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ABSTRACT

This paper quantifies and decomposes recent trends in U.S. PM2.5 disparities from the electricity 
sector using a high-resolution pollution transport model. Between 2000-2018, PM2.5 
concentrations from electricity fell by 89% for the average individual, more than double the 
decline rate in overall U.S. ambient PM2.5 concentrations. Across racial/ethnic groups, we detect 
a dramatic convergence: since 2000, the Black-White PM2.5 disparity from electricity has 
narrowed by 95% and the Hispanic-White PM2.5 disparity has narrowed by 93%, though these 
disparities still exist in 2018. A decomposition reveals nearly all of these disparity trends can be 
attributed roughly equally to improvements in emissions intensities and compositional changes in 
electric generators, with small contributions from scale and residential location changes. This 
suggests both local air pollution policies and recent coal-to-natural gas fuel switching have played 
major roles in reducing U.S. racial/ethnic pollution disparities from electricity. While we detect 
similarly large PM2.5 improvements for the average low and high income individual, PM2.5 
disparities by income are relatively small, with little change over time.
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1 Introduction

Over the last two decades, the U.S. electricity sector has undergone two dramatic transfor-

mations. Between 2000-2018, the emissions intensity for air pollution, defined as emissions

per output, has decreased, most notably for coal-fired electricity. As Figure 1a shows, emis-

sions intensity from coal in 2018 fell to one-half of its 2000 value for nitrogen oxides (NOx)

and one-quarter of its 2000 value for sulfur dioxide (SO2).
1 During this same period, the

share of fossil-fuel electricity produced from coal has fallen while the share from natural gas

has risen, with shares of the two fuels crossing in 2017, as shown in Figure 1b.

Figure 1: U.S. electricity air pollution emissions intensities and fuel shares over time

(a) Emissions intensities (b) Fuel shares

Notes: Panel (a) shows 2000-2018 annual emissions intensity (in lbs per mwh) averaged across fossil fuel-
fired electricity generating units by coal, natural gas, and oil for NOx (dashed lines) and SO2 (solid lines).
Panel (b) shows share of U.S. electricity generation from fossil fuels by coal, natural gas, and oil.

These two developments have potentially important consequences for local air pollution

concentrations and its distribution across the country. The U.S. electricity sector is a major

1Similar declining emissions intensity trends have been detected from U.S. manufacturing (Levinson,
2009; Shapiro and Walker, 2018).
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source of criteria air pollution:2 in 2000, electricity contributed 18% of overall U.S. ambient

PM2.5 concentrations. Its pollution is also unevenly distributed across demographic groups

(EPA, 2018; Thind et al., 2019), a pattern that is broadly consistent with an extensive

environmental justice literature documenting higher air pollution concentrations in locations

where individuals from minority groups, and/or with low income reside.3

A question of growing concern is whether such pollution disparities from U.S. electricity

have changed over time and if so, along which demographic dimensions and why. Pollution

disparities depend on where power plants are located, where households from each demo-

graphic group reside, and the pollution transport patterns that disperse pollution from plants

onto households. Trends in pollution disparities therefore depend on how the spatial distri-

butions of each of these component evolve over time. In particular, the aggregate emissions

intensity improvements and fuel switching shown in Figure 1 are unlikely to be evenly dis-

tributed across the country. For example, nonattainment counties regulated under the US

Clean Air Act, which has been attributed with emissions intensity improvements in man-

ufacturing (Shapiro and Walker, 2018), tend to be spatially concentrated in certain parts

of the country. Likewise, local variation in coal and natural gas prices should induce more

coal-to-natural gas switching in some places than others.

An understanding of these drivers can inform future policies. For example, reduced air

pollution disparities due to improvements in emissions intensities would suggest a reliance on

local air pollution policies, such as the U.S. Clean Air Act, for reducing future air pollution

disparities. Similarly, if recent coal-to-natural gas fuel switching also improved air pollution

disparities, future climate policies that similarly make carbon-intensive fuels more expensive

may jointly reduce GHG emissions and local air pollution disparities, as GHGs and local

pollutants are often co-emitted. Indeed, both types policies have been shown to reduce air

pollution disparities in other settings. Currie, Voorheis and Walker (2021) demonstrate that

60% of the recent convergence in ambient air pollution disparity between Black and White

households can be attributed to the U.S. Clean Air Act. In California, Hernandez-Cortes and

Meng (2022) find that the state’s GHG cap-and-trade program reduced local air pollution

disparities from industrial sources.

This paper quantifies U.S. PM2.5 concentration trends from electricity during 2000-2018

by demographic group. Specifically, we convert annual air pollution emissions from the near-

universe of U.S. fossil fuel electricity generating units into resulting PM2.5 concentrations for

2The US EPA considers the following as criteria pollutants: ground-level ozone, particulate matter, carbon
monoxide, lead, sulfur dioxide, and nitrogen dioxide.

3Disparities across various air pollutants in the U.S. have been documented through case studies (Bullard,
2000; Bowen, 2002; Ringquist, 2005; Mohai, Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019)
and population-level studies (Colmer et al., 2020; Currie, Voorheis and Walker, 2021).
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the average individual in each demographic group using a high spatial resolution pollution

transport model.4 We then decompose pollution disparity trends into changes in the overall

scale of fossil fuel electricity generation, emissions intensities, the composition of generat-

ing units - which incorporates fuel switching within generators and the entry and exit of

generators - and where individuals of different demographic groups reside.

