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Abstract

Maritime shipping emits as much fine particulate matter as half of global road traffic. We
are the first to measure the consequences of US maritime emissions standards on air quality,
human health, racial exposure disparities, and behavior. The introduction of US maritime emis-
sions control areas significantly decreased fine particulate matter, low birth weight, and infant
mortality. Yet, only about half of the forecasted fine particulate matter abatement was achieved
by the policy. We show evidence consistent with behavioral responses among ship operators,
other polluters, and individuals that muted the policy’s impact, but were not incorporated in
ex-ante models.

Over 80 percent of the volume of international trade is conducted via ship (UNCTAD, 2022),

yet historical international standards for ship exhaust are strikingly weak in comparison to stan-

dards for other forms of transport that occur close to populated areas. For example, in 2008, the

maximum allowable sulfur content of marine fuel along US coastlines was 3,500 times higher than

that allowed in vehicles. Pollution from ship exhaust is a main component of poor air quality, not
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only at ports, but also in coastal communities near ship routes.1 Since roughly half of the US pop-

ulation lives within 200 km of heavy ship traffic and ship traffic continues to increase, maritime

emissions represent a significant threat to human and ecosystem health (U.S. EPA, 2009c,b, 2016).

Yet, we lack a comprehensive understanding of the exposed population demographics and health

effects of maritime emission regulation. Because ships are mobile and emissions occur off-shore,

the health benefits from regulation are likely to differ from regulating land-based pollution sources.

Efficient design of maritime emission regulations is difficult for several reasons. First, the

benefits to human health are uncertain. The health effects are likely to differ from regulation of

other pollution sources because of the especially high sulfur content of ship fuel, the distinct coastal

population exposed to ship traffic, and the degree to which individuals can avoid ship exhaust

relative to other sources. Second, uniform regulation of maritime emissions along the coast will

have heterogeneous effects due to the non-uniform population distribution and location of ships.

The mobile nature of ship traffic makes it difficult to predict how ship routes and emissions may

respond to regulation. Without comprehensive evidence accounting for spatial heterogeneity in

the effects of maritime emission regulations on coastal population health, uniform regulation of

maritime fuel risks both abating too little of emissions near coastal populations and too much of

emissions far from coastal populations.

We provide the first evaluation of a major US environmental policy in the maritime shipping

industry. In 2012, the US government, in coordination with the International Maritime Orga-

nization (IMO), introduced its seminal regulation of maritime pollution, called emission control

areas (ECAs) (U.S. EPA, 2010). ECA regulation required all commercial ships to operate with

low-sulfur fuel within 200 nautical miles off the coast or to install abatement equipment, or face

penalties. In 2020, following this initial ECA regulation, the IMO extended similar standards glob-

ally, which were estimated would cost the shipping industry $10 to $60 billion per year (Corbett et

al., 2016). Despite the consequential scale and cost of these regulations, ex-post evidence on the

effectiveness and health benefits of such regulation has not been previously established.

1Roughly 70 percent of maritime emissions occur within 400 km of coasts, and maritime emissions elevate ambient
fine particulate matter as much as 2 micrograms per cubic meter (Corbett et al., 2007). Maritime emissions account
for roughly 38 percent of sulfur dioxide emissions on the US East Coast and 20 percent on the US West Coast (Wang
et al., 2007). In areas adjacent to busy ports, they may equal or exceed those of land-based sources (Capaldo et al.,
1999). Eyring et al. (2005) show maritime emissions are comparable to other transport modes. Smith et al. (2015)
provide an emissions inventory.
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In this paper, we measure the success of US maritime emissions standards and show evidence

consistent with behavioral responses that diminished the policy’s effectiveness relative to ex-ante

predictions. With administrative data on air quality, infant health, and infant mortality, we use

a differences-in-differences design and leverage variation in (i) the timing of the regulation and

(ii) the intensity of the regulation across locations. Intensity of exposure to the policy is based on

predictions from the Community Multiscale Air Quality Modeling System (CMAQ) obtained from

U.S. EPA (2009c). CMAQ both represents policymakers’ expectations of the effectiveness of the

policy and provides a scientific prior of the policy’s intended intensity at each location that accounts

for atmospheric dispersion, disposition, and chemical interactions of pollution once emitted. After

estimating the policy’s ex-post benefits, we then test whether the changes in air quality from the

policy were equal to the predicted improvements from the EPA’s pre-policy analysis. We explain

gaps between the ex-ante and ex-post predictions with behavioral responses on the part of the

industry regulated by the policy, other pollution sources, and individuals, all of which can lessen

the effectiveness of policy.

We find that the introduction of maritime emissions control areas around the US coastline led

to a 4 percent decrease in the population-weighted average fine particulate matter across counties

within 200km of heavy ship traffic.2 We also find less of the disproportionate effects on minorities

that have been documented as a result of land-based emissions, such as emissions from ports.

Consistent with the air quality improvements, we find that the policy results in a 1.7 percent average

reduction in the incidence of low birth weight. We also find a 2.8 percent decline in infant mortality.

We further show that using an atmospheric aerosol transport model instead of distance as a proxy

for exposure provided a meaningful improvement in estimation. Using distance in lieu of the

CMAQ output would have yielded substantially less precision in the estimated effects of the policy.

These improvements in air quality and health demonstrate a substantial policy achievement.

We estimate the ECA led to 1,536 fewer low birth weight infants and 228 fewer infant deaths per

year. Our back-of-the-envelope calculation finds these improvements led to a savings of about $2.3

billion per year. These benefits to improved infant health alone are over 70 percent of the estimated

2Once primary pollutants such as sulfur exhaust are emitted in the atmosphere, they form secondary pollutants,
such as particulate matter, through chemical interaction. Accordingly, the regulation defined fuel content limits for
sulfur exhaust as a means to abate fine particulate matter and protect health from both primary and secondary pollutants
(U.S. EPA, 2017, 2009c,b, 2016).

3



cost of the policy, $3.2 billion in 2020. In terms of infant lives saved, the ECA had about one-sixth

of the effect of the initial 1970 CAA NAAQS (Chay and Greenstone, 2003), one-fifth of the effect

of requiring scrubbers at power plants in Germany (Luechinger, 2014), and six times the effect

of having cheating diesel emissions (Alexander and Schwandt, 2022). Despite these substantial

benefits to human health, the ex-post impact on air quality was weaker than the regulator’s ex-ante

expectation. Only about 55 percent of the predicted fine particulate matter abatement was realized

under the ECA policy.

