NBER WORKING PAPER SERIES

PRICE SETTING WITH STRATEGIC COMPLEMENTARITIES AS A MEAN FIELD GAME

Fernando E. Alvarez
Francesco Lippi
Takis Souganidis

Working Paper 30193
http://www.nber.org/papers/w30193

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
July 2022

We thank seminar participants at the University of Chicago, EIEF and Luiss University, Peking
U., the BSE Summer Forum, the ECB, Ca' Foscari, Bologna U., Ohio State, The U. of Zurich, the
2021 NBER Summer Institute, the 5th Santiago Macro Workshop, the Richmond Fed, the
Chicago Fed, the Theory Tea UofC workshop, and the workshop on Literacy in Partial
Differential Equations at the University of Chicago. We thank Adrien Auclert, David Baquee,
Andres Blanco, Paco Buera, Luca Dedola, Jennifer La'O, Rody Manuelli, and Rob Shimer for
their comments. Ken Miyahara provided excellent research assistance. Souganidis was partially
supported by the National Science Foundation grant DMS-1900599, the Office for Naval
Research grant N000141712095 and the Air Force Office for Scientific Research grant
FA9550-18-1-0494. The opinions expressed in this paper do not necessarily represent the views
of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2022 by Fernando E. Alvarez, Francesco Lippi, and Takis Souganidis. All rights reserved.
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission
provided that full credit, including © notice, is given to the source.



Price Setting with Strategic Complementarities as a Mean Field Game
Fernando E. Alvarez, Francesco Lippi, and Takis Souganidis

NBER Working Paper No. 30193

July 2022

JEL No. E3

ABSTRACT

We study the propagation of monetary shocks in a sticky-price general-equilibrium economy
where the firms’ pricing strategy feature a complementarity with the decisions of other firms. In a
dynamic equilibrium the firm’s price-setting decisions depend on aggregates, which in turn
depend on firms’ decisions. We cast this fixed-point problem as a Mean Field Game and establish
several analytic results. We study existence and uniqueness of the equilibrium and characterize
the impulse response function (IRF) of output following an aggregate “MIT” shock. We prove
that strategic complementarities make the IRF larger at each horizon, in a convex fashion. We
establish that complementarities may give rise to an IRF with a hump-shaped profile. As the
complementarity becomes large enough the IRF diverges and at a critical point there is no
equilibrium. Finally, we show that the amplification effect of the strategic interactions is similar
across models. For instance, the Calvo model and the Golosov-Lucas model display a comparable
amplification, in spite of the fact that the non-neutrality in Calvo is much larger.

Fernando E. Alvarez Takis Souganidis

University of Chicago University of Chicago
Department of Economics 5734 S. University Avenue
1126 East 59th Street Chicago, IL 60637

Chicago, IL 60637 souganidis@math.uchicago.edu
and NBER

f-alvarez1l@uchicago.edu

Francesco Lippi

Luiss University

and EIEF
francescolippi@gmail.com



1 Introduction

In spite of substantive progress in the theory and empirics of general equilibrium models
with sticky-prices, the need for tractability leads most analyses to either abstract from the
interactions between firms’ decisions in price setting, to explore their effects numerically
— as in Nakamura and Steinsson (2010), Klenow and Willis (2016) and Mongey (2021) —,
or to abstract from idiosyncratic shocks — as in Caplin and Leahy (1997) and Wang and
Werning (2020)." In this paper we develop a new approach to provide an analytic solution
to this challenging problem. The results offer a thorough characterization of a sticky-price
equilibrium in a relatively rich state-dependent model featuring both idiosyncratic shocks
and strategic complementarities, or substitutabilities, in pricing decisions.

The issue is relevant because absent strategic complementarities the current quantitative
macro models seem unable to produce the persistent non-neutrality of nominal shocks that
is seen in the aggregate data, as argued by Nakamura and Steinsson (2010) and Klenow
and Willis (2016). Moreover, several empirical studies suggest the presence of non-negligible
complementaries, e.g. Cooper and Haltiwanger (1996); Amiti, Itskhoki, and Konings (2014,
2019); Beck and Lein (2020).

A rigorous treatment of strategic complementarities in a general equilibrium model is
involved, as emphasized by Caplin and Leahy (1997): decisions depend on aggregate variables,
which in turn depend on individual decisions. This fixed point problem is especially difficult
in a model with lumpy behavior, where the optimal decisions are non-linear (Ss rules) and
time-varying. A recent analysis by Wang and Werning (2020) presents analytic results for a
dynamic oligopoly model. In this insightful paper tractability is obtained by assuming that
the timing of the firm’s price adjustments is exogenous a la Calvo.? Our approach shares
with Caplin and Leahy (1997) and Wang and Werning (2020) a quest for analytic results. A
main difference with respect to these papers is that we consider a problem where the firm’s

decisions are state-dependent and where idiosyncratic shocks feature prominently at the firm

! Among the recent contributions see Bils and Klenow (2004), Golosov and Lucas (2007), Klenow and
Malin (2010), Nakamura and Steinsson (2008), Caballero and Engel (1999, 2007), Midrigan (2011), Alvarez,
Le Bihan, and Lippi (2016), Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2019), Nakamura et al.
(2018), Alvarez, Lippi, and Oskolkov (2022).

2Another difference concerns their focus on a finite number of firms, as opposed to a continuum in ours.



level .

We present several analytic results that characterize the firm’s optimal policy and the
general equilibrium in a dynamic environment featuring strategic complementarities (or sub-
stitutabilities). The key breakthrough is obtained by casting the problem using the math-
ematical structure of Mean Field Games (MFG), as laid out by Lasry and Lions (2007).
The problem takes the form of a system of two coupled partial differential equations: one
Bellman equation describing individual decisions, and one Kolmogorov equation describing
aggregation. The usefulness of employing the MFG framework to study the dynamic be-
havior of high-dimensional cross-sections is highlighted by Achdou, Han, Lasry, Lions, and
Moll (2022); Ahn, Kaplan, Moll, Winberry, and Wolf (2018) where numerical methods are
discussed. Relative to the MFG literature, and its applications to economics, this paper
innovates in two dimensions. First, we focus on an analytic characterization of the dynam-
ics that ensue following a perturbation of the stationary equilibrium, i.e. an MIT shock.*
The presence of strategic complementarities can create, even in simple static models, lack of
equilibrium or multiplicity, which makes analytical, as opposed to purely numerical methods,
necessary.” Second, we consider an impulse control problem, instead of one with drift control,
i.e. we deal with the case of lumpy adjustments. This case, appearing in several economic
contexts, motivates our interest and is mathematically more delicate since it requires to solve
a problem with time-varying boundaries. A notable example of a rigorous early analysis of
a MFG with impulse control is Bertucci (2017).

We consider an economy with random menu costs of the Calvo-plus type considered in
Nakamura and Steinsson (2010). This model spans price-setting models in between the pure

Ss model of Golosov and Lucas (2007) to the pure time-dependent model of Calvo (1983). The

3Due to the absence of idiosyncratic shocks, in Caplin and Leahy (1997) and Wang and Werning (2020)
all price changes are either increases or decreases at a point in time. Instead, idiosyncratic shocks allow us
to relate to the micro-data on price changes, which have been shown to encode information about shock
propagation.

4By an MIT shock we mean to solve for the equilibrium triggered by a small unexpected arbitrary per-
turbation of the stationary distribution — see Boppart, Krusell, and Mitman (2018) for numerical techniques
to solve for the similar type of perturbation, and for the same interpretation of the resulting equilibrium as
an impulse response.

5Note that the well-known “monotonicity condition” for uniqueness, developed by Lasry-Lions and used
in almost all papers in these area, corresponds to the case of strategic substitutability and thus is not useful
for the solution of the economically more interesting case of strategic complementarities.



dynamic equilibrium for an economy without strategic interactions was solved analytically in
Alvarez and Lippi (2021). We follow Klenow and Willis (2016) and extend that model to
capture both micro and macro complementarities in the decision problem of the firm. These
originate from the fact that the firm’s flow profit depends on its own markup and the markup
(or price) of the average firm, with a non-zero cross derivative. The MFG framework allows
us to study analytically the effect of such interactions on the firm’s optimal Ss rules after the

shock as well as its effect on the aggregate dynamics.

Main results. We present several new results. First, we establish conditions for the exis-
tence and uniqueness of the equilibrium and analytically characterize the impulse response
function (IRF) of output. We show that as the strategic complementarity becomes larger,
the output’s IRF of a monetary shock increases at each horizon, in a convex fashion, i.e.
increasing more as complementarity increases. Indeed, the IRF becomes arbitrarily large as
it approaches a critically high value of strategic complementarity. At that value the equilib-
rium does not exist, and for strictly larger values the equilibrium is not well behaved (e.g.
not continuous as a function of the parameters). On the other hand, the equilibrium always
exists when the interactions involve substitutability (as opposed to complementarity) and
the IRF converges to zero and substitutability becomes arbitrarily large, i.e. the economy
behaves as one with flexible prices.

Second, we show that the presence of a sufficiently large strategic complementarity makes
the IRF hump-shaped as a function of time elapsed since the shock, while if there is no
complementarity the IRF is monotone decreasing. This is a novel result that illustrates the
substantive economic consequences of strategic interactions.

Third, we note that, while most of the analysis focuses on a small monetary shock, our
results can be used to study the impulse response following any small perturbation of the
initial distribution. For instance, we can study the response to a markup shock or to a
volatility shock or, in general, to any permanent perturbation that affects the economy’s
steady-state distribution.

Fourth, while the core of the analysis focuses on the effect of a single shock and the associ-

ated impulse response, we also characterize the unconditional variance of output if monetary



shocks are i.i.d, an experiment similar to the one in the classic articles by Caplin and Leahy
(1997) and by Nakamura and Steinsson (2010). We show that in this case the unconditional
variance of output is an increasing function of the strength of strategic complementarity.

Fifth, we show that for the models in the Calvo-plus class the strategic complementarities
amplify the Cumulative Impulse Response (CIR) by a measure that is roughly the same for
all models within this class. For instance, the Calvo model and the Golosov-Lucas model
display a comparable amplification, in spite of the fact that the level of the CIR in these
models differs by a factor of six.

Sixth, besides characterizing several features of the solution, we develop a simple nu-
merical scheme to compute it, which preserves the basic properties of the solution in each
approximation. We show that this numerical scheme converges to the solution, and obtain

an expression for its convergence rate.

Related Literature. Our modeling of strategic complementarities shares with the classic
article by Caplin and Leahy (1997) that the firm’s profit function depends on both its own
markup as well as on the average markup. One difference is that we feature idiosyncratic
shocks, while they do not. While they study an equilibrium where the aggregate nominal
shocks follow a driftless brownian motion, we mostly focus on an impulse response after a
once and for all shock, which makes it easy for us to connect to e.g. the VAR evidence.®
Our work is closely related to Nakamura and Steinsson (2010) and Klenow and Willis
(2016). The DSGE models in both papers consider an input-output structure, which makes
the (sticky) price of other industries part of the cost of each industry (i.e. “macro strategic
complementarities”). Both papers, as well as ours, consider a frictionless labor market,
idiosyncratic shocks at the firm level, and menu cost paid by firms to adjust prices. Nakamura
and Steinsson (2010) allow, as we do, for a random menu cost. Klenow and Willis (2016)
allow, as we do, for a non-constant demand elasticity at the firm level, which yields what they
call “micro-strategic complementarities”. We show that, up to second order, micro and macro

complementarities are additive, so we capture both of them through a single parameter. Both

6An interesting feature of Caplin and Leahy (1991, 1997) is to produce a state-dependent reaction to
monetary shocks, perhaps the only model where a clear notion of “overheating” due to monetary policy
appears.



papers use numerical techniques to characterize the effect of monetary shocks on aggregate
output, while we provide analytic results.

Our analysis also relates to Wang and Werning (2020), who analyze the propagation of
shocks in a sticky-price economy with strategic complementarities. They present an insightful
analytic solution assuming that firms follow a time dependent rule a la Calvo. Some features
of the underlying environment are similar: several forces creating complementarities (vari-
able demand elasticity, decreasing returns, non-zero Frisch elasticity) are fully summarized
by a single parameter. Other modeling aspects are different: first they consider a dynamic
oligopoly without idiosyncratic shocks, while we focus on oligopolistically competitive mar-
kets with idiosyncratic shocks, a feature that allows us to connect to the distribution of price
changes in the data. Second, the timing of adjustment is exogenous in their paper, while the
firms in our setup optimally choose both the timing as well as the size of the price adjust-
ments. The simplification of the exogenous-timing and no-idiosyncratic shocks allows them
to connect with the New Keynesian Phillips-curve and to study the importance of strategic
complementarities. Third, their setup features a finite number of firms (per sector), allow-
ing them to analyze the role of concentration within an industry, a feature that we cannot
address.

Another related contribution is Auclert et al. (2022), who solve a discrete-time model with
strategic complementarities for a time-dependent and for a state-dependent pricing model.
The main difference in terms of the model is that they restrict the strength of the strategic
complementarity to a specific value (corresponding to our case where § = —1). They offer
two novel theoretical results relative to ours: first they map the resulting equilibrium path
into a version of the Phillips curve, and second they show how to represent the outcomes
of the state-dependent model as the sum of two time-dependent models. They use this
decomposition, among other things, to evaluate how close the Calvo model approximates

standard versions of the state dependent model.

Organization of the paper. The next section lays out the general equilibrium environ-
ment of the problem and the origins of strategic interactions. Section 3 sets up the dynamic

equilibrium as a MFG. Section 4 studies a linearized version of the MFG and derives key



analytical results for the equilibrium analysis. Section 5 characterizes the dynamic equilib-
rium and discusses the economic implications of strategic interactions. Section 6 presents a
method to implement the linearized fixed-point problem of Section 4 using a straightforward

numerical procedure. Section 7 concludes and discusses future work.

2 General Equilibrium setup and Complementarities

This section presents an economy where households maximize the present value of lifetime
utility and firms maximize profits subject to costly price adjustments. We show that non-
negligible complementarities between the price setting strategies of firms can arise through
two channels. First, consumers’ preferences yield a demand system with a non-constant price
elasticity, a phenomenon that the literature dubbed micro-complementarities as in Kimball
(1995). Second, we consider a production structure that generates pricing complementari-
ties through sticky intermediate goods, as in Klenow and Willis (2016) and Nakamura and
Steinsson (2010), referred to as macro-complementarities. We will establish that the effects
of both channels on the firm’s pricing strategy are summarized by a single parameter and
that at a symmetric equilibrium the firm’s problem is approximated by a quadratic return
function that depends on the own price and the aggregate price, as in the classic work of

Caplin and Leahy (1997).

Households: We consider a continuum of households with time discount p and utility

J et (U(C(t)) —aL(t) + log %) dt, where U denotes a CRRA utility function over the
consumption composite C, the labor supply is L, M is the money stock, P is the con-
sumption deflator, and a > 0 is a parameter. The linearity of the labor supply and the
log specification for real balances are convenient simplifications also used in Golosov and
Lucas (2007) and many other papers. We follow Kimball (1995) in modeling the consump-
tion composite C using an implicit aggregator over a continuum of varieties k as follows
1= (fol T (CC’“(—%) Ak(t)> dk;) where Aj, denotes a preference shock for variety k, and (1) =1,
YT > 0and Y” < 0. The Kimball aggregator defines C implicitly, yielding an elasticity of sub-
stitution that varies with the relative demand ¢ /C. The standard CES demand is obtained



as a special case when T is a power function.
The representative household chooses ¢, money demand and labor supply to maximize

lifetime utility subject to the budget constraint
00 _ 1
M(0) +/ B(t) [H(t) +7(t) + (L + 7)W(t)L(t) — R(t)M(t) —/ ﬁk(t)ck(t)dk} dt =0
0 0

where R(t) is the nominal interest rates, B(t) = exp (— fot R(s)ds) the price of a nominal
bond, W (t) the nominal wage, 7(¢) a lump sum nominal transfers, 77, a constant labor subsidy,

I1(t) the aggregate (net) nominal profits of firms, and p; the price of each variety.

Firms. There is a continuum of firms indexed by k € [0, 1], that use a labor (Lj) and
intermediate-good inputs (/) to produce the final good y; with a constant returns to scale
technology (omit time index)

L\
Yk = Ck + Qk <Zk) i

Note that final goods are used by consumers, ¢, and also as an input in the production of
the intermediate good @ = fol I, dk through the production function 1 = fol T (% Ak) dk.
The aggregates (Q and C have the same unit price, P, since they are produced with identical
inputs and the same function Y. The labor productivity of firm k is 1/Z; and we assume
that Z, = exp (6Wj,) where W, are standard Brownian motions, independent and identically
distributed across firms, so that the log of Z, follows a diffusion with variance o?. The
households’ labor supply L is used to produce each of the k goods and for the price-adjustment
services £, so L = fol Liydk + ¢.

The demand for final goods.  The first order conditions of consumers and intermediate
good producers yield the demand system, whose form depends on the function T. Given a

total expenditure E the demand for variety k, evaluated at a symmetric equilibrium, is

= iy P (B) e D(B) =07 (B (w) it p=gia



The firm’s profit function. Let the nominal wage W be the numeraire, and pp = pAy
be the firm’s price. Notice that the firm’s marginal (and average) cost is (Z,W)* P~
where P is the price of intermediate inputs. We can write the firm’s (nominal) profit as
yr - (pAx — (Z,W)* P1=). If we assume that Z® = A, i.e. that preference shocks are
proportional to marginal cost shocks, then we have that each firm maximizes II(p, P) =

yrAg W (% — (%)1_Q) so the profits of the individual firm do not depend on Zj since

YrAp = %D (%). The notation emphasizes that the firm’s decision depends on both
the own price, p, and the aggregate price P, and that prices are homogenous in V.

Let us write the profit in terms of the demand D(p/P) and the cost function y = x(P)

giving the marginal cost. We have H(é’I}P) = PTE(I) D(p/P) (p— x(P)). The first order

condition for optimality implicitly defines an optimal pricing function: p*(P) = (7’1)(7 1/31)3) : X(P)

where n(p/P) = —D(;’/P)%Z/P) so 7 is the elasticity of the demand D with respect to the

own price p. We have the following:

PROPOSITION 1. Consider a value for P such that p*(P) = P. Assume that D is decreasing

(
and that II(p, P) is strictly concave at (p*(P), P) = (P, P). We have

P op*(P) _ 1 (1) P ox(P) (1)
p*(P) oP 142 __ |p1)(n(l)—1) x(P) oP
p*(P) 1+Wmm4)ﬁ(W&) ) K(L, .

micro elasticity macro elasticity

where (1) > 1 and 1+ L)fl > 0. Expanding the profit function around (P, P):
) (2)

ng(p, p) P@p
Iy, (P, P)

(p, P 1 - p PP P PP
(p’):1B(p15 +0— )HG§+0QPP 5

where «(+) is a function that does not depend on p, and where:

My (P, P)

11
(P, P)

B= - P?=[n(1)+n1)(n(1)—1)] >0 and 6=

\_/

A few remarks are in order. First, equation (2) shows that the profit maximization



problem of the firm is approximated by the minimization of the quadratic period return
B(z +60X)? where z = ’%P and X = P%gp denote the percent deviation from the symmetric
equilibrium of the own and the aggregate price, respectively.

Second, the extent of strategic interactions between the own price and the other firms’
prices is captured by a single parameter, 6. Notice that static profits are maximized by setting
x = —0X. The parameters # measures the presence of strategic interactions. The firm’s
strategy exhibits strategic complementarity if 8 < 0, and it exhibits strategic substitutability
if 0 > 0. Clearly, if # # —1 the only static equilibrium is X = 0.

7
n—1)+n’

so that € < 0 occurs if 7 > 0. This condition has a clear economic explanation: if ' > 0

Third, in the absence of macro complementarity, e.g. if % = 0, we have 0 = -

a higher P lowers the demand elasticity, which induces the firm to raise its markup. Thus

n’ > 0 implies that the own price and the aggregate price are strategic complements. Note

X _

55 = 0 the strength of strategic complementarities is bounded, since —0 < 1.

moreover that if
Instead, as % > 0, the size of strategic complementarities can be —6 > 1, a case of interest
for the existence of the solution.

