total examinees scored in the first grade... but only 4.64 percent
of total examinees received perfect scores, which by current standards means they would have been the only
ones to classify in the first grade.” Ibid.
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to worse colleges; if they also incur lower costs they are made better off as long as the

reduction in the costs is large enough.

We characterize the Pareto improving policies and rank them in a Pareto sense. We

also characterize the Pareto frontier of such policies. We do this initially for top pooling

policies, which are the easiest to analyze, and then for policies that pool any single interval

of performance. The characterization shows that pooling a performance interval is Pareto

improving if and only if the student with the highest performance in the interval benefits from

the pooling. This in turn happens if the population distribution of student ability conditional

on the same interval (in percentile terms) first-order stochastically dominates (FOSD) the

uniform distribution. We then generalize this condition to policies with multiple pooling

intervals.

We then consider robust Pareto improving policies, which are Pareto improving for any

distribution of college seats. We characterize the robust Pareto improving policies and show

that the Pareto optimal policy among them is unique. This policy consists of pooling each

of the maximal intervals on which the conditional distribution of student ability FOSD the

uniform distribution. This characterization is useful because it only involves students’ ability

distribution. Given this distribution, it is straightforward to derive the Pareto optimal policy,

which is robust to the distribution of college seats.

We illustrate the potential applicability of our results with an empirical estimation that

uses data on college admissions in Turkey. We use the framework of Krishna et al. (2018)

to calibrate the model and estimate applicants’ ability distribution and the distribution

of college seats. We then simulate a college admissions contest with these distributions

and find a maximal Pareto improving “bottom pooling” interval, which pools together a

fraction of the lowest test scores.11 Finally, we design a laboratory experiment based on the

calibrated distributions and Pareto improving bottom pooling policy. We evaluate subjects’

behavior in the baseline contest and with bottom pooling, and find that the behavior is

in broad agreement with the theory. A small set of subjects, those with the lowest ability

among the subjects who should not be affected by the bottom pooling policy, behave in a

way that slightly decreases their monetary payoffs. We provide possible explanations for

11Appendix F describes the Pareto optimal robust Pareto improving policy.
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this and argue that these subjects may be better off as well. Taken together, our theory,

empirical estimation, and experiment suggest that the simple performance-disclosure policies

we investigate have the potential to improve the welfare of millions of college admissions

applicants.

The rest of the paper is organized as follows. Section 1.1 reviews the related literature.

Section 2 introduces the model. Section 3 presents the equilibrium and the notion of Pareto

improvements. Section 4 investigates top pooling. Section 5 investigates policies with a

single pooling interval and with multiple pooling intervals. Section 6 derives the conditions

for robust Pareto improvements. Section 7 conducts the empirical estimation using data

on Turkish college admissions to show what a Pareto improving policy might look like.

Section 8 uses the results from Section 7 to conduct a laboratory experiment and evaluate

whether such a policy might lead to better outcomes in practice. Section 9 concludes. The

appendices contain proofs, examine peer effects, extend our results for top pooling to more

general student utility functions, and provide additional material regarding the empirical

estimation and the laboratory experiment.

1.1 Relation to the literature

College admissions feature prominently in the matching literature, beginning with Gale and

Shapley’s (1962) seminal contribution. The focus of much of this work is on stability and

efficiency in the presence of heterogeneous student preferences, while abstracting from the

effort students exert. Since we are interested in Pareto improvements, endogenous effort

choice is an important feature of our framework.

Condorelli (2012) characterizes the ex-ante efficient allocations of heterogeneous objects

to heterogeneous agents with private valuations. We are interested in ex-post Pareto im-

provements. The difference between ex-ante and ex-post Pareto is important in the context

of college admissions, because the former allocations may treat some agents better at the

expense of other agents and consequently be controversial. And the set of ex-ante optimal

allocations can be completely different from those that are ex-post Pareto improving, as we

discuss at the end of Section 2.1 below. In addition, although Condorelli (2012) provides an
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elegant general solution to the problem he studies, his solution delivers little insight regard-

ing pooling intervals of performance in the context of college admissions, which is the focus

of our work. His main take-away insights apply when all players’ type distributions have

monotone hazard rates. Our results do not require such a condition.

Other authors studied the optimality of coarse partitions with random lotteries within

elements of the partitions in various settings. The most closely related paper is the one by

Che et al. (2018), who study the possibility of collusion among privately-informed bidders

in an auction for a single object. They are interested in auction formats that are immune to

collusion, as well as in optimal cartels. Our paper contains several results that look similar

to theirs, and which are derived by referring to the same tools from the theory of mechanism

design. The results of the two papers cannot be directly compared, however, because they

are derived in different settings. The models are different and so are details of the analyses.

For example, a cartel in their model is free to choose the bids for colluding bidders (as long

as this choice is incentives compatible), and prizes are determined according to the rules of

an exogenous auction. In contrast, our disclosure policies determine the rules, and bids and

prizes are determined endogenously given the rules.

Chao and Wilson (1987) study priority services of scarce supplies. They show in a model

with an interval of customers’ valuations that few priority classes suffice to capture most

of the gains from priority service, and more generally that the surplus not realized due to

using only a finite number n of priority classes (with customers within each class served in

a random order) is only of order 1/n2. In addition, McAfee (2002) shows that in a general

matching setting two priority classes capture a large share of the payoffs produced by perfect

matching. Similar findings were reported by Wilson (1989).

By studying a monopolist matchmaker, Damiano and Li (2007) show that perfect sorting

may not be optimal. Instead, the monopolist can increase revenue by pooling a small interval

of types, within which matching is random. However, unlike in our model, the reason for the

optimality of pooling intervals in their model is the tradeoff between efficiency of matching

and rent extraction.12 Similarly, in Rayo’s (2013) analysis of the design of positional goods,

12A less closely related paper by Hoppe et al. (2011) explores the relative performance of coarse matching
versus assortative matching.
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a monopolist can restrict the variety of positional goods that consumers use to signal their

types in order to extract more surplus from consumers. Moldovanu et al. (2007) show that

the designer of a contest for status may prefer to pool contestants into status categories in

order to increase the aggregate performance.

Several papers compare allocating objects via contests13 and lotteries from the perspec-

tive of contestants’ welfare (see Taylor et al. (2003), Koh et al. (2006), Hoppe et al. (2009),

and Chakravarty and Kaplan (2013)). The most closely related work is by Hoppe et al.

(2009). They consider a two-sided matching model with ex-ante symmetric agents on each

side, in which assortative matching takes place based on costly signals. They provide con-

ditions (expressed in terms of monotone failure rates) under which random matching leads

to ex-ante higher welfare than assortative matching, and show that random matching is

Pareto improving for agents on one side if the distribution of types of that side first-order

stochastically dominates the uniform distribution.

Hafalir et al. (2018) investigate a model of college admissions with entrance exams and

two colleges with different qualities. They compare centralized admissions, in which students

can apply to both colleges, and decentralized admissions, in which each student can apply

to only one college. They show that lower ability students prefer the decentralized setting

and higher ability students prefer the centralized setting. Fang and Noe (2018) consider

a selection contest with identical prizes, and show that pooling a larger number of the

top performers than the number of prizes can sometimes lead to lower risk taking without

reducing winner quality. Fang, Noe, and Strack (2018) consider a large contest framework

similar to ours to investigate the effect of different university grading curves when post-

graduation salaries depend on inferences employees make from grades about student ability

and human capital accumulation.

Ostrovsky and Schwarz (2010) investigate information disclosure policies by schools when

students are passive and exert no effort, and focus on the amount of information schools

reveal in equilibrium. In our analysis, performance disclosure policies affect students’ efforts,

and this determines which policies are Pareto preferred. A more recent contribution by

Boleslavsky and Cotton (2015) considers schools’ incentives to invest in quality when they

13Contests in these papers typically have the form of waiting in line.
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can choose imperfectly informative grading policies. As a result of this strategic choice,

schools have a greater incentive to invest in quality, which can increase welfare. Gottlieb

and Smetters (2014) investigate why MBA students vote for grade non-disclosure policies

when employers make inferences about students’ abilities based on the disclosed information.

Frankel and Kartik (2019) point out that the value of standardized tests can be diminished

by students muddling the ability signals contained in these tests by engaging in preparation

that is not available to all students. An important common feature of our and their model

is that wasteful effort can distort signaling in contests.

Dubey and Geanakoplos (2010) consider a game of status between students. A student’s

status is equal to the difference between the number of students with a lower grade and

the number of students with a higher grade. In particular, the aggregate allocation value

of status is always 0. A student’s performance is a noisy measure of his costly effort, and,

similarly to our model, a grading policy pools intervals of performance. The focus is on

characterizing grading policies that maximize effort. Such policies involve some pooling, and

with heterogeneous students necessary conditions for such policies are derived. Coarse grades

also arise in the setting of Harbaugh and Rasmusen (2018), in which a sender can choose

whether to certify his privately-known quality. Certification schemes with coarse grades can

result in more information by inducing the sender to certify a larger set of qualities.

Our paper also belongs to the literature on all-pay contests. Most papers in this literature

focus on settings with two players, ex-ante symmetric players, or identical prizes. Olszewski

and Siegel (2016) introduced the approximation approach to large contests, which makes it

possible to study contests with many ex-ante asymmetric players and heterogeneous prizes, as

we do here. Olszewski and Siegel (2020) use this approach to study performance-maximizing

contests.14 Bodoh-Creed and Hickman (2018) use a similar (and independently developed)

approach to study quotas and affirmative action in college admissions. While there are

several technical differences between their model and ours,15 the main differences are in the

14Fang, Noe, and Strack (2020) study the effect of different prize structures on aggregate effort in symmetric
all-pay auctions with complete information.

15They consider a more general utility function but assume that the limit distribution of college seats is
atomless, and consider two groups of students, the minority and the majority, such that students within each
group are ex-ante symmetric.
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design instruments they consider (quotas and affirmative action) and their focus on aggregate

welfare as opposed to our focus on Pareto improvements. They also allow for productive

effort, which is potentially important in college admissions settings that take into account

factors like high school performance. One of their findings is that using a lottery to assign

students to colleges would generate higher aggregate student welfare than a contest for college

admissions. Our investigation of optimal category rankings shows that a pure lottery can

be improved upon for all students by partitioning the set of students into several categories

based on their performance and using a separate assignment lottery for each category.

2 The baseline contest

A large number of players (students) compete for prizes (college seats) by taking a test. Each

prize is characterized by its known value y ∈ [0, 1], and each player is characterized by her

ability (type) x ∈ [0, 1], which affects her cost of performance on the test and/or her prize

valuation. Each player’s type is drawn from a player-specific distribution, independently

across players. This accommodates ex-ante asymmetry across players. After privately ob-

serving her type, each player exerts costly effort to achieve her desired performance t ≥ 0 on

the test. The test may have several parts or be comprised of several examinations, provided

that they are weighted in a way that produces a single number (the performance) according

to which players are ranked. The player with the highest performance obtains the highest

prize, the player with the second-highest performance obtains the second-highest prize, and

so on. Some prizes may be identical, which allows for multiple seats in a given college (or tier

of colleges). Ties are resolved by a fair lottery. The utility of a type x player who chooses

performance t and obtains prize y is

g1 (x) y − c(t)

g2 (x)
, (1)

9



where c is strictly increasing and twice continuously differentiable, and limt→∞ c(t) = ∞.16

Function c captures the cost of performance, function g1 ≥ 0 captures the effect of the

player’s type on her prize valuation, and function g2 ≥ 0 captures the effect of the player’s

type on her cost of performance. We order types so that g1 (x) g2 (x) = x. Two special cases

(which are assumed in most of the contest literature) are

xy − c(t), (2)

in which the player’s type only affects her prize valuation, and

y − c(t)

x
, (3)

in which the player’s type only affects her performance cost. Utilities (1) for different func-

tions g1 and g2 are strategically equivalent, because for each type x multiplying (1) by g2 (x)

gives (2). Throughout our analysis we will assume utility (2). This is for convenience only.

As we now discuss, all our results hold without change for any utility (1) (and for the special

case (3)).

2.1 Discussion of the model

Our baseline contest accommodates heterogeneity in college quality and student ability, and

models costly test preparation as a strategic choice. Like any other model, it abstracts from

certain realistic and potentially important aspects. First, the model stipulates a common

ordinal ranking of college quality across students.17 Second, the model abstracts from factors

that are not controlled by the players and may affect their performance (“noise”). These

two assumptions are made for tractability (but they may also be fairly realistic in some

settings). Third, the model assumes that test preparation is costly, as in Spence (1973).

16The linearity of y is a normalization; we can replace y in players’ utility with h (y), where h is strictly
increasing and twice continuously differentiable and h (y) = 0, without affecting any of the results. We
can also replace the assumption that limt→∞ c(t) = ∞ with the assumption that limt→t c(t) = ∞ for some
positive t that represents a cap on students’ maximal effort.

17Homogeneous ordinal preferences are also assumed in some matching papers on school choice (for example
in Lien, Zheng, and Zhong (2017)).
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This cost is captured by function c, and should be interpreted as net of any direct benefit

from the preparation activities. This is most appropriate for activities specifically geared

toward improving students’ performance on the test, as discussed in the introduction. The

model is less suitable when other activities, such as taking AP classes, play an important

role in college admissions and may have significant direct benefits at moderate levels of

investment. But even there the costs may exceed the benefits past a certain point. Bodoh-

Creed and Hickman (2019) provide support for this in the context of college admissions in

the United States.18 In such cases, function c can be thought of as a simplification that

assumes that all preparation activities are costly.

Fourth, similarly to much of the matching literature, peer effects are absent: a student’s

valuation for being admitted to a college does not depend on which other students are

admitted to the same college. In fact, peer effects can be accommodated without changing

the substance of any of our results. This is done in Appendix C. The idea is that in a large

contest each student is fairly certain about the equilibrium distribution of student types

admitted to the various colleges. We can therefore replace the value y of being admitted

to a specific college with another value that includes the peer effects generated by the set

of students admitted to that college. The rest of the analysis is unchanged. Finally, in

Appendix D we show that our results for top pooling generalize to separable utility functions

of the form h(x, y)− c(t) and h(y)− c(x, t) that satisfy some conditions.

