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1 Introduction

Life insurance is a key risk management tool for households when it comes to managing
the tail risk associated with the premature death of a family member. One understudied
fact about life insurance policies is that households lapse them frequently. To the extent
that this phenomenon has been studied, the literature has primarily focused on idiosyncratic
lapsation risk. We document that there is a large common component in lapsation that varies
systematically over the business cycle. Furthermore, life insurance contracts with different
policy and policyholder characteristics are differentially exposed to these common lapsation
factors. When young or low-income households lapse their policies in a recession, that has
long-lasting consequences for their economic well-being, contributing to the cost of business
cycles. These new facts not only have implications for households but also for life insurers,
since the systemic variation in lapsation rates affects the valuation and risk mismatch on the
balance sheets of insurance companies.

To start, we use regulatory data from the 30 largest life insurance companies from 1996
to 2020 to measure the dynamics and co-movement of lapsation rates. We decompose the
lapsation rate of each company into a trend and a cycle component. We then extract the first
principal component of the trend components and the first principal component of the cycle
components. The first principal components explain the bulk of the variation across years
and companies. The first factor, which we label the trend factor, captures a secular decline
in lapsation rates, from a little over 7% per year in the beginning of our sample to approx-
imately 5% at the end of our sample. The dynamics of this factor follows the trend in the
level of interest rates. The second factor captures the counter-cyclicality in lapsation rates.
This cycle factor correlates strongly with credit spreads and macroeconomic conditions. We
illustrate the co-movement between the cycle factor and employment (left panel) and GDP
(right panel) in Figure 1.

With the aggregate lapsation factors in hand, we explore how exposure to these factors
varies with policy and policyholder characteristics. We exploit a new proprietary data set
from a large US life insurance company for this part of the analysis. We have detailed data
on the terms of the life insurance policy (including term or whole life insurance, the length
of the term, and the size of the policy) and policyholder characteristics (including age, health
status, zip code, and gender).

We find that young policyholders are more exposed to the cycle factor. As these policy-
holders are likely to be first-time life insurance buyers, there could be important long-term
effects if lapsation lowers the likelihood that these policyholders buy life insurance in the
future. Second, we find that policyholders with higher health risks are more likely to lapse
their policies during economic downturns.
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Figure 1. Lapse Cycle and Macro Variables

This figure plots the lapse cycle factor against macroeconomic variables. The red dotted
line in both panels represent the lapse cycle factor. The black line in the left panel
represents the cyclical component of employment (“Filtered Employment”). The black line
in the right panel represents the cyclical component of GDP (“Filtered GDP”).
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These findings are not only relevant to households, and to understanding the cross-
subsidization across groups of households, but also to life insurance companies. In par-
ticular, as a result of the correlation between lapsation and aggregate economic conditions,
the valuation of life insurance policies is affected. Since lapsation is high during economic
downturns, when investors’ marginal utility is high, the effective lapsation rate is higher
when accounting for aggregate risk. Formally, the risk-neutral lapsation rate is higher than
the physical lapsation rate.

We explore how lapsation rates are reflected in life insurance valuations. There are two
opposing forces. On the one hand, when insurance companies underwrite policies, they pay
a commission to the insurance broker. If the policy is more likely to lapse early, the insurer
may not yet have recovered the broker’s commission, and ignoring aggregate lapsation risk
would lead to a premium that is too low. We refer to this as the “fixed-cost effect.” On the
other hand, a key feature of life insurance contracts is that the premium paid is flat over
the life of the contract. Since mortality risk increases with age, insurers profit during the
first years of the contract (when the cost of mortality cover is below the premium) and lose
money during the later years of the contract (when the cost of mortality cover exceeds the
premium). If insurers ignore aggregate lapsation risk, and use a lapsation rate that is too
low, they put too much weight on the later years of the contract that are unprofitable. The
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insurance premium charged would therefore be too high. We refer to his as the “mortality
effect.”

Given these opposing forces, it is a quantitative question how aggregate lapsation risk
affects life insurance valuation. We develop an asset pricing model that captures the ob-
served correlation of lapsation rates with financial market variables. The model is calibrated
to match the prices of Treasury and corporate bonds. We find that the mortality effect out-
weighs the fixed-cost effect. In our calibration, profits on a 20-year life insurance contract
sold to a healthy 40-year old are about 30% higher than they would be if the contract was
correctly priced. Premiums are about 3% too high. We also find that the excess profits are
higher in a low interest rate environment.

The Covid-19 pandemic, which occurs at the end of our sample, presents an interesting
perspective. Unlike in the two previous recessions, the lapsation rate falls in 2020. We conjec-
ture that, first, the coronavirus increased the salience of mortality risk, and brought renewed
urgency to not letting insurance policies lapse and, second, that the government’s unusually
generous transfer spending (stimulus checks, extended unemployment insurance) enabled
households to continue paying their insurance premiums in the face of economic hardship.

Related Literature There is a strand of the insurance literature studying the lapsation in
the life insurance sector. These studies mainly focus on the demand side of lapsation, for
example which policyholders characteristics explain the observed lapse patterns. Society
of Actuaries and LIMRA (2019) is the standard industry source aggregating the lapse ex-
perience data of member firms. Eling and Kiesenbauer (2013) use policyholder-level data
from Germany to investigate which policy and policyholder characteristics drive the lapse
patterns in the data. Milliman (2020) document similar lapse patterns, focusing on the post-
term period where the premium spikes.

Hendel and Lizzeri (2003) theoretically and empirically show how the front-loading of
insurance policies affects lapse behavior by comparing renewable term policies to level-
payment term policies.

Gottlieb and Smetters (2021) provide behavioral explanations for the high observed lapse
rates. They conduct a survey to document that policyholders systematically underestimate
their own lapse probabilities at the time of policy purchase. A separate survey for those
who have just lapsed reports that the two main sources of lapsation are forgetfulness and
liquidity needs. Our paper complements their analysis by focusing on aggregate risk.

Kuo, Tsai, and Chen (2003) use annual aggregate lapse rates between 1951 to 1998 to
analyze econometric relationships of lapse rates with interest rates and unemployment rates.
We focus on the period after 1998 to document the cyclicality of lapsation. We also use novel
data to document differential exposures of insurers and policyholders to the aggregate risk
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factors. Lastly, by using calibrated asset pricing model, we study the pricing implications of
aggregate lapsation risk.

Our paper is also related to a large literature on prepayment risk in mortgage contracts.
See for instance Schwartz and Torous (1989), Stanton (1995), Deng, Quigley, and Order
(2000), Boyarchenko, Fuster, and Lucca (2019), Chernov, Dunn, and Longstaff (2018), and
Diep, Eisfeldt, and Richardson (2021). In this literature, it is well understood that modeling
prepayment risk and the covariance of prepayment rates with priced aggregate risk factors is
essential to determine the correct valuation of a mortgage or a pool of mortgages (mortgage-
backed security). Real-world mortgage prepayment behavior responds to interest rates (the
rate incentive) and variables that move with the business cycle like employment or house
prices. But it also contains behavioral aspects that are harder to capture with a rational
model. In another parallel, the recent mortgage literature has emphasized that suboptimal
prepayment behavior can lead to cross-subsidization and redistribution (Gerardi, Willen,
and Zhang (2021), Zhang (2022) and Fisher et al. (2021)). We show that lapsation rates are
also exposed to priced aggregate risks, that accounting for these aggregate risks is important
in computing insurance premiums, and that cross-sectional differences in actual lapsation
behavior has distributional consequences when it is not reflected in insurance premiums.

2 Data

2.1 S&P Global Market Intelligence

To study aggregate lapsation risk, we analyze two databases. The first database is S&P
Global Market Intelligence (SNL), which contains the universe of regulatory filings by insur-
ance companies. We focus on life insurance companies and exclude property and casualty
insurance companies. The data are at the annual frequency, spanning 1996 to 2020 (the lapse
rate starts in 1997). SNL offers data at two different levels of granularity: at the company
level (company codes starting with “C”) or at the group level (company codes starting with
“GK”). We use group-level data in our baseline analysis. For robustness, we also repeat the
same analysis using corporate-level data, and find that the analysis does not meaningfully
change. We refer to firm or firm-year to represent the entities in the group-level data (that is,
“GK” companies).

The main variable of interest is the lapse rate observed at a yearly frequency. We use the
term “lapsation rate” to include both the lapsation and surrender, following the standard
definition used in the industry (Society of Actuaries and LIMRA, 2019). We use the lapsa-
tion rate for ordinary life insurance (that is, individual life insurance), retrieved from the
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Ordinary Life: Lapse & Surrender Ratio time series of the SNL dataset.1 We drop the follow-
ing five insurance groups: SCOR U.S. Only (GK4020905), RGA U.S. Only (GK103450), Swiss
Re U.S. Only (GK4290308), Hannover Life Reassurance (C2749), and Munich Re U.S. Only
(GK4005715). These companies are either international or reinsurance companies. For the
regression analysis, we drop outliers with lapsation rates greater than 30%, which removes
2.8% of the lapsation rate observations.

2.2 Macro Variables

We construct two macro variables, GDP and Employment, at the firm-year level. Specifically,
we start from state-level macro time series data from the FRED database of the St. Louis Fed.
For GDP, we use the annual Real Total Gross Domestic Product series for each state. The time
series starts in 1997. We extend this series back to 1993 by regressing GDP growth rates of
each state on state-level employment growth rates and the aggregate GDP growth rate.

We then apply the Hamilton (2018) filter to the annual series of the state-level log GDP to
obtain its cyclical component. For Employment, we use the seasonally-adjusted monthly All
Employees: Total Nonfarm time series for each state. We apply the Hamilton filter to the log
level of employment, and take the annual average of the filtered values. For each firm-year,
we use the share of total life insurance premium income (Life ex Annuity: Sate Direct Premiums
& Annuity Considerations (in $000) from S&P Global Market Intelligence) in each U.S. state
as the weight vector to calculate firm-specific macro variables. This process generates our
firm-year level macro time series.

Aggregate macro variables are also retrieved from the FRED database of the St. Louis
Fed. For GDP, we use the annual Real Gross Domestic Product series (GDPCA). We apply the
Hamilton filter to the annual series of the log GDP. For employment, we first retrieve the
monthly All Employees, Total Nonfarm series (PAYEMS), and apply the Hamilton filter to the
monthly series to decompose the trend and the cycle.2 We then take the annual average of
the monthly cycle to construct an annual employment cycle series.

For interest rates, we use the 10-Year Treasury Constant Maturity Rate (GS10), where we
convert the monthly rates into annual rates by taking averages. For credit spreads, we use

1Data is accessed on April 18, 2021. Note that S&P Global Market Intelligence retrospectively updates his-
torical financial data to reflect the latest corporate structures following M&As and other corporate activities.
In “Group Methodology Summary on MI” document, it states “Market Intelligence Groups are composed of mem-
bers within that corporate structure on an as-is basis. Structures are updated quarterly and amended for any mergers or
acquisitions. The current members’ composition is applied retrospectively to all financial data for all periods.”

2The Hamilton filter described in Hamilton (2018) can be applied to both annual and monthly time series
with different choices of (h, p) for the regression yt+h = d0 + ∑

p
j=1 djyt−j+1 + ct+h. We use the recommended

parameter value of h = 2 for annual series and h = 24 for monthly series. We also use p = 2 for annual
series and p = 12 for monthly series, which look back one year for the lagged regressors, consistently with the
recommended choice of p = 4 for quarterly series.
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Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Matu-
rity (BAA10YM) and follow similar procedure to obtain an annual time series. We average
these series as lapsation occurs during the year.

For the county-level analysis, we use the median house price from Zillow. Specifically,
we take the average of the monthly ZHVI index over each year to construct the annual
series. The county-level unemployment rate data is downloaded from the BLS Local Area
Unemployment Statistics (LAUS).

2.3 Policy-level Insurance Database

The second and main novel proprietary database is provided to us by a major Life Insurance
Company. This is a large database of life insurance contracts, containing policy-level details.
The database is de-identified by a third party vendor for research purposes, so that we can-
not recover the identity of policyholders. We observe policy characteristics, such as size,
policy type (whole life, term life, or other), policy status (in-force, lapsed, or surrendered)
and issuance date. We also observe detailed policyholder characteristics such as age, gender,
smoking status, risk class, and ZIP code. Hereafter, we will refer to this database as the Firm
Database for convenience. The database contains life insurance policies spanning from late
1998 to early 2016.