To better understand why policymakers’ expectations were not fully realized, we provide evi-

dence consistent with three types of behavioral responses that altered the policy’s effectiveness and

were not taken into account in ex-ante predictions. First, we provide evidence indicating that ships

altered their routes to avoid using the costly low-sulfur fuel required in the ECA. Second, we pro-

vide evidence consistent with “regulatory rebound" in relation to the National Ambient Air Quality

Standards (NAAQS) of the Clean Air Act. We find that air quality improvements from the ECA

were more muted in counties far from the regulatory threshold for non-compliance with NAAQS,

and thus where the risk of crossing the threshold to face regulatory penalties under NAAQS was

low. This evidence is consistent with the hypothesis that additional on-land emissions offset some

of the decline in emissions from maritime ships. Finally, in addition to difference in the realized

air quality improvements, we found gaps in the human health benefits. We estimated that the ECA

policy increased time spent outdoors and visits to national park sites, activities which increased in-

dividuals’ exposure to air pollution. Each of these three types of behavioral responses affected the

realized pollution and health benefits of the policy, yet were not incorporated into ex-ante models.

This paper makes several important contributions to the literature. First, we estimate the impact

of maritime fuel emissions on air quality and human health. The ECA policy was the first major

US environmental regulation of the maritime shipping industry and we are not aware of prior

work that evaluates its success. The existing literature on the impacts of ECAs and maritime

fuel emissions has relied exclusively on ex-ante prediction approaches or has been conducted in

other settings.3 Predictive models do not take into account compliance or the potential behavioral

responses of the regulated industry, other sources, or individuals in response to the policy. Our

3See Corbett et al. (2007); Winebrake et al. (2009); U.S. EPA (2009c); Sofiev et al. (2018); Liu et al. (2016); Viana
et al. (2020); Zhu and Wang (2021); Lindgren (2021).
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ex-post evaluation finds meaningful improvements in air quality from maritime fuel regulation;

yet, the improvements are more muted than the predictions from this existing work. We provide a

significant advance over the prior literature by documenting that adaptation post-policy critically

influences policy effectiveness.

Second, in addition to evaluating the success of the policy, we evaluate the accuracy of the reg-

ulator’s ex-ante policy analysis. Policy evaluations typically estimate net benefits while ignoring

the extent to which those benefits achieved the stated objectives of the policy. Our findings of dis-

crepancies between the policy target and achievement are connected to an existing literature that

documents behaviors that diminish the effectiveness of regulation (Becker and Henderson, 2000;

Auffhammer and Kellogg, 2011; Fowlie et al., 2016; Zou, 2021). Moreover, our results link short-

comings in the regulator’s ex-ante analysis to specific behavioral reactions, including responses

by ship operators, other industry, and individuals, and are useful to the design of future policy.

These features suggest additions to models to better predict policy effects as well as amendments

to policy to improve future regulation of this sector (Duflo, 2017).

Third, this paper contributes to a small but growing literature that incorporates atmospheric

aerosol transport models into economics research. Defining where and to what extent the ECA

policy affected air pollution for the on-land population is a first-order challenge in this setting. A

common approach in economics defines exposure based on distance to the pollution source, but

the mobile nature of ship pollution makes this approach difficult. Instead of the “distance” method,

we use atmospheric aerosol transport model output as a scientifically grounded prior for pre- and

post-policy exposure to pollution.4 We show that the distance method’s failure to account for the

complexity of atmospheric interactions can meaningfully reduce precision. Further, our use of

transport model output is a new instrument for policy-induced changes in air quality.5

The fourth contribution of this work is measuring the infant health effects of transportation

emissions in a new setting: at-sea maritime emissions. Infant health has been shown to be sensitive

to air pollution and has implications for many later life outcomes, including earnings, cognitive

4Some economic research has used atmospheric transport models in other ways. For example, researchers may take
estimates of facility-level emission changes driven by regulation and use atmospheric dispersal models to determine
impacts of point-source regulation on nearby areas without comparing the model output with in situ observations. For
example, Hernandez-Cortes and Meng (2021) analyze resulting changes from cap-and-trade on nearby “environmental
justice” gaps, and Sanders and Barreca (2021) analyze the effect of the acid rain program on nearby crop yields.

5Since we interpret the transport model output as the policymakers’ planned air quality change, this instrument
mirrors the method in Baum-Snow (2007).
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development, IQ, educational attainment, and welfare take-up (Figlio et al., 2014; Black et al.,

2007; Oreopoulos et al., 2008). Prior studies in economics have established a link between infant

health and air pollution exposure (Currie and Neidell, 2005; Currie et al., 2009; Arceo et al., 2016),

road-vehicle traffic and gasoline content regulations (Currie and Walker, 2011; Knittel et al., 2016;

Marcus, 2017; Alexander and Schwandt, 2022), and alternative sources of transportation pollution,

such as jets (Schlenker and Walker, 2015). Within this literature, no paper examines a link between

maritime fuel content regulation and infant health, even though emissions from shipping fuel have

a high concentration of toxic sulfides and comprise a large portion of coastal air pollution. While

some work has focused on health effects of port emissions (Moretti and Neidell, 2011; Gillingham

and Huang, 2021), we expand our focus to study all at-sea emissions as well, and our results are

not driven exclusively by emissions in the vicinity of ports.

Finally, we document how the demographic composition of populations exposed to maritime

emissions is distinct from other pollution contexts. The environmental justice literature has docu-

mented higher exposure to pollution among disadvantaged populations for many land-based pol-

lution sources.6 Unlike exposure to stationary pollution sources, we show the proportion of black

individuals is smaller for higher levels of maritime emissions. If there are heterogeneous effects

of pollution exposure, perhaps due to differences in underlying health conditions, avoidance, or

access to care, the realized health effects of maritime emission regulation may be affected by the

underlying demographic characteristics of the exposed population. The combination of a demo-

graphically distinct exposed population and the unique mixture of pollutants released from ship

exhaust makes this an unexamined context in which to explore the impact of maritime fuel regula-

tion, not only on pollution, but also on health.