It is also important to point out that while utilities (1) for different functions g1 and g2

are strategically equivalent, different functions g1 have different implications for aggregate

welfare. Setting aside players’ performance, if g1 (x) increases in x (e.g., utility (2)), then

the allocation of prizes that maximizes aggregate welfare allocates the highest prize to the

player with the highest type, the second highest prize to the player with the second highest

type, etc. But the opposite is true if g1 (x) decreases in x. And if g1 (x) is independent of

x (e.g., utility (3)), then all prize allocations generate the same aggregate welfare. These

different functional forms make no difference for our analysis, however, because we focus

on performance-disclosure policies that make all students better off, and in fact all types of

18They study a rich data set and a contest model in which effort can be productive, but show that for
most students most of the effort is in fact wasteful (and the wasted effort is three times higher than the
productive effort for the middle 50 percent of the learning cost distribution).
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students better off (we provide a precise definition in Section 3.1 below). Since each player’s

ranking of prize-performance pairs is the same for all utility functions (1), our results hold

for all utility functions (1). In particular, we do not need to take a stand on aggregate

welfare or on whether awarding higher prizes to players with higher types is desirable from a

welfare perspective. In contrast, the ex-ante efficient allocations (Condorelli (2012)), which

maximize the sum of expected utilities, differ across the functional forms. For example,

under utility (3) the ex-ante efficient allocations are those that induce a performance of 0,

that is, all the possible lotteries over prizes (including deterministic allocations), which do

not depend on players’ performance.

3 Equilibrium

A direct equilibrium analysis of the baseline contest described in Section 2 is intractable

because the equilibria generally involve mixed strategies and are not symmetric. Since the

contests we consider have many players and prizes, we can make use of the tractable approach

to studying the equilibria of large contests, which was developed in Olszewski and Siegel

(2016). They show that all the equilibria of such large contests are closely approximated by

the unique single-agent mechanism in a specific environment that implements the assortative

allocation of prizes to agent types and gives the lowest type a utility of 0. More precisely,

denote by F the average distribution of players’ types and suppose that it has a continuous,

strictly positive density f , and denote by G the empirical distribution of prizes, which need

not be continuous or have full support. For example, G may consist of atoms that represent

colleges (or tiers of colleges). The size of each atom represents the fraction of overall seats

offered by the corresponding college. The assortative allocation assigns to each type x prize

yA (x) = G−1 (F (x)) ,

where

G−1(z) = inf{y : G (y) ≥ z} for 0 ≤ z ≤ 1.

12



That is, the quantile in the prize distribution of the prize assigned to type x is the same as

the quantile of type x in the type distribution. It is well known (see, for example, Myerson

(1981)) that the unique incentive-compatible mechanism that implements the assortative

allocation and gives type x = 0 utility 0 specifies for every type x performance

tA (x) = c−1
(
xyA (x)−

∫ x

0

yA (x̃) dx̃

)
. (4)

This implies that type x obtains utility

U(x) = xyA (x)− c(tA (x)) =

∫ x

0

yA (x̃) dx̃. (5)

Roughly speaking, the approximation shows that in any equilibrium of a large contest a

player with type x with high probability chooses a performance close to tA (x) and obtains a

prize close to yA (x), which gives her a utility close to U (x). See Olszewski and Siegel (2016)

for a precise statement and additional details.

The intuition for why this single-agent mechanism approximates the equilibria of large

(finite) contests is that, given players’ equilibrium strategies, with a large number of players

the law of large numbers implies that each bid leads to an almost deterministic rank-order

quantile (in the distribution of bids) and thus to an almost deterministic prize. In the limit

we obtain an “inverse tariff” that maps bids to prizes. Utility (1) implies that higher types

choose higher bids from any tariff, so the mechanism induced by the inverse tariff implements

the assortative allocation. Any player can bid 0 and obtain the lowest prize, so the utility

of type 0 is 0.

In the rest of paper we focus on the approximating single-agent mechanism to investigate

how different performance-disclosure policies affects students’ welfare in a Pareto sense, which

we define below. As discussed in the introduction, the potential for Pareto improvements

exists because performance is costly: if pooling reduces students’ performance, all students

could be made better off even though the allocation of college seats changes.

13



3.1 The notion of Pareto improvements

We study the approximating mechanisms under various performance-disclosure policies, and

use the term “Pareto-improving” in reference to the utility of the types in these approximat-

ing mechanisms. A performance-disclosure policy is Pareto improving if all types are better

off and there is a positive measure of types that are strictly better off. Such an improvement

implies that in a sufficiently large contest some players are strictly better off and no player

is worse off by more than an arbitrarily small amount; moreover, the sum of these small

amounts across all players who are worse off is arbitrarily small compared to the gains of the

players who are strictly better off. We point out, however, that these gains and losses are

in terms of expected utilities. Since pooling in our performance-disclosure policies leads to

lotteries over prizes, by “gains” for a player we mean that the player prefers the lottery to

the original disclosure policy, but she may or may not prefer the outcome once the lottery

is realized.

4 Top pooling

We begin by considering “top q pooling,” in which a fraction q of the highest performing

students are pooled. These students still obtain the best college seats, but the allocation

of these seats to the students is random. Thus, to study the effect of top pooling we can

simply consider a contest in which the top fraction q of prizes are replaced with mass q

of identical prizes whose value is equal to the average value of the top prizes. To do this,

let x∗ = F−1 (1− q) be the type whose quantile in the average type distribution is 1 − q,

and let Gq be the prize distribution that results from replacing the top mass q of prizes in

distribution G with a mass q of prize

y(q) =

∫ 1

1−q G
−1 (z) dz

q
=

∫ 1

x∗
yA(x)dF (x)

1− F (x∗)
.
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That is, (Gq)−1 (F (x)) = G−1 (F (x)) for x ≤ x∗, and (Gq)−1 (F (x)) = y (q) for x > x∗. The

corresponding assortative allocation yA,q satisfies

yA,q(x) = (Gq)−1 (F (x)) . (6)

The unique single-agent mechanism that implements this allocation and gives type x = 0 a

utility of 0 specifies performance

tA,q (x) = c−1
(
xyA,q (x)−

∫ x

0

yA,q (x̃) dx̃

)
. (7)

Consider how this mechanism compares with the one in Section 3, which implements the

assortative allocation yA and in which the performance tA is given by (4). By definition of Gq

and yA,q, we have that yA,q (x) = yA (x) and tA,q (x) = tA (x) for x ≤ x∗, and yA,q (x) = y (q)

and tA,q (x) = M for x > x∗, where

M = c−1
(
x∗y (q)−

∫ x∗

0

yA (x̃) dx̃

)
= c−1

(
x∗
∫ 1

x∗
yA(x̃)dF (x̃)

1− F (x∗)
−
∫ x∗

0

yA (x̃) dx̃

)
. (8)

Type x∗ is a threshold type, above which pooling occurs: all higher types choose the

same performance M and obtain the same lottery over prizes. Since there is a one-to-one

correspondence between q and x∗, in what follows we also refer to top q pooling as “top

pooling with threshold x∗.” To gain some intuition for performance M , notice that (5) and

(8) imply that

x∗yA (x∗)− c(tA (x∗)) = x∗
∫ 1

x∗
yA(x)dF (x)

1− F (x∗)
− c(M), (9)

that is, type x∗ is indifferent between choosing performance tA (x∗) and obtaining prize

yA (x∗) and choosing performance M and obtaining a prize randomly from the mass 1−F (x∗)

of the highest prizes. (Note that tA (x∗) < M .)
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4.1 Welfare comparisons

Our first result compares each type’s utilities in the approximating mechanisms with and

without top pooling. The proof of this result, as well as those of other results, are in

Appendix B. For the result, we assume that not all prizes are identical in the top mass

1− F (x∗) of prizes.19

Proposition 1. Consider top pooling with threshold x∗.

(a) The utility of types x < x∗ is not affected.

(b) The utility of type x > x∗ increases if and only if

∫ 1

x∗
yA(x̃)dF (x̃)

1− F (x∗)
≥
∫ x
x∗
yA (x̃) dx̃

x− x∗
. (10)

(c) The gain in utility for types x > x∗ first increases and then decreases in type. Thus,

there is a type x∗∗ in (x∗, 1] such that the utility of types x in (x∗, x∗∗) is higher with pooling

than without pooling, and the utility of types x > x∗∗ is lower with pooling than without

pooling.

(d) Top pooling is Pareto improving if and only if it increases the utility of type 1, that

is, ∫ 1

x∗
yA(x̃)dF (x̃)

1− F (x∗)
≥
∫ 1

x∗
yA (x̃) dx̃

1− x∗
. (11)

Proposition 1 shows that the effect of top pooling on players’ welfare depends on their

types. Players with types lower than x∗ are unaffected because their performance and the

prize they obtain do not change. Players with types in (x∗, x∗∗) benefit, but the reason for

this may vary across the players. Players with types higher than but close to x∗ obtain a

prize lottery that is better than the prize they obtain without top pooling (because prize

yA (x∗) is the lower bound of the support of the prize lottery). Since type x∗ is indifferent

between the contests with and without top pooling, his performance with top pooling must

be higher, that is, tA (x∗) < M . Thus, players with types close to x∗ benefit from top pooling

because they obtain (with high probability) a better prize, even though they choose a higher

performance. On the other hand, players with types lower than but close to 1 obtain a prize

19If they are identical, then top pooling has no effect.
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lottery that is worse than the prize they obtain without top pooling (because prize yA (1)

is the upper bound of the support of the prize lottery). If top pooling is Pareto improving,

therefore, these players must choose a sufficiently lower performance with top pooling that

offsets the loss from the prize lottery. In particular, tA (1) > M .20

Note that the left-hand side of (10) is the average of yA(x̃) across types x̃ that choose

performance M . This average is taken with respect to the actual (truncated) distribution

of types. The left-hand side is independent of x. The right-hand side is the average of

yA(x̃) across all types lower than x that choose performance M taken with respect to the

(truncated) uniform distribution. The right-hand side increases in x. To understand (10),

which is the key condition in Proposition 1, multiply each side of (10) by x− x∗. Then, the

left-hand side of (10) is the difference between the utilities of type x > x∗ and type x∗ in the

contest with top pooling. The right-hand side of (10) (after multiplying it by x− x∗) is

∫ x

x∗
yA (x̃) dx̃ =

∫ x

0

yA (x̃) dx̃−
∫ x∗

0

yA (x̃) dx̃,

which is the difference between the utilities of type x > x∗ and type x∗ in the contest without

top pooling. The fact that
∫ x
0
yA (x̃) dx̃ is the utility of type x in the contest without top

pooling is well known from standard mechanism design because a single-agent mechanism

approximates the equilibria of large finite contests(see Section 3). Intuitively, type x̃ + dx̃

can pretend to be type x̃, obtain prize yA (x̃), and enjoy a utility increase of yA (x̃) dx̃ relative

to type x̃.

Proposition 1 shows that types slightly higher than x∗ benefit from top pooling,21 but

high types may or may not benefit. This depends on whether type 1 benefits, in which case all

types higher than x∗ do. The two possibilities are depicted in Figure 1, which illustrates the

utility gain resulting from top pooling as a function of type. The left-hand side corresponds to

top pooling with x∗∗ < 1, so it is not Pareto improving, and the right-hand side corresponds

to top pooling that is Pareto-improving, so x∗∗ = 1.

20If top pooling is Pareto improving, then it reduces the aggregate cost of performance because the set of
prizes is unchanged, and all players are made (at least weakly) better off.

21This is because the marginal equilibrium utility, or the marginal information rent, is equal to a type’s
prize, which is higher with top pooling for types slightly higher than x∗.
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Figure 1: Utiltiy gain from top pooling.

The following example illustrates the results from Proposition 1.

Example 1. Suppose that F and G are uniform. Consider utility (2) with c(t) = t.22 The

assortative allocation is yA (x) = x, and the approximating mechanism specifies performance

tA (x) = x2/2. The payoff of type x is x2/2.

Under top pooling with threshold x∗, every type x < x∗ chooses performance 1
2
x2 and

obtains prize x, and every type x > x∗ chooses performance M and obtains a prize drawn

uniformly from interval [x∗, 1]. Performance M is given by

1

2
(x∗)2 = x∗

1 + x∗

2
−M ,

so M = x∗/2. Thus, the payoffs are 1
2
x2 for x < x∗ and

x
1 + x∗

2
− x∗

2
≥ 1

2
x2

for x > x∗. All top pooling thresholds are Pareto-improving.

Example 1 shows that there may exist multiple Pareto-improving pooling thresholds. It

is therefore reasonable to ask whether these thresholds can be Pareto ranked. In Example 1,

the derivative of the payoff of every type x > x∗ with respect to the threshold type x∗ is

(x− 1) /2, so all types prefer x∗ = 0, i.e., the Pareto preferred top pooling is a lottery over

all prizes. In general, however, Pareto-improving pooling thresholds are not Pareto ranked,

as the following example shows.

Example 2. Let F = G have density f = g = 7/4 on intervals [0, 1/4] and [3/4, 1], and

22Recall that all our results hold for utility (1).
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density f = g = 1/4 on interval (1/4, 3/4). Consider utility (2) with c(t) = t. The assortative

allocation is yA (x) = x, and the approximating mechanism specifies performance tA (x) =

x2/2. The payoff of type x is x2/2.

Top pooling with threshold x∗ = 0, which is a lottery, is Pareto improving, since the

expected prize of 1/2 at performance 0 gives each type x utility x/2, which exceeds x2/2.

Now consider top pooling with threshold x∗ = 1/2. For this threshold we have M = 19/64,

since
1

2

(
1

2

)2

=
1

2

(
1

8

5

8
+

7

8

7

8

)
− 19

64
.