As part of our data validation process, we compare the lapse rates of the Firm in the
S&P database (see Section 2.1) with the aggregate lapse rates we construct using the Firm
Database. If the Firm Database is representative of the firm’s portfolio of insurance policies,
the two lapsation rates should be close. We present a comparison in Figure 2. The orange
line plots the lapsation rate from the S&P database, while the blue line plots the aggregate
lapse rate calculated from the Firm Database. In the early period from 1999–2004, there is
a wide discrepancy between the two lines. This discrepancy is due to the left-truncation of
the Firm Database, which only contains new policies originated after late-1998. To see this,
note that the lapse rate in year t is calculated using the following equation:

LapseRatet =
Policies Lapsed within Year t

0.5 (In-Force Beginning of Year t + In-Force End of Year t)
(1)

where the numerator and the denominator can be based on either the number of policies or
the amount of face value.

Since we only observe the policies issued by the Insurance Company on or after 1998, it
takes a few years until the in-force policy pool populates and the denominator stabilizes.
Similarly, at the end of the sample, the two lines diverge as we do not observe policies in
the firm-level database that were originated after 2016. In between these two periods, our
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firm-level data set tracks the aggregate lapse rate well.

Figure 2. Aggregate Lapse Rate Validation

This figure presents the validation exercise we perform to ensure the coverage of the Firm
Database we use. The blue line plots the aggregate lapse rate we directly calculate from the
Firm Database using Equation (1). The orange line plots the reported aggregate lapse rate
from the S&P Global Market Intelligence database. Two graphs are reasonably close after
2003, which validates our use of the database. There is some discrepancy early in the
period due to left truncation of the database, see Section 2.1 for details.
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3 Empirical Methodology

3.1 Principal Component Analysis

For each of the 30 largest3 life insurance companies, as defined by in-force policy amount
outstanding as of 2020, we start from the historical lapsation rate series from 1997 to 2020

3We skip the 30th largest life insurance company, Resolution Life Holdings Inc (GK26554449), because it has
the 2010 lapsation rate missing. Instead we include the next largest company, Penn Mutual (GK110258). The
PCA results do not fundamentally change when we use the Resolution Life Holdings Inc with the overridden
lapsation rate 0.80% for 2010, which is the best estimate based on the Insurance In Force, Insurance Lost: Lapsed
and Insurance Lost: Surrendered variables.
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and apply the Hamilton filter to decompose the lapse rate time series into a trend and cycle
component. We then separately run two principal component analyses, one using the trend
time series and one using the cycle time series. Starting from the 30 trend time series, we
construct the first principal component that explains most of the variation using the correla-
tion matrix, and denote it as the Lapse Trend factor. Similarly, we define the Lapse Cycle factor
as the first principal component of the 30 cycle time series. We use the Lapse Trend factor and
the Lapse Cycle factor as the aggregate lapsation risk factors.

3.2 Firm-level Lapsation Analysis

We first study the heterogeneity in aggregate lapsation risk exposure at the firm-level. The
firm-level time series of lapsation rates can be used to run the following factor regression
with the lapsation risk factors constructed in 3.1:

Lapse Ratej
t = αj + β

j
TrendLapse Trendt + β

j
CycleLapse Cyclet + ε

j
t, (2)

where j represents the index for firm j.

3.3 Policy-level Lapsation Analysis

Next, we investigate the heterogeneity in exposures to aggregate lapse risk factors by policy
and policyholder characteristics, utilizing the micro-level Firm Database. To this end, we
estimate a Cox proportional hazard model of the observed lapse events on the time-varying
characteristics. For policy j issued at time t, we specify the annual lapsation hazard rate at
time t + τ as:

λj,t+τ = λ0(τ) exp(β′Zj,t+τ) (3)

where λ0(τ) is the baseline hazard rate at policy age τ ≥ 1, and the log relative risk is
linear in the vector of characteristics Zj,t+τ. Most of the policy or policyholder character-
istics (for instance, gender, smoking status, risk class, and term life policy indicator) are
time-invariant. For each policy or policyholder characteristic zi

j (or zi
j,t+τ if time-varying

characteristic), we additionally include the interaction term with the lapse cycle factor, i.e.
zi,cycle

j,t+τ = zi
j × (Lapse Cycle)t+τ in the characteristic vector Zj,t+τ . The estimated coefficients

on these interacted variables allow us to understand how the exposure to the cycle factor
varies with policy and policyholder characteristics.4

4We can similarly include the interaction terms with the lapse trend factor. Our main interest is the het-
erogeneous exposure on the lapse cycle risk factor, so we do not include the lapse trend interactions in the
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3.4 Geographical Analysis

We investigate the geographical variation in lapse rate changes between 2006 and 2009 at the
county-level. As the severity of the economic downturn varies across geographies, it pro-
vides us another way to explore how economic conditions relate to lapse rates. Specifically,
we study the relationship with county-level economic variables such as house price changes
and unemployment rate changes. The Firm Database contains the policyholders’ ZIP codes
for about 95% of our sample, so we first map the ZIP code information to the corresponding
county’s FIPS code by using the HUD USPS ZIP code-to-county crosswalk.5 There are 3,049
counties in the database, and the Firm’s life insurance business is concentrated in larger and
more populous counties. As the lapsation calculation becomes noisy for counties with little
coverage, we drop counties with fewer than 100 policies issued in our sample. This leaves
us with 826 counties, representing 96% of life insurance face amount coverage of the overall
sample. Data on changes in house prices from Zillow (ZHVI) are available for 762 coun-
ties (92%), changes in unemployment rates are available for 823 counties (99.6%), and both
variables are available for 759 counties (92%). Our results are not sensitive to reasonable
variations in the 100 policy threshold.

We construct three county-level variables to measure the change in lapsation rates, hous-
ing prices, and the unemployment rates between 2006 and 2009,

(∆Lapse 06− 09)c = (Lapsec,2009 − Lapsec,2006)× 100,

(∆HousingPrice 06− 09)c =

(
ZHVIc,2009

ZHVIc,2006
− 1
)
× 100,

(∆Unemp 06− 09)c = (Unempc,2009 −Unempc,2006)× 100.

We then regress (∆Lapse 06− 09)c on the house price change and the unemployment rate
change. The baseline specification is least squares, where observations are weighted by the
average in-force amount in 2006. This variable is the denominator used in the lapse rate
calculation formula. Intuitively, it represents the size of insurance business in each county
as of 2006.

baseline specification. Including the interaction terms with the lapse trend factor does not materially change
the coefficients on the interacted variables with the lapse cycle factor.

5https://www.huduser.gov/portal/datasets/usps crosswalk.html. We use the union of 2010, 2013, 2016
and 2019 Q1 versions, where the latest mappings were used per ZIP code.
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4 Empirical Results

4.1 Factor Construction

Following the empirical procedure described in Section 3.1, we construct two lapsation risk
factors from the 30 lapse trend components and the 30 lapse cyclical components. These
30 largest firms in the SNL database represent about the 81.2% of the market based on the
in-force policy size at the end of 2020.

Figure 3 plots the aggregate lapsation risk factors. The Lapse Trend factor, which is the first
principal component of the lapse trend time series, explains 96.4% of variation in firms’ lapse
trends. The Lapse Cycle factor similarly explains 69.5% of variation in firms’ lapse cycles.
These two factors explain a large part of the common variation in lapsation rates across
firms, and we use these factors as the aggregate lapse risk factors.

One salient fact is the gradual decline in the Lapse Trend factor. Coinciding with the sec-
ular decline in interest rates, lapse rates have also been declining over the past 20 years as
depicted for several large firms in Figure 4. The Lapse Trend factor captures this industry-wide
decline. The co-movement with interest rates is illustrated in the upper panel of Figure 5.

Table 1 formalizes this relationship by regressing the Lapse Trend factor on the 10-year
Treasury rate and other business cycle variables such as aggregate Filtered GDP, aggregate
Filtered Employment, and the Baa credit spread over the 10-year Treasury rate. The positive
and statistically significant coefficients on the 10-year Treasury rate, along with insignifi-
cant coefficients on the business cycle variables indicate that the Lapse Trend factor primarily
moves with interest rates. Lower rates increase the present value of the death benefit, and
hence the value of a life insurance contract, making it more costly to lapse from the poli-
cyholder’s perspective. Lower rates also increase the cost (premium payments) of a new
policy, again increasing the cost of lapsing an existing contract that was signed when rates
were higher. We do caution that identifying relationships between trending variables is chal-
lenging, and we therefore interpret this evidence as suggestive of a link between the trends
in lapsation rates and interest rates.

The Lapse Cycle factor on the other hand mostly captures the business cycle effect. Figure
1 plots the Lapse Cycle factor against two filtered macro variables, employment and GDP.
The counter-cyclicality of the Lapse Cycle factor is clear from the graphs.6 The lower panel of
Figure 5 shows that the factor is positively correlated with the Baa credit spread, a financial
market variable known to be closely related to the business cycle.

Table 2 formalizes this relationship by estimating similar models as in Table 1. Two obser-

6The principal component analysis is agnostic on the sign of the factor. We construct the factor to be coun-
tercyclical instead of being procyclical.
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Figure 3. The Evolution of Lapse Trend and Lapse Cycle

This figure plots the aggregate lapsation factors we construct. For each company, we start
from the historical lapse rate series from 1997 to 2020, and apply Hamilton filter to
decompose the lapse rate time series into the trend time series and the cycle time series. We
then separately run two principal component analyses to the trend time series and the cycle
time series. Starting from the 30 trend time series, we construct the first principal
component that explains the most of the variations using the correlation matrix, and denote
it as the Lapse Trend factor. Similarly, we define the Lapse Cycle factor as the first principal
component of the 30 cycle time series.
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Figure 4. Lapse Rates vs. Macro Variable (GDP) of the Largest Life Insurers

This figure plots the historical lapse rates against the firm-specific filtered GDP of the 12
largest insurance groups from the S&P Global Market Intelligence Database. For each life
insurance company, the company-relevant GDP is calculated as the weighted-average of
the state-level GDP, where the weights are based on the gross premium income from each
state to reflect the economic exposures to each state.
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Table 1. Time Series Regression of Lapse Trend

This table presents the results of the following time-series regressions:

Lapse Trend Factort = β (Treasury 10y)t + γXt + εt

for year t, where the business cycle variable Xt indicates either the Filtered GDP, Filtered
Employment, or Baa Credit spread over 10y. Robust standard errors are reported in
parentheses.

(1) (2) (3) (4) (5)
Treasury 10y 0.478*** 0.479*** 0.465*** 0.506*** 0.470***

(0.0688) (0.0607) (0.0578) (0.0608) (0.0544)

Filtered GDP -0.0622 0.298***
(0.0366) (0.0769)

Filtered Employment -0.0849** -0.301***
(0.0377) (0.0520)

Baa Credit Spread over 10y 0.306 0.445**
(0.185) (0.180)

Constant 4.359*** 4.351*** 4.401*** 3.463*** 3.244***
(0.266) (0.239) (0.233) (0.565) (0.455)

Observations 21 21 21 21 21
R2 0.664 0.704 0.735 0.724 0.814
Adjusted R2 0.646 0.671 0.706 0.693 0.768
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Table 2. Time Series Regression of Lapse Cycle

This table presents the results of the following time-series regressions:

Lapse Cycle Factort = β (Treasury 10y)t + γXt + εt

for year t, where the business cycle variable Xt indicates either the Filtered GDP, Filtered
Employment, or Baa Credit spread over 10y. Robust standard errors are reported in
parentheses.

(1) (2) (3) (4) (5)
Treasury 10y 0.210*** 0.213** 0.195** 0.262*** 0.255***

(0.0549) (0.0772) (0.0807) (0.0620) (0.0694)

Filtered GDP -0.124** -0.113
(0.0515) (0.0976)

Filtered Employment -0.106* 0.0597
(0.0608) (0.0859)

Baa Credit Spread over 10y 0.550*** 0.366**
(0.177) (0.162)

Constant -0.697*** -0.714** -0.645** -2.309*** -1.813***
(0.186) (0.279) (0.300) (0.581) (0.548)

Observations 21 21 21 21 21
R2 0.227 0.504 0.422 0.568 0.596
Adjusted R2 0.186 0.449 0.358 0.520 0.495
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

vations are notable compared to the results in Table 1. First, the coefficients on the business
cycle variables, Filtered GDP, and the Baa Credit Spread over the 10-year Treasury yield
are all statistically significant at the 5% level, and the coefficient on Filtered Employment
is statistically significant at the 10% level. The signs of the coefficients highlight the strong
counter-cyclicality of the Lapse Cycle factor. Second, the coefficients on the 10-year Treasury
yield are also statistically significant and positive. This indicates that the cyclical component
of lapsation contains some exposure to declining interest rates.7 Intuitively, the rise in the
lapsation rate in recessions indicates that a subset of policyholders face economic hardship
that no longer allows them to make premium payments.

7The Lapse Trend factor and the Lapse Cycle factor are not constructed as the first and the second principal
component of a set of vectors, so there is no guarantee that these factors are uncorrelated. The constructed
lapsation risk factors are positively correlated.