Finally we note that for small shocks we do not need to consider any other equilibrium
effects, beyond the path of X(¢), in the objective function of the firm. In particular, in the

set up described above, one can show that the path of nominal wages and nominal interest

rates are only functions of the path of money supply.”

Impulse response of Output to a monetary shock. Note that an increase in the
aggregate nominal wage for all firms reduces the average deviation of markups from its
optimal value, i.e. it lowers X. One of the most interesting objects of the solution of the
MFG, interpreted as a price setting problem, is the path of X (¢) after a small displacement of
the stationary distribution, given by the initial condition mg(z) = m(z + §), where 7 is the
stationary density. The value of X (¢) is inversely proportional to the deviation from steady-
state output t periods after the monetary shock . Below we consider a general perturbation

mo(x) = m(z) + ov(z).

"Moreover, while there are other general equilibrium effects, such as changes in real interest rates, etc,
their effects are “third order” or higher. More rigorously, Proposition 7 in Alvarez and Lippi (2014) can be
adapted to show the validity of the second order approximation to the set up of this paper.



3  Price Setting Equilibrium as a Mean Field Game

This section introduces the elements that are needed to setup the mean field game. We
describe the problem of a firm whose value function u depends on the state x and time t.
As noted in Proposition 1, the one dimensional state x represents a deviation from an ideal
price, which when uncontrolled follows a Brownian motion with variance o2 per unit of time
and no drift. Likewise, we use X to denote the cross sectional average of . The firm seeks to
minimize the discounted value of the sum of flow cost F(z, X) and fixed cost of adjustment
1, where p > 0 is the discount rate. Additionally, with a Poisson probability rate ( > 0 a
“free adjustment opportunity” arrives and the firm can change its price without paying a

cost. The flow cost of the firm, discussed in Proposition 1, is
F(z,X)=B(x+6X)* with B>0 . (3)

We consider the problem of a firm that takes as given a path for {X(¢)} for ¢ € [0,T),
and a terminal value function uz(z). We study the cases when 7' is finite, and also the limit
as T'— oo. The optimal decision rule of the firm at each time ¢ consists of dividing the state
space in a region where control is not exercised, the inaction region, and a complementary
region where control is exercised and the state is reset by an impulse. Three time paths
describe the decision rule: z(t), Z(t) and x*(t) for t € [0,7). At a given time ¢ the optimal
rule is represented by the interval [z(t), Z(t)] so that if 2:(¢) is in this interval the firm does not
exercise control, i.e. inaction is optimal, but if z(t) ¢ (z(¢),z(¢)) the firm exercises control,
and immediately changes its price from x(¢t7) to x(¢t") = z*(¢). The firm will also reset its
price to 2*(t), if ¢ is a time when a free adjustment opportunity occurs. We refer to z(¢) and
z(t) as the boundaries of the range of inaction, to x*(¢) as the optimal return point. The
value function of the firm w(x,t) solves the Hamilton-Jacobi-Bellman (HJB) equation (4),
with appropriate boundary conditions, given in (7) - (9). Because of the time dependence of
X (t) the value function u depends on time.

Likewise, given time paths for the decision rules, z,z and x*, and the initial condition
for the cross sectional distribution mg(x), the cross sectional distribution m(x,t) satisfies

the Kolmogorov forward equation (KFE) in (5), with appropriate boundary conditions given

10



in (10) - (12). Because of the time varying decision rules (as well as the initial condition),
the cross sectional density depends on time. The evolution of v and m solve a fixed point

problem, requiring that the average value X (t) = fj xm(x,t)dz.

A Mean Field Game (MFG). Given initial and terminal conditions mg, ur, a mean
field game consists of the functions u, m, mapping R x [0,7] to R, and functions z, z, z*, X
mapping [0, 7] to R. The equilibrium is given by the solution of the coupled system of partial
differential equations: the HJB for the firm’s value function u, and the KFE for the cross

sectional density m. For all ¢t € [0, 7] and for all x € [z(t), Z(t)] the equations are
o2
0=wu(x,t) — pu(z,t) + ?um(x, t)+ F(z, X(t)) + ¢ [u(z"(t),t) — u(x,t)] (4)

0=—my(x,t) + %mm(x, t) — (m(x,t) and z # x*(t) (5)

where the flow cost F'(x, X') was given in equation (3) and for all ¢ € [0, T]

(t)
X(t) = / zm(z,t)dr and z*(t) = argminu(x,t) (6)
z(t) *

Additionally the boundary and terminal conditions for u are:

Uy (Z(t), 1) = uy (x(t),t) = uy (x*(t),t) = 0 for all t € [0,T] (7)
u(z(t),t) = u(z(t),t) = u(z"(t),t) + ¢ for all t € [0, (8)
u(z,T) = ur(x) for all z (9)

The boundary and initial conditions for m are

0=m(z(t),t) =m(x(t),t) for all t € [0,T] (10)
1= " m(z, t)dx for all t € [0, T (11)
z(t)
m(z,0) = mo(x) for all x (12)

We now comment on the assumptions used above. First, the boundary conditions for

11



the HJB in equation (7) are typically referred to as “smooth pasting” and “optimal return
point”, and the ones in equation (8) are referred to as “value matching”. They follow from
optimality and are a consequence of our assumption that for each ¢ the value function u(-, ) is
once differentiable for all x, and twice differentiable in the range of inaction. In particular, for
any z outside the range of inaction, the value function must satisfy u(x,t) = u(z*(t),t) + .5

Second, we will assume throughout that the inaction region is connected, i.e. given by a
single interval, namely [z(¢), Z(¢)].” Third, under the assumption that the range of inaction
is given by a single interval, then the density is zero outside of this interval, so m(z,t) =0
for all = ¢ [z(t), z(t)]. Then, assuming continuity of m(-, ) for all x we obtain the boundary
condition in equation (10). This is the condition to be expected at the boundaries of the range
of inaction, since no mass can accumulate at these “exit” points. Likewise, the Kolmogorov
forward equation should not hold at x = x*(¢) since this is an “entry” point, i.e. a point
where the flux of density that exits from = x(t) and z(t) is entering. The integral condition
in equation (11) states that for every ¢, the function m(-,t) is a density and hence integrates
to one, i.e mass is preserved. Finally we require that m(x,¢) > 0 for all x,¢. See Bertucci
(2020) for a rigorous derivation of the boundary conditions in a related problem.

Fourth, recall that in the static pricing game of Section 3 the condition # < 0 corresponds
to the case of strategic complementarities, and 6 > 0 to the case of strategic substitutability.
We are particularly interested in ¢ < 0 but we will cover both cases. The standard case
treated in the MFG literature considers ¢ > 0, which corresponds to the “monotonicity”
condition that is at the center of the argument for uniqueness.'®
No mass points. We have written the evolution of the cross sectional distribution under

the assumption that it has no mass point for all ¢ > 0. This will follow if the initial distri-

8See Appendix I for the variational inequalities of the general case without smoothness.

9In principle, the inaction region could be a union of such intervals. For the stationary problem, one can
show that this is not the case, but in the MFG the argument is more involved. This is a moot point when
we analyze the perturbation, since we explore variations of the problem nearby the stationary solution.

10T terms of the notions used in the MFG literature, letting m; be an arbitrary measure and X; = [ xdm;,
the definition of monotonicity applied to the period return F(x, X) = B(z+60X)? is that for any two m; # mso
the following inequality must hold

0< / (B(z +6X1)? — Bz + 0X3)?) (dmi(z) — dma(z)) = 2BO(X; — X2)? .
Hence, the monotonicity condition in MFGs corresponds to 6 > 0, or strategic substitutability.
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bution mg has no mass points, and if the equilibrium decision rules are such the distribution
m(-,t) will not have mass points for all £ > 0. These conditions will be satisfied given the

perturbation method we will use.

Steady State: Initial and Terminal Conditions. We describe the stationary version
of the MFG. Let 74, x,, and x}, be three time-invariant thresholds, and let @ and m be two

time-invariant functions with domain in [z, Zs] solving:

2887

0= —pii(z) + %amm 4 F(2, Xo) + C (a(2?,) — a(x)) for all @ € [z, Tos]  (13)

0_2

0= imxaz(-ﬁ) - Cm(l’) for all z € [gsm ESS]’ x 7& .CE:S (14>

where X, = ff” xm(x)dx, with boundary conditions: @, (ZTss) = U, (z,,) = Uy (2%,) = 0,
'll (jss) = a (gss) = 11 (x:s> + w? and 0 = m(£ss) = ﬁl(fss).

When ¢ > 0 we have the symmetric stationary distribution m given by
(2Tss—x) _ ef:r

(1 — efas:)?

m(z) = for x € [0, Zy] (15)

0 et
2
where m(x) = m(—x) for € [~Z, 0], and £ = ,/3—3

In our model where F(x, X) = B(z + 0X)? we have that X, = 2%, = 0 and Z,, = —x,.
Note that the steady state is independent of the value of 6. In this case the solution for @ can

be obtained, up to an implicit equation in (p+()/0?, a feature that we explore in Lemma 8.

Next we state a proposition on the uniqueness of the stationary state.

PrROPOSITION 2. If 6 #£ —1, then X, = 0 is the only stationary state and it is independent

of 6. If # = —1 then any X, is a steady state.

Notice that this result is reminiscent of the trivial result for the static game described
above. Nevertheless the result in Proposition 2 is non trivial given that the firm problem has

genuine dynamics and features adjustment costs.
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4 Equilibrium of the MFG for a small perturbation

In this section we develop results to analyze the dynamic response to a monetary shock in the
presence of strategic interactions. We analyze the effect of a shock by solving an equilibrium
starting with an initial condition different from the steady state, what is sometimes referred
to as an “MIT shock”. In our case the state is given by an infinite dimensional object,
i.e. a cross sectional distribution. Moreover, to preserve analytic clarity and tractability, we
analyze the equilibrium that follows a small perturbation of the economy at the steady state.

The section is organized in three main parts. In Section 4.1 we linearize the HJB equation
for the firm’s problem and solve it analytically. In Section 4.2 we linearize the KFE for the
dynamics of the cross sectional distribution and solve it analytically. In Section 4.3 we derive
the fixed point implied by the HJB and the KFE equations and provide a characterization

of the resulting kernel that will be central in the analysis of the equilibrium.

Terminal and Initial conditions for MFG. We use the stationary solution to define the
initial density mg and the terminal value function uy. For the initial condition we consider a
perturbation v of the stationary density m, where we use the parameter ¢ to index the size

of the perturbation, so:

mo(z) = m(z) + v(x)d, Where/ : v(z)de =0, forall x € [z, Tss)- (16)

Lss

In particular, we are interested in an initial condition that corresponds to the effect of an
unanticipated aggregate nominal shock ¢, where ¢ is small. The interpretation of this initial
condition is that, after the monetary shock 0, the nominal cost jumps immediately by this
amount, and hence the value of the state x for each firms jumps from x to x — ¢, so that the
density before any decision is taken is mg(z) = m(z + ).

For the terminal condition we set:
ur(xz) = a(x) for all x € [z, Tss] and up(x) = u(zl,) + ¢ for all x ¢ [z, Tss)

so that at time ¢ = T" the continuation corresponds to the steady state value function. The
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interpretation of the terminal condition ur(x) = u(t) is that the problem of the firm can be
regarded as an infinite horizon problem. In this case T" measures the horizon over which the

strategic interactions apply.

Cases for T and p. We will consider the following combinations for 7" and p: (i) p > 0
and T < oo, (ii) p > 0 and T" — oo, and (iii) p = 0 and T' < oo, in which case we mean the

limit as p L 0 and T" < oo.

Normalization. To simplify the exposition we normalize the parameters of the problem
so that at steady state Z,, = 1. In particular, given {02, B, p,(} we set the fixed cost 9 so
that z,, = 1. This amounts to measure the shock ¢ in units of standard deviation of steady

state price changes, i.e. in units of \/Var(Ap). Moreover we also define

p+¢ _ /S
Vo o EZ\/;

For future reference, the average number of price changes in steady state is given by

k=

0.2
2777

cosh(?)
N=((——F+"—) for/? d N =2k for ¢ =0.
C(cosh(f)—l) or £ >0 an or 0

The benchmark initial condition. In general mg : [—1,1] — R given by equation (16)
for some v(x). In most of the analysis we focus on v(x) = m,(x). Direct computation on
equation (15) gives

_gw for £ > 0 and x € (0, 1]

g () = (1-1)" (17)
—1 for ¢ =0 and x € (0, 1]

where for = € [—1,0) we use that m, is antisymmetric i.e. m,(z) = —m,(—z).

Equilibrium for symmetric initial conditions. Next we establish that if the initial
displaced distribution my is symmetric, i.e. if mgo(z) = mo(—x), then the equilibrium cross-

section average has no dynamics X (t) = X, = 0, i.e. a flat impulse response. This result is
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important because it will allow us to ignore the symmetric component of the initial pertur-

bation v(z), and to focus on the antisymmetric part. We have:

PropOSITION 3.  Let mg(x) be a symmetric distribution with support on [—1,1], i.e.
mo(x) = my(—x) and fj1 mo(x)dx = 1. Then there exists an equilibrium with X (t) = X, =

0, Z(t) = Tss = 1, 2(t) = 2,, = —1, and z*(t) = x%, = 0 for all t € [0,7] and where m(z,1t) is

SS

symmetric in z for all ¢ € [0, 7). This equilibrium is unique in the class of symmetric m.

A few comments are in order. First, while X (t) = X,; = 0, the distribution m(-,¢) evolves
through time. Second, the proposition establishes uniqueness of the equilibrium only among
those in which m is symmetric. A symmetric displacement can be generated by shocking e.g.

the variance of the fundamental shocks (0?), or the market power of firms (B).

4.1 Linearization and Solution of the HJB equation

This section derives a linearization of the HJB with respect to the shock §. We consider an
equilibrium with {z(¢,9),z(¢t,0), 2*(¢,9), X(t,9), u(x,t,6), m(z,t,9)}, where § indexes the
perturbation of the initial condition for a given v. We differentiate all the equilibrium objects

with respect to ¢ and evaluate them at 6 = 0. For all ¢t € [0,7] we denote these derivatives

as follows:
0
v(z,t) = %U(ﬁ,t,é)bzo for all z € [—1,1]
n(x,t) = %m(m,t,&)bg forall z € [-1,1],2 # 0
() = 25 (1, 0)lsmo s 2(t) = —(t,0) 50, 2°(8) = 2t (1,0) 50 and
z = a6$ ; 5=0, = = 85£ 5 5=0, < = 851: 3 5=0 &
0
20) = X (0.0) 10

We study the evolution of the derivative of the value function, v(x,t), as function of
the path of the average price gap {Z(t)}. To do so we first obtain the pde and boundary
conditions that v(-,¢) satisfies. We then look for an explicit solution of v(-,t), which we use

to compute the thresholds {z(t), z*(¢), z(¢)} as a function of the path of {Z(¢)}.
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Linearization of the HJB and its boundary conditions. We differentiate the HJB

equation (4) for u(z,t,d) with respect to § at each (x,t) to obtain

0 =uv(z,t) — (p+ Qu(x,t) + kvge(x,t) + 2BOxZ(t) for z € [-1,1],t € (0,T) . (18)

Differentiating the value matching conditions in equation (8) with respect to J, e.g.

uw(z(t,0),t,0) =+ u(x*(t,0),t,0) and evaluating them at § = 0 we get:"!

v(—=1,t) =v(0,t) , wv(l,t)=wv(0,t) forallte (0,7T) (19)

where we use that u(z,t,0)|s—0 = @(x) and that a,(—1) = u,(0) = 4,(1) = 0. Using the

boundary condition at ¢ = T, i.e. that the firm’s value function is independent of ¢, gives:

0=v(z,T)all z € [-1,1] (20)

Solution of the HJB equation. = We prove two intermediate results before characterizing

the optimal thresholds.

LEMMA 1. The function v(x,t) is antisymmetric in x for each ¢, i.e. v(z,t) = —v(—=x,t) for

all z € [-1,1] and ¢ € [0, 7], and hence it satisfies the boundary condition:

0=uv(—-1,t) =v(l,t) = v(0,¢) all t € (0,T") (21)

We can solve the p.d.e. for v given by equation (18) for all ¢, x, which is the heat equation with

source 2B0xZ(t), with a zero space boundary at t = 7', and with the boundary conditions

implied by value matching. We summarize this in the following lemma.

LEMMA 2. Given the source Z(t) for all ¢t € [0, 7], then the unique solution of the heat

equation (18) with the Dirichlet boundary conditions in equation (21) for all ¢ € [0, 7], and

HFor example the derivative at the high threshold gives: v(1,t) + @, (1)2(t) = v(0,t) + 1, (0)2*(¢).
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with terminal space condition v(z,T") = 0 for all z € [0, 1] is

v(z,t) = —4B0 / > el HumD k=) Z(ﬂ(ﬁr) sin(jmz)dr (22)
t

Differentiating the smooth pasting conditions in equation (7) with respect to J, e.g.
u.(Z(t,0),t,0) = 0, and evaluating it at 6 = 0 gives v,(1,¢) + 1,,(1)Z(¢t) = 0. This equation,
together with Lemma 2, allows us to characterize the dynamics of the optimal thresholds
{z(t), Z(t)}. The next proposition summarizes the nature of the optimal decision rules for a

firm facing a path of future values for the cross sectional average price gap or markup:

PROPOSITION 4.  Taking as given a path Z(t) for ¢t € [0,7] the solution to the firm’s

problem implies the following path for its optimal thresholds {z(t), 2*(¢), Z(¢) }:

zZ(t) =T(Z)(t) = A /LT H(t —t)Z(7)dr for all t € [0,T) (23)

2X(t) =T"(Z)(t) = A" /tT H*(t —t)Z(7)dr for all t € [0,T) (24)

where z(t) = z(t) and where H and H* are defined as:

ﬁ(s)EZe’(”2+(3”))ké>0 H*(s EZe (P+UMH ks (1) < 0 for all s >0 (25)
j=1 j=1
T 4B 271 * 4B o 2712
and A= o= = bt <0 A= o = ket > 0 (26)

2
l—ngsch(n)] — 6, |[1 ncoth ‘ — 3 as n— 0.

The ratio A*/|A| is strictly increasing in 7, with [
A few comments are in order. First, the current value of the thresholds z*(¢) and z(t),
depends on future values of the average price gap Z(7) with 7 € (¢,7). In this sense, this
mapping is forward-looking.
Second, the result that z(t) = z(¢) means that the width of the inaction region, but not

its position, is constant through time. The economics of this result is that the width of

the inaction region reflects the option value of waiting, that is mainly affected by o2, the
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curvature of the payoff function and the fixed costs. Since none of these objects is affected
by the monetary shock, the width of the inaction region stays constant. While the width is
constant, its position and the location of the optimal return point within it change through
time.

Third, 6 only appears multiplicatively in the expressions for z* and Z, since neither A, A*
nor H, H* depend on it. Thus, in the special case without strategic interactions, § = 0, the
thresholds are kept at the steady state values, i.e. z* =z = 0.

Fourth, given the sign of the expressions above, if there is strategic complementarity
(0 < 0) a firm facing higher values of Z(7) for 7 > ¢, sets a higher value of the optimal
return z*(¢), and a larger value of both the upper and lower thresholds of the inaction band,
Z(t),z(t). If & > 0 the result is the opposite. The strength of the result depends on 6 as
well as on n = \/W. Also, as expected, values of Z(7) closer to t receive higher
weight on the firm’s decision for its optimal return point and width of the inaction band. The
parameter 7 also enters into the expressions for A and A*, which reflect how the curvature of
the value function changes as 1 changes. The reason that u,, appears in the expressions is
because we are perturbing the economy around the steady state. Equation (26) shows that
the curvature of the steady state value function u,,, characterized in Lemma 8, affects the

speed of convergence.

4.2 Linearization and Solution of the KF Equation

In this subsection we study the evolution of n(z,t) as function of the path of thresholds
{z(t),2*(t), 2(t)}. To do so we first obtain the pde and boundary conditions that n(-,t)
satisfies. We then look for an explicit solution of n(-,t), which we use to compute Z(t) as a

function of the path of thresholds {z(t), 2*(¢), 2(¢)}.

