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We increasingly live our lives under constant digital surveillance. Perfect privacy is

rarely an option, but neither (for the most part) do our actions appear on the front page

of the New York Times. The reality is somewhere in between, and our behavior might

respond accordingly. This paper is focused on the privacy elasticity of behavior: What

is the percentage change in a behavioral outcome in response to a one-percent change in

privacy?

Elasticity is a fundamental concept in economics, and private versus public behavior has

long been studied by economists. However, to the best of our knowledge, the combination—

elasticity with respect to privacy, or simply privacy elasticity—has been all but absent from

economists’ vocabulary. The reason may be the lack of a standardized way for economists

to think about, conceptualize, and quantify intermediate privacy levels. Indeed, what does

a “one-percent change in privacy” even mean?

Our first contribution is to propose an answer to this question, and to derive from it

a workable definition of privacy elasticity. Our second contribution is to demonstrate how

such privacy elasticity can be empirically estimated.

Mirroring these two contributions, the paper consists of two main sections, followed by

a concluding discussion. In Section 1 we conceptualize privacy. We start by importing a

continuous, standardized measure of privacy guarantees developed by computer scientists:

ϵ-differential privacy (Dwork et al., 2006a). This measure is being widely adopted, including

in recent high-profile deployments at the US Census (Dajani et al., 2017), Apple (Apple

Differential Privacy Team, 2014), and Google (Erlingsson, Pihur and Korolova, 2014; Fanti,

Pihur and Erlingsson, 2016).

Intuitively, differential privacy protects the privacy of individual data elements by adding

noise to any record or publication of either the data itself or statistics based it. This noise is

guaranteed to provide a provable upper bound on the ratio between an observer’s posterior

beliefs and what they would have been if any one data element were actually a completely

different value. Differential privacy thus provides a standardized, portable, and readily

measurable privacy parameter: the upper bound on this ratio, parametrized as eϵ, with

ϵ ≥ 0. When ϵ = 0, the ratio is 1 and privacy is complete. As ϵ increases, the noisy

output—and hence the public signal provided by the individual’s data—can be increasingly
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informative.1

After reviewing the definition of differential privacy, in the rest of Section 1 we discuss

some basic properties of the notion and, importantly, interpret the meaning of a “one-percent

change in privacy.” We then derive the implied formal definition of privacy elasticity. We

conclude the section with examples of how differential privacy is being currently applied

by major tech firms, who already use ϵ to both quantify the level of privacy guaranteed to

product users and, importantly, to communicate that privacy level to the public. In such

real-world settings, the notion of privacy elasticity may be readily applied as a useful tool.

In Section 2 we illustrate this applicability, step by step and on a much smaller scale, in

a controlled lab environment. We run an experiment where we exogenously vary the privacy

parameter, eϵ, to demonstrate how one might estimate the privacy elasticity of economic

behavior in one particular setting. We focus on a public-good game—a setting that has

been extensively studied in the lab as an important example of market failure. Importantly,

motivated by the idea that making individual contributions public may reduce free riding,

the public-good example has been extensively studied in the lab under different privacy

conditions. We build on past experimental designs that mostly focused on binary private-

versus-public conditions. However, armed with a continuous privacy measure from Section 1,

we can go beyond past experiments, and estimate the change in contributions resulting from

marginal privacy changes. We use these estimates to estimate, to the best of our knowledge

for the first time, the privacy elasticity of contributions to the public good.

As explained in Section 2, in our experiment (N = 328 participants × 7 rounds = 2, 296

observations), we exogenously vary both the price of contribution—the amount one has to

forgo to generate $1 in others’ takeaway money—and the level of privacy protection, eϵ,

of a public announcement of said contribution. We vary the former between subjects and

1Abowd and Schmutte (2019) lament that “our discipline has ceded one of the most important debates
of the information age to computer science,” and report (p. 174):

Privacy-preserving data analysis is barely known outside of computer science. A search for
“differential privacy” in JSTOR’s complete economics collection through December 2017 found
five articles. The same query for statistics journals found six. A search of the ACM Digital
Library, the repository for the vast majority of refereed conference proceedings in computer
science, for the same quoted keyword found 47,100 results.

By basing our proposed definition of privacy elasticity on differential privacy, we hope to also contribute to
remedying this situation, and help bring more economists into this important debate.
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the latter both between and within subjects. We estimate an average price elasticity of

contribution at −0.23 (S.E. = 0.07), well within the range of estimates from comparable

past experiments. In addition, we estimate an average privacy elasticity of contribution

(more precisely, a privacy-loss elasticity of contribution over an arguably plausible range of

eϵ) at 0.07 (S.E. = 0.01). This allows us to compare the monetary-contribution response to

privacy against the monetary-contribution response to other variables—such as price in our

experiment, and income and prices in other studies.