Type x = 1 benefits from this top pooling, since ((1/8) (5/8) + (7/8) (7/8)) − (19/64) >

1/2. It is therefore Pareto improving, by part (d) of Proposition 1. Type x = 1 (as well

as slightly lower types) also prefer this top pooling to a pure lottery. However, types in the

interval (0, 1/2) have the opposite preference, because a lottery gives each of them an expected

utility of x/2, and top pooling with threshold x∗ = 1/2 gives each of them an expected utility

of x2/2.

The following corollary of Proposition 1 clarifies when Pareto-improving pooling thresh-

olds are Pareto-ranked.

Corollary 1. Suppose that x∗1 < x∗2 are top-pooling thresholds and not all prizes are identical

in the top mass 1− F (x∗1) of prizes.

(a) If type x = 1 weakly prefers x∗1 to x∗2, then types x in (x∗1, 1) strictly prefer x∗1 to x∗2,

so x∗1 is Pareto preferred to x∗2.

(b) If type x = 1 strictly prefers x∗2 to x∗1, then x∗1 and x∗2 are not Pareto ranked. There

is an x∗∗ in (x∗2, 1) such that types x in (x∗1, x
∗∗) strictly prefer x∗1, and types x > x∗∗ strictly

prefer x∗2.

Figure 2 illustrates the two parts of Corollary 1. The left-hand side corresponds to part

(a), and the right-hand side corresponds to part (b).

Corollary 1 follows from Proposition 1 by interpreting top pooling with threshold x∗1

as the composition of two top poolings: top pooling with threshold x∗2 followed by top

pooling with threshold x∗1. More precisely, top pooling with threshold x∗2 is equivalent to a
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Figure 2: Comparing the utility gain from pooling thresholds x∗1 < x∗2

baseline contest with a modified prize distribution Gq in which the prizes allocated to types

(x∗2, 1] are replaced by a mass q = 1− F (x∗2) of the average (according to the original prize

distribution G) of the prizes in G. Top pooling with threshold x∗1 applied to this modified

prize distribution Gq is clearly equivalent to top pooling with threshold x∗1 applied to the

original prize distribution. Proposition 1 for top pooling with threshold x∗1 applied to prize

distribution Gq immediately implies the corollary: part (a) of the corollary follows from Part

(d) of Proposition 1, and part (b) of the corollary follows from part (c) of Proposition 1.

Corollary 1 leads to a simple description of the Pareto frontier of top-pooling thresholds.

To see this, consider the function φ that assigns to any threshold x∗ the utility of type x = 1

in the approximating mechanism with this threshold. Denote by ψ the lowest monotone

non-decreasing function that is pointwise weakly higher than φ. In Figure 3, ψ coincides

with φ on [0, x2], ψ ≡ φ(x2) is constant on [x2, x3], it again coincides with φ on [x3, x4],

and ψ ≡ φ(x4) is constant on [x4, 1]. The Pareto frontier of top-pooling thresholds consists

of all the thresholds x∗ at which ψ (x∗) = φ (x∗) except that only the lower endpoints of

the intervals on which ψ is constant belong to the Pareto frontier. In Figure 3, the Pareto

frontier consists of the closed interval [0, x2] and the left-open interval (x3, x4].

Indeed, if φ(x∗) ≤ φ(x) for some x < x∗, which means that ψ(x∗) = ψ(x′) for some

x′ < x∗, then x∗ does not belong to the Pareto frontier by part (a) of Corollary 1. Otherwise,

that is, if φ(x∗) > φ(x) for every x < x∗, then type 1 prefers x∗ to any x < x∗ so x∗ is not

Pareto dominated by any x < x∗. In addition, x∗ is not Pareto dominated by any x > x∗

by parts (a) and (b) of Corollary 1. Finally, note that not all top poolings from the Pareto

frontier are necessarily Pareto improving. The Pareto improving top poolings x∗ satisfy the

necessary and sufficient condition from part (d) of Proposition 1, which can be expressed as
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ψ (x∗) ≥ φ(1). In Figure 3, the top poolings from interval [0, x1), which is part of the Pareto

frontier, violate this condition.

Figure 3: Pareto frontiers of top pooling thresholds.

When we consider only a finite set X∗ of top pooling thresholds, Corollary 1 implies that

the Pareto frontier of X∗ consists of the threshold x∗ that is most preferred by type 1 among

all the thresholds in X∗, the threshold that is most preferred by type 1 among the thresholds

in X∗ that are lower than x∗, and so on.

5 Category Rankings

We now consider more general performance disclosure policies, which may include one or

more pooled intervals of performance ranking. We investigate how different policies affect

students’ welfare, and identify the Pareto improving ones. We will use the term “category

rankings” to describe such policies. A category ranking is a monotone partition of the

players according to the ranking of their performance. One example is partitioning them

above and below the median performance. Another example is partitioning them according

to whether their performance is below the 10-th percentile, between the 10-th percentile and

the 20-th percentile, etc. A category ranking induces a partition of the set of prizes, and

the prizes within each element of the partition are randomly assigned to the players in the

corresponding element of the category ranking.
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Formally, a category ranking is a monotone partition J of the set [0, 1] of quantiles into

singletons and left-open intervals. The intervals are Jk =
(
qlk, q

h
k

]
for 1 ≤ k ≤ K ≤ n, where

0 ≤ ql1 < qh1 ≤ · · · ≤ qlK < qhK ≤ 1. The interpretation is the fraction qhk − qlk of players

whose performance quantile rankings lie in Jk are grouped together (any rule can be used to

break ties in the ranking of two or more players who choose the same performance). Prizes

are assigned in decreasing value to the partition elements, and distributed according to a

fair lottery among the players in each partition element. To describe the approximating

mechanism, denote by GJ the distribution of prizes when the prizes in each interval Jk are

replaced with an equal mass of prize

y(Jk) =

∫ qhk
qlk
G−1(z)dz

qhk − qlk
=

∫ b
a
yA(x)dF (x)

F (b)− F (a)
(12)

for a = F−1
(
qlk
)

and b = F−1
(
qhk
)
. The corresponding assortative allocation yA,J (x) satisfies

yA,J (x) =
(
GJ
)−1

(F (x)) . (13)

The unique incentive-compatible mechanism that implements this allocation and gives type

x = 0 a utility of 0 specifies performance

tA,J (x) = c−1
(
xyA,J (x)−

∫ x

0

yA,J (x̃) dx̃

)
. (14)

Note that a category ranking induces a partition I of the set of types X = [0, 1] into

singletons and K intervals Ik =
(
F−1

(
qlk
)
, F−1

(
qhk
)]

, such that all types in interval Ik choose

the same performance and obtain the same prize y(Jk) in the approximating mechanism, and

singleton types obtain the prize they did in the original approximating mechanism. Thus,

the assortative allocation and approximating mechanism can be equivalently defined from

the partition I of types (instead of the partition J ) by letting GI coincide with GJ and

defining yA,I(x) and tA,I(x) as in (13) and (14) with I instead of J .

Thus, from the perspective of the approximating mechanism, a category ranking J cor-

responds to a partition I of the set of types into singletons and a finite number of left-open
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intervals. In what follows, it will be convenient to consider such partitions of the set of types

and the corresponding approximating mechanisms. We will abuse terminology slightly by

also referring to such partitions I of the type interval [0, 1] as category rankings.23

5.1 The added value of category rankings

Top pooling is a particular kind of category ranking: top pooling with threshold x∗ is the

category ranking I = {(x∗, 1]}∪{{x} : x ≤ x∗}. The richer set of outcomes that can be gen-

erated by category rankings may include outcomes that are Pareto preferred to all outcomes

that can be generated by top poolings. This is what the following example demonstrates.

Example 3. Let F = G have density f = g = 5/4 on interval [0, 3/4], and density f =

g = 1/4 on interval [3/4, 1]. Consider utility (2) with c(t) = t. The assortative allocation

is yA (x) = x, and the approximating mechanism specifies performance tA (x) = x2/2. The

payoff of type x is x2/2.

Top pooling with threshold x∗ = 3/4 is Pareto improving. Indeed, the corresponding

performance M is given by

1

2

(
3

4

)2

= x∗
(

1 + 3
4

2

)
−M ,

which gives M = 3/8. Types in (3/4, 1] choose performance M , and each of them obtains a

prize drawn uniformly from interval (3/4, 1]. The utility of type x = 1 is equal to 1/2 both

with and without top pooling. So, by part (d) of Proposition 1, top pooling with threshold

x∗ = 3/4 is Pareto improving. One can readily check that top pooling with any threshold

x∗ > 3/4 is also Pareto improving and gives type x = 1 utility 1/2. We will show that top

pooling with any threshold x∗ < 3/4 is not Pareto improving. So, by part (a) of Corollary 1,

the threshold x∗ = 3/4 is the Pareto preferred one.

23The fact that category rankings can be analyzed using the large contest approach makes them tractable.
Of course, many other forms of noisy ranking exist, but their analysis may require different techniques.
Pooling non-continuous intervals, for example, violates the property that a higher score leads to a higher
expected prize, and therefore invalidates the large contest approach. While we suspect that such pooling will
not be optimal, a formal analysis goes beyond the scope of this paper. It may also be difficult to convince
policy makers to adopt such “non-monotonic” policies.
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To see that no threshold x∗ < 3/4 is Pareto improving, recall that the performance M <

3/8 satisfies
1

2
(x∗)2 = x∗E[y | t = M ]−M ,

where E[y | t = M ] is the expected prize contingent on choosing performance M . The utility

of type x = 1 is thus

E[y | t = M ]+
1

2
(x∗)2 − x∗E[y | t = M ]︸ ︷︷ ︸

−M

<
1

2
,

because E[y | t = M ] < (1 + x∗)/2 for x∗ < 3/4.

Top pooling with threshold x∗ = 3/4 is the category ranking that pools together the top

1/16 of the types and leaves the other types as singletons. However, this category ranking is

Pareto inferior to the category ranking that pools together the top 1/16 of the types, and pools

together the bottom 15/16 of the types. Indeed, under this category ranking, the bottom 15/16

of the types exert no effort and obtain an expected prize of 3/8, while the top 1/16 of the

types choose performance 3/8 and obtain an expected prize of 7/8. Under the former category

ranking, the top 1/16 of the types also choose performance 3/8 and obtain an expected prize

of 7/8, but the bottom 15/16 of the types x obtain a lower utility of x2/2.

5.2 Welfare comparisons

Consider first single-interval category rankings, that is, category rankings of the form I =

{(x∗, x∗∗]} ∪ {{x} : x ≤ x∗ or x > x∗∗} for some types 0 ≤ x∗ < x∗∗ ≤ 1; top pooling

is a special case in which x∗∗ = 1. As in the case of top pooling, we assume that not all

of the prizes in quantiles [F (x∗) , F (x∗∗)] are identical.24 The following result generalizes

Proposition 1.

Proposition 2. (a) The utility of type x ∈ (x∗, x∗∗] increases as a result of the single-interval

24If they are identical, then the category ranking has no effect.
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category ranking I if and only if

∫ x∗∗
x∗

yA(x̃)dF (x̃)

F (x∗∗)− F (x∗)
≥
∫ x
x∗
yA (x̃) dx̃

x− x∗
.

(b) The category ranking I is Pareto improving if and only if

∫ x∗∗
x∗

yA(x̃)dF (x̃)

F (x∗∗)− F (x∗)
≥
∫ x∗∗
x∗

yA (x̃) dx̃

x∗∗ − x∗
. (15)

The intuition for Proposition 2 is similar to the one underlying Proposition 1, applied to

types in the interval (x∗, x∗∗]. In particular, if a type x ∈ (x∗, x∗∗] benefits from the category

ranking, then all types in the interval (x∗, x] benefit as well. Types x ≤ x∗ are clearly not

affected by the category ranking, and the derivative of the utility of types x > x∗∗ is equal

to yA (x) both in the original contest and under the category ranking. Thus, if type x∗∗ is

better off under the category ranking, then so are all types higher than x∗∗, which gives part

(b).

For category rankings that include more than one interval, a generalization of the con-

ditions in Proposition 2 provides sufficient conditions for a category ranking to increase the

utility of a type and to be Pareto improving, but these conditions are no longer necessary.

This is because pooling on an interval may increase the utility of types above the interval

to such a degree that even if these types are pooled in a way that lowers their utility, the

overall effect may be to increase their utility relative to the baseline contest.

To obtain the sufficient conditions, consider a category ranking I that includes precisely

the K ≥ 2 intervals I1, . . . , IK , where Ik = (x∗k, x
∗∗
k ] and x∗∗k ≤ x∗k+1 for k < K. The effect of

the category ranking can be described as follows. For each k < K let Gk be the distribution

of prizes when the prizes corresponding to intervals I1, . . . , Ik are replaced by their averages.

Then, the contest with the category ranking that pools only intervals I1, . . . , Ik+1 is the

same as the contest with the single-interval category ranking that pools only interval Ik+1

but starts with prize distribution Gk. Proposition 2 describes the effect of this single-interval

category ranking on a baseline contest with prize distribution Gk. By induction on k we

immediately obtain the following corollary of Proposition 2.
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Proposition 3. (a) The utility of type x ∈ (x∗k, x
∗∗
k ] increases as a result of the category

ranking I if

∫ x∗∗k
x∗k

yA(x̃)dF (x̃)

F (x∗∗k )− F (x∗k)
≥

∫ x
x∗k
yA (x̃) dx̃

x− x∗k
and

∫ x∗∗j
x∗j

yA(x̃)dF (x̃)

F (x∗∗j )− F (x∗j)
≥

∫ x∗∗j
x∗j

yA (x̃) dx̃

x∗∗j − x∗j
for all j < k.

(b) The category ranking I = {I1, ..., IK} is Pareto improving if

∫ x∗∗j
x∗j

yA(x̃)dF (x̃)

F (x∗∗j )− F (x∗j)
≥

∫ x∗∗j
x∗j

yA (x̃) dx̃

x∗∗j − x∗j
for all j ≤ K.