Our analysis reveals several new facts. First, PM2.5 concentrations from U.S. electricity

generation fell by 89% for the average U.S. individual during 2000-2018, more than double

the rate of decline in overall U.S. ambient PM2.5 concentrations (from all pollution sources)

during the same period. To put this in context, in 2000 PM2.5 concentrations from electricity

was 18% of U.S. ambient PM2.5 concentrations; in 2018, that percentage was 4%. This

large pollution decline was shared across racial/ethnic groups: PM2.5 concentrations from

electricity fell by 90%, 86%, and 89%, for the average Black, Hispanic, White individual,

respectively. Second, the dispersion in PM2.5 concentrations across racial/ethnic groups

has converged dramatically. While the average Black individual consistently experienced

higher PM2.5 concentrations than the average White individual, this PM2.5 gap fell from 0.75

to 0.036 µ/m3/person during 2000-2018, a drop of 95%. The average Hispanic individual

consistently experienced lower PM2.5 concentrations than the average White individual, and

this gap has narrowed by 93% from -1.07 to -0.07 µ/m3/person during this period. These

disparities, however, still exist in 2018. Third, in a decomposition exercise, nearly all of

the trends in Black-White and Hispanic-White PM2.5 disparities can be attributed to both

changes in local pollution emissions intensities and the composition of generating units, with

a rough split between these two drivers. Neither scale changes nor changes in where people

live account for much of the overall trends in PM2.5 disparities. Fourth, PM2.5 concentrations

for the average bottom and top decile individual fell by 88% and 91%, respectively, during

this period. However, in contrast to racial/ethnic disparities, PM2.5 differences by income

are relatively small and have changed little since 2000.

Our analysis combines two methodological approaches. Any attribution of the origins

of pollution concentrations must account for how pollution from emitting facilities (sources)

alters concentrations in exposed locations (receptors). The conventional approach is for

researchers to assume simple spatial patterns, such as allowing pollution to only affect areas

within a facility’s geographic unit or within a surrounding distance-based circle. Actual

pollution dispersal patterns, however, are far more spatially complex, which, when overlooked

may lead to biased pollution disparity results (Deschenes and Meng, 2018; Hernandez-Cortes

4Power plants emit local pollutants such as NOx, SO2, and particulate matter directly. Our data only
covers NOx and SO2 emissions. Our pollution transport model uses atmospheric chemical relationships to
convert these primary NOx and SO2 emissions into resulting secondary particulate matter of 2.5 micrometers
and smaller (PM2.5). The majority of ambient PM2.5 concentration is due to secondary pollution.
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and Meng, 2022).

Pollution dispersal models can be used to address this issue (Ash and Fetter, 2004;

Morello-Frosch and Jesdale, 2006; Muller and Mendelsohn, 2007; Sullivan, 2017; Cummiskey

et al., 2019; Henneman et al., 2019). In recent years, a new generation of such models has

emerged that not only account for atmospheric transport and chemical reactions - important

for secondary pollution formation - but are also available at fine spatial scales with relative

computational tractability. In particular, one such product, InMAP, has enabled source-

attribution analyses of pollution disparities at resolutions down to 1 km-by-1 km (Tessum,

Hill and Marshall, 2017; Goodkind et al., 2019; Tessum et al., 2019, 2021). Like Thind et al.

(2019), our analysis uses InMAP to understand the air pollution disparity consequences of

the U.S. electricity sector. However, in contrast to Thind et al. (2019)’s static analysis, we

use panel emissions and demographic data to explore trends in these pollution disparities

and then decompose these trends into their various drivers.

Our decomposition of pollution disparity trends builds on prior studies applying decom-

position techniques to pollution emissions (Leontief, 1970; Selden, Forrest and Lockhart,

1999; Metcalf, 2008; Levinson, 2009; Shapiro and Walker, 2018). In this literature, the most

related paper is Holland et al. (2020)’s decomposition of health damage changes arising

from U.S. electricity emissions during 2010-2017. Similar to Holland et al. (2020), we con-

duct a decomposition at the facility level, or at the locations where pollution is emitted.

A facility-level decomposition implicitly accounts for changes in the spatial distribution of

where emissions occur, which is critical for quantifying changes in pollution concentration

disparities. Both papers extend the standard emissions decomposition approach to account

for changing residential patterns. However, while Holland et al. (2020) examine changes in

the spatial distribution of total population and its impact on health damages, we examine

changes in the spatial distributions of each demographic group in order to understand trends

in pollution concentration disparities.

The remainder of the paper is organized as follows. Section 2 discusses our data. Section

3 details our methods. Section 4 presents our results. Section 5 concludes.

2 Data

Our analysis involves three main datasets: 1) emissions from electricity generating units

(EGUs) in the continental United States, 2) smoke stack characteristics for EGUs, and 3)

socioeconomic characteristics at the census-tract level.
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2.1 Electricity generating units data

Electricity production and emissions data come from the U.S. Environmental Protection

Agency’s Clean Air Markets Division (EPA CAMD), which maintains data collected from

the Continuous Emissions Monitoring Systems (CEMS) installed on EGUs over 25MW in

capacity size (EPA, 2022a). The data includes hourly production quantities, fuel inputs,

and hourly CO2, NOx and SO2 emissions at the EGU level. We sum hourly observations to

obtain total annual emissions for each EGU over 2000-2018 period.5 We construct annual

emissions intensities for each unit by dividing annual emissions with annual output.6

A second EPA CAMD dataset provides facility-level latitude, longitude, and fuel type