The main insight behind this paper is that the theoretical toolkit of differential privacy

can be rather straightforwardly embedded also in empirical economic analysis. This toolkit,

which is becoming the industry standard for protecting privacy, is also a tool for quantifying

privacy (or privacy loss), allowing the study of privacy elasticity. In addition, by providing a

standardized continuum of formal privacy-protection levels with a natural economic interpre-

tation, this toolkit can be readily imported into the economics lab and—in the future—the

field, for studying the behavioral response to changes on the private-public continuum. In

our concluding discussion in Section 3 we outline some of the implications of this proposed

notion of privacy elasticity.

Finally, this paper may help bring closer several currently mostly disjoint literatures in

economics that investigate how privacy can affect behavior. Theoretically, the traditional

binary distinction between public and private knowledge (e.g., about an individual’s type),

which does not readily lend itself to gradual privacy changes, has often been mitigated by

introducing various noisy signals. More recently, models of behavior directly integrating

privacy considerations—e.g., models of prosocial behavior—introduce a continuous visibility

parameter into utility functions. Yet both types of models typically avoid committing to a

specific, standardized interpretation of gradual privacy changes, that could be measured and

applied across models and contexts.2

Empirically, past work in economics that studies changes in behavior under different pri-

vacy conditions is, too, mostly focused on either a binary 0/1 privacy notion or an empirical

2For example, Bénabou and Tirole’s (2006) model introduces a parameter x, which is informally inter-
preted as measuring “the visibility or salience of [people’s] actions: probability that it will be observed by
others, number of people who will hear about it, length of time during which the record will be kept, etc.”
(p. 1656).
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continuous privacy measure that is not standardized and is therefore not portable across

contexts. In particular, there is a substantial body of experimental findings, but it is mostly

from experiments with two extreme conditions: full (or high) privacy versus full (or high)

visibility.3 There is also an observational literature that uses continuous empirical measures

of visibility to study a range of economic behaviors.4 However, as these empirical measures

are not based on formal theory, they too are often context-dependent and are not easily

linked to either existing theoretical models or other existing empirical work.

1 Privacy Elasticity: Definition and Interpretation

1.1 Differential Privacy

Differential privacy provides a mathematically provable guarantee of privacy protection.

This guarantee is typically achieved by systematically adding noise to sensitive data, to

computations done on such data, or to the published results of such computations. The

guarantee given protects each individual participating in a dataset against inferences made

by an observer of the perturbed output.

We briefly introduce differential privacy; see Dwork and Roth (2014) for a textbook treat-

ment, Heffetz and Ligett (2014) for an introduction for empirical researchers, and the current

paper’s Section 2 below for a concrete, fully worked-out example application. Consider a

randomized function M , that is, a function that rather than behaving deterministically, can

have output that is drawn from a distribution; that distribution depends on M ’s input (oth-

3In the lab, for instance, in addition to the public-good-game experiments on which we build our own ex-
periment and which we discuss in section 2.1 below, dictator-game participants give less in double-blind trials
(Hoffman, McCabe and Smith, 1996) and when given plausible deniability of bad behavior (Dana, Weber and
Kuang, 2007; Andreoni and Bernheim, 2009)—and give more when physically facing the recipient (Bohnet
and Frey, 1999); and charitable contributions are affected by the coarseness of information (Harbaugh, 1998)
and increase by the presence of an audience (Soetevent, 2005) and by contribution visibility (Ariely, Bracha
and Meier, 2009). Outside the lab, voter turnout increases when voting records are publicized among family
or neighbors (Gerber, Green and Larimer, 2008); enrollment rates for residential energy-conservation pro-
grams increase when signers’ identities are revealed (Yoeli et al., 2013); and high-school students adhere
more to educational-investment norms when choices are revealed to peers (Bursztyn and Jensen, 2015).

4Heffetz (2018) reviews eight survey-based visibility measures (of spending by consumers) used in past
work to study, e.g., charitable donations and other behaviors. These empirical measures conceptualize
visibility as, e.g., the length of time until a behavior (spending) is noticed, or the closeness of interaction
needed for it to be noticed.
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erwise, M is a trivial function). M takes as input a data element, interpreted as a single

individual’s data profile, from the domain X of all possible (realized as well as hypothetical)

such profiles. M ’s randomized output is an element of some range R, interpreted as the

published signal about the individual’s data profile. M is ϵ-locally differentially private5

(Dwork et al., 2006a) if, for any two elements x, x′ ∈ X—that is, for any two conceivable

data profiles of an individual—and all possible realizations of the signal r ∈ R,

Pr[M(x) = r]

Pr[M(x′) = r]
≤ eϵ.

