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1 Introduction

The finance literature has recently seen rapid advances in return prediction methods borrow-

ing from the machine learning canon. The primary economic use case of these predictions has

been portfolio construction. While a number of papers have documented significant empirical

gains in portfolio performance through the use of machine learning, there is little theoretical

understanding of return forecasts and portfolios formed from heavily parameterized models.

We provide a theoretical analysis of such “machine learning portfolios.” Our analysis

can be summarized in the following thought experiment. Imagine there is a true predictive

model of the form

Rt+1 = f(Gt) + εt+1 (1)

where R is an asset return, G is a fixed set of predictive signals, and f is a smooth

function. The predictors G may be known to the analyst, but the prediction function f

is unknown. Rather than futilely guessing the functional form, the analyst relies on the

universal approximation rationale of, e.g., Hornik et al. (1990), that f can be approximated

with a sufficiently wide neural network,

f(Gt) ≈
P∑
i=1

Si,tβi,

where Si,t = f̃(w′iGt) is a known nonlinear activation function with known weights wi and

P is sufficiently large.1 As a result, (1) takes the form

Rt+1 =
P∑
i=1

Si,tβi + ε̃t+1. (2)

1Assuming known weights wi is innocuous, as the universal approximation result applies even if weights
are randomly generated (Rahimi and Recht, 2007). In fact, our empirical analysis uses the Rahimi and Recht
(2007) random Fourier feature method to generate features as in (2).
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The training sample for this regression has a fixed number of data points, T , and the

analyst must decide on the “complexity,” or the number of features P , to use in their

approximating model. A simple model, one with P << T , will have low variance thanks

to parsimonious parameterization but will be a coarse approximator of f . On the other

hand, a high complexity model (P > T ) has better approximation potential but may be

poorly behaved and will require shrinkage/bias. Our central research question is: What

level of model complexity (which P ) should the analyst opt for? Does the approximation

improvement from large P justify the statistical costs (higher variance and/or higher bias)?

Answer: We prove that, in the high complexity regime (P > T ), expected out-of-sample

forecast accuracy and portfolio performance are strictly increasing in model complexity. The

analyst should always use the largest approximating model that she can compute. Applying

optimal shrinkage to this large P model enhances performance further (indeed, we derive the

choice of shrinkage that maximizes expected out-of-sample model performance). In other

words, when the true data generating process (DGP) is unknown, the approximation gains

achieved through model complexity dominate statistical costs of heavy parameterization.

To provide intuitive characterizations of forecast and portfolio behavior in complex mod-

els, our theoretical environment has two simplifying aspects. First, the machine learning

models we study are restricted to high-dimensional linear models. As suggested by equation

(2), this sacrifices little generality as a number of recent papers have established an equiva-

lence between high-dimensional linear models and more sophisticated models such as deep

neural networks (Jacot et al., 2018; Hastie et al., 2019; Allen-Zhu et al., 2019). Second, we

focus on a single risky asset. Thus prediction is isolated to the time-series dimension, and

the portfolio optimization problem reduces to market timing.2 These two simplifications

make our key findings more accessible, yet neither is critical for our conclusions.

2The single asset time series case is economically important in its own right. It coincides with predictive
regression for the market return, which has been the primary method for investigating a central organizing
question of asset pricing: How much do discount rates vary over time? While our analysis can be applied
to a panel of many assets, the roles of covariances in asset returns and signals across stocks complicate the
theory.
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To provide a baseline for our findings, consider the well-known deficiency of ordinary least

squares (OLS) prediction in high dimensions. As the number of regressors, P , approaches

the number of data points, T , the expected out-of-sample R2 tends to negative infinity. An

immediate implication is that a portfolio strategy attempting to use OLS return forecasts

in such a setting will have divergent variance. In turn, its expected out-of-sample Sharpe

ratio collapses to zero. The intuition behind this is simple: When the number of regressors

is similar to the number of data points, the regressor covariance matrix is unstable, and

its inversion induces wild variation in coefficient estimates and forecasts. This is commonly

interpreted as overfitting: With P = T , the regression exactly fits the training data and

performs poorly out-of-sample.

We are particularly interested in the behavior of portfolios in the high model complexity

regime, where the number of predictors exceeds the number of observations (P > T ).3 In this

case, standard regression logic no longer holds because the regressor inverse covariance matrix

is not defined. However, the pseudo-inverse is defined, and it corresponds to a limiting ridge

regression with infinitesimal shrinkage, or the “ridgeless” limit. An emergent statistics and

machine learning literature shows that, in the high complexity regime, ridgeless regression

can achieve accurate out-of-sample forecasts despite fitting the training data perfectly.4

We analyze related phenomena in the context of return prediction and portfolio opti-

mization. We establish the striking theoretical result that market timing strategies based on

ridgeless least squares predictions generate positive Sharpe ratio improvements for arbitrarily

high levels of model complexity. Stated more plainly, when the true DGP is highly complex—

i.e., it has many more parameters than there are training data observations—one might

3The statistics and machine learning community often refer to P > T as the “over-parameterized”
regime. We avoid terminology like “over-parameterized” and “overfit” as it suggests the model uses too
many parameters, which is not necessarily the case. For example, the true data generating process may
be highly complex (i.e., P is large relative to T ); thus, a correctly specified model would require P > T .
When an empirical model has the same specification as the true model, we would prefer to call it correctly
parameterized as opposed to over-parameterized.

4This seemingly counterintuitive phenomenon is sometimes called “benign overfit” (Bartlett et al., 2020;
Tsigler and Bartlett, 2020).
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think that a timing strategy based on ridgeless regression is bound to fail. After all, it

exactly fits the training data with zero error. Surprisingly, this intuition is wrong. We prove

that strategies based on extremely high-dimensional models can thrive out-of-sample and

outperform strategies based on simpler models under fairly general conditions.

Our theoretical analysis delivers a number of additional conclusions. First, it shows

that the out-of-sample R2 from a prediction model is a poor measure of its economic value.

A market timer can generate significant economic profits even when the predictive R2 is

negative. The reason is that the R2 is heavily influenced by the variance of forecasts.5 A

very low out-of-sample R2 indicates a highly volatile timing strategy. But the properties of

least squares imply that the expected out-of-sample return of a timing strategy is always

positive. So, as long as the timing variance is not too high (the R2 not too negative), the

timing Sharpe ratio can be substantial.

Second, we study two theoretical cases, one for correctly specified models and one for

mis-specified models. The correctly specified case develops the behavior of timing portfolios

when the true DGP varies from simple to complex, holding the data size fixed. This is

valuable for developing a general understanding of machine learning portfolios for a variety

of DGPs. But the correct model specification is unrealistic—it is unlikely that we ever have

a predictor data set that nests all relevant conditioning information, and it is also unlikely

that we use information in the proper functional form. Our main theoretical results pertain

to mis-specified models, and this analysis coincides with the thought experiment above. In

practice, when we vary the empirical model specification from simple to complex, we change

how accurately the model approximates a fixed DGP.

Third, while the results discussed so far refer primarily to the case of ridgeless regression,

we show that machine learning portfolios tend to incrementally benefit from moving away

5That is, R2 is not just about predictive correlation. Consider a simple model with a single predictor
and a coefficient estimate many times larger than the true value. This scale error will tend to drive the R2

negative, but it won’t affect the correlation between the model fits and the true conditional expectation.
The R2 is negative only because the variance of the fits is off.

6



from the ridgeless limit by introducing non-trivial shrinkage. The bias induced by heavier

ridge shrinkage lowers the expected returns to market timing, but the associated variance

reduction reins in the volatility of the strategy. The Sharpe ratio tends to benefit from higher

shrinkage because the variance reduction overwhelms the deterioration in expected timing

returns. This is especially true when P ≈ T , where the behavior of ridgeless regression is

most vulnerable.

From a technical standpoint, we characterize the behavior of portfolios in the high

complexity regime using asymptotic analysis as the model’s size grows with the number

of observations at a fixed rate (T → ∞ and P/T → c > 0). When P → ∞, the regular

asymptotic results, such as laws of large numbers and central limit theorems, do not hold.

Such analysis requires the apparatus of random matrix theory, on which we draw heavily to

derive our results. Conceptually, this delivers an approximation for how a machine learning

model behaves as we gradually increase the number of parameters holding the amount of

data fixed.

We conduct an extensive empirical analysis that demonstrates the virtues of model

complexity in a canonical asset pricing problem: predicting the aggregate US equity market

return.6 In particular, we study market timing strategies based on predictions from very

simple models with a single parameter to extremely complex models with over 10,000

parameters (applied to training samples with as few as 12 monthly observations). The

data inputs to our models are 15 standard predictor variables from the finance literature

compiled by Welch and Goyal (2008). To map our data analysis to the theory, we require

a method that smoothly transitions from low to high complexity models while holding the

underlying information set fixed. The random feature method of Rahimi and Recht (2007)

is ideal for this. We use it to construct expanding neural network architectures that take the

6Surveys of this large literature include Koijen and Van Nieuwerburgh (2010), Cochrane (2011), and
Rapach and Zhou (2021). For early machine learning approaches to market return prediction, see Rapach
et al. (2010) and Kelly and Pruitt (2013).
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Welch and Goyal (2008) predictors as inputs and maintain the core ridge regression structure

of our theory.

We find extraordinary agreement between empirical patterns and our theoretical pre-

dictions. Over the standard CRSP sample 1926–2020, out-of-sample market timing Sharpe

ratio improvements (relative to market buy-and-hold) reach roughly 0.47 per annum with

t-statistics near 3.0. This is despite the fact that the out-of-sample predictive R2 is substan-

tially negative for the vast majority of models, consistent with the theoretical argument that

predictive R2 is inappropriate for judging the economic benefit of a machine learning model.

Timing positions from high complexity models are remarkable. They look essentially

like long-only strategies, following the Campbell and Thompson (2008) recommendation to

impose a non-negativity constraint on expected market returns. But our models learn this

as opposed to being handed a constraint. Moreover, machine learning strategies learn to

divest leading up to NBER recessions, successfully doing so in 14 out of 15 recessions in our

test sample on a purely out-of-sample basis.

This paper relates most closely to emergent literature that studies the theoretical prop-

erties of machine learning models. A number of recent papers show that linear models

combined with random matrix theory help characterize the behavior of neural networks

trained by gradient descent.7 In particular, wide neural networks (many nodes in each

layer) are effectively kernel regressions, and “early stopping” in neural network training is

closely related to ridge regularization (Ali et al., 2019). Recent research also emphasizes the

phenomenon of benign overfit and “double descent,” in which expected forecast error drops

in the high complexity regime.8

In this literature, the closest paper to ours is Hastie et al. (2019), who derive nearly

optimal error bounds in finite samples for bias and risk in the ridge(less) regression under

very general conditions.9 They are also the first to introduce mis-specified models where

7See, for example, Jacot et al. (2018); Hastie et al. (2019); Du et al. (2018, 2019); Allen-Zhu et al. (2019).
8See, for example, Spigler et al. (2019); Belkin et al. (2018, 2019, 2020); Bartlett et al. (2020).
9See also Richards et al. (2021) who obtain less general results in an asymptotic setting (as in our paper).
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some of the signals may be unobservable. In this paper, we focus on the (easier) asymptotic

regime. We use a different method of proof and relax some of the technical conditions on the

distributions of signals, using recent results of Yaskov (2016). In particular, we allow for non-

uniformly positive definite covariance matrices. Most importantly, instead of focusing on the

prediction model forecast error variance, we characterize expected out-of-sample expected

returns, volatility, and Sharpe ratios of market timing strategies based on machine learning

predictions. As in Hastie et al. (2019), our key interest is in the mis-specified model. While

Hastie et al. (2019) focus on a specific form of mis-specification and its ridgeless limit, we

derive general expressions for asymptotic expected returns and volatility in terms of signal

correlations.

Our research question is motivated by a growing empirical literature that uses machine

learning methods to analyze stock returns. While too large to survey here, a partial reference

list includes Feng et al. (2018), Rossi (2018), Rapach and Zhou (2020), Kozak et al. (2020),

Freyberger et al. (2020), Gu et al. (2020), Chen et al. (2021), and Bianchi et al. (2021). Our

paper is also related to Martin and Nagel (2021) and Da et al. (2022) who examine market

efficiency implications of the high-dimensional prediction problem faced by investors, to

Fan et al. (2022b) who touch upon the “double descent” phenomenon in their analysis of

structural machine learning models, and to financial econometrics applications of random

matrix theory such as Fan et al. (2008), Ledoit and Wolf (2020), and Fan et al. (2022a).

The paper is organized as follows. In Section 2 we lay out the theoretical environment.

Section 3 presents the foundational results from random matrix theory from which we

derive our main theoretical results. Section 4 characterizes the behavior of machine learning

portfolios in the correctly specified setting and emphasizes the intuition behind the portfolio

benefits of high complexity prediction models. Section 5 extends these results to the more

practically relevant setting of mis-specified models. We present our main empirical results

in Section 6, and Section 7 concludes. The appendix contains a variety of supplementary
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theoretical results and empirical robustness analyses. We invite readers that are primarily

interested in the qualitative theoretical points and the empirical analysis to skip the technical

material of Sections 2 and 3.

2 Environment

This section describes our modeling assumptions and outlines the criteria by which we

evaluate machine learning portfolios.

2.1 Asset Dynamics

Assumption 1 There is a single asset whose excess return behaves according to

Rt+1 = S ′tβ + εt+1 (3)

with εt+1 i.i.d., E[εt+1] = E[ε3
t+1] = 0, E[ε2

t+1] = σ2, E[ε4
t+1] < ∞,10 and St a P -vector of

predictor variables. Without loss of generality, everywhere in the sequel we normalize σ2 = 1.

Assumption 1 establishes the basic return generating process. Most notably, conditional

expected returns depend on a potentially high-dimensional information set embodied by the

predictors, S. This interpretation of this assumption is not that asset returns are subject

to a large number of fundamental driving forces. Instead it espouses the machine learning

perspective discussed in the introduction: The DGP’s functional form is unknown, but

may be approximated with richly parameterized models using a high-dimensional nonlinear

expansion S of some underlying feature set.

The covariance structure of S plays a central role in the behavior of machine learning

predictions and portfolios. Assumption 2 imposes basic regularity conditions on this covari-

ance.

10The assumption of zero skewness does not affect our results, but simplifies the analytical expressions.
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Assumption 2 There exist independent random vectors Xt ∈ RP with four finite first

moments, and a symmetric, P -dimensional positive semi-definite matrix Ψ such that

St = Ψ1/2Xt.

Furthermore, E[Xi,t] = E[X3
i,t] = 0 and E[X2

i,t] = 1, i = 1, · · · , P. Furthermore, the fourth

moments E[X4
i,t] are uniformly bounded and Xi,t satisfy the Lindenberg condition

lim
P→∞

1

P

P∑
i=1

E[X2
i,tI|Xi,t|>ε

√
P ] = 0 for all ε > 0.

As we show below, the theoretical properties of machine learning portfolios depend heavily

on the distribution of eigenvalues of Ψ. We are interested in limiting behavior in the high

model complexity regime, i.e. as P, T →∞, with P/T → c > 0. Assumption 3 ensures that

estimates of Ψ are well-behaved in this limit.

Assumption 3 We will use λk(Ψ), k = 1, · · · , P, to denote the eigenvalues of an arbitrary

matrix Ψ. In the limit as P →∞, the spectral distribution FΨ of the eigenvalues of Ψ ,

FΨ(x) =
1

P

P∑
k=1

1λk(Ψ)≤x (4)

converges to a non-random probability distribution H supported on (0,+∞).11 Furthermore,

Ψ is uniformly bounded as P →∞. We will use

ψ∗,k = lim
P→∞

P−1 tr(Ψk) , k ≥ 1

to denote asymptotic moments of the eigenvalues of Ψ.

Our last assumption governs the behavior of the true predictive coefficient, β.

11If 0 is in the support of H, then Ψ is strictly degenerate, meaning that some signals are redundant.
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Assumption 4 We assume β = βP is random, β = (βi)
P
i=1 ∈ RP , independent12 of S and

R, and satisfies E[β] = 0, and E[ββ′] = P−1b∗,P I for some constant b∗,P = E[‖β‖2],13 and

satisfies b∗,P → b∗ almost surely, for some b∗ > 0. Furthermore, E[β4
i ] ≤ cP−2 for some

c > 0, and β satisfy the same Lindenberg condition as X.

Randomness of β in Assumption 4 is a device that allows us to characterize the prediction

and portfolio problem for generic predictive coefficients. The assumption that β is mean zero

is inconsequential; we could allow for non-zero mean and restate our analysis in terms of

variances rather than second moments. E[ββ′] = P−1b∗,P I imposes that the predictive

content of signals is rotationally symmetric. In other words, predictability is uniformly

distributed across signals. This may seem restrictive, as commonly used return predictors

clearly would not satisfy Assumption 4. But it is in fact closely aligned with the structure

of feed-forward neural networks, in which raw features are mixed together and nonlinearly

propagated into final generated features whose ordering is essentially randomized by the

initialization step of network training. Furthermore, the random feature methodology that

we use in our empirical analysis satisfies Assumption 4 by construction.14

When β is random and rotationally symmetric, we can focus on average portfolio behavior

across signals, which implies that only the traces of the relevant matrices matter, as opposed

to entire matrices (which are the source of technical intractability). The proportionality

of E[ββ′] to P−1, and likewise the finite limiting `2 norm of β, controls the “true” Sharpe

ratio. It ensures that Sharpe ratios of timing strategies remain bounded as the number of

predictors grows. In other words, our setting is one with many signals, each contributing a

little bit of predictability.

12The assumption of a random coefficient vector β is related to that in Gagliardini et al. (2016).
13This identity follows because b∗ = trE[ββ′] = E[tr(ββ′)] = E[b∗].
14From a technical standpoint, it is possible to derive explicit expressions for portfolio performance without

this assumption, but the expressions become more complex. In this case, the asymptotic behavior depends on
the distribution of projections of β on the eigenvectors of Ψ (the signal principal components). See, Hastie et
al. (2019). In particular, when β is concentrated on the top principal components, the phenomenon of benign
overfit emerges (Bartlett et al. (2020), Tsigler and Bartlett (2020)), and the optimal ridge regularization is
zero. We leave this generalization for future research.
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A key aspect of our paper, and one rooted in Assumptions 2 and 4, is that realized out-

of-sample returns are independent of the specific realization of β. This is due to a law of

large numbers in the P →∞ limit, and is guaranteed by the following lemma.15

Lemma 1 As P →∞ we have

β′APβ − P−1b∗ tr(AP ) → 0

in probability for any bounded sequence of matrices AP . In particular, β′Ψβ → b∗ψ∗,1.

2.2 Timing Strategies and Performance Evaluation

We study timing strategy returns, defined as

Rπ
t+1 = πtRt+1

where πt is a timing weight that scales the position in the asset up and down to exploit

time-varying in the asset’s expected returns.

We are interested in timing strategies that optimize the unconditional Sharpe ratio,

SR =
E[Rπ

t+1]√
E[(Rπ

t+1)2]
. (5)

While there are other possible performance criteria, we focus on this for its simplicity

and ubiquity. It is implied by the quadratic utility function at the foundation of mean-

variance portfolio theory. Academics and real-world investors rely nearly universally on the

unconditional Sharpe ratio when evaluating empirical trading strategies. The use of centered

versus uncentered second moment in the denominator is without loss of generality.16

15It is possible to use the results in Hastie et al. (2019) to extend our analysis to generic β distributions.
We leave this important direction for future research.

16Define S̃R =
E[Rπt+1]√
Var[(Rπt+1)]

. Direct calculation yields SR = 1√
1+S̃R

−2
.
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Our analysis centers on the following timing strategy functional form:

πt(β) = S ′tβ. (6)

This strategy takes positions equal to the asset’s conditional expected return. Note that

this timing strategy optimizes the conditional Sharpe ratio. That is, it achieves the same

Sharpe ratio as the conditional Markowitz solution, πCond. MV
t = Et[Rt+1]/Vart[R

2
t+1] = S ′tβ,

according to equation (3). While strategy πt is conditionally mean-variance efficient, it is

not the optimizer of the unconditional objective in (5), which takes the form πUncond. MV
t =

S ′tβ/(1 + (S ′tβ)2).17 In the proof of Proposition 1 in the Appendix, we show that πt in

equation (6) and πUncond. MV
t are equal up to third order terms.18 We study πt = S ′tβ for the

simplicity of its linearity in both β and St, but note that our conclusions are identical for

πUncond. MV
t because, in the limit as P → ∞, the normalization factor 1 + (S ′tβ)2 converges

to a constant.19

Proposition 1 states the behavior of timing strategy πt = S ′tβ when T →∞ and P/T → 0

(i.e., when the predictive parameter β is known).