14



Table 3. Hedging Opportunities using Financial Products

This table presents the time-series regression results of the changes in lapsation risk factors
on the change in 10-year Treasury rate and the change in Baa Credit Spread over 10-year
Treasury yield. Robust standard errors are reported in parentheses.

(1) (2) (3)
∆Lapse Trend ∆Lapse Cycle ∆Lapse Total

∆Treasury 10y -0.103 0.551** 0.449**
(0.124) (0.224) (0.158)

∆Baa Credit Spread over 10y -0.0897 0.693*** 0.603***
(0.117) (0.188) (0.0963)

Constant -0.128*** 0.0594 -0.0682
(0.0432) (0.0885) (0.0875)

Observations 20 20 20
R2 0.061 0.392 0.394
Adjusted R2 -0.049 0.320 0.323
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

The top panel of Figure 5 plots the Lapse Trend factor against the 10-year Treasury yield.
The bottom panel of Figure 5 plots the Lapse Cycle factor against the Baa credit spread over
the 10-year Treasury yield. The strong comovement suggests that aggregate lapsation risk
can be hedged with a portfolio of Treasuries and corporate bonds.

We formalize this intuition in Table 3 by regressing the change in lapse rates on the
changes in financial market variables. Unlike in Table 1 and 2, we use changes in vari-
ables to establish the relationship, because the changes in variables are more relevant than
the levels for hedging purposes. Column (1) suggests that the Lapse Trend factor is harder to
hedge annually, and that there is a lower frequency relationship between the Lapse Trend fac-
tor and the 10-year Treasury Rate. Column (2) shows that the annual changes in Lapse Cycle
factor can be effectively hedged using Baa-rated corporate bonds and Treasuries. In Column
(3), we use the change in Lapse Total as a dependent variable, which is the sum of the Lapse
Trend factor and the the Lapse Cycle factor. This final column shows that this simple hedging
strategy already captures 40% of the variation in lapse rates.

4.2 Heterogeneity in Risk Factor Exposures

Equipped with the two aggregate lapsation risk factors, we investigate the heterogeneity in
risk exposures across (i) life insurers by estimating the regression specified in Equation (2),

15



Figure 5. Lapse Factors and Financial Market Variables

This figure plots the lapsation factors against the financial market variables. The blue line
in the upper panel plots the Lapse Trend factor against the 10-year Treasury yield. The red
line in the lower panel plots the Lapse Cycle factor against the Baa credit spread over 10-year
Treasury yield.
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(ii) across individual policies by estimating the Cox proportional hazard model specified
in Equation (3), and (iii) across geographies. First, we examine how large life insurers are
differentially exposed to the risk factors by running factor regressions at the firm level. Sec-
ond, leveraging the extensive policy-level Firm Database, we estimate the hazard model to
study the marginal effects of specific policy and policyholder characteristics on the relative
risk. Third, we explore the heterogeneity in lapsation rates across geographies with different
house price and employment experiences during the Great Financial Crisis.

4.2.1 Heterogeneity Across Firms

Table 4 presents the first set of results for large insurers. The table lists the 30 largest life
insurers based on the in-force policy amounts at the end of 2020, which is the same group of
life insurers that we used to construct the lapsation risk factors in Section 3.1. The third and
the fourth column report the mean and the standard deviation of the historical lapse rates.
The fifth column reports the correlation of the historical lapse rate series with the filtered
employment series. The correlation coefficients are mostly negative, which is consistent with
Figure 4. The sixth and the seventh column are the main results of interest: the exposures
to the Lapse Trend factor and the Lapse Cycle factor. We note substantial variation in these
risk exposures across companies. This suggests that optimal hedging strategies to manage
lapsation risk vary across companies. The valuation impact of aggregate lapse risk also
varies across companies.

4.2.2 Heterogeneity Across Policies

Table 5 presents the results using the policy-level data. The first column indicates the policy
or policyholder characteristic that we examine. For the attained age and the policy size
(death benefit amount in 2016 USD), we divide into groups and use the group indicator
variables while omitting the oldest policyholder group and the largest policy group. The
Risk Class (Better) variable indicates the initial risk classification of the policyholder by the
life insurer at the time of underwriting, where the ultra preferred class takes +2, the select
preferred class takes +1, the standard class takes 0, and the sub class takes -1 on the value
within either Tobacco or Non-Tobacco risk ratings. The Shock Year variable is an indicator
variable that takes on the value of one for term policies at maturity to capture the large spike
in lapsation due to the renewability feature common in the U.S. term policy market.8

8See Figure 33 of Society of Actuaries and LIMRA (2019) for the effect of the shock year lapse “spikes”. Both
Society of Actuaries (2010) and Milliman (2020) provide detailed discussion on the shock year lapse effects.
Instead of flagging both year T and year T + 1 as in other source, we only flag year T + 1 as the shock lapse
year, because the Firm Database only records the policy status updates dates with about a 3-month delay. This
is the same effect that we discuss in the baseline hazard rate graph.
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Table 4. Lapsation Risk Exposures to Lapse Trend and Cycle by Firm

This table reports the lapsation risk exposures of large life insurers to the two lapsation risk
factors. Specifically, we run the following regression:

Lapse Ratej
t = αj + β

j
TrendLapse Trendt + β

j
CycleLapse Cyclet + ε

j
t

where the superscript j represents the index for the 30 largest life insurer groups from the
S&P Global Market Intelligence database.

Rank Company Name Mean St. dev. Corr. w. Exposure to Exposure to
Lapse Lapse Employm. Lapse Trend Lapse Cycle

1 Prudential Financial Inc. 5.20 1.19 -0.39 1.08 (0.11) 0.94 (0.15)
2 Northwestern Mutual 3.74 0.35 -0.29 0.16 (0.05) 0.44 (0.06)
3 AIG 6.18 2.48 -0.06 1.68 (0.57) 1.39 (0.76)
4 Transamerica 7.48 1.18 -0.33 0.65 (0.26) 0.95 (0.34)
5 Lincoln Financial 6.02 1.36 -0.28 1.20 (0.21) 0.85 (0.28)
6 New York Life 5.90 0.75 -0.29 0.69 (0.12) 0.41 (0.16)
7 State Farm 6.36 0.98 -0.35 0.83 (0.09) 0.89 (0.12)
8 Protective 5.52 1.30 -0.05 1.06 (0.31) 0.26 (0.41)
9 Principal Financial Group Inc. 4.50 1.78 -0.45 1.65 (0.16) 1.37 (0.21)
10 MassMutual 4.83 0.76 -0.07 0.50 (0.15) 0.65 (0.19)
11 Legal & General U.S. only 4.75 0.98 -0.35 0.91 (0.11) 0.69 (0.15)
12 Primerica 9.97 1.50 -0.36 1.09 (0.16) 1.54 (0.21)
13 Genworth 5.28 1.23 -0.52 0.13 (0.39) 0.46 (0.51)
14 John Hancock 5.68 0.95 -0.52 0.59 (0.15) 0.98 (0.19)
15 Brighthouse Financial 5.77 1.35 -0.44 1.25 (0.23) 0.63 (0.31)
16 Pacific Life 6.31 1.58 -0.50 0.11 (0.38) 1.80 (0.50)
17 Allstate Corp 8.88 1.77 -0.34 1.50 (0.26) 1.32 (0.34)
18 Equitable Holdings 6.30 1.17 -0.29 1.27 (0.18) 0.25 (0.24)
19 MetLife 5.11 1.06 -0.18 0.98 (0.15) 0.65 (0.20)
20 USAA 2.57 0.34 0.01 0.20 (0.08) 0.22 (0.11)
21 Voya Financial Inc. 5.64 1.57 -0.29 1.41 (0.23) 1.01 (0.31)
22 Guardian 5.28 1.16 -0.34 1.17 (0.14) 0.64 (0.19)
23 Berkshire Hathaway Inc. 9.23 4.19 0.14 1.96 (1.28) -0.35 (1.69)
24 Great-West U.S. only 6.32 2.36 -0.16 1.94 (0.52) 0.85 (0.70)
25 Sammons Enterprises Inc. 6.22 1.02 -0.28 0.89 (0.20) 0.44 (0.27)
26 KUVARE 6.72 1.76 -0.32 0.93 (0.36) 1.63 (0.48)
27 Zurich 8.25 1.47 -0.42 1.32 (0.19) 1.07 (0.25)
28 Nationwide 5.90 1.31 -0.44 1.10 (0.24) 0.77 (0.32)
29 Ohio National 5.85 0.66 -0.33 0.14 (0.21) -0.20 (0.28)
30 Penn Mutual 5.29 1.30 -0.43 1.04 (0.21) 1.00 (0.27)
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The second column reports the estimated coefficient β from fitting the Cox proportional
hazard model specified in Equation (3). The third and the fourth columns report the stan-
dard error and the z score for each coefficient. The fifth column shows the standard deviation
of each characteristic, where we use σi = 1.0 if characteristic zi is a dummy variable. Since
the lapse cycle factor has standard deviation 0.58 in our sample, we use σi,cycle = σi × 0.58
for the interaction of characteristic zi with the lapse cycle factor. The sixth column reports
the marginal effect defined by βiσi for characteristic zi.

Before we discuss the heterogeneous lapse cycle exposures, which is our main focus, we
discuss the estimated baseline lapse rate. First, the signs of the un-interacted coefficients of
attained age, gender, policy size, smoking, risk rating, term vs. whole and others character-
istics are all consistent with the well-document patterns from the industry lapse experience,
see for instance Society of Actuaries and LIMRA (2019) and Milliman (2020). Second, Fig-
ure 6 plots the estimated baseline hazard rate function λ0(τ). The downward-sloping graph
on policy age is consistent with the documented shape of the lapse term structure from the
industry report (Society of Actuaries and LIMRA (2019)).9

We interpret the cyclical exposure of each characteristic based on the relative size of
the marginal effect of the interacted variable compared to the marginal effect of the un-
interacted lapse cycle variable. For example, the Risk Class (Better) × Lapse Cycle variable
has the marginal effect of −0.03. Compared to the marginal effect of the un-interacted lapse
cycle variable (−0.10), the effect is roughly 30% in magnitude. A policyholder with a better
risk rating by one notch has 30% less cyclical lapse risk. We provide similar interpretations
below.

The first split is by the attained age of the policyholder. The results show that, before
retirement, younger policyholders have a much greater exposure to the lapse cycle factor.
The second split shows that although male policyholders have higher lapse risk on average,
the exposures to the Lapse Cycle factor is not significantly different from female policyholders.

Next, we look at smoker status and risk classification. Smokers and policyholders in a
lower risk class (worse risks) have higher exposures to the Lapse Cycle factor. The marginal
effects of smoking and a lower risk rating are about 10% and 30% of the un-interacted lapse
cycle effect, respectively. Households with a poorer health arguably benefit most from the
financial protection offered by life insurance, yet show the greatest propensity to lose their
policy in a recession.

9There is a “kink” at the 2-year data point. This results from the operation of the Firm database, where it
records the status update date for lapsation or surrender, not the last date of the coverage. In practice, there
is usually a 30-day grace period to declare the lapsation, and there can be additional administrative delay of
one to two months. With this limitation, many of ”lapses” at the end of the first year are shifted by a few
months and measured as the second-year lapse. Because this effect is common to all policies, the effect on β,
the heterogeneous risk exposure, is minimal.
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Table 5. Lapsation Risk Exposures by Policy and Policyholder Characteristics

This table reports the heterogeneous lapsation risk exposures of life insurance policies
depending on various policy or policyholder characteristics. We estimate the following Cox
proportional hazard model for policy j in the Firm Database issued at time t:

λj,t+τ = λ0(τ) exp(β′Zj,t+τ)

where λ0(τ) is the baseline hazard rate at policy age τ ≥ 1, and the log relative risk is linear
in the vector of the policy or policyholder characteristics Zj,t+τ .

