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1 Introduction

To align workers’ incentives with firms’ objectives, firms often link wages to performance on

the job through bonuses, commissions, and piece rates. This practice has become increasingly

prevalent in the United States and, since Lemieux [2008] and Lemieux, MacLeod, and Parent

[2009], has been found to account for a large share of the rise in wage inequality among workers.

For most workers, however, performance pay amounts to only a small fraction of pay. One reason

is that workers already face strong implicit incentives for performance. For example, they may be

motivated to work hard to convince current and future employers, uncertain about their talent, that

their productivity is high. These implicit incentives for effort can then substitute for the explicit

incentives from performance pay. This well-known career-concerns argument provides a common

explanation for why performance pay often makes up only a small portion of pay (Holmström

[1999]). It also has implications for how performance pay varies over the life cycle. Namely, as

workers’ experience accumulates and their productivity becomes better known, implicit incentives

for performance weaken. To compensate, explicit incentives from performance pay should become

more important (Gibbons and Murphy [1992]). Although intuitive, this popular explanation raises

a puzzle though: as we document, the opposite pattern is common in the data—relative to total

pay, performance pay eventually declines with experience. Thus, whether performance incentives

matter for pay and, if so, why performance pay is typically so small remain open questions.1

In this paper, we reevaluate the importance of performance incentives for wages starting from

the notion that workers face other powerful implicit incentives that can support, or discourage,

effort on the job. For instance, the prospect of acquiring new human capital may affect the desire

to exert effort. Indeed, standard models of human capital postulate that effort on the job com-

plements the effort to acquire human capital, as in models of learning-by-doing (Becker [1962]),

or substitutes for it, as in models of on-the-job training or learning-or-doing (Ben-Porath [1967]).

But then compensation meant to incentivize work effort also influences how much human capital

workers accumulate. We argue that the uncertainty about workers’ productivity—central to the

career-concerns logic—and the possibility of acquiring human capital during employment are key

1In the PSID, variable pay accounts for less than 5% of pay and does not represent a major component of it at
any point over the life cycle (Frederiksen et al. [2017]); see the appendix for similar evidence from the NLSY. For an
application of the career-concerns argument to firms’ unobserved investment decisions, see Atkeson et al. [2015].
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to understanding why performance pay is relatively low and how it evolves over time. In particular,

we find that uncertainty about workers’ productivity generates substantial wage risk over the life

cycle, which is primarily responsible for the low level of performance pay. Yet, performance pay

crucially shapes life-cycle wages through its indirect impact on workers’ process of human capital

acquisition, which in turn explains its peculiar life-cycle profile. Taken together, these findings

call into question the canonical risk-incentive trade-off emphasized by the literature as the main

determinant of performance incentives, and suggest that, although often ignored, performance pay

is in fact a major source of the growth and dispersion of wages over the life cycle.

We formalize these intuitions by proposing a tractable model for the multiple incentives for ef-

fort on the job that arise from performance pay, career concerns, and the opportunity to accumulate

human capital through employment. Our model thus offers a unified framework to investigate how

these forces together determine the level and dynamics of wages and of their fixed and variable

(performance-pay) components. In doing so, we accomplish three goals. First, as this framework

allows us to analytically decompose the returns to effort and the sensitivity of pay to performance

into the mechanisms we nest, we shed light on the forces governing how performance pay evolves

with experience and so on the environments in which alternative life-cycle patterns of performance

pay are likely to emerge. Conversely, we show that these patterns provide rich information that can

be used to identify the different determinants of fixed and variable pay that we integrate.

Second, we resolve the puzzle that performance pay follows a hump-shaped pattern over the

life cycle relative to total pay—it first increases and then decreases with experience—contrary to

the prediction of leading models of performance incentives. For this hump-shaped pattern to arise,

human capital is essential. In particular, when human capital is acquired through learning-by-

doing, as we estimate, so that effort to produce output increases human capital, explicit incentives

from performance pay complement the implicit ones from human capital acquisition: they support

greater effort and thus human capital accumulation early on, when human capital is most valuable.

As acquiring new human capital becomes less valuable over time, explicit incentives for perfor-

mance progressively weaken. Thus, performance pay eventually declines relative to total pay.

Third, using our parameterized model, we demonstrate that, unlike what is often conjectured,

performance pay plays a crucial role for the dynamics of wages over the life cycle through both its

direct effect on total pay and its indirect effect on workers’ accumulation of human capital.
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We proceed to revisit the role of performance pay for wages by nesting and extending promi-

nent models of performance incentives, learning about ability, and human capital acquisition—

including those cited above. We integrate the canonical moral-hazard and job-assignment frame-

works by building on the notion that workers can exert effort on simple tasks that are contractable—

the typical dimension of labor supply—and on complex tasks that are not contractable—the typical

source of moral hazard. We interpret different jobs as distinct bundles of simple and complex tasks.

Workers differ in their productive ability, which is unobserved to all, and can accumulate human

capital when employed. Effort in simple and complex tasks contributes to a worker’s output and

human capital—we do not restrict human capital to be accumulated through learning-by-doing or

learning-or-doing. Whereas a worker’s ability is unobserved to all and effort on complex tasks and

human capital are observed only by the worker, effort on simple tasks and output (or performance)

are publicly observed. Output then serves as a noisy signal of ability, effort on complex tasks, and

human capital. Firms compete for workers through contracts that allow for variable pay contingent

on a worker’s output. Thus, workers face both explicit incentives for effort, as their pay is linked to

performance, and implicit ones, as performance influences the market’s perception of their ability

and human capital and, in turn, their future wages. By making explicit how contracting considera-

tions affect pay, its components, and the type of activities that workers perform in firms over time,

we can then account for the dynamics of wages, their structure, and the known shift in workers’

responsibilities from simple to complex tasks as their careers within firms progress.

Through the lens of this framework, we can decompose performance pay into distinct terms

that capture the mechanisms we focus on: i) the trade-off between risk and incentives typical of

moral-hazard settings; ii) the career-concerns incentives for performance due to the uncertainty

about workers’ ability; iii) the insurance firms provide against the risk due to this uncertainty; and

iv) the incentives for performance due to human capital acquisition. Through this characterizati-

on, we identify the conditions that give rise to alternative life-cycle patterns of performance pay

relative to total pay and corresponding profiles of job assignment. Crucially, we find that a human

capital motive for effort rationalizes the hump-shaped profile of performance pay, which, as we

show, is characteristic of both well-known firm-level data in personnel economics (Baker et al.

[1994a,b], henceforth BGH, and Gibbs and Hendricks [2004]) and public data (PSID and NLSY).

Empirically, evaluating the incentive power of wage contracts and, in general, multiple mecha-
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nisms for the variability of wages across individuals and over time entails a difficult measurement

exercise, since the underlying sources of the variation in wages are unobserved and mediated by

firm and worker behavior. We proceed by first establishing that the primitive forces we examine

can be easily recovered from the life-cycle profile of mean wages, their covariance structure, and

the ratio of variable to total pay under intuitive conditions. We then estimate our model by match-

ing how mean wages, their variance, and the ratio of variable to total pay evolve with experience

in the BGH data, which our model replicates well—along with the untargeted pattern of the task

complexity of workers’ jobs. We do so under alternative restrictions on the parameters of our

model, which reduce it to important special cases studied in the literature. We can thus measure

the strength of the incentives we focus on in prototypical data and examine how they shape perfor-

mance pay and total pay over time. By comparing our estimated full model to estimated special

cases of it, which amount to classic models of performance incentives, learning about ability, and

human capital, we can also assess the extent to which integrating known frameworks offers novel

insights about the impact of performance incentives, and the other forces we explore, on wages.

We find that existing models, when they have predictions for performance pay, yield a life-

cycle profile for it at odds with the data, with important implications for the nature of wage risk

they imply. For instance, compared with our model—which instead closely matches the profile of

performance pay—these models imply that ability risk is much greater yet far less persistent. This

would suggest that performance incentives matter little for pay over most of the life cycle, since

otherwise performance pay would be far larger than observed. Moreover, given the substantial risk

arising from the variability of life-cycle wages, existing models counterfactually predict perfor-

mance pay to be negative early on. By contrast, the productivity gains from accumulating human

capital in our model lead to positive performance pay even early in the life cycle, as in the data.

Although workers receive little of their compensation as performance pay, we estimate that

performance pay is central to life-cycle wage growth because it encourages workers to exert effort,

which increases both output and human capital, as we find that human capital accumulates through

learning-by-doing. Indeed, performance pay, through the effort it induces, accounts for more than

30% of life-cycle wage growth, once the cumulative impact of effort on human capital is taken into

account. Performance pay is also critical for wage dispersion: it accounts for a large portion of

the variability of wages over the first 10 to 20 years of experience. To the best of our knowledge,
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all these estimates of the role of performance pay for life-cycle wages—validated by our model’s

implications for workers’ progression across jobs over their careers—are new to the literature.

Interestingly, we find that the key force depressing performance pay throughout the life cycle

is workers’ desire to insure against the wage risk stemming from the uncertainty about their ability

rather than the pure productivity (output) risk stressed in the literature (see also Low et al. [2010] on

the importance of persistent individual productivity risk for life-cycle income risk). From an asset

pricing perspective, the intuition is simple. To reward effort, performance pay is large whenever

output is high and so news about ability, and future pay, are good. But then workers paid according

to performance-pay contracts effectively hold a portfolio of state-contingent claims to their output

whose value comoves with their perceived ability. This portfolio pays out persistently more when

output and thus signals about ability are high and less when output and thus signals about ability

are low, thereby compounding the idiosyncratic risk that workers already face because their output

fluctuates over time. Like any risk-averse investor, workers are willing to pay a premium for assets

that diversify their risk. Accordingly, they favor contracts that reduce the wage risk generated

by the variability of the beliefs about their ability, as firms learn about it. Indeed, in the absence

of human capital considerations, firms and workers would agree to negative performance pay as

a hedge against the risk in base pay. Performance pay then tends to be small to partially shield

workers against the risk in lifetime wages induced by the persistent uncertainty about their ability.2

Since this uncertainty increases the variability of wages, a natural conjecture—and a common

reading of learning models—is that the variance of wages would be lower if ability was known.

Indeed, this would be the case if wage contracts did not respond to changes in the uncertainty about

ability. But performance pay optimally increases when uncertainty declines, as workers demand

less insurance against the lower implied wage risk, which increases the variance of wages. Hence,

a trade-off exists between ex-ante wage risk due to the uncertainty about workers’ productivity and

ex-post wage risk due to the variability of wages induced by performance pay. In the setting we

consider, lower dispersion in workers’ productivity early in the life cycle—say, through improved

schooling or better occupational sorting—turns out to lead firms to offer wages that are much more

sensitive to performance. Then, more homogeneous workers in terms of their initial skills end

up experiencing more wage inequality. These findings confirm once more that understanding the
2These results extend the intuition of Harris and Holmström [1982] on the insurance value of wage contracts to a

framework with moral hazard, explicit performance incentives, and human capital acquisition.
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structure of pay is central to understanding wage inequality.

Our paper relates to multiple strands of literature, including work on i) exploring the role of

incentive pay for wage inequality and productivity (Lemieux, MacLeod, and Parent [2009] and

Bloom and Van Reenen [2010]); ii) measuring the impact of learning about ability for education

choices and for job and wage mobility (Gibbons et al. [2005], Arcidiacono et al. [2010], Kahn

and Lange [2014], Kircher et al. [2015], Keane et al. [2017], Eeckhout and Weng [2022], Aryal

et al. [2022], Pastorino [2024], and Tincani [2025]); and iii) assessing the role of human capital

acquisition for wage growth (Gladden and Taber [2009] and Taber and Vejlin [2020]). Many

studies emphasize the role for wages of persistent unobserved worker heterogeneity (Keane and

Wolpin [1997], Geweke and Keane [2000], Meghir and Pistaferri [2004] and Low et al. [2010]),

which is at the heart of the mechanisms we study. As for the rest of the paper, in Section 2, we

present evidence on the life-cycle patterns of pay, performance pay, and their relationship with

performance from the BGH data, which much of the personnel economics literature has drawn

from. We use these data to estimate our model, introduced in Section 3 and analyzed in Sections 4

and 5. In Section 6, we estimate the model and demonstrate how performance incentives, learning

about ability, and human capital acquisition shape the life-cycle profile of pay and its components.

Section 7 concludes. See the the appendix and the supplementary appendix for omitted details.

2 Performance Pay over the Life Cycle

Here, we begin by describing our data and documenting that performance pay first increases and

then decreases relative to total pay as labor market experience accumulates. We then present the

rest of the moments we use to discipline our model in later sections. We conclude by arguing that

the data is suggestive that both learning about ability and performance incentives matter for pay.

We use the data of Baker et al. [1994a,b], two seminal papers that laid the foundation of the

literature on careers in firms by illustrating patterns of job and wage mobility that have been repli-

cated by multiple studies.3 The original dataset consists of the personnel records of all manage-
3Several papers—including DeVaro and Waldman [2012], Kahn and Lange [2014], Frederiksen et al. [2017],

Ekinci et al. [2018], and Pastorino [2024] just to name a few—have exploited the rich information on compensation,
job assignment, and worker performance in these data, which were graciously shared with us by Michael Gibbs.
Frederiksen et al. [2017] report many regularities in terms of the distribution of wages and performance management
systems across the BGH and five other firm-level data sets; see also the review by Waldman [2012]. In the appendix,
we provide evidence on the hump-shaped experience profile of performance pay using data from another firm analyzed
in Gibbs and Hendricks [2004] as well as public data from the PSID, the NLSY79, and the NLSY97.
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Table 1: Summary Statistics 1981-1988

Panel A: Main Variables
Variable Mean Std. Dev. Min. Max. Observations
Age (years) 40.10 9.27 22 65 22,609
Experience (years) 18.58 9.81 1 47 22,609
Base salary (1988 $1,000s) 57.10 29.12 11.27 650.00 22,609
Bonus (1988 $1,000s) 2.41 8.82 0 296.13 22,609
Total compensation (1988 $1,000s) 58.91 29.17 22.71 857.84 22,609
Residual compensation 0.00 6.63 -148.18 148.18 22,609

Panel B: Education and Race
Education Frequency Percent Observations
High School 3,938 17.42%
Some College 3,984 17.62%
College 8,228 36.39%
Advanced Degree 6,459 28.57%
Total 22,609 100.00% 22,609
Race Frequency Percent Observations
Minority (0) 2,433 10.78%
White (1) 20,139 89.22%
Total 22,572 100.00% 22,572

Notes: Panel A reports statistics on continuous variables such as age, experience, base salary, bonus, total compen-
sation, and residual compensation obtained by projecting compensation on year effects, experience, and individual
fixed effects. Total compensation is windsorized within each level of experience. All compensation measures are in
thousands of 1988 dollars. Panel B reports frequencies for categorical variables including education level and race.

ment (supervisory) employees of a medium-sized U.S. firm in the service industry between 1969

and 1988; from 1981, information on both base and performance (bonus) pay is available. Since

over this period supervisory positions were mostly filled by males, we exclude females from our

analysis and retain 22,609 observations from 5,364 males in supervisory positions at the firm be-

tween 1981 and 1988. Being a sample of supervisory workers, as Table 1 shows, our sample

mostly consists of white and highly educated individuals—total compensation for this group sig-

nificantly exceeds that of the average worker.4 Two other key features emerge from the table. First,

performance pay makes up only about 4% of total pay, which mirrors the well-known fact in the

personnel literature that for most workers, performance pay amounts to only a relatively small

fraction of pay. Our analysis below elucidates why this is the case and why performance pay nev-

ertheless is an important force governing the life-cycle profile of wages. Second, a large portion

of the variation in pay can be accounted for by permanent differences among workers in terms

of their observable characteristics. Specifically, the standard deviation of total pay in our data is

$29.2K, but once we control for year effects, experience, and, crucially, individual fixed effects,

4Compensation is reported in 1988 dollars. Adjusted to 2025, average total compensation amounts to $161K.
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the residual standard deviation is just $6.6K. We use this residualized measure of the variance of

wages to discipline our model. In Section 6, we show how this relatively modest degree of wage

dispersion nonetheless masks a high degree of income risk that workers face due to the uncertainty

about their productivity.

Figure 1: Life-Cycle Ratio of Performance Pay to Total Pay in BGH Data

Our analysis is motivated by how the level and composition of pay varies over the life cycle,

as firms learn about workers’ unobserved skills and compensate them for their effort. Our data

contain information about fixed fit and variable (bonus) pay vit, which together sum to worker i’s

pay or wage wit=fit+vit in period t. When variable pay vit is proportional to output yit and firms

make on average zero profits, average variable pay is directly informative about the piece rate that

links compensation wit to performance yit. Since these two conditions hold in our model, using

that E[vit] =E[btyit] and E[yit] =E[wit], we can back out the piece rate bt as E[vit]/E[wit], which

measures the sensitivity of pay to performance.5

Figure 1 shows that this ratio in the BGH data markedly varies as experience increases—it first

increases and then decreases. In particular, the importance of performance pay relative to total pay

declines over the second half of workers’ careers: it eventually becomes 1/3 as large compared to

its peak. This feature, which we document in multiple data sets as discussed in the appendix, runs

counter to the core prediction of models of career concerns and performance incentives. According

to them, as implicit reputational incentives for performance weaken over time, explicit incentives

from performance pay should strengthen to induce the appropriate effort, leading performance

pay to increase relative to total pay. By augmenting the standard model of career concerns and

performance incentives with human capital acquisition, we propose in the next section a model
5A similar argument applies when wages are marked down relative to expected output; see the appendix.
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that accounts for this hump-shaped pattern of performance pay together with the overall evolution

of wages over the life cycle.6 We discipline this model by targeting the experience profiles of

the variance and growth of wages over the life cycle reported in Figure 2, which are also hump-

shaped. We return to this point in Section 6, where we discuss the connection between the patterns

of performance pay and of the variance of wages over the life cycle.

Figure 2: Life-Cycle Variance and Mean of Wages in BGH Data

(a) Life-Cycle Variance of Wages (b) Life-Cycle Growth of Mean Wages

We now turn to present evidence supporting the notion that performance pay rewards effort on

the job by documenting that performance pay strongly correlates with performance, as measured

by the subjective ratings of performance assigned by managers to their team members.7 To start,

Kahn and Lange [2014] report that variation in performance induces lasting variation in pay in

our data, which they conclude is consistent with the presence of learning about workers’ ability.

Intuitively, when learning is present, performance ratings, being a measure of realized output,

persistently affect beliefs about ability and so present and future wages. Those authors further

estimate a higher correlation of pay with recent ratings—1 to 3 years out—than with past ones,

in line with ratings providing new signals about productivity each period that are used to update

beliefs and thus wages. We additionally find that variable pay correlates more strongly with current

ratings than with past or future ones, in line with the idea that bonus pay rewards contemporaneous

performance. Taken together, these findings support the premise of our model that firms learn about

workers’ productivity and, consistent with the presence of moral hazard, link pay to performance.

Table 2 provides further evidence that moral-hazard considerations matter for pay based on the

relationship between performance, performance pay, and the overall level of pay, once we account
6As argued in Section 6, a model of human capital acquisition alone would be silent about performance pay.
7See Kahn and Lange [2014] for an extensive analysis of the comovements between this performance measure and

pay and Pastorino [2024] for an examination of how performance impacts wages and job assignment at the firm.
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Table 2: Effect of Top Performance Rating on Pay Components

Total Pay Performance Pay (Bonus) Base Pay
OLS FE OLS FE OLS FE

Top Rating 11.36*** 3.83*** 2.73*** 2.15*** 9.03*** 2.38***
(0.46) (0.18) (0.15) (0.18) (0.46) (0.17)

R2 0.23 0.95 0.07 0.45 0.22 0.95
Observations 22,609 22,609 22,609 22,609 22,609 22,609

Notes: Standard errors in parentheses. All models include year effects and control for experience; the OLS models
also include education effects and race whereas the FE models include individual worker fixed effects. Compensation
is measured in thousands of 1988 dollars. Asterisks denote conventional significance levels.

for workers’ observed and unobserved characteristics. Specifically, the table reports results from

regressions of total pay, performance pay, and base (or fixed) pay on an indicator variable for

whether a worker receives the top performance rating on a 5-point scale in any given year. All

specifications control for year effects, experience, and race; the results labeled OLS also include

education effects, whereas the results labeled FE additionally include individual fixed effects.

The OLS estimates show that performance measures are highly predictive of base and perfor-

mance pay, as the estimates of the corresponding top rating coefficients are large and significant.

This strong relationship between a top rating and both base and performance pay suggests that a

close link exists not just between performance and performance pay, as a model of moral hazard

would imply, but also between performance and base pay, as a model of learning would imply, in

which firms use performance to update beliefs about a worker’s ability, which influence base pay.

Once we control for permanent individual heterogeneity, the effect of a top rating on total pay

and base pay becomes substantially smaller—compare the columns labeled FE with those labeled

OLS—whereas its effect on performance pay remains largely unchanged. The positive FE estimate

of the impact of a top rating on total pay and base pay implies that variation in performance ratings

in a period is correlated with variation in pay and its main component in the same period even

after fixed unobserved individual characteristics are accounted for, reinforcing the case for the

presence of learning. That is, this evidence suggests that time-varying unobserved characteristics

correlated with performance, as beliefs are, still have an impact on pay. That the FE estimate of the

impact of a top rating on performance pay is close to the OLS estimate—unlike the corresponding

FE estimate for base pay, which is much smaller than the OLS one—further indicates that any

idiosyncratic variation in performance translates directly and sizably into variation in total pay

through performance pay itself, just as predicted by a moral-hazard model.
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Overall, these findings support the basic assumptions of a model of learning about ability and

moral hazard, such as the one we develop next, for two main reasons. First, total pay, not just

performance pay, systematically varies with performance—as consistent with a learning model,

since performance affects beliefs about ability, which determine base pay. Second, even once per-

manent unobserved differences across workers are controlled for, performance in a period strongly

correlates with performance pay in the period, suggesting that the BGH firm conditions variable

pay on performance to incentivize workers—as consistent with a moral-hazard model.

3 A Model of Effort Incentives, Learning, and Human Capital

We now present the environment, define equilibrium, and discuss our setup.

3.1 Environment

The labor market consists of heterogeneous risk-averse workers and homogeneous risk-neutral

firms that can freely enter the market.8 Time is discrete and ranges from 0 to T . We index workers

by i and time by t. Workers differ in their ability, which is subject to persistent shocks and is not

observed by any market participant, including workers themselves. There are two types of tasks or

activities that workers can perform in a firm, a simple task that requires observable and contractable

effort and a complex task that requires unobservable and non-contractable effort—in the remarks

below, we discuss how we interpret a worker’s job as a bundle of these two tasks. Effort in both

tasks augments output and influences human capital acquisition. All firms observe workers’ output

and employment contracts and infer a worker’s unobserved ability based on this information. Since

all firms share the same information, (employer) learning about workers’ ability is common.

Production. The common output technology is such that worker i’s output in period t is

yit = θit + ξkkit + ξ1ei1t + ξ2ei2t + εit, (1)

where θit is the worker’s unobserved ability, kit is the worker’s human capital, ei1t is the worker’s

effort in the simple task, ei2t is the worker’s effort in the complex task, and εit captures idiosyncratic

variation in the worker’s output. The parameter ξk describes the contribution of human capital to

8This labor market can be viewed as one of many sufficiently segmented by location, occupation, or industry that
employment opportunities in other markets are irrelevant for workers’ and firms’ decisions in any given market.
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output, which we can set to one without loss (see below), whereas the parameters ξ1 and ξ2 capture

the contribution of each type of effort to output.9 Worker i’s initial ability θi0 is drawn from a

normal distribution with mean mθ and variance σ2
θ and evolves over time according to the process

θit+1=θit+ ζit, where ζit is an unobserved idiosyncratic shock realized at the end of t. The shocks

εit and ζit are normally distributed with mean zero and variances σ2
ε and σ2

ζ , respectively.

Human Capital. Human capital evolves according to the law of motion

kit+1 = λkit + γ1ei1t + γ2ei2t + βt, (2)

where (1 − λ) ∈ [0, 1] is the depreciation rate, ki0 ≡ k0 is the initial stock of human capital, γ1

and γ2 are, respectively, the rates at which effort in the simple and complex tasks affect future

human capital, and βt is a time-varying constant.10 Note that we can set ξk = 1 in (1), since we can

absorb it into γ1, γ2, and βt, and redefine human capital accordingly—just consider the change of

variables γ1 7→ γ1/ξk, γ2 7→ γ2/ξk, βt 7→ βt/ξk, and kit 7→ kit/ξk. This formulation of the human

capital process encompasses the case in which the effort to acquire human capital complements

the effort to produce output in both tasks (γ1, γ2 > 0), as in models of learning-by-doing, and the

case in which the effort to acquire human capital substitutes for the effort to produce output in both

tasks (γ1, γ2 < 0), as in models of learning-or-doing. In the former case, the investments in human

capital in t are ei1t and ei2t with corresponding rates of human capital accumulation γ1 and γ2. In

the latter case, the investments in t are e1t−ei1t and e2t−ei2t with corresponding rates of human

capital accumulation |γ1| and |γ2|, where e1t and e2t are a worker’s endowment of time or efficiency

units in the two tasks in t and we absorb γ1e1t + γ2e2t into βt. Cases in which the effort to acquire

human capital complements the effort to produce output in one task and substitutes for it in the

other task are also possible. We will refer to γ1 and γ2 as the rates of human capital accumulation.

In the appendix, we consider more general formulations of the human capital process in which

human capital differs unobservably across workers or depends nonparametrically on effort.

Worker Preferences. The lifetime utility from t on of a worker receiving wages {wt+τ}T−t
τ=0 and

exerting the efforts {e1t+τ}T−t
τ=0 and {e2t+τ}T−t

τ=0 in the simple and complex tasks, respectively, is

− exp{−r
∑T−t

τ=0 δ
τ [wt+τ − c(e1t+τ , e2t+τ )]}, where r > 0 and δ are a worker’s coefficient of (ab-

9That the coefficient ξθ multiplying θit in (1) is set to one is also without loss since it can be incorporated into θit.
10We can allow for heterogeneous initial stocks of human capital provided that they are observable.
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solute) risk aversion and discount factor, respectively, and c(e1, e2) = (ρ1e
2
1 + 2ηe1e2 + ρ2e

2
2)/2

with ρ1, ρ2 > 0 is the monetary cost of the effort pair (e1, e2).11 In what follows, we assume that

ρ1 = ρ2 = 1 and η = 0, and consider the general case in the appendix.12 In the supplementary

appendix, we consider a version of our model in which both tasks feature non-contractable effort.

Contracts. Each period firms offer workers one-period employment contracts. A contract for

worker i in period t is a pair (ei1t, wit) consisting of the worker’s effort in the simple task, ei1t, and

wage schedule in the complex task, wit=cit+bityit, where cit is the fixed component of worker i’s

wage and bit is worker i’s piece rate in t.13 We consider wage schedules that are linear in output

for three reasons. First, this assumption is standard and so allows us to compare our framework

to existing ones. Second, contracts are often linear in output or approximately so in practice.

Third, linear contracts allow us to summarize the strength of contractual incentives for effort in the

complex task through a simple one-dimensional continuous measure, the piece rate bit.

3.2 Equilibrium

A worker’s history in t consists of the sequence of the worker’s effort choices in the complex

task, employment contracts, and output realizations up to t − 1. A strategy for a firm specifies

contract offers to workers conditional on the public portion of their histories. A strategy for a

worker specifies a choice of contract and effort in the complex task for each history for the worker

and contract offers by firms. We consider pure-strategy perfect Bayesian equilibria. Free entry of

firms implies that in equilibrium firms make zero expected profits each period. Thus, if (ei1t, wit)

is worker i’s equilibrium contract in period t when the public portion of the worker’s history is Iit,

then cit = (1− bit)E[yit|Iit], where E[yit|Iit] is expected output in t given Iit. Hence,

wit = cit + bityit = (1− bit)E[yit|Iit] + bityit (3)

and worker i’s equilibrium contract in t can be described by the pair (ei1t, bit). By (1), E[yit|Iit]

depends on worker i’s prescribed equilibrium behavior up to t, which pins down the worker’s

human capital and effort choices in t, and on worker i’s conditional expected ability, E[θit|Iit].
11Our arguments extend to a more general cost function. For reasons of identification, we treat it as known.
12There, we show that we can renormalize the model parameters so that ρ1 = ρ2 = 1 and key objects of interest

such as equilibrium piece rates do not depend on η—since effort in the simple task is contractable, the provision of
explicit incentives for effort in the complex task is not influenced by effort in the simple task.