1 Policy Background

The ECA regulation requires ships to reduce their emissions of air pollutants, primarily sulfur

oxides. Figure 1 plots a summary of the policies. Prior to July 2009, the only relevant standard

was the IMO global standard, which allowed ships to emit up to 4.5 percent sulfur oxides by mass

6Some examples are Superfund sites, hazardous waste sites, landfills, and large polluters from the Toxic Release
Inventory (Currie, 2011; Gamper-Rabindran and Timmins, 2011; Banzhaf et al., 2019). Tessum et al. (2021) provide
an overview.
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(m/m) at any location. This global standard was reduced slightly to 3.5 percent in January 2012.

While the global standard applies to any location, stricter standards can be set near coastlines.

In July 2009, California enacted a state standard that allowed at most 1.0 percent sulfur oxides

by mass (m/m) in ship emissions within 24 nautical miles of the California coastline. Due to

California’s limited jurisdiction, however, many ships responded to this restriction by altering their

routes to travel just outside the California ECA in order to minimize use of the expensive low-

sulfur fuel (Klotz and Berazneva, 2022; Moore et al., 2018).7 Thus, there was limited scope for the

California ECA to improve air quality.

The most significant policy change occurred in August 2012, when the full North American

ECA took effect. The North American ECA required low sulfur fuel of up to 1.0 percent sulfur

oxides. The regulation applied within the exclusive economic zone of the participating countries,

the United States and Canada, depicted in Figure 2. This jurisdiction extended for 200 nauti-

cal miles from the coast except in parts of southern California, Texas, and Florida where it was

equidistant from non-participating neighboring countries, Mexico, the Bahamas, and Cuba. While

200 nautical miles jurisdiction limited the scope for avoiding the use of low-sulfur fuel, in the

areas with reduced jurisdiction, the high cost of low-sulfur fuel may have created sufficient incen-

tives for ship relocation to avoid regulation, similar to the response observed when ships avoided

California’s narrow ECA.

In subsequent years, the fuel content restrictions were tightened. In January 2014, California

made its state standard more stringent: it allowed up to only 0.1 percent sulfur oxides. In January

2015, the full North American ECA also reduced the allowance to 0.1 percent sulfur oxides.8 The

tightening of these standards may have led to a growth in the effect of the policy over time.

In addition to requirements for the use of lower sulfur fuel near coastlines, the ECA regulation

tightened standards for engine emissions of nitrogen oxides. These additional standards applied

7Using detailed ship location transponder data, Klotz and Berazneva (2022) find a sharp reduction in distance
traveled, speed, and fuel consumption within California’s ECA, along with an even larger increase in fuel use just
outside the ECA due to ships traveling greater distances, and in some cases higher speeds, to avoid the California
ECA. Similarly, we failed to find an effect of California’s ECA using 2007-2011 data from California only. We
modified equation 1 such that the post-policy indicator is equal to one after California’s ECA is in place, July 1, 2009.
Results are available upon request. California altered its emission control area in December 2011 by extending a
portion of the boundary to include the area around the Channel Islands in an effort to encourage ship traffic to return
closer to shore.

8As with other environmental standards, the pattern of California preceding federal environmental standards with
strict state standards arguably motivated coordinated action from industry groups and the federal government.
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to only a small subset of ship traffic: new US-flagged ships delivered after the policy came into

effect. Since this aspect coincides with the sulfur oxide regulation, we cannot separately estimate

its contribution; however, we expect this to have a very small effect in the years immediately after

implementation because only a small percentage of total ships were subject to this requirement.

The new standards applied to all commercial ships and distributors of marine fuel. To reduce

emissions, ships could use compliant fuel or an approved equivalent method, such as a scrubber.

Although compliant fuel was more costly than typical bunker fuel, ships were already equipped

with multiple fuel tanks and could easily switch to a tank with compliant fuel as they approached

the regulated area. Scrubber installation required investment in new equipment and was uncom-

mon except among cruise and passenger ships (Hellenic Shipping News, 2014). The US Coast

Guard (USCG) was responsible for enforcement and ensured compliance through scheduled and

unscheduled inspections.9 Vessel operators had to provide documentation of fuel purchase and

delivery, fuel samples, written fuel oil changeover procedures, and a fuel oil changeover log book

that records the volume of compliant fuel in each tank as well as the date, time and position of the

ship when any fuel oil changeover operation was completed. Further, the sale of non-compliant

fuel was outlawed. Violations were governed by the provisions in the Act to Prevent Pollution from

Ships. Non-compliance was penalized with fees of up to $25,000 for each violation, and each day

of continuing violation could constitute a separate offense. In cases where an incoming ship could

establish that compliant fuel was not available, it could appeal for an exemption from penalties.

2 Data

Our analysis combines data on EPA air quality predictive models, observed air pollution, infant

health, mortality, weather, county characteristics, and outdoor activities, which we describe below.

Air Quality Model and Data. For our measure of intensity of exposure to the policy, we employ

the EPA’s Community Multiscale Air Quality Modeling System. Our main treatment variable is

9The USCG could check for ECA compliance during normally scheduled port state control exams, domestic vessel
inspection, and vessel safety examinations. Vessel operators were required to demonstrate compliance to USCG port
state control examiners, marine inspectors, and boarding officers who attend vessels for a variety of purposes both in
port and at sea.
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the predicted reduction in PM2.5 as a result of the ECA regulation. The EPA developed these

predictions as a component of their proposal to justify the ECA policy (U.S. EPA, 2009c). We

obtained the output of the CMAQ ECA analysis in 12km resolution raster grids for (i) 2020 annual

mean PM2.5 concentration under business as usual and (ii) 2020 annual mean PM2.5 concentration

under the ECA regulation. Our independent variable of interest, CMAQ change, is the value at the

county population-weighted centroid of (i) minus the county average of (ii) and is shown in Figure

3. The CMAQ predictions are based on 2002 ship traffic and fleet characteristics. Traffic is scaled

to approximate 2020 ship traffic levels but is not adjusted for behavioral adaptations in shipping

activity as a result of the ECA regulation.

We limit our sample to the counties shown in Figure A1 whose centroids are within 200km of

heavy ship traffic in 2010, which is defined as the top 5th percentile of raster grid cells. Counties

more than 200km from heavy ship traffic are less suitable as controls, but we show in robustness

checks that our results are not sensitive to this sample selection criterion.