Intuitively, the above definition constrains the function M to produce nearly the same dis-

tribution over outputs, no matter what value is input. The extent to which M ’s output

is allowed to depend on its input is controlled by the bound eϵ, with ϵ ≥ 0. Notice that

when ϵ = 0, then eϵ = 1 and the function M must induce identical output distributions no

matter what individual data is input, providing perfect privacy, but a perfectly uninforma-

tive signal. When ϵ = ∞, M is unconstrained, providing no privacy guarantee, yet allowing

a perfectly informative signal. In between, increasingly smaller values of ϵ correspond to

stronger privacy guarantees, by making the mechanism’s behavior less and less sensitive to

the underlying individual data.

As mentioned, the domain X can be thought of as any sensitive personal data that an

individual may not want revealed to, e.g., researchers, the government, Silicon Valley com-

panies, or the public at large. At low eϵ values, an individual participating in a differentially

private computation—function, mechanism, or platform—enjoys a guarantee that nearly the

same distribution over revealed outputs would have been induced had her (actual) personal

data been replaced with any other (hypothetical) data from X . This protective cloak of

noise necessarily sacrifices some degree of accuracy of the outputs, but in a manner that is

5In other settings, where the goal is to output only aggregate statistics of a database (e.g., the average
contribution to the public good in our experiment in Section 2) rather than data that pertains to each
individual (e.g., each participant ’s contribution in our experiment), a variant of this definition can be used
where the input to the function M is the entire database, rather than the data of just one individual. The
model we consider here is generally known as the local model of differential privacy, with this other variant
known as the centralized model. Importantly, in both models the guarantee is for differential privacy: the
function M is not restricted in what it could reveal about the world—and hence about individuals—as long
as it masks differences in any individual’s profile.
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transparent and quantifiable.

The local differential privacy model gives worst-case guarantees over both all possible data

elements x and all possible realizations of the signal r. It may seem unnecessary to protect

against what could amount to extremely unlikely events. Indeed, starting with Dwork et al.

(2006b), a substantial literature relaxes the constraint over signals, allowing for failures of the

differential privacy guarantee for extremely unlikely values of r (say, those with probability

e−32). On the other hand, relaxing the worst-case guarantee over unlikely values of x would

remove privacy protections for exactly those who often need them most—those whose data

is unusual.

The differential privacy literature is, intentionally, mostly mute on the issue of how ϵ

should be selected—this is viewed as a question for society or for policymakers, not for

theoretical computer scientists. However, a tradition has emerged of discussing values of

ϵ = 0.1 or 0.2 as “reasonable,” and it is common in the literature to prove theorems that

only hold for ϵ < 1. In contrast, real-world deployments of differential privacy to date have

at times employed much larger ϵ, often by orders of magnitude.6 This gap between theory

and practice highlights the need for research that will help estimate the behavioral impact

of changes in eϵ.7

1.2 Privacy Elasticity

In order to discuss privacy elasticity—the percent increase in another variable in response

to a one-percent change in privacy—we need a privacy metric where small, multiplicative

changes are meaningful. We propose using the bound eϵ on the probability ratio in the

differential privacy definition above as this metric.

To interpret a one-percent increase in this bound, consider the following scenario. An

6For example, we discuss below a deployment of differential privacy by Apple with an ϵ of 2 times the
number of days a product is in use, and research revealed that Apple was using an ϵ of 16 per day in
another deployment of differential privacy (Tang et al., 2017); test products from the 2018 Census End-
to-End Test were released with ϵ = 0.25 (U.S. Census Bureau, 2019), but the final ϵ selected for the 2020
Census’s Disclosure Avoidance System was 19.61 (https://www.census.gov/newsroom/press-releases/
2021/2020-census-key-parameters.html). Our experiment in Section 2 uses privacy conditions roughly
corresponding with ϵ = 0, 0.5, 1.5, 2.5, 3.5, 5.3,∞.

7At the same time, this gap may also reflect a high degree of privacy illiteracy among the public, possibly
accompanied by little current public sensitivity to—and behavioral impact of—changes in eϵ, at least in some
important real-world settings. We return to this point below.
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individual participates in an activity through some platform. Her activity profile x can

affect a signal r about her. Example activities include interacting with healthcare providers,

taking potentially-tracked online actions such as browsing the web or using a mobile app,

responding to a government survey, or contributing to a public good (in the real world or

in a lab experiment). The signal could be some message about her that is visible to others,

or merely her personal record in some database that she does not control and that someone

may access.

The individual takes her participation as given, and chooses an action profile. There are

actions that she would prefer to take under absolute privacy protection. However, she is

concerned that certain actions, if (and only if) recorded, monitored, tracked, or revealed,

might increase the probability of some bad outcome.8 For example, if her action profile

x became known to certain individuals or institutions, she might later be denied medical

insurance, face higher prices, be targeted online (legally or malignly), be shamed or merely

embarrassed by her sensitive behavior or survey responses, or suffer social repercussions due

to being perceived as not sufficiently generous or prosocial.