Characteristic β SE z σ Marginal Effect
Age Group 00-24 0.46 0.01 39.80 1.00 0.46
Age Group 25-34 0.46 0.01 50.51 1.00 0.46
Age Group 35-44 0.21 0.01 24.42 1.00 0.21
Age Group 45-54 0.17 0.01 19.05 1.00 0.17
Age Group 55-64 0.14 0.01 15.43 1.00 0.14

Age Group 00-24 x LapseCycle 0.34 0.02 17.11 0.58 0.19
Age Group 25-34 x LapseCycle 0.26 0.02 16.60 0.58 0.15
Age Group 35-44 x LapseCycle 0.29 0.02 18.82 0.58 0.17
Age Group 45-54 x LapseCycle 0.23 0.02 14.84 0.58 0.13
Age Group 55-64 x LapseCycle 0.11 0.02 6.58 0.58 0.06

Lapse Cycle -0.18 0.02 -10.48 0.58 -0.10

Male 0.03 0.00 7.47 1.00 0.03
Male x LapseCycle -0.01 0.01 -1.03 0.58 0.00

Size less than 100k -0.30 0.01 -39.00 1.00 -0.30
Size 100k to 250k 0.10 0.01 17.00 1.00 0.10
Size 250k to 500k 0.07 0.01 11.80 1.00 0.07
Size 500k to 1mm 0.03 0.01 4.25 1.00 0.03

Size less than 100k x LapseCycle -0.04 0.01 -3.49 0.58 -0.03
Size 100k to 250k x LapseCycle -0.04 0.01 -3.82 0.58 -0.02
Size 250k to 500k x LapseCycle -0.01 0.01 -1.38 0.58 -0.01
Size 500k to 1mm x LapseCycle -0.01 0.01 -0.91 0.58 -0.01

Smoker 0.44 0.01 74.61 1.00 0.44
Smoker x LapseCycle 0.02 0.01 2.22 0.58 0.01

Risk Class (Better) -0.20 0.00 -92.23 0.91 -0.18
Risk Class (Better) x LapseCycle -0.04 0.00 -10.06 0.79 -0.03

Whole & Others -0.12 0.00 -27.64 1.00 -0.12
Whole & Others x LapseCycle 0.14 0.01 20.37 0.58 0.08

Shock Year 1.79 0.02 85.97 1.00 1.79
Shock Year x LapseCycle -0.89 0.04 -22.57 0.58 -0.51
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Figure 6. The Estimated Baseline Hazard Rate

This figure plots the estimated baseline hazard rate from the Cox proportional hazard rate
model using the Firm Database. The Cox proportional hazard model specifies that for
policy j in the Firm Database issued at time t:

λj,t+τ = λ0(τ) exp(β′Zj,t+τ)

where λ0(τ) is the baseline hazard rate at policy age τ ≥ 1, and the log relative risk is linear
in the vector of the policy or policyholder characteristics Zj,t+τ .
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We then split the data by policy size (death benefit). Exposures to the lapse cycle increase
modestly with policy size.

The last split of the data compares term policies to whole life policies and other policies
such as variable or universal life policies. Lapse rates of whole and other life policies are
more cyclical compared to term policies without cash surrender value. The magnitude of
the additional cyclical exposure for the whole and other policies is about 80% of the un-
interacted cyclical effect. If recessions cause a need for liquidity, for example because of an
unemployment spell, whole life policyholders can surrender their policies thereby accessing
the cash surrender value in these policies.

This rich pattern of heterogeneity in exposures suggests that there are important distri-
butional consequences from aggregate lapsation risk. The fact that young and riskier poli-
cyholders are more likely to lapse their policy during economic downturns provides a new
perspective on the costs of business cycles, in particular if households who lapse their poli-
cies are less likely to purchase a new policy in the future.

4.2.3 Geographical Heterogeneity During the 2008 Financial Crisis

Next, we explore the heterogeneity in lapsation rates across geographies during the 2008 fi-
nancial crisis. Figure 7 presents the binscatter plots of the county-level lapse rate change,
(∆Lapse 06 − 09)c, against the county-level economic variables during the Global Finan-
cial Crisis. The top panel plots the lapse rate change against the housing price change,
(∆HousingPrice 06− 09)c, and the bottom panel plots the lapse rate change against the un-
employment change, (∆Unemp 06− 09)c. The counties are sorted into 20 equal-sized bins
based on the value of the economic variable on the horizontal axis. The blue dots are plotted
at the equal-weighted averages for each bin and the orange dots are plotted at the weighted-
averaged for each bin. The average in-force amount in 2006 is used to construct the weights,
and the orange marker size indicates the bin-level sum of the weights. The blue lines show
the OLS predictions while the orange lines show the weighted least squares (WLS) predic-
tions. All three variables are winsorized at the 2.5% and 97.5% percentiles.

The top panel shows a clear negative relationship between the change in the lapse rate
and house price changes, and the bottom panel shows a clear positive relationship between
lapse rate changes and changes in the unemployment rate. Counties with more adverse
housing and labor market conditions during the Great Financial Crisis experienced larger
increases in the lapse rates.

We formalize this relationship by estimating county-level regressions. Table 6 presents
the WLS results, which we prefer as the baseline specification. The OLS results are presented
in Table A2 in the Appendix. Robust standard errors are reported. In Column (1) of Table
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Figure 7. Lapsation Rate Change vs. County-level Economic Variables

This figure plots the lapsation change between 2006 and 2009 against the county-level
economic variables. The top panel plots the lapsation rate change ((∆Lapse 06− 09)c)
against the housing price change ((∆HousingPrice 06− 09)c) and the bottom panel plots
the lapsation rate change ((∆Lapse 06− 09)c) against the unemployment change
((∆Unemp 06− 09)c). Counties are sorted into 20 equal-size bins based on the economic
variable on the X-axis. The blue dots are plotted at the equal-weighted averages for each
bin and the orange dots are plotted at the weighted-averaged for each bin. The average
in-force amount in 2006 are used as the weights, and the orange marker size indicates the
bin-level sum of the weights. The blue lines show the OLS predictions while the orange
lines show the WLS predictions.
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6, the point estimate on house price changes is -0.04 and it is statistically significant at the
5% level. The mean and standard deviation of ∆Housing Price 06− 09 are−7.8% and 12.5%,
respectively, so that a one-standard deviation decline in house prices is associated with a
0.51% higher lapsation rate.

Similarly, in Column (4), the coefficient on the unemployment rate change is 0.23 and it is
statically significant at the 5% level. The mean and standard deviation of ∆Unemp Rate 06−
09 are 4.4% and 1.7%, respectively, so that a one-standard deviation more severe unemploy-
ment rate increase is associated with a 0.39% higher lapsation rate.

In Columns (2) to (3) and (5) to (6), we control for median 2006 income10 and 2006 log
population. The coefficient on house price changes becomes more negative. Larger coun-
ties (usually in populous MSAs with higher median income) experienced more severe house
price declines, but experienced a smaller increase in lapsation rates. Controlling for income
and population thus makes the sensitivity of lapse rates to house prices larger. For unem-
ployment changes, controlling for income and population does not affect the coefficient of
interest much.

In Columns (7) to (9), we present the results when both house price changes and un-
employment changes are included in the model. The effect from unemployment changes is
subsumed by the coefficient on the house price change. The latter is still statistically signifi-
cant at the 5% level, and is larger in absolute value than in Columns (1) to (3).11

In sum, regional variation in economic hardship correlates positively with lapsation
rates, adding an additional dimension of heterogeneity to the results from the previous sec-
tion, and adding evidence that policies tend to lapse more in adverse states of the world.

5 Valuation Model

In this section, we develop an asset pricing model to quantify the impact of aggregate lapsa-
tion risk on the valuation of life insurance policies. We calibrate the model to be consistent
with asset pricing data. We then use the model to compute the mispricing and its impact on
insurer profitability when insurance companies do not account for systematic lapsation risk
in calculating insurance premiums.

10This is the imputed ACS income of 2006. If ACS data exists, we use the data, otherwise we use the predicted
income of the following panel regression: (ACSIncome)ct = β ∗ (HUDIncome)ct + αc + γt. The estimated β is
≈ 0.275.

11Comparing the WLS results in Table 6 to the OLS results in Table A2, the coefficients are similar in columns
(1) to (6). When both house price change and unemployment rate change are included as regressors, the
coefficients lose statistical significance, unlike in the WLS.
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5.1 Summary of the Economic Intuition

Before explaining the details of the model, we discuss the basic economic intuition for how
aggregate lapsation risk affects the valuation of life insurance policies.

Let λt = Et[Lapset+1] be the probability that a policyholder lapses her policy in the
subsequent period, where Lapset+1 is one in case of lapsation and zero otherwise. In the
presence of aggregate risk, the probability to be used in valuation accounts for the stochastic
discount factor, M$

t+1:

λQ
t = Et

[
M$

t+1

Et[M$
t+1]

Lapset+1

]
= λt + Covt

(
M$

t+1

Et[M$
t+1]

, Lapset+1

)
.

We have seen that lapsation is high during economic downturns, which coincides with pe-
riods when investors’ marginal utility is high as well. The covariance term is therefore posi-
tive and the effective lapsation rate to be used for valuation, λQ, exceeds the actual lapsation
rate, λ.

If an insurer ignores aggregate lapsation risk, then the lapsation rate used is too low.
This has two opposing effects on the premium charged to policyholders. First, insurance
companies pay a commission to insurance brokers to sell their products. If insurers use a
lapsation rate that is too low, they understate the probability that the policy lapses before
they have been able to recover the fixed cost of selling the policy. As a result, the premium
charged is too low.

The opposing effect is a consequence of the fact that insurers charge a fixed premium
during the term of the contract, while mortality rates increase. This implies that the first
years of the contract are profitable (as the premium exceeds the costs of the mortality cover),
and the later years of the contract are unprofitable (as the premium is lower than the costs
of the mortality cover). If insurers use a lapsation rate that is too low, they put too much
weight on the second part of the contract, and charge a premium that is too high.

A priori, it is unclear which effect dominates and how large these effects are, how they
vary with the markup charged by the insurer, and with macroeconomic conditions such as
the low-rate environment. To answer these questions, we develop a quantitative model in
the remainder of this section.

5.2 Model Setup

The model builds on the affine valuation models that are widely used in finance, and we
extend it to value life insurance policies in the presence of aggregate lapsation risk.
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We assume that the N× 1 vector of state variables, zt, follows a Gaussian first-order VAR:

zt = µ + Ψzt−1 + Σ
1
2 εt, (4)

with shocks εt ∼ i.i.d.N (0, I) whose variance is the identity matrix, I. The companion
matrix Ψ is an N × N matrix and Σ

1
2 is a lower-triangular matrix. As detailed below, the

state vector contains a one-year government bond yield, the return on a credit portfolio, and
the credit spread.

The nominal SDF M$
t+1 = exp(m$

t+1) is conditionally log-normal:

m$
t+1 = −y$

t,1 −
1
2

Λ′tΛt −Λ′tεt+1. (5)

Note that y$
t,1 = −Et[m$

t+1]− 0.5Vt[m$
t+1]. The risk prices, Λt, are modeled as Λt = Λ0 +

Λ1zt. We impose further restrictions on Λ0 and Λ1 below.
All lapsation rates λ are converted to log lapsation rates λ̃ satisfying exp(−λ̃) = 1− λ.

We assume that the log lapsation factor is affine in the state vector, that is, l̃t = a0 + a′1zt. We
parameterize the term structure of lapsation rates using the sequence of constants {b(n)}∀n.
The log lapsation rate of a policy of age n is then given by:

λ̃
(n)
t = b(n) l̃t,

with b(n) > 0 and b′(n) < 0.
Two comments are in order. First, the lapse rate can, in theory, become negative. How-

ever, the probability of this happening is so small that we favor this specification that pro-
vides a simple closed-form solution over more complicated alternatives. Second, the lapsa-
tion rate inherits the persistence of factors. We could generalize this by adding an additional
component to the state variables in zt that reflects an independent component in the lapsa-
tion rate.

5.3 Nominal Bonds

Given the assumptions we made, we can recursively find a closed-form solution for nominal
bond yields.

Proposition 1. Nominal bond yields are affine in the state vector:

y$
t (τ) = −

A$
τ

τ
− B$′

τ

τ
zt,

27



where the coefficients A$
τ and B$

τ satisfy the following recursions:

A$
τ+1 = A$

τ +
1
2

(
B$

τ

)′
Σ
(

B$
τ

)
+
(

B$
τ

)′ (
µ− Σ

1
2 Λ0

)
(6)(

B$
τ+1

)′
=

(
B$

τ

)′
Ψ− e′yn −

(
B$

τ

)′
Σ

1
2 Λ1, (7)

initialized at A$
0 = 0 and B$

0 = 0.

Proof. See Appendix Section A.1.

5.4 Term Life Policy

We now use the model to value term life policies. We consider a T−year term life insurance
contract that is issued at time t. The annual mortality rate at age a is πa, and it is typically
increasing in age. The life insurance contract is sold via brokers and the broker compensation
equals C = κp, with p the insurance premium and κ a multiple of the annual premium.
Hence, if κ = 1, then the broker receives one year of premiums.

For τ = 1, 2, · · · , T, the lapse rates {λt+τ} and the SDF M$
t+τ are modeled in Section 5.2.