Our main air quality outcome is fine particulate matter (PM2.5). Although sulfur dioxide (SO2)

emissions were regulated at sea, sulfur dioxide does not last in the atmosphere for long periods,

nor does it travel significant distances. We focus on over-land secondary PM2.5. PM2.5 is both a

direct and secondary pollutant of ship exhaust, and over-land secondary PM2.5 was the criterion

pollutant targeted by the ECA fuel content regulation (U.S. EPA, 2009c).10

Our air quality data comes from the United States Environmental Protection Agency Air Qual-

ity System (AQS) database. We average monitors within-county to construct county-month mean

air quality. Observations are missing if a monitor is scheduled to be down for maintenance, if

the collection does not meet the data quality standards, or if a new monitor location is introduced

mid-sample. To ensure against bias arising from these events, we only use monitors that were ob-

served at least once per year from 2008 to 2016.11 More details are provided in Appendix Section

9.1.1. In robustness exercises, we also use data on counties’ air quality performance relative to the

National Ambient Air Quality Standards (NAAQS), described in detail in Appendix Section 9.1.2.

10Nitrogen oxide and its derivative, ozone, were separate components of the ECA regulation. We do not include
these pollutants because the regulation targeted them with a slowly phased-in engine requirement, and we do not
expect to capture the effects of this component with our research design.

11 Figure A1 shows counties with balanced and unbalanced monitors. In Table A5, we show that our results are
robust to relaxing our balanced monitor requirement.
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Health Data. Infant health data comes from the National Center for Health Statistics Vital Statis-

tics Natality records from 2007 to 2017. Counties with few births are excluded for anonymity. The

sample is restricted to singleton births, hospital births in the continental US, mothers between ages

18 and 45, and births with non-missing birth date, birth weight, and gestation.

Birth weight is measured in grams, with newborns under 2,500g classified as low birth weight.

Gestation is measured in weeks; births before 37 weeks are classified as preterm births. Mother-

infant variables included as controls are indicators for mother’s years of education {< 12,=

12, 13−15}, mother’s race {black}, Hispanic, mother’s age {19−24, 25−34, > 35}, two previous

live births, three or more previous live births, and cigarette use during pregnancy. For each control

variable, an indicator is included for missing observations.

We map births to month of conception based on the reported gestational age and month of birth.

We collapse birth observations to county-month cells for computational efficiency. The incidence

of low birth weight and preterm births are measured per 1,000 births. Observations are weighted

by the number of conceptions unless otherwise noted.

We supplement the birth outcome data with county-level mortality data from the National Cen-

ter for Health Statistics Vital Statistics Mortality records from 2007 to 2016. We calculate the death

rates per 1,000 population using age-specific county population measures from the Surveillance,

Epidemiology, and End Results Program (SEER) data. Infant mortality is measured as the number

of deaths among children under age one per 1,000 births.

Weather and Other Data. Weather is an important control because air quality is highly depen-

dent on meteorological conditions that transport and disperse air pollution. These meteorological

conditions also directly affect infant health (Barreca and Schaller, 2020). We use the PRISM Daily

Weather Data for the Contiguous United States (Schlenker, 2020). This data features a balanced

panel of weather station records from 1950-2018 that are combined to daily 2.5 by 2.5 mile grids

of minimum temperature, maximum temperature, and total precipitation. We calculate cubic func-

tions of county-day minimum temperature, maximum temperature, and total precipitation, as well

as the interactions of precipitation with minimum temperature and maximum temperature (see

Appendix for more detail). Our results are also robust to controlling for more flexible weather

bins.
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In addition, we adjust for local economic conditions using county-month unemployment rate

from the Bureau of Labor Statistics Local Area Unemployment Statistics (LAUS). Finally, we

measure outdoor activity in order to observe whether individuals exhibit behavioral changes in

response to changing air quality. Data from Recreation.gov maintains information on millions of

visitors to federal parks, and data from the American Time Use Survey (ATUS) from 2008 to 2016

measures time spent outdoors based on a detailed time diary of all activities over a 24-hour period.

We describe these sources in more detail in Appendix Section 9.1.4.

Table 1 provides summary statistics for counties in our sample. Statistics are weighted by the

number of conceptions in the county-month. Column (1) reports means for all counties within

200km of heavy ship traffic, and column (2) restricts the sample of counties to only those with a

balanced sample of air quality monitors. The samples appear very similar across all outcomes and

control variables. For this sample, the average level of fine particulate matter is about 9 µgm−3,

about 6 percent of births are classified as low birth weight, and average birth weight is about 3,300

grams.

3 Impacts of ECA on Air Pollution and Health

3.1 Methods

To estimate the causal effect of the ECA regulation on air quality and health outcomes, we exploit

variation from the policy timing and intensity across locations. The intuition of our approach is

that we compare changes in outcomes in counties that were highly exposed to pollution from ship

exhaust relative to changes in outcomes in counties that were less exposed to pollution from ship

exhaust, before and after policy adoption.

While distance is commonly used to proxy for intensity of exposure to pollution in other con-

texts, other factors influence exposure. Exposure to emissions from ship exhaust is a combination

of ship traffic, fuel content, distance, atmospheric interactions, and meteorological factors that dis-

perse emissions. Including interactions of ship traffic, distance, and weather to proxy for exposure

presents several concerns for estimation. Instead, we employ the predictions of an atmospheric

aerosol transport model to combine these components into an exposure index. This approach pro-
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vides several advantages.

First, ex-post observations of ship traffic and emissions are likely endogenous to the policy.

Although ex-post observations of ship traffic/emissions can yield quasi-exogenous short-run vari-

ation in air pollution, which can be used to estimate effects of air pollution (as in Knittel et al.

(2016) and Moretti and Neidell (2011)), ex-ante observations are more appropriate for determin-

ing policy effectiveness, for a few reasons. First, it is plausible that ship traffic falls as a result

of the regulation if it is no longer profitable to deliver to US ports or if ships alter routes to avoid

traversing the regulated areas. If the econometrician used ex-post traffic as a metric of exposure to

the policy, they would fail to attribute pollution change from lower traffic to the policy. Second,

ex-post ship traffic reflects economic conditions that influence other sources of air pollution as well

as infant health. The econometrician risks overstating the changes from the policy if the measure

of exposure is correlated with other changes in air pollution.