Consider optimally positive-looking actions: actions that, given the platform’s privacy

mechanism, minimize the chance of some such bad outcome occurring. Examples include

optimally positive-looking browsing behavior, mobile-app use, survey responses, and chari-

table contributions. Assume a baseline, unavoidable probability q of the bad outcome under

such optimally looking actions. Suppose the platform is run with ϵ-differential privacy. Then

the individual is guaranteed that no matter what actions she takes, the probability of the

bad outcome increases by at most the multiplicative factor eϵ.9

A one-percent increase in privacy loss in this scenario means a one-percent increase in eϵ

used by the platform. This in turn means that the bound on the chance of any output—i.e.,

a recorded/advertised signal—and thus of any outcome—e.g., being denied insurance, or

8More generally, she is concerned that the mere revelation or tracking of certain actions may affect the
distribution over future states of the world, independently of any direct effects of the same actions taken
under a full privacy guarantee.

9Formally, q = minx′ Pr [bad outcome|x′]. The differentially private mechanism guarantees that ∀x,
Pr [bad outcome|x] ≤ eϵq. To see this, recall that M : X → R is a probabilistic function from action profiles
to signals, and let F : R → T be a probabilistic function from signals to outcomes (i.e., to states of the
world). If M is differentially private then ∀x, x′, for any bad outcome t ∈ T , observe that Pr[F (M(x)) =
t] =

∑
r∈R Pr[M(x) = r] Pr[F (r) = t] ≤

∑
r∈R eϵ Pr[M(x′) = r] Pr[F (r) = t] = eϵ Pr[F (M(x′)) = t].
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merely getting funny looks from fellow lab participants—also increases by one percent, from

eϵq to 1.01eϵq. The bound eϵ is thus a privacy metric where small, multiplicative changes

are meaningful.

The implied concept of privacy elasticity has a straightforward, if wordy, interpretation.

The elasticity of some variable y with respect to the privacy metric eϵ, defined as

privacy elasticity =
∂ log y

∂ log eϵ
≡ ∂ log y

∂ϵ
,

is the percentage change in y in response to a one-percent change in the upper bound on the

ratio between the probability of any outcome induced by the privacy mechanism and what

it would have been if an individual’s action profile were actually a completely different one.

1.3 Potential Applications

In the next section, we apply a differentially private mechanism in the lab and estimate pri-

vacy elasticity as defined above by exogenously varying the mechanism’s ϵ. For the economic

variable of interest y we use the fraction of a $10 endowment that lab participants choose to

contribute to a public good. Possible outcomes (induced by the privacy mechanism) that a

participant might wish to avoid include other participants making negative inferences about

her due to an advertised signal that suggests that she made a low contribution, i.e., engaged

in free riding. Consistent with past studies, we find that changing the privacy condition

from full to no privacy—in our experiment, ϵ = 0 versus ϵ = ∞—causes a sizeable behav-

ioral response in y; going beyond past work, we further find, and estimate, a behavioral

responsiveness to intermediate levels of ϵ.

Outside the lab, the extremes of full and no privacy are rarely an option. In the rest

of this section we review real-world deployments of differential privacy, and discuss how the

notion of privacy elasticity could be applied in those settings.

Differential privacy has rapidly gained traction as an industry-wide standard. For large

tech companies, differential privacy can make it possible to obtain insights from data where

ethical concerns, internal data-protection procedures, legal restrictions, or reputational con-

siderations might otherwise limit its collection, sharing, or analysis. These are also settings
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(e.g., collecting data about inputs typed into phones or computers) where individuals might

plausibly modify their behavior or, alternatively, opt out of data sharing, if they felt they

were being “watched” without sufficient protection. Hence, the vocabulary of privacy elas-

ticity also helps understand how what can be learned from the data might be affected by

changes in privacy guarantees.

For example, Apple Watch users have the option to use the ECG app to record their heart-

beat and to check the recording for atrial fibrillation (a form of irregular heart rhythm).10

This data is fed into the Health app on the user’s iPhone. Apple might like to know approx-

imately how many Apple Watch users in a particular geographic region are feeding ECG

data into the Health app, to help the company understand demand for such health-related

features and prioritize new feature deployments. To construct aggregate usage statistics,

Apple needs to gather usage information from individual iPhones. However, an individual

user might be concerned that by merely using the ECG app they might indicate having a

heart condition, which if revealed could potentially lead to adverse treatment by insurers,

advertisers, employers, or even potential romantic partners. Apple uses local differential

privacy to protect this information before it is gathered, and currently gathers it from users

once a day and uses ϵ = 2 per day to protect the identities of the types of health data that

a particular user monitors.11 Since Apple does not wish to know a specific user’s behavior,

but rather aggregate usage patterns, noisy individual data is sufficient.