(EPA, 2022b), which we link at the EGU level to the CEMs data using power plant (ORISPL

code) and EGU identifiers.7 Our sample includes 4328 EGUs, corresponding to 1744 unique

power plants.8

We merge CEMS data with smoke stack characteristics, obtained from the EIA Form

860. These data include stack height, temperature, velocity, and diameter, all of which are

important for determining how far pollution travels upon leaving the smoke stack. Stack

characteristics are available for 2007, 2008, 2009, and 2011; we match these characteristics to

the generating units for the closest year available. As EIA data are at the smoke stack and

not EGU level, a single EGU might be associated with multiple stacks, while a single stack

might be shared among multiple EGUs. When an EGU is associated with multiple stacks, we

divide emissions evenly across the stacks. When a stack is associated with multiple EGUs,

we aggregate EGUs emissions to the associated stack.9

Table A1 presents descriptive statistics for our EGU sample by input fuel in 2018. As

expected, coal-fired EGUs have larger capacity and higher SO2 and NOx emissions than

EGUs using natural gas and oil. They also have smoke stacks that are higher and wider,

which may cause pollution to be transported farther than shorter and narrower stacks.

5An EGU is a component of power plant, and one power plant may have multiple EGUs. Our unit of
analysis is at the EGU-level, not power plant-level, as EGUs within a powerplant may have different fuel and
pollution smokestack characteristics, and thus unique emissions intensities and pollution transport patterns.

6Some observations of emissions intensities appear implausibly large. To address this, for observations
with emissions intensities above the 99th percentile for a given year and fuel type, we replace the values of
emission intensity, emissions, and output with the median value of the respective variables by year and fuel
type.

7The National Emissions Inventory is another database that EGU-level emissions and characteristics.
However, it is only available for the years 2008, 2011, 2014, and 2017. For those years, the number of EGUs
available from CEMs exceeds that from the NEI, which is why we use the CEMS data instead of the NEI
data for our analysis.

8In the data analysis, we index units over time at the ORISPL-EGU-fuel level. By defining units by fuel,
our decomposition analysis considers fuel switching of existing EGUs as part of compositional changes.

9On average per year, there are 109 EGUs with more than one stack associated and 1201 EGUs that
share a stack.
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2.2 Census-tract data

We use data on total population, Black share of population, Hispanic share of population,

non-Hispanic White share of population, minority share of population,10 and median income

at the census-tract level. The 2000 data come from the Decennial Census while 2009-2018

data come from the American Community Survey (ACS, 5-year estimates).11 Both were

obtained from IPUMS NHGIS (Manson et al., 2021). The panels of Figure A1 shows each

census tract’s population share of individuals that identifies as Black, Hispanic, White and

median income in 2018. Individuals from different racial/ethnic groups are not similarly dis-

tributed across the country: Black individuals tend to live in the southeastern and eastern

states while Hispanic individuals are concentrated in the southwestern and western states.

By contrast, income is relatively more evenly distributed across the country. This suggests

that changes in electricity sector pollution concentrations could heterogeneously affect indi-

viduals from different racial/ethnic groups insofar as electricity generation is also spatially

concentrated in certain regions.

2.3 Source-receptor matrix

To convert EGU-level primary NOx and SO2 primary emissions to census-tract level sec-

ondary PM2.5 concentrations across the continental U.S., we use the InMAP input-source

receptor matrix (SRM) developed by Goodkind et al. (2019). InMAP is a reduced-complexity

chemical transport model that simulates PM2.5 concentrations from its precursor primary

pollutants (Tessum, Hill and Marshall, 2017). We use the location and stack characteristics

of our sample EGUs and InMAP’s SRM to calculate total annual PM2.5 pollution concen-

trations in µg/m3 at the InMAP grid level.12 We spatially aggregate the InMAP grid to the

census tract level using census tract boundaries.13 We do not use ambient PM2.5 measures

(i.e. obtained from pollution monitors or satellite products) since such measures capture

pollution from all sources whereas we are only interested in PM2.5 concentrations due to

electricity generation.

10The minority share is the population share in a census tract who identify as Black or African American,
Hispanic, Asian, American Indian and Alaska Native, or Native Hawaiian and Other Pacific Islander.

11This implies we are missing census tract variables for the 2001-2008 period. Further, we do not use data
from the 2010 Decennial Census to ensure consistency in our ACS 2009-2018 measures.

12The InMAP grid level varies from 1 km up to 48 km depending on population density and uses year-
invariant meteorological conditions from 2005.

13We use year-specific census tract shape files as census tract definitions change over time.
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3 Methods

This section details our methods. Section 3.1 describes how we construct time trends in

pollution concentrations from the U.S. electricity sector by demographic group. Section 3.2

discusses our decomposition of these trends.

3.1 Pollution concentrations by demographic groups

One common approach to understanding the forces driving pollution emissions is to represent

facility-level emissions as a product of the overall scale of emissions, the emissions intensity

(or “technique”) of each facility, and the composition of emissions across emitting facilities.14

Let j index fossil-fuel electricity generating units (EGU). Our decomposition implies the

following representation for year t emissions of pollutant p ∈ {NOx, SO2} from facility j

Ep
jt = ϕp

jtδjtQt (1)

where Qt is national electricity output (in MWh), or the overall scale of US electricity pro-

duction; δjt is facility j’s annual share of total electricity output, capturing the composition

of emissions across facilities; and ϕp
jt is each facility j’s emissions intensity (in lbs per MWh).