A second primary concern with using interactions of ship traffic, distance, and weather is bias

from assuming an incorrect functional form of their interaction. For example, assuming a linear

relationship between destination air quality and distance to source overstates the contribution of

the source at distances beyond its average dispersion range. While the econometric methods ex-

ist to fit the data and determine an appropriate model specification, this exercise is cumbersome

because transportation of air pollution and the creation of secondary pollution depends on many

combinations of atmospheric conditions that vary by source location, destination location, and

time, among others. By contrast, output from aerosol transport models incorporates these various

factors a priori.

For these reasons, we employ output from the EPA’s Community Multiscale Air Quality Mod-

eling System as our measure of intensity of exposure to the policy. The EPA developed these

predictions as a component of their proposal to justify the ECA policy (U.S. EPA, 2009c). Our

main treatment variable is the predicted reduction in PM2.5 as a result of the ECA regulation, and

represents the policymakers’ ex-ante expectations of the policy’s effects on air quality.

We start by estimating the reduced form effect of exposure to the policy, as measured by the

CMAQ prediction, on each of our outcomes of interest. Denote county i in year-month ym, where

m indicates the calendar month (January-December) and y indicates the year (2008-2016). The

outcomes of interest Yiym are the mean air pollution, PM2.5, and health measures. The main health
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outcomes are rate of low birth weight and preterm birth for births conceived in county i in year-

month ym along with overall mortality rate and infant mortality rate for county i in year-month

ym. The exposure variable is CMAQi, which is the CMAQ prediction of the reduction in PM2.5

due to the ECA.

We estimate the overall reduced-form effect of the policy in the post-period with the following

difference-in-difference specification:

Yimy = βCMAQi × postECAmy + δXimy + τry + αis + εimy (1)

where postECAmy is an indicator equal to one after the ECA policy came into effect in August

2012, τry are region-by-year fixed effects (i.e., Gulf Coast 2008, Gulf Coast 2009, ... Gulf Coast

2016), αis are county-by-season fixed effects (i.e., Marin County Spring, Marin County Summer,

...), and Ximy are additional controls for county-month-year weather and unemployment rate. In-

cluding region-by-year fixed effects allows for differential trends or shocks by region and makes

counterfactual comparisons only within the same region. County-by-season fixed effects allow for

differential seasonal patterns of pollution and health for each county. As different counties expe-

rience different seasonal weather and pollution patterns, for example, we view this specification

as capturing additional sources of bias at the county-season level. However, we show our results

are robust to a variety of alternate sets of controls and fixed effects. In the baseline estimation

of (1), county-month-year observations are weighted by the number of conceptions in county i in

year-month ym. For mortality outcomes, we weight observations by age-specific county popula-

tion. When estimating (1) with infant health outcomes, mother-child covariates are included and

weather controls are included by trimester. For example, Ximy includes the max temperature in

the first trimester, second trimester, and third trimester for conceptions in each year, month, and

county. Robust standard errors are clustered by county.12

For our estimates to measure the effect of the policy, we must assume that there are no omit-

ted time-varying, county-specific features correlated with the ECA timing and exposure that also

affect our outcomes of interest. This assumption would be violated if, for example, another envi-

12Although each county centroid is within a unique CMAQ grid cell, we repeat the main results with standard errors
clustered at the state level to address potential dependence. Clustering at the state level is a more conservative approach
than clustering at the grid point as it also allows for spatial correlation within a state (Bester et al., 2016).
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ronmental regulation came into effect at the same time and its intensity was correlated with ship

pollution exposure. These concerns are mitigated by the inclusion of controls for arbitrary region-

year shocks, as well as arbitrary county-season seasonality. In robustness exercises, we show the

results are robust to including state-year fixed effects and also to controlling for county compliance

with environmental regulations. Any violation of the identifying assumption would need to follow

the same timing and county specific-intensity as the ECA regulation for the violation to affect our

outcomes.

The absence of such violations implies that outcomes do not trend differently between counties

with higher and lower anticipated CMAQ pollution reductions in a world without the policy. To

support this assumption, we estimate event-study specifications and show that an additional unit of

predicted CMAQ pollution reduction does not affect the trend in air quality in the years before the

ECA implementation. We also show that maternal demographic characteristics and other placebo

outcomes are not changing systematically with the policy variation.

A distinct advantage of using the CMAQ reductions as the "treatment" variable is the ability

to compare the realized changes in air quality to the intended changes in air quality. Even if the

CMAQ model is imperfect, the CMAQ-predicted reductions represent policymakers’ plans. If

each unit of planned PM2.5 reductions yielded one unit of actual reductions, the measured effect,

β, would equal -1. Consequentially, we interpret estimates for PM2.5 that deviate from -1 as

evidence that the intentions were not fully realized.

3.2 Results: Air Pollution

First, we show the direct effect of maritime fuel regulation on air pollution. Figure 4 plots the event-

study for fine particulate matter. The figure shows that air pollution was not trending differently in

counties with different levels of CMAQ-predicted pollution improvements prior to the regulation.

We fail to reject the null that each of the pre-policy coefficients is statistically different than zero.

In the post-regulation period, there is a decline in PM2.5 among counties with greater exposure to

ship traffic. We note that 2012 is a partially treated year because the policy was implemented in

August 2012. We reject the null that the post-policy coefficients are jointly equal to zero.

Column 1 in Table 2 reports the difference-in-difference coefficient from estimation of equa-
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tion (1). Consistent with Figure 4, there is a significant reduction in fine particulate matter after the

ECA policy was implemented. One additional unit (µgm−3) of predicted reduction in PM2.5 led to

a 0.55 unit (µgm−3) fall in PM2.5 after the policy. Relative to the average level of fine particulate

matter, this represents a 6 percent decline. To measure the overall effect on fine particulate matter,

we scale the county-level CMAQ-predicted improvement by our estimated coefficient (0.55) and

take a population-weighted average across all counties within 200km of heavy ship traffic. Fig-

ure A2 shows the scaled county-level fine particulate matter improvements. We calculate that fine

particulate matter decreased by about 0.37 units on average, or about 4.0 percent relative to the

mean of 9.25 units.

While this result is statistically significant and economically meaningful, the fine particulate

matter point estimates indicate that air pollution fell by roughly 55 percent of the amount policy-

makers intended when they designed and implemented the policy. The coefficient is statistically

significantly different from one (p < 0.001).13 Therefore, we can reject the hypothesis that the

decline in fine particulate matter forecasted by the CMAQ model was realized.