We denote the cumulative SDF by M$
t,1:τ = ∏τ

s=1 M$
t+s. The valuation equation for the life

insurance policy equates the expected premium revenue with the expected cost of paying
the broker and paying the death benefit to the policyholder:

pEt

[
1 +

T−1

∑
τ=1

M$
t,1:τ

τ

∏
s=1

(1− πa+s−1)
τ

∏
s=1

(1− λ
(s)
t+s)

]

= C + (1 + φ)Et

[
T

∑
τ=1

M$
t,1:τπa+τ−1

τ−1

∏
s=1

(1− πa+s−1)
τ−1

∏
s=1

(1− λ
(s)
t+s)

]
,

where φ denotes the markup of the insurance policy before considering the brokerage fee.12

Using C = κp, we can solve for the insurance premium:

p = (1 + φ)
Et

[
∑T

τ=1 M$
t,1:τπa+τ−1 ∏τ−1

s=1 (1− πa+s−1)∏τ−1
s=1 (1− λ

(s)
t+s)

]
Et

[
1 + ∑T−1

τ=1 M$
t,1:τ ∏τ

s=1(1− πa+s−1)∏τ
s=1(1− λ

(s)
t+s)

]
− κ

. (8)

Given the assumptions made, we calculate a closed-form solution for Et

[
M$

t,1:τ ∏τ
s=1(1− λ

(s)
t+s)

]
,

which is the key term in computing the insurance premium. Note that the solution de-
pends on the lapse factor exposures at different policy age, i.e. b(1:τ) =

{
b(1), b(2), · · · , b(τ)

}
.

12Note that the timing is such that we first draw the health outcome (survival or death) and then proceed to
the lapse decision. If this is reverse, the last term on the right-hand side would have ∏t

s=1(1− λs) instead of
∏t−1

s=1(1− λs).
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We recursively solve for the two coefficient functions Pτ : Rτ → R and Qτ : Rτ → RN

that satisfy Et

[
M$

t,1:τ ∏τ
s=1(1− λ

(s)
t+s)

]
= exp

(
Pτ(b(1:τ)) + Qτ(b(1:τ))′zt

)
. The other term

Et

[
Mt,1:τ ∏τ−1

s=1 (1− λ
(s)
t+s)

]
in the numerator can be calculated as a special case when b(τ) =

0, that is, if there is no lapsation in the final period. The following proposition provides the
recursion for Pτ and Qτ. Note that when τ = 0, we slightly abuse the notation Pτ(b(2:τ+1)) =

P0 and Qτ(b(2:τ+1)) = Q0 for constants P0 and Q0 for simplicity.

Proposition 2. The term policy premium p can be written as:

p = (1 + φ)
∑T

τ=1 exp
(

Pτ(b(1:τ−1), 0) + Qτ(b(1:τ−1), 0)′zt

)
πa+τ−1 ∏τ−1

s=1 (1− πa+s−1)

1 + ∑T−1
τ=1 exp

(
Pτ(b(1:τ)) + Qτ(b(1:τ))′zt

)
∏τ

s=1(1− πa+s−1)− κ
,

where the coefficient functions Pτ : Rτ → R and Qτ : Rτ → RN satisfy the following
recursions:

Pτ+1(b(1:τ+1)) = −b(1)a0 + Pτ(b(2:τ+1)) +
(

Qτ(b(2:τ+1))− b(1)a1

)′ (
µ− Σ

1
2 Λ0

)
+

1
2

(
Qτ(b(2:τ+1))− b(1)a1

)′
Σ
(

Qτ(b(2:τ+1))− b(1)a1

)
(9)(

Qτ+1(b(1:τ+1))
)′

=
(

Qτ(b(2:τ+1))− b(1)a1

)′ (
Ψ− Σ

1
2 Λ1

)
− e′yn, (10)

initialized at P0 = 0 and Q0 = 0.

Proof. See Appendix Section A.2.

The recursion in Proposition 2 can be regarded as an extension of the recursion in Propo-
sition 1. When lapse rates do not depend on the state of the economy, i.e. b(1) = b(2) = · · · =
b(τ) = 0, Et

[
M$

t,1:τ ∏τ
s=1(1− λ

(s)
t+s)

]
simplifies to the nominal bond price of maturity τ. We

verify that Pτ(~0) = A$
τ and Qτ(~0) = B$

τ. Indeed, Equations (9) and (10) are equivalent to
Equations (6) and (7) when b(1) = b(2) = · · · = b(τ+1) = 0.

5.5 Calibration

We calibrate the model using financial market data at an annual frequency. Instead of di-
rectly estimating the VAR model presented in Section 5.2 on annual data, we specify an un-
derlying monthly VAR model. We estimate the monthly model, properly time-aggregated
to match moments obtained from annual financial market data. The advantage of this mod-
eling and calibration approach is that it allows us to simultaneously capture the dependency

29



of the lapse rates on the average of financial market state variables during the year and the
relationship between the credit risk premium and the credit spread at the end of the year.13

The three-dimensional state vector zt = (rt, crt, st)′ contains the 1-year Constant Maturity
U.S. Treasury rate (GS1 in FRED), the monthly credit return calculated from the ICE BofA
BBB US Corporate Index Total Return Index (BAMLCC0A4BBBTRIV in FRED) and the credit
spread, defined as Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-
Year Treasury Constant Maturity (BAA10Y in FRED) for the sample period 1990–2020. We
convert the interest rate, credit return, and credit spread into logarithms before estimating
the VAR model. The monthly specification is the same as Equation (4) with the monthly
VAR parameters (µ, Ψ, Σ

1
2 ):

zt = µ + Ψzt−1 + Σ
1
2 εt, (11)

The monthly dynamics imply the following annual dynamics:

zt+k =

(
k−1

∑
i=0

Ψi

)
µ + Ψkzt +

k−1

∑
i=0

ΨiΣ
1
2 εt+k−i, (12)

and

K

∑
k=1

zt+k =
K

∑
k=1

(
k−1

∑
i=0

Ψi

)
µ +

K

∑
k=1

Ψkzt +
K

∑
k=1

k−1

∑
i=0

ΨiΣ
1
2 εt+k−i. (13)

Equation (12) describes the dynamics of the annually-sampled interest rate and the credit
spread (rt+12 and st+12). Equation (13) describes the annual log holding period return on
the credit portfolio, which is the sum of twelve monthly log returns (∑12

k=1 crt+k). Equation
(13) multiplied by 1/12 also describes the dynamics of the state variables, averaged over the
year. It is those averages that drive the lapsation behavior.

The monthly nominal SDF M$
t+1 = exp(m$

t+1) is given by:

m$
t+1 = − δ0

12
−

δ′1zt

12
− 1

2
Λ′tΛt −Λ′tεt+1, (14)

where the one-month discount rate y$
t,1 =

δ0

12
+

δ′1zt

12
is an affine function of the state variable

zt. We parameterize the market price of risk Λt as:

Λt = Λ0 + Λ1zt = Λ0 + Λ̂1e′3zt,

13Lapsation rate data are available only at the annual frequency. When we model and estimate (in Table 3)
the relationship between the annual lapse rates and the financial market state variables, the lapse rate depends
on the average state variables throughout the year not just on the end-of-year state variables. Using a monthly
VAR allows us to model the annual lapse rate as a function of the 12-month average of monthly state variables.
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which requires us to identify three parameters, two for Λ0 = (Λr
0, Λcr

0 , 0)′ and one for Λ̂1 =

(0, ζ, 0)′.
We use the following three moments to calibrate these three market price of risk parame-

ters. First, we match the average slope of the yield curve, defined as the difference between
the 10- and 1-year Treasury bond yields. Second, we match the unconditional credit risk
premium. Third, we match the linear dependence of the credit risk premium on the lagged
credit spread. Additionally, (δ0, δ1) are estimated from the restriction that the one-year risk-
free interest rate implied by the monthly SDF equals the one-year bond yield included in the
state vector, rt.

Specifically, we model the monthly excess return on the credit portfolio as:

crt+1 − y$
t,1 = γ0 + γ1st + σcret+1,

with et+1 ∼ N (0, 1), so that the expected excess return depends on the credit spread:

Et[crt+1]− y$
t,1 = γ0 + γ1st.

The Euler equation for the credit portfolio then implies:

Et[crt+1] +
1
2

Vt[crt+1]− y$
t,1 = −Covt[crt+1, m$

t+1]

Using our assumption on the credit return and the affine structure of the SDF, this can be
rewritten as:

γ0 + γ1st +
1
2
(σcr)2 = Λr

0σcrCovt[et+1, εr
t+1] + (Λcr

0 + ζst)σ
crCovt[et+1, εcr

t+1]

Matching the unconditional credit risk premium delivers the second moment condition:

γ0 + γ1E[st] +
1
2
(σcr)2 = Λr

0σcrCov[et+1, εr
t+1] + (Λcr

0 + ζE[st])σ
crCov[et+1, εcr

t+1] (15)

and matching the conditional credit spread delivers the third moment condition:

γ1 = ζσcrCov[et+1, εcr
t+1] (16)

Appendix B contains the details of the calibration process. The estimated monthly dy-
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namics that result from matching moments measured in annual data are as follows:

 rt+1

crt+1

st+1

 =

 0.0006

−0.0139

0.0026

+

 0.9792 0 0

0.0933 0 0.7245

0 0 0.8888


 rt

crt

st

+

 0.0041 0 0

0.0013 0.0242 0

−0.0023 −0.0025 0.0016


 εr

t+1

εcr
t+1

εs
t+1


The estimated market price of risks are Λr

0 = −0.1265, Λcr
0 = −0.5365 and ζ = 29.98.

We verify that the model indeed matches the unconditional slope of the log yield curve
of 1.36% and the unconditional credit risk premium of 4.43% (equivalently, the monthly
unconditional credit risk premium of 0.41%), as well as the observed dependence of the
annual credit risk premium on the 12-month lagged credit spread.

Next, we calibrate the parameters for the aggregate lapsation process, modeled as fol-
lows,

l̃t = a0 + a′1z̄t,

λ̃
(n)
t = b(n) l̃t,

where z̄t denotes the 12-month moving average of the state variables. We first calibrate the
parameters a0 and a1. By regressing the log lapsation rate l̃t on a constant, the constant-
maturity U.S. Treasury 10-year log rate (y$

10,t), and the Baa-10y log spread (st) over the pe-
riod 2000 to 2020 (annual average financial market data), we obtain the following relation-
ship: l̃t = 0.0094 + 0.85y$

10,t + 0.94st. Using the theoretical relationship y$
10,t = 0.02986 +

0.41247rt from the calibrated yield curve, we obtain the coefficients a0 = 0.0347 and a1 =

(0.35, 0, 0.94)′.
We calibrate the term structure of lapsation coefficients {b(n)} by parameterizing {b(n)} =

u +
v

n + w
, and we search for the vector (u, v, w) that delivers the closest fit for the 2007-

2009 and 2009-2013 lapsation term structures to the term policy lapsation curves observed
in the data (Society of Actuaries and LIMRA, 2012, 2019).14 The calibrated term structure is

b(n) = 0.54+
1.75

n + 0.75
and the model-implied lapsation term structure is reasonably close to

the data, as shown in Figure 8.
Figure 9 presents the historical paths of the model state variables, and the model-implied

lapse rates and the market price of risks. In the top panel, we plot the first and the third state
variables (rt, st) retrieved from FRED between 2000 and 2020. The middle panel compares
the actual lapse rate data with the model-implied lapse rates, showing that our lapsation

14We do not model the extendibility of a term life policy and the associated “shock lapses” at the end of
the level premium periods, so we calculate the 6-10 and 11-20 average lapse rates excluding the policy ages
affected by the shock lapses (10, 11, 15, 16, 20). See Society of Actuaries (2010) for a detailed investigation of
the shock lapses after the level-premium period. The report shows that most of the shock lapses are occurring
at the end of the policy age T and the beginning of the policy age T + 1.
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Figure 8. Lapse Rate Calibration

This figure plots the calibrated lapse rates from the model and compare it to the Data for
2007-2009 and 2009-2013 periods (Society of Actuaries and LIMRA, 2012, 2019). See Section
5.5 for the details of the calibration process.
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Figure 9. Lapsation Model and Data

The top panel plots the historical paths of two state variables, (rt, st), of the asset pricing
model. The middle panel compares the actual lapse rate data with the model-implied lapse
rates. For the details of model calibration, see Section 5.5. The bottom panel plots the
model-implied market price of risk.
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model provides a good fit. The bottom panel shows the time variation in the market price of
risk on the credit return shock (the market price of risk on the interest rate shock is constant).
During the Great Financial Crisis when the credit spread was high, the market price of credit
risk was high, and lapsation was high. It is this positive covariance between lapsation rates
and marginal utility that is the key new ingredient in our insurance pricing model.