Characterizing the Pareto frontier of category rankings is more complicated than for top

poolings. In Appendix A we provide a method for checking whether a category ranking

belongs to the Pareto frontier of category rankings, and we illustrate its usefulness with an

example.

6 Robust Pareto improvements

The results in the previous sections suggest that Pareto improvements exist in some college

admissions settings. To apply these results we need to construct estimates of the type

distribution F and the prize distribution G (which affects the results via the assortative

allocation yA).

We now present simpler results that rely only on properties of the type distribution F and

correspond to Proposition 1, Corollary 1, and Proposition 2. We will use the term “robust

Pareto improvement” as shorthand for “weakly better for every type, for any functions c and

G, and a Pareto improvement for some functions c and G.”25 Robustness is useful because

there are many aspects of the college experience that students may value, including the

quality of faculty, the location and amenities of the campus, and the alumni network. The

various aspects are aggregated in our model into a unidimensional prize value. Robustness

25Note that this robustness is different from the one usually studied in the mechanism design literature,
which typically concerns the underlying information structure.
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frees the analyst from making assumptions about the details of the aggregation.26 These

results may therefore be particularly useful for empirical work.27 However, our model still

entails the important assumption that students agree on the ranking of colleges.28

Our main robustness result characterizes the Pareto frontier of robust Pareto improving

category rankings and shows that it is a singleton. We begin with a definition and some

preliminary results.

Definition 1. Distribution F truncated below x∗ and above x∗∗ FOSD (first-order stochas-

tically dominates) the uniform distribution truncated below x∗ and above x∗∗ if

F (x)− F (x∗)

F (x∗∗)− F (x∗)
≤ x− x∗

x∗∗ − x∗
(16)

for every x in [x∗, x∗∗].

Distribution F truncated below x∗ (truncated above x∗∗) FOSD the uniform distribution

truncated below x∗ (truncated above x∗∗) if (16) holds for every x in [x∗, 1] (for every x in

∈ [0, x∗∗]).29

The first result characterizes robust Pareto improving top pooling thresholds.

Corollary 2. Type x∗ is a robust Pareto improving top pooling threshold if and only if the

distribution F truncated below type x∗ FOSD the uniform distribution truncated below this

x∗.

Corollary 2 follows from part (d) of Proposition 1. Since yA(x̃) = G−1 (F (x)) can be an

arbitrary increasing function with values in [0, 1] for an appropriate G, (11) is one of the

equivalent conditions that define (conditional) FOSD.

Consider two robust Pareto improving top pooling thresholds x∗1 < x∗2. By definition of

top pooling, the effect of top pooling with threshold x∗2 is identical to the effect of using

26We are grateful to a referee for suggesting this important comment.

27An estimate of the distribution F is still required for all of our results.

28We also recall out that while one need not know c, it is assumed that c is strictly increasing, twice
continuously differentiable, and limt→∞ c(t) =∞; distribution G can be an arbitrary empirical distribution
of prizes, which need not be continuous or have full support; and F is assumed only to have a strictly positive
density on [0, 1].

29This definition uses our assumption that F is distributed on [0, 1]. More generally, 0 and 1 must be
replaced by the bounds of the support of F .
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a baseline contest and modifying the prize distribution by changing the prizes allocated to

types (x∗2, 1] from what is specified by G to a mass 1 − F (x∗2) of the average (according to

distribution G) of these prizes. Then, by Corollary 2, top pooling with threshold x∗1 leads to

a further robust Pareto improvement. This proves the following result.

Corollary 3. If x∗1 < x∗2 are robust Pareto improving top pooling thresholds, then top pooling

with threshold x∗1 is robust Pareto preferred to top pooling with threshold x∗2. Thus, the Pareto

frontier of robust Pareto improving top pooling thresholds is a singleton, which is the lowest

robust Pareto improving top pooling threshold.

Corollary 3 explains why in Example 1 lower top pooling thresholds are Pareto preferred

to higher ones, and why a lottery is Pareto preferred to any positive top pooling threshold.30

The next result characterizes robust Pareto improving single-interval category rankings.

It follows immediately from part (b) of Proposition 2 and the definition of FOSD.

Corollary 4. Category ranking I = {(x∗, x∗∗]}∪ {{x} : x ≤ x∗ or x > x∗∗} is robust Pareto

improving if and only if distribution F truncated below x∗ and above x∗∗ FOSD the uniform

distribution truncated below x∗ and above x∗∗.

Consider two robust Pareto improving single-interval category rankings I1 and I2, with

corresponding pooled type intervals I1 = (x∗1, x
∗∗
1 ] and I2 = (x∗2, x

∗∗
2 ]. Suppose I1 ⊆ I2.

The effect of pooling on interval I1 is identical to the effect of using a baseline contest and

modifying the prize distribution by changing the prizes allocated to types (x∗1, x
∗∗
1 ] from what

is specified by G to a mass F (x∗∗1 ) − F (x∗1) of the average of these prizes. By Corollary 4,

applying the category ranking I2 leads to a further robust Pareto improvement. Thus, I2 is

robust Pareto preferred to I1.

Similarly, if I1 and I2 are disjoint, then the two-interval category ranking with pooled

type intervals I1 and I2 is robust Pareto preferred to I1 and I2. Finally, suppose that I1

and I2 intersect. In this case, the following lemma and our result for the case I1 ⊆ I2 imply

that the single-interval category ranking with pooled type interval I1 ∪ I2 is robust Pareto

preferred to I1 and I2.

30Example 2 fails this condition, because F does not FOSD the uniform distribution on [0, 1].
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Lemma 1. Consider two intervals I1 = (x1, x3] and I2 = (x2, x4] for 0 ≤ x1 < x2 <

x3 < x4 ≤ 1. If for each interval I1 and I2, F restricted to the interval FOSD the uniform

distribution restricted to the interval, then F restricted to the union I1 ∪ I2 of the intervals

FOSD the uniform distribution restricted to I1 ∪ I2.

The next proposition, which is our main robustness result, is an immediate consequence

of Corollary 4 and the purely statistical observation in Lemma 1.

Proposition 4. The Pareto frontier of robust Pareto improving category rankings is a sin-

gleton IPF , which consists of the maximal intervals such that F restricted to each interval

FOSD the uniform distribution restricted to the interval, along with singletons for all other

types.

The following example illustrates Proposition 4.

Example 4. Let F have density f = 4/3 on interval [0, 1/4], f = 2/3 on interval (1/4, 1/2],

f = 1/2 on interval (1/2, 3/4], and f = 3/2 on interval (3/4, 1]. (Notice that for robust

Pareto improvements we do not specify functions c and G.) Then, F restricted to interval

[1/2, 1] FOSD the uniform distribution restricted to the same interval, because the former

has an increasing density and the latter has a constant density.

On interval [1/4, 1], the uniform distribution has density 4/3, and F restricted to this

interval has density 1 on interval (1/4, 1/2], density 3/4 on interval (1/2, 3/4], and density

9/4 on interval (3/4, 1]. So F also FOSD the uniform distribution, when both are restricted

to interval (1/4, 1].

Distribution F does not, however, FOSD the uniform distribution when both are restricted

to a longer interval that contains [1/4, 1], because their densities on interval [0, 1/4] are 4/3

and 1, respectively. In addition, F “weakly” FOSD the uniform distribution when both are

restricted to interval [0, 1/4]. Thus, by Proposition 4, the unique robust Pareto improving

category ranking on the Pareto frontier consists of two intervals: [0, 1/4] and (1/4, 1]. It is

easy to construct examples in which a single Pareto-frontier category ranking consists of any

finite number of intervals.
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7 Empirical Application

In this section, we demonstrate how to apply our theory in a college admissions setting to

obtain Pareto improvements. Our goal is to provide a “proof of concept” using data in a

concrete setting, while recognizing that many factors beyond our theoretical model will need

to be considered when making actual policy recommendations. We consider Turkish college

admissions, which are based on a centralized test, and use data on college applications of

Turkish high school students as used by Krishna et al. (2018).31

Our empirical application includes two parts, calibration and simulation. The calibra-

tion uses the analysis of Krishna et al. (2018) to estimate the distribution of prizes (college

seats) and student types. An important part of their analysis considers test re-taking be-

havior, which is very useful for our purposes because it is instrumental in estimating the

payoff from obtaining any particular score in the exam. The second part of our exercise sim-

ulates students’ behavior in a one-stage college-admissions setting based on the estimated

distributions that corresponds to our theoretical model. We then derive the maximal Pareto

improving “bottom-pooling” policy, in which some fraction of the lowest-performing stu-

dents are pooled together.32 An attractive feature of this maximal interval is that it does

not change the equilibrium behavior and prize allocation of students with types above this

interval. Section 8 conducts an experiment based on the estimated distributions and the

Pareto improving bottom pooling policy to check its effect on actual subjects.

7.1 Calibration

For the calibration, we rely on the model estimated by Krishna et al. (2018). Players’ payoff

in that model share essential features with (3), where the net payoff is y − c(t)/x: players

have the same prize valuations but different costs that depend on their ability.33 In order to

design a Pareto improving policy, we need two primitives: the distribution of prizes, G(y)

31See Krishna et al. (2018) for details regarding the data and the university entrance exam system in
Turkey. We used the survey of exam applicants and the administrative data on exam performance (OSYM
(2002c) in conjunction with the official publications of exam rules and results (OSYM (2002) and OSYM
(2002b)).

32No significant top pooling policy is Pareto improving.

33Appendix E presents more details on the relationship between the two models.
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Figure 4: Key inputs from Krishna et al. (2018) used to calibrate the model.

and the distribution of student abilities, F (x).

We obtain G(y) for the Turkish college applicants from Krishna et al. (2018), who esti-

mate the value of admission to a college as a function of one’s rank in the exam. The inverse

of this value function is precisely G(y), which maps the value of a particular placement, y,

to one’s percentile rank in the exam. Intuitively, Krishna et al. (2018) use test retaking

decisions to pin down the shape of G(y): given the potential improvement in score from

retaking the test, the more sharply the value function rises with score, the more attractive

retaking becomes. The estimated density of prizes, g(y), is depicted in Figure 4a.

The second primitive, F (x), is backed out from the fact that scores are produced by

investment and ability so as to maximize the value of the score minus its cost. For this, we

derive estimates of the cost of investment, C(t), for each score t observed in the data. Let

xA(t) denote the type of students who attain score t. Recall that, in equilibrium, each score

is attained by a unique type so that

C(t) =
c(t)

xA(t)
. (17)

We also need the value, V (t), of obtaining score t in the college entrance exam. Function

V (t) is the value of placement y, including the option of retaking the exam, net of any

associated costs. Details on how V (t) is obtained are in Appendix E. Figure 4b plots the

estimate of V (t) from Krishna et al. (2018).
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Once we have these two functions, we note that optimality of effort implies that:

c′(t)

xA(t)
= V ′(t). (18)

Differentiating (17) and substituting for c′(t)
xA(t)

using (18) gives

C ′(t) =
c′(t)

xA(t)
− c(t)

xA(t)2
dxA(t)

dt
= V ′(t)− C(t)

xA(t)

dxA(t)

dt

After re-arranging terms, we obtain a differential equation with xA(t), the equilibrium map-

ping from score to ability, as the unknown function:

dxA(t)

dt
= xA(t)

V ′(t)− C ′(t)
C(t)

We integrate this equation numerically to obtain xA(t) using the fact that the highest-

ability student gets the highest score. Once we have xA(t), we invert this function to get the

distribution of ability since we have the distribution of scores in the data.34

The estimate of expended costs conditional on exam score, C(t), is obtained in Krishna

et al. (2018) using data on pre-exam schooling investments. In the Turkish context, each

middle-school student chooses between public, private, and exam high school, with or without

extra preparatory courses, which results in six possible investment levels. Investments are

costly: selective schools require entrance exams of their own, while private schools and

preparatory courses charge tuition.35 The cost of choosing each option is modeled and

estimated using a mixed logit model in which the cost has a random component with a

specified distribution. Further details are in Appendix E.

Because we observe the investment choices for each student, we can impute his costs

using the cost estimates. We also know his score, so averaging over imputed costs for each

34The distribution of ability F can be expressed via the observed c.d.f. of scores, H(t), and the inverse

function tA =
(
xA
)−1

: F (x) = Pr{X < x} = Pr{tA(X) < tA(x)} = Pr{t < tA(x)} = H(tA(x)).

35There is a clear relationship between pre-test investment and test outcomes. Higher scoring students are
more likey to come from more selective schools and to have taken preparatory courses. Low scoring students
overwhelmingly come from public schools and are unlikely to take preparatory courses. Students coming
from private schools on average score in the middle of the distribution. Figure F2 in Appendix F illustrates
these patterns.
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Figure 5: Estimated elements of the model

score we can obtain the mean investment cost for each score in the data.36 The resulting

estimate of C(t) is depicted in Figure 4c.

The calibrated primitives of the model are presented in Figure 5. Panels 5a and 5b plot

the ability distribution F (x) and its density, f(x). As the estimated density is somewhat

noisy, we plot its kernel-smoothed version in the same figure.37 From the estimated C(t) and

the mapping from score to ability we obtain the estimate for c(t) shown in Figure 5c.

7.2 Simulating a Pareto Improving Pooling Policy

We now simulate a college admissions contest based on the calibrated ability and prize

distributions, and identify a Pareto improving policy. As in our theoretical model, we shut

down test retaking and use the distribution of prizes G(y), which does not include the value

of retaking, so that players face the rank-to-prize mapping described by the density function

in Figure 4a. Since shutting down test retaking alters the returns to effort relative to the

setting of Krishna et al. (2018), we first use the characterization in Section 3 to simulate the

equilibrium effort, allocation, and payoffs in the baseline contest without any pooling. This

serves as a benchmark for the effects of pooling.

36This removes the extra dimensions of student heterogeneity that are present in Krishna et al. (2018),
but are not included in this paper.