In this setting, one economic variable of interest y1 is whether an Apple Watch user is

gathering ECG data. If changes in the privacy protection on this information could make

users less inclined to use the ECG feature, such changes could have important implications—

from making the Apple Watch a less useful product to reducing the incidence of potentially

life-saving ECG monitoring by individuals. Different stakeholders, including Apple, its reg-

ulators and competitors, law and public-policy makers, and academic researchers might all

wish to understand the privacy elasticity of such behavioral changes. Apple, for example,

would like to strike a good balance between the information it collects being useful and not

harming the appeal of its products. Another economic variable of interest y2 is whether an

10https://support.apple.com/en-il/HT208955
11https://developer.apple.com/documentation/healthkit/data_types

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
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Apple Watch user opts in or out of providing differentially private Health-related data to

Apple. If marginal changes in the privacy guarantees on this information might result in a

larger fraction of users opting out of sharing data with Apple, this could affect, e.g., Apple’s

ability to do strategic product planning.

In another example, both Google (Bittau et al., 2017) and Apple have used local differen-

tial privacy to protect and gather information about individual user web-browsing behavior.

Both companies would like to understand which websites are causing their web browsers to

crash so that the relevant bugs can be fixed or the sites can be blocked. However, concerned

that visiting certain websites might reveal sensitive or embarrassing information about them,

individuals might change their browsing behavior, or their willingness to share browsing data

with tech companies, in response to the level of browsing-information privacy guaranteed.

Thus, better understanding the privacy elasticity of behavior in these settings could be of

interest to different stakeholders.

Additional examples abound, and some of them rely on more sophisticated implemen-

tations of differential privacy than we explore in this paper. Windows has used differential

privacy to protect information that it collects from millions of Windows 10 devices about

users’ app usage (Ding, Kulkarni and Yekhanin, 2017) and to protect information that it

reveals to managers about how their employees are collaborating (for example, to see what

fraction of employees have less than 15 minutes of one-on-one time scheduled with their

manager each week).12 Other major tech companies—from Uber (Johnson et al., 2020) to

Snapchat (Pihur et al., 2018) to Salesforce (Sun et al., 2020) to Facebook to Amazon—have

built or are seeking to build and deploy tools for differentially private data analysis; and Tik-

Tok is posting job ads that describe background in differential privacy as a qualification.13

In reality, most users are likely woefully unaware of the level of differential privacy that

their sensitive data is accorded and the consequences that this might have, and hence privacy

elasticity in practice is likely to be extremely low in many settings. But as privacy literacy

rises and the use of differential privacy continues to expand, users will likely learn to adapt

12https://blogs.microsoft.com/ai-for-business/differential-privacy/
13https://research.facebook.com/blog/2020/06/protecting-privacy-in-facebook-mobility-

data-during-the-covid-19-response/

https://www.amazon.science/tag/differential-privacy

https://careers.tiktok.com/position/6995270706842110221/detail, accessed in May, 2022.
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their behavior in response to the protections their data receives.

2 Privacy Elasticity in a Public-Good Experiment

2.1 Experimental design

To demonstrate how one may go about measuring privacy elasticity, we embed a differentially

private announcement mechanism into an otherwise-standard public-good-game lab experi-

ment. Here we summarize our experimental design. For additional design details, including

discussion of why we made certain design decisions, see Appendix A. For full screenshots of

the experiment, see Appendix C.

We conducted 41 sessions of the experiment. In each session, a group of eight subjects

enters the lab and is seated in front of eight computer stations. Subjects receive identification

numbers, and are asked to stand up and introduce themselves by those numbers to all

other group members. Subjects then play seven rounds, referred to as “tasks,” of a public-

good game with their group. In each round, each subject is asked to divide a personal

endowment of $10 between a personal account and a group account, using whole-dollar

amounts. Every dollar allocated to the personal account earns one dollar for the subject.

Every dollar allocated to the group account earns an internal return of $0.3 for the subject,

and an external return of either $0.3 or $0.5, randomly varied across sessions, for each of

the seven other group members.14 Referring to the amount allocated to the group account

as contribution, a subject’s earning from a round (in $) is thus:

(10−her contribution)+0.3×her contribution+(0.3 or 0.5)× sum of others’ contributions.

Hence, when a subject contributes $1 they end up having paid (1 − internal return) to

generate (7× external return) dollars in others’ takeaway money.15

To prevent learning and reciprocity, subjects do not receive any feedback between rounds

14Varying one return while keeping the other constant is sufficient for estimating the price elasticity
of contributions (at the varied price range), while also allowing for estimating the effect of altruism on
contributions.