Linearization of the KFE and its boundary conditions. We differentiate the KFE

for m(x,t,0) given in equation (5) with respect to 0 at each (x,t) to obtain:

0= —ny(z,t) + kng.(z,t) — (n(z,t) inz € [-1,1],t € (0,T), 2 #0 (27)

19



Differentiating the boundary condition m(z(t,6),t,) = 0 in equation (10) with respect to ¢
for each t we get 0 = n(1,t) + m,(1)z(t). Likewise, differentiating the boundary condition
m(z(t,9),t,0) = 0 with respect to § we get 0 = n(—1,t) + m,(—1)z(t). Then the boundary

conditions are
n(l,t) = —m,(1)z(t) and n(—1,t) = —n(1,t)allt € (0,T) (28)

where we used that Z(t) = z(t) from Proposition 4 and where the expression for m, (1) is
given in equation (17). The reason why m, appears is because we are perturbing the economy
around the steady state.

Differentiating the mass preservation equation (11) with respect to § we obtain: 0 =
f_ll n(x,t)dz for all t € (0,T). Differentiating this equation with respect to time and using
the KFE in equation (27) we have:

0 =n,(1,¢) —n. (0%, ¢) + n. (07, ¢) —n.(—1,¢) all t € (0,T) (29)
The initial condition for n comes from differentiating mg(x) with respect to 0, this gives
n(z,0) =v(z) for xe€(-1,1) (30)

which in the benchmark case of the small monetary shock is n(z,0) = m,(z), whose expres-

sion is given by equation (17). Given n we can compute Z(t) as:

Z(t) = /1 zn(x,t)dr all t € (0,7T) . (31)

1

Equilibrium of the perturbed Mean Field Game. The equilibrium of the MFG with
initial condition given by the perturbation v is described by functions {Z, z, z*, n} that solve

equations (23), (24), (27), (28), (29), (30) and (31).

Irrelevance of the symmetric component of the perturbation ».  Any perturbation
v can be written as the sum of a symmetric component and an antisymmetric component.

Given the linearity of the system, the equilibrium for a given v is obtained as the sum of
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the equilibrium that corresponds to each of the components. The next corollary highlights a

straightforward consequence of Proposition 3:

COROLLARY 1.  Let v(z) be symmetric around z = 0. Then there is an equilibrium for
this initial condition with Z(¢) = 0 for all ¢ € [0,7]. This equilibrium is unique in the class

of symmetric n(z,t).

Proposition 3 established the result for an equilibrium with an arbitrary symmetric ini-
tial condition, not just a perturbation. The perturbation can be obtained using n(z,t) =
(m(x,t) —m(z))/0, including v(x) = (mo(x,t) —m(x))/d. Intuitively, a symmetric displace-
ment of the steady state distribution has no effect on the mean of the distribution, Z. Given

the symmetric law of motion for x, the mean remains at the steady state value.

Solution of the KFE equation for an antisymmetric v. = We will look for a solution
of n that satisfies the p.d.e. given in equation (27), its boundary condition in equation (28),
mass preservation as given by equation (29), and the initial condition for n(-,0).

First, we define the left and right limits of n(-,t) as a(t) and b(t), respectively:
n(07,t) =b(t) allt >0 and n(0~,t) =a(t) all t >0

Given the boundary behavior and the initial conditions it is natural to look for antisym-

metric solutions. Indeed the next lemma shows that this has to be the case.

LEMMA 3. If the initial condition is antisymmetric, i.e. v(x) = —v(—x), and a(t) + b(t) is
continuous on (0,77, and n satisfies equation (27), equation (28), equation (29), then n(z,1)

is antisymmetric in z for all ¢, and thus a(t) = —b(t) for all t € [0,T].

Next we use the antisymmetric nature of n to find an expression for b(t) — a(t) in terms

of the threshold z*(¢).

LEMMA 4. Assume that m(xz*(t,0),t,d) is continuous, and right and left differentiable at

d =0. Then z*(t) = %
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The antisymmetric nature of n and Lemma 4 have the important implication that:
b(t) =n(0%,t) = —m,(07) 2*(t) = —n(07,t) = —a(t) for all t > 0

Next we present a pde that n(x,t) must satisfy. The key simplification is that due to
the antisymmetric nature of n(x,t) it suffices to define it for z € (0, 1], for every ¢t. More-
over, being antisymmetric, the mass preservation is satisfied. Finally, the characterization
in Lemma 4 gives us a boundary condition at x = 0 for all . Hence the system given by

equation (27), (28), (29) and (30) becomes the following system:

ne(x,t) = kng,(z,t) — (n(x,t)  forx €[0,1] andt >0 (32)
n(1,t) = —m,(1)z(t) and n(0,t) = —m,(07) z*(¢t) for allt >0 (33)
n(z,0) =v(z) for xz € 0,1] (34)

The above system is well understood. It corresponds to a one dimensional heat equation with
a bounded spatial domain, an initial spatial condition, and a specification of time varying
values on the boundaries of the domain (see Chapter 6 in Cannon (1984)). The initial
condition is given by v and the time varying boundaries are given by z* and z. This equation
has a unique solution that can be written in terms of these three functions. The solution is
a linear functional of z*, Z and v, it is algebraic intensive and explicit expressions are given
in Lemma 9 in Appendix A. We use this explicit solution to write the impulse response of
the mean Z(t) for given path of the thresholds {Z(t¢), 2*(¢)}, using the expression for Z(t) in
equation (31). We have:

PropoSITION 5. Taking as given the paths of {2*(t), 2(¢)}, and an initial condition given
by an antisymmetric perturbation v(x), the solution of the KFE gives the following path for

the average value {Z(t)}:

Z(t) =Ty (2", 2)(t) = Zo(t) + 4k /t G*(t —7)z"(7)dT + 4k /t G(t—7)z(r)dr (35)

22



for all t € [0, T] and where G, G* and Zy, are defined as

G( Ze (C+Gm* ks 5 0 and G*(s) = —m,(07) Z 3+1 —(E+Gm?ks 5

7=1 7=1
for all s > 0, m,(1) and m,(0") are given in equation (17), and

—(+(Gm)*) k

——42 f/o sin(jmx)v(x)de. (36)

This proposition gives the evolution of the average price gap or markup, Z(t), as a function
of the path of decisions up to time ¢. The current value of Z(t) depends on past values of
the thresholds {z*(7), z(7)} with 7 € (0,¢). In this sense, the mapping is backward-looking.
Given our normalization, the mapping 77 depends only on k = 02 /2 and /.

A few remarks are due. We note that the expression for Z(t) is made of two parts: the
first one, Zy(t), gives the dynamics of the average price gap due to the displacement v of
the initial distribution when the thresholds are constant, i.e. Z = z* = 0. It corresponds to
the impulse response of the average price gap in an economy where there are no strategic
interactions, i.e. # = 0. The other part, given by the two integrals, describes the effect on
Z(t) caused by past changes of the thresholds.

Second the mapping is monotone, as larger values of past thresholds, lead to larger values
of the average markup Z(t), i.e. G*(s) > 0 and G(s) > 0 for all s > 0. Also note that the
pairs {z*(7), zZ(7)} for 7 closer to t receive a higher weight than those further away in time.

Third, for the benchmark initial condition for a monetary shock, where v = m,, as in

equation (17), and without strategic interactions 6 = 0, Alvarez and Lippi (2021) show that

1)7 (14¢2¢) —2¢*
2

o0 2 = —(2+(jm)?)k
223‘:1 PG ( (1—et) > e (EFUMIKE for £ >0

Zo(t) = [(-1-1] (37)
00 —1)7— _(ir 2
A3 2 S (Gm)” ket for (=0
We note that Zy(0) = —1, that Z(¢) is increasing and converges to zero as t — oo.
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4.3 Deriving the fixed point

In this section we put together the solution for the HJB and KFE derived in Proposition 4
and in Proposition 5 respectively to arrive to a single linear equation that {Z(¢)} must solve.
We denote the fixed point by Z = T(Z). The mapping T is the composition of Ty with T
and T* described above, i.e. T(Z) =Ty (I*(Z),T(Z)). Direct computation gives:

PROPOSITION 6. Let v be an arbitrary perturbation. The equilibrium of a MFG must

solve Z = T(Z) given by:
Zt)=T(2)(t) = Zy(t) + 9/T K(t,s)Z(s)ds all t € [0,T] (38)

where 7 is given by

> e~ (+GmA Rt 1
Zo(t>:22(1)f/ sin(jrx)v(z)dz (39)

Jm 1

and where the kernel K is:

K(t,s) = (40)

o o |:e[(j7r)2+(i7r)2+772+£2]k:(t/\s) 1] e~ Gm)2kt—Ckt—(im)?ks—nks

42 0 A=A (=] ()% + (im)2 4 n? + (2

7j=1 =1

with 4, = —m,(1) A < 0 and A} = —m,(0%) A* > 0, where 1, is given in equation (17)

and A < 0 and A* > 0 in equation (26).

Equation (38) is a non-homogeneous Fredholm integral equation of the second kind, where
the parameter is given by 6. The path {Z,} is the solution of the MFG when there are no
strategic interactions, i.e. when # = 0, and the perturbation is given by v. In our benchmark
case of a monetary shock v = m,, and then 7, is given by equation (37). The kernel K, given
in equation (40), is independent of # as well as of the initial perturbation v. This means that
the effect of strategic interactions on the equilibrium path Z depends on 6 only as a scalar

multiplying the kernel K .2

2Notice that since the kernel K arises from the composition of a backward and a forward operator, then
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We define three objects that will be used below. The first is a notion of inner product
between vectors, which we apply to functions of time. For any two functions V, W, we define

the inner product (-,-) using weights given by the time discount as follows:

wowy= L / : VOW (e " dt . (41)

1—erT

The second is a linear operator, I, akin to a matrix multiplication:
T
KV)(t) = / K(t, )V (s)ds for all ¢ € [0, T] (42)
0

for any function V' : [0, 7] — R. The third is a bound on the kernel K. This comes in two
types that are used for different analyses of the fixed point. One is a Lipschitz bound and

the other is a form of L, bound.

T 2 T T
Lipg = sup / |K(t,s)|ds and || K||5 = —)2/ / K2(t,s)e ") dtds  (43)
170 0o Jo

te[0,T (1 —ert

The next lemma gathers important properties of the kernel K that will be used to char-
acterize the equilibrium, as discussed below. The lemma considers the case where ¢ = 0,

which corresponds to the pure Ss model, as well as the case where ¢ > 0, which typically

regularizes the kernel.'?

LEMMA 5. Consider the Kernel in equation (40) and the inner product in equation (41).

1. K is symmetric if p =0, i.e. K(t,s) = K(s,t) for all (¢,s). For p > 0, the operator K
is self-adjoint, i.e. for any V, W we have (KV, W) = (V, KW):

/OT /OT K(t,s)V(s)W(t)e " dsdt = /OT /OT K(t,s)W(s)V (t)e " dsdt,

2. All elements of K are negative, i.e. K(t,s) <0 for all (¢,s) € (0,T)?

3. K is negative semidefinite, (KV, V) <0, i.e. fOT fOTK(t, )V (t)V (s)e Pidtds <0 ,

K(t, s) is different from zero for all ¢, s.
13We obtain a quite complete characterization even though the kernel K (t,s) diverges to —oo for t = s
(see Appendix 1.3 for the explicit calculation).
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4. If £ = 0 then Lip, < U ( L = 4 ) Moreover, for small p we have Lip, <

1
18 \ 1—ncsch(n) 1—ncoth(n)
1 — 15577 + o(n?),

5. Let K(t,s;n,¢) be the kernel as a function of , £. Then |K (¢, s;n, )| < |m.(07)||K(t, s;n,0)|

for all ¢, s € [0,T].

2 2

6. If £ =0, and p > 0, then ||K||5 < co(lfiTpT)Q <[1—ngsch(n)} - [1777(’370“1(77)]) for a constant

¢o > 0 independent of any other parameters.

7. If£>0and p > 0, then ||K||3 < p [%ﬁ’fﬁ)iﬂ ¢y for a constant ¢; > 0 independent of
pand T

A few remarks are in order. The lemma establishes that the operator K is self adjoint
(point 1). This property is key to the existence of an orthonormal basis for the operator, and
to represent the impulse response using standard eigenvalue-eigenfunction projection meth-
ods. The negative-definiteness of I (point 2), implies that the eigenvalues are all negative.
Second, the fact that K is negative for all ¢, s implies the monotonicity of the equilibrium
for # < 0. Third, the lemma establishes bounds that allow us to study existence, uniqueness,
and a characterization of the solution. The Lipschitz bound (points 4 and 5) is used to find
values of @ for which the right hand side of equation (38) is a contraction in the case where T
is unbounded. Likewise, the bound for the norm ||K||3 (points 6 and 7) is used to establish
the compactness of the operator K, which together with the self-adjointness, allows us to
establish conditions for existence, uniqueness, and a characterization of the solution for the

case where T is finite.

5 Equilibrium Characterization for the Monetary Shock

In this section we characterize the dynamic equilibrium. As initial condition we consider
a perturbation v to the stationary density, focusing on the monetary shock described in
equation (17). We cover both the pure Ss model (¢(/k = ¢* = 0) as in Golosov and Lucas
(2007)-Klenow and Willis (2016), as well as the Calvo-plus model (¢/k = ¢? > 0) as in
Nakamura and Steinsson (2010) and Alvarez, Le Bihan, and Lippi (2016). In these models
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output is negatively proportional to price gaps, so that denoting by Yj(#) the impulse response
of output to a small monetary shock we have Yy(t) = —Z(t) where we index the impulse
response by the parameter 6. Note that Yy(t) = —Zy(t) where v(x) = —1 for x € (0,1]. The

impulse response function solves Yy = T Y} as follows:
T
alt) = (TYa) () = Yo(t) + 0 | K(t,9)Va(s)ds all ¢ € 0.7] (44)
0

Section contents. We study the existence and uniqueness of Yy, solving the integral equa-
tion (44), for different cases. Each of these cases provides new insights on the nature of the
solution. In Section 5.1 we restrict || to be bounded and allow T to be infinite provided
that p > 0. A key result in Proposition 8 shows that the equilibrium exists, it is unique, and
it is well posed if |f] is bounded. We give a characterization of the impulse response as a
function of 6, showing that the size of the response to a monetary shock at any given time ¢
is bigger, the larger the strength of strategic complementarity (smaller ). In Section 5.2 we
restrict 1" < oo and consider 0 arbitrary and p > 0: the finite 7" allows us to use projection
methods to solve for the equilibrium impulse response Yj(t) and obtain an explicit expression
for it based on the eigenvalues and eigenfunction of IC, see Proposition 11. We show that for
sufficiently strong strategic complementarity the impulse response is hump shaped. In Sec-
tion 5.3 we show that larger strategic complementarities increase the variance of output due
to monetary shocks. In Section 5.4 we present the impulse response for the well known Calvo
model. In Section 5.5 we show that the amplification effect of strategic complementarities is
similar across the models of the Calvo-plus type.

Our first simple result shows that all IRF start at the same point.

PROPOSITION 7. Let Yy be the solution of equation (45). Then its value at t = 0 is the

same as Yy(0) = Y5(0) = 1.
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5.1 Equilibrium with bounded strategic interactions

In this section we analyze the case where the strength of the strategic interactions @ is

bounded. For future reference we define the series
Sp(t) =Y 0" (K)" (Yp) (t) for all € [0,7] (45)
r=0
where K" is the r' iteration of K defined in equation (42), i.e.:

Ky (V) (1) = /0 K(t,s) (K)" (V) (s)ds

The next proposition gives a characterization of the equilibrium for the case of strategic

complementarity (6 < 0) and for initial perturbations such that Yy(¢) > 0.

PROPOSITION 8. Assume that T" < oo if p = 0, but otherwise these parameters take
arbitrary values. Let v be any perturbation such that Yy(t) > 0, and ||Yp|| < 00 and Yy(?)
is continuous. Let 6 € (@,0], where 0 is such that the series Sy in equation (45) converges.

The unique solution of equation (44) has the following properties:
1. For each t € (0,7) the fixed point is positive, i.e. Yy(t) > 0,
2. For each t € (0,7), the fixed point Yy(t) is (strictly) monotone decreasing in 6,

3. For each t € (0,7, the fixed point Yp(t) is (strictly) convex in 6.

The proof of this proposition is straightforward, using that K < 0 (Lemma 5), and thus
for 8 < 0 we have that 8K is monotone, it has a Lipschitz bound, and preserves the sign of
Yy. The positivity, and the monotonicity and convexity on 6 whenever ¢ < 0, follow since
each term of the series for Sy satisfies these properties. A few comments are in order. First,
if v = m,(x), then Yy satisfies the hypothesis for Yy for the proposition, as can be seen in
equation (37). Second, and most importantly, this proposition shows that as the strategic
complementarity gets larger (more negative 6), then the aggregate response to the shock t is

larger at each horizon, i.e. Yy(t) is decreasing in 0. This proposition shows that Yy(t) is a
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convex function of # at each . The monotonicity and convexity properties yield the following

important corollary:

COROLLARY 2. The assumptions of Proposition 8 imply that there is a 0 > # > —oo such

that Sp(t) = +o0.

Thus, for sufficiently strong strategic complementarity the series Sy does not converge.
This, in itself, does not imply that there is no equilibrium. We return to this question in the
next section, where we show that indeed for values of 0 sufficiently large (in absolute value)
the model is not well posed: it may fail to have an equilibrium or, even when it has one, the
equilibrium may not change continuously as a function of the parameters.

The next proposition establishes a bound for |6|, in terms of the fundamental model
parameters, that ensures existence and uniqueness. In particular, we use Lemma 5 to verify
the conditions for the Banach contraction fixed point theorem. This establishes existence and
uniqueness of the solution of equation (44) for a range of § including both positive (strategic
substitution) and negative values (strategic complementarity). Additionally, the proposition

allows for any arbitrary initial perturbation v.

PROPOSITION 9. Assume that T" < oo if p = 0, but otherwise these parameters take
arbitrary values. Consider any perturbation v. A sufficient condition for the existence and
uniqueness of the equilibrium IRF, i.e. of the uniqueness and existence of a solution to
equation (44) in L*([0,T7]) is that |0| Lip, < 1. In this case, Yy(t) = Sp(t) as in equation (45).

A sufficient condition |f] Lip, < 1is :

0] R 1 _ 4 <1
2 (1—e¢)? 18 \1 —ncesch(n) 1 —mncoth(n)

. i _ o 2 1 4
For the special case of £ = 0 this gives || % (1_77 )~ T Coth(n)> < 1.

The proof of this proposition is an immediate application of the contraction theorem.
The modulus of the contraction is given by the 6 Lip, bound that was characterized in part
4 of Lemma 5 for the £ = 0 case, and extended to the case of £ > 0 in part 5. For the pure Ss

case, i.e. when ¢ = 0, we can use the approximation for small p in 4 of Lemma 5 to obtain an

7

mnz) < 1. Thus for practical purposes in the pure Ss case

expression for small n: [0] (1 —
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we can take the sufficient conditions for a contraction to be |§] < 1.1

While Proposition 8 was shown only for an interval of strictly negative values of 6, the
same properties hold in a neighbourhood of # = 0. In particular

8 2

D¥1)lo-o = () (Y0)(1) < 0 and VoDl = 2 (K (¥0)(1) > 0

and thus the monotonicity and convexity hold also in an interval of positive values, so that
the result extends (locally) to the case of strategic substitutability. This is shown by direct
computation since by Proposition 9 the series in equation (45) converges uniformly. Indeed,

numerically, we find all the properties in Proposition 8 hold for all positive values of 6.

Figure 1: Equilibrium path of thresholds

Optimal policy threhsholds for
0 =-08p=001,0>=N=3T=8and§=0.1
T T T T

05

In Figure 1 we display the time path of the equilibrium thresholds z(t), z*(¢) and z(t)
based on the linear approximation. The figure consider the case of 6 = 0.05 and # = —0.8.
The black thin lines are the steady state values of the thresholds, and the color solid lines
are the linear approximation to the equilibrium thresholds. The thresholds start just at the

edge of the initial displaced distribution, mg, and then evolve according to the equilibrium.

MFor this case 2k = 02 = N Var(Ap) = N, where N is the expected number of price changes per unit
of time in steady state, and where we use the normalization Z,; = 1 and the definition of k. Thus when

n? = p/k we can write the bound as ﬁ >1-— %%.
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As shown above, the paths for both boundaries of the range of inaction z(t) and z(t), as
well as the path for the optimal return x*(¢), deviate from their steady state values with the
same sign, determined by 6. The fact that strategic complementarities lowers the thresholds
is what makes the impulse response larger, since fewer firms increase prices and, when they
do so, they return to a lower value of the price gap.