37The distribution of ability is skewed towards zero. This is driven by two patterns in the target moments
in the calibration exercise. First, the steep slope of the value function V (t) (see Figure 4b) implies that
the cost of attaining top scores is also steeply sloped. A top student can drastically reduce the cost by
performing slightly below the top score. At the same time, the expended cost profile c(t)/xA(t) is nearly flat
for high-scoring agents as shown in Figure 4c: students at the top and those slightly below the top make
similar pre-exam investments. These two patterns can only be explained together if ability xA(t) varies a
lot in the top percentiles of the score distribution, which means that the ability distribution has a thin right
tail as seen in Figure 5b.
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We search for a maximal Pareto-improving bottom-pooling policy using the results in

Proposition 2. Bottom-pooling policies are single-interval category rankings that pool some

fraction of the lowest-performing players. We focus on a maximal bottom-pooling policy

for several reasons. First, since our main goal is a proof of concept, we restrict attention

to single-interval policies to keep the exercise relatively simple.38 Second, the fact that

the ability distribution is skewed toward zero and has a thin right tail makes top pooling

unattractive as a Pareto improving policy. Finally, by choosing a maximal Pareto improving

bottom pooling interval we guarantee that types above the interval are not affected by the

policy (since the type at the top of the interval is indifferent). This simplifies the analysis

and facilitates the experiment in Section 8.

We set the lower bound of the pooling interval, x∗, at zero and gradually increase the

upper bound, x∗∗, in small increments until no further increase in x∗∗ leads to a Pareto-

improving policy. The resulting maximal Pareto improving bottom pooling policy pools all

types below x∗∗ = 0.103. This ability range encompasses roughly 58% of all applicants in

the data, as evident from the ability distribution depicted in Figure 5a.

Figure 6a shows types’ payoffs, y(x)−c(t(x))/x, under bottom pooling and in the baseline

contest. Figure 6b shows the equilibrium scores under the two policies. Bottom pooling

strictly increases the payoff of the types in the pooled interval because pooling induces these

types to reduce their investment while still obtaining one of the pooled college seats. Higher

types, those above the pooled interval, are not affected since they are indifferent between

bottom pooling and the baseline contest. Overall, the mean payoff increases by 27%, while

the pooled types gain 83% on average.

8 Experimental Evaluation

This section describes a laboratory experiment based on a discretized version of the cal-

ibration exercise and the Pareto improving bottom pooling policy identified in Section 7.

38We also search for the optimal robust Pareto improving category ranking characterized in Proposition 4.
The policy we find resembles bottom pooling. While it prescribes using many pooling intervals, the biggest
one lumps roughly a half of the student population at the lower end of the ability distribution. More details
on the robust policy are available in Appendix F.
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Figure 6: Equilibrium payoffs and effort under assortative matching and bottom pooling.

To conduct the experiment, we transformed the game into an individual decision-making

problem without strategic uncertainly. We specified the costs of reaching particular exam

scores and the benefit of enrolling in various colleges (the prizes). These costs and benefits,

exogenous from the subjects’ point of view, correspond to a situation in which the admission

criteria are known in advance, as is often the case in college admissions settings that involve

a large number of applicants and therefore entail little uncertainty.39 The goal of the ex-

periment was to investigate whether the Pareto improving policy from Section 7 would lead

to improvements in practice. We also wanted to see when deviations from the theoretical

predictions might occur and what would be the welfare implications of such deviations.

8.1 Experimental Design

This section describes the experiment. Appendix I contains all the experimental materials

subjects faced. The experiment had two parts, each with multiple rounds. Subjects’ decisions

in any round did not affect the choices they faced in other rounds. Payment was based on

subjects’ decision in a randomly chosen round.

Part 1: the college admissions task. Part 1 was the main part of the experiment

and consisted of two rounds. Each round corresponded to a college admissions setting, one

39This is the case, for example, in Turkey, Israel, and many colleges in the United States.
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round with a bottom pooling policy (the “pooling policy” round) and one round without

any pooling (the “discrete policy” round). Each subject participated in both rounds, and

the order of the rounds was randomly determined.

In each round, subjects made an investment choice that determined which college they

would enroll in. Each round had ten colleges, labeled College A (best), College B, etc.

up to College J (worst). The payoff associated with enrolling in each college was fixed for

both rounds, with that of College A being the highest, followed by that of College B, etc.

Prior to the first round, each subject was assigned an “ability” in the form of an investment

cost for each college. This ability remained fixed for both rounds. The investment costs

were denominated in “tokens,” did not exceed 100, and subjects were given a 100-token

endowment in each round. The payoffs, costs, and abilities, were derived from a discrete

version of the calibration and equilibrium results of Section 7.40

In each round, subjects decided how much to invest in “virtual study materials.” A sub-

ject’s investment determined the college that subject enrolled in, which determined payment

if that round was chosen for payment. In the pooling round, a subject who chose to invest

zero tokens in study materials participated in a lottery that randomized among the bottom

six colleges (E to J) to determine the college in which the subject enrolled, with the asso-

ciated payment.41 Figure 7a presents the expected profits predicted by the theory in both

rounds for each ability level. The overall weighted profits, using the appropriate weights for

each ability level, are predicted to be 20% higher under the pooling policy than under the

discrete policy. The predicted increase for low ability subjects is 65.7%.

Instructions for the second round were given after the first round was completed. After

reading the instructions for any given round, subjects had to answer three quiz questions

that tested their understanding of the instructions as well as their ability to calculate payoffs.

Only subjects who answered the quiz questions correctly could move on to the the decision-

40We included eleven ability levels. Ability levels and cost functions, as well as a description of how the
empirical data from Section 7 was used to determine the experimental parameters, are in Appendix G.

41To isolate the possible effects of the lottery, we also ran sessions in which a subject who invested zero
tokens in study materials got a fixed payment equal to the expected value of the lottery. This corresponds
to a pooling round in which the lottery is replaced with its expected value. The results from these sessions
are in Appendix H.
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making component of that round.42

Part 2: risk elicitation. Following the main part of the experiment, subjects participated

in a series of ten rounds in which they had to choose between a fixed amount and a risky

gamble.43 This task was included in order to identify subjects whose choices were consistent

with risk neutrality, an important element for the analysis of the pooling-induced lottery.

Procedures. We recruited subjects using Prolific, an online platform that recruits subjects

worldwide. A total of 602 subjects completed the experiment.44,45 We restricted our subjects

to be English speakers. Overall 48.8% of the subjects were female, 47.7% were male, and

2.5% identified as neither of the two.46 Data were collected during the month of March 2022.

The experiment lasted between 10 and 15 minutes for 95% of the subjects. Subjects were

paid an average of $4.00, corresponding to a rate of just over $19 per hour.47

8.2 Experimental Results

Below we analyze the data collected in the experiment. All the p-values reported for compar-

ing data across the two rounds are the result of Wilcoxon matched-pairs signed-rank tests.

We focus our analyses on the subjects whose choices in the risk elicitation task are consistent

42After the instructions in a given round, subjects were allowed to take the related quiz twice. If by
the second attempt a subject failed to answer all three questions correctly they were removed from the
experiment. The quiz questions serve both as a tool to exclude bots from our data and to ensure proper
reading of the instructions. Overall, 76% of the subjects who started our experiment answered all questions
in both quizzes correctly, among which about three quarters did so on the first attempt for each of the two
quizzes.

43The risky gamble was identical in all rounds: subjects choosing the risky gamble would earn $1 with
probability 1/2 and $2 with probability 1/2. The fixed amount varied from round to round, ranging from
$1.25 to $1.75 in increments of 5 cents.

44For any particular ability level, we stopped collecting data once we had at least 50 observations.

45An additional 208 “participants” started the experiment but failed to advance because quiz questions
were answered incorrectly. This proportion (25.7%) is not particularly noteworthy – aside from ensuring
that participants have read and understood the instructions, the quizzes have a second purpose: ensuring
that bots are unlikely to make it through to the main part of the study.

46The remaining 1% of the subjects preferred not to answer.

47The Prolific platform requires a minimum of $6.50 per hour. All subjects who completed the experiment
were asked how much they earned per hour on average on Prolific. The average response was $9.65. The
payments in this experiment were thus relatively high, almost triple the minimum required and double what
subjects had earned in past studies.
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with risk neutrality.48 Additional results on non-risk-neutral subjects are in Appendix H. In

reporting aggregate results we use the estimates from Section 7 to determine the appropriate

weights for each ability level.
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Figure 7: Average profits under the discrete and pooling policies: predictions and experimental data.

Figure 7 shows the average net profits in the pooling policy and discrete policy rounds.49

Overall, moving to the pooling policy led to a increases of 18.9% in aggregate profits, closely

matching the theoretical prediction of 20.0%. Our analyses below focus on outcomes by

ability level, allowing us to evaluate whether such a policy would be (weakly) helpful for

each ability level.

We define “low-ability” subjects as those who are predicted to invest zero and choose

the lottery in the pooling round, and therefore benefit from the pooling policy. With our

parameters, these are subjects with ability of at most 0.10. Subjects with ability strictly

greater than 0.10 are “high-ability” subjects. According to the theory, high ability subjects

are indifferent between the pooling and discrete policies.

48Risk neutrality allows us to apply the model and its predictions with players’ utilities equalling their
potential earnings. Risk neutral subjects were identified using data from the Risk Elicitation task. Risk
aversion can be determined by identifying at which point a subject switches away from the risky gamble to
the fixed amount (84.6% of our subjects had a single cross-over point). Risk neutral subjects are identified
as those who chose the risky gamble ($1 with probability 1/2 and $2 with probability 1/2) over the fixed
amount when the fixed amount was strictly less than $1.50, but switched to the fixed amount when it was
$1.50 or $1.55, indicating an indifference point “close to” the gamble’s expected value of $1.50. Roughly
44% of the subjects with a single cross-over point behaved in this way. Over 85% of the remaining subjects
who had a single crossover point from the lottery to the fixed amount were risk averse.

49These are profits net of the 100 token endowment. To make comparisons with the theory easier we
re-scaled values to be between 0 and 1.
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For low ability subjects, on average, moving to a pooling policy increased aggregate

profits by 70.5%, more than the theoretical prediction of 65.7%.50 Moreover, among low

ability subjects, profits also increases for each ability level (the p-values in all pair-wise

comparisons are all strictly lower than 0.001).

For high ability subjects, the theory predicts no change in aggregate profits across policies.

In the experiment, moving to a pooling policy slightly decreases the aggregate profits (about

1.6%). This small drop is the result of the behavior of subjects whose ability is lowest

among the high ability subjects, which in our setting corresponds to an ability of 0.12.51

The behavior of these subjects was statistically different under the two policies, and the

magnitude of the difference is large. Indeed, under the discrete policy, 89.5% of these subjects

chose investment levels consistently with the theoretical predictions of the model. This

fraction dropped to 36.8% under the pooling policy, with the remaining subjects opting for

the lottery. This represents an aggregate profit loss of 5.1%.

Our experimental findings suggest that introducing the bottom pooling policy derived in

Section 7 adapted to a college admissions setting with discretized ability and prize distribu-

tions should weakly or strictly improve the welfare of over 85% of the applicants.52 But the

pooling policy could make the remaining 15% of the applicants somewhat worse off, because

the high ability subjects with the lowest ability did worse monetarily under pooling than

under the discrete policy.

To evaluate the potential drawbacks of a pooling policy, we ask whether these slightly

lower payoffs are the result of mistakes or a reflection of subjects’ preferences. We argue

that mistakes are an unlikely explanation. While subjects whose ability is closest to the

threshold separating low and high ability are precisely those who one might think are most

likely to make mistakes, we observed no such “mistakes” for low-ability subjects with the

50This is because under the discrete policy relatively fewer low ability subjects chose the profit-maximizing
investment levels and their mistakes were larger in terms of forgone profits.

51All other high ability subjects behaved similarly across the two policies. The p-value comparing behavior
across the two policies for subjects with ability 0.12 is p = 0.006, and the lowest p-value for all other
comparisons is 0.125.

52In the experiment, subjects whose abilities are weakly less than .10 or weakly greater than 0.15 are in
this category. Mapped to the Turkish student population, this corresponds to about 84% of individuals.
This is a lower bound, since in the experiment ability jumps from 0.10 to 0.12 to 0.15, so we can only infer
that the “turning point” is an ability between 0.12 and 0.15 but are unable to provide a more precise value.
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highest ability, that is, subjects with an ability of 0.10.53 Thus, deviations from predicted

behavior are asymmetric around the threshold and confined to high-ability subjects with the

lowest ability. This asymmetry, and the lack of such deviations at other ability levels, do

not favor mistakes (or inattention) as a likely cause.54,55

One possible explanation for these deviations is that some subjects display a preference

for randomization. This is the case for example in Dwenger, Kübler, and Weizsäcker (2016),

who use both laboratory and non-laboratory data (from a clearinghouse for university admis-

sions in Germany) to show that up to 50% of individuals choose lotteries between available

allocations, indicating an explicit preference for randomization.56 Agranov and Ortoleva

(2017) show that when faced with “hard choices” a significant fraction of the population

may prefer a lottery to making a deterministic choice. In our experiment, the difference

between the expected net profit from the lottery and the theoretically predicted choice is

the smallest among all subjects for precisely the subjects who deviate from the theoretical

predictions, consistent with choosing a investment being “hard” for them.57 We also point

out that the optimal choice for subjects with ability 0.12 in the discrete round was still

available in the pooling round, so for a wide range of preferences, subjects with ability 0.12

who switched to the lottery under the pooling policy round were likely made better off even

if their monetary payoff decreased slightly.

Taken together, the results of the laboratory experiment and the empirical estimation

of Section 7 suggest that Pareto improving policies of the kind we investigate likely exist in

practice, can be identified and implemented, and have the potential to improve the welfare

53This is despite the fact that the difference in net profit between the two policies for subjects with ability
0.10 is even narrower than it is for subjects with ability 0.12.

54We also rule out order effects as there is no statistical difference between the groups who saw the pooling
policy first and those who saw the discrete policy first (p = 0.764). This also rules out experimenter demand
effects because these patterns exist also with subjects who saw the pooling policy first.