13Gibbons and Murphy [1992] show that restricting attention to one-period contracts is equivalent to considering
renegotiation-proof long-term contracts. Their proof extends to our environment.
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3.3 Discussion

We conclude by discussing the main features of our model and dimensions along which it can

be extended; see also the appendix and the supplementary appendix. To start, our model can be

interpreted as the log version of one in levels with output and human capital technologies of the

usual Cobb-Douglas form, namely, in which i) the period-t output of a worker with ability Θt

and human capital Kt who exerts efforts E1t in the simple task and E2t in the complex task is

Yt = ΘtK
ξk
t Eξ1

1tE
ξ2
2tΩt, with ξk, ξ1, and ξ2 as in (1) and Ωt a mean-one shock; and ii) the human

capital in t + 1 of a worker with human capital Kt in t who exerts efforts E1t in the simple task

and E2t in the complex task in t is BtK
λ
t E

γ1
1tE

γ2
2t , with Bt a positive time-varying constant and λ,

γ1, and γ2 as in (2).

As in Gibbons and Murphy [1992], workers have constant absolute risk aversion preferences

over present-discounted streams of wage payments, net of monetary effort costs. This preference

specification, which is common in models of dynamic moral hazard for its tractability, allows us to

abstract from wealth effects. Since, as is also common in the literature, output is linear in inputs,

wages are linear in output, shocks to ability are additive, and initial ability, ability shocks, and

output shocks are normally distributed, worker preferences admit a mean-variance representation.

This feature, in turn, implies that a worker’s trade-off between consumption or wages and leisure

does not depend on a worker’s history, which enables us to completely characterize equilibrium.

Our model extends existing dynamic moral-hazard models by allowing for multiple worker

activities or tasks so as to micro-found the notion of a worker’s job and the resulting assignment

process based on the responsibilities that a job entails, which may be contractable to different

degrees and can vary with a worker’s experience. For instance, as discussed in Section 6.5, workers

in the BGH data progress over time to more complex jobs for which general management duties—

such as general administration or planning—that require workers to perform activities difficult to

contract become increasingly more important. Simpler activities that are easier to contract—such

as creating or selling products—correspondingly decrease in importance.

Our model nests well-known models of learning about ability, human capital accumulation, and

performance incentives. When ability is known and there exists a single task requiring contractable

effort (ξ2 = γ2 = 0), our model reduces to one of dynamic labor supply and human capital
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accumulation through investments that can complement or substitute for the effort expended to

produce output. When effort is not a choice variable, the model specializes to one of human capital

acquisition with experience through learning-by-doing (if γ1 > 0) or learning-or-doing (if γ1 < 0).

When there exists a single task requiring non-contractable effort (ξ1 = γ1 = 0), effort does not

contribute to human capital (γ2 = 0), and ability is not subject to shocks (σ2
ζ = 0), the model

simplifies to the career-concerns model with explicit incentives of Gibbons and Murphy [1992].

Without performance pay, the model further reduces to the career-concerns model of Holmström

[1999]. When, in addition, effort is not a choice variable, our model is a symmetric learning model

with ability general across firms as in Farber and Gibbons [1996].14

As for the type of labor market competition that we incorporate, note that our analysis applies

essentially unaltered if instead of capturing the entire surplus from their matches with firms, work-

ers capture only a fraction of it, so that wages are marked down relative to workers’ output; see the

appendix. Also, by reinterpreting the term βt in the law of motion for human capital in (2) as a firm

productivity parameter, our model extends to settings in which firms differ in their productivity. To

see how, suppose that firms are characterized by a productivity level p so that the output of worker i

in t when employed by a firm of productivity p = pit is yit = pit+θit+ξkkit+ξ1ei1t+ξ2ei2t+εit—

in our baseline model with homogeneous firms, p is absorbed in βt. Assume that in each period, a

worker is matched with a set of heterogeneous firms that Bertrand-compete for workers; see Pas-

torino [2024]. If the firm at which a worker is most productive changes over time, say, because

of productivity shocks, then the wage equation in our model is analogous to that in Bagger et al.

[2014]. We do not explicitly consider such heterogeneity in our analysis just for simplicity, as we

use data from one firm in our empirical exercises.

4 Learning about Ability and Effort in the Complex Task

In this section, we present key results that allow us to characterize the equilibrium of the model.

We first describe the process of learning about ability. We then determine a worker’s choice of

effort in the complex task—the task with non-contractable effort—for given employment contracts

and specify how it depends on career-concerns and human capital incentives.

14When firms can commit to long-term contracts without performance pay, our framework extends that of Harris
and Holmström [1982] to a setting with moral hazard and human capital acquisition.
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4.1 Learning about Ability

Firms and workers learn about a worker’s ability over time by observing a worker’s output. Con-

sider worker i in period t, whose equilibrium effort choices and human capital in t are e∗1t, e
∗
2t, and

k∗
t , respectively—for simplicity, we omit the dependence of effort choices and human capital on i.

Let zit = yit − k∗
t − ξ1e

∗
1t − ξ2e

∗
2t be the portion of the worker’s output in t that is not explained

by the worker’s human capital and efforts. By (1), zit = θit + εit is the signal about the worker’s

ability in t extracted from the worker’s output. Since initial ability and shocks to ability and output

are normally distributed, it follows that posterior beliefs about a worker’s ability in any period are

normally distributed and so fully described by their mean mit =E[θit|Iit]—worker i’s reputation

in t—and variance σ2
it=Var[θit|Iit], with mi0=mθ and σ2

i0=σ2
θ . By standard results,

mit+1 = σ2
εmit/(σ

2
it + σ2

ε) + σ2
itzit/(σ

2
it + σ2

ε) and σ2
it+1 = σ2

itσ
2
ε/(σ

2
it + σ2

ε) + σ2
ζ . (4)

The recursions for mit and σ2
it describe how a worker’s reputation and its variability, as captured

by the variance of posterior beliefs about a worker’s ability, evolve over time.15 Since σ2
it evolves

independently of zit and so is common to all workers, we can suppress the subscript i and simply

denote this variance by σ2
t . By iterating on (4), we can trace out a worker’s reputation as signals

about ability accumulate. With µt ≡ σ2
ε/(σ

2
t + σ2

ε) and the convention that
∏0

k=1 ak = 1 for any

sequence {ak}, worker i’s reputation in t+ τ with 1 ≤ τ ≤ T − t given reputation mit in t is

mit+τ =
(∏τ−1

k=0
µt+k

)
mit +

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)zit+s. (5)

4.2 Effort in the Complex Task

As it turns out, the equilibrium is unique, symmetric, and such that effort choices and piece rates

depend only on time. To understand workers’ problem and the determinants of their effort choices

in the complex task, suppose that workers face a sequence of employment contracts {(e1t, bt)}Tt=0

such that efforts in the simple task and piece rates depend only on time. Consider worker i’s

period-t choice of effort in the complex task, e2t, when the worker’s future effort choices in this

task depend only on time. Let wit+τ be worker i’s wage in period t+ τ with 0 ≤ τ ≤ T − t.

15These expressions are valid even when effort in the complex task deviates from the equilibrium path as any output
realization is possible for any given effort choice, so firms cannot infer effort in the complex task from realized output.
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Worker i chooses e2t to maximize Uit(e2t) = E[− exp{−r[Wit− c(e1t, e2t)]}|ht
i], where Wit =∑T−t

τ=0 δ
τwit+τ and the expectation in Uit(e2t) is conditional on worker i’s period-t history ht

i. Yet,

as we will see, the optimal choice of e2t is independent of ht
i; it is also independent of e1t. Since sig-

nals about ability are normally distributed, it also follows from (3) and (5) that wages, {wit+τ}T−t
τ=0,

are normally distributed, and so is their present-discounted value Wit. Thus, e2t maximizes Uit(e2t)

if, and only if, it maximizes E[Wit|ht
i]− rVar[Wit|ht

i]/2− e22t/2.16 As for the first-order condition

for effort in the complex task, note that ∂E[wit|ht
i]/∂e2t = ξ2bt by (1) and (3). But worker i’s

choice of e2t also affects future wages through its impact on the worker’s future reputation—which

affects the fixed component of future pay—and future human capital—which affects both the fixed

and variable components of future pay. As E[Wit|ht
i] =

∑T−t
τ=0 δ

τE[wit+τ |ht
i] and, as shown in

the appendix (see the discussion after Lemma A.1), effort in the complex task does not affect the

variance of future pay, the first-order condition for worker i’s choice of e2t reduces to17

e2t = ξ2bt +
∑T−t

τ=1
δτ∂E[wit+τ |ht

i]/∂e2t. (6)

The right side of (6), which describes the marginal benefit of effort in the complex task in t, is

the sum of two terms. The first term captures the static marginal benefit of effort. The second

term captures its dynamic marginal benefit, which is nonzero as long as t < T and can be further

manipulated as follows. Let µ̂t,τ = (
∏τ−1

k=1 µt+τ−k)(1− µt) and define RCC,t and RHK,t as

RCC,t =
∑T−t

τ=1
δτ (1− bt+τ )µ̂t,τ and RHK,t = γ2

∑T−t

τ=1
δτλτ−1(bt+τ +RCC,t+τ ). (7)

In the appendix, we show that we can express the first-order condition in (6) as

e2t = ξ2bt + ξ2RCC,t +RHK,t. (8)

The terms ξ2RCC,t and RHK,t describe the dynamic marginal benefit of effort in the complex task

arising from its effect on a worker’s future reputation and human capital.18 To understand ξ2RCC,t,

note that at the margin, a higher e2t increases the expected period-t signal zit about a worker’s

16Recall that E[exp{rX}] = exp{rµ−r2σ2/2} if X is normally distributed with mean µ and variance σ2.
17As in Gibbons and Murphy [1992], we allow for negative effort so as to be able to use first-order conditions to

characterize workers’ effort choices. We later provide conditions under which effort is positive.
18By (8), effort in the complex task is identical across workers. This fact is key for the symmetry of equilibrium and

for the result that equilibrium piece rates, and thus effort choices, depend only on t.
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ability by ξ2. By (5), this increase raises a worker’s expected reputation in t+τ , with 1≤τ≤T − t,

by ξ2µ̂t,τ . In turn, at the margin, a higher reputation in t + τ increases the fixed component of the

wage in t+ τ by 1− bt+τ . The term RCC,t is just the present-discounted value of all these marginal

increases. Therefore, even without any explicit link between pay and performance, workers have

a desire to exert effort to improve their performance in order to influence the market perception of

their ability and increase their future fixed pay.

To understand the term RHK,t, observe that worker i’s choice of effort in period t directly

affects the variable component of the worker’s wage in all subsequent periods by affecting the

worker’s stock of human capital and thus output in each such period. By changing the worker’s

stock of human capital, effort in period t additionally affects future output signals about the

worker’s ability, and so the worker’s future reputation and fixed pay. To elaborate, note that at

the margin, a higher e2t changes worker i’s output in t+τ by γ2λ
τ−1, which amounts to the change

in the stock of human capital in t + τ . This change in output affects the variable component of

the wage in t + τ by bt+τγ2λ
τ−1. It also affects the magnitude of the signal about ability in t + τ

by γ2λ
τ−1, which, by the same argument as for RCC,t, increases the present-discounted value of

the fixed component of the wages from t + τ on by γ2λ
τ−1RCC,t+τ . Hence, greater incentives for

effort from career concerns also imply greater incentives for effort from human capital acquisition.

The term RHK,t is simply the present-discounted value of all these marginal changes.

5 Equilibrium and Identification

We now characterize the equilibrium, describe the implied life-cycle patterns of piece rates and

effort, and establish that the model is identified from panel data on wages and their structure.

5.1 Equilibrium Characterization

Recall that µt = σ2
ε/(σ

2
t + σ2

ε). Let {σ2
t }t≥0, which describes the uncertainty about a worker’s

ability in any period t, be such that σ2
0 = σ2

θ and σ2
t+1 = µtσ

2
t + σ2

ζ . Since output signals do not

perfectly reveal ability, this uncertainty persists over time and converges to a non-negative value

σ2
∞, which is positive if σ2

ζ > 0.19 The next result summarizes our equilibrium characterization.

19The variance σ2
t monotonically decreases to σ2

∞ if σ2
θ > σ2

∞ and monotonically increases to σ2
∞ if σ2

θ < σ2
∞. See

Holmström [1999] for a proof that σ2
∞ = [σ2

ζ + (σ4
ζ + 4σ2

ζσ
2
ε)

1/2]/2 and for the properties of σ2
t .
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Proposition 1. In the unique equilibrium, piece rates and effort choices are the same for all work-

ers and depend only on time. Let e∗1t and e∗2t be, respectively, the equilibrium efforts in the simple

and complex task in period t and let b∗t be the equilibrium piece rate in the same period. For each

t, let b0t = 1/[1 + (r/ξ22)(σ
2
t + σ2

ε)], R
∗
CC,t and R∗

HK,t be given by (7) with bt = b∗t for all t, and

H∗
t = σ2

t

∑T−t
τ=1 δ

τ . Then, e∗1t = ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1, e∗2t = ξ2b

∗
t + ξ2R

∗
CC,t +R∗

HK,t, and

b∗t = b0t

[
1 + (γ2/ξ2)

∑T−t

τ=1
δτλτ−1 − (1/ξ2)R

∗
HK,t −R∗

CC,t − (r/ξ22)H
∗
t

]
. (9)

As discussed in Section 4, effort in the complex task in any period t, e∗2t, equates its marginal

cost to its marginal private benefit, which features a static and a dynamic component. The latter

arises from the impact of effort in the complex task on a worker’s future reputation and human

capital. By contrast, in any period t, effort in the simple task equates its marginal cost to its

marginal social (output) benefit, ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1.20 In the appendix, we extend Proposition 1

to the more general case in which the law of motion of human capital depends nonparametrically

on effort. For simplicity, in this case we assume that workers perform only the complex task.

To understand the expression in (9), first note that b0t is the piece rate of canonical static linear-

normal models of incentives with quadratic effort costs when the variance of output is σ2
t + σ2

ε and

the coefficient of risk aversion is r/ξ22—the variance of output is σ2
ε in standard moral-hazard mod-

els, as ability is assumed to be known. By (8), the term 1 + (γ2/ξ2)
∑T−t

τ=1 δ
τλτ−1 − (1/ξ2)R

∗
HK,t−

R∗
CC,t is the piece rate that equates the marginal cost of effort in the complex task to its marginal

social benefit in period t, γ2+ξ2
∑T−1

τ=1 δ
τλτ−1. As is well known, when effort is unobserved, equi-

librium piece rates deviate from first-best piece rates since risk-averse workers are unwilling to

bear all output risk.21 In a static setting, this distortion results in piece rates being adjusted by the

factor b0t < 1. In our dynamic setting, an additional distortion arises because of the risky process

through which learning about ability occurs: any variation in output in t < T leads to variation not

only in wages in t but also in future wages, as the latter depend on a worker’s reputation, which

changes with a worker’s realized output. The insurance (or hedge) term (r/ξ22)H
∗
t mitigates this

risk by reducing the correlation between a worker’s performance and pay whenever t < T .22

20Note that e∗1t is positive if γ1 ≥ 0. When γ1 < 0, e∗1t is positive if γ1 > ξ1(λ − 1/δ) and e∗10 is positive. By the
expressions for R∗

CC,t and R∗
HK,t, e

∗
2t is positive if γ2 > 0 and piece rates are between zero and one. Also, if piece

rates are strictly positive and bounded above by one, then e∗2t is positive even if γ2 < 0 as long as |γ2|/ξ2 is small.
21Indeed, b∗T =1 if r=0. So, R∗

CC,T−1=0 and R∗
HK,T−1=(γ2/ξ2)δ, so b∗T−1=1. By induction, b∗t =1, R∗

CC,t=0,
and R∗

HK,t=(γ2/ξ2)
∑T−t

τ=1 δ
τλτ−1 for all t, so implicit incentives for effort arise solely from human capital.

22That the term (r/ξ22)H
∗
t depends only on σ2

t and not on total output risk σ2
t + σ2

ε follows from the fact that the
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By re-arranging (9), equilibrium piece rates can be expressed as

b∗t = b0t − b0tR
∗
CC,t − b0t (r/ξ

2
2)H

∗
t + (b0t/ξ2)

(
γ2

∑T−t

τ=1
δτλτ−1 −R∗

HK,t

)
. (10)

This decomposition helps illustrate how the economic forces nested by our model shape the provi-

sion of explicit incentives for effort in the complex task over time. The first term in (10) is the piece

rate that firms would offer in a static setting, whereas the second and third terms in (10) capture the

contribution of uncertainty and learning about ability to piece rates and are familiar from Gibbons

and Murphy [1992]. Namely, the second term lowers the explicit incentives for effort provided

by piece rates in light of the implicit reputational incentives resulting from the uncertainty about

ability. As discussed, the third term in (10) lowers piece rates to provide workers with insurance

against the life-cycle wage risk due to the variability of beliefs about ability as learning takes place.

The last term in (10), which captures the effect of human capital on piece rates, is novel and

consists of two further terms. The first is proportional to γ2
∑T−t

τ=1 δ
τλτ−1, which is the present-

discounted change in lifetime output following the change in human capital after a marginal in-

crease in effort in the complex task in t. The second term, which is negatively proportional to

R∗
HK,t, reflects the implicit incentives for effort from the prospect of human capital acquisition,

which substitute for explicit incentives, and so decrease piece rates, when γ2 is greater than zero,

and complement explicit incentives, and so increase piece rates, when γ2 is smaller than zero. Intu-

itively, in this latter case, e2t negatively contributes to human capital acquisition, which discourages

workers from exerting effort to produce output—higher piece rates help support this effort. This

last term in (10) simply corrects piece rates to better align the private marginal returns to effort in

the complex task from human capital with the corresponding social returns.

5.2 Piece Rates and Effort over the Life Cycle

We now discuss how learning about ability and human capital acquisition affect the life-cycle

profile of piece rates and effort choices. We first consider the cases in which either human capital

acquisition or learning about ability are not present, which leads to counterfactual implications for

piece rates, and then turn to the general case, which is consistent with the data.

life-cycle wage risk due to learning about ability is primarily due to the correlation between current and future wages
through a worker’s ability, whereas output shocks—the other source of output risk—are purely idiosyncratic.
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Learning and Moral-Hazard Case. Suppose that γ1 = γ2 = 0 so workers do not accumulate

human capital. Furthermore, assume that ξ2 = 1, which is without loss since the case with ξ2 ̸= 1 is

equivalent to the case with ξ2 = 1 and the coefficient of risk aversion r′ = r/ξ22 . Then, (9) becomes

b∗t = b0t (1 − R∗
CC,t − rH∗

t ). This setup generalizes the model in Gibbons and Murphy [1992]—

under the assumption of quadratic effort cost—in two ways. First, we endogenize job assignment

by allowing workers to perform two tasks, one requiring contractable effort, the simple task, and

one requiring non-contractable effort, the complex task, whereas in Gibbons and Murphy [1992]

workers perform only one task that requires non-contractable effort. Second, unlike Gibbons and

Murphy [1992], we allow ability to stochastically change over time. As in Gibbons and Murphy

[1992], the insurance against life-cycle wage risk provided by the term rH∗
t can be strong enough

that piece rates are negative. This is the case early in a career if T is large and δ is close to one.23

Since equilibrium piece rates do not depend on either ξ1 or γ1, they reduce to the ones in

Gibbons and Murphy [1992] when σ2
ζ = 0 and ability is constant over time. To understand how

shocks to ability affect piece rates, note that a worker’s career-concerns incentive to exert effort in

the complex task increases not only with the uncertainty about the worker’s ability but also with

the worker’s time horizon—the shorter this horizon, the smaller the gain from a higher reputation,

and so the smaller the return from effort in the complex task. When ability is constant, and so

uncertainty about ability decreases monotonically to zero over time, the two forces shaping implicit

incentives for effort in the complex task—the degree of uncertainty about ability and the length of

the remaining working horizon—work in the same direction and weaken over time. Gibbons and

Murphy [1992] show that in this case, firms compensate for the decline in the implicit incentives

for effort by increasing the strength of explicit incentives over time. In the appendix, we show that

the same logic applies when σ2
θ ≥ σ2

∞ and uncertainty about ability decreases over time. When,

instead, σ2
θ < σ2

∞ and uncertainty about ability increases over time, the two forces shaping implicit

incentives for effort move in opposite directions. However, if the working horizon is long enough,

then at some point the only force governing the evolution of piece rates is the decrease in the

working horizon, as uncertainty about ability eventually becomes constant (σ2
t converges to σ2

∞).

We thus have the following result.

23Also as in Gibbons and Murphy [1992], piece rates are smaller than one. Indeed, b∗t < b0t if R∗
CC,t > 0. Moreover,

b∗T < 1 implies that R∗
CC,T−1 > 0. An induction argument then shows that R∗

CC,t > 0 for all t.
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Lemma 1. Piece rates eventually strictly increase over time if T is large enough. Moreover, piece

rates strictly increase over time if σ2
θ ≥ σ2

∞.

Consider now how workers’ effort choices and, correspondingly, their task allocation vary

over the life cycle. When γ1 = 0, effort in the simple task, e∗1t, is constant over time. Since

e∗2t = b∗t + R∗
CC,t, the life-cycle profile of effort in the complex task is ambiguous, though. When

σ2
θ ≥ σ2

∞, piece rates strictly increase over time as R∗
CC,t strictly decreases. A similar tension

arises when σ2
θ < σ2

∞. Thus, a priori, workers’ task allocation can change in different ways over

the life cycle. When R∗
CC,t is small for all t—the empirically relevant case, as we will discuss—the

life-cycle pattern of effort in the complex task is determined by the pattern of piece rates. In this

case, workers progress to more complex tasks over time in the sense that e∗2t− e∗1t strictly increases

with t whenever σ2
θ ≥ σ2

∞.24

Human Capital and Moral-Hazard Case. Suppose now that σ2
θ = σ2

ζ = 0 so there exists no

uncertainty about workers’ ability. In this case, b0t ≡ b0 = 1/[1 + (r/ξ22)σ
2
ε ] and (9) reduces to

b∗t = b0[1+(γ2/ξ2)
∑T−t

τ=1 δ
τλτ−1(1−b∗t+τ )]. Piece rates thus vary over time only because of firms’

desire to influence workers’ accumulation of human capital. This motive contributes positively

to piece rates when human capital is acquired through learning-by-doing, that is, γ2 > 0, and

piece rates are smaller than one, which holds if γ2 is not too large.25 Indeed, when the effort to

produce output in the complex task complements the effort to acquire human capital and piece

rates are smaller than one, workers do not fully capture the returns to their investments in human

capital, γ2
∑T−t

τ=1 δ
τλτ−1, and so their willingness to exert effort in the complex task is reduced.

Piece rates partially offset this undersupply of effort. More generally, piece rates are positive if

γ2 ≥ ξ2(λ − 1/δ). Hence, even when the effort to produce output in the complex task and the

effort to acquire human capital are rival, that is, γ2 < 0, it is optimal to induce workers to exert

more effort for human capital reasons if the trade-off between output and human capital production

is not too severe.

The sign of γ2 also determines the evolution of piece rates over time. When γ2 < 0, piece rates

strictly increase over time. By contrast, when γ2 > 0, piece rates strictly decrease over time if γ2
24In Section 6.5, we define the task complexity of a worker’s job in period t as (1 + e∗2t)/(1 + e∗1t) or, equivalently,

as ln((1 + e∗2t)/(1 + e∗1t)). When e∗1t and e∗2t are not too large, as we estimate, the pattern of task complexity over
time is governed by the pattern of e∗2t − e∗1t—just note that ln(1 + e) ≈ e.

25That piece rates can be greater than one when γ2 is positive and large follows from b∗t linearly increasing with γ2
whenever

∑T−t
τ=1 δ

τλτ−1(1− b∗t+τ ) is positive.
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is not too large. Intuitively, firms wish to encourage human capital acquisition early in a worker’s

career, when the return from doing so is largest. When the effort to produce output in the complex

task substitutes for the effort to acquire human capital, firms can do so by discouraging effort in

the complex task early on. On the contrary, when the effort to produce output in the complex

task complements the effort to acquire human capital, firms support human capital acquisition by

encouraging effort in the complex task early on. The reason why γ2 cannot be too large for this

latter result to hold is that equilibrium piece rates in one period decrease with equilibrium piece

rates in the following period when γ2 is positive.26 Since b∗T−1 = b0[1 + (γ2/ξ2)δ(1− b0)] linearly

increases with γ2, then b∗T−2 < b∗T−1 if γ2 is above a certain threshold. In this case, piece rates

oscillate over time in that b∗T−1 > b∗T , b∗T−2 < b∗T−1, b∗T−3 > b∗T−2, and so on.

Lemma 2. There exists γ2 > 0 such that b∗t ∈ (0, 1) for all t if ξ2(λ− 1/δ) ≤ γ2 ≤ γ2. Moreover,

piece rates strictly increase over time when γ2 < 0, strictly decrease over time when 0 < γ2 <

λξ2[1 + (r/ξ22)σ
2
ε ], and (weakly) oscillate over time otherwise.

As for how efforts in the two tasks evolve over time, since e∗1t = ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1, effort

in the simple task strictly decreases over time if γ1 > 0 and strictly increases over time if γ1 < 0.

Given that γ2
∑T−t

τ=1 δ
τλτ−1b∗t+τ = ξ2 + γ2

∑T−t
τ=1 δ

τλτ−1 − ξ2(b
∗
t/b

0) by (9), effort in the complex

task e∗2t equals ξ2 + γ2
∑T−t

τ=1 δ
τλτ−1 − (r/ξ2)σ

2
εb

∗
t , which is the socially optimal level of effort in

this task net of a term proportional to piece rates.27 When piece rates are small, as in the data, the

life-cycle profile of effort in the complex task is largely shaped by the life-cycle profile of the term

γ2
∑T−t

τ=1 δ
τλτ−1. In this case, whether e∗2t−e∗1t increases or decreases over time depends on whether

γ2 is smaller or greater than γ1: workers progress towards more complex tasks in the first case and

towards simpler tasks in the second case. In our data, we find the opposite pattern—namely, task

complexity increases with experience and γ2 > γ1—which lends support to the general case we

consider next.

General Case. When uncertainty and learning about ability and human capital acquisition are

both present, naturally the stronger of these two forces shapes the experience profile of piece rates.
26Intuitively, when γ2 > 0, an increase in piece rates in subsequent periods increases the return to investments in

human capital in the current period, thus reducing the need to incentivize effort in the current period.
27It might appear counterintuitive that effort in the complex task decreases with piece rates. Note, however, that

piece rates help align the private and social marginal returns to effort in the complex task. Then, it is precisely when
workers’ incentives to exert effort are low that piece rates are high.
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For instance, when shocks to ability are small enough that ability is effectively known in the long

run, human capital incentives eventually govern piece rates provided that the working horizon is

long enough. Intuitively, at some point the residual uncertainty about ability becomes so small

that learning about it no longer matters for the evolution of piece rates. Thus, towards the end of

workers’ career, piece rates strictly decrease over time when 0 < γ2 < λξ2[1 + (r/ξ22)σ
2
ε ] and

oscillate over time when γ2 > λξ2[1 + (r/ξ22)σ
2
ε ].

28 By contrast, when not much human capital is

acquired in the complex task, learning about ability shapes the life-cycle profile of piece rates. In

particular, when the working horizon is long enough, piece rates eventually strictly increase over

time. The next proposition summarizes this discussion.29

Proposition 2. For a fixed γ2 > 0, piece rates either eventually strictly decrease over time, when

γ2 < λξ2[1 + (r/ξ22)σ
2
ε ], or eventually oscillate over time, when γ2 > λξ2[1 + (r/ξ22)σ

2
ε ], provided

that σ2
ζ is small enough and T is sufficiently large. By contrast, piece rates eventually strictly

increase over time if |γ2| is small enough and T is sufficiently large.

An implication of Proposition 2 is that as long as the working horizon is long enough, the fact

that piece rates decrease with experience as workers approach the end of their careers suggests

that human capital acquisition matters for the complex task. Furthermore, when shocks to ability

are small—as we estimate—Proposition 2 and the fact that piece rates eventually decrease with

experience suggest that the effort to produce output complements the effort to acquire human

capital in the complex task.

Another consequence of Proposition 2 is that when shocks to ability are sufficiently small

and the working horizon is long enough, piece rates are not maximized at the end of a worker’s

career when the rate at which effort in the complex task increases human capital is positive but not

too large. If, in addition, the initial uncertainty about ability is not too small and piece rates are

between zero and one, then piece rates are not maximized at the start of a worker’s career either.

Indeed, if piece rates are between zero and one, then both the career-concerns and human capital

motive contribute negatively to piece rates. This, in turn, implies that when the initial uncertainty

28For ease of exposition, we ignore the knife-edge case in which γ2 = λξ2[1 + (r/ξ22)σ
2
ε)]. In this case, piece rates

are eventually approximately constant if σ2
ζ is sufficiently small and T is large enough.

29In light of Lemmas 1 and 2, a natural conjecture is that piece rates eventually strictly increase over time when
γ2 < 0, since in this case learning and human capital acquisition influence piece rates in the same way in the long run.
We show in the appendix that this is true when human capital depreciation is small.
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about ability is not too small, the insurance against life-cycle wage risk at the start of a worker’s

career is strong enough to make piece rates lower than the static ones, and thus lower than the

last-period piece rate. Therefore, there exist conditions under which piece rates are maximized at

an intermediate level of experience—namely, they display a hump-shaped pattern with experience,

as we observe in the data.