15The price of generating $1 in others’ takeaway money is therefore (1 − internal return)/(7 ×
external return).
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(thus the game can be seen as a one-shot game). They are informed in advance that at the

end of the experiment, one task (i.e., round) will be randomly chosen that will determine

payments for everybody in the session, in addition to receiving a $10 participation fee.

The differentially private announcement mechanism embedded in the experiment works

as follows. When subjects are informed that in the end of the experiment one round will be

randomly chosen and will determine payments, they are also informed that public announce-

ments will be made about their selected allocations in the chosen round. Each subject’s

announced allocation may or may not be the same as her actual allocation. In particular, in

each round each subject faces a probability of 1 − p that her true allocation in that round

will be announced, if the round is chosen at the end, and a probability of p that a uniformly

randomly selected whole-numbered division of the $10 will be announced instead. The prob-

ability p ∈ {0, 0.05, 0.25, 0.5, 0.75, 0.95, 1} is randomly ordered across session rounds, but is

the same in a given round for all subjects in a session.16

For clarity, announcements at the end of the experiment use two randomization devices.

If p ∈ {0.05, 0.25, 0.5, 0.75, 0.95}, each subject first spins a virtual roulette wheel, whose

pockets are numbered 1 to 20, to determine whether her selected allocation or a random

allocation will be announced. In the latter case, the subject then rolls a virtual 11-sided

die numbered 0–10, to determine that random allocation. If p = 1, the roulette step is

skipped. If p = 0, both roulette and die are skipped. Announcements are made by having

each subject’s announced allocation in the chosen round both appear on everyone’s screen

and read aloud by an experimenter while the subject stands up and faces the other subjects.

In our experiment, the sensitive data x of each individual (which, in this setting, is also

her action y), is the number of dollars that she privately chooses to contribute to the public

good in a given round. The process of transforming an individual’s actual contribution (from

the domain X = {$0, $1, . . . , $10}) into the announced noisy signal of her contribution (in

the range R = {$0, $1, . . . , $10}) is our differentially private mechanism M . Particularly,

the output of this function consists of the individual’s true contribution with probability

16Note that final payments (to all subjects) are made according to the true, rather than the announced
contributions. Therefore, given subjects’ contributions, p affects announcements but not payments. This
separation is necessary to avoid confounding preferences for privacy with preferences for money allocations.
(Otherwise, selfish decisions would become, e.g., increasingly efficient relative to prosocial decisions as p
increased; in the p = 1 extreme, any contribution would be equally efficient, having no effect on payments.)
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1 − p, and a uniformly randomly selected whole number between 0 and 10 (inclusive) with

probability p, for p ∈ {0, 0.05, 0.25, 0.5, 0.75, 0.95, 1}. To analyze the level of differential

privacy that M guarantees for a particular p, we must consider a pair of possible individual

contribution decisions x, x′ and an announced contribution r that maximizes Pr[M(x)=r]
Pr[M(x′)=r]

.

The value Pr[M(x) = r] is maximized when x = r, taking on value 1 − p + p/11. The

value is minimized for any x′ ̸= r, taking on value p/11. Thus, the maximum privacy level

guaranteed, eϵ, is 11−11p+p
p

, yielding ϵ = log 11−10p
p

. This allows us to translate values of p

into values of ϵ for our experiment: p = 0 corresponds to ϵ = ∞; p = 0.05 to ϵ ≈ 5.35;

p = 0.25 to ϵ ≈ 3.53; p = 0.5 to ϵ ≈ 2.49; p = 0.75 to ϵ ≈ 1.54; p = 0.95 to ϵ ≈ 0.46; and

p = 1 to ϵ = 0.

To ensure that subjects understand the announcements procedure, a simulated announce-

ment is held in each of the first two rounds before subjects make their actual decisions. In

each simulated announcement, each subject is randomly assigned a hypothetical allocation

(simulating their chosen allocation), and faces the same probability of “true” (simulated)

versus uniformly randomized announcement as in the actual task in that round. Subjects

then use the roulette wheel and/or die to determine their simulated announced allocation,

which is then made public, as explained above. In addition, in all rounds, right before

making allocation decisions, subjects answer a few comprehension questions.

Subjects are told at the beginning of the experiment that they will complete seven tasks,

but they do not know that they will be playing seven rounds of the same game, and hence

do not know that they will face a range of probabilities. Their decisions in the first round

are therefore independent of the probabilities in the following rounds. We can therefore

use the first-round data as between-subjects data, where probabilities are varied only across

sessions.

At the end of the experiment, one round is randomly chosen, announcements are made

and, while payments are being prepared, subjects complete a brief survey that includes psy-

chological questionnaires assessing personality traits and reputation-, altruism-, and privacy-

related preferences. Subjects are then called one by one by their identification number to

receive payment in a sealed envelope.