55Risk-seeking behavior is also an unlikely cause because we already restrict attention to players who
appear to be risk-neutral. One caveat is that the coarseness of our measure of risk aversion may not identify
mildly risk seeking subjects who would choose the lottery over the fixed amount. This explanation, however,
would imply a relatively large fraction of subjects with such preferences, which is inconsistent with past work
on risk aversion elicitation (see Holt and Laury (2002) for example).

56The authors discuss this in the context of responsibility aversion.

57Appendix H shows that if we remove the option to randomize by replacing the lottery with a fixed
amount equal to the lottery’s expected value, subjects of all ability levels make the profit maximizing choice
under the pooling policy.
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of millions of students who apply to colleges and universities every year.

9 Conclusion

This paper investigated how to improve college admissions based on centralized tests. Stu-

dents engage in test-preparation activities to improve their ranking, but these activities

are costly. Our main message is that coarse performance disclosure policies can benefit

all students, regardless of their ability. These policies take a simple form and are easy to

implement.

As a “proof of concept,” we empirically estimated the key theoretical constructs, ability

and prize distributions, using data on college admissions in Turkey. We used our theoretical

results to simulate the equilibrium outcome of a college admissions contest based on these

distributions, and demonstrated how to identify Pareto improving policies. We showed that

a bottom pooling policy that pools together the majority of the students and randomly al-

locates them to the corresponding colleges would raise the welfare of these students without

impacting the welfare of the other students. Finally, we conducted a laboratory experi-

ment based on these empirical findings. The results of the experiment largely confirmed

our theoretical predictions. Overall, our work suggests that Pareto improving performance

disclosure policies of the kind we investigated often exist and have the potential to improve

college admissions systems in practice.
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Appendices

A Pareto frontier of category rankings

Using Proposition 2, we provide a method for checking whether a category ranking belongs

to the Pareto frontier of category rankings. For this, we will need another concept. Let I

be a category ranking, and let x∗ < x∗∗ be an arbitrary pair of types that belong to two

different elements I 6= I ′ (intervals or singletons) of I, so x∗ ∈ I ∈ I and x∗∗ ∈ I ′ ∈ I.

We define a new category ranking I(x∗, x∗∗) that groups all types between x∗ and x∗∗ into

one category as follows: (i) if I = (a, b] and I ′ = (a′, b′], replace I, I ′, and all elements of I

between I and I ′ with (a, x∗], (x∗, x∗∗], and (x∗∗, b′]; (ii) if I = {x∗} and I ′ = (a′, b′], replace

I ′ and all elements of I between I and I ′ with (x∗, x∗∗], and (x∗∗, b′]; (iii) if I = (a, b] and

I ′ = {x∗∗}, replace I, I ′, and all elements of I between I and I ′ with (a, x∗] and (x∗, x∗∗]; (iv)

if I = {x∗} and I ′ = {x∗∗}, replace I ′ and all elements of I between I and I ′ with (x∗, x∗∗].

Proposition 5. A category ranking I belongs to the Pareto frontier of category rankings if
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and only if there is no pair of types x∗ < x∗∗ such that

x∗ = a for some I = (a, b] ∈ I or x∗ = d for some I = {d} ∈ I and x∗∗ ∈ I ′ 6= I ∈ I,

and type x∗∗ weakly prefers ranking I(x∗, x∗∗) to ranking I.

The proof of Proposition 5 establishes and uses a somewhat involved formula for the

utility of various types given a general category ranking. To see the main idea, restrict

attention to two-interval rankings, and consider the category ranking I that consists of (0, b]

and (b, 1]. Any two-interval category ranking J that dominates I must consist of (0, c] and

(c, 1], with c > b; indeed, if c < b, then types close to 0 prefer I to J . If J dominates I,

then J = I(x∗, x∗∗) for x∗ = a = 0 and x∗∗ = c, so the necessary and sufficient condition in

Proposition 5 for I to belong to the Pareto frontier fails.

Conversely, if x∗∗ = c weakly prefers J = I(x∗, x∗∗) to I, then types smaller than

x∗∗ prefer J to I by the argument that underlies part (d) of Proposition 1 or part (b) of

Proposition 2. Types greater than x∗∗ prefer J to I because the difference between the

utility of type x > x∗∗ and the utility of type x∗∗ under J increases faster than the same

difference under I. This last observation follows, because type x∗∗ is indifferent between the

two intervals of J ; so, if type x∗∗ exerted under J the effort that yields a prize from (c, 1],

the efforts of types x and x∗∗ in each of the two rankings would be equal, and their prizes

would be better, under J than under I.

The necessary and sufficient condition from Proposition 5 looks cumbersome. However, it

helps to characterize the Pareto frontier by substantially reducing the set of category rankings

to which any given ranking must be compared, as the following example demonstrates.

Example 5. Revisit Example 3. It is easy to verify that any interval that satisfies condition

(15) must be contained in (0, 3/4] or (3/4, 1]. Thus, any candidate for a Pareto-improving

category ranking consists of an interval partition of (0, 3/4] and an interval partition of

(3/4, 1]. But by the general payoff formula (20) in the proof of Proposition 5, if a partition of

(0, 3/4] (or a partition of (3/4, 1]) includes more than one element, then (x∗, x∗∗] = (0, 3/4]

((x∗, x∗∗] = (3/4, 1], respectively) violates the condition from Proposition 5. Indeed, the
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payoffs for x∗∗ are equal under I and under I(x∗, x∗∗). Thus, the Pareto frontier has only

one element, the category ranking {(0, 3/4], (3/4, 1]}.

B Proofs

Proof of Proposition 1. Part (a) follows because with top pooling types x < x∗ choose

effort tA (x) and obtain prize yA (x). For part (b), note that the utility of type x∗ is the same

in the approximating mechanisms of the original contest and in the one with top pooling.

Consider first the utility of a type x > x∗ in the approximating mechanism of the original

contest. By (5), this utility exceeds that of type x∗ by

∫ x

x∗
yA (x̃) dx̃.

In the approximating mechanism with top pooling, the utility of type x exceeds that of type

x∗ by

(x− x∗)
∫ 1

x∗
yA (x̃) dF (x̃)

1− F (x∗)
,

since both types’ performance is M , and both types’ prize is chosen randomly from the mass

1−F (x∗) of the highest prizes. Thus, top pooling increases the utility of type x if and only

if (10) holds.

For part (c), note that the derivative with respect to x of the utility gain of type x is

∫ 1

x∗
yA (x̃) dF (x̃)

1− F (x∗)
− yA (x) . (19)

The fraction in (19) is a weighted average of yA (x̃) over types in [x∗, 1], so (19) is positive

for types x close to x∗, monotonically decreases as x increases, and becomes negative for

types x close to 1. Thus, the utility gain resulting from top pooling for types x > x∗ first

increases and then decreases in the type. In particular, the utility of all types x < 1 strictly

increases if the utility of type 1 weakly increases, which gives part (d).

Proof of Proposition 2. Let r∗ = F (x∗) and r∗∗ = F (x∗∗). Then, any type x < x∗
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provides effort t (x) = tA (x) and obtains prize y (x) = yA (x). Types in (x∗, x∗∗] provide a

certain effort t and obtain a fair lottery over prizes y ∈ (G−1(r∗), G−1(r∗∗)]. Since type x∗ is

indifferent between the two options, we have that

x∗yA (x∗)− c(tA (x∗)) =

∫ x∗

0

yA (x̃) dx̃ = x∗
∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
− c(t).

By (5) we have that

UI(x)− U(x) = (x− x∗)
∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
−
∫ x

x∗
yA (x̃) dx̃

= (x− x∗)

[∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
−
∫ x
x∗
yA (x̃) dx̃

x− x∗

]
.

Thus, (15) is a necessary and sufficient condition for types x in (x∗, x∗∗] to be better off.

To show that (15) is a necessary and sufficient condition for Pareto improvement, observe

that types x ≤ x∗ are indifferent. Any type x > x∗∗ obtains prize yA (x) and has payoff

UI(x) =

∫ x∗

0

yA (x̃) dx̃+ (x∗∗ − x∗)
∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
+

∫ x

x∗∗
yA (x̃) dx̃,

which is no lower than U(x) if and only if condition (15) is satisfied.

The last equality is obtained directly from (5) by noticing that the contest under our cat-

egory ranking I is equivalent to a baseline contest in which prizes yA(x̃), for x̃ in (x∗, x∗∗],

are replaced with the certainty equivalents of the lottery faced by types x̃ in (x∗, x∗∗] under

our category ranking I.

Proof of Proposition 5. It will be helpful to provide first a general formula for the

utility of type x ∈ [0, 1] under category ranking I. This utility exceeds U(x) given by (5) by

the expression

∑
(a,b]∈I,a<b<x

[
(b− a)

∫ b
a
yA (x̃) dF (x̃)

F (b)− F (a)
−
∫ b

a

yA (x̃) dx̃

]
+ (20)
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(x− a)

∫ b
a
yA (x̃) dF (x̃)

F (b)− F (a)
−
∫ x

a

yA (x̃) dx̃ for x ∈ (a, b] ∈ I.

This formula follows directly from the fact that types x̃ ∈ (a, b] ∈ I obtain a fair lottery over

prizes yA(x̃′) for x̃′ ∈ (a, b].

We will first show that when a pair x∗ < x∗∗ satisfies the condition in Proposition 5, the

category ranking J = I(x∗, x∗∗) Pareto improves over I. Types x ∈ [0, x∗] are obviously

indifferent between the two category rankings. By assumption, the utility of type x∗∗ is no

lower under J than under I. We will now show that the utility of types x ∈ (x∗, x∗∗) is

strictly higher under J than under I. Indeed, the derivative on (x∗, x∗∗] of type x’s utility

under J , UJ (x), is constant and equal to

∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
.

In turn, the derivative on (x∗, x∗∗] of type x’s utility under I, UI(x), is equal to yA (x) if x

does not belong to any non-degenerate interval (a, b] ∈ I, and is equal to

∫ b
a
yA (x̃) dF (x̃)

F (b)− F (a)

if x ∈ (a, b] ∈ I. This means that the derivative increases in x, and increases strictly except

on intervals (a, b] ∈ I. So, UI(x) is a convex non-linear function. Since UJ (x) is linear on

(x∗, x∗∗], UI(x∗) = UJ (x∗), and UI(x∗∗) ≤ UJ (x∗∗), we obtain that UI(x) ≤ UJ (x) for all

x ∈ (x∗, x∗∗], and the inequality is strict for all types x ∈ (x∗, x∗∗]. Similarly, the derivative

of UJ (x) on (x∗∗, b′] exceeds that of UI(x) if a′ < x∗∗ < b′ for some (a′, b′] ∈ I, and the two

derivatives are equal for x > b′, which completes the proof that J Pareto improves over I.

Suppose now that another category ranking I ′ Pareto improves over I. Recall that

I consists of singletons and a finite number of intervals [x1, x
′
1], (x2, x

′
2], ..., (xk, x

′
k], with

x′i < xi+1. Denote by x′ the highest type such that I and I ′ coincide up to x′, and suppose

that x′ is the lower endpoint of an interval (xl, x
′
l] in I. (A similar argument to the one that

follows applies if x′ is a singleton.)

Now, x′ must be the endpoint of a non-trivial interval in I ′, which we denote by (x∗, x∗∗],
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where x′ = x∗ < x∗∗. Otherwise, for types x slightly higher than xl the utility of these types

under I would exceed their utility under I ′ by (20). It also cannot be that x∗∗ < x′l, since

it would then follow from (20) that x∗∗ strictly prefers I to I ′.

Thus x′l < x∗∗, and since I ′ Pareto improves over I, type x∗∗ weakly prefers I ′ to I.

And since (by (20)) the payoff of type x∗∗ under any ranking depends only on the inter-

vals up to the one that contains x∗∗, type x∗∗ is indifferent between ranking I ′ and ranking

J = I(x∗, x∗∗), and therefore prefers ranking J to ranking I.

Proof of Lemma 1. We have to show for every x ∈ I1 ∪ I2 that

F (x)− F (x1)

F (x4)− F (x1)
≤ x− x1
x4 − x1

. (21)

Consider first x ∈ I1. By the definition of FOSD on I1, we have

F (x)− F (x1)

F (x3)− F (x1)
≤ x− x1
x3 − x1

,

so for (21) it suffices to show that

F (x3)− F (x1)

F (x4)− F (x1)
≤ x3 − x1
x4 − x1

.

Suppose instead that
F (x3)− F (x1)

F (x4)− F (x1)
>
x3 − x1
x4 − x1

. (22)

This implies that
F (x4)− F (x3)

F (x4)− F (x1)
<
x4 − x3
x4 − x1

(23)

In addition,

F (x3)− F (x2)

F (x3)− F (x1)
= 1− F (x2)− F (x1)

F (x3)− F (x1)
≥ 1− x2 − x1

x3 − x1
=
x3 − x2
x3 − x1

, (24)
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which multiplied by (22) gives

F (x3)− F (x2)

F (x4)− F (x1)
>
x3 − x2
x4 − x1

. (25)

Dividing (23) by (25) we obtain

F (x4)− F (x3)

F (x3)− F (x2)
<
x4 − x3
x3 − x2

⇒ F (x3)− F (x2)

F (x4)− F (x3)
+ 1 >

x3 − x2
x4 − x3

+ 1⇒

F (x4)− F (x2)

F (x4)− F (x3)
>
x4 − x2
x4 − x3

⇒ F (x4)− F (x3)

F (x4)− F (x2)
<
x4 − x3
x4 − x2

.

This last inequality is a contradiction, since FOSD on I2 implies the opposite weak inequality,

similarly to (24). Therefore, (21) holds for x ∈ I1.

Now consider x ∈ [x3, x4]. Instead of (21) we will show the equivalent inequality

F (x4)− F (x)

F (x4)− F (x1)
≥ x4 − x
x4 − x1

.

From FOSD on I2 we have
F (x4)− F (x)

F (x4)− F (x2)
≥ x4 − x
x4 − x2

.