3.3 Results: Health

Even though the forecasted effect of the ECA on air pollution was not fully realized, the policy

still led to meaningful improvements in health. We start by looking at the reduced-form policy

impacts on health. Figure 5 shows the event-study figures using the low infant birth weight rate

and preterm birth rate as the outcomes. Here, the omitted period is conceptions in 2010 because

conceptions in 2011 and 2012 were partially exposed to the policy during gestation. Conceptions

in 2013 and after were exposed to the policy for the entire duration of the pregnancy.

The patterns in the infant health measures are consistent with the trends in air pollution in Fig-

ure 4. In support of the parallel trends assumption, we found CMAQ did not predict changes in

infant health relative to the omitted period in the years before the regulation for each of the infant

health outcomes. Panels (a) and (b) indicate that the ECA regulation led to significant improve-

ments in the rates of low birth weight and preterm birth. As expected, the effect is somewhat muted

13A more conservative approach discounts the reference point to align the CMAQ projections, which are the effect
in 2020, with the coefficient, which is the average effect for roughly 2013-2016. When we make this adjustment using
the annual growth rate of 3.4% from (U.S. EPA, 2009c), we conclude 67% of the forecasted improvement was realized
and still reject the null that the coefficient equals the conservative reference point of 0.83 (p < 0.001).
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for conceptions in 2011 and 2012, because these observations were only partially exposed during

gestation to the ECA policy. For fully treated cohorts, 2013 and after, the coefficients indicate a

sizable improvement in low birth weight and preterm birth rates.

Columns (1) and (2) in Panel A of Table 3 show the corresponding overall difference-in-

difference regression results from estimation of the reduced-form equation (1) for each of the

infant health measures. Additional infant health measures are reported in Appendix Table A1.

The effect on all outcomes is statistically significant. For low birth weight, one additional unit of

CMAQ-predicted PM2.5 reduction lowered the rate by 1.3 births per 1,000 after the introduction

of the ECA, a 2 percent improvement relative to a baseline of 61 low weight births per 1,000 births.

Using the mean CMAQ-predicted change, 0.76, this coefficient suggests that the number of low

birth weight infants declined by 1 per 1,000 births, or 1.7 percent relative to the mean. One unit

of CMAQ-predicted change led to 2.1 fewer preterm births per 1,000, or 2 percent. For the mean

CMAQ-predicted change, 0.76, the coefficient suggests preterm births declined by 1.6 per 1,000,

or 1.7 percent.

We also report results for mortality in Columns (3)-(4). Column (3) reports the overall effect

on the all-age death rate per 1,000 population. A one-unit predicted change in fine particulate

matter measured by CMAQ leads to a statistically significant reduction of 0.006, or about 1 percent

relative to the mean, after the ECA is adopted. For the average CMAQ-predicted change, 0.76, this

is a change of about 0.7 percent. Column (4) reports the effect on infant mortality (under age one).

A one-unit predicted change in PM2.5 based on CMAQ leads to a statistically significant 0.24

percentage point, or 3.7 percent, reduction in the rate of infant mortality (2.8 percent for the mean

CMAQ prediction). Event study results confirm these results in Figure 6. For both overall mortality

and infant mortality, there is little evidence of a pre-trend in years prior to policy adoption, but there

is a decline in mortality in areas with heavy ship traffic following adoption of the ECA.

3.4 Additional Results and Robustness Checks

Alongside the main results, we provide a detailed analysis of additional results and robustness

checks in the Appendix 9.2. We briefly summarize those findings here.

We first examine a number of placebo outcomes that support the validity of our results. A
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potential concern with our estimation of the ECA’s effects is that the introduction of the ECA

could have been correlated with other changes, such as shifts in demographic characteristics or

local economic activity, that would have led to improvements in the outcomes in the absence of the

policy. For example, if the introduction of the ECA was correlated with an increase in conceptions

for mothers with high proclivity for prenatal care in coastal counties, then our results reflect the

change in the composition of mothers rather than the change from the air quality improvement the

policy induced.

We failed to find evidence of any such patterns driving the results. As shown in Table 2 column

(2) and Figure A6, we failed to find that an index of demographic characteristics is changing

simultaneously with policy exposure. Similarly, column (3) shows that the policy did not result in

a significant change in the number of conceptions. Finally, column (4) shows there is no evidence

that the policy is correlated with differential changes in economic activity as measured by the

unemployment rate. Furthermore, Table A4 shows there is no significant relationship between the

policy variation and the following additional outcomes: pollutant emissions from power plants,

fine particulate matter emissions from all sources, the number of other Toxic Release Inventory

(TRI) pollution sources, the frequency of monitor readings, employment, and earnings. These

results provide additional support in favor of the assumption that the policy instrument captures

only changes in pollution, rather than changes in other confounding drivers of health.

Second, we examine a number of additional health outcomes and find a consistent pattern of

improvements. First, we find consistent significant improvements in alternative measures of infant

health, average birth weight and gestation. To examine the ECA’s effects on the distribution of birth

weight, we measure the effect of the policy on bins of birth weight. These results suggest that there

are important impacts not only for low birth weight (less than 2,500 g) infants, but also very low

birth weight (less than 1,500 g) and extremely low birth weight (less than 1,000 g) infants, where

improvements are quite beneficial. Similarly,the elderly also tend to be particularly sensitive to air

pollution, we find that the ECA led to statistically significant declines in mortality for individuals

age 75-84 and age 85 and over of 0.8 and 1.4 percent respectively. As a validly check, we failed to

find evidence of pre-trends in years prior to the policy for elderly mortality.

Third, we look for air quality improvements with respect to other pollutants. As an alternative

measure of air quality, we find a significant improvement in the overall Air Quality Index. We also
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find evidence that sulfur dioxide and nitrogen oxides could have played a role in the air quality

improvement form the ECA; however, we interpret these results with caution because the CMAQ

model predictions for PM2.5 will not accurately capture the spatial impacts on other pollutants and

few monitors for other pollutants are balanced over a long panel.

Fourth, we consider whether employing the CMAQ output as a measure of intensity of expo-

sure to the ECA policy improves on approaches that rely on imprecise proxies for source-specific

exposure. To illustrate the distinction, we perform our analysis using distance to a port as the proxy

for ship pollution exposure in lieu of CMAQ output. Results reported in Table A7 show meaningful

improvements in precision when CMAQ is used to measure exposure to the ECA policy.