Our experimental design builds on, and extends, several past experiments. First, it
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is adapted from Andreoni and Bernheim (2009) to fit a public-good game, rather than a

dictator game, as the former enables a higher degree of hiding in the crowd; and to allow

privacy guarantees that are independent of subjects’ actions.17 Second, it borrows from

Andreoni and Petrie (2004) and Rege and Telle (2004), who manipulate subjects’ privacy

in a public-good game by either concealing or revealing subjects’ contributions, along with

their identities, to their group members. Finally, our design follows Goeree, Holt and Laury

(2002) in separating the monetary return from contribution to the public good into internal

and external returns.

The experiment was programmed with oTree software (Chen, Schonger and Wickens,

2016).

2.2 Experimental Results

We conducted the experiment in the Business Simulation Lab at Cornell University during

February 2019. 328 subjects (8 per session × 41 sessions; average age = 23.1, 65% women)

were recruited through an electronic subject-pool system. In total, subjects were asked

either 36 or 37 comprehension questions (up to 6 per round), to verify understanding of how

payments and announcements work. They had an average of 85.2% correct first-attempt

answers over all questions in all rounds. The experiment took up to 90 minutes to complete,

and participants earned an average of $18.1, in addition to a $10 show-up fee. (Appendix

Figure B2 graphs all contributions by all subjects in all rounds.)

Figure 1 displays subjects’ average contribution share (out of the $10 endowment) by

privacy condition, pooling across all sessions (i.e., across the two external-return conditions;

Appendix Figure B1 recreates the figure by condition). Privacy is measured in the horizontal

axis using the ϵ parameter of the differential privacy guarantee. The figure shows that

the average share of contribution increases from 30.9% under full privacy (ϵ = 0, labeled

“Private” in the figure) to 46.9% under no privacy (ϵ = ∞, labeled “Public”).

17Andreoni and Bernheim (2009) test audience effects in a dictator game, where with some probability
nature intervenes and replaces the dictator’s allocation; and the noisy allocations are later announced to
all session members. When nature intervenes, it randomizes between two of all the actions available to the
dictator. Hence, choosing one of nature’s actions gives plausible deniability, while any other action is fully
revealing.
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Figure 1: Average share of contribution by ϵ
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Notes: Capped ranges: ± standard error. N = 328 subjects × 7 rounds = 2,296 observations.

Since the average shares of contribution on the y-axis are displayed on a log scale, the

slopes represent privacy elasticities as defined in Section 1, i.e., calculated with respect to the

probability ratio eϵ. Elasticities between adjacent privacy levels starting from full privacy

(ϵ = 0) are as follows (standard errors in parentheses): 0.08 (0.17), 0.13 (0.07), −0.004 (0.07),

0.11 (0.06), 0.04 (0.03); focusing on the finite extremes of ϵ = 0 and ϵ = 5.3, we estimate an

overall average privacy elasticity of contribution at 0.07 (0.01).18 That the rightmost point

in the figure (contribution share at ϵ = ∞) is only 2.5 percentage points above, and not

statistically different from, the point immediately to its left (contribution share at ϵ = 5.3)

suggests that elasticity quickly drops towards 0 above ϵ = 5.3. (That the rightmost point is

so far below 100 percent contribution furthermore suggests that this quick drop is not due to

a ceiling effect.) Looking at all slopes, elasticity possibly starts dropping already somewhat

below ϵ = 5.3.

Table 1 presents results from OLS regressions where the dependent variable is log(1 +

amount contributed). Privacy is measured by ϵ and, aside from the extreme of no privacy

(ϵ = ∞, indicated by a dummy variable), enters linearly. Column (1) shows that on average,

18We calculate the privacy elasticity between two privacy levels as the difference in log average contribution
divided by the difference in ϵ. We calculate (non-clustered) standard errors using the delta method. (Table 1
below reports clustered S.E.’s.) Similarly, we calculate price elasticity = −0.23 (0.07) by dividing the
difference in log average contribution at the two price levels by the difference in log price (see footnote 15).

16



over our finite ϵ’s, a one-percent increase in the probability ratio eϵ entails a 0.07 (S.E. =

0.01) percentage change in contributions. This result is stable and robust across different

specifications (Columns (3)–(5)). In comparison, a one-percent increase in the price of

contribution (defined as the price of generating $1 in others’ money) entails a −0.18-to-

−0.21 (S.E. = 0.13) percentage change in contributions, however very imprecisely estimated

(and not statistically significant; Columns (2)–(4)).