Thus, it suffices to show that

F (x4)− F (x2)

F (x4)− F (x1)
≥ x4 − x2
x4 − x1

.

This inequality holds, because otherwise we would have

F (x2)− F (x1)

F (x4)− F (x1)
>
x2 − x1
x4 − x1

,

which would violate (21) for x = x2 ∈ I1.
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C Peer effects

We can model peer effects in a way that does not change any of our results and requires

only a transformation of the prize distribution. The idea is that each student exerts a

type-dependent effect on all his peers (those attending the same college), and the effects

are additive. We will show that such peer effects fit easily into our framework, as does the

change in the endogenous set of peers brought about by pooling. Of course, other ways of

modeling peer effects would lead to different impacts of pooling because of the change in

peers that pooling induces.

We will consider a limit prize distribution that consists of atoms, where each atom rep-

resents a mass of seats in a particular college. Students who attend a particular college

experience peer effects from other students attending the same college.

To model this, take an equilibrium of a finite contest and denote by I (y) the set of

players admitted to university y (for a particular realization of types and bids). The utility

of a player of type x admitted to university y by bidding t is

xy + x

∑
i∈I(y) p (xi)

|I (y)|
− c (t) = x

(
y +

∑
i∈I(y) p (xi)

|I (y)|

)
︸ ︷︷ ︸

ỹ

− c (t) ,

where p (x) captures the peer effect exerted by a player of type x. We refer to ỹ as the

effective prize for player i, which is the sum of the value of the college and the average peers

effects of the other students attending the college. Note that the effective prize depends on

the equilibrium because it is determined by the equilibrium allocation of prizes.

The limit approximating mechanism still implements the assortative allocation. To see

this, consider two universities y < y′ and the corresponding limit effective prizes ỹ and ỹ′. If

the allocation of students to universities is such that ỹ ≥ ỹ′, then all types would make the

lower bid to get into ỹ. But then ties will be broken randomly, which would generate the

same peer effects for both prizes, so y < y′ would give us ỹ < ỹ′, a contradiction. If ỹ < ỹ′,

then standard mechanism design results tell us that higher types get higher prizes, so it will

be the highest types that are assigned to y′, and the lower types will be assigned to y. Thus,

in the limit we get the assortative allocation.
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This means that in the limit approximating mechanism, for each prize y in the support

of the limit prize distribution G we have that the effective prize is

ỹ = y +

∫ xyH
xyL

p (x̃) dF (x̃)

F (xyH)− F (xyL)
=

∫ xyH
xyL

(y + p (x̃)) dF (x̃)

F (xyH)− F (xyL)
, (26)

where (xyL, x
y
H) is the interval of types that are allocated prize y in the assortative allocation

(so xyL = F−1 (limy′↑y G (y′)) and xyH = F−1 (G (y))). Now, replace the limit prize distribution

G with distribution G̃ in which every prize y is replaced with the effective prize ỹ. The

assortative allocation yA is replaced with ỹA, so ỹA (x) is the effective prize for type x

under the assortative allocation. Then, all our results on the characterization of Pareto

improvements continue to hold.

To see this, it is enough to consider two consecutive prizes and determine the effect of

pooling all the types that are allocated these prizes. Denote by y < y′ two consecutive

prizes in the support of the limit prize distribution G, so y = yA (x) for x in (xyL, x
y
H ] and

y′ = yA (x) for x in (xy
′

L , x
y′

H ] (with xyH = xy
′

L ). By pooling types on interval (xyL, x
y′

H ], the two

prizes y and y′ are combined to create an average prize y′′. The corresponding effective prize

is

ỹ′′ =

∫ xyH
xyL

ydF (x̃) +
∫ xy′H
xy
′

L

y′dF (x̃) +
∫ xy′H
xyL

p (x̃) dF (x̃)

F (xy
′

H)− F (xyL)

=
(F (xyH)− F (xyL)) ỹ + (F (xyH)− F (xyL)) ỹ′

F (xy
′

H)− F (xyL)

=

∫ xyH
xyL

ỹA (x̃) dF (x̃) +
∫ xy′H
xy
′

L

ỹA (x̃) dF (x̃)

F (xy
′

H)− F (xyL)

=

∫ xy′H
xyL

ỹA (x̃) dF (x̃)

F (xy
′

H)− F (xyL)
,

where the first equality follows from (26). As in the proof of Proposition 2, pooling is a
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Pareto improvement if and only if

ỹ′′ −

∫ xy′H
xyL

ỹA (x) dx

xy
′

H − x
y
L

≥ 0 ⇐⇒

∫ xy′H
xyL

ỹA (x) dF (x)

F (xy
′

H)− F (xyL)
≥

∫ xy′H
xyL

ỹA (x) dx

xy
′

H − x
y
L

.

D More general utility functions

We will now show how our results for top pooling can be extended to more general student

utility functions.

Consider the separable utility functions h(x, y)− c(t) and h(y)− c(x, t), where h(x, 0) =

c(x, 0) = 0 for all x, c is strictly increasing in t when x > 0 and decreasing in x when t > 0,

and h is strictly increasing in y when x > 0 and strictly increasing in x when y > 0. These

utilities generalize utilities (2) and (3), respectively. We extend the results of Section 4 to

these utility functions.58 Part (a) of Proposition 1 follows from the results of Olszewski and

Siegel (2016), as these results hold for the more general utility functions. (Of course, the

formula defining M will be different for the more general utility functions.)

The effort tA (x) is determined by

tA (x) = c−1
(
h(x, yA (x))−

∫ x

0

h1
(
z, yA (z)

)
dz

)
, (27)

for the utility h(x, y)− c(t), and satisfies

h(yA (x))− c(x, tA (x)) = −
∫ x

0

c1(z, t
A (z))dz

for the utility h(y) − c(x, t). By differentiating this equation, assuming that F and G are

differentiable, we obtain the following differential equation

h′(yA (x))(yA)′ (x) = c2(x, t
A (x))(tA)′ (x) .

58The results of Section 4 can be extended to a more general separable utility function h(x, y) − c(x, t).
However, the results for this more general function would be a combination the results for the two more
specific functions, and the analysis would be less transparent.
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This equation, together with the initial condition tA (0) = 0, uniquely determines tA (x),

assuming that the involved functions satisfy the Lipschitz condition.

For the utility h(x, y)− c(t) we have that

U(x) = h(x, yA (x))− c(tA (x)) =

∫ x

0

h1
(
z, yA (z)

)
dz

and

Ux∗(x) =

∫ 1

x∗
h(x, yA(z))dF (z)

1− F (x∗)
− c(M)

=

∫ 1

x∗
h(x, yA(z))dF (z)

1− F (x∗)
−
∫ 1

x∗
h(x∗, yA(z))dF (z)

1− F (x∗)
+

∫ x∗

0

h1
(
z, yA (z)

)
dz.

This yields

Ux∗(x)− U(x) =

∫ 1

x∗
h(x, yA(z))dF (z)

1− F (x∗)
−
∫ 1

x∗
h(x∗, yA(z))dF (z)

1− F (x∗)
−
∫ x

x∗
h1
(
z, yA (z)

)
dz.

Comparing this expression to 0, we obtain an analogue of condition (10) from part (b) of

Proposition 1.

The derivative of Ux∗(x)− U(x) is equal to

∫ 1

x∗
h1(x, y

A(z))dF (z)

1− F (x∗)
− h1

(
x, yA (x)

)
.

If we assume that h1 (x, y) increases in y, then this derivative is positive at x = x∗ and

negative at x = 1. Assuming that the derivative changes its sign only once, we obtain part

(c) of Proposition 1; in addition, this yields the following analogue of the condition from

part (d):

∫ 1

x∗
h(1, yA(z))dF (z)

1− F (x∗)
−
∫ 1

x∗
h(x∗, yA(z))dF (z)

1− F (x∗)
−
∫ 1

x∗
h1
(
z, yA (z)

)
dz ≥ 0.

For the utility h(y)− c(x, t) we have that

U(x) = h(yA (x))− c(x, tA (x)) = −
∫ x

0

c1(z, t
A (z))dz
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and

Ux∗(x) =

∫ 1

x∗
h(yA(z))dF (z)

1− F (x∗)
− c(x,M) = c(x∗,M)− c(x,M)−

∫ x∗

0

c1(z, t
A (z))dz,

which yields

Ux∗(x)− U(x) = c(x∗,M)− c(x,M) +

∫ x

x∗
c1(z, t

A (z))dz.

Comparing this expression to 0, we obtain an analogue of condition (10) from part (b) of

Proposition 1.

The derivative of this expression is c1(x, t
A (x))−c1(x,M). Assume that c1(x, t) decreases

with t. Then, c1(x, t
A (x))− c1(x,M) ≥ 0 when tA (x) ≤M , and c1(x, t

A (x))− c1(x,M) ≤ 0

when tA (x) ≥ M . Since UM(x) − U(x) = 0 when x = x∗, part (c) of Proposition 1 must

hold; in addition, this yields the following analogue of the condition from part (d):

c(x∗,M)− c(1,M) +

∫ 1

x∗
c1(z, t

A (z))dz ≥ 0.

Corollary 1 also generalizes to utilities h(x, y) − c(t) and h(y) − c(x, t), and its proof

requires only minor changes. Consider first the utility h(x, y)− c(t). We have

Ux∗(x) =

∫ 1

x∗
h(x, yA(z))dF (z)

1− F (x∗)
−
∫ 1

x∗
h(x∗, yA(z))dF (z)

1− F (x∗)
+

∫ x∗

0

h1
(
z, yA (z)

)
dz,

so, Ux∗(x) can be represented as φ(x, x∗) + ψ(x∗), where

φ(x, x∗) =

∫ 1

x∗
h(x, yA(z))dF (z)

1− F (x∗)

and

ψ(x∗) =

∫ x∗

0

h1
(
z, yA (z)

)
dz −

∫ 1

x∗
h(x∗, yA(z))dF (z)

1− F (x∗)
.

Assume that for all x′′ > x′, the difference h(x′′, y) − h(x′, y) strictly increases in y. This

implies that φ(x, x∗1) − φ(1, x∗1) > φ(x, x∗2) − φ(1, x∗2). Together with φ(1, x∗1) + ψ(x∗1) ≥

φ(1, x∗2) + ψ(x∗2), this yields part (a).

To show part (b), suppose that type 1 strictly prefers x∗2 to x∗1. By the assumption that
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h(x′′, y) − h(x′, y) strictly increases in y, it follows that Ux∗1(x) − Ux∗2(x) strictly decreases

in x. Thus, there exists an x∗∗ such that types x < x∗∗ strictly prefer x∗1 and types x > x∗∗

strictly prefer x∗2. And since all players with types close to 1 strictly prefer x∗2 to x∗1, we have

that x∗∗ < 1. Finally, it can be readily checked that the derivative of ψ with respect to x∗ is

negative. Hence, ψ(x∗1) > ψ(x∗2), and so x∗∗ > 0.

For the utility h(y)− c(x, t), we have that

Ux∗(x) = c(x∗,M)− c(x,M)−
∫ x∗

0

c1(z, t
A (z))dz.

So, Ux∗(x) can be represented as φ(x, x∗) + ψ(x∗), where

φ(x, x∗) = −c(x,M)

and

ψ(x∗) = c(x∗,M)−
∫ x∗

0

c1(z, t
A (z))dz.

Assume that for all x′′ > x′, the difference c(x′,M)− c(x′′,M) strictly increases in M . This

implies that φ(x, x∗1) − φ(1, x∗1) > φ(x, x∗2) − φ(1, x∗2). Together with φ(1, x∗1) + ψ(x∗1) ≥

φ(1, x∗2) + ψ(x∗2), this yields part (a).

To show part (b), suppose that a player of type 1 strictly prefers x∗2 to x∗1. By the

assumption that c(x′,M)− c(x′′,M) strictly increases in M , it follows that Ux∗1(x)−Ux∗2(x)

strictly decreases in x. Thus, there exists an x∗∗ such that types x < x∗∗ strictly prefer x∗1

and types x > x∗∗ strictly prefer x∗2. And since all players with types close to 1 strictly prefer

x∗2 to x∗1, we have that x∗∗ < 1. Finally, it can be readily checked that the derivative of ψ

with respect to x∗ is negative. Hence, ψ(x∗1) > ψ(x∗2), so x∗∗ > 0.

E Relationship to Krishna et al. (2018)

The model in Krishna et al. (2018) serves as a bridge between our theory and the data. Most

variables of our model, such as agent ability, costs of effort and prize values, are unlikely to

be observed in a typical administrative dataset. The model of Krishna et al. (2018), on the
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other hand, can be estimated using existing data and produce close analogs of the above

variables, via simulation or directly.59 Our model is then calibrated to these quantities. In

what follows, we explain how the elements of our model are connected to their counterparts

in Krishna et al. (2018).

The model of Krishna et al. (2018) describes a single-agent problem faced by students

in the Turkish centralized college placement system. The timing is as follows:

1. Each student chooses between three types of high school (public, private or selective

school) and two levels of private tutoring. These choices affect subsequent exam scores.

2. The agent studies in high school and gets a signal about his innate abilities.

3. The agent takes the exam and learns his placement score.

4. The agent decides whether to be placed with the current score or retake the exam

next year. Retaking is costly, but may improve the score. Placement is the terminal

state. Each retaker draws a permanent and a transitory shock to the scores and decides

whether to retake again, and so on.

Students are heterogeneous in many dimensions. Each student i is characterized by a vector

of socioeconomic characteristics and academic performance prior to high school, Xi. Each of

the six levels of pre-exam investment of effort, e, is associated with a cost Ci(e) = γe + wie.

The idiosyncratic part of the cost, wie, is modeled as a mixed logit shock and is observed by

the agent. Choice-specific parameters γe capture the cost component common to all agents.