Finally, we perform a number of robustness and sensitivity checks in Table A5 and Table A6.

To start, we demonstrate no consequential change in precision when we cluster the standard errors

at the state-level. We then show that our results are robust to alternative choices for inclusion

in the sample in lieu of limiting the sample to counties whose centroids are within 200km of

heavy ship traffic. Similarly, we relax the balanced panel requirement for air quality monitors and

include more flexible weather controls without meaningful change in the conclusions. We also

use an alternate measure of intensity of treatment that is based on the CMAQ prediction of total

emissions from maritime shipping.

While our main specification includes region-by-year fixed effects, we show that the results are

robust to more flexible state-by-year fixed effects. In another exercise, we build up to our preferred

specification to show our results are robust to a variety of alternate sets of fixed effects. We also

report consistent results for a binary difference-in-difference model.

Last, we address the possibility that our results could reflect other pollution abatement policies

during our sample period. First, we repeat our analysis dropping port counties and find our results

are not driven by port counties alone. This exercises shows our results are not driven by any

port-specific policy changes that may have been adopted during our sample period. Second, we

show our results are robust to controlling for Clean Air Act non-attainment status for each county

over time. Third, we consider that the ECA policy we study also tightened standards for engine

emissions of nitrogen oxides for a small subset of ship traffic. As an additional check to isolate the

effect of the fuel standards, we show that the reduced form effects of the ECA on main outcomes

are robust to including NO2 as a control variable. Finally, we failed to find that the tightening of
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the fuel content standard in 2015 had an additional impact on air quality. This is not surprising, as

the 2015 fuel standard tightening was a relatively small change and many ships were already using

compliant fuel.

4 Comparison to Other Sources and Incidence

This section compares the marginal benefits of abatement from maritime shipping to those of

other settings. Although many characteristics of maritime pollution differ from other sources of

pollution, we focus on quantifying differences in exposure and effects across demographic groups.

4.1 Exposure Across Demographic Groups

To understand how the population exposed to maritime traffic pollution compares the population

exposed to land based sources, we begin with descriptive evidence. Despite existing evidence of

disproportionate pollutant exposure for disadvantaged groups from land-based pollution sources,

prior work has not measured the exposure gap for a source that is mobile and at-sea. To maintain

similarity in the setting, we use the distance to the nearest port as the representative of a comparable

stationary, land-based source of pollution. We highlight the differences in the demographics of the

population exposed to maritime emissions, measured by the CMAQ model versus ports, measured

by distance to ports. Details of the analysis summarized here are in Appendix.

Figure 8 presents the cumulative distribution function of exposure defined by distance to port,

panel (a), and ship emissions, panel (b), for each demographic subgroup. Panel (a) shows that

non-Hispanic blacks and other non-white individuals are roughly equally likely to live near a port

and all non-whites are more likely to live near a port than whites. This pattern of disproportionate

exposure for non-whites is consistent with the large environmental justice literature looking at

stationary land-based pollution sources (Tessum et al., 2021). However, the exposure pattern is

different with respect to maritime emissions in panel (b). Panel (b) shows that black and white

individuals have almost identical exposure to maritime emissions even though black individuals

live closer to ports than white individuals on average. Further, unlike with land based sources,

there are differences in exposure to maritime emissions across non-white subgroups. Hispanics

and non-Hispanic other race individuals are more exposed to maritime shipping emissions than
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black individuals.14

Given that the exposed population is different from most land-based pollution sources, the

health effects of this policy could differ from other reductions in air pollution. This is likely if pol-

lution has a heterogeneous health impact across demographic groups, perhaps due to differences in

underlying health conditions or access to care. In addition, the dose of exposure to maritime pollu-

tion may differ across demographic groups due to differences in time spent outdoors or differential

avoidance behaviors.

4.2 Methods

In this section, we use the ECA policy variation to instrument for fine particulate matter to estimate

the impact of reductions in fine particulate matter in this setting on health. This estimate allows for

a comparison of the marginal health benefits of pollution reductions from maritime shipping with

those of other sources.

The first stage specification is provided in equation (1) and the second stage is shown below:

healthimy = γ ̂PM2.5imy + δXimy + τry + αis + εimy (2)

Using CMAQi ∗ postECAmy as an instrument for PM2.5 exploits the fact that some portion

of the PM2.5 changes in each county occurred simply because the county was more exposed to the

baseline dispersion of emissions from maritime traffic while excluding the changes in PM2.5 that

occurred because of adjustments to the pattern ship traffic, amount of other emissions, etc. The

exclusion restriction requires that the ECA policy implementation affects health only through its

effect on pollution. Although we cannot formally test this assumption, we demonstrate that the

ECA policy was uncorrelated with observable demographic and economic changes in Tables 2 and

A4.

While we focus on fine particulate matter as our primary pollutant of interest, we cannot rule

out that the ECA also resulted in modest improvements in sulfur and nitrogen oxides. To that

extent, our estimates capture the effect of a mix of fine particulate matter and these other pollutants.

14In the Appendix, we observe consistent patterns when we show the correlation between race/ethnicity and our
two measures of exposure Figure A8.
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This problem plagues most estimates of the health impacts of air pollution because air pollutants

are inherently correlated. Nevertheless, this exercise helps put our estimates into context with the

existing literature.

4.3 Results: 2SLS and Comparison to Other Sources

Panel B in Table 3 first reports the two-stage least squares results from estimation of equation (2),

while Panel C reports the ordinary least squares results. Instrumenting for fine particulate matter

with our policy variation, we find that a one-unit increase in fine particulate matter leads to 2.7 ad-

ditional low birth weight infants per 1,000, or a 4.4 percent increase relative to the mean. Columns

(3) and (4) of Panel B show that a one-unit increase in fine particulate matter leads to a 1.7 percent

increase in overall mortality and an 6.5 percent increase in infant mortality.

We compare the magnitude of our estimates to the literature in Table 4, following Alexander

and Schwandt (2022), who consider the effect of a 10 percent pollution increase. Our results

suggest that a 10 percent increase in pollution would increase low birth weight by 4.1 percent and

infant mortality by 6.0 percent. The magnitude of the effect for infant mortality is in line with

the recent literature focusing on fine particulate matter, while our estimate for low birth weight is

slightly smaller. This could be due to the unique bundle of pollutants impacted by the regulation

or to the differences in the demographics of the population most exposed to the regulation.