5.6 Life Insurance Mispricing when Ignoring Aggregate Lapsation Risk

We now study an insurer who does not consider systematic lapsation risk when pricing life
insurance contracts. We first consider the correct premium when the life insurer properly
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accounts for aggregate lapsation risk. We repeat Equation (8) for convenience:

p = (1 + φ)
Et

[
∑T

τ=1 M$
t,1:τπa+τ−1 ∏τ−1

s=1 (1− πa+s−1)∏τ−1
s=1 exp(−λ̃

(s)
t+τ)

]
Et

[
1 + ∑T−1

τ=1 M$
t,1:τ ∏τ

s=1(1− πa+s−1)∏τ
s=1 exp(−λ̃

(s)
t+τ)

]
− κ

.

The correct expected profit to the insurer V is:

Vcorrect = p ·

Et

[
1 +

T−1

∑
τ=1

M$
t,1:τ

τ

∏
s=1

(1− πa+s−1)
τ

∏
s=1

exp(−λ̃
(s)
t+τ)

]
︸ ︷︷ ︸

=α(T)

−κ


− Et

[
T

∑
τ=1

M$
t,1:τπa+τ−1

τ−1

∏
s=1

(1− πa+s−1)
τ−1

∏
s=1

exp(−λ̃
(s)
t+τ)

]
︸ ︷︷ ︸

=β(T)

= p · (α(T)− κ)− β(T)

= φβ(T),

where we have a closed-form solution for α(T) = 1 + ∑T−1
τ=1 exp

(
Pτ(b(1:τ)) + Qτ(b(1:τ))′zt

)
∏τ−1

s=1 (1−πa+s−1) and β(T) = ∑T
τ=1 exp

(
Pτ(b(1:τ−1), 0)+Qτ(b(1:τ−1), 0)′zt

)
πa+τ−1 ∏τ−1

s=1 (1−
πa+s−1).15

Intuitively, α(T) measures the number of years of premium income the insurer can ex-
pect to receive in the presence of lapsation risk and mortality risk. The first arrival of either
lapsation or policyholder death ends the premium revenue claim. β(T) measures the ex-
pected value of a $1 death benefit pay-out from the perspective of the insurer. This death
benefit only needs to be paid out if the policyholder dies during the term of the life insurance
contract and the policy did not yet lapse.

We contrast this case with the case where an insurer ignores the covariance between the
SDF and lapsation when pricing the term life insurance contract. To capture this scenario, we
assume that the lapse rate depends on an independent lapsation factor, which is defined as
l̃ind
t = a0 + a′1z̄ind

t . The independent state vector zind
t follows the process zind

t+1 = µ + Ψzind
t +

Σ
1
2 ε̃t+1 with shocks ε̃t ∼ N(0, I) that are independent from εt. This modeling approach

preserves the distribution of lapsation rates, while decoupling lapsation risk from shocks to
the SDF.

When both α(T) and β(T) are incorrectly calculated based on this independent lapsation

15See Appendix B.3 for details on the calculation of the terms in mispricing formula such as
α(T), β(T), α̃(T), β̃(T).
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model, denoted by α̃(T) and β̃(T), respectively, the premium is set as p̃ = (1 + φ) β̃(T)
α̃(T)−κ

.

We can calculate α̃(T) and β̃(T) also in closed form as α̃(T) = 1 + ∑T−1
τ=1 LτZτ ∏τ−1

s=1 (1 −
πa+s−1) and β̃(T) = ∑T

τ=1 Lτ−1Zτπa+τ−1 ∏τ−1
s=1 (1 − πa+s−1) for Zτ = Et

[
M$

t,t+1:t+τ

]
and

Lτ = Et

[
∏τ

s=1(1− λ
(s)
t+s)

]
. Appendix A.2 and Section B.3 contains the affine recursions for

Lτ and Zτ.
When the premium p̃ is charged, but actual lapsation is subject to aggregate risk, the

insurer’s profit is given by:

Vrealized = p̃ · (α(T)− κ)− β(T)

= (1 + φ)

(
α(T)− κ

α̃(T)− κ

)
β̃(T)− β(T).

We measure the impact of ignoring aggregate priced risk on the life insurer’s profits as
Mispricing(%) = Vrealized−Vcorrect

Vcorrect . We first study the numerator of this expression:

Vrealized −Vcorrect = (1 + φ)

(
α(T)− κ

α̃(T)− κ

)
β̃(T)− β(T)− φβ(T)

= (1 + φ)

(
α(T)− κ

α̃(T)− κ
− 1
)

β̃(T) + (1 + φ)
(

β̃(T)− β(T)
)

We find that α(T) < α̃(T) and β(T) < β̃(T). Intuitively, lapse rates tend to increase dur-
ing bad times (high SDF states). Taking this covariance into account shortens the duration
of the premium leg and lowers the expected discounted death benefit payment. The effect
of aggregate lapsation risk is to increase the effective lapse rates. The risk-neutral lapse rates
(under the Q measure) are higher than the physical lapse rates (under the P measure).

We use the notation α̃(T)/α(T) = 1 + ∆α,T and β̃(T)/β(T) = 1 + ∆β,T for ∆α,T, ∆β,T > 0.
Then, after dividing the previous expression by Vcorrect and some algebraic manipulation,
we can express the Mispricing(%) measure as the sum of two components:

Mispricing(%) =
Vrealized −Vcorrect

Vcorrect

= (1 + φ−1)

(
∆α,T

1 + ∆α,T
− ∆α,T

1 + ∆α,T − κ/α(T)

)
(1 + ∆β,T)︸ ︷︷ ︸

=Fixed−Cost E f f ect<0

+ (1 + φ−1)

(
∆β,T

1 + ∆β,T
− ∆α,T

1 + ∆α,T

)
(1 + ∆β,T)︸ ︷︷ ︸

=Mortality E f f ect>0

(17)

The fixed-cost effect term shows how the presence of the broker cost (κ > 0) affects our
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mispricing measure. The insurer has to pay the fixed cost when the policy is underwritten.
Early lapsation means that the insurer may not earn enough premium income to offset the
cost of the broker fee. The higher the lapsation rate, the stronger the detrimental effect
of fixed costs on profits. Since the effective lapsation rate is higher when accounting for
priced aggregate lapsation risk, the fixed-cost effect is negative. In other words, not correctly
considering systematic lapsation risk leads insurers to earn too little profit.

The second term is labeled a mortality effect because the sign of the term is determined by
the relative size of ∆β,T and ∆α,T. We observe ∆β,T > ∆α,T in our calibration when mortality
rises with age. With a flat mortality curve, ∆α,T ≈ ∆β,T and mispricing captures mostly the
fixed-cost effect. However, under a realistic mortality curve, the mortality rate exponentially
rises in age and ∆β,T >> ∆α,T. The mortality effect contributes positively to the mispricing
measure. Intuitively, the insurer charges a flat premium throughout the life of the contract.
The expected cost, by contrast, increases with age as mortality rates increase. Putting the
fixed cost aside, the insurer experiences profits during the early years (as the flat premium
exceeds the costs of mortality coverage) and losses during the later years of the contract (as
the flat premium is lower than the costs of mortality coverage). If the insurer understates
lapsation risk, it puts more weight on the later years during which the insurer experiences
losses. As a result, the premium is set too high and the insurers unexpectedly earns excess
profits.

Because the mispricing decomposition shows two countervailing effects, we need to
quantitatively assess the relative magnitude of the two effects. We do so for a hypothet-
ical 40 year-old male policyholder with a realistic mortality curve.16 The fee paid to the
broker is known to be between 50% to 100% of the first-year premium revenue, so we use
κ = 0.5, 0.75, and 1.0, with benchmark value κ = 0.75. We vary the margin parameter φ in
a reasonable range by using values φ = 0.05, 0.1, 0.2. In Appendix C we test the validity of
the markup assumption by calculating the insurer’s expected share θ from the underwriting
profit, after paying the broker’s share (1− θ). The 40% to 50% profit share range for term
policies ranging from 10 to 20 years in maturity (see Table A1) in our baseline cases φ = 10%
and κ = 0.75 is in line with our understanding of the broker fee structure in the market.

Table 7 reports the mispricing measure and its decomposition. We find that the mortality
effect dominates the fixed-cost effect, so that insurers who ignore priced aggregate lapsation
risk earn excess profits. In our baseline case, κ = 0.75 and φ = 10%, the realized profit for
a 10-year term policy is 6.9% higher than the theoretically correct one. This mispricing is
decomposed into the two effects previously discussed in the second and third panels of the

16We use the 2017 Loaded CSO (Commissioners Standard Ordinary) Composite mortality table
(https://www.soa.org/resources/experience-studies/2015/2017-cso-tables). We use the select mortality table
to reflect the fact that insurers in practice are able to select policyholders with lower-than-population mortality
risk, at least in the early years of the policy.
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table. The insurer has to pay 75% of the first year premium to the brokers as a fixed cost. Ig-
noring the accelerated lapsation during recessions (higher lapsation under Q) results in 3.2%
understatement of the profit. On the other hand, the insurer charges a higher premium than
the theoretically correct one (0.6% higher premium before markup and fixed-costs), as she
is pricing a higher likelihood of having to pay out the death benefit when she assumes that
lapsation rates are lower (under P than under Q). The mortality effect makes the realized
profit 10.0% higher compared to the correct profit. Since the mortality effect outweighs the
fixed-cost effect, ignoring systematic lapsation risk in pricing decisions results in an excess
profit of 6.9% compared to the case where the insurer correctly considered systematic lapsa-
tion risk. Term life policies would be cheaper in the world with correct pricing and profits
would be lower.

The mispricing effect increases strongly in the maturity of the policy. The excess profit
is 29.3% for a 20-year policy, due to a much stronger mortality effect. The reason is that
mortality rises exponentially in age, and is much higher around age 60 than around age 40.
This backloading of mortality risk interacts with lapsation risk. Understating lapsation risk
in the incorrect pricing model results in a much higher expected death benefit payout than
in the correct pricing model. The incorrect insurer charges a much higher premium and
earns much higher profits. We have verified that with a (counter-factually) flat mortality
rate profile, the mortality effect remains near zero for the 20-year policy.

Mispricing falls in both κ and φ. A higher fixed cost κ, while holding the markup φ fixed,
results in a lower fixed-cost effect while the mortality effect is not changed. As the markup
φ increases, holding κ fixed, both the fixed-cost effect and the mortality effect decline due to
the 1 + φ−1 term in Equation (17).

5.7 Using Corporate Bond Yields to Value Life Insurance Policies

Life insurers can use a corporate credit curve when calculating discounted present values for
reserve calculations (National Association of Insurance Commissioners, 2021). The stated
argument is that life insurers mostly hold corporate bonds on their balance sheet. This argu-
ment is incorrect because what a firm holds on the asset side should not affect the valuation
of its liabilities. The premature death risk of individual policyholders is idiosyncratic, thus
payouts on a portfolio of such policies should be discounted with the Treasury yield curve,
not the corporate credit curve. As we have shown above, lapsation is correlated with corpo-
rate credit risk, and this affects valuations of life insurance contracts. These effects should be
modeled via the covariation of lapsation rates and the SDF, and not as an ad-hoc adjustment
to discount rates.

We investigate whether the observed credit-curve discounting practice mitigates the mis-
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Table 7. Mispricing of Term Life Policies without Aggregate Lapse Risk

This table presents the calculated mispricing measure defined in Section 5.6 by

Mispricing(%) =
Vrealized −Vcorrect

Vcorrect

where Vcorrect = φβ(T) is the correct profit of selling the term policy at markup φ assuming
the correct pricing, and Vrealized = p̃ · (α(T)− κ)− β(T) is the realized valuation based on
the incorrect pricing when the aggregate lapsation risk is ignored.

Mispricing (%)

κ=0.5 κ=0.75 κ=1.0

10-year Term Policy φ= 5% 15.3% 13.1% 10.7%
φ= 10% 8.0% 6.9% 5.6%
φ= 20% 4.4% 3.7% 3.1%

15-year Term Policy φ= 5% 34.3% 31.6% 28.8%
φ= 10% 18.0% 16.6% 15.1%
φ= 20% 9.8% 9.0% 8.2%

20-year Term Policy φ= 5% 59.0% 56.0% 52.8%
φ= 10% 30.9% 29.3% 27.7%
φ= 20% 16.9% 16.0% 15.1%

Fixed-Cost Effect (%)

κ=0.5 κ=0.75 κ=1.0

10-year Term Policy φ= 5% -3.9% -6.0% -8.4%
φ= 10% -2.0% -3.2% -4.4%
φ= 20% -1.1% -1.7% -2.4%

15-year Term Policy φ= 5% -4.8% -7.4% -10.3%
φ= 10% -2.5% -3.9% -5.4%
φ= 20% -1.4% -2.1% -2.9%

20-year Term Policy φ= 5% -5.5% -8.5% -11.7%
φ= 10% -2.9% -4.5% -6.1%
φ= 20% -1.6% -2.4% -3.3%

Mortality Effect (%)

κ=0.5 κ=0.75 κ=1.0

10-year Term Policy φ= 5% 19.1% 19.1% 19.1%
φ= 10% 10.0% 10.0% 10.0%
φ= 20% 5.5% 5.5% 5.5%

15-year Term Policy φ= 5% 39.1% 39.1% 39.1%
φ= 10% 20.5% 20.5% 20.5%
φ= 20% 11.2% 11.2% 11.2%

20-year Term Policy φ= 5% 64.5% 64.5% 64.5%
φ= 10% 33.8% 33.8% 33.8%
φ= 20% 18.4% 18.4% 18.4%
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pricing effect of ignoring aggregate lapsation risk. If the artificially higher discounting curve
offsets some of the mispricing effect, then life insurers may have been accidentally pricing
life insurance policies closer to the theoretically correct price than what we calculate in Sec-
tion 5.6. Table 8 shows the results from applying higher discount curves than the Treasury
curve.17 By ignoring aggregate lapsation risk, life insurers effectively use lapsation rates that
are too low when pricing their policies, compared to the risk-neutral lapsation rates. This
leads them to overstate their expected premium income and their expected death benefit
payouts. Using a higher discount rate in these present value calculations effectively offsets
the effect of using lapsation rates that are too high. As a result, the “double mispricing”
effects in Table 8 are much smaller than in Table 7. Life insurers may get the pricing about
right, but it is only because two mistakes cancel each other out.