Proposition 3. Let 0 < γ2 < λξ2[1 + (r/ξ22)σ
2
ε ] and suppose that piece rates are between zero

and one. Then, piece rates are maximized at an intermediate level of experience if σ2
θ is sufficiently

large, σ2
ζ is sufficiently small, and T is sufficiently large.

As discussed, that piece rates eventually strictly decrease with experience suggests that human

capital acquisition matters for effort in the complex task. Since, by continuity, σ2
θ and σ2

ζ small

imply that the experience profile of piece rates is shaped by human capital considerations, which,

by Lemma 2, cannot generate a hump-shaped profile, such a profile in the data also suggests that

uncertainty and learning about ability matters for piece rates.

We conclude this section by discussing how workers’ effort choices vary over the life cycle

in the general case. Since the life-cycle profile of effort in the simple task depends only on the

sign of γ1, the discussion in the human capital and moral-hazard case applies here without change.

As for effort in the complex task, first note from (9) that ξ2(b∗t/b
0
t ) = ξ2 + γ2

∑T−t
τ=1 δ

τλτ−1 −

R∗
HK,t − ξ2R

∗
CC,t − (r/ξ2)H

∗
t . Thus, since ξ2R

∗
CC,t + R∗

HK,t = e∗2t − ξ2b
∗
t , it follows that e∗2t =

ξ2 + γ2
∑T−t

τ=1 δ
τλτ−1 − (r/ξ2)[(σ

2
t + σ2

ε)b
∗
t + H∗

t ], and the expression for effort in the complex

task is similar to that in the human capital and moral-hazard case, except that b∗t is now multiplied

by σ2
t + σ2

ε and an additional negative term proportional to H∗
t appears. Intuitively, the life-cycle

wage risk due to uncertainty and learning about ability further depresses effort in the complex

task relative to the first-best level. Since H∗
t strictly decreases with t, the additional negative term

slows down the decrease of effort in the complex task over time compared to the human capital

and moral-hazard case. Hence, unlike in that case, when piece rates are small, workers progress

over time to more complex tasks even when γ2 is greater than γ1, precisely as we estimate.

5.3 Identification

To measure the importance of the incentives we focus on using our framework, we must first

establish its empirical content. The challenge in doing so is that the competing mechanisms it
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features are all unobserved. Key to our approach is exploiting the information provided by the life-

cycle profile of wages and their fixed and variable components, which we next argue is sufficient

to recover the primitives of our model up to a level and scale normalization.

Intuitively, as in any learning model, the experience profile of the variance of wages is informa-

tive about the evolution of the uncertainty about workers’ ability and so the learning process about

it. In our setting, the experience profile of both mean wages and, as illustrated in Section 5.2, piece

rates is revealing of the importance of workers’ human capital process. The pattern of piece rates

in particular is central to pinning down the distinct mechanisms of our model. As discussed, piece

rates initially increase with experience only if learning about ability is important early in a worker’s

career. They are also positive early on, and declining later on, only if human capital acquisition

occurs, whenever uncertainty about ability is substantial over the life cycle—as is the case in our

data. Since workers’ risk preferences have a direct effect on the level of piece rates by (9), piece

rates further provide crucial information to recover them.

Formally, we prove that our model is identified based on panel data on wages and their fixed

or variable components. The key steps of the argument are as follows. The ratio of variable pay

to total pay identifies piece rates at each year of experience. With piece rates known, intuitively,

the second moments of the distributions of wages at each experience pin down the distributions of

initial ability and of ability and output shocks, which completely determine the learning process.

Then, differences in mean wages and piece rates over time identify the degree of human capital

depreciation. Once these primitives are recovered, by exploiting our characterization of piece

rates, we show that workers’ degree of risk aversion can be recovered from piece rates in the last

period (T ) and the rates of human capital accumulation in the complex task from piece rates in the

previous periods.30 Finally, the rate of human capital accumulation in the simple task and the drift

terms {βt} are residually determined from mean wages. In establishing these results, we treat the

discount factor and the sensitivity of output to effort in the simple and complex tasks as known.31

We discuss in Section A.9 in the appendix how the latter restriction can be relaxed. Since we can

absorb k0 into mθ, which we normalize, we set k0=0.32

30The model provides a natural exclusionary restriction in that dynamic and static piece rates coincide in period T .
31See Margiotta and Miller [2000], Gayle and Miller [2009, 2015], and Gayle, Golan, and Miller [2015] on the

identification of moral-hazard models for executive pay. Unlike these authors, we consider a model that also features
learning about ability and persistent shocks to it, and rely only on information on wages and their structure.

32Indeed, by rewriting (2) with β̂t = βt − (1− λt)k0 in place of βt, we can absorb k0 into mθ.
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Proposition 4. The piece rates {b∗t}Tt=0 are identified from mean wages and performance pay. The

parameters (σ2
θ , σ

2
ε , σ

2
ζ ) are identified from the second moments of the distributions of wages. Once

piece rates and (σ2
θ , σ

2
ε , σ

2
ζ ) are identified, the risk aversion parameter r, the rate of human capital

accumulation in the complex task γ2, and the depreciation rate 1−λ are identified from piece rates.

Once piece rates and (σ2
θ , σ

2
ε , σ

2
ζ , r, γ2, λ) are identified, the rate of human capital accumulation in

the simple task γ1 and the drift terms {βt}T−1
t=0 are identified from mean wages up to mθ.

We conclude with four remarks. First, our argument does not require any exogenous variation

external to the model even to recover preference parameters—intuitively, time variation in piece

rates plays a role analogous to that of an instrument in standard IV settings. Second, the param-

eters of the learning process are identified independently of those of the human capital process

so the recovery of the former is robust to the specification of the latter. Third, as we show in the

appendix, a richer version of the model, in which parameters unobservably differ across workers,

is also identified even when wages are measured with error. Fourth, as we also show in the ap-

pendix, the version of our model in which human capital evolves nonparametrically with effort

is also identified provided that performance measures are available, which is often the case; see

Frederiksen et al. [2017].

6 The Role of Performance Pay, Learning, and Human Capital

We now empirically investigate how performance pay, learning about ability, and human capital

together shape the life-cycle profiles of wages and their fixed and variable components discussed

in Section 2. To probe how our model captures the trade-offs behind the mechanisms we nest, we

consider in Section 6.1 three alternative parameterizations that differ in the restrictions they impose

on the model. The first one assumes that piece rates are exogenous so they are fixed in the model at

their values in the data reported in Figure 1. The remaining parameters are estimated using only the

mean and variance of wages over the life cycle without imposing any of the constraints from opti-

mal contracting on performance pay that inform piece rates. The second parameterization allows

piece rates to be endogenously determined as in Proposition 1 and corresponds to our unrestricted

(full) model. Finally, the third parameterization imposes a lower variance of output shocks and so a

higher speed of learning about ability than implied by the first two, more in line with existing esti-

mates. We show that this parameterization has implications for piece rates that are clearly rejected
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by our data. Together, these parameterizations illustrate not only the importance of performance

pay in governing life-cycle wages, but also the discipline that accounting for it introduces when

distinguishing among alternative models of wage growth and dispersion.

In Section 6.2, we contrast our model to four prominent models in the literature that are nested

by it, each of which addresses only some of the aspects of the data we consider. This comparison

shows how our model combines existing frameworks to offer a novel and more comprehensive

account of the wage process and the structure of wages. We then explore the implications of our

three parameterizations for the relative importance of the primitive determinants of piece rates and

effort incentives that we analyze (Section 6.3). We next examine the contribution of performance

pay to the growth and dispersion of wages over the life cycle (Section 6.4). This analysis reveals

that uncertainty about worker productivity is a powerful force depressing piece rates and yet the

life-cycle pattern of piece rates is a critical source of the dynamics of wages.

In Section 6.5, we explore an extended version of our model with both contractible and non-

contractible effort to examine how the allocation of effort between easily contractible activities

(simple tasks) and difficult-to-contract ones (complex tasks) changes with experience in a firm.

We find that the effort paths implied by our model are in line with the evolution of the complexity

of workers’ jobs over their careers at the BGH firm. We also find that even after incorporating a

standard dimension of labor supply—contractable effort—performance pay and the effort it sus-

tains still play a key role for the growth and dispersion of wages throughout the life cycle.

6.1 Three Model Parameterizations

To focus on the key mechanisms we integrate, we first consider three parameterizations of our

model in which effort is only non-contractable (ξ1= γ1=0); see Section 6.5 for the general case.

By contrasting these three estimated versions of our model, we can illustrate its workings in a trans-

parent way and shed light on how the multiple sources of incentives we nest shape compensation

and its components over the life cycle. We start by describing our estimation approach.

Estimation. We estimate each model using an equally-weighted minimum-distance estimator and

the moments from the BGH data in Figures 1 and 2 presented in Section 2. The first and third

parameterizations with exogenous piece rates are estimated using the 80 moments consisting of

the means and variances of wages over the first 40 years of labor market experience. The second
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Table 3: Parameter Estimates Based on BGH Data

Parameters Exogenous Endogenous Faster Learning
Piece Rates Piece Rates (K0=0.2 and K∞=0.05)

σθ: std. dev. of initial ability (1,000 of 1988 $) 49.1 49.2 28.9
σζ : std. dev. of ability shocks (1,000 of 1988 $) 0.0 0.0 2.97
σε: std. dev. of output shocks (1,000 of 1988 $) 439.4 522.9 57.8
γ2: human capital accumulation rate (complex task) 0.939 0.804 0.461
λ: human capital depreciation rate 0.967 0.991 0.974
r/ξ22 : effective risk aversion N/A 0.00024 N/A

Notes: All models feature ξ1 = γ1 = 0, ξ2 = 1, and T = 40. Parameters are estimated by equally-weighted minimum
distance at very high levels of precision not reported here; details are available upon request.

parameterization is estimated by also matching the ratio of (average) performance pay to (average)

total pay at each of these experience years for a total of 120 moments.33 Since we discipline a

tightly specified theoretical framework of 5 to 6 parameters by targeting 80 to 120 moments, the

model is vastly overidentified. Also, as our data comprise more than 22,000 observations, the

moments informing our exercises are estimated with high precision (Figures 1 and 2). Our model

fits these moments well, as shown below, and its parameter estimates are likewise very precise.34

Results. Our first parameterization matches the means and variances of wages from the BGH

data for the first 40 years of experience without imposing the restrictions that piece rates {b∗t}

are obtained through optimal contracting—rather, they are treated as exogenously given by their

empirical counterparts in the BGH data. The estimated parameters of this version of the model

are the three learning parameters (σ2
θ , σ

2
ε , σ

2
ζ ) describing the variance of ability and of output and

ability shocks, and the two parameters (γ2, λ) for the accumulation rate of human capital in the

complex task and its depreciation rate. Their estimates are reported in column 1 of Table 3.35

Figure 3 shows how well the model (red lines) reproduces the life-cycle profile of the variance

of wages (panel a) and of wage growth (panel b) in the data (blue lines). This version of the model

fits the data best when σζ =0—which we then maintain—so ability is constant over the life cycle.

We estimate a standard deviation of shocks to output σε (per worker) close to half a million dollars

and a standard deviation of ability across workers σθ of about 50 thousand dollars. The remarkably

good fit of the model to the profile of the variance of wages in the data derives from the fact that

this variance in our model, Var[wit]=σ2
θ + tσ2

ζ −σ2
t +(b∗t )

2(σ2
t+σ2

ε), reflects piece rates—namely,

33We also estimate a version of the third parameterization with endogenous piece rates; see below.
34Given that the standard errors are very small, we refrain from presenting them for brevity.
35Since the risk aversion parameter affects the variance of wages only through piece rates and does not directly

affect the mean of wages, without performance pay, we lack crucial information to identify the (scaled) risk aversion
parameter r/ξ22 . Thus, we cannot estimate it under this parameterization.
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Figure 3: Fit of Model with Exogenous Piece Rates

(a) Variance of Wages (b) Wage Growth

the square of the period piece rate b∗t multiplied by the variance of output σ2
t + σ2

ε , as shown in

Lemma A.2 in the appendix. Then, the large variance of output shocks σ2
ε , which scales piece

rates in the expression for Var[wit] and dominates Var[wit], implies that the hump-shaped pattern

of piece rates in the data leads to a hump-shaped pattern for the variance of wages in the model.36

Thus, performance pay crucially shapes how the variance of wages evolves over time.

Our second parameterization endogenizes piece rates according to our optimal contracting

framework. We then impose the 40 additional constraints given by (9), which determine how

piece rates depend on the model parameters and vary over time. We now use information on

performance pay to pin down the parameters, including the parameter r/ξ22 for the curvature of

worker utility with respect to consumption and effort that governs the trade-off between risk and

incentives. Although it features only the additional parameter r/ξ22 , this parameterization fits the

data very well. As panel c of Figure 4 shows, our full model (red line) well matches the life-cycle

profile of the ratio of performance pay to total pay in the data (blue line). It also largely reproduces

the variance and growth of wages over the life cycle with parameter estimates that are quite similar

to those obtained with exogenous piece rates.

It is instructive to consider the aspects of the data behind the large estimate of the variance σ2
ε

of output shocks. A large value of σ2
ε implies low piece rates at the end of working life (T ), but so

does a high degree of risk aversion if σ2
ε were small. A small σ2

ε , however, would imply that output

signals are very informative about ability so firms rapidly learn about it. The life-cycle risk due to

the uncertainty about ability would rapidly decrease over the first half of workers’ careers and so

would the insurance term (see H∗
t ) in (9). As a result, piece rates would rapidly increase over the

36By contrast, a high value for σ2
θ and so for σ2

t would counterfactually imply a high variance of wages early on.
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Figure 4: Fit of Model with Endogenous Piece Rates

(a) Variance of Wages (b) Wage Growth (c) Piece Rates

life cycle. The data do not conform to this prediction though—piece rates are small throughout the

life cycle. Thus, a large value for σ2
ε rationalizes the life-cycle level and range of piece rates in the

data—and so helps account for the hump-shape of the variance of wages.

As for the human capital process, columns 1 and 2 of Table 3 report positive estimates of γ2,

which are consistent with human capital being acquired through learning-by-doing. As established

in Section 5.2, since piece rates decline late in working life, the data favors a positive value for γ2.

For the parameterization with exogenous piece rates, the values of 0.939 for γ2 and 0.967 for the

depreciation factor λ in column 1 imply that a marginal increase in effort that induces a one-dollar

increase in output this year leads to 0.94 dollars of additional output next year. Effort increasing

output by one dollar at the beginning of a worker’s career raises the present-discounted value of

output over the life cycle by 11.2 dollars. For the parameterization with endogenous piece rates,

the estimates of γ2 and λ in column 2 have similar implications, albeit less extreme.37

Although these productivity gains from learning-by-doing imply output or social returns to

effort that may seem large, they do not lead to implausibly large private returns in terms of wage

gains, which are considerably smaller. Recall from (7) that the marginal return to effort in terms

of future wages due to human capital acquisition is RHK,t=γ2
∑T−t

τ=1 δ
τλτ−1(bt+τ+RCC,t+τ ). The

termbt+τ+RCC,t+τ would equal one if workers were risk neutral, in which case social and private

returns to human capital would coincide. But with risk-averse workers, the largest value of bt+τ is

about 0.05 and, as shown in panels a and b of Figure 9, the value of RCC,t+τ (red lines) is small so

the term bt+τ+RCC,t+τ is also small. That is, the output gains to acquiring human capital are only

37Allowing for a shorter horizon (T =30) or worker exit from the labor market—so for a higher effective discount
rate δ̂= δs of future wages, where s is the exogenous exit rate—would imply lower values for σ2

ε and γ2, due to the
lower insurance workers would demand, and a higher speed of learning. Details are available upon request.
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slowly and partially capitalized into wages, as firms insure workers against output (σ2
ε ) and ability

risk (σ2
t ), which leads to low piece rates and relatively low cumulative returns to human capital.

Third Parameterization: Comparison with Existing Estimates. With just six parameters, our

model captures well how the mean and variance of wages as well as piece rates evolve with expe-

rience. Rather than claim success and conclude here, we consider one additional parameterization

motivated by the fact that our estimates of the learning parameters differ from those in the litera-

ture that suggest that firms rapidly learn about worker productivity, in particular Altonji and Pierret

[1997], Lange [2007], Arcidiacono et al. [2010], and Aryal et al. [2022]. Our estimates, which are

more in line with those in Pastorino [2024], imply instead that firms learn slowly about worker

productivity. This final parameterization forces a faster learning speed about the ability of both

young and old workers but allows worker productivity to change over the life cycle, thus account-

ing for the evidence in Kahn and Lange [2014] that firms continue to learn about this “moving

target”—for this parameterization, the variance of shocks to ability turns out to be non-negligible.

Figure 5: Fit of Model with Faster Learning

(a) Variance of Wages (b) Wage Growth

Specifically, we impose two additional restrictions on the learning process, namely, that the

speed of learning, defined as the weight Kt=σ2
t /(σ

2
t +σ2

ε) placed on output signals in the updating

of beliefs about ability, is 0.2 at the beginning of a worker’s career (t= 0) and 0.05 at the end of

it (t→∞). A speed of learning of 0.2 early in life is consistent with Lange [2007] and Aryal et

al. [2022], whereas a speed of learning of 0.05 late in life is consistent with learning continuing

throughout the life cycle as in Kahn and Lange [2014]. We then first re-estimate our version of

the model with exogenous piece rates taken from the data—so as not to constrain this version

of the model to fit them—and with the restrictions that K0 = σ2
θ/(σ

2
θ +σ2

ε) = 0.2 and K∞ =
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σ2
∞/(σ2

∞+σ2
ε)=0.05. Column 3 of Table 3 reports the resulting estimates, which imply a smaller

rate of accumulation of human capital, γ2. Figure 5 displays the fit of this version of the model

to the data. Naturally, the fit worsens when we impose the restrictions described on the speed of

learning. In particular, the model fits quite well the growth of wages over the life cycle. As panel

a of Figure 5 shows, however, this parameterization does not capture the decline in the variance of

wages over the second half of the life cycle, thus failing to reproduce its hump shape. In fact, rapid

learning about ability implies that the variance of wages tends to increase over time.

When we allow piece rates to be endogenously determined as in (9), fast learning has also im-

plications for piece rates that are highly counterfactual: it leads to piece rates that are very large in

magnitude, negative when workers are young, and rapidly increasing with experience—all features

(unreported) at odds with the data. Intuitively, when learning is fast, much new information is re-

vealed early on. Workers then demand insurance against the risk that negative output realizations

reveal them to be of low ability, permanently lowering their future wages. Firms partially insure

workers against this risk by offering them negative piece rates when young. But as the remaining

working life shortens and posterior beliefs about ability become more precise, lifetime risk de-

creases, the insurance component of piece rates (see H∗
t in (9)) decreases as a result, and so piece

rates rapidly increase. Hence, a model with fast learning is hard to reconcile with the experience

profile of the variance of wages or of piece rates in the data.

Summary. We have proposed three alternative parameterizations emphasizing different aspects of

the data and incorporating priors about parameter values that reflect a number of estimates in the

literature. As such, they offer a useful contrast that underscores both the challenges of matching key

features of the dynamics of wages and their components, and the limitations of existing frameworks

in accounting for them. We use these parameterizations below to address key questions about the

determinants of piece rates, the magnitude of the sources of wage risk we consider, and the returns

to effort as well as the importance of performance pay for life-cycle wages. Before doing so, we

examine four prominent models in the literature that are nested by our model, which help isolate

the mechanisms we integrate. By analyzing them one by one, we can explore these mechanisms in

more detail and illustrate why none of these models in isolation can account for the data.
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6.2 Comparison with Leading Models of Wage Growth and Dispersion

Our model nests several models central to labor and personnel economics. We focus on four

representative such models to illustrate the features of the data that cannot be matched by these

nested models, thus validating our integrated approach. This exercise also builds further intuition

for the features of the data behind the estimates of the parameters of our model. Table 4 lists

these models, their main features, the parameter restrictions that reduce our model to them, and

the moments that each model does not explicitly account for. We reestimate the free parameters of

each model using the moments it is designed to match and examine how each one fits the data.

Table 4: Nested Models

Model Economic Content Restrictions Moments of Interest
Human Capital (HK) Full Information, HK Investment σε = σθ=0 Wage variance, PP
Learning No Hidden Effort, no HK γ2=e2t=0 Wage growth, PP
Career Concerns (CC) Learning, no PP, no HK γ2=bt=0 Wage growth, PP
CC and Performance Pay (PP) Learning, PP, no HK γ2=0 Wage growth

Human Capital Model. This model (Ben-Porath [1967] and Becker [1962]) allows for two free

parameters, the accumulation rate γ2 and the depreciation rate 1− λ of human capital.38 Contrast-

ing panel a of Figure 6 with panel b of Figure 4 reveals that this model fits life-cycle wage growth

better than our baseline model. A depreciation rate 1−λ of roughly 4% reproduces the decline in

wage growth late in a worker’s career, whereas an accumulation rate γ2 of 0.471generates the rapid

growth in wages early on. This result is not surprising as the parameters (γ2, λ) are chosen to match

only the growth of wages over the life cycle—in our model, they are also constrained to reproduce

the life-cycle profile of the variance of wages and of piece rates. In our model, these estimates

would imply much lower piece rates, given the magnitudes of the learning parameters that repro-

duce the variance of wages.39 In this basic form, instead, the human capital model is essentially

silent about the variance of wages—conditional on acquired capital—and their structure.

Learning Model. Farber and Gibbons [1996] propose a tractable log-linear formulation of the

standard model of learning about (general) ability without any effort choice, human capital ac-
38Note that in this version of our model featuring just the task requiring non-contractable effort, known ability, and

no shock to ability or output, piece rates are equal to one in each period, so workers are paid their output as they would
be in the version of our model with known ability and just the task requiring contractable effort (ξ2 = γ2 = 0).

39Intuitively, a high σε matches the low level of piece rates in the data—a high σθ would do so too but would also
lead to too high a variance of wages early on. A high σε implies a large σt, which in turn leads to a high insurance
term H∗

t in piece rates; see (9). Such a term requires a value for γ2 higher than 0.471 for piece rates to be positive.
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Figure 6: Fit of Nested Models

(a) Human Capital Model: Wage Growth (b) Learning Model: Variance of Wages

quisition, or contracting on performance, to account for the variance of wages over the life cycle.

Their model allows for heterogeneity in ability but predicts no wage growth on average and has

no implications for performance pay (see Table 4). Panel b of Figure 6 shows the fit of this model

(red line) to the variance of wages over the life cycle (blue line), once we estimate it using the

two parameters (σ2
θ , σ

2
ε) governing the variance of ability and output shocks. The model does quite

well at capturing the increase in the variance of wages over the first half of workers’ careers. Yet,

it implies a monotone concave profile for it that is at odds with its hump-shaped profile in the BGH

data, which reveals an increasing and convex pattern for the variance of wages at low levels of

experience (less than 20 years) with a peak at around 20 years, followed by a period of moderate

decline. Our model substantially improves on this fit because piece rates exhibit a hump-shaped

pattern with experience, which the variance of wages inherits as discussed.

Career-Concerns Model. Learning about ability also governs the dynamics of the model of im-

plicit incentives for performance developed by Holmström [1999] in the early 1980s in response

to the Fama conjecture. This conjecture holds that a reputation for high productivity in the labor

market can substitute for explicit incentives for performance, thus eliminating the need for con-

tracting. Holmström [1999] disproves it by showing that in the absence of explicit incentives for

performance, effort cannot be sustained over time in general. The core mechanism of this model is

that uncertainty about ability induces workers to exert effort so as to improve the market’s expec-

tation about their ability. As in our model, in equilibrium all workers choose the same effort in any

period so the variance of wages is entirely determined just by the learning process. Thus, the fit of

this model to the variance of wages (unreported) is almost precisely the fit in panel b of Figure 6.
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Career-Concerns and Performance-Pay Model. The last model in Table 4 is that of Gibbons

and Murphy [1992] of uncertainty and learning about ability as in Farber and Gibbons [1996], in

which workers unobservably exert effort when employed as in Holmström [1999]. The model also

features explicit contracting on performance, thus allowing us to explore the interplay between

implicit and explicit incentives for effort. We obtain it as a special case of our model by restricting

γ2 to zero and λ to one so that free parameters are the variance of (initial) ability and output shocks

(σ2
θ , σ

2
ε) and workers’ effective risk aversion r/ξ22 . We estimate it by matching the profile of the

variance of wages and of piece rates over the life cycle.

Figure 7: Fit of Nested Career-Concerns Model of Gibbons and Murphy (1992)

(a) Variance of Wages (b) Piece Rates

Figure 7 shows the fit of this model (red lines) to the targeted moments (blue lines). This

standard career-concerns model with explicit contracting is unable to simultaneously reproduce

the evolution of the variance of wages and of piece rates over the life cycle. In particular, its

implications for the level and experience profile of piece rates are starkly at odds with the data.

Without a human capital motive, piece rates are predicted to start at a negative level—because of

the large career-concerns and insurance terms in (10)—and rapidly increase over time, as ability

is revealed and the wage risk due to the uncertainty about it declines.40 Specifically, the estimated

standard deviation of output shocks σε is 29.4 thousand dollars—much smaller than for the full

model in columns 1 or 2 of Table 3—so ability is effectively known after just a few years. As

learning quickly takes place, both workers’ career concerns and desire to insure against the risk

of low ability realizations become less and less important, leading firms and workers to agree

to higher and higher piece rates since the performance incentive problem becomes progressively

easier to solve. As is common to learning models, workers are characterized by large differences
40Gibbons and Murphy [1992] report evidence that performance pay increases over time but just for CEOs.
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in ability relative to σε—the estimated standard deviation of ability σθ is 17 thousand dollars.

Taken together, this ability heterogeneity, the rapid market learning about it, and the variability

of beliefs about ability as information about it is acquired generate substantial wage risk. Such

risk, which leads the variance of wages to increase over the life cycle, and firms’ desire to insure

workers against it are crucial determinants of the magnitude and variation of piece rates, as in our

model. But this standard model has highly counterfactual implications for piece rates. We next

show how these forces operate in our model as well and yet in a manner consistent with the data.

6.3 Determinants of Life-Cycle Piece Rates and Effort in the Complex Task

We now discuss the determinants of piece rates and the returns to effort. Our main findings are

that the key forces shaping them are the prospect of human capital acquisition and the uncertainty

about ability. Indeed, wage risk is considerable over the life cycle due to this uncertainty: both

explicit and implicit incentives for effort are depressed by it—substantially more than by the pure

output risk emphasized in moral-hazard problems.41 This discussion also helps set the stage for the

analysis in Section 6.4, where we argue that the effort induced by performance pay is nonetheless

crucial for the dynamics of wages through its effect on the human capital process. We also show

there how the impact of ability risk on wage risk is critically mediated by piece rates.

Piece Rates. Using the decomposition in (10) describing how the economic forces nested by our

model shape the provision of explicit incentives for effort in the complex task demonstrates how

lifetime wage risk and acquired human capital crucially govern piece rates. Figure 8 displays the

contribution of each term to piece rates across 40 years of experience for our baseline parameteri-

zation in column 2 of Table 3 with endogenous piece rates—we place the four terms in two panels

given their different scale. We focus here on this parameterization, since, as argued, it is the only

one able to reproduce the profile of piece rates in the data.

Panel a displays the static piece-rate, b0t , and career-concerns, b0tR
∗
CC,t, terms, both of which

account for a small portion of piece rates and their evolution over time—recall that ξ2=1. That the

static piece rate b0t = 1/[1 + (r/ξ22)(σ
2
t + σ2

ε)]—the blue line in panel a—is small throughout the

life cycle reflects the large estimated variance of the noise in output σ2
ε and the sizable estimated

degree of uncertainty about ability, as captured by the variance of posterior beliefs σ2
t and further

41See Appendix A.10 on dynamic risk due to the uncertainty about ability and static risk due to performance pay.
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discussed below. The career-concerns term with R∗
CC,t=

∑T−t
τ=1 δ

τ (1− b∗t+τ )(
∏τ−1

s=1 µt+τ−s)(1−µt)

by (7)—the red line in panel a—is likewise small. Intuitively, the large estimate of σ2
ε implies not

only that the static piece rate is small, but also that the signal-to-noise ratio governing the speed of

learning about ability is low. As the weights 1 − µt=σ2
t /(σ

2
t +σ2

ε) on output signals in the belief

updating rule in (4) are correspondingly small, the learning process is not very sensitive to new

observations of a worker’s output and, as a result, effort has little effect on beliefs about ability.

Thus, career-concerns incentives are small and so have a limited impact on piece rates.

The human capital, (b0t/ξ2)(γ2
∑T−t

τ=1 δ
τλτ−1−R∗

HK,t), and insurance, b0t (r/ξ
2
2)H

∗
t , terms in

panel b account for the bulk of piece rates at each level of experience. As these two sources of

incentives roughly offset each other, piece rates are on average quite small. As apparent from

its form, the insurance or hedge term H∗
t =−σ2

t

∑T−t
τ=1 δ

τ is proportional to the uncertainty about

ability as measured by the dispersion in posterior beliefs σ2
t , which turns out to be substantial.