Proposition 1 (Infinite Sample) The unconditional first and second moments of returns

to the infeasible market timing strategy πt = S ′tβ are

E[πtRt+1]→ b∗ψ∗,1 > 0 and E
[
(πtRt+1)2

]
→
(
3(b∗ψ∗,1)2 + b∗ψ∗,1

)
.

The infeasible market timing Sharpe ratio is

SR→ 1√
3 + (b∗ψ∗,1)−1

<

(
1

3

)1/2

. (7)

17See Hansen and Richard (1987); Ferson and Siegel (2001); Abhyankar et al. (2012).
18In particular, the Sharpe ratio in equation (5) is less than one due to the Cauchy-Schwarz inequality.

We show that the difference in Sharpe ratios for πt versus πUncond. MV
t is on the order of the Sharpe ratio

cubed.
19By a version of Lemma 1, 1 + (S′tβ)2 → 1 + b∗ψ∗,1.
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For comparison, under Assumptions 1 to 4, the unconditional first and second moments of

the un-timed asset return are (see Lemma 1)

E[Rt+1] = 0, and E[R2
t+1]→ 1 + b∗ψ∗,1 .

That is, our assumptions imply the un-timed asset has a zero Sharpe ratio. This is just a

normalization so that any positive market timing Sharpe ratio can be interpreted as pure

excess performance arising from timing ability.

2.3 Relating Predictive Accuracy to Portfolio Performance

We are ultimately interested in understanding the portfolio properties of a feasible timing

strategy, π̂t = β̂′St. This is, of course, intimately tied to the prediction accuracy of

the estimator β̂, summarized by its expected mean square forecast error (MSE) on an

independent test sample. This is the fundamental notion of estimator “risk” from statistical

theory, though we use the term “MSE” here to avoid confusion with portfolio riskiness. We

can write MSE as

MSE(β̂) = E

[(
Rt+1 − S ′tβ̂

)2

|β̂
]

= E[R2
t+1]− 2 E[π̂tRt+1|β̂]︸ ︷︷ ︸

Timing
Expected Return

+E[π̂2
t |β̂]︸ ︷︷ ︸

Timing
Leverage

. (8)

In other words, the higher the strategy’s expected return, the lower the MSE. And the larger

the positions—or “leverage”—of the strategy, the larger the MSE. A timing strategy with a

higher expected return corresponds to more predictive power, while higher leverage gives the

strategy higher variance. Interestingly, these two objects, expected return and leverage of the

timing strategy, appear repeatedly throughout our analysis. The expected return/leverage

tradeoff in (8) is a financial decomposition of MSE analogous to its statistical decomposition

into a bias/variance tradeoff.
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Note that a strategy πt = β′St based on the infeasible true β satisfies E[πtRt+1] =

E[β′Ψβ] = E[π2
t ].

20 In this case, the MSE collapses to E[R2
t+1]−E[πtRt+1] and is minimized,

meaning that the leverage taken is exactly justified by the predictive benefits of the strategy.

This can also be stated in terms of the infeasible R2 based on equation (3) and Lemma 1:

R2 =
β′Ψβ

β′Ψβ + 1
→ b∗ψ∗,1

b∗ψ∗,1 + 1
.

Thus, there is a monotonic mapping from the infeasible timing strategy expected return to

the true R2, and from the infeasible Sharpe ratio to the true R2 (see equation (7)).

3 Machine Learning and Random Matrices

The central premise of machine learning is that large data sets can be used in flexible model

specifications to improve prediction. This can be understood in the environment above by

considering the regime in which the number of predictors, P, is large, perhaps even larger

than T . Our main objective is thus to understand the behavior of optimal timing portfolios

as the prediction model becomes increasingly complex; i.e., when P → ∞. Because this

involves estimating infinite-dimensional parameters, traditional large T asymptotics do not

apply and we instead resort to random matrix theory. In this section, we discuss the ridge

estimator and present random matrix theory results at the foundation of our theoretical

characterization of high complexity timing strategies.

3.1 Least Squares Estimation

Throughout, we analyze (regularized) least squares estimators taking the form

β̂(z) =

(
zI + T−1

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1

20Indeed, E[(β′St)
2] = E[β′StS

′
tβ] = β′Ψβ.
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for a given ridge shrinkage parameter, z. The ridge-regularized form is necessary for char-

acterizing β̂(z) in the high complexity regime, P/T → c > 1, though we will see it also has

important implications for the behavior of β̂(z) when P/T < 1.21

Consider first the ordinary least squares (OLS) estimator, β̂(0). As P approaches T from

below, the denominator of the least squares estimator approaches singularity. This produces

explosive variance of β̂(0) and, in turn, explosive forecast error variance. As P → T , the

model begins to fit the data with zero error, so a common interpretation of the explosive

variance of β̂(0) is insidious overfit that does not generalize out-of-sample.

When P moves beyond T , there are more parameters than observations and the least

squares problem has multiple solutions. A particularly interesting solution invokes the

Moore-Penrose pseudo-inverse, (T−1
∑

t StS
′
t)

+ 1
T

∑
t StRt+1.22 This solution is equivalent

to the ridge estimator as the shrinkage parameter approaches zero:

β̂(0+) = lim
z→0+

(
zI + T−1

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1.

The solution β̂(0+) is often referred to as the “ridgeless” regression estimator. When P < T ,

OLS is the ridgeless estimator. At P = T there is still a unique least squares solution, yet the

model can exactly fit the training data (for this reason, P = T is called the “interpolation

boundary”). When P > T , the ridgeless estimator is one of many solutions that exactly

fit the training data, but among these it is the only solution that achieves the minimum

`2 norm β̂(z) (Hastie et al., 2019). The machine learning literature has recently devoted

substantial attention to understanding ridgeless regression in the high complexity regime.

21One could alternatively analyze “sparse” least squares models that combine shrinkage with variable
selection (e.g., based on LASSO). First, recent evidence of Giannone et al. (2021) suggests sparsity of
predictive relationships in economics and finance is likely an illusion. Second, our empirical focus is on
non-parametric models that seek to approximate a generic nonlinear function as a linear combination of
generated features, and sparsity in the generated feature space is difficult to identify (see, e.g., Ghorbani et
al., 2020). Third, analysis with `1 shrinkage is significantly more taxing from a theoretical standpoint. We
thus leave sparse least squares models to future research.

22Recall that the Moore-Penrose pseudo-inverse A+ of a matrix A is defined via A+ = (A′A)−1A′ if A′A
is invertible, and A+ = A′(AA′)−1 if AA′ is invertible.
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The counter-intuitive insight from this literature is that, beyond the interpolation boundary,

allowing the model to become more complex in fact regularizes the behavior of least squares

regression despite using infinitesimal shrinkage. We explore the implications of this idea for

market timing in the subsequent sections.

3.2 The Role of Random Matrix Theory

We analyze the behavior of β̂(z) and associated market timing strategies in the limit as

P → ∞. This is possible due to a remarkable connection between ridge regression and

random matrix theory.

In regression analysis, the sample covariance matrix of signals, Ψ̂ := T−1
∑

t StS
′
t, natu-

rally plays a central role. But no general characterization exists for the behavior of Ψ̂ in the

limit as P, T → ∞. However, the tools of random matrix theory characterize one aspect of

Ψ̂—the distribution of its eigenvalues. Fortunately, as we show, the prediction and portfolio

performance properties of least squares estimators rely only on the eigenvalue distribution of

Ψ̂, thus random matrix theory facilitates a rich understanding of machine learning portfolios.

Here we elaborate on the core results from random matrix theory that we build from.

First, to understand the central role of Ψ̂’s eigenvalue distribution in determining the

limiting behavior of the least squares estimator, suppose momentarily that we could replace

Ψ̂ with its true unobservable signal covariance, Ψ. For any symmetric matrix Ψ, a convenient

matrix identity states

1

P
tr
(
(Ψ− zI)−1

)
=

1

P

P∑
i=1

(λi(Ψ)− z)−1 ,

where λi(Ψ) are the eigenvalues of Ψ. Using formula (4), we can rewrite this identity as

1

P
tr
(
(Ψ− zI)−1

)
=

∫
1

x− z
dFΨ(x) , z < 0 .
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From this identity, we immediately see the fundamental connection between ridge regular-

ization and the distribution of eigenvalues for Ψ. The right-side quantity is the Stieltjes

transform of the eigenvalue distribution of Ψ, denoted FΨ. By Assumption 3, this distribu-

tion is well behaved when P →∞ and converges to a non-random distribution H. Thus, we

have

mΨ(z) :=

∫
1

x− z
dH(x) = lim

P→∞

1

P
tr
(
(Ψ− zI)−1

)
. (9)

The function mΨ(z) is the limiting Stieltjes transform of the eigenvalue distribution of Ψ.

Equation (9) is a powerful step towards understanding the least squares estimator in the

machine learning regime (and hence machine learning predictions and portfolios). It states

that key properties of the limiting inverse of the ridge-regularized signal covariance matrix

can be completely characterized if we just know Ψ’s eigenvalue distribution.

The problem, of course, is that the true Ψ is unobservable. We only observe its sam-

ple counterpart, Ψ̂, thus we only have empirical access to the Stieltjes transform of Ψ̂’s

eigenvalues. The empirical counterpart to the unobservable mΨ(z) is

m(z; c) := lim
P→∞

1

P
tr
(
(Ψ̂− zI)−1

)
.

In traditional finite P statistics, we would have convergence between the sample covariance Ψ̂

and the true covariance Ψ as T →∞. One might be tempted to think that limP→∞
1
P

tr
(
(Ψ̂−

zI)−1
)

and limP→∞
1
P

tr
(
(Ψ − zI)−1

)
also converge as T → ∞. But this is not the case.

The limiting eigenvalue distributions of Ψ̂ and Ψ remain divergent in the limit as T →∞ if

P/T → c > 0. Here we see a first glimpse of the complexity of machine learning and how we

can understand it with random matrix theory. In the Appendix (see Theorem 9), we show

how m(−z; c) can be computed from mΨ(−z) using results of Silverstein and Bai (1995) and
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Bai and Zhou (2008). In particular, m(−z; c) > m(−z; 0) = mΨ(−z) for all c > 0.23 The

next result shows that, quite remarkably, if we constrain ourselves to linear ridge regression

estimators, all asymptotic expressions depend only on m(z; c) and do not require mΨ.24

Proposition 2 We have

lim
T→∞

1

T
tr((zI + Ψ̂)−1Ψ) → ξ(z; c) (11)

almost surely, where

ξ(z; c) =
1− zm(−z; c)

c−1 − 1 + zm(−z; c)
.

The quantity trE[(zI + Ψ̂)−1Ψ] appears in virtually every expression we analyze to describe

portfolio behavior. It depends on an interaction between the sample and true signal co-

variance matrix and arises in the computation of both the expected return and leverage of

the timing strategy (see equation (8)). One would imagine, then, that we need to know the

limiting eigenvalue distribution of both matrices (or their Stieltjes transforms, m and mΨ) in

order to describe trE[(zI + Ψ̂)−1Ψ]. Proposition 2 shows that this is not the case—we only

need to know the empirical version, m(−z; c). This is a powerful result. It will allow us to

quantify the expected out-of-sample behavior of machine learning portfolios based only on

23Theorem 9 in the Appendix is a generalized version of the Marčenko and Pastur (1967) theorem that
accommodates non-i.i.d. St. When signals are i.i.d. with Ψ = I and mΨ(z) = (1 − z)−1, Marčenko and
Pastur (1967) show that

m(−z; c) =
−((1− c) + z) +

√
((1− c) + z)2 + 4cz

2cz
. (10)

By direct calculation, (10) is indeed the unique positive solution to (30) when mΨ(z) = (1− z)−1. While the
eigenvalue distributions of the sample and true covariance matrices do not coincide, Theorem 9 describes the
precise nonlinear way they relate to each other. In particular, when P > T, the matrix Ψ̂ has P − T zero
eigenvalues and therefore, P−1 tr

(
(zI + Ψ̂)−1

)
contains a singular part, P−1(P − T )z−1 = (1− c−1)z−1.

24It is possible to develop nonlinear shrinkage estimators analogous to those developed by Ledoit and Wolf
(2020) for covariance matrices. Such estimators would require knowledge of the true eigenvalue distribution
of Ψ which can be recovered from m(z; c) using equation (30).
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the eigenvalue distribution of the sample signal covariance Ψ̂ (which is observable) without

requiring us to know the eigenvalues of Ψ.25

We refer to the constant c as “model complexity,” which (as the preceding results show)

plays a critical role in understanding model behavior. It describes the limiting ratio of

predictors to data points: P/T → c. When T grows at a faster rate than the number of

predictors (i.e., c → 0) the limiting eigenvalue distributions of Ψ̂ and Ψ in fact converge:

m(−z; 0) = mΨ(−z). As c becomes positive, these distributions fail to converge, and their

divergence is wider for larger c. It is therefore clear that the behavior of the least squares

estimator in the machine learning regime will differ from the true coefficient, even when

T → ∞, as long as c > 0. As a result, machine learning portfolios will suffer relative

to the infeasible performance in Proposition 1 despite an abundance of data. However,

while machine learning portfolios underperform the infeasible strategy, they can continue

to generate substantial trading gains. This is true even in the ridgeless case. Additional

ridge shrinkage can boost performance even further. In the following sections, we precisely

characterize these behaviors.

4 Prediction and Performance in the Machine Learning Regime

In this section we analyze correctly specified models. We present the theoretical characteriza-

tions of machine learning models in terms of prediction accuracy and portfolio performance.

We then illustrate their behavior in a calibrated theoretical setting.

25Heuristically, E[Ψ̂] = Ψ and hence trE[(zI + Ψ̂)−1Ψ] ≈ trE[(zI + Ψ̂)−1Ψ̂]. However, random matrix
corrections make the true relationship nonlinear.
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4.1 Expected Out-of-sample R2

To understand a model’s prediction accuracy in the high complexity regime, we study its

limiting MSE, defined as

MSE(z; c) = lim
T,P→∞, P/T→c

E

[(
Rt+1 − S ′tβ̂(z)

)2

|β̂(z)

]
. (12)

Notably, while β̂(z) is random and depends on the sample realization, we show below that

the limit in (12) is non-random. The arguments z and c are central to understanding the

limiting predictive ability of least squares. Respectively, they describe the extent of ridge

shrinkage and the complexity of the DGP (and thus of the correctly specified model).

In finance and economics it is common to state predictive performance in terms of R2

rather than MSE. We denote the limiting out-of-sample R2 as

R2(z; c) = 1− MSE(z, c)

limT,P→∞E[R2
t+1]

,

where E[R2
t+1] is the null MSE when β = 0.

In Section 2.3, we discussed the infeasible maximum R2, or

R2(0; 0) =
b∗ψ∗,1

1 + b∗ψ∗,1
.

This corresponds to a data-rich environment (c = 0, so observations vastly outnumber

parameters) and OLS regression (z = 0). R2(0; 0) is the benchmark for evaluating the loss of

predictive accuracy due to high model complexity, even when data is abundant. Specifically,

the R2 of the least squares estimator in the machine learning regime behaves as follows.
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Proposition 3 In the limit as T, P →∞, P/T → c, we have

E(z; c) = lim E[π̂tRt+1|β̂(z)] = b∗ν(z; c)

L(z; c) = lim E[π̂2
t |β̂(z)] = b∗ν̂(z; c)− cν ′(z; c) (13)

R2(z; c) =
2E(z; c)− L(z; c)

1 + b∗ψ∗,1

where

ν(z; c) = ψ∗,1 − c−1zξ(z; c) = limP−1 tr(Ψ̂(zI + Ψ̂)−1Ψ) > 0

ν ′(z; c) = − c−1(ξ(z; c) + zξ′(z; c)) = − limP−1 tr(Ψ̂(zI + Ψ̂)−2Ψ) < 0

ν̂(z; c) = ν(z; c) + zν ′(z; c) = limP−1 tr(Ψ̂2(zI + Ψ̂)−2Ψ) > 0.

As we show in the Appendix, these limits exist in probability.

Furthermore, R2(z; c) is monotone increasing in z for z < z∗ = c/b∗, and decreasing in

z for z > z∗. R
2(z; c) attains its maximum at z∗ = c/b∗, where it is positive and given by

R2(z∗; c) = R2(0; 0)− ξ(z∗; c)

1 + b∗ψ∗,1
=

b∗ν(z∗; c)

1 + b∗ψ∗,1
> 0 .

In the ridgeless limit, we have

R2(0; c) = R2(0; 0) − (1 + b∗ψ∗,1)−1


(c−1 − 1)−1, c < 1

µ(c), c > 1.

(14)

with some µ(c) > 0, µ(1+) = +∞. Lastly, we have

lim
c→∞

R2(0; c) = 0 > lim
c→1

R2(0; c) = −∞ . (15)

When the prediction model is complex (c > 0), the limiting eigenvalues of Ψ̂ and
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Figure 1: Expected Out-of-sample R2 and Norm of Least Squares Coefficient

Note: Limiting out-of-sample R2 and β̂ norm as a function of c and z from Proposition 3 assuming Ψ is the

identity matrix and b∗ = 0.2.

Ψ diverge, and this unambiguously reduces the predictive R2 relative to the infeasible

best, R2(0; 0). Intuitively, because the frictionless R2(0; 0) is fixed, as c increases the

investor must learn the same amount of predictability but spread across many sources,

and this dimensionality expansion hinders statistical inference. In fact, the degradation

in predictive accuracy due to complexity can be so severe that expected out-of-sample R2

becomes extremely negative, particularly in the ridgeless case. Shrinkage can mitigate this

and help preserve accuracy in the midst of complexity. Shrinkage controls variance but

introduces bias. Proposition 3 points out that the amount of shrinkage that optimizes the

bias-variance tradeoff is z∗ = c/b∗. More complex settings benefit from heavier shrinkage,

while setting with higher signal-to-noise ratio (higher b∗) benefit from lighter shrinkage (see,

e.g. Hastie et al., 2019). E and L are the limiting out-of-sample expected returns and leverage

of the timing strategy, and Proposition 3 shows that these are the main determinants of out-

of-sample R2.

Figure 1 illustrates the theoretical behavior of the least squares estimator derived in
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Proposition 3. The plots set Ψ to the identity matrix and fix b∗ = 0.2 (recall σ2 is normalized

to one). The upper left panel draws the expected out-of-sample R2 as a function of model

complexity c (shown on the x-axis) and ridge penalty z (different curves). In this calibration,

the infeasible maximum predictive R2 (that using the true parameter values) is the dotted

red line and provides a point of reference.

The blue line shows the R2 in the ridgeless limit. When c ≤ 1, the ridgeless limit

corresponds to exactly z = 0 (i.e., OLS). On this side of c = 1, we see that predictive

accuracy deteriorates rapidly as model complexity increases. This captures the well known

property that OLS suffers when the number of predictors is large relative to the number of

data points. As c → 1, the denominator of the OLS estimator approaches singularity, and

the expected out-of-sample R2 dives.

To the right of c = 1, the number of predictors exceeds the sample size, and the “ridgeless”

case is defined as the limit as z → 0 (i.e., when the least squares denominator is calculated

via the pseudo-inverse of Ψ̂). Counter-intuitively, the R2 begins to rise as model complexity

increases.

The reason is that, while there are many equivalent β solutions that exactly fit26 the

training data when c > 1, ridgeless regression selects the solution with the smallest norm.

As complexity increases, there are more solutions for ridgeless regression to search over and

thus it can find smaller and smaller betas that still exactly fit the training data. This

acts as a form of shrinkage, biasing the beta estimate toward zero. Due to this bias, the

forecast variance drops, and this improves the R2. In other words, despite z → 0, the

ridgeless solution still regularizes the least squares estimator, and moreso the larger is c.

This property of ridgeless least squares is a newly documented phenomenon in the statistics

literature and is still an emerging topic of research.27 This result challenges the standard

financial economics doctrine that places heavy emphasis on model parsimony. It shows that

26That is, β′St = Rt+1 for all t ∈ [1, · · · , T ].
27See Spigler et al. (2019), Belkin et al. (2018), Belkin et al. (2019), Belkin et al. (2020), and Hastie et al.

(2019).
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even in very simple data generating processes, one may be able to improve the accuracy of

return forecasts by pushing model dimensionality well beyond sample size.

The remaining curves in Figure 1 show how the out-of-sample R2 is affected by non-

trivial ridge shrinkage. Allowing z > 0 improves R2 except at very low levels of complexity.

This is again a manifestation of the bias-variance tradeoff. When z > 0, the norm of β̂

is controlled, and the associated variance reduction outweighs the effects of bias when the

model is complex.