6 Conclusion

We study aggregate lapsation risk in the life insurance sector. Using regulatory filings, we
document the counter-cyclicality of lapsation behavior. Two lapsation risk factors explain a
large part of the common variation in the lapsation rates of the 30 largest life insurance com-
panies. The first is a cyclical factor that correlates with the credit spread and employment,
while the second factor is a trend factor that correlations with the level of interest rates. Us-
ing a novel policy-level database from a large life insurer, we examine the heterogeneity in
risk factor exposures based on policy and policyholder characteristics. Young policyholders
with higher health risks display more cyclical lapsation behavior. We explore the implica-
tions for hedging and valuation of life insurance contracts. Ignoring aggregate lapsation
risk results in cross-subsidization across policyholders with different lapsation risk, and in
mispriced insurer premiums and profits. Our results have implications for the welfare costs
of business cycles.

17The Standard Valuation Model published by NAIC contains a reserve calculation with a discount rate
based on a moving average of the Moody’s average composite yields of seasoned corporate bonds. The actual
discount rate formula used is I = 0.03 + ρ · (min(R, 0.09) − 0.03) + (ρ/2) ∗ (max(R, 0.09) − 0.09), where R
is the minimum of the 12-months and the 36-months moving average of the Moody’s composite yield on
seasoned corporate bonds. To mimic this formula, we assume that the insurer uses the risk-free discounting
curve implied by the alternative log SDF, m∗t+1 = −0.03− ρ(y$

t,1 + st − 0.03) − 1
2 Λ′tΛt − Λ′tεt+1. We use the

parameter ρ = 0.45, as specified in Section 2.a.iii of VM-20 (National Association of Insurance Commissioners,
2021) for policies with duration between 10 and 20 years. The implied credit spread over Treasury curve is
around 1.2% to 1.5% across different maturities. Effectively, we are shifting up the discount rate by 1.2-1.5%
points relative to the Treasury yield curve.
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Table 8. Double Mispricing with Credit Discounting

This table presents the calculated mispricing measure defined in Section 5.6 by

Mispricing(%) =
Vrealized −Vcorrect

Vcorrect

where Vcorrect = φ̂β(T) is the correct profit of selling the term policy at markup φ̂ assuming
the correct pricing. Vrealized = p̃ · (α(T)− κ)− β(T) is the realized valuation based on the
assumption that the premium p̃ is doubly-mispriced, i.e. the aggregate lapsation risk is
ignored but also the credit curve is used for discounting. See 5.7 for the details.

Mispricing (%)

κ=0.5 κ=0.75 κ=1.0

10-year Term Policy φ= 5% -11.5% -10.3% -9.0%
φ= 10% -6.0% -5.4% -4.7%
φ= 20% -3.3% -2.9% -2.6%

15-year Term Policy φ= 5% 1.4% 1.9% 2.6%
φ= 10% 0.7% 1.0% 1.3%
φ= 20% 0.4% 0.6% 0.7%

20-year Term Policy φ= 5% 18.4% 18.6% 18.8%
φ= 10% 9.6% 9.7% 9.9%
φ= 20% 5.3% 5.3% 5.4%

Fixed-Cost Effect (%)

κ=0.5 κ=0.75 κ=1.0

10-year Term Policy φ= 5% 2.1% 3.2% 4.5%
φ= 10% 1.1% 1.7% 2.4%
φ= 20% 0.6% 0.9% 1.3%

15-year Term Policy φ= 5% 1.1% 1.6% 2.3%
φ= 10% 0.6% 0.9% 1.2%
φ= 20% 0.3% 0.5% 0.7%

20-year Term Policy φ= 5% 0.4% 0.5% 0.7%
φ= 10% 0.2% 0.3% 0.4%
φ= 20% 0.1% 0.2% 0.2%

Mortality Effect (%)

κ=0.5 κ=0.75 κ=1.0

10-year Term Policy φ= 5% -13.5% -13.5% -13.5%
φ= 10% -7.1% -7.1% -7.1%
φ= 20% -3.9% -3.9% -3.9%

15-year Term Policy φ= 5% 0.3% 0.3% 0.3%
φ= 10% 0.2% 0.2% 0.2%
φ= 20% 0.1% 0.1% 0.1%

20-year Term Policy φ= 5% 18.1% 18.1% 18.1%
φ= 10% 9.5% 9.5% 9.5%
φ= 20% 5.2% 5.2% 5.2%
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A Model Solution

A.1 Nominal Bonds

Proposition 1. Nominal bond yields are affine in the state vector:

y$
t (τ) = −

A$
τ

τ
− B$′

τ

τ
zt,

where the coefficients A$
τ and B$

τ satisfy the following recursions:

A$
τ+1 = A$

τ +
1
2

(
B$

τ

)′
Σ
(

B$
τ

)
+
(

B$
τ

)′ (
µ− Σ

1
2 Λ0

)
, (A.1)(

B$
τ+1

)′
=

(
B$

τ

)′ (
Ψ− Σ

1
2 Λ1

)
− e′yn, (A.2)

initialized at A$
0 = 0 and B$

0 = 0.

Proof. We conjecture that the t + 1-price of a τ-period bond is exponentially affine in the
state:

log(P$
t+1,τ) = A$

τ +
(

B$
τ

)′
zt+1

and solve for the coefficients A$
τ+1 and B$

τ+1 in the process of verifying this conjecture using
the Euler equation:

P$
t,τ+1 = Et[exp{m$

t+1 + log
(

P$
t+1,τ

)
}]

= Et[exp{−y$
t,1 −

1
2

Λ′tΛt −Λ′tεt+1 + A$
τ +

(
B$

τ

)′
zt+1}]

= exp{−e′ynzt −
1
2

Λ′tΛt + A$
τ +

(
B$

τ

)′
(µ + Ψzt)} ×

Et

[
exp{−Λ′tεt+1 +

(
B$

τ

)′
Σ

1
2 εt+1}

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P$
t,τ+1 = exp

{
−e′ynzt + A$

τ +
(

B$
τ

)′
(µ + Ψzt) +

1
2

(
B$

τ

)′
Σ
(

B$
τ

)
−
(

B$
τ

)′
Σ

1
2 (Λ0 + Λ1zt)

}
.

Taking logs and collecting terms, we obtain a linear equation for log(pt(τ + 1)):

log
(

P$
t,τ+1

)
= A$

τ+1 +
(

B$
τ+1

)′
zt,

where A$
τ+1 satisfies (A.1) and B$

τ+1 satisfies (A.2). The relationship between log bond prices
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and bond yields is given by − log
(

P$
t,τ

)
/τ = y$

t,τ.

A.2 Term Life Policy

Proposition 2. Term policy price p can be written as:

p = (1 + φ)
∑T

τ=1 exp
(

Pτ(b(1:τ−1), 0) + Qτ(b(1:τ−1), 0)′zt

)
πa+τ−1 ∏τ−1

s=1 (1− πa+s−1)

1 + ∑T−1
τ=1 exp

(
Pτ(b(1:τ)) + Qτ(b(1:τ))′zt

)
∏τ

s=1(1− πa+s−1)− κ
,

where the coefficient functions Pτ : Rτ → R and Qτ : Rτ → RN satisfy the following
recursions:

Pτ+1(b(1:τ+1)) = −b(1)a0 + Pτ(b(2:τ+1)) +
(

Qτ(b(2:τ+1))− b(1)a1

)′ (
µ− Σ

1
2 Λ0

)
+

1
2

(
Qτ(b(2:τ+1))− b(1)a1

)′
Σ
(

Qτ(b(2:τ+1))− b(1)a1

)
(A.3)(

Qτ+1(b(1:τ+1))
)′

=
(

Qτ(b(2:τ+1))− b(1)a1

)′ (
Ψ− Σ

1
2 Λ1

)
− e′yn, (A.4)

initialized at P0 = 0 and Q0 = 0.

Proof. We conjecture the exponential affine form solution,

Et

[
M$

t,1:τ

τ

∏
s=1

(1− λ
(s)
t+s)

]
= exp

(
Pτ(b(1:τ)) + Qτ(b(1:τ))′zt

)

Then we can recursively calculate Et

[
M$

t,1:τ+1 ∏τ+1
s=1 (1− λ

(s)
t+s)

]
as the following (we use a

concise notation~b = b(2:τ+1))
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Et

[
τ+1

∏
s=1

exp(m$
t+s − b(s) l̃t+s)

]

= Et

[
exp(m$
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[ τ
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1
2
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= Et exp

[
(−e′ynzt −

1
2
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]]
= Et exp

[
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1
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1
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= exp
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]

Taking the logs and collecting terms, we obtain a linear equation:

log

(
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τ+1
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s=1

(1− λ
(s)
t+s)
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where the coefficient functions satisfy

Pτ+1(b(1:τ+1)) = −b(1)a0 + Pτ(b(2:τ+1)) + (Qτ(b(2:τ+1))− b(1)a1)
′(µ− Σ

1
2 Λ0)

+
1
2
(Qτ(b(2:k+1))− b(1)a1)

′Σ(Qτ(b(2:τ+1))− b(1)a1)

and

Qτ+1(b(1:τ+1))′ = (Qτ(b(2:τ+1))− b(1)a1)
′(Ψ− Σ

1
2 Λ1)− e′yn

Substituting Et

[
M$

t,1:τ ∏τ
s=1(1− λ

(s)
t+s)

]
= exp

(
Pτ(b(1:τ)) + Qτ(b(1:τ))zt

)
into Equation

(8) concludes the proof.
Note that if we evaluate the coefficients with b(n) = 0, ∀n, then {Pτ, Qτ} do not de-

pend on b anymore, so we get the following recursion for the affine coefficient constants
{ZPτ, ZQτ} for the zero coupon bonds Zτ (i.e. Zτ = Et

[
M$

t,t+1:t+τ

]
= exp

[
ZPτ + ZQτ

′zt

]
)

ZPτ+1 = ZPτ + ZQτ
′(µ− Σ

1
2 Λ0) +

1
2

ZQτ
′ΣZQτ

ZQτ+1
′ = ZQτ

′(Ψ− Σ
1
2 Λ1)− e′yn

We can analogously calculate the coefficient function recursion for the expected survival
function, Lτ(b(1:τ)) = Et

[
∏τ

s=1(1− λ
(s)
t+s)

]
= exp

[
LPτ(b(1:τ)) + LQτ(b(1:τ)) ′zt

]
LPτ+1(b(1:τ+1)) = −b(1)a0 + LPτ(b(2:τ+1)) + (LQτ(b(2:τ+1))− b(1)a1)

′µ

+
1
2
(LQτ(b(2:τ+1))− b(1)a1)

′Σ(LQτ(b(2:τ+1))− b(1)a1)

LQτ+1(b(1:τ+1))′ = (LQτ(b(2:τ+1))− b(1)a1)
′Ψ

B Monthly VAR Model Calibration with Annual Data

B.1 Model Setup

We follow the set up described in Section 5.5. The monthly state variables zt = (rt, crt, st)′

follows the dynamics

zt = µ + Ψzt−1 + Σ
1
2 εt (B.1)
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The monthly dynamics implies the following two annual dynamics

zt+k =

(
k−1

∑
i=0

Ψi

)
µ + Ψkzt +

k−1

∑
i=0

ΨiΣ
1
2 εt+k−i, (B.2)

and

K

∑
k=1

zt+k =
K

∑
k=1

(
k−1

∑
i=0

Ψi

)
µ +

K

∑
k=1

Ψkzt +
K

∑
k=1

k−1

∑
i=0

ΨiΣ
1
2 εt+k−i. (B.3)

Equation (B.2) describes the dynamics of the annually observed interest rate and the credit
spread (rt+12 and st+12), while Equation (B.3) describes the annually observed credit return
(∑12

k=1 crt+k).
The monthly nominal SDF M$

t+1 = exp(m$
t+1) becomes

m$
t+1 = − δ0

12
−

δ′1zt

12
− 1

2
Λ′tΛt −Λ′tεt+1. (B.4)

where the one-month discount rate y$
t,1 =

δ0

12
+

δ′1zt

12
is an affine form of the state variable zt.