Workers thus face a high degree of life-cycle risk induced by the variability of the beliefs about

their ability and, accordingly, of their expected output and wages. Because of the magnitude of

this risk, workers have a strong desire to insure themselves against it. Without markets providing

insurance against low output realizations and so the future revelation of low ability, firms offer

partial insurance through low piece rates—the more so, the more risk-averse workers are. As the

horizon shortens, this insurance motive naturally weakens, which explains why the red line in panel

b of Figure 8 representing this term eventually declines in absolute value with experience.

Figure 8: Decomposition of Piece Rates

(a) Static Piece Rate and Career Concerns (b) Human Capital and Insurance

Finally, the human capital term (b0t/ξ2)(γ2
∑T−t

τ=1 δ
τλτ−1−R∗

HK,t) is sizable and is the key force

that outweighs the insurance term. This result follows from the high estimated productivity of
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effort in terms of human capital production, as noted, and the low estimated rate of human capital

depreciation. Hence, human capital has an important effect not only on the implicit incentives for

effort via higher future wages resulting from a worker’s higher productivity—as shown next—but

also on the explicit incentives for effort via higher piece rates. As workers accumulate experience,

however, this term eventually declines, imparting to piece rates their characteristic hump shape—a

pattern at odds with the predictions of standard models of career concerns and performance pay.

Thus, human capital resolves the puzzle of the hump-shaped profile of performance pay.

Effort in the Complex Task. We can also decompose the marginal returns to effort in the complex

task e∗2t into its determinants using (6), (7), and that, by (8), e∗2t = ξ2b
∗
t + ξ2R

∗
CC,t+R∗

HK,t in

equilibrium. Figure 9, which reports this decomposition for the three parameterizations in Table 3,

shows that the implicit returns from acquiring new human capital (R∗
HK,t) exceed those from both

performance pay (ξ2b∗t ) and career concerns (ξ2R∗
CC,t) by a large margin over most of a worker’s

career. Contrasting panel c with panels a and b reveals, perhaps surprisingly, that this finding is

robust to very different values of the speed of learning about ability, although the parameterization

imposing fast learning implies much higher returns from both career concerns, RCC,t=
∑T−t

τ=1 δ
τ (1−

bt+τ )µ̂t,τ , and human capital, RHK,t=γ2
∑T−t

τ=1 δ
τλτ−1(bt+τ +RCC,t+τ ); see the range of the panels.

Figure 9: Returns to Effort in the Complex Task

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates (c) With Faster Learning

To see why, note that a higher learning speed amplifies the impact of effort on a worker’s future

reputation by increasing the weight σ2
t /(σ

2
t +σ2

ε) on new information, zit, in the updating of beliefs

about ability in (4), which raises the marginal benefit of effort due to career concerns—compare the

red line in panel c with those in panels a and b. But higher incentives for effort from career concerns

also imply higher incentives for effort from human capital, as captured by the second component of

the human capital return to effort, γ2
∑T−t

τ=1 δ
τλτ−1RCC,t+τ . Additionally, when learning is faster,
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increments to human capital are more rapidly capitalized into wages, since a rapidly declining

variance of posterior beliefs about ability leads to higher piece rates by (10), as b0t increases and

H∗
t decreases. Higher future piece rates in turn increase the first component of the human capital

return to effort, γ2
∑T−t

τ=1 δ
τλτ−1bt+τ . This explains why returns to effort from acquiring human

capital exceed those from career concerns. As we argue next, effort choices and so performance

pay are central to life-cycle wages because of their impact on workers’ human capital.

6.4 The Importance of Performance Pay

We have illustrated how the risk induced by the process of learning about ability is an important

force leading to small piece rates. The question then arises as to whether performance pay, and

the effort it induces, can simply be abstracted from when studying the wage process, as is often

argued. We now demonstrate how such an approach would miss a qualitatively and quantitatively

important source of the dynamics of wages with experience.

Wage Growth. According to our model, average wages evolve over time as effort in the complex

task and human capital change, since E[wit] − E[wi1] = (e∗i2t − e∗i21) + (k∗
i2t − k∗

i21). In the two

panels of Figure 10 and panel a of Figure A.4, we show how changes in effort (e∗i2t − e∗i21) and

human capital (k∗
i2t − k∗

i21) contribute to life-cycle wage growth under our three parameterizations.

Clearly, the accumulation of human capital governs wage growth, as effort tends to moderately

decline. Under our third parameterization with a rapid speed of learning in panel a of Figure

A.4, effort declines even more sharply than under the other two parameterizations, since ability is

learned quickly and career concerns dissipate fast.

Figure 10: Dynamics of Effort, Human capital, and Wages

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates
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Figure 11: Wage Growth With and Without Performance Pay

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates

Given that effort is small and changes little, it might be tempting to conclude that performance

pay cannot significantly affect wage growth. However, the decomposition in Figure 10 and panel

a of Figure A.4 only uncovers the direct effect of effort on wage growth. According to our model,

effort also contributes to human capital. Indeed, this is the key channel through which effort affects

wage growth. One way to measure this indirect effect of effort on wages is to constrain firms to

offer contracts without variable pay (b∗t ≡ 0) as in Holmström [1999]. Figure 11 and panel b

of Figure A.4 show the wage profiles that emerge with (red lines) and without (blue lines) this

restriction—since our third parameterization, as discussed, has implications for piece rates at odds

with the data, we focus here on our first two. Without performance pay, firms lack an important

instrument to reward performance and thereby encourage workers to exert effort. Relative to the

baseline, much less effort is exerted and so much less human capital is acquired. Lower effort

and human capital in turn imply lower wage growth over the life cycle (red lines) relative to our

baseline (blue lines), as panel a and b of Figure 11 show. By the 20th year of experience, wage

growth is at least 30% lower than in the baseline. Thus, although performance pay is small, it has

a substantial impact on wage growth because it indirectly affects workers’ human capital.42

Wage Inequality. To measure how much performance pay contributes to the variability of wages,

we begin by decomposing the variance of wages into the variance of their fixed and variable

components—the latter is (b∗t )
2(σ2

t +σ2
ε) in t—at the estimated parameter values. Figure 12 shows

this decomposition for our first two parameterizations, on which we focus here; see panel c of Fig-

ure A.4 for our third one. According to our baseline parameterization in column 2 of Table 3, since

42As discussed, with a rapid speed of learning, learning about ability has a large impact on effort. Correspondingly,
performance pay has a relatively smaller effect on wage growth; see panel b of Figure A.4.
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shocks to output (σ2
ε ) are large, the variance of performance pay is large relative to the variance

of fixed (base) pay for most of the life cycle—it accounts for more than 30% of the variance of

wages over the first 30 years in the labor market—as shown in panel b of Figure 12. Fixed pay,

which is revised each period based on realized output and thus provides implicit incentives for

effort, increases slowly over time as information about ability is revealed. Similar conclusions can

be drawn when piece rates are exogenous from panel a of Figure 12.43,44 Although performance

pay accounts for only a small fraction of pay at any given time, it is then responsible for a large

share of the variability of wages over the life cycle.45

It turns out that through performance pay b∗tyt, uncertainty about ability is a major source of

wage dispersion—due to its direct impact on the variability of beliefs (σ2
t ) and so output (σ2

t + σ2
ε )

and, as Figure A.5 illustrates, to its indirect impact on the level of piece rates (b∗t ). To elaborate, in

panel a of the figure, we compare the variance of wages under our baseline parameterization (blue

line) with the counterfactual one that would result at the estimated piece rates without any hetero-

geneity in ability (lavender line)—that is, when σ2
θ =σ2

ζ =0—which is much lower. Intuitively, as

is often maintained, lower dispersion in ability leads to lower wage dispersion.

Figure 12: Decomposition of the Variance of Wages

(a) With Exogenous Piece Rates
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Such a comparison, however, ignores that firms may offer different wage contracts in the ab-

sence of uncertainty about ability. In fact, as panel b of Figure A.5 shows, when we take into

43See in the figure also a decomposition of the variance of wages in the data, as fixed pay correlates little with
performance pay so its variance can be backed out as the vertical difference between the blue and green lines.

44As panel c of Figure A.4 shows, imposing a fast speed of learning leads to a small variance of performance pay.
In this case, the life-cycle increase in the variance of wages is almost all due to the increase in the variance of fixed
pay, which is at odds with the data over the first half of the life cycle; see panel a of Figure 12.

45Similarly, Lemieux, MacLeod, and Parent [2009] find that the increased prevalence of performance pay from the
1970s to the 1990s accounts for about 21% of the increase in the variance of (log) wages over this period.
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account firms’ incentives to adjust piece rates in response to the lower uncertainty about ability,

the variance of wages becomes up to six times larger (lavender line) than that in the baseline model

(blue line). As panel c further shows, this increase is due to piece rates becoming much higher—up

to three times as high (lavender line) as those in the baseline (blue line). Higher piece rates amplify

any residual productivity risk, leading on balance to much higher wage dispersion over most of the

life cycle. Hence, reducing differences in ability ex ante induces firms to offer contracts with a

greater sensitivity of pay to performance ex post, which more than offsets the lower dispersion in

ability and thus results in much more variable wages overall. Thus, lower dispersion in ability can

actually lead to much higher wage dispersion.

6.5 Task Complexity over the Life Cycle

So far we have focused on the incentives for effort in the complex task. We now consider the gen-

eral case of our model in which workers can perform simple and complex tasks, devoting possibly

different amounts of effort to each, respectively ei1t and ei2t, in any period. This case illustrates

how our results so far extend to a setting in which, unlike in usual job-assignment models, workers

engage in multiple activities, and these activities expose them to different degrees of risk—recall

that effort in the simple task is optimally remunerated without variable pay. A natural horse-race

then emerges in terms of the importance of performance incentives for life-cycle wages: if life-

cycle wage growth can be accounted for by human capital accumulation in simple contractible

tasks, does performance pay still matter for life-cycle wages? This general case helps validate our

findings by showing that our model can jointly account for the patterns of workers’ wages and

tasks at the BGH firm and that performance pay still plays a key role for the dynamics of wages.

By interpreting the efforts ei1t and ei2t as proxies of the task content of a job, the ratio (1+

ei2t)/(1+ ei1t) can be viewed as capturing the task complexity of worker i’s job in t. We can

then measure task complexity in our data as follows. In the BGH data, an occupation or job is

defined at the granular level of the occupation’s title—there are 276 in our data. The nature of a

job, and so the complexity of the tasks it involves, can be inferred from the description of its cost

center, which is the organizational unit a job belongs to. BGH construct the firm’s job hierarchy

from workers’ transition across job titles, which are aggregated into eight job levels, and find

it to be divided into two parts: the bottom rungs, corresponding to job levels 1 to 4, at which
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nearly all workers (managers) start their careers at the firm, and the top rungs, corresponding to

job levels 5 to 8 (chairperson-CEO). As BGH remark, higher-level jobs of this hierarchy, to which

workers progress over time, require “managing large groups, coordinating across business units,

and strategic planning, while lower level jobs depend more on specialized functional knowledge

and performing less complex tasks” (Baker et al. [1994a], p. 893).

At job levels 1 to 4, about 60% of the jobs relate to specific line (revenue-generating) business

units—positions that involve direct contact with customers or creating and selling products. Ap-

proximately 35% are overhead positions in areas such as accounting, finance, or human resources.

At job levels 5 and 6, the two percentages of line business-unit and overhead activities decrease to

45% and 25%, whereas general management descriptions such as general administration or plan-

ning increase to about 30%—job levels 5 and 6 are the highest ones managers reach in our sample.

At job levels 7 or 8, all activities are general management or planning. By defining a complex task

as related to managing large groups, coordinating across business units, and strategic planning as

BGH suggest, we can measure the degree to which a job requires non-contractable effort by the

proportion of its general management or overhead activities. Similarly, we can measure the degree

to which a job requires contractable effort by the proportion of its specific and easier-to-monitor

activities involving direct contact with customers or creating and selling products.

We estimate the version of our model with effort in simple and complex tasks so as to match,

as before, the variance of wages, average wages, and piece rates over the life cycle, now with the

additional parameter γ1 for human capital accumulation in the simple task—effort in the simple

task affects output, human capital, and wages by (1)-(3).46 Naturally, this version of our model

better fits life-cycle wage growth; see panel b of Figure A.6. The estimates of the parameters that

are common to the baseline parameterization in column 2 of Table 3 (unreported) are very similar,

though. For instance, the estimate of γ2, 0.75, is now only slightly lower; the estimate of γ1 is 0.14.

This version of our model is in line with the range of task complexity of workers’ jobs (0.67

to 1.22 in the data and 0.71 to 1.01 in the model) as well as its mean (0.84 in the data and 0.79

in the model) in the BGH data, even though none of these moments has been targeted. We also

estimate that, as experience accumulates, workers eventually engage in more complex and harder-

46Although, as in our baseline, we maintain that workers are homogenous in their efficiency in performing tasks—
ξ1 = ξ2 = 1—and in the rate at which their ability increases output—ξθ—these assumptions can be relaxed. See
Section A.9 in the appendix for the case in which workers are heterogeneous in these parameters.
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to-contract activities, as BGH document—our estimated measure of task complexity tends to in-

crease with workers’ tenure at the same rate as in the data. Furthermore, the model’s implications

about the importance of performance pay for life-cycle wages remain virtually unchanged relative

to our baseline parameterization without the simple task. In particular, effort in the complex task

and performance pay are still central to the growth of wages over the life cycle because of their

impact on workers’ accumulation of human capital. Overall, this exercise illustrates how the life-

cycle profile of workers’ tasks in the BGH data validates our notion of jobs and the resulting job

assignment process. Importantly, it also reinforces the conclusion that incentives from performance

pay, learning about ability, and human capital are key drivers of the wage process at the BGH firm.

7 Conclusion

We propose a tractable model of the labor market to analyze how performance pay, uncertainty and

learning about ability, and human capital acquisition together determine life-cycle wages and their

fixed and variable components. This framework reproduces key features of the dynamics of wages

and of workers’ career progression with experience, and is highly flexible in that it both nests many

leading models of wage growth and dispersion and can be extended in several dimensions.

We find that two motives—namely, workers’ demand for insurance against the substantial risk

due to the uncertainty about their productivity and their desire to invest in human capital—are key

determinants of performance pay that have sizable effects of opposite sign on its experience profile

relative to total pay: the former negative, the latter positive. This tension rationalizes the low

level of performance pay observed throughout the life cycle for most workers and, contrary to the

prediction of influential models of performance incentives, its hump-shaped pattern relative to total

pay. Although performance pay accounts for a small fraction of total pay, our analysis illustrates its

centrality to the dynamics of wages through its indirect effect on workers’ accumulation of human

capital and its direct effect on the variability of wages—amplified by the endogenous response of

piece rates to the degree of skill dispersion in a labor market. We hope that our results offer a first

step toward richer models of incentives that can shed light on the multiple sources of the variation

of wages across individuals and over time.
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A Appendix

We begin by describing the data we use (Section A.1). Next, we derive the equilibrium (Section

A.2), prove the results of Section 5.2 concerning the life-cycle profile of piece rates (Section A.3),

and establish our identification results (Section A.4). Then, we discuss some extensions of our

framework: i) the model with wage markdowns (Section A.5); ii) the general cost-function case

(Section A.6); iii) the model with Cobb-Douglas technology (Section A.7); iv) the model in which

human capital evolves nonparametrically with effort (Section A.8); and v) the model with hetero-

geneous workers, either in their ability at the complex task or in how their ability affects output

(Section A.9). We conclude by reporting omitted empirical results (Section A.10).

A.1 Data Samples

We provide here additional evidence on the hump-shaped profile of performance pay relative to

total pay from both public worker survey data and proprietary firm-level administrative data.

Public Data: PSID and NLSY. We focus on the main sample of the PSID (Panel Study of Income

Dynamics), excluding the poverty, Latino, and immigrant subsamples, and consider male heads of

households aged 21 to 65 observed between 1993 and 2013 with valid education information—

that is, with more than zero and up to 17 years of education, the largest value. We further restrict

attention to those who work more than 45 weeks each year in any industry except for the govern-

ment and the military, have non-missing positive total labor income, and are not self-employed.

The resulting sample consists of more than 24,000 person-year observations. We calculate labor

market experience as potential experience, defined as the difference between an individual’s age

(minus six) and years of education. We refer to an individual’s labor income as the individual’s

wage. Although three measures of variable pay—namely, tips, bonuses, and commissions—are

available in the PSID from 1993 onward, we focus here only on bonus pay for consistency across

the data sets we examine. Bonus pay, though, is by far the most important component of variable

pay, making up 80% of variable pay in our sample. We regularize the sample by excluding obser-

vations on bonus pay larger than total labor income and by winsorizing labor income at the 1st and

99th percentiles and bonus pay at the 99th percentile of their respective distributions. Finally, we

restrict attention to workers who ever receive variable pay (bonus pay in our case) in their current
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job, that is, workers in performance-pay jobs; this definition of a performance-pay job is the same

as in Lemieux, MacLeod, and Parent [2009]. In the resulting sample of workers in performance-

pay jobs, the average salary is $80,000 (in 2009 dollars), with a standard deviation of $67,000,

and the average bonus pay is $4,000, with a standard deviation of $8,000. Panel a of Figure A.1

shows how the ratio of (average) variable pay to (average) total pay, which also measures the sen-

sitivity of pay to performance, follows a hump-shaped pattern with experience. Analogous profiles

emerge if we divide the sample into workers with and without a college degree—the hump-shape

of the experience profile of the sensitivity of pay to performance is most pronounced in the college

sample. The PSID data thus suggest that the sensitivity of pay to performance increases early in

the life cycle, peaks around its middle, and then subsequently declines.

Figure A.1: Life-Cycle Ratio of Performance Pay to Total Pay in Public Data

(a) PSID (b) NLSY97 and NLSY79

We perform an analogous exercise in the NLSY79 (National Longitudinal Survey of Youth–

1979 Cohort) and NLSY97 (National Longitudinal Survey of Youth–1997 Cohort) by applying

the same sample selection criteria applied to the PSID, finding analogous results.47 The surveys

are administered biyearly over the period of interest; since the question about bonus pay is retro-

spectively asked about the previous year, we can measure the amount of bonus pay that a worker

receives for the years 2001, 2003, and so on, up to 2015. By virtue of the design of the two data

sets, in the NLSY79, we can observe only individuals with 20 to 39 years of experience; in the

NLSY97, we can observe only individuals with 0 to 19 years of experience. In the sample of

workers with performance-pay jobs, the average salary is $72,000 in the NLSY79 and $48,000 in

the NLSY97, with a standard deviation of $56,000 and $32,000, respectively. Average variable
47We note that only bonus pay is recorded for both the 1979 and the 1997 NLSY cohorts, as tips and commissions

are reported only for the latter cohort. Moreover, the amount of bonus pay received by a worker is effectively available
in the NLSY79 only for the waves between 2002 and 2016.
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pay is $3,800 and $2,000, with a standard deviation of $12,000 and $4,000. Thus, the statistics

for the NLSY79 and the PSID are very similar. That the mean and standard deviation of total pay

and bonus pay in the NLSY97 are lower than in the NLSY79 is intuitive, since the former samples

younger workers. Panel b of Figure A.1 shows that the sensitivity of pay to performance exhibits

a hump-shaped pattern in both the NLSY79 and the NLSY97, which is quite similar to that from

the PSID—the break is due to the different cohorts tracked by the NLSY79 and the NLSY97.

Proprietary Data: BGH and GH Data. We now contrast our findings on the profile of perfor-

mance pay relative to total pay from the BGH data to those from the proprietary data from another

U.S. firm, studied by Gibbs and Hendricks [2004] (henceforth GH). Both the BGH and the GH

data are described in detail in Frederiksen et al. [2017]. For both firms, we have information only

on white-collar workers—managers in the case of the BGH data.

Figure A.2: Life-Cycle Ratio of Performance Pay to Total Pay in BGH and GH Data

(a) BGH (b) GH

The GH data cover the years from 1989 to 1993—we cannot reveal the industry that the firm

belongs to. For the GH firm, we have information about 15,618 individuals for a total of 47,603

person-year observations. As these data pertain to all white-collar employees of the firm, the

average salary is naturally lower than in the BGH data at $39,215 (in 1988 dollars), with a standard

deviation of $27,968. Bonus pay on average amounts to $1,537, with a standard deviation of about

$9,346. The two panels of Figure A.2 report the experience profile of the ratio of (average) variable

pay to (average) total pay from both the BGH and the GH data for managers with up to 40 years of

experience. In both firms, performance pay is hump-shaped relative to total pay, peaking at about

20 years of experience. Analogous patterns emerge if we focus on college-educated or non-college-

educated workers, much like in the BGH data. Hence, a hump-shaped profile for performance pay

relative to total pay is clearly a characteristic feature of both data sets.
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A.2 Equilibrium Derivation

We first derive effort choices in the complex task for workers facing a sequence of employment

contracts such that effort choices in the simple task and piece rates depend only on time when

workers’ future effort choices in the complex task also depend only on time. We then determine

the equilibrium employment contracts and show that they are the same for all workers and are as

described above. Finally, we derive the equilibrium.

A.2.1 First-Order Conditions for Effort in the Complex Task

We start with the following auxiliary result. Recall that if u and v are vectors in an Euclidean

space, then ⟨v, u⟩ denotes their scalar product.

Lemma A.1. Fix {at}Tt=1. For each 0 ≤ t ≤ T − 1,∑T−t

τ=1
δτ (1− bt+τ )

∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)as =

∑T−t

τ=1
δτaτRCC,t+τ .

Proof. The result is trivially true for t = T − 1, since RCC,T = 0. Fix 0 ≤ t ≤ T − 2, and

let u, v ∈ RT−t−1 be such that u = (at, . . . , aT−t−1) and v = (δ2(1 − bt+2), . . . , δ
T−t(1 − bT )).

Moreover, let A be the square matrix of order T − t − 1 such that Aij = 0 if i < j and Aij =

(
∏i−j

k=1 µt+i+1−k)(1− µt+j) if i ≥ j. Then

⟨v, Au⟩ =
∑T−t−1

i=1
δi+1(1− bt+1+i)

∑i

j=1

(∏i−j

k=1
µt+i+1−k

)
(1− µt+j)aj

=
∑T−t

i=1
δi(1− bt+i)

∑i−1

j=1

(∏i−1−j

k=1
µt+i−k

)
(1− µt+j)aj,

where the second equality follows from the change of variable i 7→ i− 1 and the fact that the term

i = 1 in the sum is zero. Now let D be the diagonal matrix of order T − t − 1 such that Dii = δi

and denote the transpose of a matrix M by M ′. Then, since ⟨v, Au⟩ = ⟨A′v, u⟩,

⟨v, Au⟩ = ⟨(AD−1)′v,Du⟩ = ⟨(D−1)′A′v,Du⟩ = ⟨D−1A′v,Du⟩. (11)

On the other hand, given that (D−1A′v)i = δ−i(A′v)i = δ−i
∑T−t−1

j=1 Ajivj , it follows that

(D−1A′v)i = δ−i
∑T−t−1

j=i

(∏j−i

k=1
µt+j+1−k

)
(1− µt+i)δ

j+1(1− bt+1+j)

=
∑T−t−i

j=1

(∏j−1

k=1
µt+i−k

)
(1− µt+i)δ

j(1− bt+i+j) = RCC,t+i
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for each 1 ≤ i ≤ T − t− 1; note the change of variables j 7→ j + i− 1. Thus, by (11),

⟨v,Au⟩ =
∑T−t−1

i=1
δiaiRCC,t+i =

∑T−t

i=1
δiaiRCC,t+i,

where we again used the fact that RCC,T = 0. This establishes the desired result.

Suppose workers face a sequence {(e1t, bt)}Tt=0 of employment contracts such that e1t and bt

depend only on time and consider worker i’s choice of period-t effort in the complex task, e2t,

when the worker’s future choices of effort in this task also depend only on time. We claim that

e2t does not affect the variance of future wages. Indeed, since the variance of signals about ability

does not depend on current effort choices, (5) implies e2t does not affect the variance of future

reputations. Moreover, future effort choices and piece rates do not depend on e2t, being dependent

only on time. Finally, a worker’s stock of human capital has no impact on the variance of output

or wages. The argument in the main text then shows that the first-order condition for worker i’s

optimal choice of effort in the complex task in period t is given by (6); recall that wit+τ and ht
i are,

respectively, the worker’s wage in period t + τ with 0 ≤ τ ≤ T − t and history in period t. We

claim that (6) reduces to (8).

First, by (3), wit+τ = (1 − bt+τ )E[yit+τ |Iit+τ ] + bt+τyit+τ for all 1 ≤ τ ≤ T − t, where yit+τ

is worker i’s output in period t + τ and Iit+τ is the public information about the worker available

in t + τ . Let mit+τ be the worker’s reputation in t + τ ; note that mit+τ depends on Iit+τ . Since

for each 1 ≤ τ ≤ T − t, the effort e2t affects E[yit+τ |Iit+τ ] only through its impact on mit+τ , as

the other terms in the conditional expectation depend on the worker’s conjectured effort and stock

human capital in t+ τ and the worker’s future effort choices depend only on time,

∂E[wit+τ |ht
i]

∂e2t
= (1− bt+τ )

∂E[mit+τ |ht
i]

∂e2t
+ bt+τ

∂E[yit+τ |ht
i]

∂e2t

for all 1 ≤ τ ≤ T − t. Now note that ∂E[yit+τ |ht
i]/∂e2t = γ2λ

τ−1 for all 1 ≤ τ ≤ T − t, again

since worker i’s behavior from t+ 1 on depends only on time. Moreover, from (5),

∂E[mit+τ |ht
i]

∂e2t
=

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

∂E[zit+s|ht
i]

∂e2t

=
(∏τ−1

k=1
µt+τ−k

)
(1− µt)

∂E[zit|ht
i]

∂e2t

+
∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

∂E[zit+s|ht
i]

∂e2t
,
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where zit+s is the signal about worker i’s ability in t + s. Given that ∂E[zit|ht
i]/∂e2t = ξ2 and

∂E[zit+s|ht
i]/∂e2t = γ2λ

s−1 for all 1 ≤ s ≤ T − t, we can rewrite (6) as

e2t = ξ2bt + ξ2
∑T−t

τ=1
δτ (1− bt+τ )

(∏τ−1

k=1
µt+τ−k

)
(1− µt)

+ γ2
∑T−t

τ=1
δτ
{
(1− bt+τ )

∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)λ

s−1 + bt+τλ
τ−1

}
.

The desired result follows from Lemma A.1 with aτ = λτ−1.

Condition (8) is necessary for optimality. It is also sufficient since the marginal benefit of effort

in the complex task—the right side of (8)—is independent of the effort exerted, while the marginal

cost—the left side of (8)—is increasing with the effort exerted.

A.2.2 Equilibrium Employment Contracts

We now solve for the last-period equilibrium employment contracts and then proceed backwards to

determine the equilibrium employment contracts in previous periods. With this characterization of

employment contracts at hand, we use (8) to derive the equilibrium choices of effort in the complex

task, provided that equilibrium efforts and piece rates depend only on time, which is the case.

Last-Period Employment Contracts. The absence of dynamic considerations in the last pe-

riod implies that a workers’ choice of effort in the complex task is e2 = ξ2b if the piece rate

is b. Then, by the mean-variance representation of worker preferences and free entry of firms, a

worker’s equilibrium employment contract in T is the pair (e1, b) that maximizes VT = E[wT |IT ]−

rVar[wT |IT ]/2− (e21 + e22)/2, where wT and IT are a worker’s wage and public information in T ,

respectively. Competition between firms further implies that E[wT |IT ] = E[yT |IT ]—this follows

from (3) and the law of iterated expectations. Since E[yT |IT ] ∝ ξ1e1 + ξ2e2 = ξ1e1 + ξ22b and

Var[wT |IT ] = b2(σ2
T + σ2

ε), the pair maximizing VT is (e1, b) = (e∗1T , b
∗
T ) with e∗1T = ξ1 and

b∗T = 1/[1 + (r/ξ22)(σ
2
T + σ2

ε)]. Note that the employment contract (e∗1T , b
∗
T ) is independent of IT

and so the same for all workers. In turn, this implies that in equilibrium workers’ choices of effort

in the complex task are independent of their private histories and so also the same for all of them.

Employment Contracts in Previous Periods. Let 0 ≤ t < T and suppose that equilibrium efforts

and piece rates from period t + 1 on depend only on time; this is true for t = T − 1. For each

1 ≤ τ ≤ T − t, let b∗t+τ be the equilibrium piece rate in period t + τ , and define R∗
CC,t and R∗

HK,t
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as in (7) with bt+τ = b∗t+τ for each τ . Then, a worker’s period-t effort in the complex task as a

function of the piece rate b in t is

e2t = e2t(b) = ξ2b+ ξ2R
∗
CC,t +R∗

HK,t. (12)

Let wt+τ = wt+τ (b) and Wt = Wt(b) respectively be a worker’s wage in period t + τ with

0 ≤ τ ≤ T − t and the present-discounted value of the wages from t on as functions of b.