Our results regarding R2 and MSE are similar to those in Hastie et al. (2019) and

Richards et al. (2021), though we impose weaker technical conditions on Xt and Ψ (see

Appendix F for a comparison of our theoretical approach versus prior literature). Our main

theoretical contribution is in the subsequent sections where we derive portfolio performance

properties.

4.2 Expected Out-of-sample Market Timing Performance

Next, we analyze the behavior of market timing based on the least squares estimate:

π̂t(z) = β̂(z)′St.

Formula (13) derives the expected return of this strategy. The following proposition char-

acterizes the expected out-of-sample risk-return tradeoff of market timing in the high com-

plexity regime.

Proposition 4 In the limit when P, T →∞, P/T → c, the limiting second moment of the

market timing strategy is

V(z; c) := limE
[
(π̂t(z)Rt+1)2|β̂

]
= 2(E(z; c))2 + (1 + b∗ψ∗,1)L(z; c),
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in probability, with E and L given in (13). As a result, the Sharpe ratio satisfies

SR(z; c) =
E(z; c)√
V(z; c)

=
1√

2 + (1 + b∗ψ∗,1) L(z;c)
(E(z;c))2

. (16)

Furthermore, we have:

i) E(z; c) is monotone decreasing in z and, hence, 0 < E(z; c) < E(0, c) < E(0, 0), and

ii) SR(z; c) is monotone increasing in z for z < z∗ = c/b∗ and monotone decreasing in z

for z > z∗ = c/b∗. Thus, the maximal Sharpe ratio is given by

SR(z∗; c) =
1√

2 + (1 + b∗ψ∗,1) 1
b∗ν(z∗;c)

< SR(0; 0) , (17)

where E(0, 0) and SR(0, 0) are the infeasible market timing expected return and Sharpe ratio

from Proposition 1.

The left panel of Figure 2 plots the expected out-of-sample return and the right panel

plots the expected out-of-sample volatility based on Propositions 3 and 4 using the same

calibration as Figure 1. Again, the ridgeless case is in blue. The expected returns of least

squares timing strategies are always positive because they are quadratic in beta. When

c < 1 (i.e., in the OLS case), the ridgeless timing strategy achieves the true expected return

despite the fact that the corresponding R2 is significantly negative in much of this range.

The fact that the out-of-sample expected return is unimpaired reflects the unbiasedness of

OLS, while the declining R2 reflects the increasing forecast variance as c rises toward one.

The return volatility of the timing strategy is likewise increasing in c for c ∈ [0, 1] due to the

rising forecast variance, and maxes out at c = 1.

When c > 1, the ridgeless expected return begins to deteriorate. The reason for this is

more subtle and is related to the rising R2 discussed above. When model complexity is high,

the multiplicity of least squares solutions allows ridgeless regression to find a low norm beta
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Figure 2: Expected Out-of-sample Risk and Return of Market Timing

Note: Limiting out-of-sample expected return and volatility of the market timing strategy as a function of

c and z from Proposition 3 assuming Ψ is the identity matrix and b∗ = 0.2.

that exactly fits the training data. So, even though z → 0, the ridgeless beta is biased, and

the expected return of the strategy falls. At the same time, the volatility of the strategy

falls.

The other expected return and volatility curves show that the bias induced by a non-

trivial ridge penalty eats into the timing strategy even for c < 1. But the bright side of

this attenuation is a reduction in the strategy’s riskiness. For fairly high shrinkage levels

like z = 1, the volatility of the timing strategy drops even below that of the infeasible best

strategy while maintaining a meaningfully positive expected return.

The net effect of these expected return and volatility behaviors is summarized by the

market timing strategy’s expected out-of-sample Sharpe ratio, given in Proposition 4. The

calibrated Sharpe ratio is shown in Figure 3. Recall that the buy-and-hold Sharpe ratio

is normalized to zero. The key implication of Proposition 4 is that, despite the sometimes

massively negative predictive R2, the ridgeless Sharpe ratio is everywhere positive, even for

extreme levels of model complexity. At c = 1 the Sharpe ratio drops near zero, not because
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Figure 3: Expected Out-of-sample Sharpe Ratio of Market Timing

Note: Limiting out-of-sample Sharpe ratio of the market timing strategy as a function of c and z from

Proposition 3 assuming Ψ is the identity matrix and b∗ = 0.2.

the strategy is unprofitable (it remains maximally profitable in an expected return sense),

but because its volatility explodes.

Another interesting aspect of Figure 3 is that the Sharpe ratio benefits from non-trivial

ridge shrinkage regardless of model complexity. Shrinkage is most valuable near c = 1, where

it reins in volatility substantially more than it reduces expected return. At both low levels

of complexity (c ≈ 0) and high levels of complexity (c >> 1), the Sharpe ratio is relatively

insensitive to z.

Proposition 4 also implies that, when the model is correctly specified, the shrinkage that

optimizes the expected out-of-sample R2 also optimizes the Sharpe ratio. This is convenient

because it means that one can focus on tuning the prediction model and be confident that

the tuned z will optimize timing performance. But two caveats are in order. The first is

that this statement applies for the Sharpe ratio, so if investors judge their performance with
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other criteria, then other levels of shrinkage may be optimal. For example, a risk-neutral

investor always prefers ridgeless regression despite its comparatively poor performance in

terms of R2. Second, this statement requires correct specification. If the empirical model is

mis-specified, the optimal amount of shrinkage can differ depending on whether the objective

is to maximize out-of-sample R2 or Sharpe ratio.

4.3 A Note on R2

At this point we already see that timing strategies with negative R2 can have high aver-

age out-of-sample returns, and thus positive out-of-sample Sharpe ratios.28 More plainly,

positivity of out-of-sample R2 is not a necessary condition for an economically valuable

timing strategy. In fact, the least squares timing strategies in our framework all have strictly

positive out-of-sample expected return and Sharpe ratio regardless of the extent of shrinkage

or model complexity (despite having enormously negative R2 in many cases).

Much of the empirical literature in return prediction and market timing focuses its

evaluations on out-of-sample predictive R2 (see, e.g. Welch and Goyal, 2008). Proposition

4 ensures that we can worry less about the positivity of out-of-sample R2 from a prediction

model, and focus more on the out-of-sample performance of timing strategies based on those

predictions.

5 Machine Learning and Model Mis-specification

So far we have studied the behavior of machine learning portfolios as a function of the

complexity of the true DGP while assuming we have the correctly specified model. Under

correct specification, the complexity comparative statics in Figures 1 to 3 change both the

28To see this in a simple example, consider a model with one predictor and imagine estimating a predictive
coefficient that happens to be a large scalar multiple of the truth. In this case, the R2 will be pushed negative,
but the predictions will be perfectly correlated with the true expected return, thus the expected return of
the timing strategy will be positive. Furthermore, because the Sharpe ratio is independent of scale effects,
this timing strategy will equal the true Sharpe ratio of the DGP.
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empirical and the true model as we vary c. So, these theoretical comparative statics cannot

really be taken to the data. Nevertheless, theory grounded on correct model specification is

powerful for developing a conceptual understanding of machine learning portfolios.

A more empirically relevant theoretical setting would consider a single true DGP. Then, it

would consider empirical models that are always a misspecified approximation to this DGP.

Finally, it would make comparisons by increasing the complexity of the empirical model to

achieve an increasingly accurate approximation of the true DGP. We develop this theory

now.

We consider a true DGP with P predictors. We consider an expanding set of empirical

models to approximate the DGP. Each model is indexed by P1 = 1, · · · , P and corresponds

to an economic agent observing only a subset of the signals, S
(1)
t = (Si,t)

P1
i=1. We use

S
(2)
t = (Si,t)

P
i=P1+1 to denote the remaining unobserved signals. The signal covariance matrix

corresponding to this partition is

Ψ =

Ψ1,1 Ψ1,2

Ψ′1,2 Ψ2,2

 .

Naturally, mis-specified estimator behavior depends on the correlation structure of observed

and unobserved signals, captured by the off-diagonal blocks of Ψ.

We make the following technical assumption which ensures that estimators in the machine

learning regime have well behaved limits.

Assumption 5 For any sequence P1 → ∞ such that P1/P = q > 0, the eigenvalue

distribution of the matrix Ψ1,1 converges to a non-random probability distribution H(x; q).

We say that signals are sufficiently mixed if H(x; q) is independent of q. We will also use

ψ∗,k(q) = lim
P1→∞

P−1
1 tr(Ψk

1,1) , k ≥ 1
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to denote asymptotic moments of the eigenvalues of Ψ1,1.

In a mis-specified model, the (regularized) least squares estimator is

β̂(z; q) =
(
zI + Ψ̂1,1

)−1 1

T

∑
t

S
(1)
t Rt+1 ∈ RP1 ,

where

Ψ̂1,1 = T−1
∑
t

S
(1)
t (S

(1)
t )′ ∈ RP1×P1 .

We also introduce the following auxiliary objects:

ξ2,1(z; cq; q) = lim
T→∞

T−1 trE[(zI + Ψ̂1,1)−1Ψ1,2Ψ′1,2] ≥ 0 (18)

ξ̂2,1(z; cq; q) = lim
T→∞

T−1 trE[(zI + Ψ̂1,1)−1Ψ1,1(zI + Ψ̂1,1)−1Ψ1,2Ψ′1,2] ≥ 0 .

The quantities in (18) account for covariances between observed and unobserved signals.

While the existence of the limits in (18) cannot be guaranteed in general, the expectations

are uniformly bounded for z > 0 (since so are the Ψ matrices). Hence, by passing to a

subsequence of T, P, we can always assume the limits in (18) exist. In the appendix, we

show that these limits actually exist for a class of correlation structures.

With the additional assumptions for the mis-specified setting in place, we have the

following analog of Propositions 2, 3, and 4.

Proposition 5 In the limit T, P, P1 →∞, P/T → c, P1/P → q ∈ (0, 1],

lim
T→∞

1

T
tr((zI + Ψ̂1,1)−1Ψ1,1) → ξ(z; cq; q)
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in probability, where

ξ(z; cq; q) =
1− zm(−z; cq; q)

(cq)−1 − 1 + zm(−z; cq; q)
,

and

m(−z; cq; q) = limP−1
1 tr((zI + Ψ̂1,1)−1) .

Furthermore,

ν(z; cq; q) = ψ∗,1(q)− (qc)−1zξ(z; cq; q) > 0

ν ′(z; cq; q) = − (qc)−1(ξ(z; cq; q) + zξ′(z; cq; q)) < 0

ν̂(z; c) = ν(z; cq; q) + zν ′(z; cq; q) > 0 .

In addition, we have

i) The expected return on the market timing strategy converges in probability to

E(z; cq; q) := limE[π̂t(z)Rt+1|β̂] = b∗ q

(
ν(z; cq; q) +

(cq)−1ξ2,1(z; cq; q)

1 + ξ(z; cq; q)

)

ii) Expected leverage converges in probability to

L(z; cq; q) := limE[π̂t(z)2|β̂] = q
(
b∗ν̂(z; cq; q)−c(1+b∗[ψ∗,1(1)−qψ∗,1(q)])ν ′(z; cq; q)

)
+∆(z; cq; q) ,

where

∆(z; cq; q) = b∗
(qc)−1ξ̂2,1(z; cq; q) + 2(1 + ξ(z; cq; q))ν ′(z; cq; q)ξ2,1(z; cq; q)

(1 + ξ(z; cq; q))2
.
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iii) R2 converges in probability to

R2(z; cq; q) =
2E(z; cq; q)− L(z; cq; q)

1 + b∗ψ∗,1(1)
. (19)

iv) The second moment of the market timing strategy converges in probability to

V(z; cq; q) := limE
[
(π̂t(z)Rt+1)2

]
= 2(E(z; cq; q))2 + (1 + b∗ψ∗,1)L(z; cq; q) .

v) And, as a result, the Sharpe ratio satisfies

SR(z; cq; c) =
E(z; cq; c)√
V(z; cq; c)

=
1√

2 + (1 + b∗ψ∗,1) L(z;cq;q)
(E(z;cq;q))2

.

In general, the behavior of quantities in Proposition 5 depends in a complex fashion on the

correlations between observable and unobservable signals, as captured by the quantities (18).

When both quantities (18) are zero, expressions significantly simplify. It is straightforward to

show that both quantities in (18) are zero if the matrices Ψ1,2,Ψ2,1 have uniformly bounded

traces. For example, this is the case when Ψ1,2 has a finite, uniformly bounded rank when

P, P1 →∞ (due to, say, a finite-dimensional factor structure in the signals). We thus obtain

the following result.

Proposition 6 Suppose that tr(Ψ1,2Ψ2,1) = o(P ).29 Then, ξ2,1 = ξ̂2,1 = 0. Furthermore,

(i) We have E(z; cq; c) is monotone decreasing in z and, hence, 0 < E(z; cq; c) < E(0; cq; c) <

E(0, 0; 0), and

(ii) both R2(z; cq; c) and SR(z; cq; c) are monotone increasing in z for z < z∗ = c(1 +

b∗(ψ∗,1(1)− qψ∗,1(q)))/b∗ and monotone decreasing in z for z > z∗.

29This is the case, for example, when ΨP = DP + QP where lim supP→∞ rankQP < ∞, while DP are
diagonal matrices, and DP , QP are uniformly bounded. In this case, we can replace ΨP with DP in all
expressions.
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(iii) in the ridgeless limit as z → 0, we have

E(0; cq; c) = b∗q (ψ∗,1(q)− (cq)−2m∗(cq; q)
−1 1q>1/c)

L(0; cq; q) = E(0; cq; c) + (1 + b∗(ψ∗,1(1)− qψ∗,1(q)))


((cq)−1 − 1)−1, q < 1/c

µ̃(cq; c), q > 1/c

V(0; cq; q) = 2(E(0; cq; q))2 + (1 + b∗ψ∗,1)L(0; cq; q)

SR(0; cq; c) =
E(0; cq; c)√
V(0; cq; c)

(20)

for some m∗(cq; q) > 0 and some µ̃(cq; c) < 0 with µ̃(1+; c) = −∞. In particular, if Ψ

is proportional to the identity matrix, Ψ = ψ∗,1 I, then

E(0; cq; c) = b∗ψ∗,1 min{q, c−1} (21)

is constant for q > 1/c.

The comparative statics of Section 4.2 highlight how, even when the empirical model is

correctly specified, complexity hinders the model’s ability to hone in on the true DGP because

there is not enough data to support the model’s heavy parameterization. That analysis shows

that when models are correctly specified, the best performance (both in terms of R2 and

Sharpe ratio) comes from simple models. Naturally, a small correctly specified model will

converge on the truth faster than a large correctly specified model. But this is not a very

helpful comparison.

The fundamental difference in this section is that, while raising cq brings the usual

statistical challenges of heavy parameterization without much data, the added complexity

also brings the benefit of improving the empirical model’s approximation of the true DGP.

A simple model will tend to suffer from poor approximation and thus fare poorly in terms
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Figure 4: Expected Out-of-sample Prediction Accuracy From Mis-specified Models

Note: Limiting out-of-sample R2 and β̂ norm as a function of c and z from Proposition 6 assuming Ψ is the

identity matrix, b∗ = 0.2, and the complexity of the true model is c = 10.

of both statistical metrics like R2 and portfolio metrics like expected return and Sharpe

ratio. Thus, our mis-specification analysis tackles the most important question about high

complexity: Does the improvement in approximation justify the statistical cost of heavy

parameterization when it comes to out-of-sample forecast and portfolio performance. The

answer is yes, as established by the following theorem.

Theorem 7 (Virtue of Complexity) Suppose that signals are sufficiently mixed (so that

H(x; q) does not depend on q) and tr(Ψ1,2Ψ2,1) = o(P ). Then, with the optimal amount of

shrinkage z∗, the Sharpe ratio SR(z∗(q; c); cq; c) and R2(z∗(q; c); cq; c) are strictly monotone

increasing and concave in q ∈ [0, 1].

Figures 4, 5, and 6 illustrate the behavior of mis-specified machine learning predictions

and portfolios derived in Proposition 5. In this calibration, the true unknown DGP is

assumed to have a complexity of c = 10. We continue to calibrate Ψ as identity and b∗ = 0.2.

We analyze the behavior of approximating empirical models that range in complexity from
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Figure 5: Expected Out-of-sample Timing Strategy Risk and Return From Mis-specified
Models

Note: Limiting out-of-sample expected return and volatility of the market timing strategy as a function of c

and z from Proposition 6 assuming Ψ is the identity matrix, b∗ = 0.2, and the complexity of the true model

is c = 10.

very simple (cq ≈ 0 and thus severely mis-specified) to highly complex (q = 1, cq = 10 and

thus correctly specified). The left panel of Figures 4 shows the expected out-of-sample R2.

The cost of mis-specification for low c is seen as a shift downward in the R2 relative to Figure

1. The challenges of model complexity highlighted in previous sections play an important

role here as well. Intermediate levels of complexity (c ≈ 1) dilate the size of beta estimates

(Figure 4, right panel), driving down the R2 and inflating portfolio volatility (Figure 5, right

panel). These effects abate once again for c > 1 due to the implicit regularization of high

complexity ridgeless regression, just as in the earlier analysis. More generally, the patterns

for R2, β̂ norm, and portfolio volatility share similar qualitative patterns to those in Figure

1.

The most important difference versus Figure 1 is the pattern for the out-of-sample

expected return of the market timing strategy (Figure 5, right panel). Expected returns
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Figure 6: Expected Out-of-sample Timing Strategy Sharpe Ratio From Mis-specified
Models

Note: Limiting out-of-sample Sharpe ratio of the market timing strategy as a function of c and z from

Proposition 6 assuming Ψ is the identity matrix, b∗ = 0.2, and the complexity of the true model is c = 10.

are now low for simple strategies due to their poor approximation of the DGP. Increasing

model complexity monotonically increases expected timing returns. In the ridgeless case, the

benefit of added complexity reaches its maximum of E(0; 0)c−1 = b∗ψ∗,1c
−1 when cq = 1. A

surprising fact is that the ridgeless expected return is exactly flat as complexity rises beyond

cq = 1, in which case the benefits of incremental improvements in DGP approximation are

exactly offset by the gradually rising bias of ridgeless shrinkage, see formula (21).

This new fact, that the expected return rises monotonically with model complexity in the

mis-specified setting, induces a similar pattern in the out-of-sample Sharpe ratio, shown in

Figure 6. Rather than decreasing in complexity like we saw in the correctly specified setting,

the expected return improvement from additional complexity leads the Sharpe ratio to also

increase with complexity. Consistent with Theorem 7, this is particularly true with non-

trivial ridge shrinkage, but is even true in the ridgeless case as long as cq is sufficiently far
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from unity. In summary, in the realistic case of mis-specified empirical models, complexity

is a virtue. It improves the expected out-of-sample performance of market timing in terms

of both expected return and Sharpe ratio.

It is instructive to compare our findings with the phenomenon of double descent, which

is the fact that, absent regularization, out-of-sample MSE has a non-monotonic pattern

in model complexity (Belkin et al., 2018; Hastie et al., 2019). The mirror image of double

descent in MSE is the “double ascent” behavior of the ridgeless Sharpe ratio (Figure 6). As

Theorem 7 shows, Sharpe ratio double ascent is an artifact of insufficient shrinkage. With the

right amount of shrinkage, complexity becomes a virtue even in the low complexity regime

(when cq < 1): the hump disappears, and “double ascent” turns into “permanent ascent.”

6 Virtue of Complexity: Empirical Evidence From Market Timing

In this section we present empirical analyses that are direct empirical analogues to the

theoretical comparative statics for mis-specified models in Section 5.

6.1 Data

Our empirical investigation centers on a cornerstone of empirical asset pricing research—

forecasting the aggregate stock market return. To make the conclusions from this analysis as

easy to digest as possible, we perform our analysis in a conventional setting with conventional

data. Our forecast target is the monthly return of the CRSP value-weighted index. The

information set we use for prediction consists of the 15 predictor variables from Welch and

Goyal (2008) that are available at the monthly frequency over the sample 1926–2020.30

We volatility standardize returns and predictors using backward-looking standard devi-

ations that preserve the out-of-sample nature of our forecasts. Returns are standardized

30This list includes (using mnemonics from their paper): dfy, infl, svar, de, lty, tms, tbl, dfr, dp, dy, ltr,
ep, b/m, and ntis, as well as one lag of the market return.
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by their trailing 12-month return standard deviation (to capture their comparatively fast-

moving conditional volatility), while predictors are standardized using an expanding window

historical standard deviation (given the much higher persistence of most predictors). We

require 36 months of data to ensure that we have enough stability in our initial predictor

standardization, so the final sample that we bring to our analysis begins in 1930. We per-

form this standardization to align the empirical analysis with our homoskedastic theoretical

setting, but our results are insensitive to this step (none of our findings are sensitive to

variations in how standardizations are implemented).