We parametrize the market price of risk Λt as

Λt = Λ0 + Λ1zt = Λ0 + Λ̂1e′3zt

which requires us to identify three parameters, two for Λ0 = (Λr
0, Λcr

0 , 0)′ and one for Λ̂1 =

(0, ζ, 0)′.
We additionally model the credit return as

crt+1 − y$
t,1 = γ0 + γ1st + σcret+1 (B.5)

with et+1 ∼ N (0, 1), so that the expected excess return depends on the credit spread.
Note that the recursions in Proposition 1 and Proposition 2 in Appendix A are slightly

changed in the monthly model, as the discount rate is now an affine form of the states, not
simply the first state. More precisely, Equation (A.1) and (A.2) become

A$
τ+1 = − δ0

12
+ A$

τ +
1
2

(
B$

τ

)′
Σ
(

B$
τ

)
+
(

B$
τ

)′ (
µ− Σ

1
2 Λ0

)
, (B.6)(

B$
τ+1

)′
=

(
B$

τ

)′ (
Ψ− Σ

1
2 Λ1

)
−

δ′1
12

(B.7)
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and Equation (A.3) and (A.4) become

Pτ+1(b(1:τ+1)) = − δ0

12
− b(1)a0 + Pτ(b(2:τ+1)) +

(
Qτ(b(2:τ+1))− b(1)a1

)′ (
µ− Σ

1
2 Λ0

)
+

1
2

(
Qτ(b(2:τ+1))− b(1)a1

)′
Σ
(

Qτ(b(2:τ+1))− b(1)a1

)
(B.8)(

Qτ+1(b(1:τ+1))
)′

=
(

Qτ(b(2:τ+1))− b(1)a1

)′ (
Ψ− Σ

1
2 Λ1

)
−

δ′1
12

. (B.9)

B.2 Calibration Process

Note that given our specification of Λ0 and Λ1, all the affine coefficients for the yields {B$
τ}∀τ

have the second and the third components zeros (see Equation B.7), so we can simplify to
δ1 = (δ̂1, 0, 0) and only need to estimate δ̂1. Then the short rate then becomes 12y$

t,1 =

δ0 + δ′1zt = δ0 + δ̂1rt.
We start by restricting the companion matrix as

Ψ =

 φr 0 0
δ̂1
12 0 γ1

0 0 φs


The restriction in the second row directly follows from our credit return model in Equation
(B.5). For rt and st, we set the off-diagonal terms zero. For the covariance matrix, we specify
is as a lower triangular matrix

Σ
1
2 =

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


The monthly persistence parameters (φr, φs) are estimated by regressing rt+12 on rt and st+12

on st, as Equation (B.2) implies

rt+12 =e′1

(
k−1

∑
i=0

Ψi

)
µ + e′1Ψkzt + e′1

11

∑
i=0

ΨiΣ
1
2 εt+12−i (B.10)

st+12 =e′3

(
k−1

∑
i=0

Ψi

)
µ + e′3Ψkzt + e′3

11

∑
i=0

ΨiΣ
1
2 εt+12−i. (B.11)

That is, Ψ12 is the annual companion matrix. The estimated annual persistence implies φ12
r =

0.7770 and φ12
s = 0.2431, so we get φr = 0.9792 and φs = 0.8888. We estimate µr = 0.0006 and

µs = 0.0026 to match the unconditional rt, st implied by Equation (B.2) with the 1990-2020
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mean in the data, 0.0276 and 0.0237.
Equation (B.10) also implies that the error term of rt+12 on rt regression is e′1 ∑11

i=0 ΨiΣ
1
2 εt+12−i.

Then the variance of the error term becomes

Vart[e′1
11

∑
i=0

ΨiΣ
1
2 εt+12−i] =

11

∑
i=0

e′1ΨiΣ(Ψi)′e1 (B.12)

which implies σ11 = 0.0041.
We then estimate (Λr

0, δ0, δ̂1) using the following three moment conditions. First, we
match the unconditional slope of the yield curve between the 1-year and 10-year log rates,
which is 0.136 in the 1990-2020 annual data. We also match A$

12 = 0 and B$
12 = (−1, 0, 0)

conditions. Note that given our risk price assumption, knowing µr and σ11 is sufficient to
generate the entire yield curve. The estimated parameters are Λr

0 = −0.1265, δ0 = −0.0062
and δ̂1 = 1.1196.

Now we estimate γ1. First, observe that the dynamics of ∑12
k=1 crt+k is implied by Equa-

tion (B.3)

12

∑
k=1

crt+k =e′2
12

∑
k=1

(
k−1

∑
i=0

Ψi

)
µ + e′2

12

∑
k=1

Ψkzt + e′2
12

∑
k=1

k−1

∑
i=0

ΨiΣ
1
2 εt+k−i (B.13)

Observe that e′2 ∑12
k=1 Ψk = (1, 0,

(
∑11

i=0 φi
s

)
γ1). Therefore if we regress

(
∑12

k=1 crt+k

)
− rt on

st, i.e. if we run the annual credit excess return predictive regression, the estimated annual
prediction coefficient 4.9324 implies γ1 = 0.7245. By matching the unconditional credit
excess return, we get µcr = −0.0139.

The rest five elements of Σ
1
2 can be estimated from Equation (B.10), (B.11), and (B.13),

which imply 5 covariance equations in addition to Equation (B.12) we already used. For ex-
ample, the model implied covariance between the residuals of rt+12 equation and ∑12

k=1 crt+k

equation is:

Covt[e′1
11

∑
i=0

ΨiΣ
1
2 εt+12−i, e′2

12

∑
k=1

k−1

∑
i=0

ΨiΣ
1
2 εt+k−i]

which should match the (1, 2)-th element of the residual covariance matrix from the regres-
sions in Equation (B.10), (B.11), and (B.13) using the annual data. The estimated Σ

1
2 is:

Σ
1
2 =

 0.0041 0 0
0.0013 0.0242 0
−0.0023 −0.0025 0.0016


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We conclude the calibration process by estimating the rest two market price of risks, Λcr
0

and ζ. We use the conditions from the credit return Euler equations, Equation (15) and (16)
that we specify in Section 5.5 as moment conditions:

γ0 + γ1E[st] +
1
2
(σcr)2 = Λr

0σcrCov[et+1, εr
t+1] + (Λcr

0 + ζE[st])σ
crCov[et+1, εcr

t+1] (B.14)

γ1 = ζσcrCov[et+1, εcr
t+1] (B.15)

where (σcr)2 = Σ2,2, σcrCov[et+1, εr
t+1] = Σ

1
2
2,1, and σcrCov[et+1, εcr

t+1] = Σ
1
2
2,2. The estimated

parameters are Λcr
0 = −0.5365 and ζ = 29.98.

B.3 Mispricing Calculation with Monthly VAR Model

Proposition 2 assumes the annual VAR model. Pricing formula and mispricing calculation
should be slightly modified to reflect the fact that (i) we model the underlying monthly VAR
model, and (ii) we model the lapse factor as a function of the 12-month moving average
of the states, i.e. l̃t = a0 + a′1z̄t. Equation (B.6), (B.7), (B.8), and (B.9) show how the recur-
sions change due to the monthly SDF specification (effect of (i)). We additionally modify the
recursions Equation (B.8) and (B.9) in this section (effect of (ii)).

We extend the state space to include the 11 lagged state variables, i.e. y′t = (z′t, z′t−1, · · · , z′t−11).
Then the dynamics of yt is derived from Equation (B.1):

yt = µ̃ + Ψ̃yt−1 + Σ̃
1
2 εt

where the new parameters (µ̃, Ψ̃, Σ̃
1
2 ) can be naturally extended from (µ, Ψ, Σ

1
2 ) by padding

zeros and identity matrices. We can similarly extend the time-varying component of MPR
Λ1 to Λ̃1. We omit the details for brevity.

We can also transform the parameters a0, a1, {b(n)} to be consistent with the extended
state space. The lapse factor can be written as l̃t = a0 + a′1z̄t = a0 + ã′1yt, where ã′1 =

( 1
12 , 1

12 , . . . , 1
12)⊗ a′1. Also define {b̃(n)}1≤n≤240 as

b̃(n) =

0 i f mod (n, 12) 6= 0

b(n/12) i f mod (n, 12) = 0
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Then we can calculate the monthly recursions similar to Proposition 2,

Pτ+1(b̃(1:τ+1)) = − δ0

12
− b̃(1)a0 + Pτ(b̃(2:τ+1)) +

(
Qτ(b̃(2:τ+1))− b̃(1) ã1

)′ (
µ̃− Σ̃

1
2 Λ0

)
+

1
2

(
Qτ(b̃(2:τ+1))− b̃(1) ã1

)′
Σ̃
(

Qτ(b̃(2:τ+1))− b̃(1) ã1

)
(B.16)(

Qτ+1(b̃(1:τ+1))
)′

=
(

Qτ(b̃(2:τ+1))− b̃(1) ã1

)′ (
Ψ̃− Σ̃

1
2 Λ̃1

)
−

δ′1
12

. (B.17)

Note that after calculating the monthly coefficient recursions, we still calculate the pre-
mium leg and the death benefit leg value by summing up annual strips, where the τth-year
strip is calculated by:

Et

[
M$

t,1:τ

τ

∏
s=1

(1− λ
(s)
t+s)

]
= exp

(
P12∗τ(b̃(1:12∗τ)) + Q12∗τ(b̃(1:12∗τ))′yt

)
.
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C Markup Validation with Expected Profit Share

The life insurer sets φ as the markup on the policy before considering the brokerage fee.
From the net premium (the expected premium income net of the expected benefit payout)
the insurer first pays the broker fee and the rest is the earned profit. In presenting mispricing
results, we vary φ to take values of 5%, 10%, and 20%. To validate whether these values are
realistic, we calculate the expected profit split of θ : (1 − θ) between the insurer and the
broker, where 0 < θ < 1 indicates the life insurer’s profit share and the (1− θ) indicates the
broker fee share. The premium pricing formula from Section 5.6 is

p̃ = (1 + φ)
Et

[
∑T

τ=1 M$
t,1:τπa+τ−1 ∏τ−1

s=1 (1− πa+s−1)∏τ−1
s=1 (1− λ

(s)
t+s)

]
Et

[
1 + ∑T−1

τ=1 M$
t,1:τ ∏τ

s=1(1− πa+s−1)∏τ
s=1(1− λ

(s)
t+s)

]
− κ

,

= (1 + φ)
β̃(T)

α̃(T)− κ

The second line follows from our assumption that the life insurer is pricing premium with
markup φ without the aggregate lapsation risk. Thus, the expectation operator in the de-
nominator is evaluated to be α̃(T) instead of α(T), using the notation from Section 5.6.

The life insurer expects φβ̃(T) as its profit, while the broker receives the fee κ · p̃. There-
fore, the expected profit share of the insurer is

θ =
φβ̃(T)

φβ̃(T) + κ · p̃

=
α̃(T)− κ

(1 + φ−1) + α̃(T)− κ

The formula is consistent with our intuition as the expected profit share θ is higher when the
markup (φ) is higher and the the broker fee (κ) is lower.

Table A1 shows the expected profit share θ calculated for the ranges of parameters for φ

and κ we consider in Table 7. In our baseline case of φ = 10% and κ = 0.75, the expected
profit share is between 40% to 50%, which is within the range of the industry consensus.
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Table A1. Expected Profit Share

This table presents the expected profit share θ calculated for the ranges of parameters for φ
and κ we consider in Table 7. See Appendix C for the details.

κ=0.5 κ=0.75 κ=1.0

10-year Term Policy φ= 5% 36.0% 26.4% 20.5%
φ= 10% 51.8% 40.6% 32.9%
φ= 20% 66.3% 55.7% 47.4%

15-year Term Policy φ= 5% 41.3% 31.1% 24.7%
φ= 10% 57.3% 46.3% 38.5%
φ= 20% 71.1% 61.3% 53.4%

20-year Term Policy φ= 5% 44.1% 33.8% 27.0%
φ= 10% 60.1% 49.3% 41.4%
φ= 20% 73.4% 64.1% 56.5%

D Additional Tables and Figures
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