Note that since EGUs are defined by the fuel consumed, eq. (1) accommodates fuel switch-

ing within an EGU over time: an EGU that has switched fuels has δjt = 0 after the switch

and is effectively treated as a new EGU with δjt = 0 before the switch. Entry of new EGUs

and exit of existing EGUs are treated similarly: an EGU that exits production or has yet to

enter into production has δjt = 0. The sum of equation 1 over all generating units represents

the total annual emissions in the U.S. from the electricity sector.

We are interested in converting primary pollution emissions across facilities, Ep
jt, into

secondary concentrations of PM2.5 across locations. Let i index census tracts. For primary

pollutant p, Wp is the InMAP source-receptor matrix (SRM), where element wp
ji indicates

the amount of secondary PM2.5 pollution (in kg) received by census tract i from a 1 kg

emission of primary pollutant p from facility j. Total secondary PM2.5 concentration (in

µ/m3) in location i and year t is then the product of a facility’s p emissions and its to

14This approach is also applied more broadly in the environmental sciences literature. It is referred to
as “I=PAT” when quantifying environmental impacts generally and as the Kaya Identity when applied to
GHG emissions. The strength of this approach comes from decomposing pollution emissions into intuitive
constituents that capture the overall scale of emissions in an economy, the technology behind these emissions,
and the composition of where emissions are coming from. The main weakness of this approach is that in the
likely scenario that these components are not independent, causal interpretations are not possible.
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conversion PM2.5 concentrations in location i, summed over all facilities and pollutants

Cit =
∑
p

∑
j

wp
jiE

p
jt (2)

Figure 2 maps the PM2.5 concentrations from all fossil fuel electricity production in 2018, Cit,

as well as the location of each fossil fuel EGU. Figure A2 replicates Figure 2 but separately

examining coal-, natural gas-, and oil-fired EGUs.

Figure 2: PM2.5 concentrations from electricity generation

Notes: Map shows census-tract level PM2.5 pollution exposure from 2018 electricity production across all
fossil fuel EGUs and the location of each fossil fuel EGU.

We next construct PM2.5 concentrations from the electricity sector experienced by the

average (continental) U.S. individual in demographic group g, where g may be a racial/ethnic

group or income category. To do this, we must account for the uneven spatial distribution

of individuals in group g, as shown in Figure A1. For example, because a greater share of

the population in southeastern states comprise of Black individuals (see Figure A1b), one

needs to weight PM2.5 concentrations in that part of the country more so (using the local

Black population) than in other regions when constructing a PM2.5 concentration measure

for the average Black individual. Specifically, we construct the following population-weighted

pollution concentration for each demographic group g in year t

Cgt =
∑
i

Citσgit (3)

where σgit is the share of total population in demographic group g during year t in census

9



tract i.15 Combining these expressions, we have

Cgt =
∑
i

∑
p

∑
j

wp
ji Ep

jt︸︷︷︸
ϕp
jtδjtQt

σgit (4)

We examine trends in several pollution disparity measures, defined as differences in Cgt

across groups. In particular, we explore trends in the Black-White, Hispanic-White, and

1st-10th income decile PM2.5 concentration gaps from electricity.

3.2 Decomposing pollution concentration trends

Trends in pollution concentrations shown in eq. (4) can be decomposed into various deter-

minants. A common approach is to decompose changes in pollution emissions into changes

due to the overall scale of electricity production, the pollution intensity of each EGU, and to

the composition of electricity generation across EGUs, which includes fuel switching within

EGUs and the entry and exit of EGUs. We extend this approach by further accounting

for changes in where individuals of different demographic groups reside when converting

pollution emissions to concentrations, in a manner similar to Holland et al. (2020).

Denote ∆(•)t as the time-difference operator and ¯(•)t as the average between years 0 and

t, respectively. Following Sun (1998) and Holland et al. (2020), we decompose the change in

pollution concentration for the average individual in demographic group g from eq. (4) as

∆Cgt =
∑
i

∑
p

∑
j

wp
ji

[
Ep

jtσgit − Ep
j0σgi0

]
=
∑
i

∑
p

∑
j

wp
ji

[
ϕ̄p
jtδ̄jt∆Qtσ̄git +∆ϕp

jtδ̄jtQ̄tσ̄git + ϕ̄p
jt∆δjtQ̄tσ̄git + ϕ̄p

jtδ̄jtQ̄t∆σgit + ϵpgijt
]

=
∑
i

∑
p

∑
j

wp
ji[(ϕ̄

p
jtδ̄jt∆Qt︸ ︷︷ ︸

Scale

+ ∆ϕp
jtδ̄jtQ̄t︸ ︷︷ ︸

Emissions Int.

+ ϕ̄p
jt∆δjtQ̄t︸ ︷︷ ︸

Composition︸ ︷︷ ︸
Emissions decomposition

)σ̄git + ϕ̄p
jtδ̄jtQ̄t∆σgit︸ ︷︷ ︸

Sorting

+ϵpgijt] (5)

15Specifically σgit =
SgitNit∑
i SgitNit

where Nit is total population in census tract i during year t and Sgit is the

share of that population in demographic group g. For racial/ethnic groups, U.S. Census data provides annual
data on the population share of a census tract belonging to each group, enabling the construction in eq. (3).
For income, the U.S. Census provides median income at the census tract. Assuming that median income
is uniformly distributed within a census tract, we define an indicator variable Idit which equals one when
census tract i has median income that falls in the dth decile of the year-t income distribution across all U.S.
census tracts. We then replace Sgit with Idit in eq. (3) to construct the PM2.5 concentration experienced by
the average individual in income decile d in year t.