In the left panel of Figure 2 we display the IRF Y} for five values of 6 and for /2> = 0.01,
so it is essentially the pure Ss model, with unit kurtosis as in the Golosov-Lucas model. The
figure illustrates Proposition 8: at each t it can be seen that Yy(¢) decreases in 6, in a convex
fashion. Also, all IRFs start at the same value, i.e. Y3(0) = 1, and it is evident that for larger
strategic complementarity the IRF is more persistent. The right panel displays the IRF for
(* =5 i.e. for a version of the Calvo-plus model with a kurtosis of about 5 (this model is
thus quite close to Calvo, where kurtosis is 6). As in the pure Ss case, the IRF are decreasing
and convex in # for each t. Comparing the two IRFs for the same 6 across the two figures, it

can be seen that the Calvo-plus model has a larger IRF than the one for the pure Ss model.

Figure 2: Output response to a monetary shock

Golosov-Lucas (Kurtosis ~ 1) Calvo-plus: (Kurtosis ~ 5)
Impulse response of monetary shock for five values of 6 Impulse response of monetary shock for five values of 6
for T =5, k = 1.5 and Kurt =1.03 for T'=5, k = 0.12 and Kurt =5.07
T T T T
—0 =0.9 Strategic Substitutes —0 =0.9 Strategic Substitutes
——0 =0.45 Strategic Substitutes —— 0 =0.45 Strategic Substitutes
1 6 = 0 Uncoupled system H 1 6 = 0 Uncoupled system

— 0 =-0.45 Strategic Complements
——0 =-0.9 Strategic Complements

—0 =-0.45 Strategic Complements
——0 =-0.9 Strategic Complements

08

06

Y, (t): Output, deviation from Steady State
Yy(t): Output, deviation from Steady State

0 05 . ! e time t
time t
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5.2 Equilibrium characterization with a finite 7'

In this section we focus on a finite horizon 7" < oo and analyze how the equilibria vary as
a function of #. A main result is to provide an expression for the IRF Yy in terms of the
projections onto an orthonormal base, and the associated eigenvalues, implied by the kernel
K. We begin by introducing a norm for linear operators, which is the analogue of the square

of the trace of a matrix:

I8 = 00 0 = 3 (=g [ [ a0 0 0 s w)

where {f;} is any orthonormal base for the linear separable Hilbert space H of functions
V :10,T) — R with (V,V) < co. The next proposition, which uses the results of Lemma 5,

gives the necessary preliminary results.

PROPOSITION 10. Assume that 7' < oco. The HS norm is bounded by ||K|[%¢ < T?||K||5.
In this case the operator K is self-adjoint and compact, and thus it has countably many
eigenvalues and eigenfunctions that we denote by {u;, ¢j}?il- The eigenvalues p; are real,
negative, and ordered as |p1| > |p2| > |us|. .., and they converge to zero |u;| — 0 as j — oc.
There are at most finitely many eigenfunctions associated with each non-zero eigenvalue.

The eigenfunctions {¢;}52, form an orthonormal base for H.

The proposition is an instance of the spectral theorem for compact self-adjoint operators,
a basic result in functional analysis, see section 5 of Chapter II in Conway (2007). That
the operator is self-adjoint was shown in part 1 of Lemma 5. That the operator is compact
follows from finite Hilbert-Schmidt norm, which as stated in equation (46) is equal to the L?
norm of the kernel found in part 7 of Lemma 5. That the eigenvalues are negative follows
directly from part 3 of Lemma 5.

Our first result determines the values of 6 for which the solution exists and is unique,
and provides a partial characterization through an explicit solution written in terms of the

eigenvalues and eigenfunctions of K.

ProprosIiTION 11. Assume that 7" < co. Then
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1. If py < 1 there exists a unique equilibrium solving equation (44) given by

Yy(t) = i (93, YD>, ¢;(t) forallt e (0,7) (47)

2. If 6 — +oo, then Yy(t) — 0 for all t € (0,7).

3. If 0 = 1/p1, and v is such that Yy > 0, then there is no solution to equation (44), i.e.

there is no equilibrium. Moreover, there is pole at § = 1/u4, i.e. for all t € (0,7):

lim Yp(t) = +oc and lim Yj(t) = —o0. (48)

011/ p1 011/ 1
4. There are at most countably many values of 6 < 1/pu; for which the equilibrium does
not exist, and where Y has a pole at that value. Let j* = min{j : (Yy, ¢;) # 0}, the

equilibrium is well posed only for 6 € (}%, 00).
J

A few comments are in order. This proposition shows that an equilibrium exists and is
unique if § > 1/py. Hence, it gives a generalization of the result in Proposition 9, since
the existence result also covers 6 > 0, i.e. all values of strategic substitutability. The result
also defines the region where the equilibrium exists, i.e. 6 € (1/p1,00). Second, the result
complements Proposition 8, showing that as 6 gets large the IRF converges to the flexible
price case. Third, it is shown that as 6 | 1/, the IRF Yj(t) gets arbitrarily large. The left
panel of Figure 3 illustrates the proposition by summarizing the whole impulse response with
a single number, its cumulated value CI Ry = fOT Yp(t)dt. The diverging behavior established
by point 3 of the proposition is apparent in the figure. Another implication of point 3 is that
since Y(0) = 1 for all § then the IRF becomes humped shaped as § — 1/u], as illustrated

in the right panel of Figure 3. We summarize this interesting result in

COROLLARY 3. Assume that T' < oo. If the strategic complementarity is strong enough,

i.e. as 6 approaches 1/ from above, the IRF Yp(¢) has an increasing segment.

Finally, point 4 is also evident in Figure 3: the equilibrium is not well posed for 6 < 1/,

as such poles appear several times.
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Figure 3: Impulse response for the Monetary Shock

T IRF to a monetary shock for several 6 in the range [-0.9723 , -0.97 |
CIRy = [; Y(s)ds for T =6, k = 0.5 and p = 0.03 for T =5, k= 1.5 and Kurt =1.03

6 < 0 Strategic Complements

oy — CIRy)/CIRy

(CIR,
© -
=

0> 0 Strategic Substitutes

-3 2 -1 0 1 2 3 4 0 05 1 15 2 25 3 35 4 45 5
0 time t

5.3 Output variance due to monetary shocks

Starting with the seminal analysis of Caplin and Leahy (1997) several well known papers have
used the output variance induced by monetary shocks as a summary measure of monetary
nonneutrality, as in e.g. Nakamura and Steinsson (2010) and Midrigan (2011).

The linear expression for the impulse response given in equation (47) can be used to define
a stochastic process for the deviation of output outside of the steady state. In particular,
assume that the monetary shock {de(7)} where €(7) is a continuous time process with inde-
pendent changes and E[de] = 0 and E[de] = o2 dt for some parameter o5 > 0. Our preferred
example is a composite Poisson process for {e(7)}, where with probability o > 0 per unit of
time €(7) has a jump of size +4, each jump with probability 1/2. In this case 02 = p§?. The

process for {€(7)} generates the stationary stochastic process {y} as follows:

y(t) = / ' Yo(t — 7)de(r) for all £ > 0 (49)

=T

34



using the impulse response Yy(t). The unconditional variance of this process is given by:

Vare(y) = 0?/0 Y (s)ds (50)

PROPOSITION 12. Assume that p = 0, T' < oo and that § > 1/u;. Assume the monetary

shocks are i.i.d. and bounded. Then the unconditional variance of output Varg(y) decreases

with 0, i.e. Varg(y) = 372, @) and 0 > L dv“"’(y =232 wi(0) - > 2145

1 (1—0uy) )2 Varg(y) 10k o
i Yp)2
where the w;(0) = (1_9%)2—\3;9(@

are weights.

This proposition shows that the strength of strategic complementarities increases the
unconditional variance of output —recall that # < 0 for strategic complementarities, and
0 > 0 for substitutability. This proposition complements the result in Proposition 8 that at
each ¢ the impulse response increases with the strength of strategic complementarity. Note
that in the expression for Varg(y) the parameter 6 only enters in the factors 1/(1 — 6u;)?,
since Yy, ¢, 1t; do not depend on it. The functions Yy, ¢;, 1; depend on the particular price

setting model, i.e. Golosov-Lucas, Calvo, or any variant of Calvo-plus.

5.4 The case of the “pure” Calvo model: z(t) = —z(t) — o0

In this simple time-dependent model a firm can only change prices at exogenously randomly
distributed times, independently of their state. In particular in each period a firm can change
its price with probability ¢ > 0 per unit of time. This simple time-dependent model, intro-
duced by Calvo, is the most common case analyzed in the literature due to its tractability.
The analysis we use here draws on Alvarez, Borovicka, and Shimer (2021) Appendix C.3,
where a closed form expression for the impulse response in the presence of strategic interac-
tions is obtained. We recast the problem as a Mean Field Game, where the firm’s problem

becomes
pu(z,t) = Bz +0X (1)) + w2, t) + 2 um(x t) + C (u(z*(t),t) —u(z,t)) for all z, and t € [0, 7]

and final boundary condition u(z,T) = @(z), where 4 is the stationary solution which cor-

responds to the problem with # = 0. Compared to our benchmark model, in this case the
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barriers are exogenously set at Z(t) = 400 and z(t) = —oo. The corresponding KFE for the
measure m(x,t) is:

0= %Qmm(l‘, t) — Cm(x,t) — my(x,t) for all  # 2*(t), and t € [0, 7]

with 1 = [ m(x,t)dx for all t € [0,T] and initial condition m(x,0) = m(z + §), where m
is the stationary density of the problem with 6 = 0, which is a Laplace distribution.
Adapting the arguments in Alvarez, Borovicka, and Shimer (2021), we obtain a simple

closed form expression for Yy(t) in the pure Calvo model:

ProposiTION 13.  Consider the Calvo model: Z(t) = —z(t) — oo. Let u be the negative
root of the quadratic equation: (u—p—()(C+p) —0(p+ () = 0. For T — oo we get

limy_, o Yy(t) = € and lim, o limg o Yp(t) = e VI for all ¢ > 0.

It is remarkable that, as is the case in the Calvo model of Wang and Werning (2020),
the impulse response of this involved problem is a simple exponential function (for the case
with 7" — oo and p | 0). Some features seen above for the state dependent problem also
appear here: the impulse response tends to vanish as strategic substitutability gets large
(0 — 00). On the contrary, large strategic complementarity § — —1 yield a very persistent
impulse response. Finally, in this simple case the impulse response is monotone, i.e. it can

not display a hump-shaped pattern.

5.5 Strategic Complementarity and Selection Effects

In this section we return to the analysis of the Calvo-plus , i.e. the model where we let
¢ > 0, the pure Ss model, the model with ¢/ = 0, and the pure Calvo model described
above. We are interested in the relationship between strategic interactions, as measured by
0 and the selection effect in the price setting behaviour, measured by ¢. We focus on the
cumulative impulse function C'I Ry as a summary measure of the effect of a monetary shock.
The main result of this section is that the effect of strategic interactions (6) is approximately

multiplicative separable with the effect of selection in price setting ().
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Cumulative impulse response. Recall that absent strategic interactions, i.e. when
0 = 0, Alvarez, Le Bihan, and Lippi (2016) showed that the scaled cumulative response
function CIRy = [, Yo(t)dt depends only on £ and the frequency of price adjustment N.'?
Motivated by these facts, we analyze (and display) the impulse response for different values

of ¢ while we keep the steady state number of price changes N constant.

CIRy for the “pure” Ss Model, i.e. / =0. The next proposition shows the effect on
the cumulative response function C'I Ry of a small change of the coupling parameter . The
approximation is obtained by differentiating Yp(t) = Yy(t) + 6 fo (t,5)Yp(s)ds with respect
to # and evaluating it at 6 = 0 obtaining a%Yg )o=o = fo (t,s)Yo(s)ds.

PROPOSITION 14. Assume that ¢ = 0. Consider the CIRy for the undiscounted case in a

long horizon. Then

pl0 T—oo C'T Ry do mm

m=1,3,5,...

1 dCIR 1’
lim lim oo = 192 Z <> [csch(mm) — coth(mm)] = —0.578 (51)

Figure 4 plots (CIRy — CIRy)/CIR, for a range of 6 that includes both strategic sub-
stitutes (6 > 0) and complements (# < 0). It can be seen that the relative slope around
0 is close to 0.6. Also we can see that as # becomes more negative, and gets closer to the

reciprocal of the dominant eigenvalue, then C'I Ry diverges as predicted by Proposition 11.

CIRy for the “pure” Calvo Model. Using the characterization of Proposition 13 we
compute the C'I Ry for the pure Calvo model obtaining:

1 1 dCIRCalvo 1
Calvo __ 0 _ 1t
lip i CTR = = and W i, o g 0= 3 (52)

Note that in the Calvo model the proportional effect of 6§ on the cumulative impulse
response C'I Ry at 6 =~ 0 is slightly smaller but overall very close to the value obtained for the

pure Ss model. In the Calvo model this elasticity is —0.5, as shown in equation (52), where

5Indeed, in that paper it is shown that CIRy = Kurt({)/(6N), where Kurt(£) is the steady-state kurtosis
of the price changes, a statistic that depends only on /.
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Figure 4: Cumulative Impulse response (CIR) as 6 varies

Cumulativg Impulse response of monetary shock, realtive to § = 0
CIRy = fol Yp(s)ds for T =12, k= 0.5 and p =0
T T T T T T T T

T T
—sS (GL) Model
—— Calvo Model

©

(CIRy — CIRy)/CIRy
:

in the baseline Ss model the elasticity is about —0.578 —see Proposition 14. It is intuitive
that the elasticity is higher in the baseline Ss model, since the firm can also decide when
prices are changed. Recall that while the elasticities are similar, the level of the CIR, are
very different between the baseline Ss model and the Calvo model.'6

Figure 4 compares the CIR for the baseline Ss model and for the Calvo model, over a
range of values for §. In both cases the C'I Ry is decreasing and convex in 6, diverges towards
+00 at a critical (negative) value of §, and converges to zero as  — 0o.'” What is remarkable
is that the effect of @ in both models is very similar (not just at # ~ 0) over the whole domain.
Overall, the figure shows that across several models, from the pure Ss to the Calvo model, the
effect of strategic interactions is approximately multiplicative across a large range of values of
f. This means that in spite of the large level differences of the CIR in these models, as in e.g.
Calvo being approximately six times larger that the Ss model when 6 ~ 0, the introduction

of strategic interactions affects these models in a quantitatively similar way.

16 As mentioned, CTR§ " = 6 x CIR5*, provided that both models have the same steady state frequency
of price changes —as can be seen in Alvarez, Le Bihan, and Lippi (2016).
17Since CIRy — 0 then (CIRy — CIRy)/CIRy — —1, as in the figure.
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6 Numerical Computation of Equilibrium

This section develops a simple and accurate algorithm to solve the equilibrium as a finite
dimensional linear system, which follows exactly the same equations as the continuous case.
This linear system also serves to clarify the expressions of the original continuous case which
uses notation and concepts from functional analysis. We prove that our numerical procedure
is stable, and that its solution has the same properties as the actual solution. Moreover, in
spite of the fact that the kernel K is irregular, i.e. that K(¢,t) = —oo for all t > 0, we show
that the method is convergent, and analytically characterize its rate of convergence.

Our algorithm uses two assumptions: (A1) replaces the time interval [0,7] by {¢,}7,,
and (A2) replaces the infinite series in the definition of the kernel K in equation (40) and in
the definition of Y in equation (36) by finite sums of its first M elements.

We first implement A2, i.e. we define a version of the kernel with sums of M terms. In

particular, define the kernel K, : [0, 7] — R as

|:€[(jﬂ)Q+(i7r)2+n2+62]k(t/\s) -1 6—(j7r)2kt—€2k’t—(iﬂ)2ks—n2k8

)=4) > [Ar— A7 (—1)"] ()2 + (im)2 + % + 22

7j=1 =1

Now we implement Al by discretizing time as follows. Let A = T/m and t, = rA for
r=1,2,...,m, and likewise for s, = gA. For finite m we use the kernel K, to build an

m x m matrix K with typical element K, , where for any pair (r, ¢) we have:

K, , =Kyt s,) for (r,q) € {1,2,...,m}? (53)

)

Likewise, we approximate the infinite sums in equation (36) with the first M terms:

e~ (t+Gm kt 1
/ sin(jma)v(z)dx for all t € [0, T (54)
0

and in the case of a monetary shock we use equation (37) to write:

M .
e (1 () =28\
— _QZ —(EFUMIEE for all t € [0,T] (55

— Pz (jﬂ)z ( (1 _eg)Q e or a S [ ) ] ( )
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The equilibrium path Yy : [0,7] — R is replaced by a vector Y, € R™, and likewise the
equilibrium with no strategic interactions Y is replaced by Yy € R™. Thus we define Y
as the m dimensional vector: Yo = [Y¥(t1),Y¥ (t2),..., Y (t,)]. Then the equilibrium

vector Yy solves the following system of m linear equations:
Yo=Y+ 0% KYy (56)

Let R be an m x m diagonal matrix with typical element R,, = e ? for r =1,2,...,m.

ProprosiTION 15. Fix a positive integer m and a positive even integer M. The matrix K
has real strictly negative eigenvalues p; and real eigenvectors ¢; € R™ satistying p;¢; = Ko;.
The matrix RK is symmetric, and the eigenvectors of K are orthonormal using the inner
product gzﬁjTR@ = 0if i # j and ¢ Rg; = 1. Letting ® be the matrix whose columns are
the eigenvectors ¢;, we have ®~! = ®TR. If Ou; # 1 for all j = 1,...,m, then the unique
solution of equation (56) is given by
m T
Ygzzmgbj:qm(e) ?"RY, (57)

7=1
where D(0) is a diagonal matrix with diagonal element 1/(1 — 6p;).

The previous proposition shows that for a fixed m, M the solution of the discretized
system has the same properties as the solution on the original case. Clearly, the expression
in equation (57) is the finite dimensional version of equation (47) in Proposition 11. It is also
the finite dimensional version of equation (45) in Proposition 8 in the cases where |6 ;| < 1.
To see this, note that ®D(0) 'R =dD() P! =+ 0K + (K)* + .. ..

Its computation is extremely simple, as it only involves finding the eigenvalues and eigen-
vectors of the well-behaved matrix K. In particular no inverse matrices are needed, the
computation of {¢;, u;} is independent of the value of #, and the solution is stable even
as § — 1/p; while solving equation (56) using a matrix inversion will give rise to a badly
behaved problem.

Next we characterize the rate at which the solution of the discrete system converges to

the solution of the original case. We use a variation on the Nystrom method. For this
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we define linear operator and a solution corresponding to each m, M. In particular, let
KM be the linear operator defined as K a(V)(t) = A" Kur(t,54)V (sq), and denote
by Y, [0, T] — R the function that solves:

Yyt () = Y () + 0A Y " Ky(t, 50)Yy™Y (s,) for all ¢ € [0, T

r=1

Let Yy be the m dimensional vector solution of equation (57) for the pair (m, M). Clearly

Yem’M(tT) =Y,,. We first have a preliminary lemma about YjV.

LEMMA 6. Assume that v is absolutely continuous. Then ||Y{¥ ||, < oo and there exists a

constant ¢o > 0 such ||Yy — Y || < £ for all M.

The next proposition analyzes the rate of convergence of the extension of the solution of
the discretized linear system to the solution of the original system, as a function of the two

discretization parameters m and M.

PROPOSITION 16. Assume that T' < oo, that v is absolutely continuous, and that
|0] Lip K < 1. There exist three positive constants ¢y, ¢o, c3 and an integer m such that:

log M)? 1 1
M + c3—— for all M and m > m (58)

m,M § L
H}/H }/bHOO S €1 + (‘2]\/{ ]\/[2

As equation (58) makes clear, the convergence requires that m grows at a faster rate than
M. For instance m = M? is enough. In words, we require a relatively fine discretization
of the time interval relative to the number of terms to compute the kernel in the matrix K
and the Fourier series in Y. This is required because the kernel K is irregular, i.e. because

K(t,t) = —oo for each t € (0,T].