An equilibrium employment contract for a worker in period t is a pair (e1, b) that maximizes

Vt = E[Wt|It]−rVar[Wt|It]/2− (e21t+e22t)/2, where It is the public information about the worker

in t. We determine the pair (e1, b) that maximizes Vt in what follows. As it turns out, this pair is

independent of It and so the same for all workers in t.

First, note that
∂E[Wt|It]

∂b
= ξ22 + ξ2γ2

∑T−t

τ=1
δτλτ−1. (13)

Indeed, if yt+τ is the worker’s output in period t + τ with 0 ≤ τ ≤ T − t, then competition

between firms implies that E[wt+τ |It] = E[yt+τ |It] for all 0 ≤ τ ≤ T − t. By (1) and (12),

∂E[yt|It]/∂b = ξ2∂e2t/∂b = ξ22 , which corresponds to the first term on the right side of (13).

Regarding the second term on the right side of (13), note that by increasing effort in the complex

task in t by ξ2 units, a marginal increase in b also changes expected output in t + τ with 1 ≤

τ ≤ T − t by ξ2γ2λ
τ−1 units, the change in the worker’s stock of human capital in t + τ . The

second term is the present-discounted value of these expected output changes. Now observe that

since ∂E[yt|It]/∂e1 = ξ1 and ∂E[yt+τ |It]/∂e1 = γ1λ
τ−1 for all 1 ≤ τ ≤ T − 1, it follows that

∂E[Wt|It]/∂e1 = ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1. We show below that

∂Var[Wt|It]
∂b

= 2b(σ2
t + σ2

ε) + 2H∗
t , (14)

where H∗
t = σ2

t

∑T−t
τ=1 δ

τ . Since Var[Wt|It] is independent of e2t—as effort in the complex task in

t does not affect the variance of current and future wages—and ∂e2t/∂b = ξ2, it then follows that

the first-order conditions for the problem of maximizing Vt are

ξ1 + γ1
∑T−t

τ=1
δτλτ−1 − e1 = 0 and

ξ22 + ξ2γ2
∑T−t

τ=1
δτλτ−1 − rb(σ2

t + σ2
ε)− rH∗

t − ξ2e2t = 0. (15)
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We now prove (14). Given that effort in the complex task does not affect the variance of future

wages, Var[Wt|It] depends on b only through its effect on the variance of wt. Hence,

Var[Wt|It] = Var[wt|It] + 2
∑T−t

τ=1
δτCov[wt, wt+τ |It] + Var0,

where Var[wt|It] = b2(σ2
t + σ2

ε) and Var0 is a term that does not depend on b. We claim that

Cov[wt, wt+τ |It] = bσ2
t for all 1 ≤ τ ≤ T − t, from which (14) follows. Since the worker’s

reputation in t is nonrandom conditional on It, Cov[wt, wt+τ |It] = bCov[yt, wt+τ |It] for all 1 ≤

τ ≤ T − t by (3). Now note, once again from (3), that

Cov[yt, wt+τ |It] = b∗t+τCov[yt, yt+τ |It] + (1− b∗t+τ )Cov[yt,mt+τ |It]

for all 1 ≤ τ ≤ T − t, where mt+τ = mt+τ (b) is a worker’s reputation in t + τ as a function of

the period-t piece rate. Like yt+τ , the reputation mt+τ depends on b only through the impact of b

on the workers’ effort in the complex task in t. Thus, if zt+s = zt+s(b) with 0 ≤ s ≤ T − t is the

signal about ability in period t+ s as a function of b, then

Cov[yt, wt+τ |It] = b∗t+τCov[yt, yt+τ |It]

+ (1− b∗t+τ )
∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)Cov[yt, zt+s|It]

for all 1 ≤ τ ≤ T − t by (5). Now note that since Cov[yt, yt+τ |It] = σ2
t for all 1 ≤ τ ≤ T − t,

Cov[yt, zt+s|It] = σ2
t + σ2

ε if s = 0, and Cov[yt, zt+s|It] = σ2
t if 1 ≤ s ≤ T − t,

Cov[yt, wt+τ |It] = σ2
t

[
(1− b∗t+τ )

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s) + b∗t+τ

]
+ σ2

ε(1− b∗t+τ )
(∏τ−1

k=1
µt+τ−k

)
(1− µt).

To conclude, note that σ2
ε(1− µt) = σ2

tµt and µt

∏τ−1
k=1 µt+τ−k =

∏τ
k=1 µt+τ−k together imply that

Cov[yt, wt+τ |It] is equal to

σ2
t

{
(1− b∗t+τ )

[∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s) +

∏τ

k=1
µt+τ−k

]
+ b∗t+τ

}
.

The desired result follows since the weights in the law of motion for a worker’s reputation in (5)

must sum up to one, so
∑τ−1

s=0

(∏τ−1−s
k=1 µt+τ−k

)
(1 − µt+s) = 1 −

∏τ
k=1 µt+τ−k and the term in

square brackets equals one.

8



The unique solution to (15) is (e1, b) = (e∗1t, b
∗
t ) with e∗1t = ξ1 + γ1

∑T−t
τ=1 δ

τλτ−1 and

b∗t = b0t

[
1 + (γ2/ξ2)

∑T−t

τ=1
δτλτ−1 − (1/ξ2)R

∗
HK,t −R∗

CC,t − (r/ξ22)H
∗
t

]
,

by (12). Clearly, e∗1t is the choice of e1 that maximizes Vt no matter the choice of b. That b∗t is

that choice of b that maximizes Vt follows from the fact that Vt is strictly concave as a function of

b. Note that (e∗1t, b
∗
t ) is independent of It and so the same for all workers. The pair (e∗1t, b

∗
t ) is the

equilibrium employment contract in t under the induction hypothesis that equilibrium efforts and

piece rates from period t+ 1 on depend only on time.

Equilibrium Characterization. The above reasoning shows that if there exists t < T such that

from period t + 1 on equilibrium piece rates and effort choices are the same for all workers and

depend only on time, then equilibrium employment contracts in period t are such that piece rates

and effort choices in the simple task are the same for all workers. In turn, by (12), equilibrium

choices of effort in the complex task are the same for all workers, and thus depend only on t. Since

last-period equilibrium piece rates and effort choices are the same for all workers and (trivially)

depend only on T , it then follows by induction that the equilibrium piece rates and effort choices are

the same for all workers and depend only on time. From this, it further follows that the equilibrium

is characterized by Proposition 1.

A.3 Piece Rates over the Life Cycle

We now prove the results in Section 5.2 concerning the life-cycle profile of piece rates.

A.3.1 Proof of Lemma 1

Consider first the case in which σ2
θ ≥ σ2

∞ and σ2
t is nonincreasing with t. Since H∗

T−1 > 0 and

R∗
CC,T−1 = δ(1 − b∗T )(1 − µT−1) > 0, b∗T−1 = b0T−1(1 − R∗

CC,T−1 − rH∗
T−1) < b0T−1 ≤ b0T = b∗T .

Suppose, by induction, that there exists 1 ≤ t ≤ T − 1 with R∗
CC,t+τ > R∗

CC,t+τ+1 and b∗t+τ <

b∗t+τ+1 for all 0 ≤ τ ≤ T − t− 1; the induction hypothesis holds for t = T − 1. Thus,

R∗
CC,s >

∑T−s−1

τ=1
δτ (1− b∗s+τ )

(∏τ−1

k=1
µs+τ−k

)
(1− µs)

>
∑T−s−1

τ=1
δτ (1− b∗s+1+τ )

(∏τ−1

k=1
µs+τ−k

)
(1− µs),

9



where the first inequality follows since b∗T ∈ (0, 1) and µt ∈ (0, 1) for 0 ≤ t ≤ T and the second

inequality follows since b∗s+1+τ > b∗s+τ for all 1 ≤ τ ≤ T − s − 1 by the induction hypothesis.

Holmström [1999] shows that (1− µs)
∏τ−1

k=1 µs+τ−k is a decreasing function of µs (see argument

in p. 174). Given that µs+1 ≥ µs, we then have that

R∗
CC,s >

∑T−s−1

τ=1
δτ (1− b∗s+1+τ )

(∏τ−1

k=1
µs+1+τ−k

)
(1− µs+1) = R∗

CC,s+1 = R∗
CC,t.

Now note that 1−R∗
CC,t−rH∗

t −b
[
1+r(σ2

t +σ2
ε)
]
≤ 0 if b ≥ b∗t . Since R∗

CC,s > R∗
CC,t, H

∗
s ≥ H∗

t ,

and σ2
s ≥ σ2

t , it then follows that b ≥ b∗t implies that

1−R∗
CC,s − rH∗

s − b
[
1 + r(σ2

s + σ2
ε)] < 0.

We know from our equilibrium derivation that the first-order conditions in (15) are necessary and

sufficient for the equilibrium employment contracts. Hence, b∗s = b∗t−1 < b∗t and equilibrium piece

rates strictly increase over time by induction.

Now consider the case in which σ2
θ < σ2

∞. Fix T0 ≥ 0 and let T > T0; we pin down T0 below.

Moreover, let µ∞ = σ2
ε/(σ

2
∞ + σ2

ε) and consider the difference equation

b∞t =
1

1 + r(σ2
∞ + σ2

ε)

[
1−

∑T−t

τ=1
δτ (1− b∞t+τ )µ

τ−1
∞ (1− µ∞)− rσ2

∞

∑T−t

τ=1
δτ
]

for T0 ≤ t ≤ T . By construction, b∞t is the equilibrium piece rate in period T0 ≤ t ≤ T

if uncertainty about ability from period T0 on were constant and equal to σ2
∞. We claim that

limσ2
T0

→σ2
∞
b∗t = b∞t for all such t. First observe that limσ2

T0
→σ2

∞
b∗T = b∞T as σ2

T0
< σ2

T < σ2
∞.

Now suppose, by induction, that there exists T0 < t ≤ T such that limσ2
T0

→σ2
∞
b∗t+τ = b∞t+τ for

all 0 ≤ τ ≤ T − t; the induction hypothesis is true for t = T . The desired result holds if

limσ2
T0

→σ2
∞
b∗s = b∞s for s = t − 1. Given that σ2

T0
≤ σ2

s+τ < σ2
∞ for all 0 ≤ τ ≤ T − s, it then

follows that limσ2
T0

→σ2
∞
σ2
s+τ = σ2

∞, and thus limσ2
T0

→σ2
∞
µs+τ = µ∞, for all such τ . This, in turn,

implies that

lim
σ2
T0

→σ2
∞

b∗s =
1

1 + r(σ2
∞ + σ2

ε)

[
1−

∑T−s

τ=1
δτ (1− b∞s+τ )µ

τ−1
∞ (1− µ∞)− rσ2

∞

∑T−s

τ=1
δτ
]

by the induction hypothesis and the fact that the piece rate b∗s is jointly continuous in (b∗s+1, . . . , b
∗
T ,-

σ2
s , µs, . . . , µT ). To conclude, note that since b∞t is strictly increasing with t for all T0 ≤ t ≤ T by

10



the first case in the proof, there exists η > 0 such that if |b∗t − b∞t | ≤ η for all T0 ≤ t ≤ T , then b∗t

is also strictly increasing with t for all such t. The desired result follows since limT0→∞ σ2
T0

= σ2
∞

and limσ2
T0

→σ2
∞
b∗t = b∞t for all T0 ≤ t ≤ T , and so, by taking T0 large enough, we can ensure that

|b∗t − b∞t | ≤ η for all T0 ≤ t ≤ T .

A.3.2 Proof of Lemma 2

Let γ2 = ξ2(1− δλ)rσ2
ε/δ. We claim that b∗t ∈ (0, 1) for all t if ξ2(λ− 1/δ) ≤ γ2 ≤ γ2. Suppose,

by induction, that there exists 1 ≤ t ≤ T such that b∗t+s ∈ (0, 1) for all 0 ≤ s ≤ T−t; the induction

hypothesis is true if t = T . We are done if b∗s ∈ (0, 1) for s = t− 1. First note that if γ2 ≤ γ2, then

b∗s < b0
[
1 +

γ2

ξ2

∑T−s

τ=1
δτλτ−1

]
< b0

[
1 +

γ2

ξ2

δ

1− δλ

]
= 1,

where the first inequality follows since b∗t > 0 for all s < t ≤ T by the induction hypothesis and

the equality follows from the definition of γ2. Moreover, if γ2 ≥ ξ2(λ− 1/δ), then

b∗s > b0
[
1 +

(
λ− 1

δ

)∑T−s

τ=1
δτλτ−1

]
> 0,

where the first inequality follows since b∗t < 1 for all s < t ≤ T by the induction hypothesis and

the second inequality follows because (λ− 1/δ)
∑T−s

τ=1 δ
τλτ−1 ≥ −1.

We now establish the properties of the experience profile of piece rates given γ2. Since

b∗t = b0
[
1 +

γ2
ξ2
δ(1− b∗t+1) +

γ2
ξ2

∑T−t

τ=2
δτλτ−1(1− b∗t+τ )

]
.

and (γ2/ξ2)
∑T−t

τ=2 δ
τλτ−1(1− b∗t+τ ) = δλ(b∗t+1/b

0 − 1), we have that

b∗t = b0
(
1− δλ+

γ2
ξ2
δ

)
+ δb∗t+1

(
λ− b0

γ2
ξ2

)
(16)

for all 0 ≤ t ≤ T − 1. Given that b∗T−1 = b0[1 + (γ2/ξ2)δ(1 − b∗T )] < b0 = b∗T when γ2 < 0,

it follows from (16) that b∗t strictly increases with t in this case—just note from (16) that b∗T−2 <

b0[1− δλ+(γ2/ξ2)δ] + δb∗T (λ− b0γ2/ξ2) = b∗T−1 and apply a straightforward induction argument.

Consider now the case in which γ2 > 0. As b∗T−1 > b∗T when γ2 > 0 and the coefficient of b∗t+1 in

(16) is positive (respectively, negative) when γ2 < γ̃2 = λξ2[1 + (r/ξ22)σ
2
ε ] (respectively, γ2 > γ̃2),

it then follows by induction that b∗t is strictly decreasing (respectively, oscillating) with t when

γ2 < γ̃2 (respectively, γ2 > γ̃2).
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A.3.3 Proof of Proposition 2 and Extension

Let γ2 > 0 and, for simplicity, assume that σ2
ζ = 0. Since the equations for the equilibrium piece

rates depend continuously on σ2
ζ and σ2

t eventually becomes small when σ2
ζ is small, we can extend

the argument to the case in which σ2
ζ is positive but small. Fix T0 > 0 and let T > T0; we pin

down T0 below. Now consider the difference equation

bhct =
1

1 + rσ2
ε

[
1 + γ2

∑T−t

τ=1
δτλτ−1(1− bhct+1)

]
for T0 ≤ t ≤ T . By definition, bhct is the piece rate in period T0 ≤ t ≤ T if only human

capital acquisition were present. The same argument as that in the proof of Lemma 1 shows that

limσ2
T0

→0 b
∗
t = bhct for all T0 ≤ t ≤ T . Since, by Lemma 2, bhct either strictly decreases with t

or oscillates with t for all T0 ≤ t ≤ T and limT0→∞ σ2
T0

= 0, it then follows that we can choose

T0 ≥ 0 so that b∗t behaves in the same way as a function of t for all T0 ≤ t ≤ T .

We now show that there exist T0 ≥ 0 such that if T > T0, then b∗t is strictly increasing with t

for all T0 ≤ t ≤ T provided that |γ2| is sufficiently small. Fix T0 ≥ 0 and let T > T0. By Lemma

1, if γ2 = 0, then piece rates are strictly decreasing with t for all T0 ≤ t ≤ T provided that T0 is

large enough. Since the equations for equilibrium piece rates depend continuously on γ2, we can

adapt the argument in the proof of Lemma 1 to show that if |γ2| is sufficiently small, then piece

rates are also strictly increasing with t for all T0 ≤ t ≤ T . This concludes the proof.

We now extend the second part of Proposition 2 to show that when γ2 < 0, piece rates even-

tually strictly increase when the depreciation rate of human capital is sufficiently small provided

that T is large enough. Suppose λ = 1; since the equations for the equilibrium piece rates de-

pend continuously on λ, the argument extends to the case in which λ is sufficiently close to one.

Given that
∑τ1

s=0

(∏τ−1−s
k=1 µt+τ−k

)
(1−µt+s) = 1−

∏τ
k=1 µt+τ−k, as the coefficients in the law of

motion for a worker’s reputation in (5) sum up to one, and so
∑τ−1

s=1

(∏τ−1−s
k=1 µt+τ−k

)
(1µt+s) =

1−
∏τ−1

k=1 µt+τ−k by straightforward algebra, it follows from Lemma A.1 that∑T−t

τ=1
δτ (1− b∗t+τ −R∗

CC,t+τ ) =
∑T−t

τ=1
(1− b∗t+τ )

∏τ−1

k=1
µt+τ−k = (1− µt)

−1R∗
CC,t.

Therefore,

b∗t = b0t

(
1 +

γ2
ξ2
(1− µt)

−1R∗
CC,t −R∗

CC,t −
r

ξ22
H∗

t

)
.
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Now let T0 ≥ 0, suppose T > T0, and consider the difference equation

b∞t =
1

1 + r(σ2
∞ + σ2

ε)

[
1− ξ̂

∑T−t

τ=1
δτ (1− b∞t+τ )µ

τ−1
∞ (1− µ∞)− r̂σ2

∞

∑T−t

τ=1
δτ
]

for all T0 ≤ t ≤ T , where ξ̂ = 1+|γ2|/ξ2(1−µ∞) > 0, r̂ = r/ξ22 , and σ2
∞ and µ∞ are as in the proof

of Lemma 1. By construction, b∞t is the equilibrium piece rate in period T0 ≤ t ≤ T if uncertainty

about ability from period T0 on were constant and equal to σ2
∞. It follows from Lemma 1 that b∞t

is strictly increasing with t for T0 ≤ t ≤ T . Indeed, by redefining δ appropriately, we can absorb

ξ̂ into δ. Then, by adjusting r̂ appropriately, the equation for b∞t becomes that of the equilibrium

piece rates in the pure learning case when σ2
θ = σ2

∞, which strictly decrease over time by Lemma

1. The same argument as that in the proof of Lemma 1 shows that limσ2
T0

→σ2
∞
b∗t = b∞t . So, by

taking T0 large enough that σ2
T0

≈ σ2
∞, we have that b∗t strictly increases with t for T0 ≤ t ≤ T .

A.3.4 Proof of Proposition 3

Let 0 < γ2 < λξ2(1 + rσ2
ε). We know from Proposition 2 that piece rates eventually strictly

decrease over time, and thus are not maximized at the end of a worker’s career, if σ2
ζ is sufficiently

small and T is large enough. Now assume that piece rates are between zero and one, so that R∗
HK,t

and R∗
CC,t are non negative for all t. Since λ ≤ 1, it follows from (9) that b∗0 < b00[1 + (γ2/ξ2 −

rσ2
θ/ξ

2)
∑T

τ=1 δ
τ ]. Thus, b∗0 < b00 provided that σ2

θ is large enough. By increasing σ2
θ further if

necessary, we can ensure that σ2
t strictly decreases with t, and so b∗0 < b0T = b∗T and piece rates are

also not maximized at the start of a worker’s career.

A.4 Identification

Here, we prove Proposition 4 and extend our identification results to the case in which there is

unobserved heterogeneity and measurement error. We start with the following result.

Lemma A.2. For all 0 ≤ t ≤ T and 1 ≤ s ≤ T − t, Var[wit] = σ2
θ + tσ2

ζ − σ2
t + (b∗t )

2(σ2
t + σ2

ε)

and Cov[wit, wit+s] = σ2
θ + tσ2

ζ − σ2
t + b∗tσ

2
t .

Proof. Note from (3) that wit = wit+rit, where rit = (1−b∗t )E[θit|Iit]+b∗t (θit+εit) is the random

part of wit. Since we can incorporate mθ into wit, it is without loss to assume that E[θit] ≡ 0, so

that E[rit] ≡ 0. Therefore, Var[wit] = E[r2it] and Cov[wit, wit+s] = E[ritrit+s]. Also note that

E[θit|Iit] ⊥ θit − E[θit|Iit], as the conditional expectation is an orthogonal projection.
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Variances of Wages. Since rit = E[θit|Iit] + b∗t
(
θit − E[θit|Iit] + εit

)
, we have that

Var[wit] = Var[rit] = Var[E[θit|Iit]] + (b∗t )
2Var[θit − E[θit|Iit]] + (b∗t )

2σ2
ε . (17)

Now note that Var[θit − E[θit|Iit]] = Var[θit] − Var[E[θit|Iit]]. Indeed, Var[A − B] = Var[A] +

Var[B] − 2Cov[A,B] and Cov[θit,E[θit|Iit]] = Var[E[θit|Iit]]. Moreover, given that θit|Iit is

normally distributed with mean E[θit|Iit = ιt] and variance σ2
t when Iit = ιt, the random vari-

able (θit − E[θit|Iit])|Iit is normally distributed with mean zero and variance σ2
t . Consequently,

Var[θit−E[θit|Iit]] = E[Var[θit−E[θit|Iit]]|Iit] = σ2
t , and so, since Var[θit] = σ2

θ + tσ2
ζ , it follows

that Var[E[θit|Iit]] = σ2
θ + tσ2

ζ − σ2
t . The desired result follows from (17).

Covariances of Wages. Let ηsit = E[θit+s|It+s]− E[θit|It]. Since

rit+s = E[θit|Iit] + b∗t+s(θit + ζit + · · ·+ ζit+s−1 − E[θit|Iit] + εit+s) + (1− b∗t+s)η
s
it,

we then have that

Cov[wit, wit+s] = Var[E[θit|Iit]] + (1b∗t+s)E
[
E[θit|Iit]ηsit

]
+ b∗t b

∗
t+sVar[θit − E[θit|Iit]]

+ (1− b∗t+s)b
∗
tE[(θit − E[θit|Iit] + εit)η

s
it]

= σ2
θ + tσ2

ζ − σ2
t + b∗t b

∗
t+sσ

2
t + (1− b∗t+s)b

∗
tE[(θit + εit)η

s
it]

+ (1− b∗t )(1− b∗t+s)E[E[θit|Iit]ηsit].

We are done if we show that E[E[θit|Iit]ηsit] = 0 and E[(θit + εit)η
s
it] = σ2

t . First, note that

ηsit =
∑s−1

k=0

(∏s−1−k

j=1
µt+s−j

)
(1− µt+k)(θit+k + εit+k − E[θit|Iit])

by (5). Since θit+k = θit + ζit + · · ·+ ζit+k−1, we have that E[E[θit|Iit]ηsit] = 0. Moreover,

(θit + εit)η
s
it = (θit + εit) (θit + εit − E[θit|Iit])

(∏s−1

j=1
µt+s−j

)
(1− µt)

+ θit (θit − E[θit|Iit])
∑s−1

k=1

(∏s−1−k

j=1
µt+s−j

)
(1− µt+k) + Λs

t ,

where Λs
t is a zero-mean random variable. Since E[(θit + εit)(θit + εit − E[θit|Iit])] = σ2

t + σ2
ε ,

E[θit(θit − E[θit|Iit])] = σ2
t , and (σ2

t + σ2
ε)(1− µt) = σ2

t , it then follows that

E[(θit + εit)η
s
it] = σ2

t

{∏s−1

j=1
µt+s−j +

∑s−1

k=1

(∏s−1−k

j=1
µt+s−j

)
(1− µt+k)

}
.
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The desired result follows from the fact that the term in braces is one.

We now turn to the proof of Proposition 4.

Piece Rates and Variances. The wage of worker i in period t can be expressed as wit = fit + vit,

where fit and vit are its fixed and variable components, respectively. Since competition among

firms implies that E[wit] = E[yit] and vit = b∗tyit, as contracts are linear in output, it follows that

b∗t = E[vit]/E[wit]. With piece rates recovered, the variances (σ2
θ , σ

2
ε , σ

2
ζ ) are identified as follows.

First, σ2
θ and σ2

ε are identified from b∗0, Var[wi0], and Cov[wi0, wi1]. In turn, σ2
ζ is identified from

Var[wi1], b∗1, σ
2
θ , and σ2

ε , since σ2
1 = σ2

ζ + σ2
θσ

2
ε/(σ

2
θ + σ2

ε).

Risk Aversion, Human Capital in Complex Task, and Depreciation. First note that if {b∗t}Tt=0,

σ2
θ , σ2

ε , and σ2
ζ are identified, so are σ2

t , R∗
CC,t, and H∗

t for all t. Thus, r is identified from b∗T , σ2
T

and σ2
ε , as b∗T = 1/[1 + (r/ξ22)(σ

2
T + σ2

ε)], and so b0t is identified for all t from r, σ2
t , and σ2

ε , as

b0t = 1/[1 + (r/ξ22)(σ
2
t + σ2

ε)]. In turn, γ2 is identified from b∗T−1, b0T−1, b
∗
T , R∗

CC,T−1, and H∗
T−1,

as b∗T−1 = b0T−1[1 + (γ2/ξ2)δ(1 − b∗T ) − R∗
CC,T−1 − (r/ξ22)H

∗
T−1]. Finally, λ is identified from

b∗T−2, b
0
T−2, γ2, b

∗
T−1, R∗

CC,T−1, b∗T , R∗
CC,T−2, and H∗

T−2, as b∗T−2 = b0T−2{1+ (γ2/ξ2)[δ(1− b∗T−1 −

R∗
CC,T−1) + δ2λ(1− b∗T )]−R∗

CC,T−2 − (r/ξ22)H
∗
T−2}.

Human Capital in Simple Task and Drift Terms. Note that once {b∗t}Tt=0, σ2
θ , σ2

ε , σ2
ζ , r, γ2, and

λ are identified, so is R∗
HK,t for all t, and thus is e∗2t for all t, since e∗2t = ξ2b

∗
t + ξ2R

∗
CC,t + R∗

HK,t.

Hence, e∗10 is identified from E[wi0] and e∗20 up to mθ, as E[wi0] = mθ + ξ1e
∗
10 + ξ2e

∗
20. In turn, γ1

is identified from e∗10 and λ, as e∗10 = ξ1 + γ1
∑T

τ=0 δ
τλτ−1, and so e∗1t = ξ1 + γ1

∑T−t
τ=1 δ

τλτ−1 is

identified for all t. Now, human capital k∗
t in 1 ≤ t ≤ T is identified from E[wit], e∗1t, and e∗2t up to

mθ, since E[wit] = mθ + k∗
t + ξ1e

∗
1t + ξ2e

∗
2t for all such t. We can then identify the terms {βt}T−1

t=0

from {k∗
t }Tt=1, {e∗1t}T−1

t=0 , {e∗2t}T−1
t=0 , λ, γ1, and γ2, as k∗

t+1 = λk∗
t + γ1e

∗
1t + γ2e

∗
2t + βt for all such t.

We now consider the case of unobserved heterogeneity. Suppose there exist J ≥ 1 types of

workers who differ in their distributions of initial ability, shocks to output, and shocks to ability;

their degree of risk aversion; and their human capital process. The model parameters for each

type j are observable to model agents but not to the econometrician. Denote the probability that a

worker is type j by πj , and let σ2
jθ, σ

2
jε, σ

2
jζ , rj , 1−λj , γj1, γj2, and βjt be, respectively, the variance

of the initial distribution of ability, the variance of the output shocks, the variance of the ability
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shocks, the risk aversion parameter, the depreciation rate of human capital, the rate of human

capital accumulation in the simple task, the rate of human capital accumulation in complex task,

and the period-t drift term in the human capital process for type-j workers. Proposition 1 holds for

each worker type. Let e∗j1t, e
∗
j2t, and b∗jt be, respectively, the effort in the simple task, effort in the

complex task, and piece rate in period t for type-j workers, and let k∗
jt be the human capital of such

workers in t. By (3), the wage of worker i of type j with ability θijt in t is wijt = fijt + vijt, where

fijt = (1− b∗jt)E[θijt+ k∗
jt+ ξ1e

∗
j1t+ ξ2e

∗
j2t|Iit] and vijt = b∗jt(θijt+ k∗

jt+ ξ1e
∗
j1t+ ξ2e

∗
j2t+ εijt) are

its fixed and variable components. Thus, wijt is normally distributed by (5) and the distribution of

wages in each period is a finite mixture of normal distributions. As such mixtures are identifiable

(Teicher [1963]), both the mixture weights {πj}j∈J and the component distributions are identified

in each period, and so are their component means {Ej[wijt]}j∈J . Since vijt is normally distributed

as well, the distribution of the variable component of wages in each period is also a finite mixture

of normal distributions with the same component weights as the corresponding mixture distribution

of wages. Hence, for each worker type j and period t, mean variable wages Ej[vijt] are identified

as well so that the piece rate of type-j workers in t is identified as b∗jt = Ej[vijt]/Ej[wijt].48 The

rest of the argument is as in the proof of Proposition 4 for each type j.