10



where ϵpgijt is a residual term.16 There are several aspects of eq. (5) worth highlighting.

First, this is a complete decomposition, in the sense that the decomposition includes not

only considers terms in which one variable changes while others are held constant, but also

interaction terms in which multiple variables are changing.17 Second, our base value is the

average value between initial year 0 and year t.18 We use average value as the base rather

than initial year value because the former allows for some interaction terms to be accounted

for in each “effect,” and not as part of the residual.19 Indeed, we show that an emissions

decomposition using initial year values as base has much larger residuals than one using

average year values as base. Third, because each “effect” includes some interaction terms

between variables, they do not have a clean causal interpretation as the ceteris paribus role

of each variable.

4 Results

Section 4.1 details recent 2018 spatial patterns of PM2.5 concentration from electricity across

demographic groups. Section 4.2 presents 2000-2018 trends in PM2.5 concentrations for each

demographic group. Section 4.3 shows trends in PM2.5 disparities and decomposes these

trends.

16Specifically,

ϵpgijt = (ϕ̄p
jt∆δjt∆Qt∆σgit +∆ϕp

jtδ̄jt∆Qt∆σgit +∆ϕp
jt∆δjtQ̄t∆σgit +∆ϕp

jt∆δjt∆Qtσ̄git)/4

17Applying a total derivative to Ep
jt ignore these interaction terms as it is a local linear approximation.

18The spatial definitions of census tracts have changed between census years. To construct both average
population shares, σ̄git, and the change in population shares, ∆σgit, we fix census tracts to their 2000
definition. This gives us a sample of 64,866 unique continental U.S. census tracts. Post 2010 years have
72,268 unique continental U.S. census tracts.

19To see this, consider a two variable decomposition

x1y1 − x0y0 = y0(x1 − x0) + x0(y1 − y0) + (x1 − x0)(y1 − y0) Initial year base

= (
y0 + y1

2
)(x1 − x0)︸ ︷︷ ︸

x “effect”

+(
x0 + x1

2
)(y1 − y0)︸ ︷︷ ︸

y “effect”

Avg. year base

When the interaction term is positive, (x1 − x0)(y1 − y0) > 0, it may not be appropriate to attribute it to
a residual. Sun (1998) argues that this interaction term should be split evenly between each “effect” when
using the initial year values as base. Holland et al. (2020) shows that this is equivalent to using the average
year values as base.
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4.1 Current spatial patterns of pollution concentrations

We begin by presenting spatial patterns of PM2.5 from electricity in relation to where indi-

viduals of different demographic groups reside for 2018, the most recent year of our data.

Figure 3a overlays PM2.5 concentrations (in µg/m3) and minority share of population for

each census tract in 2018. Because PM2.5 from electricity is unevenly distributed across the

country and because Black, Hispanic, and White individuals tend to reside in different re-

gions, PM2.5 concentrations differ for the average Black, Hispanic, and White individual, as

shown in Figure 3b. PM2.5 concentrations are highest for the average Black individual, fol-

lowed by White, and Hispanic. This gap is large: the average Black individual is exposed to

64% more PM2.5 from electricity than the average Hispanic individual. This ordering reflects

the joint spatial distribution of PM2.5 concentrations and where individuals live. PM2.5 con-

centrations from electricity are strongest across southern states where relatively more Black

individuals live (Fig. A1a), followed by states in the midwest where relatively more White

individuals live (Fig. A1c). There is far less PM2.5 concentration in southwestern and west-

ern states where relatively more Hispanic individuals reside (Fig. A1b). By contrast, the

income gradient is much smaller, as shown in Figure 3c-d. The average individual in the 1st

income decile is exposed to 10% more PM2.5 than the average individual in the 10th income

decile. This is because in contrast to racial/ethnic dimensions, individual income is more

evenly distributed across census tracts (Fig. A1d). Figures A3 and A4 break these patterns

down for each fossil fuel.

4.2 Pollution concentration trends

Using time-varying data on EGU emissions and census-tract demographic characteristics, we

calculate how PM2.5 concentrations from electricity generation has evolved over 2000-2018

for each demographic group, or Cgt.

Figure 4a shows PM2.5 concentrations for the average individual. Between 2000-2018,

PM2.5 concentrations fell by 89% or 2.1 µ/m3/person from 2.4 to 0.30 µ/m3/person.20 To

contextualize the magnitude of this fall in PM2.5 concentrations from the electricity sector,

the national average ambient PM2.5 concentration from all pollution sources was 13.5 µ/m3

in 2000 and 8.2 µ/m3 in 2018, a drop of 39%.21 The decline in PM2.5 concentrations from

20PM2.5 concentrations shown in Figure 4 hold demographic characteristics fixed to 2000 values (i.e., D3
in Section 3.2). This is because we are missing census tract-level demographics data for the years 2001-2008
prior to ACS availability, such that we are unable to construct actual PM2.5 concentrations (i.e., D4 in
Section 3.2) for those years. However, because residential locations have changed little between 2000-2018,
the change in PM2.5 concentration between 2000 and 2018 when applying 2000 demographic data to both
years is nearly identical to that when applying 2000 and 2018 demographic data, as shown in Figure 6.