7 Conclusions

We study the propagation of monetary shocks in a sticky-price general-equilibrium where

firms’ pricing decisions are subject to non-negligible strategic complementarities with the
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decision of other firms. This problem is involved and no encompassing analytic characteriza-
tion of the determinants of the resulting equilibrium dynamics exist. We cast the fixed-point
problem defining the equilibrium as a Mean Field Game (MFG) and establish several analytic
results on equilibrium existence and on the analytic characterization of an impulse response.

The framework developed in this paper is useful to study the dynamics of equilibrium in
related problems, such as price setting under a time-dependent rule, as in Alvarez, Borovicka,
and Shimer (2021). We are also extending the framework to study higher-order perturbations,
that should be key in the comparison between time and state dependent models, since these
models react differently to large vs small shocks. Finally in Alvarez, Argente, Lippi, Mendez-
Chacon, and Van Patten (2022) we are using the framework to study a problem of technology
adoption, applied to digital means of payments. Interestingly, in this problem there are
multiple stationary equilibria, and thus our techniques can be used to find out which of the

stationary equilibria is locally stable.
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Online Appendix:

A Proofs (full details in technical appendix)

Proof. (of Proposition 1.) Define the markup m(p/P) = e 5)1/353)1 Totally differentiating
the first order condition p*(P) = m(p*(P)/P) x(P) with respect to P, completing elasticities

and evaluating at p* = P gives

e (20 e ()

P op*

and using that x(P)/p* = 1/m(1):

N B O T
— L_ 'g;;H i o

P op*
p* OP

To get the expression in equation (1) note that m(x) = 7,&()9?1 som/(z) = ”/(m)(”((?(;;:;(x)"/(m) =
n'(x) m'(1) _ ‘M -1 _ ‘(1) . :
and hence: T = f(n("l)fl)Q nn(l) = —n(l)?n(l)fl). That n(1) > 1 is implied by

(o ( )—1)2
the first order optimality condition.

Next we show that 1 + % > (. Recall the second order condition for a maximum

Mu(p*, P) = D"(p"/P)(p" — x(P))/P* +2D'(p*/P)/P < 0

Note that D’ < 0 and that x/p* = 1/m and rewrite the second order condition as

——— | 1—-— 2>0 59
Dw/P) P\ m) )
Next differentiate the elasticity n(z) = —agg(f) D(I) and evaluate it at © = p*/P = 1. We get

LDy (DN D) D)
T ="Dm " (D(l)) “ D) - D)

where the second equality uses the elasticity definition. We can then write the second order

condition equation (59) as D”((ll)) 3((1)> , +2 >0 or, using the expression for D"/D and the

elasticity definition (1 —n? —n) & +2 ="~ +”(" 250=D) - () which establishes that 1+ —21— (n 5 >0,
where all n are evaluated at p* = P.

Finally, the expression for B = —%P{ is obtained by direct computation evaluating

—|—772+77

the objects at p* = P = P. We get

n+nln—1)) .

M, D'(1-L)&+22 1 /p" D\ 1
I DpPO-1)y —P? 7))

Z 49 S
D+ D P2(
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Proof. (of Proposition 2) Here we argue that, if § # —1, then the stationary solution
displayed above is unique. On the other hand, if & = —1, then any value X, corresponds
to a steady state. Define w = x + 0 X,,. Consider the value function @ corresponding to the
control problem:

u(w) = min E w(0) = w

{7, Aw; }

/ e ' Bw?(t)dt + Z Vlirpye "
0 i=1

where dw = odW for t € [1;,7;41) and w(7;") = w(7;") + Aw; and where t; are the realiza-
tions of the exogenously given times at which the fixed cost is zero, which are exponentially
distributed with parameter (.

We start making two claims about this problem, and then a third claim about the sta-
tionary distribution. First, the value function @ is symmetric around zero, i.e. 4(w) = a(—w)
for all w. This follows because the flow cost Bw? is symmetric around zero, and because
a standard Brownian motion has, for any collection of times, increments that are normally
distributed, and hence symmetric around zero. Second, if the solution of the value function
is C? then it must satisfy: (p+ ¢)i(w) = Bw? + ﬁww(w)"—; + Cu(w*) for all w € [—w, w] with
boundary conditions: u(w) = 4(w) = 4(w*) 4+ ¢ and 0 = Uy (0) = Uy(w) = Gy, (w*). Thus,
since u is symmetric, it must be the case that w = —w and w* = 0.

Third, and finally, using the symmetry of the thresholds {w,w*, @}, we can find the
stationary density m(w) which is the unique solution of

0 = Myw(w) % — Cin(w) for all w € [w, w*) U (w*, @]

with boundary conditions: 0 = m(w) = m(w), limyp, m(w) = limg, - m(w), and 1 =
[ i (w)dw . Importantly, the density 7 must be symmetric, centered at w* = 0."¥ Hence,

fz_] wm(w)dw = 0. Thus, a stationary equilibrium solution of the original problem requires:

LU:S =w* — 9Xss; LTgg =W — 9X337 Tgs = W — 9Xss;

Xss = / m(w) (w — 0X,) dw = / m(w)wdw — GXSS/ m(w)dw
and thus we can construct a stationary state if and only if: X, = —0X,,. Hence if 0 £ —1,
then X = 0 is the only stationary state, and if # = —1 one can construct a stationary state

for any X, U

Proof. (of Proposition 3). The proof is constructive. We first we argue that if X (¢) = 0,
then it is optimal for the firm to set Z(t) = z5s = 1,2(t) = z,, and x*(t) = 2%, = 0. This is
immediate since given X (¢) = 0 the period flow cost for the firm is F'(z, X) = B(x+0X,,)* =
Bz?, which is identical to the one for the stationary problem whose HJB is in equation (13).
Hence the optimal policy must be the same as the one for the stationary problem.

Next we prove that m(x,t) is symmetric in . We will do this by defining a new function

18This can be shown since for [w, 0] and [0, w], the density is a linear combination of the same two exponen-
tials. Using the boundary conditions at w and @w we express each the density in each segment as function of
one constant of integration. Finally by continuity at w = 0 we find that the distribution must be symmetric.
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M(z,t) = m(x,t) — m(—x,t), and prove that the integral of its square in the Lebesgue
measure is zero. This, implies that the only such possible M (x;t) is the zero function, thus
establishing that m(z,t) = m(—x,t). We then turn to the existence of a solution to the p.d.e.
with the relevant boundary conditions. The argument is based on finding a fixed point for a
function A : [0, 7] — R which serves as a Dirichlet boundary at x = 0.

Having established that given Z(t) = Z, z(t) = z,, and z*(t) = 2%

ss)

there exists m(x,t)
and it is symmetric in z for each ¢, then X (t) = f_ll xm(z,t)der =0 = X,.

That the solution is unique on the class of symmetric m, follows from noting that (i) if
m is symmetric, then X (¢) = 0 and that (ii) the solution to the KFE is unique.

Full details are given in the technical appendix.

U

Proof. (of Lemma 1). First we show that v is antisymmetric. For that we use that the
source 2B0xZ(t) is antisymmetric as a function of z. To see this, define w : [0, 1] x [0, 7]
as w(z,t) = v(z,t) + v(—x,t). We will show that w(z,t) is identically zero and solves 0 =
wi(z,t) + kw,, (x,t) — pw(x, t) with boundary conditions w(1,t) = v(1,t)+v(—1,t) = 2v(0, 1)
from equation (19) and w(0,t) = 2v(0,¢) all t and w(z,T) = 0 for all z.

We can use the maximum principle that shows that the maximum and minimum of w
has to occur at the given boundaries, i.e. at either x € {0,1} and any t € [0,T) or at any
z € [0,1] and ¢t = T. To see this, notice that since w(z,T) = 0 for all z € [0, 1], then if a
minimum will be interior, i.e. if it will occur at 0 < # < 1 and 0 < ¢ < T, then w(Z,) < 0.
Hence, w;(7,t) = —kw,.(%,t) + pw(&,1) < 0 since w,,(7,%) > 0 because (,1) is an interior
minimum and k > 0, and since w(#,) < 0. Hence w(Z,t') < w(,t) for ¢’ close to t, a
contradiction with (#,7) being an interior minimum. A similar argument shows that there
cannot be an interior maximum.

Now we show that the maximum and minimum has to occur at ¢ = T". For this we use
that w(z,t) = v(x,t) + v(—=z,t) implies w,(0,t) = v,(0,t) — v,(0,¢) = 0 for all t < T". Thus,
suppose that the minimum occurs at (z,t) = (0,t;) where t; < T. Then w(0,t;) = 2v(0, ;)
and wy(0,t1) = 2v,(0, 1), s0 2pv(0,t1) = kw,, (0, t1)+2v,(0,¢1). Since (0, ;) is a minimum, we
have v,(0, ¢;) > 0 and since the minimum occurs at t; < T, then v(0,¢;) < 0, 50 W, (0,11) < 0.
But since w,(0,¢;) = 0, then we obtain a contradiction with (0,%;) being a minimum. A
similar argument shows that the maximum cannot occur at (z,t) = (0,t) where t5 < T
Thus the minimum and maximum occur at t = 7', where w(z,T) = 0.

So we have shown that w(z,t) = 0 for all (x,t), and hence v(z,t) = —v(—=z,t) all (z,t).
Since v is antisymmetric we have v(0,t) = —v(—0,¢) and hence v(0,t) = 0.

Second, using smooth pasting at the boundaries ( @,(—1) = @,(1) = 0) and optimality at
z* =0 (u,(0) = 0) in equation (19), we can write the boundary conditions as

v(—=1,t) =v(0,t) =v(l,t) =0 allt e (0,7T)
which gives the desired result. [J
Proof of Lemma 2. Prelims. Next we present a lemma that will be used for solving

the HJB in equation (18). For notation simplicity we use p below to denote the constant
parameter (p + () appearing in equation (18).
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LEMMA 7. Let f be the solution of the heat equation
0= fi(z,t) + kfox(x,t) — pf(x,t) + s(z,t) for all x € [-1,1] and ¢ € [0, 7)) (60)

and boundaries
f(1,t) = ¢(t) and f(—1,t) = @(t) for all t € (0,7) (61)

and
f(z,T) = ®(x) for all z € [-1,1] (62)

for functions qg,@, ® and s. Assume that p > 0 and k£ > 0. The solution is unique.

Proof. (of Lemma 7). As a contradiction, assume that there are two solutions f! and f2.
Let F(xz,t) = f*(x,t) — f'(z,t). Note that the p.d.e. in equation (60) is linear, so that F
must satisfy

0= Fy(x,t) + kFy.(x,t) — pF(x,t) for all x € [-1,1] and t € (0,T) (63)

with boundaries:

F(1,t) =0and F(—1,t) =0 for all t € (0,7") and (64)
F(z,T) =0 for all z € [-1,1] (65)
We use a conservation of energy type of argument. Define I(t) = f F(x,t))?dz > 0 for

t € [0,7]. Then use the boundary condition I(7") = 0 to write 0 = I(T") = I(0) + fOT I'(t)dt.
Next compute:

1

I'(t) = / L(F(z,t))de = 2/ F(z,t)Fy(z,t)de = 2/ F(x,t)[pF(x,t) — kFypp(z,t)|dx

1 -1 -1

Y /11 F(x,1)%dx + 2k (/11 Fy(,t)*de — F(x’t)Fw@’t)‘l_l)

where we have substituted the p.d.e. and integrated by parts. Using the boundary conditions
in equation (64) we have:

1 1
() = 2 / Fla, t)2dx + 2k / Fu(, #)2dz > 0
-1 -1

Thus I(T') = 0 only if I is zero for almost all ¢, and hence F'(z,t) = 0 for almost all z, which
in turns implies that f! = f2 for almost all z,¢. [J

Proof. (of Lemma 2) Uniqueness follows from the argument given in Lemma 7.

That equation (22) satisfies the zero boundary condition at ¢t = T follows immediately
since at t = T equation (22) becomes an integral with zero length. That the Dirichlet
boundary condition holds at x = 1 and x = —1 follows since sin(zjr) = 0 for all integers j.
Note also that the v(0,t) = 0 since sin(0) = 0. It only remains to show that equation (22)
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satisfies the heat equation with source CzZ(t), where C' = 2B6. Direct computation gives

vz, t) =CZ(t io:

_20/ Ze’”k N (o4 k(jm)*) Z ()

sm (jrz)

1y

sin(jmx)dr
Jm

2 —1)
Vg (T, 1) :20/ Ze(”k(ﬁr) )(t*T)Z(T)( , ) (jm)?sin(jrx)dr
t ':1

Jm

and notice that the Fourier series for x in the interval [0,1] is x = —2> °° (G sin(jmx),
. J=t jm

since fol rsin(jrx)dz/ fol sin?(jrr)dr = —2(_].—713]. Replacing these expressions in the equation

for vy(z,t) we can verify that 0 = v(z,t) + kvg (2, t) — pv(x,t) + CaZ(t) for all x € (—1,1)
and t € [0, 7). O

For use in Proposition 4 we compute the expressions for the second derivative of @ when
we use the normalization T, = 1, i.e. the choice of 1 so that it is attained.

LEMMA 8. Fix the parameters o, B, ( and p and let 1) be such that z,; = 1. For such case
the second derivatives of u evaluated at the thresholds are given by:

2B 2B
[1 —nesch(n)], and 0 > 4., (1) = P, [1 — ncoth(n)] (66)

0 < Gy (0) = ——
©) p+C p+

where n = /(p + ¢)/k. Moreover |t,,(0)| < |t.(1)].

Proof. (of Lemma 8). The solution for @ is of the form of a sum of the particular solution
ag + asx? and the two homogenous solutions, which given the symmetry can be written
as Acosh(nz), so that a(xr) = ag + asx?® + Acosh(nz). From the o.d.e. of @ we obtain
that n = \/(p + ¢)/k. To determine the coefficients ag, as note the particular solution must
satisfy:

(p+ O)(ag + agx?) = Bx* + k2ay + ((ag + az(z*)) = Bx* + k2ay + Cag

where we use that z* = 0, and hence ay = B/(p+() and ag = 2kB/(p(p+()). It remains to

find the value of A. For this we use smooth pasting at £ = 1. We have: ﬁx(’) =0= 5f§$ +
2B

Ansinh(nz) and using 7 = 1 we get A = — 0y gy - Since Ugr(T) = + An? cosh(nzx)

then the second derivatives are:

p+<

. 2B 2B 2812 2B

a(0) = 2 Ap? = . , - 1 — nesch

fae(0) o ¢ T T (ot Qsinh(y) p+<[ mesch()

_ 2B 2B 2Bn*cosh(n) 2B B

far(1) = 25+ A coshln) = o = ()~ pr g L Ot

< -1+ n;gffgfi)) or 2 < 771;(;(;13(1:7()) or 2sinh(n) <

The inequality is equivalent to: 1 — ﬁ
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n(1 + cosh(n)).
U

Proof. (of Proposition 4). Consider the smooth pasting and optimal return conditions from
the original problem, i.e.

0=wuz(x(t,0),t,9), 0=u,(z(t,0),t,0), and 0= wu,(z"(t,0),t,0)

Differentiate them w.r.t. ¢ to find z, z and z*:

1,1
Z(t) = _va(L,1) for all t € [0,7)

Ty (1)
vt
* o UCE<0 )
25(t) = 72(0) for all t € [0, 7).

Differentiating equation (22) obtained in Lemma 2 we obtain:

T o0
v, (1,t) = —2C / > e et mITh 7 (1) dr
-

T ©©
v,(0,1) = _20/ E :e*(p+k(jn)2)(77t)Z(T)(_l)de

The equality of z = z follows from the antisymmetry of v established in Lemma 1 and from
Z(t) = Z’;(l(t and z(t) = —Zzi}ig since @ is symmetric, and hence Uy, (—1) = gy (1).

The expressions for A and A* in equation (26) follow from Lemma 8.
That H(s) > 0 is immediate using that k£ and s are positive. That H*(s) < 0 follows
from grouping each pair of consecutive terms as in

H's)=— Y e trimks [1 o~ (PHG+)2=2)r) ks|
j=1,3,5,...

where the inequality follows because k and s are strictly positive. [

Proof. (of Lemma 3.) The proof strategy is to define N(x,t) = n(z,t) +n(—=z,t) defined in
(x,t) € ]0,1] x [0, T] satisfying:

Ni(z,t) = kNyp(z,t) — (N(2x,t) for (z,t) € [0,1] x [0,T]
N(z,0) =v(z) +v(—z) =0 for all z € [0, 1]

N(1,t) =n(1,t) + n(=1,t) = 0 for all ¢t € [0, T]
N(0,t) =b(t) + a(t) = C(t) for all t € [0, T]

0 1
/ n(z,t)dx +/ n(x,t)de =0 for all t € [0, 7]
0

-1

/01 N(z,t)dx

o1



for some function C(t). We will show that C(t) = 0 for all ¢ and that N(z,t) = 0 for all
(x,t) €10,1] x [0,T7.

The proof proceeds by contradiction. Suppose that maxy ¢ejo,1x 0,77y N(2,t) > 0 and
ming(z 1epo,1)x 0,77} IV (2, t) < 0. The two extremes have different signs since fol N(x,t)dr =0
and N(1,t) = 0 for all t. We argue that the maximum and the minimum of N(xz,t) on the
set [0,1] x [0,7] has to occur on {(z,t) :t =0} U{(x,t) : 2 =0} U{(x,t): x=1}. This is
based on the strong maximum/minimum principle for the case for ¢ > 0, see Evans (2010)
Theorem 12, Section 7.1.c. But since N(1,t) = 0 for all ¢, and N(z,0) = 0 for all x, then the
maximum and the minimum are attained at x = 0 for two values 0 < ¢t < ¢ < T. Assume,
without loss of generality, that C'(¢) > 0 > C(t). Since C(t) is non-zero, there must be some
0 < tg < T for which C(t) does not change and it attains a strictly either positive or negative
value. Assume, without loss of generality, that it attains a positive value. Then by redefining
the p.d.e. considered above in the range ¢ € [0,ty] we have that C(t) > 0 and C(t;) > 0 for
some t' € [0,to]. But in this case, using the comparison principle, N(z,t) will be positive
everywhere in this domain, which is a contradiction.