Proposition A.1. Suppose that each worker is one of J ≥ 1 types. For each worker type j, the

piece rates {b∗jt}Tt=0 and the variance parameters (σ2
jθ, σ

2
jε, σ

2
jζ) are identified from a panel of wages

and their variable components. Once piece rates and (σ2
jθ, σ

2
jε, σ

2
jζ) are identified, the risk aversion

parameter rj , the rate of human capital accumulation in the complex task γj2, and the depreciation

rate 1−λj are identified from piece rates. Once piece rates and (σ2
jθ, σ

2
jε, σ

2
jζ , rj, γj2, λj) are iden-

tified, the rate of human capital accumulation in the simple task γj1 and the drift terms {βjt}T−1
t=0

are identified from mean wages up to mjθ.

Proposition A.1 immediately extends to the case in which wages and their fixed and variable

components are measured with error, provided that this error is additive and normally distributed.

Through this latent-type formulation in which workers differ in their ability distribution and human

capital process in an unrestricted way, the model accommodates alternative settings in which work-
48The correct pairing of the components of the mixtures of total and variable wages in each t is possible by their

mixing weights, since the weights of these mixtures are identical type by type. Then, simply imposing the constraint
that types be ordered—say, by the size of their mixing weights—not only resolves the usual label ambiguity of finite
mixture models but also allows for such pairings.
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ers of higher ability may be more or less efficient at acquiring new skills. This more general setup

thus relaxes the impact of our functional-form assumptions by leading to a flexible dependence of

wages on ability, uncertainty about it, human capital, risk, and workers’ risk attitudes.

A.5 Extension: Wage Markdowns

We first extend our model to the case in which workers capture a fraction α ∈ (0, 1] of the surplus

from their matches with firms; our baseline model corresponds to α = 1. We omit most of the

details in what follows, as derivations for this more general model follow very closely derivations

for the baseline model.

A.5.1 Setup

The setup is the same as the baseline model except that now workers capture a fraction α ∈ (0, 1]

of the surplus from their matches with firms. Consider worker i in period t. The expected value of

the match between the worker and a firm is E[yit|Iit]. Thus, if Πit is the expected flow profit of the

firm that employs i in t, then Πit = (1 − α)E[yit|Iit]. On the other hand, since wit = cit + bityit,

we have that Πit = E[yit − wit|Iit] = (1 − bit)E[yit|Iit] − cit. Thus, cit = (α − bit)E[yit|Iit], and

so wit = (α− bit)E[yit|Iit] + bityit.

A.5.2 Equilibrium Characterization

The process of learning about ability is as in the baseline model. Thus, posterior beliefs about a

worker’s ability are normally distributed with mean and variance that evolve according to the laws

of motion in (4), and the evolution of workers’ reputation is as in (5).

As in the baseline model, the equilibrium is unique, symmetric, and such that effort choices

and piece rates depend only on time. If workers face a sequence {(e1t, bt)}Tt=0 of employment

contracts such that efforts in the simple task and piece rates depend only on time, then effort in the

complex task in period t is e2t = ξ2bt + ξ2RCC,t +RHK,t, where RHK,t has the same expression as

in the baseline model and now RCC,t =
∑T−t

τ=1 δ
τ (α − bt+τ )(

∏τ−1
k=1 µt+τ−k)(1 − µt). The intuition

for this result is simple. The derivation of RHK,t does not depend on the surplus-sharing rule,

so its expression does not change. The expression for RCC,t follows from the fact that the fixed

component of a worker’s wage in period t + τ with 0 ≤ τ ≤ T − t is now a fraction α − bt+τ of

the worker’s expected output in t+ τ .
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The derivation of equilibrium employment contracts follows the same steps as those in the

baseline case. Given that workers now capture only a fraction α of their expected output, we have

that ∂E[Wt|It]/∂b = α(ξ22 + ξ2γ2
∑T−t

τ=1 δ
τλτ−1) and ∂E[Wt|It]/∂e1t = α(ξ1 + γ1

∑T−t
τ=1 δ

τλτ−1).

One can adapt the argument in the baseline case to show that Cov[wt, wt+τ |It] = αbσ2
t for all

0 ≤ t ≤ T and 1 ≤ τ ≤ T − t, from which it follows that ∂Var[Wt|It]/∂b = 2b(σ2
t +σ2

ε)+2αH∗
t .

Finally, for the same reason as in the baseline case, ∂Var[Wt|It]/∂e1 = 0. Therefore, the period-t

employment contract is (e∗1t, b
∗
t ) with e∗1t = α(ξ1 + γ1

∑T−t
τ=1 δ

τλτ−1) and

b∗t = b0t

{
α
[
1 + (γ2/ξ2)

∑T−t

τ=1
δτλτ−1

]
− (1/ξ2)R

∗
HK,t −R∗

CC,t − (rα/ξ22)H
∗
t

}
,

where R∗
CC,t and R∗

HK,t are the expressions RCC,t and RHK,t given above with b∗t in place of bt for

each period t, and b0t and H∗
t are the same as in the baseline model.

A.5.3 Identification

The share α is pinned down by the ratio of firm wages to revenues. Since now E[wit] = αE[yit],

it follows that b∗t = E[vit]/E[yit] = αE[vit]/E[wit]. Thus, piece rates are identified from α and

a panel of wages and their variable components. To identify the variance parameters (σ2
θ , σ

2
ε , σ

2
ζ ),

note that the wage residual in period t is now rit = (α−b∗t )E[θit|Iit]+b∗t (θit+εit). The same steps as

those in the derivation of the second moments of the wage distributions in the baseline model show

that Var[wit] = α2(σ2
θ+tσ2

ζ−σ2
t )+(b∗t )

2(σ2
t +σ2

ε) and Cov[wit, wit+s] = α2(σ2
θ+tσ2

ζ−σ2
t )+αb∗tσ

2
t .

The rest of the identification argument is the same as in the baseline model.

A.6 Extension: General Cost Function

Now we consider the case in which c(e1, e2) = (ρ1e
2
1 + 2ηe1e2 + ρ2e

2
2)/2 with ρ1, ρ2 > 0. By

redefining e1 as e1/
√
ρ1 and e2 as e2/

√
ρ2, this case is equivalent to the one in which c(e1, e2) =

(e21 + 2η̂e1e2 + e22)/2 with η̂ = η/
√
ρ1ρ2, the rates at which effort in the simple and complex tasks

increase output are ξ1
√
ρ1 and ξ2

√
ρ2, respectively, and the rates of human capital accumulation in

the simple and complex tasks are γ1
√
ρ1 and γ2

√
ρ2, respectively. Thus, we set ρ1 = ρ2 = 1 in

what follows. We also assume that η2 < 1.49

49When η2 ≥ 1, the complementarity or substitutability between tasks is strong enough that a change in the effort
in one task changes the marginal cost of effort in the other task by more than it changes the marginal cost in the task
itself, making the worker’s problem ill-behaved.
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Learning about Ability and Effort in the Complex Task. The process of learning about ability

is the same as in the baseline model (η = 0). Likewise, the equilibrium is unique, symmetric, and

such that effort choices and piece rates depend only on time. Suppose workers face a sequence

{(e1t, bt)}Tt=0 of employment contracts in which effort choices in the simple task and piece rates

depend only on time and consider a worker’s choice of effort in the complex task in period t, e2t,

when the worker’s future effort choices in this task depend only on time. Since now the marginal

cost of effort e2 in the complex task when effort in the simple task is e1 is e2+ηe1, the necessary and

sufficient first-order condition for the optimal choice of e2t is e2t+ ηe1t = ξ2bt+ ξ2RCC,t+RHK,t,

where RCC,t and RHK,t are still given by (7).

Equilibrium Employment Contracts. As in the baseline model, we use a backward induction

argument to derive the equilibrium employment contracts and show that they are symmetric across

workers and such that efforts in the simple task and piece rates depend only on time. Here, we

only discuss the induction step in the derivation of the equilibrium employment contracts. It is

straightforward to adapt the induction step to derive the equilibrium employment contracts in the

last period and show that efforts in the simple task and pieces rates are the same for all workers

and (trivially) depend only on T .

Let 0 ≤ t < T and suppose the equilibrium efforts and piece rates from period t+1 on depend

only on time. For each 1 ≤ τ ≤ T − t, let b∗t+τ be the equilibrium piece rate in period t + τ , and

define R∗
CC,t and R∗

HK,t as in the baseline model. Then, a worker’s effort in the complex task in

period t when the period-t employment contract is (e1, b) is e2 = −ηe1 + ξ2b+ ξ2R
∗
CC,t + R∗

HK,t.

A worker’s equilibrium employment contract in t is the pair (e1, b) maximizing Vt = E[Wt|It] −

(r/2)Var[Wt|It] − (e21 + 2ηe1e2 + e22)/2, where Wt and It are as before. We determine the pair

(e1, b) maximizing Vt in what follows. As in the baseline model, this pair is independent of It and

so the same for all workers. The expression for ∂E[Wt|It]/∂b is the same as in the baseline model

as it is still the case that ∂e2/∂b = ξ2. Now note that

∂E[Wt|It]
∂e1

= ξ1 + γ1
∑T−t

τ=1
δτλτ−1 +

∂e2
∂e1

[
ξ2 + γ2

∑T−t

τ=1
δτλτ−1

]
= ξ1 − ηξ2 + (γ1 − ηγ2)

∑T−t

τ=1
δτλτ−1;

unlike in the baseline model, effort in the simple task now affects effort in the complex task
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(∂e2/∂e1 = −η). As effort in either task does not affect the variance of current or future wages,

the partial derivatives ∂Var[Wt|It]/∂b and ∂Var[Wt|It]/∂e1 remain the same. Finally, given that

dc(e1, e2)/db = (ηe1 + e2)∂e2/∂b = ξ2(ηe1 + e2) and dc(e1, e2)/de1 = e1 + η(e2 + e1∂e2/∂e1) +

e2∂e2/∂e1 = (1− η2)e1, the necessary and sufficient conditions for the problem of maximizing Vt

are then given by ξ1 − ηξ2 + (γ1 − ηγ2)
∑T−t

τ=1 δ
τλτ−1 − (1− η2)e1 = 0 and

ξ22 + γ2ξ2
∑T−t

τ=1
δτλτ−1 − rb(σ2

t + σ2
ε)− rH∗

t − ξ2
(
ξ2b+ ξ2R

∗
CC,t +R∗

HK,t

)
= 0.

The unique solution to the above first-order conditions is the pair (e1, b) = (e∗1t, b
∗
t ) with e∗1t =

(1 − η2)−1[ξ1 − ηξ2 + (γ1 − ηγ2)
∑T−t

τ=1 δ
τλτ−1] and b∗t given by the equilibrium piece rate in the

baseline model; the pair (e∗1t, b
∗
t ) is the equilibrium employment contract in t. To understand why η

does not affect equilibrium piece rates, it is useful to recall why in multi-tasking models such as in

Holmström and Milgrom [1991] the degree of substitutability (or complementarity) between effort

choices matters for equilibrium piece rates. In such models, all effort choices are non-contractable

and so must be incentivized by output-contingent contracts. Thus, increasing incentives for effort

in one task affects the power of contracts to incentivize effort in other tasks. In our model, since

effort in one of the tasks is contractable, the provision of incentives for effort in the task with

non-contractable effort is not affected by the level of effort in the task with contractable effort. In

the supplementary appendix, we present an alternative multi-tasking model in which both tasks

feature non-contractable effort and the degree of substitutability between effort choices matters for

incentive provision.

A.7 Extension: Cobb-Douglas Technology

We now show how our model can be viewed as the log version of a model in which the output and

human capital technologies are of the standard Cobb-Douglas form.

A.7.1 Setup

We begin by describing the setup. To keep the exposition brief, we just detail what changes in the

setup relative to the baseline model.

Production. The output of worker i in period t is Yit = ΘiKitE
ξ1
i1tE

ξ2
i2tΩit, where Θi is the worker’s

unobserved ability, which we assume is time-invariant for simplicity, Ei1t and Ei2t are the worker’s
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effort in the simple and complex task, respectively, Kit is the worker’s human capital, Ωit is an

idiosyncratic noise term, and ξ1 and ξ2 are positive constants. The ability Θi and the noise terms

Ωit are drawn from log-normal distributions with parameters (mθ, σ
2
θ) and (0, σ2

ε), respectively.

Human Capital. The human capital of workers evolves over time according to the law of motion

Kit+1 = BtK
λ
itE

γ1
i1tE

γ2
i2t, where Bt is a positive constant, 1 − λ ∈ [0, 1], γ1 and γ2 are constants,

and Ki0 ≡ K0 is the worker’s initial stock of human capital.

Preferences. The lifetime utility of a worker who, from period t on, receives the wages {Wt+τ}T−1
τ=0

and exerts the efforts {E1t+τ}T−t
τ=0 and {E2t+τ}T−t

τ=0 in the simple and complex tasks, respectively, is∑T−t
τ=0 δ

τ (ln(Wt+τ )− ln(E1t+τ )
2/2− ln(E2t+τ )

2/2).50

Contracts and Equilibrium. An employment contract for worker i in period t is a pair (Ei1t,Wit),

where Wit is the worker’s wage schedule in t. We assume that Wit = CitY
bit
it with Cit ∈ R+ and

bit ∈ R. Since bit = (Yit/Wit)dWit/dYit, the elasticity of wages with respect to output, we can

thus interpret bit as a piece rate. As in the baseline model, in equilibrium firms make zero expected

profits in every period. Hence, if (Ei1t,Wit) is worker i’s equilibrium contract in period t when

the public information about the worker is Iit, then E[Yit|Iit] = E[Wit|Iit] = CitE[Y bit
it |Iit], and

so ln(Cit) = ln(E[Yit|Iit]) − ln(E[Y bit
it |Iit]). We determine the implications of this fact for (log)

wages in what follows.

A.7.2 Equilibrium Characterization

We now characterize the equilibrium.

Learning about Ability. Let yit = ln(Yit), θi = ln(Θi), kit = ln(Kit), ei1t = ln(Ei1t), ei2t =

ln(Ei2t), and εit = ln(ωit). Moreover, let Iit be the public information about worker i in period

t. Given that yit = θi + kit + ξ1ei1t + ξ2ei2t + εit and εit is normally distributed with mean 0

and variance σ2
ε , it follows from the argument in the main text that θi|Iit is normally distributed

with mean mit and variance σ2
t , where mit = E[θit|Iit] and σ2

t have the same expressions as in the

baseline model when σ2
ζ = 0.

50Note that unlike in the baseline model, where it is a present-discounted sum of wage payments, here Wt is a wage.
Our analysis extends to the case in which the payoff to a worker from wages {Wt+τ}T−1

τ=0 and efforts {E1t+τ}T−t
τ=0 and

{E2t+τ}T−t
τ=0 is − exp

{
− r

[∑T−t
τ=0 δ

τ
(
ln(Wt+τ )− ln(E1t+τ )

2/2− ln(E2t+τ )
2/2

) ]}
with r > 0. The parameter r

is not the workers’ coefficient of risk aversion, though.
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Effort in the Complex Task. We first derive the implications of free entry of firms for (log) wages.

Since in any period t the posterior belief about θi is normally distributed with mean E[θit|Iit]

and variance σ2
t , we have that E{exp[a(θi + εit)]|Iit} = exp (aE[θi|Iit]+a2(σ2

t + σ2
ε)/2) for all

a ∈ R, and so E[Y a
it |Iit] = E[exp(ayit)|Iit] = exp (aE[yit|Iit] + a2(σ2

t + σ2
ε)/2). Hence, ln(Cit) =

(1− bit)E[yit|Iit] + (1− b2it)(σ
2
t + σ2

ε)/2, and so

wit = ln(Wit) = (1− bit)E[yit|Iit] + bityit + (1− b2it)(σ
2
t + σ2

ε)/2. (18)

Thus, as in the baseline model, employment contracts are summarized by the pair (ei1t, bit). Note,

however, that the expression for ln(Wit) differs from the expression for wit in (3) by the term

(1− b2it)(σ
2
t + σ2

ε)/2. We determine the implications of this below.

As in the baseline model, the equilibrium is unique, symmetric, and is such that (log) effort

choices and piece rates depend only on time. Assume workers face a sequence {(e1t, bt)}Tt=0 of

employment contracts in which efforts in the simple task and piece rates depend on time. Consider

worker i’s period-t choice of effort in the complex task, e2t, when the worker’s future effort choices

in this task depend only on time. The worker chooses e2t to maximize
∑T−t

τ=0 δ
τE[wit+τ |ht

i]−e22t/2,

where ht
i is the worker’s history in period t and wit+τ is given by (18) with bit+τ ≡ bt+τ for all

0 ≤ τ ≤ T − t. Since the terms (1 − b2t+τ )(σ
2
t + σ2

ε) in wit+τ are deterministic and the law of

motion for (log) human capital is the same as the law of motion in (2) with βt = ln(Bt), it follows

that the optimal choice of e2t is the same as in the baseline model.

Equilibrium Employment Contracts. We again proceed by backward induction to compute the

equilibrium employment contracts. As in the baseline model, a worker’s choice of (log) effort in the

complex task in period T is e2 = ξ2b if the worker’s piece rate is b. Free entry of firms implies that

a worker’s employment contract in T is the pair (e1, b) maximizing VT = E[wT |IT ]− (e21 + e22)/2,

where IT is as before.51 Since, by (18), E[wT |IT ] = E[yT |IT ]+(1−b2)(σ2
T +σ2

ε)/2 ∝ ξ1e1+ξ22b+

(1 − b2)(σ2
T + σ2

ε)/2, it follows that the pair maximizing VT is (e1, b) = (e∗1T , b
∗
T ) with e∗1T = ξ1

and b∗T = 1/[1 + (1/ξ22)(σ
2
T + σ2

ε)].

Now let 0 ≤ t < T and suppose that equilibrium piece rates and (log) efforts from period

t + 1 on depend only on time. For each 1 ≤ τ ≤ T − t, let b∗t+τ be the equilibrium piece

rate in t + τ and once again define R∗
CC,t and R∗

HK,t as in (7) with bt+τ = b∗t+τ for each 1 ≤
51The variance of (log) wages does not show up in VT given our preference specification.
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τ ≤ T − t. Then, a worker’s period-t effort in the complex task as a function of the piece rate

b in t is e2 = ξ2b + ξ2R
∗
CC,t + R∗

HK,t and a worker’s equilibrium employment contract in t is

the pair (e1, b) maximizing Vt =
∑T−t

τ=0 δ
τ−1E[wt+τ |It]− (e21 + e22)/2, where It is as before. Since

E[wt|It] = E[yt|It]+(1−b2)(σ2
t +σ2

ε)/2 and, for all 1 ≤ τ ≤ T−t, E[wt+τ |It] = E[yt+τ |It]+w0
t+τ ,

where w0
t+τ is a constant term, it follows that∑T−t

τ=0
δτ

∂E[wt+τ |It]
∂b

= ξ22 + ξ2γ2
∑T−t

τ=0
δτλτ−1 − b(σ2

t + σ2
ε).

and that
∑T−t

τ=0 ∂E[wt+τ |It]/∂e1 = ξ1 + γ1
∑T−t

τ=0 δ
τλτ−1. Thus, the pair (e1, b) maximizing Vt is

(e1, b) = (e∗1t, b
∗
t ), where e∗1t = ξ1+γ1

∑T−t
τ=0 δ

τλτ−1 and b∗t is the period-t piece rate in the baseline

model when the workers’ (effective) coefficient of risk aversion is 1/ξ22 .52

A.8 Extension: More General Human Capital Process

We now discuss the case in which the law of motion for human capital depends nonparametrically

on effort. For simplicity, we assume only the complex task is present. The model is that of the main

text with ξ1 = γ1 = 0 except that the law of motion for human capital is kit+1 = λkit + Ft(ei2t),

where Ft : R → R is thrice differentiable and weakly concave with supe∈R F
′
t(e) < ∞, F ′′′

t (e)

nonpositive and nondecreasing, and infe∈R F
′′
t (e) > −∞. For ease of notation, in what follows we

denote ei2t simply by eit. This case reduces to the case in the main text with only the complex task

when Ft(e) = γ2e for all t ≥ 0.

A.8.1 Equilibrium Characterization

Given that the main focus here is on extending the identification argument to a more general human

capital process, we state the equilibrium characterization of the model considered in this section

without proof; see the supplementary appendix for a proof.

Proposition A.2. Suppose that

σ2
t

σ2
ε

< F ′
t(e) <

σ2
t

σ2
ε

[1 + r(σ2
t + σ2

ε)] for all e ∈ R and t < T.

There exist λ ∈ (0, 1) and r > 0 such that if λ ∈ (λ, 1] and r ∈ (0, r), then, in the unique

equilibrium, piece rates and effort choices in the complex task are the same for all workers and
52With the more general preference specification of footnote 50, one can show that the equilibrium is as in the

baseline model when workers’ coefficient of risk aversion is (1 + r)/ξ22 .

23



depend only on time. Moreover, piece rates are in the interval (0, 1). Let e∗t be the equilibrium

effort in the complex task in period t and b∗t be the equilibrium piece rate in the same period.

Moreover, let R∗
CC,t be given by (7) with bt = b∗t , R

∗
HK,t = F ′

t(e
∗
t )
∑T−t

τ=1 δ
τλτ−1(b∗t+τ + R∗

CC,t+τ ),

H∗
t = σ2

t

∑T−t
τ=1 δ

τ , and r∗t = r{1− [F ′′
t (e

∗
t )/F

′
t(e

∗
t )]R

∗
HK,t}. Then e∗t = b∗t +R∗

CC,t +R∗
HK,t and

b∗t =
1

1 + r∗t (σ
2
t + σ2

ε)

[
1 + F ′

t(e
∗
t )
∑T−t

τ=1
δτλτ−1 −R∗

HK,t −R∗
CC,t − r∗tH

∗
t

]
.

The restrictions on the rates F ′
t(e) of human capital accumulation are natural if piece rates

are to be in the (0, 1) interval. These rates cannot be too positive, otherwise piece rates are greater

than one. Likewise, these rates have to be sufficiently positive, otherwise the learning-about-ability

motive dominates, and we know from Gibbons and Murphy [1992] that this can lead to negative

piece rates. Additionally, workers cannot be too risk averse, otherwise the demand for insurance

against the lifetime wage risk due to the uncertainty about ability overwhelms all other factors

determining equilibrium piece rates, leading to negative piece rates. Finally, since human capital

depreciation erodes the impact of human capital accumulation, it must be small.

A.8.2 Identification

We now show that this version of our model is also identified provided that information on workers’

performance is available in addition to information on wages, as is the case in the firm-level data

sets we examine and in many others commonly used (Frederiksen et al. [2017]). We first consider

the simpler case in which the available performance measure is a noisy measure of only a worker’s

effort. Let then pit = eit + ηit be the performance measure of worker i in period t observed by the

econometrician, where ηit is a continuously distributed noise term independent across workers and

over time with cumulative distribution function G(η) and known mean.53

To transparently convey the role of performance information for the recovery of the primi-

tives of interest in this more general case, we keep the discussion here purposely informal. The

identification argument proceeds as follows. Note from (3) that E[wit] = mθ + k∗
t + e∗t . Given

53That this additional outcome measure is informative about effort (or human capital) is a key step to separately
recover the experience profile of effort and human capital in this more general case and is a common assumption. As
is the case in standard factor models, the paths of effort and human capital can be identified if the signals about effort
and human capital observed by the econometrician—wages and performance, in our case—are common to multiple
measurements but the noise in these measurements is not (see, for instance, Cunha et al. [2010]). These conditions are
satisfied in our case, since observed wages and performance depend on effort and human capital up to measurement
errors, εit and ηit, that are independent of each other.
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that E[pit] = e∗t + E[ηit] and E[ηit] is known, both e∗t and k∗
t in each t are identified from av-

erage wages and average performance in t up to mθ. Observe next that E[wiT ] − λE[wiT−1] =

k∗
T + e∗T − λ(k∗

T−1 + e∗T−1) + (1− λ)mθ. Thus, λ is identified from the vector (k∗
T−1, e

∗
T−1, k

∗
T , e

∗
T )

up to mθ. Now, since k∗
t+1 = λk∗

t + Ft(e
∗
t ), we can identify (F0(e

∗
0), . . . , FT−1(e

∗
T−1)) from λ

and the sequence of equilibrium efforts and stocks of human capital from 0 to T . Hence, if the

functions Ft(e) do not depend on experience or, alternatively, if they do and any of the parameters

σ2
θ , σ2

ε , σ2
ζ , r, and λ vary across observable groups of workers so that different choices of effort

are induced among different groups of workers in each t, then these functions are identified from

(F0(e
∗
0), . . . , FT−1(e

∗
T−1)) and (e∗0, . . . , e

∗
T−1).

54 The identification of piece rates and the remaining

parameters follows by the same argument as in the proof of Proposition 4.

An analogous argument applies when the econometrician observes only a discrete version of

pit if G(η) is known. Assume that for each t, there exist thresholds p1t < . . . < pKt and that the

econometrician observes the discrete performance measure poit given by

poit =


0 if pit ≤ p1t

k if pkt < pit ≤ pk+1t for k ∈ {1, . . . , K − 1}

K if pit > pKt

.

This is a plausible representation of performance scales that are common in firms; see, for instance,

the evidence from Baker et al. [1994a]. Since P{poit =K}=1 − P{pit ≤ pKt} and P{poit = k}=

P{pit ≤ pk+1t} − P{pit ≤ pkt} for all k, the probabilities P{pit ≤ p1t} to P{pit ≤ pKt} are

identified from the probabilities P{poit = 1} to P{poit = K}—that is, from the distribution of the

discrete performance measure poit in period t. Now observe that since E[wit] = mθ + k∗
t + e∗t and

P{pit ≤ pkt} = P{ηit ≤ pkt − e∗t} = G(pkt − e∗t ) for each k with G strictly increasing and so

invertible, we have a linear system of K + 1 equations

k∗
t + e∗t = E[wit]−mθ

pkt − e∗t = G−1(P{pit ≤ pkt}) for k ∈ {0, . . . , K}

54Our argument holds regardless of the length of the time interval between periods. Thus, when the functions Ft(e)
are independent of t, wage and performance information available at higher frequency, and so for more periods overall,
would allow us to identify the common function F (e) at a greater number of support points. When the functions Ft(e)
depend on t, it is easy to see from the first-order conditions for effort that variation in σ2

θ , σ2
ε , σ2

ζ , r, or λ among
workers, say, with different age at entry into the firm or who entered in different periods, would induce variation in
effort in each t that would allow us to identify Ft(e) at every possible equilibrium choice of effort in t.
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in the K + 3 unknowns (e∗t , k
∗
t ,mθ, p1t, . . . , pKt) for each t. This system has a unique solution up

to mθ and, say, p1t. Indeed, since P{pit ≤ p1t} is identified from the distribution of the discrete

performance measure in t, the sub-system consisting of the first two equations admits a unique

solution for e∗t and k∗
t if mθ and p1t are known. Given that the probabilities P{pit ≤ pk} for k ≥ 2

are also identified from the distribution of the discrete performance measure in t, we can then

recover pkt for each k ≥ 2 as pkt = e∗t +G−1(P{pit ≤ pkt}). Thus, the vector (e∗t , k
∗
t , p2t, . . . , pKt)

is identified from mean wages and the distribution of workers’ performance up to mθ and p1t in

each period t. The rest of the argument is as above.

The identification argument so far has relied on a specific functional form for the performance

measure pit. We now extend this argument to the more general case in which pit = ft(eit, kit)+ηit,

where ft : R2 7→ R is a known continuously differentiable function nondecreasing in each of its

arguments such that ∂ft(e, k)/∂e ̸= ∂ft(e, k)/∂k for all (e, k) ∈ R2 and e 7→ ft(e, α − e) is

surjective for all α ∈ R. These assumptions trivially hold in the case just discussed.55 We only

consider the case in which the econometrician observes pit, as it will be clear that we can extend

the analysis to the case in which the econometrician observes the discrete version poit by following

the approach discussed above. For each t, we have the system of equations

e∗t + k∗
t = E[wit]−mθ

ft(e
∗
t , k

∗
t ) = E[pit]− E[ηit]

, (19)

where E[wit] and E[pit] are observed by the econometrician and E[ηit] is known. We claim that (19)

has a unique solution. Indeed, using the first equation in (19) to solve for k∗
t , the second equation

in (19) becomes

ft(e
∗
t ,E[wit]−mθ − e∗t ) = E[pit]− E[ηit]. (20)

Since e 7→ ft(e, α − e) is surjective for all α ∈ R, equation (20) has a solution regardless of mθ,

E[wit], E[pit], and E[ηit]. Now let h(e) = ft(e,E[wit]−mθ−e). Since ∂ft(e, k)/∂e ̸= ∂ft(e, k)/∂k

for all (e, k) ∈ R2 implies that h′(e) ̸= 0 for all e ∈ R, the solution to (20) is unique. Thus,

55We can extend the analysis to the case in which the performance measure depends on worker ability by noting
that if pit = ft(eit, kit, θit) + ηit, then p̂it = Eθ[ft(eit, kit, θit)] + ηit, where Eθ[ft(e, k, θ)] is the expectation of
ft(e, k, θ) with respect to θ, plays the role of the performance measure considered so far. Indeed, since we can identify
the distribution of workers’ abilities in any period t from observed wages and their variable component up to mθ, we
can treat f̂t(eit, kit) = Eθ[ft(eit, kit, θit)] as a known function. It is easy to provide conditions on the functions ft(·)
under which the functions f̂t(·) satisfy the conditions for identification discussed.
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workers’ effort and stock of human capital in each period t are identified from the mean wage and

the mean performance measure in t up to mθ. The rest of the identification argument is as before.