21Data available here: https://www.epa.gov/air-trends/particulate-matter-pm25-trends
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Figure 3: PM2.5 concentrations by demographic groups

(a) Distribution of PM2.5 and minority share (b) PM2.5 by race/ethnicity

(c) Distribution of PM2.5 and income (d) PM2.5 by income

Notes: Panel (a) overlays PM2.5 concentrations from electricity generation and minority share of pop-
ulation for each census tract in 2018. Shading color-coded by terciles. Panel (b) shows the 2018 PM2.5

concentrations for the average Black, Hispanic, and White individual, in µ/m3/person. Panel (c) overlays
PM2.5 concentrations from electricity generation and median income for each census tract in 2018. Panel
(d) shows the 2018 PM2.5 concentrations for the average individual in each income decile, in µ/m3/person.

electricity is more than double this rate. Or put another way, in 2000 PM2.5 from the U.S.

electricity sector was 18% of U.S. ambient PM2.5 concentrations. In 2018, that percentage

fell to 4%.

Figure 4b shows these PM2.5 changes by racial/ethnic group. During this period, PM2.5

concentrations decreased by 90%, 86%, and 89%, or 2.9, 1.3, and 2.5 µ/m3/person, for the

average Black, Hispanic, and White individual, respectively. Given initial PM2.5 concentra-

tion differences in 2000, these differential trends imply a dramatic convergence in pollution

disparities across these racial/ethnic groups. While disparities still exist in 2018, they are

much smaller than they were in 2000. Specifically, between 2000-2018, the observed Black-

White PM2.5 gap was consistently positive, with the average Black individual experiencing

more PM2.5 concentrations than the average White individual. But this gap fell from 0.75

to 0.036 µ/m3/person between 2000-2018, or by 95%. Or presented in percentage terms,
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Figure 4: Trends in pollution concentrations by demographics

(a) Overall

(b) By race/ethnicity

(c) By income

Notes: Panel (a) shows 2000-2018 PM2.5 concentrations for the average U.S. individual from the U.S.
electricity sector (left y-axis) and national average ambient PM2.5 concentrations from U.S. EPA monitors
(right y-axis). Panel (b) shows the average Black, Hispanic, and White individual. Panel (c) shows the
average bottom and top income decile individual.
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in 2000 the average Black individual experienced 27% more PM2.5 concentration from elec-

tricity than the average White individual. In 2018, that gap fell to 12% (see log PM2.5

concentrations in Figure A6a).

During this same time, the Hispanic-White PM2.5 disparity was consistently negative

throughout our sample, with the average Hispanic individual experiencing less PM2.5 con-

centration than the average White individual. However, as with the Black-White disparity,

the Hispanic-White disparity has narrowed from -1.07 to -0.07 µ/m3/person during 2000-

2018, or 93% during this period. Put differently, in 2000, the average Hispanic individual

experienced 57% less PM2.5 concentration from electricity than the average White individual.

In 2018, that gap fell to 36% (see Figure A6a).

Figure 4c plots PM2.5 concentrations for the average individual in the bottom and top

income deciles, which falls by 88% and 91%, or 1.9 and 2.3 µ/m3/person, respectively.

However, because of the smaller 2000 gap in PM2.5 concentrations and the similarity of these

trends, the PM2.5 concentration gap between individuals in the bottom and top income

deciles has been relatively unchanged during the 2000-2018 period. This pattern is further

confirmed when plotting log PM2.5 concentrations (see Figure A6b). Figure A5 shows a

similar pattern when comparing the average individual in the bottom and top quartiles.

Given the presence of racial/ethnic PM2.5 disparity trends and their absence along income

differences, our subsequent decomposition will focus on racial/ethnic PM2.5 disparities.

4.3 Decomposing pollution disparity trends

We conduct the decomposition scenarios described in Section 3.2 to explore the drivers behind

the recent convergence in PM2.5 disparities. Specifically, we decompose PM2.5 disparity

trends into changes in the scale of fossil fuel electricity generation, emissions intensities, the

composition of EGUs, and where households of different racial/ethnic groups reside.

We begin with an emissions decomposition in Figure 5, which, like Levinson (2009),

Shapiro and Walker (2018), and Holland et al. (2020), shows how emissions changes can be

decomposed into scale, emissions intensity, and compositional changes.22 Panel (a) shows

NOx emissions while panel (b) shows SO2 emissions. Overall emissions have fallen dramat-

ically: between 2000-2018, emissions fell by 80% and 89% for NOx and SO2, respectively

22As discussed in Section 3.2, the emissions decomposition in Figure 5 is constructed using a base that
corresponds to the mean of 2000 and 2018 values. By contrast, Figure A7 shows emissions paths constructed
with a base that corresponds to values in the initial year, 2000. Notably, the decomposition in Figure A7
leads to a larger difference between observed emissions and the emissions path that results from the sum of
the three components, scale, emissions intensity, and composition, e.g. a larger residual. This is because the
residual in the decomposition using initial year as base includes interactions between the components that
turn out to play important roles in the decomposition.
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Figure 5: Decomposition of NOx and SO2 emissions trends

(a) NOx (b) SOx

Notes: Panel (a) shows the decomposition of primary NOx emissions (in billion lbs). Panel (b) shows for
primary SO2 emissions (in billion lbs).

(gray series).