6.2 Random Fourier Features

We seek models taking the form of equation (3). In order to evaluate our theory, we also

seek a framework that will allow us to smoothly transition from low complexity models to

high complexity. To do so, we adopt a methodology from the machine learning literature

known as random Fourier features, or RFF (Rahimi and Recht, 2007, 2008). Let Gt denote

our 15×1 vector of predictors. The RFF methodology converts Gt into a pair of new signals

Si,t =
1

P 1/2
[sin(γω′iGt), cos(γω′iGt)]

′
, ωi ∼ i.i.d.N(0, I). (22)

Si,t uses the vector ωi to form a random linear combination of Gt, which is then fed through

the trigonometric functions.31 The advantage of RFF is that for a fixed set of input data, Gt,

we can create an arbitrarily large (or small) set of features based on the information in Gt

through the nonlinear transformation in (22). If one desires a very low-dimensional model in

(3), say P = 2, one can generate a single pair of RFFs. For a very high-dimensional model,

31Random features can be generated in a number of ways (for a survey see Liu et al., 2020). Our choice of
functional form in (22) is guided by Sutherland and Schneider (2015) who document tighter error bounds for
this functional approximation relative to some alternative random feature formulations. However, we have
found that our results are insensitive to using other random feature schemes.
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say P = 10,000, one can instead draw many random weight vectors ωi, i = 1, ..., 5,000.

The larger the number of random features, the richer the approximation (3) provides to the

general functional form E[Rt+1|Gt] = f(Gt) where f is some smooth nonlinear function.

Indeed, the RFF approach is a wide two-layer neural network with fixed weights in the first

layer (in the form of ωi) and optimized weights in the second layer (in the form the regression

estimates for β).

6.3 Complexity, Shrinkage, and Out-of-sample Market Timing

To conduct the empirical analogue of the theoretical analysis in Figure 4, 5, and 6, we consider

a one-year rolling training window (T = 12) and a large set of RFFs (as high as P = 12,000).

These choices are guided by our desire to investigate the role of model complexity, defined

in the empirical analysis as c = P/T . The advantages of a training sample of a mere T = 12

observations are i) that we can reach extreme levels of model complexity with smaller P and

thus less computing burden, and ii) it shows that the virtue of complexity can be enjoyed

in shockingly small samples. None of our conclusions are sensitive to the choice of training

window (see robustness discussion below).

To draw “VoC curves” along the lines of Figures 4, 5, and 6, we estimate a sequence

of out-of-sample predictions and trading strategies for various degrees of model complexity

ranging from P = 2 to P = 12,000 and varying degrees of ridge shrinkage ranging from

log10(z) = −3, ..., 3. One repetition of our analysis proceeds as follows:

(i) Generate 12,000 RFFs according to (22) with bandwidth parameter γ.32

(ii) Fix a model defined by the number of features P ∈ {2, ..., 12,000} and a ridge shrinkage

parameter log10(z) ∈ {−3, ..., 3}. The set of predictors St for regression (3) correspond

to the first P RFFs from (i).

32We set γ = 2. Our results are generally insensitive to γ, as discussed in the robustness section below.

41



(iii) Given the model in (ii), conduct a recursive out-of-sample prediction and market

timing strategy. For each t ∈ {13, ..., 1,091}, estimate (3) using training observa-

tions {(Rt, St−1), ..., (Rt−11, St−12)}.33 Then, from the estimated regression coefficient,

construct out-of-sample return forecast β̂′St and timing strategy return β̂′StRt+1.

(iv) From the sequence of out-of-sample predictions and strategy returns in (iii), calculate

the average ‖β̂‖2 across training samples, the out-of-sample R2, and the out-of-sample

average return, volatility, and Sharpe ratio of the timing strategy.

The inherent randomness of RFFs means that estimates of out-of-sample performance tend

to be noisy for models with low P . Therefore we repeat the analysis (i)–(iv) 1,000 times

with independent draws of the RFFs, and then average the performance statistics across

repetitions.

The VoC curves in Figures 7 and 8 plot out-of-sample prediction and market timing

performance as a function of model complexity and ridge shrinkage. The wide range of

complexity that we consider, c ∈ [0, 1000], can make it difficult to read plots. To better

visualize the results while emphasizing both behavior near the interpolation boundary and

behavior for extreme complexity, we break the x-axis between c = 50 and c = 990.

The first conclusion from these figures is that the out-of-sample empirical behavior of

machine learning predictions is a strikingly close match to the VoC curves predicted by our

theory. In particular, compare the empirical results of Figure 7 to the theoretical results

under model mis-specification from Figure 4. The beta estimates and out-of-sample R2

demonstrate explosiveness at the interpolation boundary and recovery in the high complexity

regime c >> 1.

The most intriguing aspect of Figure 7 is the clear increasing pattern in out-of-sample

expected returns as model complexity rises. For z = 10−3, which roughly approximates the

33Prior to estimation, we volatility standardize the training sample RFFs {St−1, ..., St−12} and out-of-
sample RFFs St by their standard deviations in the training sample.
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Figure 7: Out-of-sample Market Timing Performance

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2 to 12,000

using a range of P . Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 2.

ridgeless case, we see a nearly linear upward trend in average returns as c rises from 0 to

1. Beyond c = 1, the ridgeless expected return is flat, just as predicted by equation (21)

in Proposition 6. For higher levels of ridge shrinkage, the rise in expected return is more

gradual and continues into the range of extreme model complexity.

The increasing pattern in out-of-sample expected return and the decreasing pattern in
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Panel A: Sharpe Ratio Panel B: Alpha
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Figure 8: Out-of-sample Market Timing Performance

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2 to 12,000

using a range of P . Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 2.

Alphas are versus a static position in the volatility-standardized market portfolio.

volatility above c = 1 translate into a generally increasing pattern in the out-of-sample

market timing Sharpe ratio, shown in Figure 8. The exception is a brief dip near c = 1 at

low levels of regularization as the spike in variance compresses the Sharpe ratio. For high

complexity the Sharpe ratio generally exceeds 0.4.
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Figure 9: Out-of-Sample R2 Detail

Note: Out-of-sample prediction accuracy for empirical analysis described in Section 6.3. Training window is

T = 12 months and predictor count P (or cT ) ranges from 2 to 12,000 using a range of P . Predictors are

RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 2

In our theoretical setting we normalize the expected return of the un-timed asset to

zero. This is of course not the case for the US market return, and therefore to adjust for

buy-and-hold market exposure, we calculate the out-of-sample alpha, alpha t-statistic, and

information ratio (IR) of the timing strategy return via time series regression on the un-timed

market. Figure 8 shows that the market timing alpha and IR inherit the same patterns as

the average return and Sharpe ratio. In the high complexity regime, we find information

ratios around 0.3 and significant alpha t-statistics ranging from 2.6 to 2.9 depending on the

amount of ridge shrinkage.

Extreme behavior at the interpolation boundary makes it difficult to fully appreciate the

patterns in R2. Figure 9 provides more detail by plotting the out-of-sample R2 zooming-in

on the range [−10%, 1%]. Here we see more clearly that high complexity and regularization
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combine to produce a positive out-of-sample R2. In this plot, regularization comes in two

forms, directly through higher z and more subtly through higher c (which allows ridgeless

regression to find solutions with small β̂ norm). For large z, the R2 is almost everywhere

positive.

What do market timing strategies look like in the high complexity regime? Figure 10

plots π̂(z, c) for two empirical configurations. We show raw positions and six-month moving

averages of the raw positions for better readability (our trading results are based on the raw

positions and not the moving averages). The blue line corresponds to the highest complexity

and highest shrinkage configurations of our empirical model (c = 1000 and z = 103, averaged

over 1,000 RFF repetitions). The red line shows the lowest complexity and lowest shrinkage

case we analyze (c = 0.2 and z = 10−3). The basic timing patterns from these two models

are representative of the results from other model configurations. The positions advocated

by these two models have a time series correlation of 84.5% (87.2% for their moving average).

The timing positions in Figure 10 are remarkable. First, they show that the high

complexity strategy is a long-only strategy at heart. Positions (or, equivalently, expected

market returns) from the machine learning models tend to be positive or zero. They almost

never bet on a market downturn. The machine learning model thus heeds the guidance

of Campbell and Thompson (2008) “that many predictive regressions beat the historical

average return, once weak restrictions are imposed on the signs of coefficients and return

forecasts.” However, unlike Campbell and Thompson (2008), the machine learns this rule

without being given an explicit constraint!

Second, the machine learning strategy learns to divest leading up to recessions. NBER

recession dates are shown in the gray shaded regions. For 14 out of 15 recessions in our

test sample, the timing strategy essentially zeros out its position in the market prior to the

recession (the exception is the eight-month recession of 1945). And it does this on a purely

out-of-sample basis.
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Figure 10: Market Timing Positions

Note: Out-of-sample market timing positions for empirical analysis described in Section 6.3. Training window

is T = 12 months. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 2.

Blue lines show results for the c = 1000 and z = 103 model and red lines for the c = 0.2 and z = 10−3 model

(heavy lines show 6-month moving averages).

Figure 11 shows the robustness of our main findings in subsamples, splitting the test

sample into halves. The left side of the figure reports machine learning timing strategy out-

of-sample performance from 1930–1974, and the right side from 1975–2020. The figure shows

that the patterns of out-of-sample timing strategy performance with respect to complexity

and shrinkage do not depend on the subsample. Average out-of-sample returns rise mono-

tonically with complexity and decrease with ridge shrinkage, volatility abates once we move

past the interpolation boundary and is further dampened by shrinkage, and information
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Figure 11: Out-of-sample Market Timing Performance by Subsample

Note: Subsample analysis of 1930–1974 and 1975–2020. See notes in Figures 7 and 8.



ratios rise with complexity and are fairly insensitive to shrinkage. In the interest of space

we do not plot the out-of-sample R2 or β̂ norm, but these also follow identical patterns to

those for the full sample.

While the patterns are the same across subsamples, the magnitudes differ. Average

returns in the second sample are about half as large as the first. But volatilities are roughly

the same, so information ratios are also about half as large in the second sample. This is

consistent with the machine’s trading patterns plotted in Figure 10. Starting around 1968,

it finds notably fewer buying opportunities and, when it does, takes smaller positions than

in the earlier sample.

Our results seem at odds with the primary conclusion of Welch and Goyal (2008). They

argue that the enterprise of market return prediction, which has occupied large attention

in the asset pricing literature for decades, is by and large a failed endeavor: “these models

seem unstable, as diagnosed by their out-of-sample predictions and other statistics; and

these models would not have helped an investor with access only to available information

to profitably time the market.” But we use the same predictive information studied in that

paper. What is the source of the discrepancy?

The conclusions of Welch and Goyal (2008) are based on their findings of consistently

negative out-of-sample prediction R2. They do not analyze the performance of timing

strategies based on expected returns or Sharpe ratios. We revisit their analysis with a focus

on timing strategy performance using the same recursive out-of-sample prediction scheme as

in the analysis of Figures 7 and 8. We use rolling 12-month and 60-month training windows

(with longer training windows in the appendix). We focus on a version of what Welch and

Goyal (2008) call the “kitchen sink” regression. Our specific implementation uses 15 monthly

predictors in a linear ridgeless regression.

Panel A of Table 1 reports the results. To set the stage, we report summary stats of the

buy-and-hold strategy in the first column.34 The market return has a full sample Sharpe

34More specifically, the first column reports summary statistics for the market return with rolling 12-month
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Table 1: Comparison With Welch and Goyal (2008)

Note. Out-of-sample prediction accuracy and portfolio performance estimates for machine learning timing

strategy returns with c = 1000 and z = 103 in Section 6.3 (“Complex Nonlinear Model”) averaged across

1,000 sets of random feature weights, compared with the kitchen sink model of Welch and Goyal (2008)

(“Complex Linear Model”) and buy-and-hold market returns (“Market”).

Complex Linear Model Complex Nonlinear Model

Market z = 0+ z = 10−3 z = 10 z = 103 v.\Mkt v.\Mkt v.\WG

Panel A: 12-month Training Window

R2 - -97.64 -34.18 -0.10 -0.04 - 0.01 - -

SR (IR) 0.50 -0.11 -0.12 0.29 0.46 0.33 0.47 0.31 0.26

t 4.74 -1.02 -1.11 2.74 4.37 3.06 4.46 2.89 2.47

Max Loss -4.48 -98.49 -71.76 -4.66 -2.43 -2.70 -1.23 -1.14 -0.94

Skewness -0.41 -0.86 -2.96 -1.11 -0.05 -0.04 2.48 2.29 1.97

Panel B: 60-month Training Window

R2 - -0.97 -0.66 -0.01 0.00 - 0.00 - -

SR (IR) 0.50 0.00 -0.02 0.49 0.44 0.10 0.42 0.25 0.27

t 4.74 0.00 -0.14 4.51 4.09 0.93 3.92 2.30 2.51

Max Loss -4.48 -35.82 -25.51 -1.66 -1.38 -0.95 -0.46 -0.42 -0.43

Skewness -0.41 -11.06 -8.45 -0.25 -0.30 -0.09 1.66 1.50 1.33

ratio of 0.50 per annum, a maximum one-month loss of −4.48 standard deviations,35 and

skewness of −0.41.

The first finding of Table 1 is that we confirm the conclusions of Welch and Goyal (2008).

volatility standardization. Thus, the buy-and-hold version of this asset is itself a basic timing strategy, where
timing is inversely proportional to rolling volatility. We do this simply because the standardized market is
the target in our forecasting analysis. Our results across the board are generally insensitive to, and our
conclusions entirely unaffected by, whether we work with the raw or volatility standardized market return.
As noted earlier, we prefer to use the volatility standardized market because it aligns more directly with our
theoretical framework.

35Because returns are volatility-standardized using rolling 12-month standard deviation, the max loss is
in monthly conditional standard deviation units.
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Note that, with monthly data, a model with 15 regressors already has nontrivial complexity

even for long training windows, and for the 12-month training window its complexity exceeds

one. The table thus refers to the WG kitchen sink as the “Complex Linear Model.” Monthly

return forecasts using the WG predictors in ridgeless regression behave egregiously. The

monthly out-of-sample R2 from ridgeless regression (z = 0+) is large and negative at−9764%.

The timing strategy based on these predictions is also poor. The Sharpe ratio is −0.11 and

is insignificantly different from zero. This seems not so terrible given the wildness of the

forecasts, but it is due to the fact that the strategy’s volatility is so high. Its maximum

loss is 98 standard deviations. In light of our theoretical analysis, this agreement with the

conclusions of Welch and Goyal (2008) is perhaps unsurprising. With P = 15 and T = 12,

this analysis takes place near the interpolation boundary, thus forecasts and timing strategy

returns are expected to be highly volatile, as our estimates confirm. In Panel B, we repeat

the same analysis as Panel A but use a longer training window of five years (T = 60). The

conclusions are the same as those from Panel A.

Our theoretical analysis also suggests that, in circumstances like these, the benefits from

additional ridge shrinkage are potentially large. Therefore, we re-estimate the Welch and

Goyal (2008) kitchen sink regression with the same range of ridge parameters used in our

machine learning models. The R2 from even heavily regularized regressions can remain

negative, as seen in the out-of-sample R2 of −10% when z = 10. However, with this much

shrinkage, the benefits of market timing become large. The annualized out-of-sample Sharpe

ratio of the strategy is 0.29 and statistically significant (t = 2.7). Larger ridge shrinkage

yields larger benefits still. When z = 103, the out-of-sample R2 becomes −4% per month,

while the annualized Sharpe ratio is 0.46 with a t-statistic of 4.4. This performance is not

due to static market exposure. In the sixth column (“v. Mkt”), we report performance after

regressing the out-of-sample strategy from the fifth column on the market. This has an
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information ratio of 0.33 (t = 3.1). Also note that for the highly shrunken WG regression,

the maximum loss and skewness become more attractive.

These patterns align with the behavior predicted by our theoretical analysis. Near the

interpolation boundary, models can seem defective in terms of R2 despite shrinkage, yet they

can nonetheless confer large economic benefits for investors. But much higher complexity

models have further benefits yet. The last three columns of Table 1 show that the machine

learning timing strategy further enhances out-of-sample performance.

The “Complex Nonlinear Model” in Table 1 refers to the machine learning timing strategy

with c = 1000 and z = 103 (averaged across 1,000 sets of random weight draws). The out-

of-sample R2 is 1% per month, and it has a Sharpe ratio of 0.46 with an information ratio

of 0.31 versus the market. It also has a significant information ratio of 0.26 (t = 2.5) versus

the best WG strategy (z = 103). One of the most attractive aspects of the machine learning

strategy is its low downside risk. Its worst month was a loss of 1.23 standard deviations, and

its skewness is positive 2.48. These attractive tail risk properties of the machine learning

timing strategy are not reflected in the Sharpe ratio but would be an important utility boost

for investors that care about non-Gaussian risks. Note that the machine learning strategy

accomplishes this using the identical information set as the WG strategy; it just exploits this

information in a high-dimensional, nonlinear way.

6.4 The Extent of Nonlinearity and Other Robustness

It is interesting to note that the complex linear and complex nonlinear strategy each have

beneficial performance relative to buy-and-hold, yet they are distinct from each other (for

example, the nonlinear strategy has significant alpha versus the linear strategy). The

parameter γ controls the degree of nonlinearity in the RFF approximation. It turns out

that the linear kitchen sink regression is equivalent to an RFF model in the limit when
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γ ≈ 0. In particular, note that

sin(γω′iGt) = γω′iGt + O(γ2), cos(γω′iGt) = 1− γω′iGt + O(γ2). (23)

Suppose for simplicity that we only have the sin features. Then, defining Ω = 1
P 1/2 (ωi)

P
i=1 ∈

R15×P , we have that the model is equivalent to a model with random linear features,

St = Ω′Gt. (24)

We prove the following proposition in Appendix E.

Proposition 8 Let

Ψ̂G =
1

T

∑
t

GtG
′
t , (25)

and

π̂Gt (z) = G′t(zI + Ψ̂G)−1 1

T

∑
t

GtRt+1 (26)

be the prediction of the linear kitchen sink regression on Gt. Then, in the limit as P → ∞,

π̂t = S ′tβ̂(z) based on random linear features (24) converges almost surely to π̂Gt (z).

Proposition 8 shows that when γ is sufficiently small, the random feature regression is

equivalent to a standard linear regression.

This begs the question: Is there an optimal degree of nonlinearity? In general, the answer

is no. In the high complexity regime, different choices of γ all deliver different approximation

of the true DGP, with none strictly dominating the others. Mei et al. (2022) show that high

model complexity poses an insurmountable obstacle for any random feature regression—it is

impossible to learn the “true” dependency Rt+1 = f(Gt) + εt+1 when the model is complex.
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In this case, different random feature generators recover different aspects (projections) of

the truth on different subspaces. As a result, we would expect linear and nonlinear random

features to contain complementary information, and this is clearly reflected in the results of

Table 1.

We assess robustness of our results to various degrees of nonlinearity (γ = 0.5 or 1,

versus γ = 2 in our main analysis) in Appendix G. We also investigate the effect of longer

estimation windows (120 months) and excluding volatility standardization of the market

return. The brief summary of these analyses is that our conclusions are robust to each

variation in empirical design.

7 Conclusion

The field of asset pricing is in the midst of a boom in research applications using machine

learning. The asset management is experiencing a parallel boom in its adoption of machine

learning to improve portfolio construction. However, the properties of portfolios based on

such richly parameterized models are not well understood.

In this article, we offer some new theoretical insight into the expected out-of-sample

behavior of machine learning portfolios. Building on recent advances in the theory of

high complexity models from the machine learning literature, we demonstrate a theoretical

“virtue of complexity” for investment strategies derived from machine learning models.

Contrary to conventional wisdom, we prove that market timing strategies based on ridgeless

least squares generate positive Sharpe ratio improvements for arbitrarily high levels of

model complexity. In other words, the performance of machine learning portfolios can be

theoretically improved by pushing model parameterization far beyond the number of training

observations, even when minimal regularization is applied. We provide a rigorous foundation

for this behavior rooted in techniques from random matrix theory. We complement these

technical developments with intuitive descriptions of the key statistical mechanisms at play.
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In addition to establishing the virtue of complexity, we demonstrate that out-of-sample

R2 from a prediction model is generally a poor measure of its economic value. We prove

that a market timing model can earn large economic profits when R2 is large and negative.

This naturally recommends that the finance profession focus less on evaluating models in

terms of forecast accuracy and more on evaluating in economic terms; for example, based

on the Sharpe ratio of the associated strategy. We compare and contrast the implications

of model complexity for machine learning portfolio performance in correctly specified versus

mis-specified models.