Finally, we prove that ∂ft(e, k)/∂e ̸= ∂ft(e, k)/∂k for all (e, k) ∈ R2 and e 7→ ft(e, α − e)

surjective for all α ∈ R are necessary for identification. Now, fix t and let Gt : R2 → R2 be

such that Gt(e, k) = (e + k, ft(e, k)). A necessary condition for identification is that the implicit

equation Gt(e, k) = v has a solution for e and k for any v ∈ R2. Given that Gt is continuously

differentiable, it follows from Haddamard’s global inverse function theorem (see Gordon [1972])

that Gt is a (C1) diffeomorphism if, and only if, DGt(e, k), the Jacobian matrix of Gt evaluated at

(e, k), has non-zero determinant for all (e, k) ∈ R2 and lim||(e,k)||→∞ ||Gt(e, k)|| = ∞, where || · ||

is the Euclidian norm.56 Since detDGt(e, k) = ∂ft(e, k)/∂k − ∂ft(e, k)/∂e, it then follows that

∂ft(e, k)/∂e ̸= ∂ft(e, k)/∂k for all (e, k) ∈ R2 is necessary for identification. Now observe that

ft continuously differentiable implies that either ∂ft(e, k)/∂k > ∂ft(e, k)/∂e for all (e, k) ∈ R2

or ∂ft(e, k)/∂k < ∂ft(e, k)/∂e for all (e, k) ∈ R2. Assume that the latter condition holds, and

so ft(e, α − e) is strictly increasing in e for all α ∈ R—the same argument applies when the

alternative condition holds. Given that ||Gt(e, α − e)|| =
√
α2 + ft(e, α− e)2 and, regardless of

α ∈ R, we have that ||(e, α − e)|| → ∞ if, and only if, |e| → ∞, we then have that a necessary

condition for lim||(e,k)||→∞ ||Gt(e, k)|| = ∞ is that lim|e|→∞ |ft(e, α − e)| = ∞ for all α ∈ R.

Given that ft(e, α − e) is strictly increasing in e for all α ∈ R, this last condition is equivalent to

lime→∞ ft(e, α−e) = ∞ and lime→−∞ ft(e, α−e) = −∞. Thus, e 7→ ft(e, α−e) surjective for all

α ∈ R is also necessary for identification. The following proposition summarizes this discussion.

Proposition A.3. Suppose that for each worker i and period t, the econometrician observes the

performance measure pit = ft(eit, kit) + ηit, where ft : R2 → R is a known continuously differen-

tiable function nondecreasing in each of its arguments and ηit is a continuously distributed noise

term independent across workers and over time with known mean. For each period t, the choice of

effort in the complex task e∗t and workers’ stock of human capital k∗
t are identified from the mean

wage and the mean performance measure in t up to mθ if, and only if, ∂ft(e, k)/∂e ̸= ∂ft(e, k)/∂k

for all (e, k) ∈ R2 and e 7→ ft(e, α− e) is surjective for all α ∈ R.

The availability of the performance measure discussed begs the question of why firms would

not offer contracts in which they condition wages not only on output but also on this measure. As
56G : Rn → Rn is a diffeomorphism if G is invertible and both G and G−1 are continuously differentiable.
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argued by Holmström [1979], firms should do so as long as a worker’s output is not a sufficient

statistic for this additional measure. A sizable literature, though, has documented that firms tend to

have more information about workers’ performance than the information contracts are conditioned

on; see, for instance, the discussion in Baker [1992]. A common explanation for this feature of

contracts observed in practice is that although they are observable, performance measures often are

not verifiable or are manipulable by workers. When workers’ ability is uncertain, although firms

cannot or may not wish to explicitly link wages to all performance measures they observe, they can

still use them to form expectations about workers’ ability. This influences offered contracts even

if contracts do not explicitly depend on all these measures. In the supplementary appendix, we

account for this effect of additional performance measures on the inference process about ability

and show that our characterization and identification results extend to this case.

A.9 Extension: Heterogeneous Workers

In the last extension we consider, we allow workers to be either heterogeneous in their ability to

perform the complex task or heterogeneous in how their ability contributes to output. Since the

analysis of both cases is very similar, we focus on the first case, briefly discussing the second case

in our remarks at the end. The case in which workers are heterogeneous in their ability to perform

the simple task also follows immediately.

A.9.1 Setup and Equilibrium

Workers are heterogeneous in the rate at which their effort in the complex task affects output

but homogeneous in all other model parameters. There are J ≥ 1 such types of workers. Let

πj ∈ (0, 1) be the fraction of workers of type j ∈ {1, . . . , J} and ξj2 be the rate at which effort

in the complex task affects output for type-j workers, with 0 ≤ ξ12 < ξ22 < · · · < ξJ2. The

rates {ξj2}Jj=1 are observable to agents in the model but not to the econometrician. As workers are

homogeneous with respect to ξ1, equilibrium efforts in the simple task are the same for all workers

and given by the equilibrium efforts in the baseline model. For type-j workers, equilibrium piece

rates and effort choices in the complex task are as in the baseline model with ξ2 = ξj2.

Let e∗1t be the period-t effort in the simple task and e∗j2t and b∗jt be, respectively, the period-t

effort in the complex task and period-t piece rate for workers of type j. By the same argument as
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in the baseline model, it follows that e∗j2t = ξj2 + γ2
∑T−t

τ=1 δ
τλτ−1 − (r/ξj2)[(σ

2
t + σ2

ε)b
∗
jt +H∗

t ],

where σ2
t and H∗

t are as in the baseline model. Now let s∗jt = (1 + e∗j2t)/(1 + e∗1t) be the task

complexity of the job that workers of type j perform in period t. When piece rates are small,

as we observe in the data, s∗jt is approximately equal to (1 + ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1)−1[1 + ξj2 +

γ2
∑T−t

τ=1 δ
τλτ−1− (r/ξj2)H

∗
t ], which strictly increases with j; that is, at every experience, workers

with higher productivity in the complex task are assigned to higher-complexity jobs.

A.9.2 Identification

Assume that δ and ξ1 are known and suppose that in addition to information on total and variable

pay, we have information on a worker’s job as defined by its complexity; see Section 6.5. Let wijt

and vijt be, respectively, the total and variable pay of worker i of type j in period t. Since wijt

and vijt are normally distributed for each type j, the distributions of total and variable pay in each

period are finite mixtures of normal distributions. By the same argument as in Appendix A.4, the

mixture weights {πj}Jj=1 and the mean total and variable pay, E[wijt] and E[vijt], are identified for

each type j and period t. Therefore, as in the baseline model, the piece rate of type-j workers in

t is identified as b∗jt = E[vijt]/E[wijt], and we can identify the parameters (σ2
θ , σ

2
ε , σ

2
ζ ), and so the

variances σ2
t for all t, from the piece rates and the second moments of the distributions of wages

of a given type of workers in different time periods.57 Since s∗jT = (1+ ξj2b
∗
jT )/(1 + ξ1) increases

strictly with j, and so type-J workers, and only them, occupy the highest-level job in period T ,

it follows that ξJ2 is identified from b∗JT and s∗JT . Then, r can be recovered from σ2
T , σ2

ε , and

b∗jT = 1/[1 + (r/ξ22J)(σ
2
T + σ2

ε)]. From this, it follows that for each 1 ≤ j ≤ J , the parameter ξj2

is identified from r, σ2
T , σ2

ε , and b∗jT = 1/[1 + (r/ξ2jT )(σ
2
T + σ2

ε)]. The rest of the identification

argument for each type j of workers is the same as in the baseline model.

A.9.3 Remarks

We can also extend our analysis to a setup in which workers are heterogeneous in the rate ξθ at

which their ability θ affects output—our baseline model is such that ξθ = 1 for all workers. Since

we can redefine worker ability to absorb the rate ξθ into it, this setup is equivalent to one in which

workers are heterogeneous in the uncertainty σ2
θ about their ability. Intuitively, a higher ξθ means

57By this argument, it would be straightforward to allow these parameters to vary across types of workers.
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that a worker’s performance is more informative about a worker’s ability, which is equivalent to

a higher σ2
θ . The equilibrium in this version of the model is such that workers are heterogeneous

in their piece rates, and thus in their effort in the complex task. One can show that when piece

rates are small, effort in the complex task strictly increases with σ2
θ , as a higher σ2

θ translates into

a smaller σ2
t for all t. Thus, as in the above, workers with higher productivity in the complex task

are assigned to higher-complexity jobs. Identification of this setup proceeds along the same lines

as above.

A.10 Additional Results and Figures

We present here additional results and the omitted figures referenced in Section 6.

Life-Cycle Wage Risk. The output yt realized in any period t has two effects on a worker’s

present-discounted value (PDV) of wages. First, it determines performance pay in t, b∗tyt. Sec-

ond, it leads firms and workers to revise the mean of their beliefs about a worker’s ability by

[σ2
t /(σ

2
t+σ

2
ε)]{yt−E[yt|It]}, where yt−E[yt|It] is the innovation in the information about ability—

that is, the signal zt about ability extracted from realized output yt net of expected ability E[θit|It]—

and σ2
t /(σ

2
t + σ2

ε) is the weight placed on new output signals by the updating rule in (4). Since

beliefs follow a martingale process, such a change in beliefs persists in expectation over time.

Thus, [σ2
t /(σ

2
t + σ2

ε)]
∑T−t

τ=1 δ
τ{yt−E[yt|ht]} is a measure of how this belief revision affects the

expected PDV of wages in t. The standard deviations of these two effects of output on wages are

b∗t
√

(σ2
t + σ2

ε) (static risk) and [σ2
t /(σ

2
t + σ2

ε)](
∑T−t

τ=1 δ
τ )
√

(σ2
t + σ2

ε) (dynamic risk), respectively.

They reflect the variability of the expected PDV of wages in t due to the variability of output in t—

which influences performance pay as captured by the first measure—and to the implied variability

of a worker’s future reputation—as captured by the second measure.

Figure A.3 shows the values of these two measures for our three parameterizations in Table

3. For all of them, the dynamic wage risk induced by learning about ability is notably larger than

the static wage risk induced by performance pay, especially early in the life cycle. For the two

parameterizations in panels a and b that do not impose a fast speed of learning, this dynamic wage

risk at t=0 is close to 90 thousand dollars (per year) with exogenous piece rates and close to 80

thousand dollars with endogenous piece rates. Under both parameterizations, dynamic wage risk

declines fairly linearly over the life cycle. By contrast, static wage risk never exceeds 25 thousand
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dollars (per year) and, since it is proportional to piece rates, roughly follows their shape.

When we impose a fast speed of learning as per our third parameterization in column 3 of

Table 3, we estimate a substantially higher degree of risk associated with learning about ability,

as panel c shows—dynamic risk early in a worker’s career exceeds 200 thousand dollars. Young

workers face such large risk because firms rapidly update their beliefs about workers’ ability early

on, which leads to a high variability in beliefs and so wages. The convex shape of the profile

of dynamic risk arises because beliefs quickly become more precise and less volatile given that

ability is learned fast. Under this parameterization, ability is governed by a random walk process

thus learning continues throughout the life cycle. Indeed, a sizable dynamic risk persists even at

20 and 30 years of experience, and it is much larger than the static risk from performance pay.

Figure A.3: Sources of Dispersion in Lifetime Wages

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates (c) With Faster Learning

For all three parameterizations, the dynamic wage risk due to learning about ability is much

larger than static one due to performance pay. When learning is slow, the difference in magnitude

between the two types of risk is not as stark. But because uncertainty about ability is persistent,

dynamic wage risk remains sizable over most of the life cycle. With fast learning, highly volatile

beliefs lead to an even larger degree of dynamic wage risk over the first half of the life cycle.
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Additional Figures. We collect here figures omitted from the main text.

Figure A.4: Results for Parameterization with Faster Learning

(a) Wage Growth Decomposition (b) Perf. Pay and Wage Growth (c) Wage Variance
0 
0 
0 
T""" 

0 
0 
co 

0 
0 
N 

0 

0 10 20 
Experience 

Wage 

Pert.Pay 

30 40 

Base Pay 

Figure A.5: Variance of Wages and Piece Rates without Uncertainty about Ability

(a) Variance (Fixed P. Rates) (b) Variance (Endogenous P. Rates) (c) Endogenous P. Rates

Figure A.6: Fit of Model with Endogenous Piece Rates and Simple and Complex Tasks

(a) Variance of Wages (b) Wage Growth (c) Piece Rates
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B Supplementary Appendix

We first describe the alternative multi-tasking model in which both tasks feature non-contractable

effort (Section B.1) and then describe the model with observable productivity shocks (Section B.2).

We conclude by deriving the equilibrium of the version of our model with a more general human

capital process (Section B.3) and discussing the extension in which an observable but unverifiable

performance measure is available (Section B.4).

B.1 Extension: Alternative Multi-Tasking Model

We now consider a version of our model in which effort in both tasks is non-contractable, so that

both effort choices must be incentivized by output-contingent contracts. In this case, the degree of

substitutability between effort choices will matter for the incentive power of contracts. The model

we consider here also differs from the baseline model— namely, the model in the main text—in

that it allows a worker’s ability and human capital to contribute differently to each task.

B.1.1 Setup

Each task has its own output and firms care about a worker’s total output. The output of worker

i in task ℓ ∈ {1, 2} in period t is yiℓt = ξℓθθi + ξℓkkit + ξℓeeiℓt + εiℓt, where θi is the worker’s

time-invariant unobserved ability, kit is the worker’s human capital, eiℓt is the worker’s effort in

task ℓ, and εiℓt is an idiosyncratic noise term. The parameter ξℓθ captures the contribution of ability

to output in task ℓ, the parameter ξℓk captures the contribution of human capital to output in task

ℓ, and the parameter ξℓe captures the contribution of effort to output in task ℓ. Worker i’s ability

is draw from normal distribution with mean mθ and variance σ2
θ and εiℓt is normally distributed

with mean zero and variance σ2
ℓε. The law of motion for workers’ stock of human capital is the

same as in the baseline model, and so are worker preferences. In particular, the cost of the effort

pair (e1, e2) is c(e1, e2) = (e21/2 + ηe1e2 + e22/2) with η2 < 1. Now, an employment contract

for worker i in period t consists of a wage schedule wit = cit + bi1tyi1t + bi2tyi2t, where cit is

the fixed component of worker i’s wage in t and biℓt is worker i’s piece rate for task ℓ in t. We

again consider pure-strategy perfect Bayesian equilibria. Free entry of firms together with their

risk neutrality implies that cit = (1 − bi1t)E[yi1t|Iit] + (1 − bi2t)E[yi2t|Iit], where Iit is the public
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portion of worker i’s history in t. Thus, employment contracts can be described by a pair of piece

rates, one for each task.

Remarks. The assumption of constant worker ability is done for simplicity. In what follows, we

also assume that ξ1e = ξ2e = 1; we can easily extend our analysis to the case in which, as in the

baseline model, the contribution of effort to output differs across tasks. We assume that worker

ability is common across tasks but can matter differently for each task; we can extend the model

to allow for task-specific abilities. Human capital is also common across tasks and it can also

matter differently for each task. A more general model allowing for task-specific human capital is

possible. Such an extension is straightforward and does not affect the substance of our results. We

can also extend the model to the case in which output shocks are correlated across tasks.

B.1.2 Equilibrium Characterization

We now characterize the equilibrium.

Learning about Ability. Consider worker i in period t, whose equilibrium effort choices and

human capital in t are e∗1t, e
∗
2t, and k∗

t , respectively; as in the main text, we omit the dependence of

effort choices and human capital on i for ease of notation. Let ziℓt = (yiℓt − ξℓkk
∗
t − e∗ℓt)/ξℓθ be the

part of the worker’s period-t output in task ℓ ∈ {1, 2} that is not explained by the worker’s human

capital and effort in ℓ. Then, ziℓt = θ + ε̃iℓt with ε̃iℓt = εiℓt/ξℓθ is the signal about the worker’s

ability extracted from the worker’s output in task ℓ. As in the baseline model, it then follows

that posterior beliefs about a worker’s ability in any period are normally distributed and so fully

described by their conditional mean mit, namely, the worker’s reputation, and variance σ2
it. Now

let σ2
ε = σ2

1εσ
2
2ε/(ξ

2
2θσ

2
1ε + ξ21θσ

2
2ε), ω1 = ξ21θσ

2
2ε/(ξ

2
2θσ

2
1ε + ξ21θσ

2
2ε), ω2 = ξ22θσ

2
1ε/(ξ

2
2θσ

2
1ε + ξ21θσ

2
2ε),

and zit = ω1zi1t + ω2zi2t. One can show that the laws of motion for mit and σ2
it are58

mit+1 = σ2
εmit/(σ

2
it + σ2

ε) + σ2
itzit/(σ

2
it + σ2

ε) and σ2
it+1 = σ2

itσ
2
ε/(σ

2
it + σ2

ε).

Note that if ξ1θ = 0, and ability does not matter for output in task 1, then ω1 = 0, ω2 = 1, and

σ2
ε = σ2

2ε/ξ
2
2θ, the variance of ε̃i2t. In this case, the above formulas reduce to the ones in (4)

58Since noise terms are independent across tasks, we can break the belief-updating process in any period into two
parts. First, agents update their beliefs about a worker’s ability θ by using zi1t, then they update their beliefs about θ
using zi2t. We obtain the above formulas by applying the formulas used in the baseline case.
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if ξ2θ = 1. This result is expected, as in this case firms can learn about a worker’s ability only

through the worker’s performance in task 2 and the rate at which ability contributes to output in

task 2 is one. Similar results hold if ξ2θ = 0 and ξ1θ = 1. Also note that σ2
ε strictly decreases with

both ξ1θ and ξ2θ. Intuitively, increasing the importance of ability for either task makes workers’

performance more informative about ability.

As in the baseline model, since σ2
it evolves independently of zit, and so is common for all

workers in t, we can suppress the subscript i and denote this variance by σ2
t . For each 0 ≤ t ≤ T

and 0 ≤ τ ≤ T − t, let Σt+τ = σ2
t /(τσ

2
t + σ2

ε). Iterating on the law of motion for mit, we obtain

that worker i’s reputation in period t+ τ given reputation mit in t is

mit+τ = σ2
εmit/(τσ

2
t + σ2

ε) + Σt+τ

∑τ−1

s=0
zit+s.

Effort Choices. As in the baseline model, the equilibrium is unique, symmetric, and has the

property that effort choices and employment contracts depend only on time. Suppose workers

face a sequence {(b1t, b2t}Tt=0 of employment contracts in which pieces depend only on time and

consider a worker’s choices of effort in tasks 1 and 2 in period t, e1t and e2t, when the worker’s

future effort choices in both tasks depend only on time. Define the terms RCC,ℓt and RHK,ℓt, with

ℓ ∈ {1, 2}, to be such that

RCC,ℓt =
∑T−t

τ=1
δτ [ξ1θ(1− b1t+τ ) + ξ2θ(1− b2t+τ )] (ωℓ/ξℓθ)Σt+τ ;

RHK,ℓt = γℓ
∑T−t

τ=1
δτλτ−1 [ξ1k(b1t+τ +RCC,1t+τ ) + ξ2k(b2t+τ +RCC,2t+τ )] ,

where γℓ is the rate of human capital accumulation in task ℓ. The necessary and sufficient first-order

conditions for effort are

e1t + ηe2t = b1t +RCC,1t +RHK,1t;

e2t + ηe1t = b2t +RCC,2t +RHK,2t.

These equations state that the marginal cost of effort in each task is equal to its marginal benefit.

To understand the term RCC,ℓt, note that, at the margin, higher eℓt increases the expected period-

t signal about a worker’s ability resulting from the worker’s performance in task ℓ by 1/ξℓθ. From

the law of motion for a worker’s reputation given above, at the margin, a higher signal about ability
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resulting from performance in task ℓ increases a worker’s expected reputation in period t+ τ , with

1 ≤ τ ≤ T − t, by ωℓΣt+τ . Thus, at the margin, higher eℓt increases a worker’s expected reputation

in t+ τ by (ωℓ/ξℓθ)Σt+τ . Now note that the signal about ability in one task influences future fixed

pay in both tasks and that the importance of this signal for task ℓ is proportional to the importance

of ability for performance in ℓ as measured by ξℓθ. To understand the term RHK,ℓt, note that

effort in task ℓ changes human capital at rate γℓ and that the importance of human capital for ℓ

is proportional to ξℓk—as in the baseline model, higher human capital affects both the variable

component of a worker’s future wages and the future signals about the worker’s ability.

Solving the above system of equations for e1t and e2t, we obtain that

e1t = (1− η2)−1 [b1t +RCC,1t +RHK,1t − η (b2 +RCC,2t +RHK,2t)] ; (21)

e2t = (1− η2)−1 [b2t +RCC,2t +RHK,2t − η (b1 +RCC,1t +RHK,1t)] . (22)

Note that ∂eℓt/∂bℓt = 1/(1 − η2) > 0 and ∂eℓt/∂b−ℓt = −η/(1 − η2) for ℓ ∈ {1, 2}, where

we use the subscript −ℓ to denote the task other than task ℓ. Thus, an increase in a task’s piece

rate increases effort in the task. Whether such an increase increases or decreases effort in the

other task depends on whether tasks are complements (η < 0) or substitutes (η > 0). If tasks are

complements, then increasing the piece rate at one task increases effort at the other task. If, instead,

tasks are substitutes, then increasing the piece rate for one task decreases effort in the other task.

Equilibrium Employment Contracts. We use a backward induction argument to derive the equi-

librium employment contracts and show that they are symmetric across workers and such that piece

rates in both tasks depend only on time. Here, we only discuss the induction step in the derivation

of the equilibrium employment contracts. Since in the last period our multi-tasking model reduces

to the static multi-tasking model of Holmström and Milgrom [1991], last-period employment con-

tracts and effort choices are the same for all workers and (trivially) depend only on T .

Let 0 ≤ t < T and suppose the equilibrium employment contracts and effort choices from

period t + 1 on depend only on time. For each 1 ≤ τ ≤ T − t and ℓ, let b∗ℓt+τ be the equilibrium

piece rate for task ℓ in period t+τ . Also, let R∗
CC,ℓt and R∗

HK,ℓt be respectively given by RCC,ℓt and

RHK,ℓt with bℓt+τ = b∗ℓt+τ for all 1 ≤ τ ≤ T − t and ℓ. A worker’s effort in task ℓ in period t when

the employment contract is (b1, b2) is defined implicitly by eℓ = −ηe−ℓ + bℓ +R∗
CC,ℓt +R∗

HK,ℓt. If
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we let wt is a worker’s wage in t and Wt =
∑T−t

τ=0 δ
τwt+τ , then a worker’s equilibrium employment

contract in t is the pair (b1, b2) maximizing Vt = E[Wt|It]− (r/2)Var[Wt|It]− c(e1, e2), where It

has the same definition as in the baseline model. We determine the pair (b1, b2) maximizing Vt in

what follows. In the same way as in the baseline model, this pair is independent of It and so the

same for all workers.

First note that since workers capture the entire value of their matches with firms, then

∂E[Wt|It]
∂bℓ

=
∑

i=1,2

∂ei
∂bℓ

[
1 + γi(ξ1k + ξ2k)

∑T−t

τ=1
δτλτ−1

]
.

Now note that

Var[Wt|It] =
∑

i=1,2
b2i (ξ

2
iθσ

2
t + σ2

iε) + 2b1b2ξ1θξ2θσ
2
t + 2

∑T−1

τ=1
δτCov[wt, wt+τ |It] + Var0,

where Var0 is independent of (b1, b2), and, as in the baseline case, Cov[wt, wt+τ |It] is linear in b1

and b2. Thus,
∂Var[Wt|It]

∂bℓ
= 2bℓ(ξ

2
ℓθσ

2
t + σ2

ℓε) + 2b−ℓξ1θξ2θσ
2
t + 2H∗

ℓt,

where H∗
ℓt =

∑T−1
τ=1 δ

τ−1∂Cov[wt, wt+τ |It]/∂bℓ is independent of b1 and b2. Since

∂c(e1, e2)

∂bℓ
=

(
bℓ +R∗

CC,ℓt +R∗
HK,ℓt

) ∂eℓ
∂bℓ

+
(
b−ℓ +R∗

CC,−ℓt +R∗
HK,−ℓt

) ∂e−ℓ

∂bℓ
,

the necessary and sufficient first-order conditions for the problem of maximizing Vt are∑
ℓ=1,2

∂eℓ
∂b1

[
1 + γℓ(ξ1k + ξ2k)

∑T−1

τ=1
δτλτ−1 −R∗

HK,ℓt −R∗
CC,ℓt

]
−b1

[
∂e1
∂b1

+ r(ξ21θσ
2
t + σ2

1ε)

]
− b2

(
∂e2
∂b1

+ rξ21θξ
2
2θσ

2
t

)
− rH∗

1t = 0;∑
ℓ=1,2

∂eℓ
∂b2

[
1 + γℓ(ξ1k + ξ2k)

∑T−1

τ=1
δτλτ−1 −R∗

HK,ℓt −R∗
CC,ℓt

]
−b2

[
∂e2
∂b2

+ r(ξ22θσ
2
t + σ2

2ε)

]
− b1

(
∂e1
∂b2

+ rξ21θξ
2
2θσ

2
t

)
− rH∗

2t = 0.

To finish, b0ℓt = 1/[1+r(1−η2)(ξ2ℓθσ
2
t +σ2

ℓε)] and Wℓt = 1+γℓ(ξ1k+ξ2k)
∑T−1

τ=1 δ
τλτ−1−R∗

HK,ℓt−

R∗
CC,ℓt. Given that ∂e−ℓ/∂bℓ = −η∂eℓ/∂bℓ, we can rewrite the above first-order conditions as

b1 = b01t
[
W1t − η(W2t − b2)− r(1− η2)(H∗

1t + b2ξ1θξ2θσ
2
t )
]
;

b2 = b02t
[
W2t − η(W1t − b1)− r(1− η2)(H∗

2t + b1ξ1θξ2θσ
2
t )
]
.
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This last system of equations admits a unique solution (b∗1t, b
∗
2t), which is independent of It and is

the equilibrium employment contract in t. Note that the expression for H∗
ℓt does not matter for the

derivation of equilibrium piece rates. One can show that H∗
ℓt is equal to

ξℓθσ
2
t

∑T−t

τ=1
δτ−1

[
ξ1θb

∗
1t+τ + ξ2θb

∗
2t+τ + (1− b∗1t+τ − b∗2t+τ )

τ(ω1ξ1θ + ω2ξ2θ)σ
2
t + σ2

ε

τσ2
t + σ2

ε

]
.

In particular, if ξ1θ = ξ2θ = 1, then H∗
ℓt = σ2

t

∑T−t
τ=1 δ

τ−1.

By definition, Wℓt is the wedge in period t between the marginal social benefit of effort in task

ℓ and the marginal private benefit of effort in the same task. A piece rate for task ℓ in period t equal

to Wℓt would induce workers to exert the first-best level of effort in ℓ. As in the baseline case, the

piece rate for task ℓ in period t is proportional to Wℓt minus a term, r(1− η2)(H∗
ℓt + b∗−ℓtξ

2
1θξ

2
2θσ

2
t ),

that reflects the insurance workers demand against the life-cycle wage risk due to uncertainty and

learning about ability. Also as in the baseline model, the constants of proportionality b01t and b02t

capture the standard risk-incentives trade-off. In contrast to the baseline model, the insurance

component of the piece rate for task ℓ in t features an additional term that depends on the period-t

piece rate for the other task. This is intuitive. Because ability is common across tasks, uncertainty

about ability implies that an increase in the piece rate in a task increases the risk associated with (the

contemporaneous) performance in the other task. Another difference from the baseline model is

that the piece rate for task ℓ in period t features an additional term proportional to −η(W−ℓt−b−ℓt).

This term captures both the interdependence in the human capital accumulation process across

tasks—by exerting effort in one task, workers affect their productivity in both tasks—and the fact

that providing incentives for effort in one task affects the incentives for effort in the other task.

B.2 Extension: Productivity Shocks

We now consider an extension of our model that allows for observable productivity shocks.

B.2.1 Environment and Equilibrium

The environment is as in the baseline model, except that yit = ηit + θit + kit + ξ1ei1t + ξ2ei2t + εit,

where ηit is an idiosyncratic productivity shock to worker i in period t that is observed after firms

offer employment contracts to workers. We assume that ηit is normally distributed with mean zero
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and variance σ2
η .59 Let ŷit = yit − ηit be worker i’s output in period t net of the productivity

shock ηit. By definition, ŷit is worker i’s period-t output in the baseline model. Free entry of firms

implies that wit = (1 − bit)E[yit|Iit] + bityit = (1 − bit)E[ŷit|Iit] + bit(ŷit + ηit), as E[ηit] = 0.