O

Proof. (of Lemma 4) In this lemma we use that m(x,t,d) is continuous around x = z*(¢, ¢)
for all ¢ and §. Under the assumption that m(x,t,d) is right and left differentiable at x =
x*(t,d), we have

m(0,t,0) + m,(07,¢,0)22*(0,0)6 + Zm(07,¢,0)6 + o(6) if x < *(t,0)
m(0,t,0) + m, (0%, ¢,0)22*(0,0)6 + Zm(0,¢,0)6 + o(6)  if @ > 2*(t, )

m(xz,t,0) = {

We can write these expressions in the notation developed above:

(0) + 1, (07) 25 (1) + n(0~,£)8 + o(8)  if @ < 2*(t,0)

m(x,t,0) = { ~ B .
m(0) + m,(07)z*(t)d + n(07,£)0 + o(d) if = > x*(t,0)

Using the continuity of m, we equate both expansions to obtain:
m(0) + m,(07)2*(t)6 +n(07, )5 + o(§) = m(0) + m,(07)2*(t)6 + n(0T, )5 + o(d)

using that m,(07) = —m,(0") > 0, and the notation a(t) = n(0~,¢) and b(t) = n(07,t) we
have: —m,(07)z*(t) + a(t) + 0(0)/d = 2*(t)m,(0T) + b(t) + 0(d) /0 or taking § — O:

wip) — 2(8) —alt)
T
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LEMMA 9. The solution of the heat equation given by equation (32),(33) and (34) is

n(x,t) =r(x,t) +Z€j Joi(z) all x € [0,1] and t > 0 where
7=1
r(z,t) = w*(t) + x [w(t) — w*(t)] all z € [0,1],¢ >0
where w*(t) = —m,(07) z*(t) and w(t) = —m,(1)z(t) and for all j =1,2,... we have:
1
@;(z) = sin(jmx) for all x € [0,1], (p;,h) = / h(z)p;(x)dx
0

t
c;(t) = ¢;(0)e " +/ ¢; (1M Vdr all t > 0, where \; = (2 + (jn)))k
0

) _ <<10J ) _Tt('a t) B <T<7t)> o COS(jﬂ') —1 w* (_1)] T —w
4t) = (@5, 05) - { Jm ] (t)+2 Jm () (®)
cos(im) 1] L o W
+2¢ [ i } (t) i [w(t) (t)] allt >0

oA O) ) JesGm 1)
(0= (0, 05) <¢j7¢j>+2{ T 1 0)+2 [(0) ©)

where for the benchmark case of v = m, we get:

» 20 14el(—1)i+1 14e¢(—1)7+1 .
(pj, V) _ (pj 5 Ma) _ *€2+(Jj7r)2 < (1(_64;2 * (1—2%32 ) if¢>0 (67)
(wispi) (@i i) _21+<;_77r1>f+ if ¢ =0

Proof. (of Lemma 9) This follows from the explicit solution of the heat equation in {(z,1) :
x € [0,1],t € [0,T]} and using n(x,t) = n(—=z,t) to extend it to the negative values of
x. We use the general solution of the heat equation using Fourier series with two moving
boundaries at * = 0 and x = 1, a given initial condition, and no source. We reproduce
this general solution in Proposition 17. In terms of the notation in Proposition 17 we set
w(z,t) = n(z,t), no source, i.e. s(x,t) = 0, initial conditions given by f(z) = v(x), lower and
upper space boundaries A(t) = —m,(07) 2*(¢), B(t) = —m,(1)z(¢) and killing rate . = (. O

Proof. (of Proposition 5.)
We replace the expression from Lemma 9 for n into the integral for Z obtaining:

Z(t) = 2/0 xn(z,t)dr = w*(t)g + [w(t) — —l— QZCJ / xsin(jrx)dr

* — * 2 _
w0+ [0 — w02 23 (1)
j=1
Note that using the expression in Lemma 9 we can write the function ¢;(t) in closed form
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as (see the Technical appendix for step by step derivation).
Replacing the 2_7701( ) back into Z(t) and using that

[e.9]

= (—1) 1 1 1
Z( ):——and — = =

Grp ~ 12 M e T 6

j=1
we get

o0

(r— _— {(pj, v
Z4k J+1/ () qr +Z4k/ /\( Ddr — Z = J

— 90J7903>

Using the definition of w*(t) = —m,(07)z*(¢) and w(t) = —m,(1)z(t) and exchanging the
integral with the sum and replacing \; = (€2 + (jm)%)k we get:

t [e]
Z(t) = 4k / ( ma(0%) ) (—1)7"e )%k(r—t)) 2(r)dr
0 =1
t 00 00
+ 41{:/ (— Ze (C+(m)*)k(7— ) T)dT — 22 (i, e~ (P+(Gm)?)kt
0 = Jm

SOJ’SOJ>

Finally computing the projections for v:

t 00
20 =k | ( me(07) (- ’“6“2+W)k(”)> S (r)ir
0 e
t 00
v <— 1)y el >) 2(r)dr
0 =1

(€24 (jm)?)kt

—42 —/01 sin(jra)v(z)dz

which gives the expression for Tz given the definitions of G,G* and Z].
That G(s) > 0 is immediate. That G*(s) > 0 follows by noticing that we can write:

G*(s) = Z e~ (CP+(m))ks [1 — oG+ =)m 2k3]

§=1,3,5,...
and each term |1 — e~ (G =*)m 2’“} > () since k and s are positive. [

Proof. (of Proposition 6)

First we note that we can decompose v into its symmetric and antisymmetric part. By
linearity, the solution is the sum of the solutions for each part. But, due to Corollary 1 the
solution for the symmetric part is zero, so we can assume without loss of generality that v is
antisymmetric. Given Z, we replace z* = T*(Z), given by equation (24), and z = T(Z), given

o4

—)xjt



by equation (23), into Tz(z*, ), given by equation (35), to get T(Z) = Ty (T*(Z),T(Z)).
Note that, except for the term with Zp, each term is a double integral. Changing the order
of integration and using that G, H and G*, H* satisfy:

—m,(1)H(s) =e?*G(s) >0 and m,(0")H*(s)=e?°G*(s) <0foralls>0 (68)
we obtain:

Z(t) = Zo(t) + Q/TK(t, s)Z(s)ds

where

B min {t,s} Co(s—r) | 3 G(s—1)G(t—1) LG (s—T1)G*(t—7)
K(t,s)—4k/0 - ){Ae e e i (69

Performing the integration of the exponentials we obtain the desired expression.
The expression for Z; uses that sin and v are antisymmetric, hence we have:

/0 ' in(jme) () = ! / (o).

1

U

Proof. (of Lemma 5.) The symmetry of K when p = 0 in 1 follows directly from its definition
in equation (69). That K < 0 as in 2 uses the expression equation (69) and that G* > 0,
A*>0,G>0,and A < 0.

For part 1 with p > 0 and 3 we use the expression for the kernel K derived in the proof
of Proposition 6 (see equation (69)).

Part 3 establishes that K is negative definite. To see why this has to hold, we write:

/ / / CTGi(s = T)Gilt = T)V (s)V (t)e ™ dr ds dt

_ _/0 o (/0 Gils — )V (s)e** ds)2 dr <0

with strictly inequality if V' # 0.

Part 4 of the proof establishes the bounds for the integral fOT |K(t,s)|ds. This is obtained
by direct (but tedious) calculation. See the technical appendix for the full details of the
proof. The same calculation gives the bound in 4 for any n and ¢ > 0.

Another direct calculation establishes part 5, a bound for the kernel when ¢ > 0 in terms
of the kernel for £ = 0. The bound uses the expression derived in the proof of Proposition 5,
which shows in equation (69).

O
Proof. (of Proposition 7) The proof of Proposition 7 is immediate, since using the definition
of K in equation (40) it is straightforward to compute K(0,s) = 0 for all s € [0,7] hence
Yp(0) = )+ Qfo (0,)Yp(s)ds = Yy(0). Finally that Yy(0) = —Zy(0) = 1 follows from
evaluatlon of the series equatlon (37) for any ¢ > 0.
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O

Proof. (of Proposition 8 )

That the series in equation (45), whenever it converges, is the solution of equation (44)
follows from replacing the series into the integral equation.

That Yp(0) = 1 follows from the fact that Y;(0) = 1 and that K(0,s) = 0 for all s € (0,7)).

To establish that Yy(¢) > 0 and # < 0, so we have 0K (t,s) > 0 for all (¢,s) € (0,T)?
and hence (OK)"(Yy) > 0 for t € (0,7). Note that, for each ¢, the sequence S,(0,t) =
S, 0" (K)"(Yo)(t) is monotone increasing in n and that (by assumption) it converges. Hence,
Yp(t) > 0. Moreover if # < 6§ < 0 we have S,(0',t) > S,(6,t). Thus, the limit preserves this
inequality.

To establish that Yj(t) is convex, we differentiate twice the series with respect to 6,
obtaining:

a0 Zr D8 () (%)t

for t € (0,7). If r is even we have 6”2 > 0 and (K)" (Yp)(t) > 0. If r is odd we have
072 < 0 and (K)" (Yy)(t) < 0, hence all the terms in the sum are strictly positive, and thus
892}/9( ) > 0.

U

Proof. (of Proposition 10.)
We show here a bound for the HS operator norm in terms of the L? norm of the kernel.
We use that

102 T T
||K||2 = W / / K2<t, S) eip(Sth) dS dt (70)

_Z<1_6pT //Ktsz f()ep(s+tdsdt>2 (71)

This equality follows from projecting K (¢, s) first as a function of s into { f;(s)}. In particular,
fix a t:

o0

K0 = Y0, 0500 = = 3 [ KA e i

i=1

And then project this expression as a function of ¢ into the base {f;(¢)}

K = s S5 [ [ KRR s )0

i=1 j=1

To simplify we can write this expression as:

= Z Z ki fi(s)f;(t)

i=1 j=1
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Now we can write:

oo o 0 o0

(K92 =33 Kijhimm fi(8) f5(E) fn(5) fa(t)

i=1 j=1 m=1n=1

Then integrating with respect to p?e=?(+%) /(1 — ¢=#T)2 then:
2

0 T T S
—_ K(t —PUES) gt d
(1 —erT)2 Jy /0 (Kt 5))"e °

S = [ e s [ e

o o0 00 o0 oo oo

2

- E E § E Ki,jﬁmnézméjn: E E ("izg)
i=1 j=1 m=1 n=1 =1 j=1

where we use {f;} are orthonormal, and d.. is the Kroneker symbol, and thus we obtain
equation (71).
Let K, be defined as K,(t,s) = K(t,s)e?*. Then

k=X (s [ [ Rt 50 e asar)

0,]

B Zz]: (ﬁ /OT /OT K(t,s) fi(s) f;(t) e " ds dt)2

and using Cauchy-Schwarz || /|3 < [|K][3 ]| |13 = || K13 722 so
(L—e )2 (pT)?
1K1 s < 1513 = 7| K13

7 -y

Thus, using this inequality and the results in Lemma 5 we obtain the bound on ||K||xs,

and thus operator is compact. The rest of the proof is directly from the spectral theorem.
O]

Proof. (of Proposition 11).

Part 1 follows using the compactness and self-adjoint nature of I, as well as the fact that
all its eigenvalues are negative, and that p; is the largest, all established in Proposition 10.
Under these conditions the uniqueness and existence are a consequence of the Fredholm
alternative for the second kind of Fredholm integral equation, such as equation (44). The
computation of the projection coefficients is immediate, i.e. using the inner product with
respect to the j7 eigenfunction ¢; with eigenvalue p; on the integral equation (44), i.e.:

(Yo, 05) = (Yo, 95) + 0(KY0, d;) = (Yo, ¢5) + 0(Ye, Koj) = (Yo, d;) + 01 (Yo, ;)

where we use the self-adjointess of K, and the assumption that ¢;, u; are an eigenfunction-
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eigenvalue pair. From here we obtain that (Yp, ¢;) = (Yo, ¢;)/(1 — p;60), i.e. the projection
coefficients of the solution Yy. Then we use that {¢;}52, form an orthonormal base to write
Y.

Part 2 follows directly by taking limits, since p; < 0 for all j, as shown in Proposition 10.

Part 3 follows directly a consequence of the Fredholm alternative for the second kind of
Fredholm integral equation, such as equation (44). Recall that for the lack of existence it
is required to show that (Yp, ¢1) # 0. This, in turns, follows from the Perron Froebenoius
theorem, since —K(t,s) > 0 for all ¢,s, and hence the dominant eigenfunction ¢; can be
taken to be positive. The two limits follow from direct computation.

Part 4 uses as an intermediate step that ¢,;(0) = 0 for all j = 1,2,.... This follows
because K(0,s) = 0 for all s € [0,7] and hence u;¢;(0) = fOTK(O,s)¢j(s)ds = 0. Now,
using that ¢;(0) =0 for all j =1,2,..., and that Yy(¢) > 0 for t € [0, €) for some € > 0.

See the technical appendix for full details.

O

Proof. (of Proposition 13.)
Since firms can only change prices at times independent to their state x, writing the
control problem of the firm we obtain that the solution for x*(t) is:

r*(t) = arg min/ e~ (PO [(x +oW(s)+0X(t+ S)l{t+s§T})2 |W(t) = 0} ds

t

T—t T
=—0(C+ p)/ e X (t + 7)dT = —0(C + p)/ e~ CHIED X (5)ds for all t > 0
0 ¢

and thus we get the o.d.e.:

%x*(t) =3"(t) =0(C+p)X(t)+ (C+ p)x*(t) forall t >0

In this simple case we can solve for the dynamics of the cross-sectional average evolves
X (t) directly, without solving for the entire density. At time ¢ a fraction (e ¢"dr of firms
have prices that have change at time ¢ — 7. At this times, they set the price to be z*(t — 7).
We also use that before the initial period, i.e. ¢t < 0, the optimal reset price z*(t) = —0, so

boundary condition right after the shock is X(0) = —1, using the normalization 6 = 1. We
thus have

t
X(t) = C/ e Tt (t — 7)dr — e ' forall t > 0
0
which implies

—X(t)= X(t) = (z*(t) — X(t)) forall t >0
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We can write a simple constant coefficient o.d.e. for the vector (X (t),z*(t)) as

(@*(ﬂ) _ (p+4 €(p+C)> <$*(t))
X(t) ¢ —( X(t)
Letting 1 be the eigenvalues of the matrix, we have (u—p —()(¢ 4+ p) —0(p+ ()¢ = 0. For
instance if p = 0 we get (u+¢)(pn—¢) = 6¢?, with solution u = +(a, so that (a+1)(a—1) =6
ora’?—1=0,s0 p==v1+0.

U

Proof. (of Proposition 14) We set T' = oo. For this value we want to compute

HCTRloa = [~ oot = [ [ Kt o¥ale) dsat

which can be written as

Q= //KtsYO )ds dt = ZQmwhereQm—4/ / K(t,5)> CO;() L= cos(mm) s

where we have replaced the expression for Y
Replacing the expression for K we get that for each m

= Z Z 16 (1 — cos(mm)) (A — A*(=1)™) @i jm

i=1 j=1
where @; ;,, is defined as

1 1
Wigm = k278 (i% + j2 4+ r2)m?

a2 20 2. 02
Wijm = / / (j+z+7' )sAt 1>6]tzsrsmsd8dt

were we have used a change on variables for ¢, and where we use r = n*/72.
Now we compute w; ;. letting p | 0, or equivalently » — 0. For this note that we can
write the inner integral in w; ;,, as follows:

t 00 00
24 (m2_ 42 _ 24 (524002
/6 J*te (m?—j )sd5+/ 61 t6 (i%24m? SdS—/ eIt (*+m )SdS
0 t 0

) 2 o2 2
ejt_emt emt_ejt

T =) @t md)

Wi jm and
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Then, integrating the resulting expression with respect to ¢t between 0 and co we get:

1 {1_L] (;[1 1}: 1 1 (72 —m?)

»J) (m2—32) ]2 m2 Z2_*_7,12) m2 ]2 m2]2 (z2+m2) mzjz
1 (P4
_m2j2 i2 4+ m2

Now we replace this expression into @; j

1 1 1 1 1 1 1 i? + 52
»Js k’27T8 m2 (]2 +22) oJ> k27T8 m2 (]2 +Z2) m232 22 +m2

111 1\ 11 1 1
TR w2 \2+m?) B (mm)t Gr)2 (P72 + m2n?)

Finally we want to compute the infinite sums of the expression for w; ;,, over ¢, j, m. For this
we will use that when m is odd:

o0

Z 1 _ mmcoth(mm) — 1
— P22 + m2r2 2m2m?
i (=1)"  mmesch(mm) — 1
— i2m2 + m2r2 2m2m?
i (=1)"' 1 —mmcsch(mn)
— P 4 mPT? B 2m?2n?

and we will also use that

1 E
(.71_)2 = — and ﬁ = — .
Zj:l j 6 prdl (j+1) 8
We write Q = Q[ — Q]]Z

BN A1 1 KO 1
Qr= Y 2x16AY > Gijm= ) BQEE(mW)‘*Z(ﬁTVZ(Z'27T2+m27r2)

m=1,3,5,... i=1 j=1 m=1,3,5,... j=1 i=1

3241 1
— E el mcoth(mm) — 1
12 % & (mm)e (mm coth(mm) )

60



Now we write the second term of Q:

32 A* I =1 &K (=Dt 32 A* 1
Qu=—— E oY) E ( ) = —— E (O + &) where
=1

k k (mm)* 4 T+ mim? k ok A (mw)

 [— —1)Ht > 1 1 — mmesch(mm
- ¥ Lyl ( (m)

Py 77) 2+ mPn?)) w4 1) 2m?2n?

1 (1 —mmcsch(mm))
~ 8 2m?2m? and
I & (—1)° S (1)
&= — |2z
j;w (mj)? ZZI (272 + m?m?)) [6 8} — (*7* + m*7?))
_ 11 (mmcesch(mm) —1)
- 83 2m?m?
Thus
32 A* 1 32A%1 1 (mmesch(mm) — 1)
= —— O+&)=——-- 1
UWETE ;5 {mm)? O+8) =373 (3 ) m:¥5 (mm)i 2min?
324711 Z 1 — mm csch(mm)
"k k83 (mm)6
m=1,3,5
Recall that as p — 0 then A/k — —6 and A*/k — 12, and thus
3241 1 32A%11 1 — mm csch(m)
=Q— = —— th —1)———==
©=CQr=CQu mlz;5 2%k (ma)® (ma coth(mm) = 1) = 2223 123:5 (mm)®
16 csch(mm) — coth(mm)
k m=1,3,5,... (mﬂ->5
Finally we have:
00 00 o= m2kt 8 1 1
C]R:/Ytdt: 8/ ° b
’ 0 o 1325: o (mm k135 96 124k

Thus

1 dCIRy Q csch(mm) — coth(mm)
—— )0 = =1 12
CTR, di "=~ CIR, ~ 10~ Z (ma)s

m=1,3,5,.

and using 16 x 12 = 192 we get our final result.
O
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Proof. (of Lemma 6) Integrating by part gives

e~ (t+(m)?) kt

YM(t) = 42(—1)j,—/0 sin(jra)v(x)dx

i=1 o
M —(L+(Gm)?) kt 1
= 42(—1)je — |:COS(j7T)V(1) —v(0) — / COS(j?TZE)I//(.CE)dCE}
=1 (J) 0
Let 7 = [v(1)|4v(0)+ [ |V (z)|dz, then |YM ()] < 4 Z] | (J7r)2 Thus ||Yo!|eo = limaseo || Y]] <

0o. Moreover:
e~ (t+(m)?) kt

and thus

O

Proof. (of Proposition 15) We first establish that RK is symmetric and negative definite.
The proof is almost identical to the one for the kernel K. To see this note that K is defined
as K in equation (69), except that we use Gy and G%;:

s T Guls =) Gt —1) L, Gils = 1) Gyt —7)
Kt = [ oo (2 ST S o

where Gy and G, are defined as G and G* expect that the infinite sum are replaced by the
sums up to M elements, i.e.:

M
GM(S) = _ Ze—(ez (jm)2) ks >0 and G* ( — Z j+1€7(£2+(j7r)2)k8 >0
Jj=1 7=1
We want to show that for any two vectors m dimensional vectors V and W:
Z Z K(tr, s9) Vg We e Pl = Z Z K (tr, sg)Wq Vi e (72)
r=1 g=1 r=1 g=1
and that for any non-zero m dimensional vector V:
SN Kulte,sg)Vy Ve <0 (73)
r=1 ¢g=1

In both cases we use the expression for K,; and interchange the integral with respect to 7
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with the sums with respect to ¢ and r. First consider equation (72). Fort this it suffices to
show that

m.om min {¢,,sq} - -
S=YY [ G = )Gty = e | VW
r=1 g=1 L i
m i min {¢r,sq} ~ - 7 t
=S| [ e G, = Gty = )i | W Vi
r=1 gq=1 L |

To see why the equality holds, interchange the order of the integrals and rearranging we get
that each of these expression are

min {t,,sq} m.m B 3
S = / el” Z Z e "1Gy(sy — 7)e PGty — T)V, W, | dr and
0

Lr=1 g=1

min {¢,,s¢} mom 3 a
Sy = / e’ Z Z e PG (sy — T)e PTGt — T)W, V, | dr
0

Lr=1 g=1

which established the equality. Now consider equation (73). Again, it suffices to show that:

m.m min {t,,sq} B _
PD=)">" [/0 e PGy (s, — 7)Gar(t, — T)dr

r=1 g=1

V,Vee P >0

Rewriting this expression we get:

min {t,sq} m.om B 3
PD = / e 1N e Gy(sy — )Gyt — )V, Vi ept’“] dr
0 Lr=1 g¢=1

2

min {t,,sq} [ m B
= / e’r Ze’pngM(sq —7)V(sy)| dr >0
0

Lg=1

Finally, to show that gb;-ngzﬁi = 0if ¢ # j, take two different eigenvalues p; # p; and pre-
multiply p;¢0; = K¢; by R, and transpose it, to get: ,ujgbjTR = ngjT(RK)T, use the symmetry
of RK, obtaining ;¢ R = ¢, (RK), and post multiplying by ¢;, then 1;¢] Rp; = ¢ (RK)¢;.
Reversing the role of i and j, we obtain p;¢; Rp; = ¢, (RK)¢;. Subtracting one from the
other (u; — ui)¢J-TR¢i = 0. Given this properties the form of the solution is immediate, since
we can regard the matrix K as defining a self-adjoint linear operator, using the inner product
defined by (V, W) = VT RW. Thus we reproduce the same argument as for the general case,
by using the Fredholm alternative to solve the linear system.
O

Proof. (of Proposition 16) This proof proceeds in four steps. First, we note that for each
M, the Kernel and the solution for Y has the same properties as Y. Second, we use some
bounds on the approximations of integrals using the trapezoidal rule as applied in this case.
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We note that for large m our method gives the same limit as the trapezoidal rule. Third we
use the first two results, as well as the characterization in Proposition 15 and Lemma 5 to
check the sufficient conditions for a bound on |[¥;"™ — YM||, where Y = lim,, ;00 Y™,
The fourth final step uses the hypothesis on 6 to obtain a bound on ||V — Yj||. Combining
the last two steps we obtain the desired result. See the technical appendix for all details.