Finally, we compare theoretically predicted behavior to the empirical behavior of machine

learning-based trading strategies. The theoretical virtue of complexity aligns remarkably

closely with patterns in real world data. In a canonical empirical finance application—

market return prediction and concomitant market timing strategies—we find out-of-sample

information ratios on the order of 0.3 relative to a market buy-and-hold strategy, and these

improvements are highly statistically significant. The strategies that emerge have some

remarkable attributes, behaving as long-only strategies that divest the market leading up to

recessions. Our high complexity models learn this behavior with no guidance from researcher

priors or modeling constraints.

Our results are not a license to add arbitrary predictors to a model—one cannot spin

straw into gold. Instead, we encourage i) including all plausibly relevant predictors and

ii) using rich nonlinear models rather than simple linear specifications. Doing so confers

prediction and portfolio benefits, even when training data is scarce, and particularly when

accompanied by prudent shrinkage.

This recommendation clashes with the philosophy of parsimony frequently espoused by

economists and famously articulated by the statistician George Box:

Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive

elaboration. On the contrary following William of Occam he should seek an economical
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description of natural phenomena. Just as the ability to devise simple but evocative

models is the signature of the great scientist so overelaboration and overparameteriza-

tion is often the mark of mediocrity. (Box, 1976)

Our theoretical analysis (along with that of Belkin et al., 2018; Hastie et al., 2019; Bartlett

et al., 2020, among others) shows the flaw in this view—Occam’s razor may instead be

Occam’s blunder. Theoretically, we show that a small model is preferable only if it is

correctly specified. But, as Box (1976) emphasizes, models are never correctly specified.

The logical conclusion is that large models are preferable under fairly general conditions.

The machine learning literature demonstrates the preferability of large models in a wide

range of real-world prediction tasks. Our results indicate that the same is likely true in

finance and economics.

Our findings point to a number of interesting directions for future work, such as studying

the theoretical behavior of high complexity models in cross-sectional trading strategies, and

more extensive empirical investigation into the virtue of complexity across different asset

markets.
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Bartlett, Peter L, Philip M Long, Gábor Lugosi, and Alexander Tsigler, “Benign

overfitting in linear regression,” Proceedings of the National Academy of Sciences, 2020,

117 (48), 30063–30070.

Belkin, M, D Hsu, S Ma, and S Mandal, “Reconciling modern machine learning and

the biasvariance trade-off. arXiv e-prints,” 2018.

Belkin, Mikhail, Alexander Rakhlin, and Alexandre B Tsybakov, “Does data

interpolation contradict statistical optimality?,” in “The 22nd International Conference

on Artificial Intelligence and Statistics” PMLR 2019, pp. 1611–1619.

, Daniel Hsu, and Ji Xu, “Two models of double descent for weak features,” SIAM

Journal on Mathematics of Data Science, 2020, 2 (4), 1167–1180.
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INTERNET APPENDIX

A Proofs

Proof of Lemma 1. The proof of Lemma 1 follows directly from Proposition 2.1 in Yaskov

(2016). �

Proof of Proposition 1. We define πQt = πt(β)/(1 + (S ′tβ)2) to be the optimal strategy

maximizing the unconditional Sharpe ratio. First we consider πQt . Then,

E[πQt Rt+1] = E[πQt (S ′tβ)] = E[
(S ′tβ)2

σ2 + (S ′tβ)2
]

whereas

Et[R
2
t+1] = σ2 + (S ′tβ)2

and hence

E[(πQt )2R2
t+1] = E[

(S ′tβ)2Et[R
2
t+1]

(σ2 + (S ′tβ)2)2
] = E[

(S ′tβ)2

σ2 + (S ′tβ)2
] .

Thus,

SR(RπQ

) =

(
E[

(S ′tβ)2

σ2 + (S ′tβ)2
]

)1/2

.

At the same time, for the πt portfolio, we have

E[πtRt+1] = E[(β′St)
2] = E[β′Ψβ] = β′Ψβ (27)
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whereas, defining β̃ = Ψ1/2β and using that St = Ψ1/2Xt, we get

σ4E[(πt)
2R2

t+1] = σ4E[(πt)
2Et[R

2
t+1]] = E[((S ′tβ)2)2(σ2 + (S ′tβ)2)]

= σ2β′Ψβ + E[(S ′tβ)4] = σ2β′Ψβ + E[(X ′tβ̃)4]

= σ2β′Ψβ + E[
∑

i1,i2,i3,i4

Xi1Xi2Xi3Xi4 β̃i1 β̃i2 β̃i3 β̃i4 ]

(28)

Since all first- and third-order moments of X are zero, the only terms that survive are those

there two pairs of i indices are identical, or all of them are identical. For the first one, there

are three possibilities, and all second moments of Xi equal one. This gives

E[
∑

i1,i2,i3,i4

Xi1Xi2Xi3Xi4 β̃i1 β̃i2 β̃i3 β̃i4 ] = 3‖β̃‖2 +
∑
i

(E[X4
i,t]− 3)β̃4

i

and hence

σ4E[(πt)
2R2

t+1] = σ2β′Ψβ + 3(β′Ψβ)2 +
∑
i

(E[X4
i,t]− 3)β̃4

i (29)

The claim of the proposition follows by using Taylor approximation and

(S ′tβ)2

σ2 + (S ′tβ)2
=

(S ′tβ)2

σ2
(1− (S ′tβ)2

σ2
) + O(‖β‖6) .

�

The following result of Silverstein and Bai (1995) and Bai and Zhou (2008) relates the

limiting eigenvalue of distribution of Ψ̂ to that of Ψ.

Theorem 9 For any c > 0 and z < 0, the distribution of eigenvalues of Ψ̂ in the limit as

P, T → ∞, P/T → c converges to a distribution whose Stieltjes transform, m(z; c), is the
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unique positive solution to the equation

m(z; c) =
1

1 − c − c z m(z; c)
mΨ

(
z

1 − c − c z m(z; c)

)
. (30)

Furthermore, for c > 1, there exists functions m∗(c) > 0 > n∗(c) such that cm∗(c) is

monotone decreasing in c and

m(−z; c) = (1− c−1)z−1 + m∗(c) + n∗(c) z + O(z2) .

We will need an auxiliary

Lemma 2 For any sequence of bounded matrices AP , we have

P−1S ′tAPSt − P−1 tr(APΨ) → 0 (31)

is probability.

Proof of Lemma 2. The proof follows directly from Proposition 2.1 in Yaskov (2016).

�

Lemma 3 We have

P−1 tr(QP (zI + Ψ̂T )−1) − E[P−1 tr(QP (zI + Ψ̂T )−1)] → 0 (32)

almost surely for any sequence of uniformly bounded matrices QP .

Proof of Lemma 3. The proof follows by the same arguments as in Bai and Zhou (2008).

Let ΨT,t = 1
T

∑
τ 6=t SτS

′
τ . By the Sherman-Morrison formula (see Bartlett (1951)),

(zI+Ψ̂T )−1 = (zI+Ψ̂T,t)
−1 − 1

T
(zI+Ψ̂T,t)

−1StS
′
t(zI+Ψ̂T,t)

−1 1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
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(33)

Let Eτ denote the conditional expectation given Sτ+1, · · · , ST . Let also

qT (z) =
1

P
tr(zI + Ψ̂T )−1QP .

With this notation, since Ψ̂τ,T is independent of Sτ , we have

(Et−1 − Et)[
1

P
tr(zI + ΨT,T )−1QP ] = 0

and therefore

qT (z)− E[qT (z)] =
T∑
t=1

(Eτ−1[qT (z)]− ET [qT (z)])

=
1

M

T∑
t=1

(Et−1 − Et)[tr(zI + Ψ̂T )−1QP − tr(zI + Ψ
−1)
T,TQP ]

= − 1

M

T∑
τ=1

(Et−1 − Et)[γt] ,

(34)

where we have used (33) and defined

γt = tr

(
1

T
(zI + Ψ̂T,t)

−1St(I +
1

T
S ′t(zI + Ψ̂T,t)

−1St)
−1S ′t(zI + Ψ̂T,t)

−1QP

)
(35)

We will need the following known properties of the trace:

Lemma 4 If A, B are symmetric positive semi-definite, then

tr(AB) ≤ tr(A)‖B‖
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and

tr(A1/2BA1/2) ≤ tr(B) ‖A‖

Thus,

‖γt‖ ≤ ‖QP‖ tr

(
1

T
(zI + Ψ̂T,t)

−1St(I +
1

T
S ′t(zI + Ψ̂T,t)

−1St)
−1S ′t(zI + Ψ̂T,t)

−1

)

≤ z−1 tr

(
1

T
(zI + Ψ̂T,t)

−1/2St(I +
1

T
S ′t(zI + Ψ̂T,t)

−1St)
−1St(zI + Ψ̂T,t)

−1/2

)
= z−1 tr(B(zI +B)−1) ≤ Nz−1 ,

(36)

where

B =
1

T
S ′t(zI + Ψ̂T,t)

−1St ∈ RN×N .

Thus,

(Et−1 − Et)[tr(zI + Ψ̂T )−1Ψ] = (Et−1 − Et)[γt]

forms a bounded martingale difference sequence. Applying the Burkholder-Davis-Gundy

inequality (see, e.g., Burkholder (1966)), we get

E[|qT (z)− E[qT (z)]|q] ≤ KqP
−qE

(
T∑
t=1

|(Et−1 − Et)[γt]|2
)q/2

≤ Kq(2N/z)qP−q/2
(
P

T

)−q/2
.

(37)

Almost sure convergence follows with q > 2 from the following lemma.
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Lemma 5 Suppose that

E[|XT |q] ≤ T−α

for some α > 1 and some q > 0. Then, XT → 0 almost surely.

Proof. It is known that if

∞∑
T=1

Prob(|XT | > ε) < ∞

for any ε > 0, then XT → 0 almost surely. In our case, the Chebyshev inequality implies

that

Prob(|XT | > ε) ≤ ε−qE[|XT |q] ≤ T−α

and convergence follows because α > 1. �

The proof of Lemma 3 is complete. �

Proof of Proposition 2. The proof is based on several steps.

• Let

Ψ̂T,t =
1

T

∑
τ 6=t

SτS
′
τ . (38)

Then, by the Sherman-Morrison formula (33),

(zI + Ψ̂T )−1St = (zI + Ψ̂T,t)
−1St

− 1

T
(zI + Ψ̂T,t)

−1StS
′
t(zI + Ψ̂T,t)

−1St
1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St

= (zI + Ψ̂T,t)
−1St

1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
.

(39)
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• By Lemma 2,

P−1 S ′t(zI + Ψ̂T,t)
−1St − P−1 tr(Ψ(zI + Ψ̂T,t)

−1) → 0 (40)

in probability. At the same time, by Lemma 3,

P−1 tr(Ψ(zI + Ψ̂T,t)
−1) − E[P−1 tr(Ψ(zI + Ψ̂T,t)

−1)] → 0

alsmost surely. Thus,

P−1 S ′t(zI + Ψ̂T,t)
−1St − E[P−1 tr(Ψ(zI + Ψ̂T,t)

−1)] → 0 (41)

is probability.

• Theorem 9 implies that

P−1 trE[(zI + Ψ̂T )−1] → m(−z; c) (42)

• Now, we have

1 = P−1 trE[(zI + Ψ̂T )−1(zI + Ψ̂T )] = P−1 trE[(zI + Ψ̂T )−1]z + P−1 trE[(zI + Ψ̂T )−1Ψ̂T ]

= zm(−z, c) + P−1 trE[(zI + Ψ̂T )−1 1

T

∑
t

StS
′
t]

= {symmetry across t} = zm(−z, c) + P−1 trE[(zI + Ψ̂T )−1 1

N
StS

′
t]

= {using Sherman−Morrison (39)}

= zm(−z, c) + P−1 trE[(zI + Ψ̂T,t)
−1St

1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
S ′t]

= zm(−z, c) + E[
P−1S ′t(zI + Ψ̂T,t)

−1St

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
]

(43)
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Now, E[T−1 tr(Ψ(zI+Ψ̂T,t)
−1)] ≤ ‖Ψ‖z−1 and hence is uniformly bounded. Let us pick

a sub-sequence of T converging to infinity and such that E[T−1 tr(Ψ(zI+Ψ̂T,t)
−1)]→ q

for some q > 0. By (40),

P−1S ′t(zI + Ψ̂T,t)
−1St

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
→ c−1q

1 + q

in probability and this sequence is uniformly bounded. Hence,

E[
P−1S ′t(zI + Ψ̂T,t)

−1St

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
] → c−1q

1 + q

and we get

1− zm(−z, c) =
c−1q

1 + q

Thus, the limit of ξ(z; c) = E[T−1 tr(Ψ(zI+Ψ̂T,t)
−1)] is independent of the sub-sequence

of T and satisfies the required equation.

The proof of Proposition 2 is complete.

�

Proof of Proposition 3. First we show

β′Ψβ̂ → b∗(ψ∗,1 − c−1zξ(z)) (44)

in probability, and then we establish the identity

tr(Ψβ̂β̂′)→ b∗(ψ∗,1 − 2zc−1ξ(z)− z2c−1ξ′(z)) + ξ(z) + zξ′(z) (45)
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in probability. We start with the observation that

1

T

T∑
t=1

StRt+1 =
1

T

T∑
t=1

St(S
′
tβ + εt+1) = Ψ̂Tβ + qT , (46)

where we have defined

qT =
1

T

T∑
t=1

S ′tεt+1 . (47)

Therefore,

β̂ = (zI + Ψ̂T )−1(Ψ̂Tβ + qT ) (48)

By a standard application of the law of large numbers, qT → 0 in L2 and hence also in

probability. We will be using a ≈ b to denote that a− b→ 0 in probability.

Using (48) and Assumption 4, we have (using that εt are independent of St and have zero
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means) that

β′E[StS
′
t]β̂

= β′E[StS
′
t](zI + Ψ̂T )−1(Ψ̂Tβ + qT )

≈ β′Ψ (zI + Ψ̂T )−1Ψ̂Tβ

= {by Lemma 1}}
prob→ b∗ P

−1 trE[Ψ (zI + Ψ̂T )−1Ψ̂T ]

= b∗P
−1 trE[Ψ (zI + Ψ̂T )−1(zI + Ψ̂T − zI)]

= b∗P
−1 trE[Ψ− zΨ (zI + Ψ̂T )−1]

= b∗P
−1
(

tr Ψ − z trE[(zI + Ψ̂T )−1Ψ]
)

= {by Proposition 2}

→T→∞ b∗ν(z) .

(49)

At the same time,

tr(Ψβ̂β̂′)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tβ + qT )(Ψ̂Tβ + qT )′(zI + Ψ̂T )−1)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tβ + qT )(β′Ψ̂T + q′T )(zI + Ψ̂T )−1)

≈ tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tββ
′Ψ̂T + qT q

′
T )(zI + Ψ̂T )−1)

(50)

where we have used the fact that the terms that are linear in qT converge to zero in
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probability. Now,

E[qT q
′
T |S] =

1

T 2
E[
∑
t

Stεt+1

∑
t1

εt1+1S
′
t1
|S]

=
1

T 2
E[
∑
t,t1

Stεt+1ε
′
t1+1S

′
t1
|S]

=
1

T 2
E[
∑
t

Stεt+1ε
′
t+1S

′
t|S]

=
1

T 2

∑
t

StE[εt+1ε
′
t+1|S]S ′t

=
1

T 2

∑
t

Stσ
2S ′t

=
1

T 2

∑
t

StS
′
t =

1

T
Ψ̂T ,

(51)

and it is straightforward to show that the contributions coming from

T−2
∑
t,t1

St(εt+1ε
′
t1+1 − 1)S ′t1
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are converge to zero in probability. Therefore, (50) takes the form

tr(Ψβ̂β̂′)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tββ
′Ψ̂T + qT q

′
T )(zI + Ψ̂T )−1)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tββ
′Ψ̂T +

1

T
Ψ̂T )(zI + Ψ̂T )−1)

= tr(Ψ(zI + Ψ̂T )−1Ψ̂Tββ
′Ψ̂T (zI + Ψ̂T )−1)

+ tr(Ψ(zI + Ψ̂T )−1 1

T
Ψ̂T (zI + Ψ̂T )−1)

= tr(Ψ̂T (zI + Ψ̂T )−1Ψ(zI + Ψ̂T )−1Ψ̂Tββ
′)

+ tr(Ψ(zI + Ψ̂T )−1 1

T
(zI + Ψ̂T − zI)(zI + Ψ̂T )−1)

= {by Lemmas 1, 3 and V itali′s thorem}
prob→ b∗P

−1 trE[Ψ̂T (zI + Ψ̂T )−1Ψ(zI + Ψ̂T )−1Ψ̂T ]

+
1

T
tr(ΨE[(zI + Ψ̂T )−1(zI + Ψ̂T )(zI + Ψ̂T )−1])

− z 1

T
tr(ΨE[(zI + Ψ̂T )−1(zI + Ψ̂T )−1])

= b∗P
−1 trE[Ψ(zI + Ψ̂T )−1Ψ̂T Ψ̂T (zI + Ψ̂T )−1]

+
1

T
tr(ΨE[(zI + Ψ̂T )−1])

− z 1

T
tr(ΨE[(zI + Ψ̂T )−2])

= Term1 + Term2 + Term3 .

(52)
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We now proceed with each term:

(zI + Ψ̂T )−1Ψ̂T Ψ̂T (zI + Ψ̂T )−1 = {all matrices commute} = (zI + Ψ̂T )−2Ψ̂2
T

= (zI + Ψ̂T )−2(Ψ̂2
T + 2zΨ̂T + z2I − 2zΨ̂T − z2I)

= (zI + Ψ̂T )−2(Ψ̂2
T + 2zΨ̂T + z2I − 2z(Ψ̂T + zI) + z2I)

= (zI + Ψ̂T )−2
(

(zI + Ψ̂T )2 − 2z(Ψ̂T + zI) + z2I
)

= I − 2z(zI + Ψ̂T )−1 + z2(zI + Ψ̂T )−2 .

(53)

Therefore,

Term1 = b∗P
−1 trE[Ψ(zI + Ψ̂T )−1Ψ̂T Ψ̂T (zI + Ψ̂T )−1]

= b∗P
−1 trE[Ψ(I − 2z(zI + Ψ̂T )−1 + z2(zI + Ψ̂T )−2)] ,

(54)

and

Term2 =
1

T
tr(ΨE[(zI + Ψ̂T )−1]) → ξ(z)

by Proposition 2, and hence

d

dz

1

T
tr(ΨE[(zI + Ψ̂T )−1]) → d

dz
ξ(z) (55)

by the Vitali theorem. However,

d

dz
tr(ΨE[(zI + Ψ̂T )−1]) = − tr(ΨE[(zI + Ψ̂T )−2]) (56)

and hence

1

T
tr(ΨE[(zI + Ψ̂T )−2]) → − d

dz
ξ(z) . (57)
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Summarizing, we get

Term3 → z
d

dz
ξ(z) ,

whereas

Term1 → b∗P
−1 trE[Ψ(I − 2z(zI+Ψ̂T )−1+z2(zI+Ψ̂T )−2)] → b∗(ψ∗,1−2zc−1ξ(z)−z2c−1ξ′(z))

(58)

and hence

tr(ΨE[β̂β̂′]) = Term1 + Term2 + Term3

prob→ b∗(ψ∗,1 − 2zc−1ξ(z)− z2c−1ξ′(z)) + ξ(z) + z
d

dz
ξ(z)

= b∗ ν̂(z; c) − c ν ′(z; c)

(59)

Now, by (8), we have

MSE → E[R2
t+1] − 2E[β̂′StS

′
tβ] + trE[β̂β′Ψ] (60)

and therefore equations (49) and (59) imply that

MSE → E[R2
t+1] − 2 E(z; c) + L(z; c) (61)

and hence

R2(z; c) = 1− MSE

E[R2
t+1]

→ 2 E(z; c) + L(z; c)

E[R2
t+1]

(62)
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whereas

2E(z; c)− L(z; c) = limP−1 tr(2b∗Ψ̂(zI + Ψ̂)− b∗Ψ̂2 − cΨ̂)(zI + Ψ̂)−2Ψ)

= limP−1 tr(Ψ̂(2b∗z − c) + b∗Ψ̂
2)(zI + Ψ̂)−2Ψ)

(63)

and the optimality of z∗ = c/b∗ follows because the function f(z) = ((2b∗z−c)λ+ b∗λ
2)/(z+

λ)2 attains its maximum at z = z∗ for any value of λ > 0. The proof of the first part of

Proposition 3 is complete.

To study the ridgeless limit, we will need the following auxiliary result.