Table 1: Privacy and Price Elasticities (Dep. Var.: log(1 + amount contributed))

Full Sample First Round

(1) (2) (3) (4) (5) (6)

Privacy: ϵ 0.07 0.07 0.07 0.07 0.06
(0.01) (0.01) (0.01) (0.01) (0.03)

ϵ = ∞ 0.41 0.41 0.41 0.41 0.44
(0.05) (0.05) (0.05) (0.05) (0.13)

log(Price) −0.18 −0.18 −0.21 −0.09
(0.13) (0.13) (0.13) (0.15)

Constant 1.09 1.05 0.85 0.29 1.48 1.43
(0.04) (0.17) (0.16) (0.48) (0.02) (0.67)

Psychological measures Yes Yes

Demographic controls Yes Yes

Individual fixed effects Yes

N observations 2,296 2,296 2,296 2,296 2,296 328
N sessions 41 41 41 41 41 41
R2 0.03 0.00 0.04 0.19 0.73 0.23

OLS regressions. Dependent variable: log(1 + amount contributed). Standard
errors in parentheses, clustered at the session level. Column (6) includes only the
first round of each session; all other columns include the full sample. Psychologi-
cal measures: normalized items from the Big Five Personality Traits questionnaire
(John and Srivastava, 1999), Brief Fear of Negative Evaluation Scale (Leary, 1983),
Compassionate Love For Strangers-Humanity Scale (Sprecher and Fehr, 2005), and
Privacy Orientation Scale (Baruh and Cemalcılar, 2014). Demographic controls:
age, gender, Hispanic origin or descent, race, education, economic and social atti-
tudes, and political affiliation. Missing demographic data is represented by dummy
variables.

Importantly, the privacy elasticity that we observe is not a mere reaction of subjects to

changes in privacy levels. Column (6) reruns the specification in Column (4) based on only
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the first round of each session, during which subjects did not know that they might (and,

in fact, would) face other privacy levels. Column (6)’s privacy-elasticity point estimate—a

between-subjects estimate—is close, at 0.06 (S.E. = 0.03), to the within-subject estimates

in the other columns, however it is estimated much less precisely. (The price elasticity of

contribution in the first round is estimated still less precisely; and its point estimate drops.)19

Finally, our privacy-elasticity estimate can be put in context. The past few decades have

provided several dozen estimates of income and price elasticities of contributions from lab,

field, survey, and administrative data (summarized in Appendix Table B1). For example,

Goeree, Holt and Laury (2002), whose experimental design we follow, report estimates im-

plying price elasticity = −0.34 (0.10). This and our estimates above suggest that in this

experimental paradigm, contributions are similarly affected by a one-percent increase in price

and a 3–5 percent increase in privacy. For another example, the range of six income-elasticity

estimates from charitable-contribution lab experiments starting with Eckel and Grossman

(2003), 0.60–0.99 (0.03–0.17), suggests a similar proportional effect on contributions of a

one-percent increase in income in these studies and a 9–14-percent decrease in privacy in our

study.

At the same time, existing income- and price-elasticity estimates vary dramatically across

contexts and methods. This highlights the need to estimate elasticities—including privacy

elasticity—in a variety of settings.

3 Conclusion

With the ever-expanding collection and storage of personal data, privacy considerations and

their potential effects on behavior become increasingly important. Differential privacy—

which is quickly becoming the consensus, state-of-the-art tool for privacy protection in large

data systems—offers a natural tool for quantifying marginal changes in privacy guarantees.

It thus enables estimating the privacy elasticity of economic outcomes.

Admittedly, at present, privacy illiteracy appears to be the norm, and privacy preferences

19Running the specification in Column (4) of Table 1 separately for each round (see Appendix Table B2)
results in fairly similar privacy-elasticity estimates.

18



in the field appear easily malleable (Acquisti, John and Loewenstein, 2013). It is therefore

not implausible that in many important real-world settings, at present, the actual privacy

elasticity of behavior is rather low. This, however, may reflect current systems and laws

more than fundamental individual preferences. As technologies, awareness, and regulation

evolve, privacy elasticity may dramatically increase.

Abowd and Schmutte (2019) discuss the tradeoff faced by statistical agencies between

protecting respondent privacy—by injecting more noise into published statistics—and pub-

lishing accurate statistics—by minimizing said noise. They advocate for work that will help

explore optimal privacy-accuracy tradeoffs. We warmly embrace such an agenda. Our work,

however, presents an important departure from their model. While the privacy-accuracy

tradeoff they highlight varies the value of ϵ holding the underlying data fixed, in our ex-

periment variation in ϵ is the cause of changes in individuals’ behavior and thus in their

private data. In any of the many settings in which privacy concerns might drive selective

participation or changes in behavior, the tradeoff faced by policymakers is more complex

than selecting ϵ along a fixed tradeoff curve. Unless behavior is perfectly privacy-inelastic

both now and, importantly, well into the future, the choice of ϵ could have complex effects

on the data gathered, its accuracy and its representativeness.
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