For both pollutants, the scale effect alone contributes a modest 1.7% and 1.5% increase

in NOx and SO2 emissions respectively (purple series). Note that as renewables are not

included here, these scale effects can be thought of as the scale effects of fossil generation,

e.g. changes in output satisfying residual demand met by fossil generation, total demand

less renewables. By contrast, emissions intensity changes reduce NOx and SO2 by 45% for

both pollutants, or around 56% and 51% of total reductions respectively (green minus purple

series). Composition changes reduce NOx and SO2 by 36% and 43% respectively, or around

44% and 49% of total reductions (blue minus green series). The remaining gap between this

composition and actual emissions is modest (gray minus blue series). In summary, composi-

tion and emissions intensity both have sizeable roles in the observed reduction in emissions

from the electricity sector during 2000-2018. Holland et al. (2020)’s study of emissions trends

over 2010-2017 finds a 49.6% and 74% reduction in NOx and SO2 respectively, with scale

playing a larger role compared to the period in this study, around 9.7% and 7.7% of NOx

and SO2 reductions respectively. Composition accounts for 23.3% and 24.4% of NOx and

SO2 reductions, with emissions intensity (technique) accounting for 16.8% and 41.9% for

NOx and SO2.
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Figure 6: Decomposition of pollution disparity trends

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018. Panel
(b) shows the Hispanic-White PM2.5 disparity trend and its component over 2000-2018. Dashed line shows
interpolated value during 2001-2008 in the absence of census tract-level demographic data.
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The decomposition of emissions serve as an input into our decomposition of PM2.5 dis-

parity trends. Figure 6a shows the Black-White PM2.5 concentrations difference decomposed

into scale, emissions intensity, compositional, and residential sorting components, according

to eq. (5). Compositional changes are the largest driver, contributing 57% of the over-

all change in the Black-White PM2.5 disparity (blue minus green series). This is followed

by changes in emissions intensities which contributed 37% (green minus purple series). By

contrast changes in scale (purple series) and residential location (red minus blue series) con-

tributed only 4.5% and 0.4%, respectively. The residual (gray minus red series) explains the

remaining 1%. For the Hispanic-White PM2.5 disparity, Figure 6b shows that compositional

and emissions intensity changes contribute 59% and 45% of the overall trend. As with the

Black-White PM2.5 disparity, scale changes, residential location changes, and the residual

play much smaller roles.23

5 Conclusion

Electricity generation is a major source of U.S. pollution, with resulting PM2.5 concentrations

that are unevenly distributed across demographic groups. To address this, attention has been

increasingly paid to understanding the pollution disparity consequences of various policies.

This paper quantifies 2000-2018 trends in PM2.5 disparities arising from the US electricity

sector through the use of a high spatial resolution pollution transport model. Our analysis

reveals several new findings with policy implications.

We find that between 2000-2018, PM2.5 concentrations have fallen by 89% for the average

individual, which is more than double the decline rate in overall U.S. ambient PM2.5 concen-

trations over the same period. Moreover, this decline is broadly shared across racial/ethnic

groups: we detect a 90%, 86%, and 89% PM2.5 decline for the average Black, Hispanic, White

individual, respectively. But because 2000 PM2.5 concentration levels are highest for Black,

followed by White and Hispanic individuals, these trends imply a dramatic convergence in

PM2.5 concentrations across these racial/ethnic groups. Specifically, the Black-White PM2.5

disparity, while consistently positive during this period has narrowed (or fallen) by 95%

since 2000. During this period, the Hispanic-White PM2.5 disparity, which is consistently

negative, has narrowed (or risen) by 93%. However, we note that despite this convergence,

racial-ethnic PM2.5 disparities from electricity still exist in 2018. Interestingly, while the

PM2.5 concentration for the average bottom and top income decile individual fell by 88%

and 91%, respectively, the gap between low and high income individuals has been relatively

small and largely unchanged during this period. These differential patterns indicate that

23Figures A8-A10 replicate Figure 6 for each fossil fuel.
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what happens to one demographic group need not apply to another, reflecting the need

for policies that acknowledge how pollution concentrations and their trends differ across

demographic groups.

Our decomposition exercise reveals that nearly all of these disparity trends can be at-

tributed to both spatially-varying improvements in emissions intensities and compositional

changes, which incorporates recent coal-to-natural gas fuel switching. Changes in the scale

of fossil fuel electricity and residential locations contributed much less. Emissions intensity

changes are often associated with local air pollution policies, such as the Clean Air Act. Fuel

compositional changes can arise from climate policies that make carbon intensive fuels such

as coal relatively more expensive. This paper’s findings suggest that both types of policies

may play important roles in further reducing pollution disparities from the U.S. electricity

sector moving forward.

Our study has several limitations. First, our measure of racial pollution disparity is based

on PM2.5 concentrations and not exposure, with the latter further reflecting how individual

behavioral responds to pollution concentrations. Individuals from some demographic groups

may be better able to avoid pollution by, for example, spending more time indoors and/or

purchasing air purifiers, than those from other demographic groups (Spiller et al., 2021).

Such differential adaptation behavior could alter disparities in the air quality that individuals

ultimately breathe in. Second, because our demographic data is at the census-tract level,

our measure of pollution disparities may be inaccurate if there is substantial demographic

heterogeneity within a census tract. Third, our analysis excludes electricity generation from

renewable energy sources. A likely consequence of any climate policy is the expansion of

renewable sources of electricity, which does not emit air pollution. Future research should

consider how expansion of renewable energy differentially replaces coal, oil, and natural gas

generation, and where. One could include renewables in the analysis by including data on

each renewable generating units’ output and market share – increasing renewable market

shares over time would then reflect compositional changes.