Lemma 6 Suppose that c > 1. Then,

m(z; c) = (1− c−1)z−1 +m∗(c) + n∗(c)z + O(z2), z → 0 . (64)

Furthermore,

m∗(c) = c−1((σ∗ψ∗,1)−1c−1 + σ−1
∗ ψ∗,2ψ

−3
∗,1c
−2) + O(c−4)

n∗(c) = c−1
(
−(σ∗ψ∗,1)2c2 + 3σ2

∗ψ∗,2c
)−1

+ O(c−5) .
(65)

Proof of Lemma 6. Let σ∗ = 1.

Case 1: c > 1 Substituting

m̃(−z; c) = (1− c)z−1 + cm(−z; c) , (66)

into the equation of Theorem 9, we get that m̃ satisfies

z =

∫
(1− (c− 1)m̃x) dH(x)

m̃(1 + m̃ x)
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Our goal is to understand what happens when z → 0. We have

∫
(1− (c− 1)m̃x) dH(x)

m̃(1 + m̃ x)
= 0

always has a finite solution m̃∗(0, c) > 0 because

∫ dH(x)
m̃(1+m̃ x)∫ x dH(x)
(1+m̃ x)

is monotone decreasing in m̃, from +∞ to 0 and hence it crosses the level c− 1 somewhere.

Thus, m̃∗(c) is the unique solution to

∫ dH(x)
m̃(1+m̃ x)∫ x dH(x)
(1+m̃ x)

= c− 1 . (67)

and m̃(z) stays bounded and smooth when z → 0+ by the implicit function theorem.

Furthermore, substituting m̃(0, c) = ac−1 + bc−2, we get

∫
dH(x)

(ac−1 + bc−2)(1 + (ac−1 + bc−2)x)
= (c− 1)

∫
x dH(x)

(1 + (ac−1 + bc−2)x)
(68)

that is (up to negligible terms)

a−1c

∫
(1− bc−1/a+ (bc−1/a)2)(1− (ac−1 + bc−2)x+ (ac−1 + bc−1)2 x2)dH(x)

= (c− 1)

∫
x(1− (ac−1 + bc−2)x+ (ac−1 + bc−2)2 x2)dH(x)

(69)

Equating the coefficient on c gives

a−1c = cσ∗ψ∗
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while the constant coefficient gives

−ba−2 − σ∗ψ∗,1 = −aσ2
∗ψ∗,2 − σ∗ψ∗,1

and hence

a = (σ∗ψ∗,1)−1, b = a3σ2
∗ψ∗,2 = σ−1

∗ ψ∗,2/ψ
3
∗,1

and

m∗(c) = c−1m̃∗(c) ∼︸︷︷︸
c→∞

c−1((σ∗ψ∗,1)−1c−1 + σ−1
∗ ψ∗,2ψ

−3
∗,1c
−2) (70)

Thus,

cm′(−z; c) = (1− c)z−2 + m̃′(−z; c) = (1− c)z−2 + O(1)

Differentiating the identity

∫
dH(x)

m̃(1 + m̃ x)
− (c− 1)

∫
x dH(x)

(1 + m̃ x)
= z

with respect to z, we get

m̃′(0)

(
−
∫

(1 + 2m̃∗x)dH(x)

(m̃∗(1 + m̃∗ x))2
+ (c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2

)
= 1 .

Furthermore,

∫
dH(x)

m̃∗(1 + m̃∗ x)
− (c− 1)

∫
x dH(x)

(1 + m̃∗ x)
= 0 ,
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and therefore

(c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2
< (c− 1)

∫
x dH(x)

m̃∗(1 + m̃∗ x)
=

∫
dH(x)

m̃2
∗(1 + m̃∗ x)

=

∫
(1 + m̃∗ x)dH(x)

m̃2
∗(1 + m̃∗ x)2

<

∫
(1 + 2m̃∗ x)dH(x)

m̃2
∗(1 + m̃∗ x)2

(71)

and the claim follows with

n∗(c) = c−1

(
−
∫

(1 + 2m̃∗x)dH(x)

(m̃∗(1 + m̃∗ x))2
+ (c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2

)−1

< 0 .

We have

(c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2
= (c− 1)

1

m̃2
∗

∫
((1 + m̃∗ x)2 − 1− 2m̃∗x) dH(x)

(1 + m̃∗ x)2

Furthermore,

cn∗(c) ∼
(
−a−2c2

∫
(1 + 2(ac−1 + bc−2)x)dH(x)

((1 + bc−1/a)(1 + (ac−1 + bc−2)x))2
+ (c− 1)

∫
x2 dH(x)

(1 + (ac−1 + bc−2)x)2

)−1

∼
(
−a−2c2

∫
(1 + 2ac−1x− 2bc−1/a− 2ac−1x)dH(x) + c

∫
x2(1− 2ac−1x) dH(x)

)−1

∼
(
−a−2c2 + (2a−3b+ σ2

∗ψ∗,2)c
)−1

=
(
−(σ∗ψ∗,1)2c2 + (2(σ∗ψ∗,1)3σ−1

∗ ψ∗,2/ψ
3
∗,1 + σ2

∗ψ∗,2)c
)−1

=
(
−(σ∗ψ∗,1)2c2 + 3σ2

∗ψ∗,2c
)−1

(72)

when c→∞. �
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We will now use this lemma to prove the behavior of the ridgeless limit. We have

ξ(z) = −1 + c−1/(c−1 − 1 + zm(−z; c))

= −1 + c−1/(zm∗(c) + z2n∗(c) +O(z3))

= −1 + c−1(zm∗(c))
−1/(1 + zn∗(c)/m∗(c) +O(z2))

= −1 + c−1(zm∗(c))
−1(1− zn∗(c)/m∗(c) +O(z2))

= −1 + c−1(zm∗(c))
−1 − c−1n∗(c)m∗(c)

−2 + O(z)

(73)

and hence

ν ′(z) = −c−1(ξ + zξ′) = −c−1(−1− c−1n∗(c)m∗(c)
−2 + O(z))

converges to a finite limit when z → 0. Thus,

L(z; c) = b∗(ν + zν ′)− cν ′ = b∗(ψ∗,1 − c−2m∗(c)
−1) + (−1− c−1n∗(c)m∗(c)

−2) + O(z)

Hence,

2E(0; c) − L(0; c) = b∗(ψ∗,1 − c−2m∗(c)
−1) + (1 + c−1n∗(c)m∗(c)

−2)

The proof of Proposition 3 is complete. �

Lemma 7 Let a = σ∗. We have

1−zm(z) = ψ∗,1az
−1−z−2(ψ∗,2 +cψ2

∗,1)a2 +z−3a3(ψ∗,3 +3cψ∗,2ψ∗,1 +c2ψ3
∗,1) + O(z−4) (74)

for z →∞.
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Proof of Lemma 7. Then, Theorem 9 implies

zm(−z) =

∫
zdH(x)

x(1− c+ czm) + z
,

implying that zm(z)→ 1 when z →∞, whereas

1−zm(z) = 1−
∫

zdH(x)

x(1− c+ czm(−z)) + z
= (1−c+czm(z))

∫
xdH(x)

x(1− c+ czm(−z)) + z
,

and therefore

1− zm(z) ∼ z−1aψ∗,1 ,

and

1− zm(−z)− ψ∗,1az−1

= (1− c+ czm(z))

∫
xdH(x)

x(1− c+ czm(−z)) + z
− ψ∗,1az−1

= (1− cz−1aψ∗,1 +O(z−2))z−1

∫
xdH(x)

xz−1(1− cz−1aψ∗,1 +O(z−2)) + 1
− ψ∗,1az−1

∼ (1− cz−1aψ∗,1 +O(z−2))z−1

∫
xdH(x)

xz−1 + 1
− ψ∗,1az−1

∼ (1− cz−1aψ∗,1 +O(z−2))z−1

∫
(x− x2z−1)dH(x)− ψ∗,1az−1

∼ z−1ψ∗,1a− ψ∗,2a2z−2 − cz−2a2ψ2
∗,1 − ψ∗,1az−1 + O(z−3)

= −z−2(ψ∗,2 + cψ2
∗,1)a2 + O(z−3)

(75)

Now, we can expand to the higher order. We have

1− c+ czm(−z) = 1− c(1− zm(−z)) = 1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2))
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and hence

1− zm(−z)− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

= (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))

×
∫

xdH(x)

x(1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2))) + z

− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

= (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))

× z−1

∫
xdH(x)

xz−1(1− cz−1ψ∗,1a) + 1 +O(z−3)
− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2

∗,1)a2

∼ (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))z−1

∫
x(1− xz−1(1− cz−1ψ∗,1a) + x2z−2)

− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

∼ (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))z−1

(
ψ∗,1a− z−1ψ∗,2a

2 + z−2a3(ψ∗,3 + cψ∗,2ψ∗,1)

)
− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2

∗,1)a2

= ψ∗,1az
−1 − z−2ψ∗,2a

2 + z−3a3(ψ∗,3 + cψ∗,2ψ∗,1)

− cz−2ψ∗,1a(ψ∗,1a− z−1ψ∗,2a
2) + cz−3(ψ∗,2 + cψ2

∗,1)a2ψ∗,1a + O(z−4)− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

= z−3a3(ψ∗,3 + cψ∗,2ψ∗,1)

− cz−2ψ∗,1a(−z−1ψ∗,2a
2) + cz−3(ψ∗,2 + cψ2

∗,1)a2ψ∗,1a + O(z−4)

= z−3a3(ψ∗,3 + 3cψ∗,2ψ∗,1 + c2ψ3
∗,1) + O(z−4) .

(76)

The proof of Lemma 7 is complete. �
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B Proofs for the Mis-specified Model

We will be using a slightly simpler notation St,1 = S
(1)
t and St,2 = S

(2)
t . Then,

MSE = E[‖Rt+1 − St,1β̂‖2]

= trE[Rt+1R
′
t+1] − 2E[β′S ′tSt,1β̂1] + trE[St,1β̂1β̂

′
1S
′
t,1]

= trE[Rt+1R
′
t+1] − 2E[β′S ′tSt,1β̂1] + trE[Ψ1,1β̂1β̂

′
1]

(77)

where β̂1 is the estimate of the first component of the whole β vector. We will also denote

c1 = cq = P1/T and omit the dependence on q in all the functions. Finally, we will use the

notation ξ1,1(z) = limT−1 trE[(zI + Ψ̂)−1Ψ] to denote ξ(z; cq; q).

The following is true.

Lemma 8 We have

E(z; c1) = limE[β′S ′tSt,1β̂1]

= b∗
c1

c
(ψ∗,1 − c−1

1 zξ(z)) + b∗
c−1ξ2,1(z)

1 + ξ1,1(z)

(78)

where

ξ2,1(z) = lim
T→∞

1

T
trE[Ψ1,2Ψ2,1(zI + Ψ̂T,1,t)

−1] (79)

Proof of Lemma 8. We have

Stβ = St,1β1 + St,2β2

and

1

T

∑
t

S ′t,1Rt+1 =
1

T

T∑
t=1

S ′t,1(Stβ + εt+1) = Ψ̂Tβ + qT , (80)
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where

qT =
1

T

T∑
t=1

S ′t,1εt+1 (81)

and

Ψ̂Tβ = Ψ̂T,1β1 + Ψ̂T,2β2

where

Ψ̂T,k =
1

T

T∑
t=1

S ′t,1St,k, k = 1, 2 ,

Therefore,

β̂ = (zI + Ψ̂T,1)−1(Ψ̂T,1β1 + Ψ̂T,2β2 + qT ) . (82)

Using this identity and Assumption 4, we have (using that εt are independent of St and have

zero means) that

E[β′S ′tSt,1β̂]

= E[(β′1Ψ1,1 + β′2Ψ2,1)(zI + Ψ̂T,1)−1(Ψ̂T,1β1 + Ψ̂T,2β2)]

= trE[Ψ1,1 (zI + Ψ̂T,1)−1Ψ̂Tββ
′]

+ E[β′1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2β2]

+ E[β′2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,1β1]

+ E[β′2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2β2]

= {by Lemma 1}
prob→ b∗ P

−1 trE[Ψ1,1 (zI + Ψ̂T,1)−1Ψ̂T,1] + P−1b∗ trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2] .

(83)
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The first term is

P−1 trE[Ψ1,1 (zI + Ψ̂T,1)−1Ψ̂T,1]

= P−1 trE[Ψ1,1 (zI + Ψ̂T,1)−1(zI + Ψ̂T,1 − zI)] → c1

c
(ψ∗,1 − c−1

1 zξ1,1(z)) .
(84)

To compute the second term in (83), we will need the following lemma.

Lemma 9

1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2] → c−1ξ2,1(z)/(1 + ξ1,1(z)) (85)

Proof of Lemma 9. We have that, by symmetry over time, and using the Sherman-Morrison

formula (33), we get

1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1 1

T

T∑
t=1

St,1S
′
t,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1St,1S

′
t,2]

=
1

P
trE[Ψ2,1

(
(zI + Ψ̂T,1,t)

−1

− 1

T
(zI + Ψ̂T,1,t)

−1St,1(I +
1

T
S ′t,1(zI + Ψ̂T,1,t)

−1St,1)−1S ′t,1(zI + Ψ̂T,1,t)
−1
)
St,1S

′
t,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1St,1S
′
t,2]

− 1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1St,1(I + CT )−1CTS
′
t,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1Ψ′2,1]

− 1

P
E[S ′t,2Ψ2,1(zI + Ψ̂T,1,t)

−1St,1(1 + CT )−1CT ]

(86)

where we have defined

CT =
1

T
S ′t,1(zI + Ψ̂T,1,t)

−1St,1
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By Lemma 2 and (40),

CT =
1

T
S ′t,1(zI + Ψ̂T,1,t)

−1St,1 → ξ1,1(z)

in probability. Furthermore, (1 + CT )−1CT is uniformly bounded.

By a similar argument,

1

T
S ′t,2Ψ2,1(zI + Ψ̂T,1,t)

−1St,1 → ξ2,1(z) (87)

in probability, and these variables have uniformly bounded L2 norms. We will need another

auxiliary lemma.

Lemma 10 Suppose that XT − X → 0 and YT − Y → 0 in L2, and all variables have

uniformly bounded L2 norms. Then, E[XTYT ]− E[XY ]→ 0.

Proof. We have

E[XTYT ]− E[XY ] = E[(XT −X)YT ] + E[X(YT − Y )]

and the claim follows from the Cauchy-Schwarz inequality. �

Thus,

1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1Ψ′2,1]

− 1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1St,1(I + CT )−1CTS
′
t,2]

→ c−1ξ2,1(z) − c−1ξ2,1(z)ξ1,1(z)/(1 + ξ1,1(z))

= c−1ξ2,1(z)/(1 + ξ1,1(z)) ,

(88)

The proof of Lemma 9 is complete. �
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Lemma 8 follows now from (83) �

Lemma 11 We have

L(z) = lim tr(Ψ1,1E[β̂β̂′])

=
c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + (1 + b∗P

−1 tr Ψ2,2)(ξ1,1(z) + zξ′1,1(z))

+ b∗(1 + ξ(z))−2c−1
1 ξ̂2,1

− 2b∗(ξ1,1(z) + zξ′1,1(z))(1 + ξ1,1(z))−1c−1
1 ξ2,1(z)

(89)

Proof of Lemma 11. Let Ψ̂T (1, :) be the first row in the 2× 2 block representation of Ψ̂.

Then,

tr(Ψ1,1E[β̂β̂′])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)β + qT )(Ψ̂T (1, :)β + qT )′(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T )−1(Ψ̂T (1, :)β + qT )(β′Ψ̂T (1, :)′ + q′T )(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)ββ′Ψ̂T (1, :)′ + qT q
′
T )(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)ββ′Ψ̂T (1, :)′ + qT q
′
T )(zI + Ψ̂T,1)−1])

(90)

Formula (51) still holds with Ψ̂ replaced by Ψ̂1,1 and calculations in (52) imply

tr(Ψ1,1E[(zI + Ψ̂T,1)−1qT q
′
T (zI + Ψ̂T,1)−1]) → ξ1,1(z) + zξ′1,1(z) . (91)

87



It remains to deal with

tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)ββΨ̂T (1, :))(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T,1β1β1Ψ̂T,1)(zI + Ψ̂T,1)−1])

+ tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T,1,2β2β2Ψ̂T,1,2)(zI + Ψ̂T,1)−1])

prob→ P−1b∗ tr(Ψ1,1E[(zI + Ψ̂T,1)−1Ψ̂2
T,1(zI + Ψ̂T,1)−1])

+ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1,2Ψ̂T,1,2(zI + Ψ̂T,1)−1]

(92)

by Lemmas 1 and 3. The same calculations as above imply that

P−1b∗ tr(Ψ1,1E[(zI+Ψ̂T,1)−1Ψ̂2
T,1(zI+Ψ̂T,1)−1]) → c1

c
b∗(ψ∗,1(q)−2zc−1

1 ξ1,1(z)−z2c−1
1 ξ1,1(z)) .

(93)

Thus, it remains to deal with the second term in (92). We have

P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1,2Ψ̂T,1,2(zI + Ψ̂T,1)−1]

= P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1,2Ψ̂T,1,2(zI + Ψ̂T,1)−1]

= P−1b∗
1

T 2
trE[Ψ1,1(zI + Ψ̂T,1)−1

∑
t1,t2

St1,1S
′
t1,2
St2,2S

′
t2,1

(zI + Ψ̂T,1)−1]

= P−1b∗
1

T 2
trE[Ψ1,1(zI + Ψ̂T,1)−1

(
TSt1,1S

′
t1,2
St1,2S

′
t1,1

+ T (T − 1)St1,1S
′
t1,2
St2,2S

′
t2,1

)
(zI + Ψ̂T,1)−1]

= Term1 + Term2 .

(94)

Here,

Term1 = P−1b∗
1

T
trE[Ψ1,1(zI + Ψ̂T,1)−1St1,1S

′
t1,2
St1,2S

′
t1,1

(zI + Ψ̂T,1)−1] (95)
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and

Term2 = (1− T−1)P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1St1,1S
′
t1,2
St2,2S

′
t2,1

(zI + Ψ̂T,1)−1] . (96)

Using the Sherman-Morrison formula (33) and defining CT = S ′t,1(zI + Ψ̂T,1,t)
−1St,1, we get

(zI + Ψ̂T,1)−1St1,1 = (zI + Ψ̂T,1,t)
−1St1,1(1 + CT )−1 , (97)

and therefore

Term1

= P−1b∗
1

T
trE[Ψ1,1(zI + Ψ̂T,1,t)

−1St1,1(1 + CT )−1

× S ′t1,2St1,2(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t)
−1]

= P−1b∗
1

T
trE[S ′t1,1(zI + Ψ̂T,1,t)

−1Ψ1,1(zI + Ψ̂T,1,t)
−1St1,1S

′
t1,2
St1,2(1 + CT )−2]

(98)

Now, Lemmas 2, and 3, and the Vitali Theorem together with the fact that S ′t is independent

of Ψ̂T,1,t imply that

1

T
S ′t,1(zI+Ψ̂T,1,t)

−1Ψ1,1(zI+Ψ̂T,1,t)
−1St,1 →

1

T
E[tr(Ψ1,1(zI+Ψ̂T,1,t)

−1Ψ1,1(zI+Ψ̂T,1,t)
−1)]

(99)

in L2, whereas

P−1S ′t1,2St1,2(1 + CT )−2 → P−1 tr Ψ2,2/(1 + ξ1,1(z))2

in L2. Therefore, Lemma 10 implies that

Term1→ b∗ξ̂1,1(z)P−1 tr Ψ2,2/(1 + ξ1,1(z))2 (100)
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where we have defined

ξ̂1,1,T (z) =
1

T
E[tr(Ψ1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1)]

We will now need the following lemma.

Lemma 12 We have

1

T
E[tr(Ψ1,1(zI+Ψ̂T,1)−1Ψ1,1(zI+Ψ̂T,1)−1)] → ξ̂1,1(z) = (ξ1,1(z)+zξ′1,1(z))(1+ξ1,1(z))2 (101)

Proof of Lemma 12. We have

1

T
trE[Ψ1,1(zI + Ψ̂T,1,t)

−1] → ξ1,1(z)

by (11) and therefore

1

T
trE[(zI + Ψ̂T,1,t)

−1Ψ1,1(zI + Ψ̂T,1,t)
−1] =

1

T
trE[Ψ1,1(zI + Ψ̂T,1,t)

−2] → −ξ′1,1(z) .