O
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Technical Appendix:

Price Setting with Strategic Complementarities
as a Mean Field Game

Fernando Alvarez, Panagiotis Souganidis, Francesco Lippi

G Proofs with full details

Proof. (of Proposition 5.)
We replace the expression from Lemma 9 for n into the integral for Z obtaining:

Z(t) = 2/0 xn(z,t)dr = w*(t)% + [w(t) —|— QZCJ / xsin(jrr)dz
— (1) + (1) — w (0] —2 Zcxt)(;—jf

Note that using the expression in Lemma 9 we can write

= ({222 12 [0 ) vt 2D g - e

(@5, 05) JT ‘ Jm

+2 {—COS(‘YJQ — 1] /0 w” (1)eN T dr + 2(;713] /0 [ (1) — w (7)) dr
. t 1 t

) |:COS(]J‘7;) - 1:| /0 w*(T)eAj(T_t)dT + QQ(;;V /0 [@(T) . w*(T)]GAj(T—t)dT

Integration by parts, and using the expression for \; = ¢ + (j7)?k and cancelling the terms
with ¢ we get:

o) = (22 4y [ =) ) ) e+ 2 o) — w0

©is ;) JT JT

(
9 {COS(] T } )2k /0 t w ()N D dr — 2(_,—1)j(j7r)2k /0 t[w(T) —w ()M dr
=

g

DD =L fur () - w0 + 22 [0 - w0 - (@00) - wr o)



Cancelling the terms evaluated at ¢t = 0, and simplifying:

<£p]? V> e—)\]’t
(@, ;)

— 2]cos(jm) — 1] jﬂ-k/o w*(T)e)‘J'(T_t)dT _ 2(—1)jj7rk:/0 [@(7) — w*(Tﬂe/\j(r—t)dT

#2200 90 o)

ci(t) =

Jm
Multiplying the expression for ¢;(t) by Pl 1)J
(VY e
“in i =2 Jm (@i, i)
— 4(—1)? [cos(jm) — 1] k/o w*(T)eAj(T’t)dT —4k/0 [w(T) — w*(T)]e’\j(T’t)dT
Ly [eos(m) =17 1 D) — w
bl [ 0) + 4 o) — w0)
using that cos(jm) = (—1)’
(W)
S T A T Py
+4[(-1) - 1] k/o w*(1)et " t>d7’—4k/0 [w(T) — w*(r)]edDdr
A EY 1 e e
4[ G| 0+ 00 -0
Replacing the 2°—=¢;(t) back into Z(t) w

2(t) = w (1) + [(t) — w*(1)]2 Do alcry -1 [ v mereoar
+Z4k/0[w(7)— ()N dr +Z4{ J_l] W (8)

_Z4ﬁ[wt_w*t _22 1)]< V) o it

Jm <s03 sog>

i



collecting terms and simplifying:

+ i% [0t - w@leevar 2 °° S R
Using that . .
; ((;73;2] - _% and ; (]711')2 - %
we get

‘Z‘”f (=1 ~1] /0 w ()T Vdr 3k /0 [ (r) — w* (1)} dr
22 e—Ajt

= %%)

collecting the terms inside the integrals:

Ak(— ]+1/ (gr 4 4k/ ,\(r Dir —9 SOJ’ >ef/\jt
S [fue > Sy

Using the definition of w*(t) = —m,(07)z*(¢)
integral with the sum and replacing \; = (/> +

¢ 0o
Z(t) = 4kz/ ( e (07) Z 1)7*tte FWT‘”) 2*(T)dT
0 j=1
t o0
i [ Cr ) ST e@rumake—n | 5 9 {85 V) —ermpm
+ /0 ( M ( )Ze zZ(T)dr Z i

j=1 90]’ 90]>

and w(t) = —m,(1)z(t) and exchanging the
(j7)*)k we get:

Finally computing the projections for v:

_'_
o~
>~
O\;
|
S
8
=
- 1[M])e
o
e
+
<
2
=
=
L
~
2
2
oW
\]

il



which gives the expression for Tz given the definitions of G,G* and Z].
That G(s) > 0 is immediate. That G*(s) > 0 follows by noticing that we can write:

Gr(s)= Y e @rGmIEs [1_6—<<j+1>2—j2>7r2ks]

J=1,3.5,...
and each term |1 — e_((j“)Q_jQ)”%s} > 0 since k and s are positive. [J

Proof. (of Lemma 5.)

The symmetry of K when p =0 in 1 follows directly from its definition in equation (69).
That K < 0 as in 2 uses the expression in equation (69) and that G* > 0, A* > 0, G > 0,
and A < 0.

For part 1 with p > 0 and 3 we use the expression for the kernel K derived in the proof
of Proposition 6 (see equation (69)). Using that expression we can write K:

min{t,s} min{t,s}
K(t,s) =— (/o e PTG (s — )Gy (t — T)dT + /0 e PTGy (s — )Gt — T)dT)

T T
- _ (/ e_p(S_T)Gl(s —7)Gy(t — 7)dT + / e_p(S_T)GQ(s — 7)Gs(t — T)dT)
0 0

where G1(s) = 2/k|A, G(s) > (0 for s > 0 and G1(s) = 0 otherwise. Likewise G(s) =
ma (1)

2\/k A ﬁi*(gsz) > 0 for s > 0 and G(s) = 0 otherwise.

Part 1 establishes that K is self adjoint. For this we compute

T T
Ky = / / K(t,5)V,(s)ds Vy(t)e " dt
o Jo

_ Xi: /0 ' /O ' /0 (e DG (5 — 1)yt — )] Vi(s) ds Vit)e

2 T T T
-y / e [ / 1 (s — T)Va(s) ds / Gyt = 7) Vy(t)e Pdt | dr
= Jo 0 0
Likewise we compute
. T T
Ky, = / / K(t,8)Vy(s)ds V,(t)e " dt
o Jo
2 T T T
=— Z/ / / [e‘p(S_T)Gj(s —7)G;(t — 7)d7] Vi (s) ds V, (t)e " dt
= Jo Jo Jo
2 T T T
= — Z/ e’” {/ e Gi(s —1)Vi(s)ds / Gi(t —7)Va(t)e P'dt | dr

Clearly IN(ab = IN(ab, which establishes the desired result.
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Part 3 establishes that K is negative definite. We will show that

Qi=— /0 ' /0 ' ( /0 ) e PG (s — )Gyt — T)dT) V(s)V(t)e Ptdsdt <0

To see why this has to hold, we write:
/ / / =1Gi(s — 7)Gi(t — TV (s)V (t)e P dr ds dt
- / e’ / / e PGi(s — 1)V (s)Gi(t — T)e PV (t)dsdt dr
0 o Jo

_ /OT o (/OT Gi(s — 7)e V(s ds> (/OT Gilt — 7)e "V (1) dt) dr
_ /OT o (/OT Gi(s — 7)V(s)e ds>2 dr <0

with strict inequality if V' # 0.
Part 4 of the proof establishes the bounds for the integral fOT |K(t,s)|ds.
As a preliminary step we write fOT K (t,s)|ds < [J7 |K(t,s)|ds as:

/| ts]ds—élZZA A" (=1)7*"] k; ; where
0

7j=1 =1

oG+ (i) 247k (tAs) _ 1} o ()2t~ (im)2ks—rks

el
)= | Gl + G 47 *




Direct computation gives

t 6[(j7r)2+(i7r)2+772}k(t/\5)e—(j'/r)2k:t—(i7r)2ks—n2ks e8] 6[(]'7r)2—i—(i7r)2—|—772ks]k(t/\s)e—(j7r)2kt—(i7r)2l~cs—772ks
Hi,j(t)_/ )2 )2 2 d8+/ )2 Y 2
0 (gm)% + (im)* + 1 / (7m)? + (im)* + 1
oo e—(j7r)2kt—(i7r)2ks—772ks
- /0 ()2 + (im)? + 0
t e[(j7r)2+('L'7r)2+172}kse—(jw)2kt—(i7r)2ks—772ksd ) e[(jw)Q+(i7r)2+n2]kte—(j7r)th—(iw)ka—ans
— . - s+ ; ;
/0 (m)* + (im)* + n? /t (4m)% + (im)* + n?

. 0o —(im)2ks—n?ks
o (Jm)?+ (im)* 417

ds

ds

ds

im)2ks 0 —(im)2ks—n?ks
_ e(jﬂ)th/ elImk d8+€(in)2kt+n2kt/ e~ i) ks ds
o )2 )2 2 )2 )2 2
o (Jm)?+(im)*+1n ¢ (T4 ()2 +n
1 e_(jﬂ—)2kt
B (jm)% + (im)?2 4+ n? k(in)? + kn?
<1 J— 6_(jﬂ)2kt> 1 1 1 1 ef(jﬂ-)th

G2+ GmE -2 Gr)2k  Gr)2+ G2+ i i)k + 2k Gm)? + (m)2 + 17 K(im )2 + 1Pk
(1 _ efuw)%t) . .
T GrE s nE P ((jw)?ks Tk + n2k>
(1-eoom) ( (jm)? + (im)? + n? )

~ G + (02 + 2k (G)?) (i) + )
1 — e~ (m)2kt

k((Gm)?) ((m)* +77)

Thus we get:

1 — ef(jw)zkt
jm)? ((im)* 4+ n?)

ij(t) =
We expand k;; around 1 = 0 to obtain:

g LloeU 1o Uk (im)?
) = K G @+ )~ RGP () G + )

B 1 — = (im)?kt _77_2 o
A HCE (1 e Ol ))

vi



I 1—e U™
TR =
+4%i§2§?(”ﬁQ;PO;2

~A 21
k. 1—mncoth(n)
A* 2

k 1—nosch(n)

Vil

9
:6+5%+0m5

7
12 + 57]2 + 0(772>




to write:

/T [K(t, s)|ds < — OOK(t, s)ds
Ay L s
% ;; (i)? (37)2] (1 (m)?)
£ iy )it 1 1 . 7’ ol
i k ;;( 1) (im)? (jﬂ)zl (1 (27r)2> +o(n°)

_ N L] XN, g 1
—4x%6 ;;(ZW)Q G| T4 12 Ll Zl( 1) L
(& 1 1 /2 60,
+4 JZIZZI (im)? (j7r)2] (5_ (m)?)n
[ I T AR A W
+4 Z;;(—w = (ﬁr)?] (g— (m)?)” +o(n?)

Using the values for the following series into the previous expression

(_ j+1

; (j7r)2 6 ; Jj=1

we obtain:

/OT K (t,8)|ds < — /000 K(t, s)ds

1) 1 < 1 1 11 (=17
= — = — = —— d = — =
Gm? 12 2 Gt 90 615 ; Gmt 720

1 11 12 16 711 1127
<4><6—+4><12——+4(———6%)772~|—4(———————)n2+0(n2)

62 624 625 5624 61260

7
1o 2
=" T o)
which is the expression for the case of small p.
To obtain the bound in 4 for any n and ¢ > 0 we note we note that

1 — e Umkt 1

%) = TG (G 1)~ ™9 = KGR G2

viil



hence

/0| ts|dt_4ZZA AT (=1) ] kg (t ii[A—A*(—l)j”]/%m
j=1 i=1

Jj=1 =1

Again, following the same steps as above we get:

/OT\ (t, 5)|ds < — /Kts

>y

7j=1 i=1

Mg
3

7j=1 =1

—_
I—I

+4—

Using the series obtained above we have:

T A A*
/0 Kt s)|ds<62 (T+ - 4>

Using the expressions for —A/k and A*/k we have:

T 7]2 1 4
K(t,s)|d —
/0 Kt 9)lds < 75 18 (1 —mnesch(n)  1-— ncoth(n)>

We establish part 5, a bound for the kernel when ¢ > 0 in terms of the kernel for £ = 0. The
bound uses the expression derived in the proof of Proposition 5, which shows in equation (69)

min {¢,s}
T
0

=~ Gs—T10) Gt —T1;0) LG (s—T0) Gt —T130)
A (1) —m.(1) A e (0F)  —1ig(07) dr

where direct computation gives

G(S' f) - 2 (5)2 G - )2
0 < 1 ) _ e—(€ +(m)*) ks < —(jm)? ks and
S~ 2 3
G*(s;0) - i+1 —(£2+(jm)2)k s G*(s;0) S i+1_(jm)%k s
)< St = S e emke < SIS ey
j=1 7j=1
where we use that for £ = 0 we have m,(z) = —1 all x > 0. Finally, using

Ay =—m,(1)A <0 and A} = —m,(07)A* >0

X



Thus fix a t,s and 7
|A’G(5_T§£)é(t—7;£) G*(s —7;0) G*(t — 13 0)
(D) (D) S (07)  —ra(0)
< | Ay G(s — 7;0)G(t — 750) + | AF| G* (5 — 7;0)G*(t — 7;0)

+ 147

= |, (1)[| 4] G(s — 73 0)G(t — 730) + |11, (0")[|A*| G*(s — 7;0)G*(t — 73 0)

< g (07)| [JA| G(s — 73 0)G(t — 730) + |A*| G*(s — 750)G*(t — 73 0)]

where we use that |[m,(07)| > |m,(1)|. Integrating with respect to 7 we obtain the desired

bound.

Now we establish the bound in 6. We do so by proving a stronger bound, i.e. we find a

bound for

2 T T o e T T
_ K 20— p(tts QL A— K(t, s)%dsdt
(1= )2 /0 /0 (t,s)%e dsdt < 1=y /o /0 (t,s)°ds

which covers the case where p = 0. The proof for the bound on the integral of K? consists

on a long computation of the double integral.
Note that

|:e[(j7r)2+(i77)2+n2]k(t/\s) _ 1} o (Gm)2kt—(im)2ks—n2ks

K(ts) <4 > [[A - A (=)™

g (G7)? + (im)? +n?

Thus using a change on variables we have:

T (T | _ a4 @@
/ / K(t, s)dtds < [|A] + |A"]] k;27r6/ / R2(t, s)dtds
0 0 0 0

where
~ 00 |:e[j2+i2+d}(t/\s) o 1:| e—th—iQS—ds 772 ,
K(t,S)E;; T d WltthFaDdQETkﬂ'
We define

f(r) = <6(j2+z’2+d)7- _ 1) (e(l2+m2+d)7- _ 1)

and then write:

SN 5)6_(j2+l2)t—(i2+d+m2+d)s

R?(t,s)zzzzzm: (j2+i2+d)(m?2+ 12 +d)

(74)



Fix j,i,m,[, and consider the double integral in s and ¢:
Q Q -2 l2 ;2 d 2 d
/ / f(t A s)e”UHDII=ErdtmPd)s goqr — A 4 B (77)
o Jo

Q ¢ 2412V (1244 244 Q Q 20 02)¢—(i24+d 204
= / / f(t A s)e” U HOEErdtmitd)s g g gy +/ / f(t A s)e” U HOE=(Erdtmitd)s g gy
o Jo o Jt

where A and B were implicitly defined. Solving the integral for A by parts we have:

A= / (/ f —(1 +d+m? +d)sd8> —(4%+12) )t
(i2+d+m?+d) o 24 d+m2+d)t =P
— —(? m Sd Z m dt
[y ) (o) - [ S

e_(j2+l2)Q

Q
:_W/O f(s)e (2 +d+m?+d)s g 4 C _|_j2)/0 f(t)e” (2 +2 2 +m2 )t gy

We also have:

Q
B = / f — (212t </ e—(i2+d+m2+d)sd8> dt
t

e~ (P+dtm?+d)Q _ o~ (i +d+m>+d)t
/ f —(J +l2 dt
—(2+d+m?+d)

2+z2+d+l2+m2+d)tdt

( +d+mLHi/ 1(#)

1 -2 2 -2 2
_ t — (524t — (2 H+-d+m +d)th
(ﬁ+d+mluﬁ/ J(e ‘

Since f(s) > 0 we can write:

-(G*+HAHQ @ 1 Q
€ -2 2 2 2 2 2
A=— : f(s)e*(’ +d+m +d)sd8 + : f(t)e*(] +i%+d+1%+m +d)tdt
(P+J%¢A (2 +52) Jo
1 Q@ o
S W/ f(t>e—(]2+22+d+l2+m2+d)tdt (78)
0
and
B = —(j2+i%2+d+12+m? +d)tdt
(42 +d+m%Hi/ /)

1 92 2 2
_ t =+t ,—(F+d+m +d)th
(Q+d+nﬁ+d(/ f(t)e ‘

— (2442 +d+12+m2+d) tdt (79)

<( +d+mﬂui/ /)

X1



Thus

. 1 1 @ (g am?
A+ B <C(j,i,l,m) = <(12+j2) + (i2+d+m2+d))/0 f)e Ut mT A gy (80)

Thus we want to compute the upper bound:

@ e, C(j,1,1,m)
OOK@mngZZE%Hp (81)

FaA) (P m?+d)

The next step is to compute the integral fOQ f(t)e~ U HitrdEEm® +d)t gy \We have
f(t)e—(j2+i2+d+12+m2+d)t
= (e(j2+i2+ It _ 1) (e<l?+m2+d)t - 1) o= P+ b2 d)t
— [6(j2+i2+d+12+m2+d)t 1] el e(lz+mz+d)t] o4 P4 )t

— 1+ e~ (24P 4d+ P tmP +d)t _ —(P+mPtd)t _ —(52 i +d)t

Now we compute the time integral:

Q
/ <1 1 o P m )t (P mPd)t e—(j2+i2+d)t> di
0

1 — e~ (P++d+P+m?+d)Q 1 — e~ CHm*+d)Q 1 _ o~(*+i*+d)Q
:Q+(j2+2'2+d+l2+m2+d)_ +m2+d) (22 +d)
<0+ 1 N 1 N 1
B 2+t +d+P+m?+d)  (P4+m?+d)  (j2+i%+d)

Hence

1 1
CGvil,m) < ( + )

(+7%)  (+d+m?+d)

1 1 1
. <Q+(j2+z'2+d+12+m2—|—d)+(l2+m2+d)+(j2+z'2+d))

and thus we have:

/oQ /OQ K2(t, s)dsdt (83)
= ilil lool m: <(j2 +i2+d)tl2 +m2+d)) ((P iﬂ) * (2 +d+1m2 +d))

J
x| @+ ! + ! + !
P+ +d+P+m2+d)  (P+m2+d)  (j2+i%+d)

x1i



We have

Q rQ
/ / K*(t,s)dsdt <4QD
0 0

- 1 1 1
p=) 2 =1<<j2+i2+d>(l2+m2+d)> ((l2+j2> T @rdrmi+d)

In turn, it suffices to show that

[c o INNe o BNe 9]

Z 2.2 P+t d@rm+d) @+ ="

Jj=1 =1 =1 m=1

£

To find a bound for this series we use the following integral:

F= dwydwsdy,d
//// w1+x2+d>(y1+y2+d)(;¢1 N R

Thus using [~ 1/(2* + a?)dz = tan'(a)/a we have:

Fo / dy / s / 1 / Ly,
m1+yl ($%+m%+d) 1 ?J1+?J2
o > 1 tan~!(y;)
d:vl/ Y / dxs
L@+ ) :c1+y1 (2 +af + d) v

0 [e%s) 0 1 t —1
Il/ dyl / PRI = g(yl)
1 x1 ‘|‘ yl (zf + xz) Ui

Oodxl °°d tan~!(z1) tan=! ()
(zi+yi) @ ()

QU

IA
IS

Using that tan='(z) < 7/2 for z > 1 we have

.;C< —/ / ——dl‘ldyl
x1+y1 T1 1

Using that [ 1dz =log(a® + 2)/(2a) we have

2+a2)z
w2 [ log(y? +2) 1 w2 [ log(y? + 2
F< _/ (i )_dy1 _ _/ g(y12 )dy1
4 /i 2y U1 8 J1 (h
2 00 1 2 2 o] 1 2
Sﬂ'_/ Og(le>dy1:7T—/ og(2 >d1—7r<oo
8 )i Ui 4 /i A 4
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Combining all the inequalities obtained above we have:

2
//K2ts)dsdt<4Q4k246(A*—/_1):Tk7r2 LA

k24
_T——JM A
L a
Since
_ 5 .
A k[ln# < 0 and A = k? —[1 ncsch( > 0
We have
T T ) 8 9 2
© il _ ]
/0 /0 K (ta S)det S,}_{_Q T ([1—ncsch(77)] [1-n COth(ﬁﬂ)
and

p2 g g 2 p2T n? n?
1- e—pT)z/O /0 K (t, ) dsdt SO i) ([l—ncsch(n)} - [1—ncoth(n)]>

The proof for the bound of ||K||3 for the general case, i.e. the proof of part 7, follows the
same steps as the proof of part 6, except that: i) we use the bound for the case of /2 > 0
between the two Kernels, and ii) the discount e=?#**) in the definition of ||K||3 is introduced
in the relevant expressions. Given the similarity of the calculations, we only present the steps
that given rise to different expressions.