Effort affects the exam score in the first attempt, ti1:

ti1 = X ′iβ + ρe + εi,

The idiosyncratic shock to the score consists of two components: εi = εi0 + εi1. The first one

is persistent and is revealed at stage 2. It captures residual variation in innate ability not

59We estimate the version of the structural model from Krishna et al. (2018) that allows for pre-test
investment into exam preparation. In contrast to the main specification in the above paper, we restrict
all income categories to have the same utility and cost structure. Unlike Krishna et al. (2018), we do not
focus on income-related asymmetries in placement outcomes here, and removing this extra dimension of
heterogeneity greatly simplifies the calibration exercise.
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explained by Xi. The second one, εi1, is transitory and accounts for random shocks during

the exam. This shock is revealed to the agent at stage 3. In what follows, it is convenient

to separate the persistent part of the score, t̄i1 = X ′iβ + ρe + εi0, from the transitory shock.

The dynamic decision problem in stage 3 is described by Bellman’s equation. From the

agent’s perspective, the state of the world at the exam attempt a = 1, 2, . . . in this dynamic

problem is described by the pair (t̄ia, εia), where t̄ia is the persistent component of i’s score

and εia is the transitory shock affecting the score in attempt a:

Wa(t̄ia, εia) = max {U(r(t̄ia + εia)), V Ca(t̄ia)} ,

V Ca(t̄ia) = δEλia+1,εia+1
[Wa(t̄ia + λia+1, εia+1)]− ψa

Parameter ψa captures the cost of retaking after attempt a. The persistent part of the

score stochastically evolves over time: t̄ia+1 = t̄ia + λia+1. The shock λia+1 captures learning

between the attempts. The function U(r) describes the utility of being placed with the rank

r, while r(t) is the rank that the score t can buy in the equilibrium. We refer the reader to

Krishna et al. (2018) for more details on this part.

Let V0(t̄i1) be the function that captures the value of reaching the expected score t̄i1 =

X ′iβ + ρe + εi0 in stage 2, when the agent is just about to take the exam for the first time:

V0(t̄i1) = Eεi1 [V1(t̄i1, εi1)] (28)

This function’s value accounts for the option to retake and the payoff of eventual placement.

As explained in Section 7, the distribution of prizes, G(y), is directly related to the utility

function U(r). Consider an agent whose placement rank is r. In the notation of Krishna et

al. (2018), the agent’s placement payoff is U(r). Since prizes are allocated according to the

ranking, he gets y = G−1(r). Thus, U(r) = G−1(r).

Another object that we use to calibrate our model is C(t) = c(t)/xA(t), the score-to-cost

mapping in the Turkish equilibrium. In our model, students vary in a single dimension,

ability, which leads to one-to-one mapping between scores, rank and ability. In Krishna

et al. (2018), agents are heterogeneous in multiple dimensions: idiosyncratic shocks wie
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and εi1 affect their costs and scores, while the observable characteristics Xi explain pre-

existing differences in scores related to i’s socioeconomic background. As a result, there

is no one-to-one mapping between the cost of effort and the exam score. To preserve the

general relationship between the costs and the scores, while abstracting away from the extra

dimensions of student heterogeneity, we simulate the costs Ci(e
∗
i ) of the optimal effort level

e∗i and the scores ti1 for each agent using the estimated model of Krishna et al. (2018) and

fit a non-parametric regression of Ci(e
∗
i ) on ti1 to get the average cost at every score and

use this as the cost for the student who obtains this score.60 That is, we use the regression

estimate of E[Ci(e
∗
i )|ti1 = t] in place of C(t).

Finally, in order to back out the distribution of ability in Section 7, we need to know

the marginal payoff from improving the score in the first attempt, V ′(t). We use the value

function V0 as defined in (28) in place of V (t).

F Robust Pareto Improvement

In this section, we find the robust policy characterized in Proposition 4. The policy is found

using grid search:

1. We set x∗1 = 0, x∗∗1 = 1 and gradually reduce x∗∗1 until the truncated distribution of

types on [x∗1, x
∗∗
1 ] dominates the uniform distribution in the same interval:

x− x∗1
x∗∗1 − x∗1

≥ F (x)− F (x∗1)

F (x∗∗1 )− F (x∗1)
for all x ∈ [x∗1, x

∗∗
1 ]

2. If such upper boundary x∗∗1 exists and the mass of agents in the interval, F (x∗∗1 )−F (x∗1),

is above 1 percent, we save [x∗1, x
∗∗
1 ] as the first pooling interval, set x∗2 at x∗∗1 plus a

small increment, x∗∗2 at unity, and start searching for the second pooling interval.

3. If the conditions in the previous step do not hold for any x∗∗i , we add a small increment

to x∗i and start over.

60It is also worth noting that the mean cost parameters γe are identified up to an additive constant. We
address this issue by normalizing the cost of attending a public school with no private tutoring to zero.
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The optimal policy is a category ranking consisting of 16 intervals, depicted in Figure F1

as shaded areas and documented in detail in Table F1.
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Figure F1: Robust Pareto-improving pooling policy.
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Table F1: Robust Pareto-improving pooling policy.

Interval, i [x∗i , x
∗∗
i ] [F (x∗i ), F (x∗∗i )] Mass

1 [0.000, 0.002] [0.00, 0.02] 0.020
2 [0.006, 0.097] [0.04, 0.55] 0.506
3 [0.097, 0.101] [0.55, 0.57] 0.019
4 [0.103, 0.107] [0.58, 0.59] 0.016
5 [0.110, 0.114] [0.60, 0.62] 0.015
6 [0.114, 0.119] [0.62, 0.64] 0.016
7 [0.122, 0.125] [0.65, 0.66] 0.012
8 [0.128, 0.134] [0.67, 0.69] 0.018
9 [0.134, 0.140] [0.69, 0.70] 0.017
10 [0.142, 0.149] [0.71, 0.73] 0.018
11 [0.156, 0.163] [0.74, 0.76] 0.014
12 [0.163, 0.175] [0.76, 0.78] 0.025
13 [0.175, 0.186] [0.78, 0.80] 0.022
14 [0.186, 0.196] [0.81, 0.82] 0.017
15 [0.198, 0.208] [0.83, 0.84] 0.018
16 [0.215, 0.226] [0.86, 0.87] 0.017
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Figure F2: Types of pre-test investment conditional on the final score

G Cost-to-School Mapping

G.1 Construction of the cost-to-school mapping

We adapt the techniques of Section 7 to a discretized economy in which there is a unit mass

of students and 10 schools. Each school has a capacity for 0.1 of the student population.

The cost of getting the score t is c(t)/x, where x is student’s ability. Using the same cost

function and the distribution of student abilities as in the estimated continuous economy,

we simulate equilibrium cutoffs for the 10 schools in the discrete economy. Net payoffs (y −

c(t)/x) in the discretized economy resemble those in the continuous one, and the placement

payoffs u are approximating those in the continuous economy. Figure G1 shows how the

ability cutoffs (G1a) and net payoffs (G1b) in the discretized economy relate to those in the

continuous economy.

The bottom pooling policy we found previously for the continuous economy is necessarily

Pareto-improving in the discrete economy. Further, the two policies are qualitatively similar:

roughly the same set of students get seats in the pooled school under both policies, and their

placement payoffs are almost identical. Figure G2 illustrates how the pooling policy is

Pareto improving in the discretized economy (to see how this is qualitatively similar to the

continuous economy, compare this figure to Figure 6 in the main text). Student net payoffs

in the discretized economy under the discrete policy and the pooling policy and displayed
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(a) Mapping from student’s ability ranking to prize.
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Figure G1: Discretized vs. continuous economy.
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Figure G2: Student net payoffs as a function of ability in the discretized economy

as a function of their ability (G2a), and a function of their ability ranking (G2b).

G.2 Parameter selection of the cost-to-school mapping

Here we present the particular cost-to-school mapping for the online experiment. The exper-

iment uses 6 ability levels that are to the left of the pooling threshold and 5 that are to the

right of it: subject in the experiment was randomly assigned to one of the following ability

levels: 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.15, 0.20, 0.60, 1.00. These were chosen so

that the majority of subjects had abilities below the pooling threshold (as is the case in the

Turkish data – see Section 7).

Table G1 shows the mapping from investment levels to cost under the discrete policy
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for each ability level in our experiment, using the results of the empirical estimation for the

discretized economy described above. Table G2 shows the parameters that were used under

the pooling policy. The parameters in this table are those the subjects saw on their screens.61

Highlighted in yellow are the profit maximizing choices.

As can be seen, subjects whose abilities fall below the pooling threshold (i.e. subjects

with ability less than or equal to 0.10) are predicted to opt for the pooling lottery under the

pooling policy, while “high ability” subjects instead are predicted to behave no differently

across the discrete and pooling policies.

Ability

School
Enrollment

Bonus
0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.15 0.2 0.6 1

J 3 0 0 0 0 0 0 0 0 0 0 0
I 16 20 9 7 3 3 2 2 1 1 0 0
H 24 49 24 12 10 8 5 4 3 2 1 1
G 30 83 41 21 14 13 10 8 6 4 1 1
F 35 127 64 32 21 16 14 11 9 6 2 1
E 42 185 93 46 31 25 19 17 12 10 3 2
D 49 257 128 64 43 34 28 21 19 16 4 3
C 55 346 173 86 57 43 35 30 23 21 6 4
B 62 466 233 117 78 57 47 39 33 24 8 5
A 74 762 381 191 127 95 76 64 51 43 13 8

Notes: For example, a subject assigned to ability level 0.06 would have to invest 14 Tokens out of the 100
Token endowment in order to meet the requirement for School G and obtain a 30-Token enrollment bonus.
If that subject had instead invested 21 Tokens, they would enroll in School F and obtain 35 Tokens.

Table G1: Discrete policy: cost of targeting particular schools by ability.

.

61The parameters are scaled up by a factor of 100 relative to the empirical estimation.
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Ability

School
Enrollment

Bonus
0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.15 0.2 0.6 1

J
LOTTERY

Equal Chances of
3, 16, 24,
30, 35, 42

I
H
G 0
F
E
D 49 257 128 64 43 34 28 21 19 16 4 3
C 55 346 173 86 57 43 35 3 23 21 6 4
B 62 466 233 117 78 57 47 39 33 24 8 5
A 74 762 381 191 127 95 76 64 51 43 13 8

Notes: For example, a subject assigned to ability level 0.06 who invested 0 Tokens out of the 100 Token
endowment would enter an enrollment lottery and have equal chances of being admitted to school E, F, G,
H, I, J and earn the bonus associated with the school they ultimately enrolled in. If that subject had
instead invested 57 Tokens, they would enroll in School C and obtain 55 Tokens.

Table G2: Cost of targeting particular schools by ability under the pooling policy.

H Experiment: Additional Results

H.1 Results on non-risk-neutral subjects

In this section we provide additional statistics on policy evaluation regarding subjects who

are not risk neutral. We find that risk aversion and behavior in our setting follow what would

be expected. The p-values reported below correspond to the exact p-values of a Wilcoxon

rank-sum test.

High Ability Players. First, risk averse subjects whose abilities are above the pooling thresh-

old should behave similarly to risk neutral subjects in the Lottery treatment when faced with

the pooling policy. This is exactly what we find (the lowest p-value when comparing behavior

for each ability level across the risk averse and risk neutral players is p = 0.1031). However,

subjects who are risk-seeking should either be more likely or equally likely to choose the lot-

tery over the certain outcome compared with risk-neutral, players but never less likely. We

find that subjects with the three highest ability levels are more likely to choose the lottery
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(the highest p-value is p = 0.0689), and subjects with the lower two ability levels are equally

likely (the lowest p-value is p = 0.3285).

Low Ability Players. Risk seeking subjects whose abilities are below the pooling threshold

should behave similarly to risk neutral subjects in the Lottery treatment when faced with

the pooling policy. This is exactly what we find (the lowest p-value is p = 0.3517). For risk

averse players, they should either be more likely to opt out of the lottery, or, depending on

how risk averse they are, behave as risk neutral players do. We find no difference in behavior

between risk averse and risk neutral players who are of low ability (the lowest p-value is

p = 0.3748).

H.2 Additional data collection

We ran some sessions in which under the pooling policy the lottery was replaced with a fixed

amount of 0.25, which corresponded to the expected value of the lottery under the pooling

policy. Below we present the results from these sessions. Figure H1 shows the average

profits under the discrete and pooling policies. Just as in the data presented in the main

text, subjects here on average do better under the pooling policy.

In fact, statistically speaking, results are largely similar with those from the main text.

The only noteworthy difference is that here subjects who are high ability but whose ability

are just above the pooling threshold behave as predicted: removing the lottery removes the

ability to randomize and subjects make the profit maximizing choice.

I Screen Shots

I.1 Discrete Policy First

Below we present the screen shots that subjects saw on their screens. This particular sequence

corresponds to the subjects who saw the discrete policy first.
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Figure H1: Average profits under the discrete and pooling policies.
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Figure G1: Consent screens

Figure G2: Preamble
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Figure G3: Part 1 General instructions
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Figure G4: Instructions for Round 1 if discrete policy is seen first.
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Figure G5: Quiz after discrete round instructions.

Figure G6: Example of selection screen for discrete policy.
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Figure G7: Transition to Round 2.

Figure G8: Instructions for Round 2 if discrete policy is seen first.
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Figure G9: Quiz after pooling round instructions.
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Figure G10: Example of selection screen for pooling policy.

Figure G11: Transition from Part 1 to Part 2.
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Figure G12: Instructions for Part 2 (risk elicitation).

Figure G13: Example of decision screen for Part 2.
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Figure G14: Questionnaire.
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I.2 Pooling Policy First

If a subject saw the pooling policy first the sequence of screens was slightly modified from

the Baseline in which subjects saw the discrete round first. Figures G4, G5, G6, G8, G9 and

G10 are replaced, in order, with the figures below (Figures G15, G16, G17, G18, G19 and

G20, respectively).

Figure G15: Instructions for Round 1 if pooling policy is seen first.
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Figure G16: Quiz after pooling round instructions.
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Figure G17: Example of selection screen for pooling policy.
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Figure G18: Instructions for the discrete policy.
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Figure G19: Quiz after discrete round instructions.

Figure G20: Example of selection screen for discrete policy.
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