Lemmas 2, and 3, and the Vitali Theorem imply that

1

T
S ′t1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1,t)

−1S ′t1,1

− 1

T
trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1] → 0

(102)

is probability. In the next equation, to simplify the expressions, we will use XT ≈ YT to
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denote the fact that XT − YT → 0 as T →∞. By (97) and (102),

ξ1,1(z) ≈ 1

T
trE[Ψ1,1(zI + Ψ̂T,1)−1]

=
1

T
trE[(zI + Ψ̂T,1)(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

≈ −zξ1,1(z) +
1

T
trE[Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

= {Ψ̂T,1 = T−1
∑
t

St,1S
′
t,1}

= −zξ′1,1(z) +
1

T 2

∑
t

trE[St,1S
′
t,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

= −zξ′1,1(z) +
1

T
trE[St,1S

′
t,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

= −zξ′1,1(z) +
1

T
trE[(zI + Ψ̂T,1)−1St,1S

′
t,1(zI + Ψ̂T,1)−1Ψ1,1]

= −zξ′1,1(z)

+
1

T
trE[(zI + Ψ̂T,1,t)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1)−1Ψ1,1]

= −zξ′1,1(z)

+
1

T
trE[(1 + CT )−2S ′t1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1,t)

−1St1,1]

≈ −zξ′1,1(z) + (1 + ξ1,1(z))−2ξ̂1,1(z)

(103)

and the claim follows. The proof of Lemma 12 is complete. �
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Thus, it remains to deal with Term2 in (94). By (97),

Term2 ≈ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1St1,1S
′
t1,2
St2,2S

′
t2,1

(zI + Ψ̂T,1)−1]

= P−1b∗ trE[S ′t2,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1St1,1S
′
t1,2
St2,2]

≈ P−1b∗ trE[(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t2)
−1

×Ψ1,1(zI + Ψ̂T,1,t1)
−1St1,1(1 + CT )−1S ′t1,2St2,2]

≈ P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1

)

×Ψ1,1

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1

)

×Ψ1,1

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

− 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1

− (zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

+
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= Term21 + Term22 + Term23 + Term24 .
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(104)

Note that the different 1 + CT factors differ from each other slightly, but we will abuse

the notation and treat them as identical. Dealing with them separately requires minor

modifications in the proofs. By direct calculation,

E[S ′t2,1QSt2,2|St2 ] = tr(QΨ2,1) (105)

for any Q independent of St2 . Thus,

Term21 = P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−2S ′t2,1QSt2,2]

= b∗E[(1 + CT )−2P−1 tr(QΨ2,1)] ,

(106)

where we have defined

Q =

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1S

′
t1,2

.

By a modification of Lemmas 2 and 3, we get

P−1 tr(QΨ2,1) = P−1 tr

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

Ψ2,1

)

= P−1 tr

(
S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1

)
prob→ P−1 trE[Ψ1,2Ψ2,1

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

)
] ,

(107)

where, as we explain in the main text, we pass to a subsequence if necessary to ensure the
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limit exists. Thus, by (11),

Term21→ b∗(1 + ξ(z))−2c−1
1 ξ̂2,1 . (108)

Proceeding to the next term in (104), we get

Term22

= P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
− 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

(109)

We have

1

T
S ′t1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1

→ 1

T
trE[Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1]

= ξ̂1,1(z)

(110)

is probability by Lemmas 2 and 3 and the Vitali Theorem. Hence,

Term22

→ P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
− (zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1ξ̂1,1(z)

)
(1 + CT )−1St1,2S

′
t2,2

]

→ −b∗ξ̂1,1(z)(1 + ξ1,1(z))−3 trE[Ψ2,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

]

→ −b∗ξ̂1,1(z)(1 + ξ1,1(z))−3c−1
1 ξ2,1(z) ,

(111)
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where we have used Lemma 10 to pass to the limit.36 Proceeding to the next term in (104),

we get

Term23 ≈ P−1b∗E[(1 + CT )−1S ′t2,1(
− (zI + Ψ̂T,1,t1,t2)

−1Ψ1,1
1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= −b∗E[XTYT ]

(112)

where we have defined

XT = −(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1

and

YT = P−1(1 + CT )−2S ′t1,2St2,2S
′
t2,1

(zI + Ψ̂T,1,t1,t2)
−1St1,1 .

By Lemma 12 and (11), XT → (1+ξ1,1(z))−1ξ̂(z) in L2, whereas YT has a bounded L2-norm.

Then, a small modification of Lemma 10 implies that

E[XTYT ] − (1 + ξ1,1(z))−1ξ̂(z)E[YT ] → 0

Integrating over St2 gives

E[YT ] = E[P−1(1 + CT )−2S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)
−1St1,1]

36Note that it may seem that we need six bounded moments for the signals. But, in fact, the normalization
by 1 + CT ensures all the necessary terms stay bounded.
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and Lemmas 2 and 3 imply that

E[YT ] → c−1
1 (1 + ξ1,1(z))−2ξ2,1(z) .

Thus, Term23 in (104) satisfies.

Term23 → −b∗ξ̂1,1(z)(1 + ξ1,1(z))−3c−1
1 ξ2,1(z) . (113)

Finally, the last term in (104) is given by

Term24 = P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
× St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−4St2,2S
′
t2,1

×

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1S
′
t2,1

(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1S

′
t1,2

]

(114)

We will need the following lemma.

Lemma 13 Consider the block matrix decomposition

Q1 =

(
Q1,1

Q2,1

)
, Q2 =

(
Q1,2

Q2,2

)
, Ψ1/2 =

Q1,1 Q1,2

Q2,1 Q2,2


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Then,

E[St,2S
′
t,1ZSt,1S

′
t,1]

= Ψ2,1(Z + Z)Ψ1,1 + (Q2 diag((E[X4]− 3)Q1ZQ1)Q2 + tr(ZΨ1,1)Ψ2,1)
(115)

for any matrix Z. If Z is uniformly bounded, then the matrices Q2 diag(Q1ZQ1)Q2 have

uniformly bounded trace norms.

Proof of Lemma 13. By linearity, it suffices to prove the formula for a rank-one matrix

A = βγ′. Then, S ′t = X ′tΨ
1/2 and we will decompose Ψ1/2 into (Q1, Q2), so that S ′t,k = X ′tQk.

Then,

E[St,2S
′
t,1βγ

′St,1S
′
t,1] = E[Q2XtX

′
tQ1βγ

′Q′1XtX
′
tQ1] (116)

Define β̃ = Q1β, γ̃ = Q1γ. Then, if k1 6= k2, we have

E[XtX
′
tβ̃γ̃

′XtX
′
t]k1,k2 = E[

∑
l1,l2

Xk1Xl1 β̃l1 γ̃l2Xl2Xk2 ]

= E[X2
k1
X2
k2

](β̃k1 γ̃k2 + β̃k2 γ̃k1) +
∑
`

β̃`γ̃`E[Xk1Xk2X
2
` ]

= β̃k1 γ̃k2 + β̃k2 γ̃k1

(117)

At the same time,

E[XtX
′
tβ̃γ̃

′XtX
′
t]k1,k1 = E[

∑
l1,l2

X2
k1
Xl1 β̃l1 γ̃l2Xl2 ]

=
∑
`

β̃`γ̃`E[X2
k1
X2
` ]

= β̃k1 γ̃k1(E[X4
k1

]− 1) + β̃′γ̃

(118)
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Summarizing,

E[XtX
′
tβ̃γ̃

′XtX
′
t] = β̃′γ̃I + β̃γ̃′ + γ̃β̃′ + diag(β̃γ̃(E[X4]− 3))

Thus, by formula (116), we get

E[S ′t,2St,1βγ
′S ′t,1St,1] = Q′2Q1(βγ′+γβ′)Q′1Q1+(Q′2 diag((E[X4]−3)β̃k1 γ̃k1)Q2+(β̃′γ̃)Q′2Q1) ,

(119)

whereas β̃′γ̃ = β′Q′1Q1γ. Now,

Q1 =

(
Q1,1

Q2,1

)
, Q2 =

(
Q1,2

Q2,2

)
, Ψ1/2 =

Q1,1 Q1,2

Q2,1 Q2,2

 .

Thus,

Ψ =

Q′1Q1 Q′1Q2

Q′2Q1 Q′2Q2

 =

Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

 (120)

and hence we get the required.

�

Since the kurtosis terms have uniformly bounded trace norms, it is straightforward to

show that their contributions to asymptotic expectations get annihilated by 1/T and 1/P

factors. Hence, from now on, we will be assuming in our calculations that E[X4
i,t] = 3.

Applying Lemma 13, we can integrate over St2
37. Define

Z =

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1S ′t1,1St1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1

)
37Using the fact that St2 and St1 are independent.
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Then, we can rewrite (114) as

Term24 = P−1b∗ trE[(1 + CT )−4St2,2S
′
t2,1

×

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1S
′
t2,1

(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1S

′
t1,2

]

= P−1b∗ trE[(1 + CT )−4E[St2,2S
′
t2,1
ZSt2,1S

′
t2,1
|St1 ](zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,2

]

(121)

Applying Lemma 13, we get

E[St2,2S
′
t2,1
ZSt2,1S

′
t2,1
|St1 ] = Ψ2,1(Z + Z ′)Ψ1,1 + tr(ZΨ1,1)Ψ2,1)

Substituting this expression into (121), we get that everything reduces to computing two

expectations:38

Expectation1 = P−1 trE[Ψ2,1ZΨ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

] (122)

and

Expectation2 = P−1 trE[Ψ2,1 tr(ZΨ1,1)(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

] (123)

For Expectation2, we have

Expectation2 = P−1 trE[Ψ2,1 tr(ZΨ1,1)(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

]

= P−1 trE[S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)
−1St1,1 tr(ZΨ1,1)] .

(124)

38Computing Expectation1 with Z ′ instead of Z is similar.
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We know that the quantities

1

T
S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)

−1St1,1

and

1

T
tr

(
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1

)

=
1

T
tr

(
S ′t1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1(zI + Ψ̂T,1,t1,t2)

−1St1,1

) (125)

both converge to finite numbers in L2 by Lemmas 2 and 3. Thus, when multiplied by P−1,

the expectation of the product of these two quantities converges to zero. Thus, Expectation2

converges to zero. To compute Expectation1, we use

Expectation1 = P−1 trE[Ψ2,1ZΨ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

]

= P−1 trE[St1,2S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1Z

′Ψ1,2]

= P−1 trE[St1,2S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1

)
Ψ1,2]

(126)

We can now once again apply Lemma 13 and get

E[S ′t1,2St1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× (zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1S ′t1,1St1,1]

= Ψ2,1(Ẑ + Ẑ ′)Ψ1,1 + tr(ẐΨ1,1)Ψ2,1

(127)

where

Ẑ = (zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1
1

T
(zI + Ψ̂T,1,t1,t2)

−1 (128)
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Therefore,

Expectation1 = P−1 trE[

(
Ψ2,1(Ẑ + Ẑ ′)Ψ1,1 + tr(ẐΨ1,1)Ψ2,1

)
1

T
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,2]

(129)

First, by Lemma 3 and the Vitali Theorem, tr(ẐΨ1,1) converges to a finite, non-random

number, and hence the second term in this expression converges to zero. Second, the first

term also converges to zero by a similar argument, due to the P−1(T )−2 factor. Thus,

Term24 converges to zero. Gathering the terms, we get

tr(Ψ1,1E[β̂β̂′])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂T + qT q

′
T )(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1Ψ̂T (1, :)ββ′Ψ̂T (1, :)′(zI + Ψ̂T,1)−1]) + ξ1,1(z) + zξ′1,1(z)

prob→ P−1b∗ tr(Ψ1,1E[(zI + Ψ̂T,1)−1Ψ̂2
T,1(zI + Ψ̂T,1)−1])

+ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2,1Ψ̂′T,2,1(zI + Ψ̂T,1)−1] + ξ1,1(z) + zξ′1,1(z)

=
c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + ξ1,1(z) + zξ′1,1(z)

+ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2,1Ψ̂′T,2,1(zI + Ψ̂T,1)−1]

=
c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + (1 + b∗P

−1 tr Ψ2,2)(ξ1,1(z) + zξ′1,1(z))

+ Term21 + Term22 + Term23 + Term24

→ c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + (1 + b∗P

−1 tr Ψ2,2)(ξ1,1(z) + zξ′1,1(z))

+ b∗(1 + ξ(z))−2c−1
1 ξ̂2,1 − 2b∗(ξ1,1(z) + zξ′1,1(z))(1 + ξ1,1(z))−1c−1

1 ξ2,1(z)

(130)

The proof of Lemma 11 is complete.

�
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C Computing Second Moment V of the Efficient Portfolio

We will need the following lemma.

Lemma 14 Suppose that St = XtΨ
1/2. Then, under the decomposition Ψ1/2 = (Q1, Q2),

E[S ′t,2St,1ZS
′
t,1St,2]

= Ψ2,1(Z + Z ′)Ψ1,2

+ ((κ− 2)Q′2 diag(Q1ZQ
′
1)Q2 + tr(ZΨ1,1)Ψ2,2)

(131)

for any matrix Z.

Proof of Lemma 14. By linearity, it suffices to prove the formula for a rank-one matrix

A = βγ′. Then, St = XtΨ
1/2 and we will decompose Ψ1/2 into (Q1, Q2), so that St,k =

Σ1/2XtQk. Then,

E[S ′t,2St,1βγ
′S ′t,1St,2] = E[Q′2X

′
tXtQ1βγ

′Q′1X
′
tXtQ2] (132)

Define β̃ = Q1β. Then,

E[S ′t,2St,1βγ
′S ′t,1St,2] =

(Q′2Q1βγ
′Q′1Q2 +Q′2Q1γβ

′Q′1Q2)

+ ((κ− 2)Q′2 diag(β̃k1 γ̃k1)Q2 + (β̃′γ̃)Q′2Q2)

(133)

whereas β̃′γ̃ = β′Q′1Q1γ. Now,

Q1 =

(
Q1,1

Q2,1

)
, Q2 =

(
Q1,2

Q2,2

)
, Ψ1/2 =

Q1,1 Q1,2

Q2,1 Q2,2


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Thus,

Ψ =

Q′1Q1 Q′1Q2

Q′2Q1 Q′2Q2

 =

Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

 (134)

and hence we get the required.

�

As above, all expectations in this section are conditional on β̂. We have since β1β
′
2 → 0

in probability that

E[(Rπ
t+1)2] = E[β̂′1S

′
t,1Rt+1R

′
t+1St,1β̂1] = E[β̂′1S

′
t,1((St,1β1 + St,2β2)(St,1β1 + St,2β2)′ + I)St,1β̂1]

→ E[β̂′1S
′
t,1Rt+1R

′
t+1St,1β̂1] = E[β̂′1S

′
t,1(St,1β1β

′
1S
′
t,1 + St,2β2β

′
2S
′
t,2 + I)St,1β̂1]

→ E[β̂′1Ψ1,1β̂1] + E[β̂′1S
′
t,1St,1β1β

′
1S
′
t,1St,1β̂1] + P−1b∗E[β̂′1S

′
t,1St,2S

′
t,2St,1β̂1]

= L + Term2 + Term3 .

(135)

Recall that we are using the notation

Ψ̂T =
1

T

T∑
t=1

S ′t,1St ∈ RP1×P . (136)

and we decompose

Ψ̂T = Ψ̂T,1 + Ψ̂T,2 (137)
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C.0.1 Term3

We have

Term3 = P−1b∗E[β̂′1S
′
t,1St,2S

′
t,2St,1β̂1]

= P−1b∗ trE[(Ψ̂Tβ + qT )′(zI + Ψ̂T,1)−1S ′t,1St,2S
′
t,2St,1(zI + Ψ̂T,1)−1(Ψ̂Tβ + qT )]

= P−1b∗ trE[S ′t,2St,1(zI + Ψ̂T,1)−1(Ψ̂Tβ + qT )(Ψ̂Tβ + qT )′(zI + Ψ̂T,1)−1S ′t,1St,2]

→ P−1b∗ trE[S ′t,2St,1(zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1S ′t,1St,2]

(138)

in probability because

E[qT q
′
T |S] =

1

T
Ψ̂T,1 . (139)

By Lemma 14, we get

Term3 → P−12 tr(ZTΨ1,2Ψ2,1)

+ P−1 tr((κ− 2)Q′2 diag(Q1ZTQ
′
1)Q2) + P−1 tr(ZTΨ1,1) tr(Ψ2,2)

(140)

with

ZT = (zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂′T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1 . (141)

Thus,

tr(ZTΨ1,1) = tr((zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂′T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1Ψ1,1)

= L
(142)
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by (90). At the same time,

P−1 tr(ZTΨ1,2Ψ2,1) → b∗P
−2 tr(Ψ̂′T (zI + Ψ̂T,1)−1Ψ1,2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T )

+ P−1T−1 tr((zI + Ψ̂T,1)−1(Ψ̂T,1 + zI − zI)(zI + Ψ̂T,1)−1Ψ1,2Ψ2,1)

→ P−1b∗c
−1ξ̃2,1(z) + P−1(ξ2,1(z)− zξ′2,1(z)) → 0 .

(143)

where

ξ̃2,1(z) = tr(Ψ̂′T (zI + Ψ̂T,1)−1Ψ1,2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T ) = O(P ) .

Similarly,

P−1 tr((κ− 2)Q′2 diag(Q1((zI + Ψ̂T,1)−1(P−1Ψ̂T Ψ̂′T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1)Q′1)Q2)

≤ K P−1 tr(ZT ) → 0
(144)

Thus, we get

Term3 → b∗ tr(Ψ2,2)P−1L (145)

C.0.2 Term2

By a slight modification of Lemma 14,

E[S ′t,1St,1β1β
′
1S
′
t,1St,1]

= 2Ψ1,1β1β
′
1Ψ1,1 + ((κ− 2)Ψ

1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + tr(β1β

′
1Ψ1,1)Ψ1,1)

≈ 2Ψ1,1β1β
′
1Ψ1,1 + ((κ− 2)Ψ

1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1)

(146)
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and therefore

E[β̂′1S
′
t,1St,1β1β

′
1S
′
t,1St,1β̂1]

= trE[2Ψ1,1β1β
′
1Ψ1,1

+ ((κ− 2)Ψ
1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1)β̂1β̂
′
1]

= trE[

(
2Ψ1,1β1β

′
1Ψ1,1

+ ((κ− 2)Ψ
1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1)

)
× (zI + Ψ̂T,1)−1(Ψ̂Tβ + qT )(Ψ̂Tβ + qT )′(zI + Ψ̂T,1)−1]

→ trE[

(
2Ψ1,1β1β

′
1Ψ1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1

)
× (zI + Ψ̂T,1)−1(Ψ̂T,1β1β

′
1Ψ̂T,1 + Ψ̂T,2β2β

′
2Ψ̂′T,2 + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1]

= 2T1 + 2T2 + 2T3

+ b∗c
−1c1ψ∗,1(q)T4 + b∗c

−1c1ψ∗,1(q)T5 + b∗c
−1c1ψ∗,1(q)T6

(147)

where we have used the fact that the cross-terms involving β1β
′
2 converge to zero and that

the kurtosis terms (those involving κ− 2) also converge to zero.39

39For example, defining β̃1 = Ψ
1/2
11 β1 and A = Ψ

−1/2
1,1 Ψ̂T,1(zI + Ψ̂T,1)−1Ψ

1/2
1,1 and assuming for simplicity

that Ψ
−1/2
1,1 is bounded, we get

trE[β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ
1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 Ψ(zI + Ψ̂T,1)−1Ψ̂T,1β1]

= E[β̃′1Adiag(β̃1β̃
′
1)A′β̃1]

= E[
∑
i,j,k

β̃iAi,j β̃
2
jAk,j β̃k] = E[

∑
i,j

β̃2
iA

2
i,j β̃

2
j ] ≈ P−2 trE[AA′] → 0

(148)

because A is bounded.
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We now analyze each term separately. The first term in (147) gives

T1 = trE[(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1ββ

′Ψ̂T,1]

= E[β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ(zI + Ψ̂T,1)−1Ψ̂T,1β1]

= E[(β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1iβ1)2] → (b∗c
−1c1(ψ∗,1(q)− zc−1

1 ξ1,1(z)))2

(149)

in probability by Proposition 2 because all variables are uniformly bounded because ‖β‖

stays bounded almost surely. Namely, first we notice that

β′Ψ̂T,1(zI + Ψ̂T,1)−1Ψβ − b∗
1

M
tr(Ψ̂T,1(zI + Ψ̂T,1)−1Ψ) → 0

is probability. And second,

1

P
tr(Ψ̂T,1(zI+Ψ̂T,1)−1Ψ) =

1

P
tr((Ψ̂T,1+zI−zI)(zI+Ψ̂T,1)−1Ψ) → c−1c1(ψ∗,1(q)−zc−1

1 ξ1,1(z))

almost surely by Proposition 2.