Using the same change of variables as above we can write:

T T _ 4 +
/ / K2(t, s)e "1+ dtds < [|A] + A*] |ﬂ;§ (; ) / / K2(t,s)e ") dtds  (84)
o Jo

where 7 = p/7?, and where we use the same definitions of K and f as in equation (75) and
equation (76) respectively. We proceed as above and define A + B incorporating the term
with discount, so that we get:

Q r¢ 2 2 2 2
/ / f(t A s)e_(J +r+12)t—(i*+r+d+m -I—d)sdsdt _ A+ B (85)
0 0

Following exactly the same steps we arrive to the following inequality:

A+ B<C(i,l,m) (86)

1 1 —(2r+52+i2+d+12+m2+d)t
— T 7 m dt
((12+j2)+( +d+m2+d)/ /)

Xiv



We thus get:
l,m)
K¢, 5)e ") dsdt < UL 87
[ [ Feacomn s ST gt

The next step is to compute the integral fOQ f(t)e~ Cri @ tdtlrm*+d)t g We have

( ) (2r+452+i2+d+12+m2+d)t (88)

—(2r+124+m2+d)t e—(2r+j2+12+d)t

— — 2
= o2t 4 o (rtP P d P emird)t

Following the same steps as in the previous case:

Q
22 52 2 2 _ 2 2 —
/ ( “2rt o~ (@ra A m A ) =P mE )t = (2% ) ) dt
0

1—e 2@ 1 1 1
< + +
2r (g2+z2+d+l2+m2+d) (P4+m?+d)  (j2+12+d)

Following the same steps we obtain:

Q rQ _
/ / K2(t,s)e ") dsdt (89)
0 0

oo o 0 X

<ZZZZ( +z?+d>tz2+m2+d>)((Piﬂﬁ(z‘udjmud))

j=1 i=1 =1 m=1

y 1_6_2TQ+ 1 + ! + !
2r (2+2+d+12+m2+d) P+m2+d) (52442 +d)

and thus we have

Q rQ 1 — 2@
/ / K2(t,s)e ") dsdt < {— + 3} D
o Jo 2r

P=2.2 :1<<j2+¢2+d>1z2+m2+d)> ((Pif) " <@'2+d+1m2+d>)

In the previous case we have shown that the series D converges to a finite limit. Going back
to the original variables for the integration, we obtain the desired bound. In particular we
get:

2 T T 2 —2pT
1 — e 20
P / / K2(t,5)e ) dsdt < ( P l ‘ —1—3} D
0

=y J, el P
_ [1—e*"+6p| D
P2 |2

U
Proof. (of Proposition 16)
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This proof proceeds in four steps. First, we note that for each M, the Kernel and the
solution for Y, has the same properties as Y. Second, we use some bounds on the approx-
imations of integrals using the trapezoidal rule as applied in this case. We note that for
large m our method gives the same limit as the trapezoidal rule. Third we use the first two
results, as well as the characterization in Proposition 15 and Lemma 5 to check the sufficient
conditions for a bound on ||V, — Y;M||, where Y = lim,, ., Y;". The fourth final step
uses the hypothesis on 6 to obtain a bound on ||V — Yp||. Combining the last two steps we
obtain the desired result.

As a notational device we will use dj, for k = 1,2, ... for the value of constants in different
expressions in the intermediate calculations.

Step 1. We start by noticing that for each M < M’, then K (t,s) < K},(t,s) < Ku(t,s) <
0 for all (¢,s) € (0,7]*. From here we can see that Lip, < Lipg, < Lipg, and likewise
| Knll2 < || Kjyll2 < [|K||2. Additionally, all the properties of the kernel K in Lemma 5 are
satisfied by Kjs, and the proofs are identical. Using these properties, we obtain that under
the hypothesis of this proposition (I — 8/Cy;)~" is bounded and Y = Y + 6K, Y, has a
unique solution with ||Y;Y ||, < WH}@MHM

Step 2. Using the result from Theorem 1.6 in Cruz-Uribe and Neugebaur (2002), then:

T - A d
/ K (t, s)ds — A Z Ku(t, sq) + E(KM“» s1) + Ku(t, sm))| < iHKM(t, N Bvijor)
0 r=1

where || - || gy, 0,7 is the bounded variation norm. Sine K(t,-) is negative and single peaked,
then ||Kar(t, )|l Bvjo,r = 2|[Kwm (2, -)||os- The minimum of Ky (¢, s) is attained at s = ¢ and

MMy Mo Mo
[Knm(t,s)] < [Ku(t 1) < dQZZW < dsz;Z; < dy(log(M))?
i=1 j=1 =1 j=1

where we use that i? + j% — 245 > 0 or 1/(2ij) > 1/(i* + j?) Thus:

(log(M))*

m

< dy

/OT Ky(t,s)ds — A i K (t, sq) + %(KM(IS, s1) + Kty sm))

Using that A = T'/m and (K (t, 1) + Ky (t, sm) < Ku(t,t) we have:

(log(M))*

/T Ky (t, s)ds — AiKM(t,sq) < ds (90)

r=1

for all ¢ € [0, T7.
Step 3. Now we use Theorem 4.1.2 from Atkison (1997) to establish that, for fixed M
there exists a m such that

Y, = YM|oo < do||(Kar — Kinar) Y3 ||oo for all m > m
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which implies that

1YY = VM| < dg||Y5"[|oo sup
te[0,7)

for all m > m

/ (Kt(t, 5) — Kot (£, 5)|ds

Since, as shown above

sup /T Ky (t,s)ds — AiKM(t, sq)| < %W
t€[0,1] |Jo —1 m
then
17 = ¥ e < el SEED o g > (o1)
Step 4. We show that ||Y;Y — Yy||o < m sup,, [|Y]]. To see this, note that

VM =Yy =Y = Yo+ 0 (KYs — Ku YY)
= Y5 = Yo + 0K (Yy = ¥5") + 0(K — Ka) "

and thus
1YY = Yolloo < 1Y5Y = Yolloo + [10K(Ye — V") loo + [10(K — Kar)Y5" || oo

Since [|0K(¥s — Y)l | < 16] Lipy 1Y — ¥3|[c, then

1
3 = Yolluo < —

- M - YM
i (I = Yoll + 10 = K} 1)

Now we use that

T
10K — Kar) VM| < sup / K (t,5) — Kt 8)|ds Y3 ||
0

t€[0,T

and using the form of K and K, as in the proof of Lemma 5, in particular the expressions
for x; ;, we have

T NN | 1
/ ‘K(f,S)—KM(t,S”dSSdg E 2—2 E ﬁédgm
0 =M =M

Thus

1
V3 = Yol oo < =

dg
e (196 Yolle + 25111
K

M?
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Using the contraction property for each M and that 0 > K, > K, then:

Y5 ] - Y5 [|oo
— 0| Lipg,, — 1 —|0| Lipg

YM oo<
Ve < <
Thus:
HYOM_%HOO< ! HYM_YE)||OO+ dloHYMHoo
= 1—|0|Lipg \'"° M2

Using Lemma 6 we have:

1 1
— +dio— (92)

M
||Yb _}/QHOOSdllM M2

Using the triangular inequality ||Y;"" — Yp||oo < ||Yy™" = YM||o + ||V — Yy||so and
plugin in equation (91) and equation (92) we obtain the desired result.
0

H Solution of the Heat Equation

In this appendix we collect well known results for the solution of the one dimensional heat
equation with given initial (or terminal) conditions, defined in a strip, with time varying
boundaries, and allowing for source.

Consider the heat equation in the domain (x,t) € [0,1] x Ry, with a source s, and
with time boundaries given by the time varying functions A, B. In particular to solve for
w:[0,1] x Ry — R given parameter & > 0, ¢ > 0, source s : [0, 1] x R, — R, space boundary
at time zero f : [0, 1] x R, and value at the boundaries given by a,b: Ry — R satisfying:

0= —wi(x,t) —w(z,t) + kwge(z,t) + s(z,t) all z € [0,1] and ¢ > 0
w(x,0) = f(x) all z € [0,1]
w(0,t) = A(t) all t > 0 and
w(l,t) = B(t) all t >0

PrROPOSITION 17. The solution for the KFE equation for w is given by:

w(z,t) =r(z,t)+ Zaj(t)wj(x) all z € [0,1] and ¢t > 0 where
j=1

r(z,t) = A(t) + z[B(t) — A(t)] all z € [0,1], ¢ > 0

xXviil



and where for all j =1,2,... we have:

@;(z) =sin(jrz) for all x € [0,1], (p;, h) = /0 h(x)p;(z)dx

¢
a;(t) = a;(0)e " +/ q;(T)eM T dr all t > 0,
0

<90j ) 5('7t) — rt<'7t) — LT‘(',f;)>

\j =1+ (jm)*k and a;(0) = 2 ’<£j—9:j(>»0)> |

The proof can be done by verifying that the equation hold at the boundaries, that for
t > 0 the p.d.e. holds in the interior since

aj(t) = —Aja;(t) + q;(t) for allt > 0 and j = 1,2,. ..

and since {p;(x)} form an orthogonal bases for functions on {h : [0,1] — R}, and finally
that the boundary holds at ¢ = 0 for all x.

Consider now the KBE equation, which only changes the sign of the time derivative, the
range of time, and the time at which the space boundary condition holds, so w : [0, 1] x
[0,7] — R, where:

0 =w(z,t) — rw(x,t) + kwye(z,t) + s(z,t) all z € [0,1] and t > 0
w(z,T) = f(z) all z € [0,1],
w(0,t) = A(t) all t € [0,T], and
w(l,t) = B(t) all t € [0,T]

ProOPOSITION 18. The solution for the KBE for w is given by:

WE

w(z,t) =r(z,t)+ Y aj(t)p;(x)all z €[0,1] and t € [0,T] where

.
Il

A~~~ =

r(x,t) = A(t) + x[B(t) — A(t)] all z € [0,1], t € [0, T
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and where for all j =1,2,... we have:

@;(z) =sin(jrz) for all x € [0,1], (p;, h) = /0 h(x)p;(z)dx

T
a;(t) = a;(T)e MY +/ q;(1)ed " dr all t € 0,T),
t

<99j ) S('7t) + Tt('vt) _ ”n("/t»

q;(t) = o) all t € 0,7)
Aj =1+ (jm)’k and a;(T) = 2 ’<;7_;7(>’ D)

As in the previous case the proof can be done by verifying that the equation hold at the
boundaries, that for ¢ € [0, 7] the p.d.e. holds in the interior since

—a;(t) = —\ja;(t) +q;(t) forall t € [0,7) and j = 1,2, ...

Note that ¢;(t) and a;(t) are also defined differently than for the KFE.

I Additional material

I.1 Variational Inequality

In general, we should write the problem of the firm as solving the following variational
inequalities:

pu(z,t) = (93)

min {ut (x,t) + %Qum(x, t)+ F(z, X(t) + ¢ (H}EI,H uw(x', t) — u(z, t)) ) (w +min u(a, t))}

which must hold for all ¢ € [0,7] and for all z. We can define 2*(t) = arg min, u(z,t). Note
that this formulation does not assume that wu(-,t) is once differentiable, nor that range of
inaction is given by a single interval. If the value function is well behaved, we can write
equation (93) as the classical formulation which we described above, i.e. as the p.d.e equa-
tion (4) and the boundary conditions equation (7)-equation (8).

I[.2 Equations for the ( = 0 case.

If ¢ =0, the stationary distribution m given by a triangular tent-map:

m(l_) — i’ssggss - <x o x:S) (i'ssfzss;(i'ssfx:s) for r E |ix:s’ fSS] (94)
fsszx + (ilf - zss)(jss_z )2(35* —z_.) for x € [zsm z:s]




1.3 Kernel evaluation on the diagonal.

Consider the case where ¢ = 0. The limit of K (s,t) for 0 <t = s < co gives

K@= |43 > [A = A (=1)7]

> = 1 — 6—(j7r)2kt—(i7r)2kt—772kt
> 4|A
= ‘ ’ Z Z (j7T)2 + (Z',n.)2 + 772

0 X (jm)2kt—(im)2kt—n3kt

1— e—(jﬂ’)zkt—(iw)2kt—n2kt

()2 + (im)? + n?

=D G PRy

j=1 i=1 j=1 i=1
The first term of the last equality converges for ¢ > 0, and j integer since
6—(j7r)2kt—(i7r)2kt—n2kt 6—71'2ktj

GmE+ (m2+n? ~ (im)?

and so
—(jm) 2kt —(im) 2 kt—n?k 1

i (& 2 1
ZZ(J7r) + (im)2 + 72 <Z kt]Z (im)2  1—e ™6

i=1 i=1 j=1

<

)2 4+ n?

The second term of the last equality diverges since the Z;’il et W diverges to

—+00.

J The demand system with Kimball’s aggregator

Basic Set up. Let C(cy,cq,...,cx) be a homogeneous of degree one aggregator defined

implicitly by:

K cs\ 1
1= (%) 95
; o) % (95)
Note that the derivative of C with respect to ¢ is given by:
aC T (%) &
8_(61762776]() - K (/C ZSKCS 1
Ch Y T(%) ¢ %
Household maximization problem. We are interested in solving:
K
1
Up1,pa, ... 0K, E) = { max C(c1,co,...,Cx) + A (E — Zpscsg) (96)
€1,C2,...,CK o—1

The first order conditions can be written as:

1 ac T (%)%
A\pp— = — = C
PR T e Y e

fork=1,2,.... K



oF ! (cC
__T(®)
Yo T(E) ex

We can write the expenditure as:

K K
1 1 oC
E=D e =12 505 (98)
s=1 s=1 S

Define the (relative) demand function for good k

APk fork=12....K (97)

(e}

Ck

C(Cl,CQ, . ,CK)

qr =

Thus we can write the solution to the maximization problem above as K + 2 variables
{q1,q2,...,q9Kx,C, \} solving the following K + 2 equations:

’I‘/
Apr = — () _for k=1,2,...,K
Zs:l T <q$) qu
K
1 E
=T . C=cp——
32:; K Zi(:ﬂ%%%

We note that this corresponds to the following continuum case as K — oo:

T’ (%)
) Y7 (qs) gsds

E

Ay = o
Jy psasds

1
for k € [0,1] , 1—/ T (¢5)ds
0

Symmetric limit case. Returning to the finite case, we are interested in the case where

k =1 has a price py = p and ps = p3 = --- = pg = P for the rest of the goods. In this case
we will let ¢y = ¢ and g, = g for k = 2,3,..., K, and we can write the system as
1 K -1 E
1="(q) -+7(q) , C=—F— %
K K Paz + Pi=
T’ (q) T'(q)

Ap = and , AP =

T (q) g+ + Y (7) 52 T (q) g+ + Y (7) 52

And if we let K — oo we obtain the simple recursive system:

poell



Which we can solve as:

E

1="Y(q) = g="T""(1),\x=1/(Pg) andC:m

T(q) = 5T (@) = a= ()" (51(r (1))

Preference shocks. Finally, we introduce preference shocks A, in each good to have:
1= Zﬁil T (‘é—s, AS) % In particular we assume the following multiplicative form:

1= ZT <QSAS> E

This implies:

"(grA E
)\pk_ T(Qk k) fork:1,2,...,K s C:K—l
23:1p5q.§?

AT K

Ak 2321 T/ <QSAS> ASQS%
One case of interest is to consider A’s such that p, = PA, so the shocks happens to be
proportional to the prices. In this case we can write Q)5 = ¢sAs and get:

(@)
S T(Q)) Qe

K
1
1:ZT(QS)?and )
s=1

(99)

AP

fork=1,2,... K

E
C=—-=rk 1
PZSZI st
which clearly has a solution with Q) = Q.

Let us consider the case where A; = A is arbitrary and p, = PA, for k =2,..., K, as
before. We have

1 K—-1 E
1="T(A) 2z +T(Q)—— , C= -
pag +PQTE

K K
and , AP =

VP 1" (g4)
A T (gA)qA% + T (Q) QEA

T(Q)
T’ (qA) A% + T (Q) Q&

whose limit as K — oo is:

_ £
=75

= —T (g4) and , APQ =1

MATTQQ

1=7@) , C

SRS

The demand function can be written as:

T (qA) = % () = g= %(T’)_l (i T (T*1(1)))
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and letting ¢y = ¢ = ¢qC

o= GO (FET W) = g O (BT W) (o

The firm’s real profit function. Let the nominal wage W be the numeraire, Z be the
firm’s real marginal cost and p = pA be the firm’s price. We can write the firm’s profit

function as

- (- 2) e (Br0) (5-)

where the second equality uses equation (100). If we assume that Z = A, i.e. that preference

shocks are proportional to marginal cost shocks, then we have that each firm solves

maxTI(5, P) = % [mgx D (%) (5 — W)} (101)
where p=p/A . and D (%) = (1) (% T (Tl(l))) (102)

so the profit of the individual firm does not depend on Z.

The first order condition for profit maximization gives

S AV L s B
Hl(p,P)—D(P> e +D(P)_0 (103)

evaluated at a symmetric equilibrium where p = P we have that the optimal price p* solves

P - W

s

D' (1) +D(1)=0

or that the profit maximizing markup, u = p*/W, satisfies ’%1 = IZ%W = _%(,1()1).

Comparative statics for the optimal pricing. We want to characterize how the optimal
price u varies as a function of the aggregate price P around an optimum.

Recall the first order condition

11, (p, P) = D' (2) P=Wop (3) =0 (104)

P P P

We first notice that the aggregate expenditure £ /P enters the profit function multiplicatively
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in equation (101). This implies that changes in aggregate expenditure will have no first order

effect on the price setting choice of the firm (around the optimal choice), or that g—g =0
p*

From now on we omit the argument of the function D(-) and simply write D. From the
first order condition II;(p, P) = 0 we have that

op P I, P
— == 105
OP p II;; p ( )

Compute the cross partial derivative

p—W P p-W P D D
Ih:‘”( P ﬁ)‘D( P *FQ:‘”(_DEQ‘D(rﬁF+ﬁz

(106)
where the second equality uses equation (104).
Let us define the own price elasticity
oD p D' p
= — - — T = 1
"T="9pD” " DP (107)
Using this definition we compute
on _ 1 p (D)? b
Ao - (_prP P 108
op _ DP ( P YT D P (108)
Using the definition in equation (107) we rewrite equation (106) as
P 1 D (D) p 1 On
—Hp=—(-D'=--D'+-——)=D - — 109
ﬁ12nP< PPt D R) T e (109)

where the second equality uses the expression in equation (108).
We have

9P _ D 1y
OP p —1I1iw n Op

Note for instance that if the demand system is CES, so that the function D is a power

function, the elasticity eta has a zero elasticity w.r.t. P at the symmetric equilibrium where
p=P,or g—g = 0 as can be readily verified from equation (108). This implies that the optimal

firm price u is unresponsive to the aggregate price P at the symmetric equilibrium.
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