Finally, a more complete analysis would also consider the efficiency consequences of

changing electricity prices and any added distributional effects related to the incidence of

such price changes across demographic groups. This would enable an exploration of equity-

efficiency trade-offs across a variety of proposed environmental and climate policies. For

example, suppose policy makers face the joint objectives of achieving a GHG target in a

cost-effective manner and narrowing existing local air pollution disparities. This can be

implemented by combining a carbon price with a regulation targeting polluters that dis-

proportionately affect disadvantaged individuals. If cost-effective GHG abatement across

facilities coincides with declines in pollution disparities, there would be no trade-off. How-
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ever, if cost-effective abatement also increases pollution disparities, policy makers must now

weight higher electricity prices (and its distributional impacts) against narrowing pollution

disparities when considering the ideal mix of policies. Characterizing where these trade-offs

exists and how they can be navigated through policy design can inform environmental and

climate policies that jointly advance environmental, cost-effectiveness, and equity goals.
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Appendix A: Additional Figures

Figure A1: Census tract racial/ethnic population shares and median income in 2018

(a) Black share (b) Hispanic share

(c) White share (d) Median income

Notes: Panel (a) shows the Black population share at the census tract level. Panel (b) shows the Hispanic
population share. Panel (c) shows the White population share. Panel (d) shows household median income.
Points denote the location of all fossil fuel EGUs.
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Figure A2: PM2.5 concentrations from electricity generation by fuel

(a) All fuels (b) Coal

(c) Natural Gas (d) Oil

Notes: Panel (a) shows PM2.5 pollution exposure from 2018 electricity generation from all fossil fuel EGUs
at the census tract level. Points denote the location of all fossil fuel EGUs. Panels (b), (c), and (d) shows
for coal-, natural gas-, and oil-fired EGUs only, respectively.
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Figure A3: PM2.5 concentrations by racial/ethnic groups and fuel

(a) All fuels

(b) Coal

(c) Natural Gas

(d) Oil

Notes: Left column overlays PM2.5 concentration from electricity production and minority share of pop-
ulation for each census tract in 2018. Shading color-coded by terciles. Right column shows the PM2.5

concentration for the average White, Black, and Hispanic individual, in µ/m3/person. Panel (a) uses all
fossil fuel-fired EGUs, while Panels (b), (c), and (d) uses coal-, natural gas-, and oil-fired EGUs only, re-
spectively.
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Figure A4: PM2.5 concentrations by income and fuel

(a) All fuels

(b) Coal

(c) Natural Gas

(d) Oil

Notes: Left column overlays PM2.5 concentration from electricity production and median income for each
census tract in 2018. Shading color-coded by terciles. Right column shows the PM2.5 concentration for the
average individual in each income decile, in µ/m3/person. Panel (a) uses all fossil fuel-fired EGUs, while
Panels (b), (c), and (d) uses coal-, natural gas-, and oil-fired EGUs only, respectively.
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Figure A5: Trends in pollution concentrations by income quartiles

Notes: 2000-2018 PM2.5 concentrations for the average bottom and top quartile individual.

27



Figure A6: Trends in log pollution concentrations by demographics

(a) By race/ethnicity

(b) By income

Notes: Panel (a) shows the average Black, Hispanic, and White individual in logs. Panel (b) shows the
average bottom and top income decile individual in logs.
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Figure A7: Emissions decomposition paths using 2000 as the base year and including only
direct effects

Notes: The emissions decomposition paths in this figure are generated using the year 2000 as the base
year, in contrast to the approach used in the paper, which uses the average of 2000 and 2018 values as the
base year. The residual includes interaction effects.
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Figure A8: Decomposition of pollution disparity trends: coal

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018 from
coal-fired EGUs. Panel (b) shows the Hispanic-White PM2.5 disparity trend. Dashed line shows interpolated
value during 2001-2008 in the absence of census tract-level demographic data.

30



Figure A9: Decomposition of pollution disparity trends: natural gas

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018 from
natural gas-fired EGUs. Panel (b) shows the Hispanic-White PM2.5 disparity trend. Dashed line shows
interpolated value during 2001-2008 in the absence of census tract-level demographic data.
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Figure A10: Decomposition of pollution disparity trends: oil

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018 from
oil-fired EGUs. Panel (b) shows the Hispanic-White PM2.5 disparity trend. Dashed line shows interpolated
value during 2001-2008 in the absence of census tract-level demographic data.
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Appendix B: Additional Tables

Table A1: Electricity Generating Unit and Stack Characteristics

(1) (2) (3) (4)

All Coal Natural Gas Oil
Average Unit Size (MW) 196.49 454.36 159.78 79.36

(200.27) (287.39) (134.29) (145.22)
Heat Input (1,000 MMBtu) 4,339.67 11,231.06 3,096.51 135.32

(8969.83) (16127.24) (4723.85) (710.66)
Annual SO 2 emissions (1,000 kgs) 462.27 2,247.95 8.60 12.69

(2404.24) (4950.30) (152.52) (92.44)
Annual NO x emissions (1,000 kgs) 377.51 1,550.58 92.76 17.55

(1268.00) (2450.27) (256.45) (67.27)
Temperature at 100% load (K) 405.07 381.70 404.50 442.60

(25.72) (34.11) (11.31) (16.98)
Height (m) 90.30 160.61 64.52 111.09

(46.53) (47.91) (16.20) (14.34)
Velocity at 100% load (m/s) 21.10 23.75 19.75 23.76

(4.31) (6.03) (3.23) (2.27)
Diameter (m) 5.52 7.11 5.05 5.41

(1.41) (2.25) (0.63) (0.61)

Observations 5293 1071 3502 720
Notes: Column (1) shows the average stack and emissions characteristics for all EGUs. Column (2),
(3), and (4) show the average stack and emissions characteristics for coal-, natural gas-, and oil-fired
EGUs, respectively.
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