Then,

T2 = trE[(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2β2β

′
2Ψ̂′T,2]

= P−1b∗E[β′1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2(zI + Ψ̂T,1)−1Ψ1,1β1]

→ P−2b2
∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2(zI + Ψ̂T,1)−1Ψ1,1]

≤ ‖Ψ1,1‖P−2b2
∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2(zI + Ψ̂T,1)−1] → 0

(150)

by the proof of Lemma 11. Then,

T3 = trE[(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ1,1(zI + Ψ̂T,1)−1 1

T
Ψ̂T,1]

= E[β′1Ψ1,1(zI + Ψ̂T,1)−1 1

T
Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1β1]

≤ b∗K/T → 0

(151)
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for some constant K because (zI + Ψ̂T,1)−1 and Ψ2
1,1 are uniformly bounded and where we

have used that

(zI + Ψ̂T,1)−1 1

T
Ψ̂T,1(zI + Ψ̂T,1)−1 ≤ 1

T
(zI + Ψ̂T,1)−1

is the sense of positive semi-definite order.

Then,

T4 = trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β1β
′
1Ψ̂T,1]

= E[β′Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β]
(152)

where

β′1Ψ̂T,1(zI+Ψ̂T,1)−1Ψ1,1(zI+Ψ̂T,1)−1Ψ̂T,1β1 − b∗
1

P
tr(Ψ̂T,1(zI+Ψ̂T,1)−1Ψ1,1(zI+Ψ̂T,1)−1Ψ̂T,1) → 0

in probability. Now, since the matrices Ψ̂T,1 and (zI + Ψ̂T,1)−1 commute, we get

tr(Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1) = tr(Ψ1,1(zI + Ψ̂T,1)−2Ψ̂2
T,1) .

Using the identity

Ψ̂2
T,1 = (Ψ̂T,1 + zI)2 − 2z(Ψ̂T,1 + zI) + z2 ,

we get

1

P
tr(Ψ1,1(zI + Ψ̂T,1)−2((Ψ̂T,1 + zI)2 − 2z(Ψ̂T,1 + zI) + z2))

=
1

P
tr(Ψ1,1 − 2zΨ1,1(zI + Ψ̂T,1)−1 + z2Ψ1,1(zI + Ψ̂T,1)−2) .

(153)
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By Proposition 2,

1

P1

tr(Ψ1,1(zI + Ψ̂T,1)−1) → c−1
1 ξ1,1(z) .

Then, standard arguments for analytic functions (ξ1,1(z) is analytic for z for <z > 0)40 imply

that

1

P1

tr((zI + Ψ̂T,1)−2Ψ1,1) → −c−1ξ′1,1(z) . (154)

Thus,

T4 = trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β1β
′
1Ψ̂T,1]

= E[β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β1]

∼ b∗c
−1c1P

−1
1 tr(Ψ1,1 − 2zΨ1,1(zI + Ψ̂T,1)−1 + z2Ψ1,1(zI + Ψ̂T,1)−2)

= b∗c
−1c1ψ∗,1(q) − b∗2zc

−1c1P
−1
1 tr(Ψ1,1(zI + Ψ̂T,1)−1) + b∗c

−1c1P
−1
1 z2 tr(Ψ1,1(zI + Ψ̂T,1)−2)

∼ b∗c
−1c1(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z))

(155)

because

1

P1

tr(Ψ1,1(zI + Ψ̂T,1)−1) → c−1
1 ξ1,1(z) (156)

implies

1

P1

tr(Ψ1,1(zI + Ψ̂T,1)−2) → −c−1
1 ξ′1,1(z) . (157)

40For analytic functions, uniform boundedness plus convergence on an open set implies converges of
derivatives by the Cauchy integral formula.
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Now, since β2β
′
2 ∼ P−1IP2×P2 , we get by the proof of Lemma 11 that

T5 = trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2β2β
′
2Ψ̂′T,2]

→ P−1 trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2]

→ tr(Ψ2,2)

P
b∗ξ̂1,1(z)(I + ξ1,1(z))−2

+ b∗((I + ξ1,1(z))−1)2c−1ξ̂2,1(z)

− 2b∗ξ̂1,1(z)((I + ξ1,1(z))−1)c−1ξ2,1(z)(I + ξ1,1(z))−2

(158)

Finally,

T6 =
1

T
trE[(zI + Ψ̂T,1)−1Ψ(zI + Ψ̂T,1)−1Ψ̂T,1]

=
1

T
trE[(zI + Ψ̂T,1)−1Ψ(zI + Ψ̂T,1)−1(zI + Ψ̂T,1 − zI)]

∼ (ξ1,1(z) + zξ′1,1(z))

(159)

where we have used that

trE[(zI + Ψ̂T,1)−2Ψ] = trE[(zI + Ψ̂T,1)−1Ψ(zI + Ψ̂T,1)−1]
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Putting all the terms together, we finally get from (135) that

E[(Rπ
t+1)2] = L + Term2 + Term3

= L + tr(Ψ2,2)P−1︸ ︷︷ ︸
Term3 by (145)

+ 2T1 + 2T2 + 2T3

+ b∗c
−1c1ψ∗,1(q)T4 + b∗c

−1c1ψ∗,1(q)T5 + b∗c
−1c1ψ∗,1(q)T6︸ ︷︷ ︸

by (147)

= L + tr(Ψ2,2)P−1L

+ 2
(

(b∗c
−1c1(ψ∗,1(q)− zc−1

1 ξ1,1(z)))2
)

+ b∗c
−1c1ψ∗,1(q)

(
b∗c
−1c1(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z))

)
+ b∗c

−1c1ψ∗,1(q)∆(z)

+ b∗c
−1c1ψ∗,1(q)

(
ξ1,1(z) + zξ′1,1(z)

)
= L(z) + tr(Ψ2,2)P−1L(z) + 2E(z)2

+ b∗c
−1c1ψ∗,1(q)L(z)

= L(z)
(

1 + b∗
tr(Ψ)

P

)
+ 2E(z)2

(160)

By Lemma 11, we have

L = b∗
c1

c
(ψ∗,1 − 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + ξ1,1(z) + zξ′1,1(z) + ∆(z) (161)

with

∆(z) =
tr(Ψ2,2)

P
b∗ξ̂1,1(z)(I + ξ1,1(z))−2

+ b∗
(

(
I + ξ1,1(z))−1)2c−1ξ̂2,1(z)

− 2c−1b∗
(

I
+ ξ1,1(z))−1ξ̂1,1(z)ξ2,1(z)(I + ξ1,1(z))−2

(162)
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D Proof of Theorem 7 and Optimal Shrinkage

Defining k = 1 + b∗
tr(Ψ2,2)

P
, we get that

2E − L = 2b∗qν − qb∗ν̂ + cqν ′k

= limP−1 tr

(
(2b∗qΨ̂(zI + Ψ̂)−1 − cq(1 + k)Ψ̂(zI + Ψ̂)−2 − qb∗Ψ̂2(zI + Ψ̂)−2)Ψ

)
(163)

Consider the function

f(z) = 2b∗x(z + x)−1 − c(1 + k)x(z + x)−2 − x2(z + x)−2 . (164)

for any x > 0. Then,

f ′(z) = −2b∗x(z + x)−2 + 2c(1 + k)x(z + x)−3 + 2b∗x
2(z + x)−3 . (165)

Then, f ′(z) = 0 is equivalent to −2b∗x(z + x) + 2c(1 + k)x+ 2b∗x
2 = 0 implying that

z∗ = c(1 + k)/b∗ (166)

Furthermore,

f(z∗) =
b∗x

2 + 2b∗xz∗ − c(1 + k)x

(z∗ + x)2
=

b∗x
2 + b∗xz∗

(z + x)2
= b∗

x

x+ z
(167)

implying that

2E(z∗)− L(z∗) = E(z∗) = b∗ν(z∗)
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Similarly,

E2(z)

L(z)
= lim

(b∗q)
2(tr(Ψ̂(zI + Ψ̂)−1Ψ))2

q tr((c(1 + k)Ψ̂ + b∗Ψ̂2)(zI + Ψ̂)−2Ψ)
(168)

Define

f(z) =
(tr(Ψ̂(zI + Ψ̂)−1Ψ))2

tr((c(1 + k)Ψ̂ + b∗Ψ̂2)(zI + Ψ̂)−2Ψ)

Diagonalizing Ψ̂ and defining a measure weighted by the eigenvalues of Ψ, we can rewrite it

as

f(z) =
E[X(z +X)−1]2

E[(aX + bX2)(z +X)−2]
.

Then,

f ′(z) =

(
− 2E[X(z +X)−1]E[X(z +X)−2]E[(aX + bX2)(z +X)−2]

+ 2E[X(z +X)−1]2E[(aX + bX2)(z +X)−3]

)
/E[(aX + bX2)(z +X)−2]2 .

(169)

with a = c(1 + k), b = b∗. Thus, f ′(z) ≥ 0 if and only if

E[X(z +X)−2]E[(aX + bX2)(z +X)−2] ≤ E[X(z +X)−1]E[(aX + bX2)(z +X)−3] .

(170)

Changing the measure to X(z +X)−1/E[X(z +X)−1], we can rewrite it as

E[(z +X)−1]E[(a+ bX)(z +X)−1] ≤ E[(a+ bX)(z +X)−2] . (171)
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The function (z + X)−1 is decreasing in X, while (a + bX)(z + X)−1 is decreasing in X if

and only if z < a/b. Thus, f(z) is increasing for z < z∗ and decreasing otherwise. The proof

is complete.

To prove the virtue of complexity, it remains to consider

ν(z∗) = q ψ∗,1 − z∗c−1ξ(z∗; cq) (172)

where

ξ(z, cq) =
1− zm(−z; cq)

(cq)−1 − 1 + zm(−z; cq)
= −1 +

(cq)−1

(cq)−1 − 1 + zm(−z; cq)
. (173)

Theorem 9 implies

zm(−z) =

∫
zdH(x)

x(1− c+ czm) + z
,

and, hence,

m̃(−z; c) = (1− c)z−1 + cm(−z; c) , (174)

is the unique positive solution to

z =

∫
(1− (c− 1)m̃x) dH(x)

m̃(1 + m̃ x)
(175)

Furthermore,

ν(z∗) = qψ∗,1 − b−1
∗ ξ(c/b∗, cq) = c−1(cqψ∗,1 − z∗ξ(z∗; cq))
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Thus, our goal is to show that

cψ∗,1 − zξ(z; c)

is monotone increasing in c for any z > 0. We have

ξ = −1 +
z−1

(1− c)z−1 + cm
= −1 +

z−1

m̃

and hence we need

f(c) = cψ∗,1 −
1

m̃

to be monotone increasing in c. That is, we need the inequality

f ′(c) = ψ∗,1 +
m̃′(c)

m̃2
≥ 0 . (176)

We have

0 =

∫
(−m̃x− (c− 1)m̃′(c)x)m̃(1 + m̃x)− (1− (c− 1)m̃x)(m̃′(1 + m̃x) + m̃m̃′x)

m̃2(1 + m̃x)2
dH(x)

(177)

so that

m̃′(c) =
−
∫ xdH(x)

1+m̃x∫ (c−1)xm̃(1+m̃x)+(1−(c−1)m̃x)(1+2m̃x)
m̃2(1+m̃x)2

dH(x)
, (178)

We start with the observation that the denominator in this fraction is always non-negative.
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Indeed, (175) implies that

(c− 1)

∫
m̃xdH(x)

m̃(1 + m̃x)
=

∫
dH(x)

m̃(1 + m̃x)
− z . (179)

Multiplying by m̃ > 0, we get that

(c− 1)

∫
m̃xdH(x)

(1 + m̃x)
=

∫
dH(x)

(1 + m̃x)
− zm̃ (180)

which implies

(c− 1)

∫
(m̃x)2dH(x)

(1 + m̃x)2
= (c− 1)

∫
m̃x(−1 + 1 + m̃x)dH(x)

(1 + m̃x)2

=

∫
dH(x)

(1 + m̃x)
− zm̃− (c− 1)

∫
m̃xdH(x)

(1 + m̃x)2

= −zm̃ +

∫
(1 + (2− c)m̃x)dH(x)

(1 + m̃x)2

(181)

Thus,

∫
(c− 1)xm̃(1 + m̃x) + (1− (c− 1)m̃x)(1 + 2m̃x)

m̃2(1 + m̃x)2
dH(x)

=

∫
−(c− 1)(xm̃)2 + 1 + 2m̃x

(1 + m̃x)2
dH(x)

= zm̃ +

∫
cm̃xdH(x)

(1 + m̃x)2

(182)

so that (7) is equivalent to

∫
xdH(x)

(
zm̃ +

∫
cm̃x

(1 + m̃x)2

)
≥
∫
xdH(x)

1 + m̃x
(183)

It is straightforward to show that this inequality holds as identify in the limit as c→∞.
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We can rewrite

(c− 1)

∫
m̃xdH(x)

(1 + m̃x)
=

∫
dH(x)

(1 + m̃x)
− zm̃ . (184)

as

c− 1 + zm̃− c
∫

dH(x)

(1 + m̃x)
= 0 . (185)

When c→∞, m̃→ 0 and we get

1− c−1 + c−1zm̃−
∫

(1− m̃x+ m̃2x2)dH(x) ≈ 0 . (186)

Furthermore, optimal z = c y for some y > 0. Substituting m = ac−1 + bc−2 gives

−c−1 + c−1ycac−1 + E[x](ac−1 + bc−2)− E[x2]a2c−2 = 0 (187)

implying

a = (E[x] + y)−1 ,

and

E[x]b− E[x2](E[x] + y)−2 = 0

so that

b = E[x2]E[x]−1(E[x] + y)−2 .
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Thus,

∫
xdH(x)

(
zm̃ +

∫
cm̃x

(1 + m̃x)2

)
−
∫
xdH(x)

1 + m̃x

= E[x]

(
z(ac−1 + bc−2) +

∫
c(ac−1 + bc−2)x(1− 2m̃x− (m̃x)2 + 4(m̃x)2)

)
−
∫
xdH(x)(1− m̃x+ (m̃x)2) + O(c−3)

= E[x]

(
cy(ac−1 + bc−2) +

∫
(a+ bc−1)(x− 2(ac−1 + bc−2)x2 + 3(ac−1)2x3)

)
−
∫
dH(x)(x− (ac−1 + bc−2)x2 + (ac−1)2x3) + O(c−3)

= E[x]byc−1 + bE[x]2c−1 − 2E[x]a2c−1E[x2] + ac−1E[x2] + O(c−2)

= E[x]E[x2]E[x]−1(E[x] + y)−2yc−1 + E[x2]E[x]−1(E[x] + y)−2E[x]2c−1

− 2E[x](E[x] + y)−2c−1E[x2] + (E[x] + y)−1c−1E[x2] + O(c−2)

=
2E[x2]y

(E[x] + y)2
> 0 .

(188)

Thus complete the proof, it suffices to show that the function −1/m̃ is concave in c.

Differentiating (185) with respect to c, we get

m̃′(c) = −
∫

m̃x

1 + m̃x
dH(x)/(z + c

∫
xdH(x)

(1 + m̃x)2
) , (189)

and

m̃′′(c) =
2c
∫ x2(m̃′)2dH(x)

(1+m̃x)3
− 2

∫ m̃′xdH(x)
(1+m̃x)2

z + c
∫ xdH(x)

(1+m̃x)2

. (190)

Our goal is to show that −1/m̃ is concave, which is equivalent to the inequality

m̃′′(c)m̃(c) < 2 (m̃′)2 . (191)
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Substituting (189) and (190), we can rewrite the desired inequality as

c(−m̃′)
∫

x2dH(x)

(1 + m̃x)3
+

xdH(x)

(1 + m̃x)2
<

x

(1 + m̃x)
(192)

which is equivalent to

c(−m̃′)
∫

x2dH(x)

(1 + m̃x)3
<

∫
m̃x2

(1 + m̃x)2
(193)

From (189) we get

−cm̃′(c) ≤
∫

m̃x

1 + m̃x
dH(x)/

∫
xdH(x)

(1 + m̃x)2
. (194)

and hence the desired inequality (193) holds if

∫
x

1 + m̃x
dH(x)

∫
x2dH(x)

(1 + m̃x)3
<

∫
x2

(1 + m̃x)2

∫
xdH(x)

(1 + m̃x)2
(195)

Changing the measure to x
1+m̃x

dH(x)/
∫

x
1+m̃x

dH(x), we can rewrite it as

E[
x

(1 + m̃x)2
] ≤ E[

x

(1 + m̃x)
]E[

1

(1 + m̃x)
] ,

which follows because the function x
(1+m̃x)

is monotone increasing while 1
(1+m̃x)

is monotone

decreasing in x.

E Linear Kitchen Sink

Proof of Proposition 8. In this case,

StS
′
t = Ω′GtG

′
tΩ (196)
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and hence, defining

Ψ̂G =
1

T

∑
t

GtG
′
t , (197)

we get that

Ψ̂ = T−1
∑
t

StS
′
t = Ω′Ψ̂G Ω (198)

and hence

β̂(z) = (zI + Ω′Ψ̂G Ω)−1Ω′Xt, Xt =
1

T

∑
t

GtRt+1 . (199)

while the portfolio strategy is given by

π̂t(z) = β̂(z)′Ω′Gt = X ′tΩ(zI + Ω′Ψ̂G Ω)−1Ω′Gt (200)

We now make the following observation.

Lemma 15 When P →∞, we have with probability one

Ω(zI + Ω′Ψ̂G Ω)−1Ω′ → (zI + Ψ̂G)−1 (201)

Proof. Without loss of generality, we assume that Ψ̂G is non-degenerate. Let Ω̃ = (Ψ̂G)1/2Ω.

Then, the columns of Ω̃ are independent, identically distributed 15-dimensional Gaussian

vectors, ω̃i ∼ N(0, Ψ̂G). Therefore,

(Ψ̂G)1/2Ω(zI + Ω′Ψ̂G Ω)−1Ω′(Ψ̂G)1/2 = Ω̃(zI + Ω̃′Ω̃)−1Ω̃′ (202)
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By the Woodbury matrix identity,

(zI + Ω̃′Ω̃)−1 = z−1I − z−2Ω̃′(I + z−1Ω̃Ω̃′)−1Ω̃ (203)

We have by the law of large numbers that

Q = Ω̃Ω̃′ → Ψ̂G (204)

almost surely. Therefore,

Ω̃(zI+Ω̃′Ω̃)−1Ω̃′ = z−1Q − z−2Q(I+z−1Q)−1Q → z−1Ψ̂G− z−2Ψ̂G(I+z−1Ψ̂G)−1Ψ̂G (205)

almost surely. By direct calculation, this expression coincides with Ψ̂
1/2
G (zI + Ψ̂G)−1Ψ̂

1/2
G .

The proof is complete. �

The proof is complete. �

F Discussion of Related Literature

Formulas of Propositions 2 and 3 have been established in papers on random matrix theory,

with Proposition 2 going back to Ledoit and Péché (2011). Hastie et al. (2019) prove an

analog of Proposition 3 allowing for arbitrary β and expressing all quantities in terms of

the distribution of projections of β onto the eigenvectors of Ψ (see also Wu and Xu, 2020).

Furthermore, they establish non-asymptotic bounds on the rate of convergence. However,

both Hastie et al. (2019) and Wu and Xu (2020) require that Ψ is strictly positive definite.

By contrast, in our data analysis, we find that Ψ is close to degenerate. Richards et al.

(2021) also allow for more general β structures and Ψ matrices, but require that Xt be i.i.d.

Gaussian and Dobriban and Wager (2018) require Xt be i.i.d. This is clearly not applicable

to the RFFs used in our empirical analysis (or any other nonlinear signal transformations).
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In contrast to these papers, we establish our results under much weaker conditions on the

distribution ofXi,t across i: The Lindenberg condition of Assumption 2. This is important for

practical applications, where neither the independence of Xt nor equality (or boundedness)

of their higher moments can be guaranteed.

G Additional Exhibits
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Panel E: Information Ratio Panel F: Alpha t-statistic
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Figure 12: Out-of-sample Market Timing Performance With 60-month Training Window

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is T = 60 months and predictor count P (or cT ) ranges from 2 to 12,000

using a range of P . Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 2.
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Panel C: Expected Return Panel D: Volatility
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Figure 13: Out-of-sample Market Timing Performance With 120-month Training Window

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is T = 120 months and predictor count P (or cT ) ranges from 2 to 12,000

using a range of P . Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 2.



Panel A: R2 Panel B: ‖β̂‖
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Figure 14: Out-of-sample Market Timing Performance With Un-standardized Returns

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2 to 12,000

using a range of P . Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 2.

In contrast to our main analysis, returns are not volatility-standardized in this figure.
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Panel C: Expected Return Panel D: Volatility
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Figure 15: Out-of-sample Market Timing Performance With Bandwidth γ = 1

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2 to 12,000

using a range of P . Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 1.
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Figure 16: Out-of-sample Market Timing Performance With Bandwidth γ = 0.5

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2 to 12,000

using a range of P . Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with γ = 0.5.
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