As productivity shocks are observed, they do not affect the process of learning about ability; they

only increase the variance of output, and so wage risk. Thus, the equilibrium is as in the baseline

model except that now that static period-t piece rate is b0t = 1/[1 + (r/ξ22)(σ
2
t + σ2

ε + σ2
η)].

B.2.2 Identification

As in the baseline model, piece rates are identified from the ratio of variable to total pay. The

parameters (σ2
θ , σ

2
ε , σ

2
ζ , σ

2
η) are identified from the second moments of the wage distributions as

follows. Since the productivity shocks ηit are idiosyncratic, the covariances of the wage distribu-

tions are the same as in the baseline model. The same argument as in the baseline model shows

that Var[wit] = σ2
θ + tσ2

ζ − σ2
t + (b∗t )

2(σ2
t + σ2

ε + σ2
η); the sum of variances σ2

ε + σ2
η plays the

role of σ2
ε in the baseline model. Thus, σ2

θ is identified from b∗0 and Cov[wi0, wi1] = b∗0σ
2
θ . In turn,

σ2
ε + σ2

η is identified from b∗0, σ2
θ , and Var[wi0] = (b∗0)

2(σ2
θ + σ2

ε + σ2
η). Next, σ2

1 is identified from

b∗1, σ
2
ε + σ2

η , and Cov[wi1, wi2] − Var[wi1] = (b∗1)
2(σ2

1 + σ2
ε + σ2

η) − b∗1σ
2
1 , and so σ2

ζ is identified

from b∗1, σ
2
θ , σ2

1 , and Cov[wi1, wi2] = σ2
θ + σ2

ζ − σ2
1 + b∗1σ

2
1 . Finally, σ2

ε is identified from σ2
θ , σ2

ζ ,

and σ2
1 = σ2

θσ
2
ε/(σ

2
θ + σ2

ε) + σ2
ζ and thus σ2

η is identified from σ2
ε and σ2

ε + σ2
η . The rest of the

identification argument is as in the baseline model.

B.2.3 Remarks

We can extend our analysis to the case in which productivity shocks are serially correlated by as-

suming that they are governed by the following process: ηit = νit, with νi0 = µi0 and νit+1 =
√
ρνit + µit+1 for all t ≥ 0, where ρ ∈ [0, 1] and µit is an idiosyncratic shock that is normally

distributed with mean zero and variance σ2
µ for all t ≥ 0. This case reduces to the case of id-

iosyncratic productivity shocks when ρ = 0; productivity shocks are permanent when ρ = 1 and

mean-reverting otherwise. The equilibrium characterization is the same as above except that now

the static period-t piece rate is b0t = 1/[1 + (r/ξ22)(σ
2
t + σ2

ε + σ2
ηt)], where σ2

ηt = Var[ηit] =

(1 − ρt+1)σ2
µ/(1 − ρ). Because of the serial correlation of productivity shocks, this model admits

a more general variance-covariance structure of wages.
59The assumption that ηit is mean zero is without loss as we can absorb E[ηit] into θit.
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B.3 More General Human Capital Process: Equilibrium Characterization

We first derive effort choices in the complex task for workers facing a sequence of piece rates that

depend only on time when workers’ future effort choices in the complex task also depend only on

time. Note that in the absence of the simple task, employment contracts reduce to piece rates. We

then determine equilibrium piece rates and show that they are the same for all workers and depend

only on time. Finally, we characterize the equilibrium.

B.3.1 First-Order Conditions for Effort in the Complex Task

We first show that if piece rates for a worker are {bt}Tt=0 and thus depend only on time, then the

first-order condition for the worker’s optimal choice of effort in the complex task in period t when

the worker’s future behavior depends only on time is

et = bt +RCC,t +RHK,t(et), (23)

where RCC,t is given by (7) and

RHK,t(e) = F ′
t(e)

∑T−t

τ=1
δτλτ−1

(
bt+τ +RCC,t+τ

)
. (24)

Recall that we denote the effort of a worker in the complex task in period t simply by et (omitting

the subscript i). The assumption that supe∈R F
′
t(e) < ∞ ensures that (23) always has a solution.

This solution need not be an optimal choice of effort for the worker, though. Additional assump-

tions, which we will discuss below, are necessary for this to be the case.

Suppose that piece rates are {bt}Tt=0 and consider worker i’s choice of effort in the complex task

in period t when the worker’s future behavior depends only on time. The argument in the main

text—the particular form of the functions {Ft(e)}Tt=0 does not matter—shows that the first-order

condition for the worker’s choice of effort in the complex task is

et = bt +
∑T−t

τ=1
δτ

∂E[wit+τ |ht
i]

∂et
. (25)

In what follows, we show that (25) reduces to (23).

First, recall from (3) that wit+τ = (1 − bt+τ )E[yit+τ |Iit+τ ] + bt+τyit+τ for all 1 ≤ τ ≤ T − t,

where yit+τ is the worker’s output in period t + τ and Iit+τ is the public information about the
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worker that is available in the same period (which depends on ht+τ
i ). Let mit+τ be the worker’s

reputation in period t + τ ; note that mit+τ depends on Iit+τ . Since for each 1 ≤ τ ≤ T − t,

the worker’s choice of effort in period t affects E[yit+τ |Iit+τ ] only through its impact on mit+τ , it

follows that
∂E[wit+τ |ht

i]

∂et
= (1− bt+τ )

∂E[mit+τ |ht
i]

∂et
+ bt+τ

∂E[yit+τ |ht
i]

∂et

for all 1 ≤ τ ≤ T − t. By the law of motion of human capital and the fact that behavior from

period t+ 1 on depends only on time,

∂E[yit+τ |ht
i]

∂et
= λτ−1F ′

t(et)

for all 1 ≤ τ ≤ T − t. Finally, note from (5) that

∂E[mit+τ |ht
i]

∂et
=

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

∂E[zit+s|ht
i]

∂et

=
(∏τ−1

k=1
µt+τ−k

)
(1− µt)

∂E[zit|ht
i]

∂et
+
∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

∂E[zit+s|ht
i]

∂et
,

where zit+s is the signal about the worker’s ability in period t+ s. Since ∂E[zit|ht
i]/∂et = 1 and

∂E[zit+s|ht
i]

∂et
=

∂E[yit+s|ht
i]

∂et
= λs−1F ′

t(et)

for all 1 ≤ s ≤ T − t, we can rewrite (25) as

et = bt + F ′
t(et)

∑T−t

τ=1
δτ

{
(1− bt+τ )

∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)λ

s−1 + bt+τλ
τ−1

}
+
∑T−t

τ=1
δτ (1− bt+τ )

(∏τ−1

k=1
µt+τ−k

)
(1− µt).

The desired result follows from Lemma A.1 with ξτ = λτ−1.

The first-order condition (23) is necessary for optimality. This condition is also sufficient for

optimality when Ft(e) = γ2e for all t. When the functions {Ft}Tt=0 are nonlinear, (23) need not be

sufficient for optimality, though. Since Ft(e) is concave, (23) is sufficient for optimality if∑T−t

τ=1
δτλτ−1 (bt+τ +RCC,t+τ ) ≥ 0. (26)

Indeed, RHK,t(e) is nonincreasing with e if (26) holds, in which case the marginal benefit of effort

is nonincreasing with effort. Condition (26) holds if piece rates are in the unit interval.
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B.3.2 Equilibrium Piece Rates

We now solve for the last-period equilibrium piece rates and then proceed backwards to determine

the equilibrium piece rates in previous periods. With this characterization of piece rates at hand, we

use (23) to derive the equilibrium choices of effort in the complex task, provided that equilibrium

efforts in the complex task and piece rates depend only on time, which is the case.

Last-Period Piece Rates. Since only static considerations matter when t = T , the last-period

equilibrium piece rates and effort choices in the complex task in this case are the same as in the

main text. In particular, they are the same for all workers and (trivially) depend only on time.

Piece Rates in Previous Periods. Let t < T , and suppose that i) equilibrium piece rates and effort

choices in the complex task from period t + 1 on are the same for all workers and depend only

on time; and ii) piece rates belong to the interval (0, 1). This is true when t = T − 1. For each

1 ≤ τ ≤ T−t, let b∗t+τ be the equilibrium piece rate in t+τ with 1 ≤ τ ≤ T−t and define R∗
CC,t as

in (7) with bt+τ = b∗t+τ for each τ . Moreover, define R∗
HK,t(e) to be given by (24) with bt+τ = b∗t+τ

for all τ . Since
∑T−t

τ=1 δ
τλτ−1

(
b∗t+τ + R∗

CC,t+τ

)
≥ 0 when b∗t+τ ∈ (0, 1) for all 1 ≤ τ ≤ T − t, a

worker’s period-t choice of effort in the complex task as a function of the piece rate b in t is the

unique solution to the necessary and sufficient first-order condition

et = b+R∗
CC,t +R∗

HK,t(et). (27)

As in the baseline model, the fact that (27) does not depend on a worker’s history implies that

workers’ equilibrium choices of effort in t are independent of their history, and so the same for all

of them, if period-t piece rates are the same for all workers.

Equation (27) implicitly defines a worker’s optimal choice of effort in period t as a function of

the worker’s piece rate in period t. In an abuse of notation, denote this function by et = et(b). The

implicit function theorem implies that et is continuously differentiable with

∂et
∂b

=
1

1− F ′′
t (et)

∑T−t
τ=1 δ

τλτ−1
(
b∗t+τ +R∗

CC,t+τ

) =
1

1− F ′′
t (et)

F ′
t(et)

RHK,t(et)

. (28)

Given that F ′′′
t (e) ≤ 0 for all e ∈ R and

∑T−t
τ=1 δ

τλτ−1
(
b∗t+τ + R∗

CC,t+τ

)
≥ 0, it follows from (28)

that ∂et/∂b is positive, bounded above by one, and nonincreasing with b.
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Once again, let Wt = Wt(b) be a worker’s present-discounted value of wages from period

t on as function of b. An equilibrium piece rate for a worker is the value of b that maximizes

Vt = E[Wt|It] − rVar[Wt|It]/2 − e2t/2, where It is the public information about the worker in t.

We determine the choice of b that maximizes Vt in what follows. As in the baseline model, this

choice is independent of It and so the same for all workers in t.

First, note that
∂E[Wt|It]

∂b
=

[
1 + F ′

t(et)
∑T−t

τ=1
δτλτ−1

] ∂et
∂b

.

Now note that since the functions {Ft(e)}Tt=0 do not matter for the derivation of Var[Wt|It], the

partial derivative ∂Var[Wt|It]/∂b is still given by (14). Thus, the necessary first-order condition

for the problem of maximizing Vt is[
1 + F ′

t(et)
∑T−t

τ=1
δτλτ−1 − et

] ∂et
∂b

− r
[
b(σ2

t + σ2
ε) +H∗

t

]
= 0 (29)

with H∗
t = σ2

t

∑T−t
τ=1 δ

τ−1. Below, we show that this condition is also sufficient for optimality.

Using (27), we can rewrite (29) as

b =
1

1 + rt(et)(σ2
t + σ2

ε)

[
1 + F ′

t(et)
∑T−t

τ=1
δτλτ−1 −R∗

CC,t −R∗
HK,t(et)− rt(et)H

∗
t

]
, (30)

where rt(et) = (∂et/∂b)
−1r. The solutions to (30), if they exist, do not depend on It and so are

the same for every worker.

In order to establish that (29) is sufficient for optimality, let

MBt(b) =
[
1 + F ′

t(et)
∑T−t

τ=1
δτλτ−1

] ∂et
∂b

be the marginal benefit to the worker of an increase in b and

MCt(b) = r
[
b(σ2

t + σ2
ε) +H∗

t ] + et
∂et
∂b

be the marginal cost to the worker of an increase in b. Given that et is nondecreasing with b and

∂et/∂b is nonincreasing with b, it follows that MBt is nonincreasing with b. Now note that F ′′′
t (e)

nonpositive and nondecreasing implies that F ′′′
t (e)e ≥ F ′′

t (e) for all e ∈ R.60 It then follows from

60The desired inequality is immediate if e ≤ 0. When e > 0, it follows from F ′′
t (e) = F ′′

t (0) +
∫ e

0
F ′′′
t (s)ds that

F ′′
t (e) ≤

∫ e

0
F ′′′
t (s)ds ≤

∫ e

0
F ′′′
t (e)ds = eF ′′′

t (e). The first inequality holds since F ′′
t (0) ≤ 0, the second inequality

holds since F ′′′
t (s) ≤ F ′′′

t (e) for all s ≤ e, and the last equality holds since e > 0.
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(28) that

d

db

(
et
∂et
∂b

)
=

(
∂et
∂b

)2
1 + etF

′′′
t (et)

∑T−t

τ=1
δτλτ−1(b∗t+τ +R∗

CC,t+τ )

1− F ′′
t (et)

∑T−t

τ=1
δτλτ−1(b∗t+τ +R∗

CC,t+τ )


≥

(
∂et
∂b

)2
1

1− F ′′
t (et)

∑T−t

τ=1
δτ (b∗t+τ +R∗

CC,t+τ )
> 0.

Thus, MCt is strictly increasing with b, which establishes the sufficiency of (29).

We conclude this step by showing that (29), and so (30), has a unique solution b∗t , which does

not depend on It. First note that MBt is bounded since supe∈R F
′
t(e) < ∞ and that ∂et/∂b

belongs to the unit interval. Given that et∂et/∂b is strictly increasing with b, it then follows from

the expression for MCt that limb→−∞ MCt(b) = −∞ and limb→+∞ MCt(b) = +∞. Thus, (29)

has a solution, which is unique given the properties of MBt and MCt established above. Note that

b∗T = 1/[1 + r(σ2
T + σ2

ε)], since ∂eT/∂b = 1.

Equilibrium Characterization. The above argument shows that if there exists t < T such that

from period t + 1 on, equilibrium piece rates and effort choices in the complex task are the same

for all workers and depend only on time, and equilibrium piece rates are in the unit interval, then

equilibrium piece rates and effort choices from period t on are the same for all workers and depend

only on time. We now show that if λ = 1, then equilibrium piece rates in period t are also in the

interval (0, 1) if r is sufficiently small; we discuss how we can relax the assumption that λ = 1

at the end. Since the last-period piece rates and effort choices in the complex task are the same

for all workers and depend only on T , and the last-period piece rates are in the interval (0, 1), it

follows by induction that equilibrium piece rates and effort choices in the complex task are the

same for all workers and depend only on time, and equilibrium piece rates are in the interval (0, 1),

provided that λ = 1 and r is sufficiently small. From this, it further follows that the equilibrium is

characterized by Proposition A.2.

Suppose that λ = 1. We first show that F ′
t(e) < (σ2

t /σ
2
ε)[1 + r(σ2

t + σ2
ε)] for all e ∈ R implies

that b∗t < 1. Observe from Lemma A.1 that∑T−t

τ=1
δτ (1− b∗t+τ −R∗

CC,t+τ )

=
∑T−t

τ=1
δτ (1− b∗t+τ )

[
1−

∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

]
.

12



Since ∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s) +

∏τ−1

k=1
µt+τ−k = 1, (31)

we then have that∑T−t

τ=1
δτ (1− b∗t+τ −R∗

CC,t+τ ) =
∑T−t

τ=1
δτ (1− b∗t+τ )

∏τ−1

k=1
µt+τ−k =

σ2
ε

σ2
t

R∗
CC,t, (32)

where we used the definition of R∗
CC,t and the fact that µt/(1 − µt) = σ2

ε/σ
2
t . Now observe that

the right side of (30), and so b∗t , is smaller than one if, and only if,

F ′
t(et)

∑T−t

τ=1
δτ −R∗

HK,t −R∗
CC,t

= F ′
t(et)

∑T−t

τ=1
δτ (1− b∗t+τ −R∗

CC,t+τ )−R∗
CC,t <

r

∂et/∂b

(
σ2
ε + σ2

t

∑T−t

τ=0
δτ
)
. (33)

Since ∂et/∂b ≤ 1, (32) implies that

R∗
CC,t

[
σ2
ε

σ2
t

F ′
t(et)− 1

]
< r

(
σ2
ε + σ2

t

∑T−t

τ=0
δτ
)

is sufficient for (33). The above inequality holds since i) F ′
t(e) < (σ2

t /σ
2
ε)[1 + r(σ2

t + σ2
ε)] for all

e ∈ R; and ii)

R∗
CC,t ≤ (1− µt)

∑T−t

τ=1
δτ =

σ2
t

σ2
t + σ2

ε

∑T−t

τ=1
δτ <

1

σ2
t + σ2

ε

(
σ2
ε + σ2

t

∑T−t

τ=0
δτ
)

by (24) and the assumption that b∗t+τ ∈ (0, 1) for all 1 ≤ τ ≤ T − t.

We now show that F ′
t(e) > σ2

t /σ
2
ε for all e ∈ R implies that there exists r > 0 such that b∗t > 0

for all r ∈ (0, r). For this, observe, again using Lemma A.1, that∑T−t

τ=1
δτ (bt+τ∗ +R∗

CC,t+τ )

=
∑T−t

τ=1
δτ

[
b∗t+τ + (1− b∗t+τ )

∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

]
=

∑T−t

τ=1
δτ

[
1− (1− b∗t+τ )

∏τ−1

k=1
µt+τ−k

]
<

δ

1− δ
,

where the second equality follows from (31) and the inequality follows from the assumption that

b∗t+τ < 1 for all 1 ≤ τ ≤ T − t. Thus, by (28)

rH∗
t

∂et/∂b
< rσ2

t

[
1− F ′′

t (∞)
δ

1− δ

]
δ

1− δ
. (34)
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Now note that F ′
t(e) > σ2

t /σ
2
ε for all e ∈ R and (32) together imply that

F ′
t(et)

∑T−t

τ=1
δτ (1− b∗t+τ −R∗

CC,t+τ )−R∗
CC,t = R∗

CC,t

[
σ2
ε

σ2
t

F ′
t(et)− 1

]
> 0.

Hence, by (34), there exists r > 0 such that

1 + F ′
t(et)

∑T−t

τ=1
δτ (1− b∗t+τ −R∗

CC,t+τ )−R∗
CC,t −

rH∗
t

∂et/∂b
> 0 (35)

if r ∈ (0, r). This, in turn, implies that the right side of (30) is positive, and so is the piece rate

b∗t . To sum up, there exists r > 0 such that b∗t ∈ (0, 1) provided that r ∈ (0, r). Since σ2
t is

monotonically decreasing if σ2
θ > σ2

ζ and monotonically increasing if σ2
θ < σ2

ζ , it follows that

σ2
t ≤ max{σ2

θ , σ
2
ζ}. Thus, by (34), we can take the upper bound r on the worker’s risk aversion to

be independent of t.

We conclude by discussing how we can relax the assumption that λ = 1. First, note that (27),

(28), and (30) define the equilibrium piece rates continuously as a function of λ.61 Thus, the maps

λ 7→
∑T−t

τ=1 δ
τλτ−1(1 − b∗t+1 − R∗

CC,t+τ ) are continuous. From this, it follows that if we take λ

sufficiently close to one, then the inequalities in (33) and (35) will continue to hold when r ∈ (0, r),

where r is the upper bound on r when λ = 1.

B.4 Equilibrium Contracts with Multiple Performance Measures

We conclude by extending our analysis of the model with the more general human capital process

(Section A.8) to the case in which there exists an observable but unverifiable additional measure of

workers’ output. Since the argument here follows many of the steps of the derivations in the case

with the more general human capital process, we keep the exposition brief. The environment is the

same as in Section A.8 except that for each worker i and in every period t, firms now observe a

noisy measure of workers’ performance, pit, in addition to output, yit. Assume that

pit = γe
t eit + γk

t kit + θit + ηit,

where γe
t and γk

t are known constants and ηit is an unobserved idiosyncratic shock to worker

i’s performance measure in t that is normally distributed with mean zero and variance σ2
η and is

61The recursive structure of the equilibrium piece rates implies that if future pieces rates depend continuously on λ,
then current piece rates are also continuous functions of λ. Since the last-period piece rate is continuous in λ, so are
the equilibrium piece rates in all previous periods.
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independent of all other shocks. For ease of exposition, we assume that γe
t ≡ 1 and γk

t ≡ 0. Our

analysis extends to the more general case if, and only if, γe
t ̸= γk

t for all t. Since the performance

measure is unverifiable, firms still offer linear one-period output-contingent contracts to workers.

Thus, worker i’s wage in period t is given by wit = (1 − bit)E[yit|Iit] + bityit, where bit is the

worker’s piece rate in period t and Iit is the public information about the worker available in t.

However, this case differs from the one without the performance measure in that Iit contains not

only the worker’s output realizations before t but also the realizations of the worker’s performance

measure before t.

Learning about Ability. We first discuss how the presence of the performance measure affects

learning about workers’ ability in equilibrium. Consider worker i in period t, and let e∗it and k∗
it be,

respectively, the worker’s equilibrium effort in the complex task and stock of human capital in t;

recall our convention of denoting effort in the complex task simply by eit. Let zyit = yit − k∗
it − e∗it

and zpit = pit − e∗it be, respectively, the part of worker i’s output and performance measure in t that

cannot be explained by the worker’s effort in the complex task and stock of human capital in t.

Since in equilibrium agents correctly anticipate a worker’s effort in the complex task and stock of

human capital at any point in time, the same argument as that in the main text shows that posterior

beliefs about worker i’s ability in period t are normally distributed with mean mit and variance σ2
it.

In an abuse of notation, let σ2
it+1/2 = σ2

itσ
2
ε/(σ

2
it+σ2

ε). By standard results, mit and σ2
it evolve over

time according to62

mit+1 =
σ2
η

σ2
it+1/2 + σ2

η

(
σ2
ε

σ2
t + σ2

ε

mit +
σ2
t

σ2
t + σ2

ε

zyit

)
+

σ2
it+1/2

σ2
it+1/2 + σ2

η

zpit

and

σ2
it+1 =

σ2
it+1/2σ

2
η

σ2
it+1/2 + σ2

η

+ σ2
ζ .

Now let σ2
εη = σ2

εσ
2
η/(σ

2
ε + σ2

η) and

zit =
σ2
η

σ2
η + σ2

ε

zyit +
σ2
ε

σ2
η + σ2

ε

zpit. (36)

62The equations for the evolution of mit and σ2
it follow from a belief-updating process in which, in each period,

agents first update their beliefs about a worker’s ability based on the worker’s output and then update their beliefs
based on the realization of the worker’s performance measure. The order in which agents use the information about a
worker to update their beliefs about the worker’s ability is clearly irrelevant.
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Straightforward algebra shows that mit and σ2
it ≡ σ2

t evolve over time according to

mit+1 =
σ2
εη

σ2
t + σ2

εη

mt +
σ2
t

σ2
t + σ2

εη

zit and σ2
t+1 =

σ2
t σ

2
εη

σ2
t + σ2

εη

+ σ2
ζ .

Thus, the evolution of posterior means and variances follow the same laws of motion as those in

the case without the additional performance measure, except that σ2
εη plays the role of the variance

of the noise in output and zit given by (36) plays the role of the signal about worker i’s ability in

period t. When σ2
η = ∞ and the performance measure is uninformative, the laws of motion for

mit and σ2
t reduce to the laws of motion in the absence of the performance measure. If we let

µt = σ2
εη/(σ

2
t + σ2

εη), then the law of motion for a worker’s reputation is still given by (5).

Dynamic Returns to Effort. We now consider the first-order conditions for worker effort in the

complex task when piece rates and future worker behavior depend only on time. Since for any

worker i, we have that ∂E[zit|ht
i]/∂et = 1 for any period t and any period-t private history ht

i for

the worker, it follows that the expressions for RCC,t and RHK,t(et) are the same as they are in the

case with the more general human capital process without the performance measure, and so are

the first-order conditions for worker effort in the complex task when piece rates and future worker

behavior depend only on time.63

Equilibrium Piece Rates. Since the first-order conditions for effort in the complex task when

piece rates and future worker behavior depend only on time are the same as they are in the case

with the more general human capital process without the performance measure, the derivation of

the equilibrium piece rates follows exactly the same steps as in Section B.3. The only step in

which the presence of the performance measure can alter the derivation of equilibrium piece rates

is the calculation of the derivative ∂Var[Wt|It]/∂b, as the presence of the performance measure

potentially affects the covariance of wage payments across periods. Note that It now describes

past realizations of output and the performance measure.

We claim that ∂Var[Wt|It]/∂b has the same expression as in the case without the performance

measure, so that the expression for equilibrium piece rates remains unchanged. Since it still is the
63More generally, we have that ∂E[zit|ht

i]/∂et = (σ2
η + σ2

ε)
−1(σ2

η + γe
t σ

2
ε), from which it follows that RCC,t =∑T−t

τ=1 δ
τ (1− bt+τ )µ̂t(σ

2
η +σ2

ε)
−1(σ2

η + γy
t σ

2
ε), where µ̂t = (

∏τ−1
k=1 µt+τ−k)(1−µt). The expression for RHK,t(et)

remains the same. Since, as we will show, we can identify the variances (σ2
θ , σ

2
ε , σ

2
η, σ

2
ζ ) from a panel of wages with

information on their fixed or variable components and pit = f̂(eit, kit) + ηit, where f̂t(e, k) = γe
t e + γk

t k +mθ is
known up to mθ and satisfies the conditions for identification for the case with the more general human capital process
if, and only if, γe

t ̸= γk
t , we can adapt our identification argument to this more general case.
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case that

Var[Wt|It] = b2(σ2
t + σ2

ε) + 2
T−t∑
τ=1

δτCov[wt, wt+τ |It] + Var0,

where Var0 does not depend on b, the desired result follows if Cov[wt, wt+τ |It] = bσ2
t for all τ ≥ 1.

As in Appendix A.2, Cov[wt, wt+τ |It] = b Cov[yt, wt+τ |It] and

Cov[yt, wt+τ |It] = b∗t+τCov[yt, yt+τ |It] + (1− b∗t+τ )Cov[yt,mt+τ |It]

for all 1 ≤ τ ≤ T − t, where yt+τ = yt+τ (b) and mt+τ = mt+τ (b) still respectively denote a

worker’s output and reputation in period t + τ as a function of the period-t piece rate. Hence, if

zt+s = zt+s(b) with 0 ≤ s ≤ T − t is once again the signal about a worker’s ability in period t+ s

as a function of b, then (5) implies that

Cov[yt, wt+τ |It] = b∗t+τCov[yt, yt+τ |It]

+(1− b∗t+τ )
∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)Cov[yt, zt+s|It]

for all 1 ≤ τ ≤ T − t. The presence of the performance measure does not change the fact that

Cov[yt, yt+τ |It] = σ2
t for all 1 ≤ τ ≤ T − t. Now observe that since zt+s = [σ2

η/(σ
2
η + σ2

ε)]z
y
it +

[σ2
ε/(σ

2
η + σ2

ε)]z
p
it, it follows that

Cov[yt, zt+s|It] =
σ2
η

σ2
η + σ2

ε

Cov[yt, z
y
t+s|It] +

σ2
ε

σ2
η + σ2

ε

Cov[yt, z
p
t+s|It].

Given that Cov[yt, z
p
t+s|It] ≡ σ2

t , Cov[yt, z
y
t+s|It] = σ2

t + σ2
ε if s = 0, and Cov[yt, z

y
t+s|It] = σ2

t if

1 ≤ s ≤ T − t, we then have that

Cov[yt, wt+τ |It] = σ2
t

[
(1− b∗t+τ )

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s) + b∗t+τ

]
+σ2

εη(1− bt+τ )
(∏τ−1

k=1
µt+τ−k

)
(1− µt).

Thus, Cov[wt, wt+τ |It] = bσ2
t has the desired expression since σ2

εη(1− µt) = σ2
tµt.

Identification. As in the main text, equilibrium piece rates are identified from a panel of wages and

their variable components (Section 5.3). Since Var[wi0] = (b∗0)
2(σ2

θ + σ2
ε), Cov[wi0, wi1] = b∗0σ

2
θ ,

and Var[pi0] = σ2
θ + σ2

η , the vector (σ2
θ , σ

2
η, σ

2
ε) is identified from Var[wi0], Cov[wi0, wi1], and

Var[pi0]. In particular, we do not need to assume that the distribution of the shock term ηit is
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known in order to obtain identification. The variance σ2
ζ is then identified from Var[wi1] since

Var[wi1] = σ2
θ + σ2

ζ − σ2
1 + (b∗1)

2(σ2
1 + σ2

ε) and σ2
1 is known from (σ2

θ , σ
2
η, σ

2
ε). Finally, given that

pit = f̂(eit, kit) + ηit, where f̂t(e, k) = e +mθ is known up to mθ and satisfies the conditions for

identification for the case with the more general human capital process, the rest of the argument

proceeds as in Section A.8.
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