4.4 Results: Incidence across Demographic Groups

As documented in section 4.1, the demographic composition of the population most exposed to

ship traffic, as measured by the CMAQ model, differs from many land-based pollution sources,

which may drive differences in the health effects that we observe relative to the previous literature.

Next, we explore the degree to which the ECA has a heterogenous effect on the exposed population.

We estimate two-stage least squares from equation (2) on subsamples of mothers by demo-

graphic characteristics at the individual level. Table A8 shows the results by race/ethnicity, educa-

tion, age, and marital status. Column (1) reports the baseline estimates for the full sample at the

individual level. The magnitude of the effect is similar to the main results for low birth weight in

Panel B of Table 3, which both show about a 0.2 percentage point, or 4 percent, increase in low
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birth weight for a one-unit increase in fine particulate matter. Columns (2) - (5) show results for

non-Hispanic white, non-Hispanic black, non-Hispanic other, and Hispanic mothers. The magni-

tude of the effects are largest for non-Hispanic white mothers and non-Hispanic other race mothers.

The estimated effects show that a one-unit increase in fine particulate matter leads to a 6.6 percent

and 12.6 percent increase in low birth weight for non-Hispanic white and non-Hispanic other race

mothers, respectively. The results for mothers with high education in column (6) are similar in

magnitude to the overall effects, suggesting that heterogeneity is driven less by education level.

Column (7) reports results for married mothers only. The magnitude of the effect is only slightly

smaller for married mothers, still about 4 percent from the mean. Finally, columns (8) to (10)

report results for mothers age 19-24, 25-34, and over 35. The main results appear to be driven by

mothers over 25.

5 Behavioral Responses

While the effect of the ECA regulation led to a statistically significant improvement in fine partic-

ulate matter and health, the estimated effect was less than anticipated. One explanation is that the

CMAQ model did not take into account behavioral changes. In this section, we explore whether

there is evidence of any behavioral change along three dimensions in response to the ECA: ships,

other emissions, and individuals.

5.1 Shipping Behavior

We hypothesize that ships most likely exhibited behavioral responses that diminished the effec-

tiveness of the policy in coastal areas where the cost of avoiding the ECA is lowest. As shown in

Figure 2, because Mexico did not participate, southern parts of California, Florida, and Texas were

less than 200 nautical miles from the exterior of the ECA. In these areas, it was less costly to travel

to exit the ECA and avoid using costly low-sulfur fuel, and the use of higher-sulfur fuel outside

the ECA was nearer to coastal populations. In addition, Klotz and Berazneva (2022) provide evi-

dence that a narrow 24 nautical mile boundary led to substantial behavioral response among ships.

Therefore, we hypothesize that areas fully exposed to the ECA, at least 200 nautical miles from

the exterior of the ECA boundary, had larger impacts on air quality than areas with only partial
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exposure to the ECA. We estimate,

Yimy =β1fulli × CMAQi × postECAmy + β2partiali × CMAQi × postECAmy (3)

+ δXimy + τry + αis + εimy

where fulli equals one for counties exposed to the full 200 nautical mile ECA and partiali equals

one for counties less than 200 nautical miles from the exterior of the ECA. Other variables are de-

fined analogously to equation (1). Because we are interested in the spatial distribution of pollution

reductions in this part of the analysis, rather than health effects, we do not weight by population.

Standard errors are clustered by county.

We estimate an event study specification to test this hypothesis in Figure 7. Neither panel

shows evidence of a pre-trend in fine particulate matter prior to the ECA implementation. In panel

A, for the areas exposed to the full ECA, there is a clear and statistically significant decline in fine

particulate matter after policy adoption. However, in panel B, areas with only partial exposure to

the ECA show a somewhat noisier and more muted effect of the policy, as expected.15 In terms

of magnitude, the post-policy coefficients in panel A are not statistically distinguishable from -1

in each year from 2013 to 2016, suggesting that the anticipated declines in fine particulate matter

were realized in areas fully exposed to the 200nm boundary. By contrast, the estimated coefficients

in panel B suggest that the ex-post decline in PM2.5 was less than the anticipated decline in areas

only partially exposed to the ECA.

Table A9 summarizes these effects. First, column (1) replicates the effect of the ECA in the

full sample without population weights. The coefficient is very similar to column (1) of Table 3

and shows the decline in fine particulate matter was a little more than half of the expected decline

overall. Column (2) estimates equation (3) for counties partially and fully exposed to the 200nm

boundary. A one-unit increase in CMAQ is associated with a 0.86 and 0.49 unit (or 10 percent

and 6 percent) decline in fine particulate matter in areas fully and partially exposed to the policy,

15In the Appendix we explore the source of the year-to-year variation in the partially exposed counties. Including
differential yearly trends in southern California eliminates the year-to-year variation in the post period, while the
decline in pollution remains statistically significant and similar in magnitude to our main estimates. This indicates
there were local shocks, perhaps to weather or pollution, in southern California that were not perfectly captured by our
baseline control variables; however, the addition of more granular controls confirms a robust effect of the ECA policy
and mitigates the year-to-year variation.
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respectively. The decline in fine particulate matter in areas partially exposed to the ECA is statisti-

cally significantly smaller than the decline in fine particulate matter among fully exposed areas (p

< 0.05). This is consistent with the hypothesis that behavioral response among ships in areas par-

tially exposed to the ECA, where avoiding the ECA was easiest, led to a muted effect of the policy

on air pollution. However, in areas fully exposed to the ECA, the CMAQ-predicted reductions in

fine particulate matter were statistically indistinguishable from the realized reductions, suggesting

the policy was effective in these areas.

5.2 Other Emissions Behavior

Alongside changes in the location of ship emissions, we hypothesize that other polluters could

also respond to the implementation of the ECA policy. For example, the regulator was especially

concerned that the increased in costs for ECA-compliant fuel would lead to an increase in more

highly-polluting land-based transportation. Cost estimates showed such a shift would not be eco-

nomical U.S. EPA (2009c,a). Instead, we focus on examining another form of behavioral response

the regulator did not consider: regulatory interaction with the National Ambient Air Quality Stan-

dards (NAAQS). The Clean Air Act requires counties to maintain ambient fine particulate matter

concentrations below the NAAQS or else face high regulatory cost, including state implementation

plans, pollution monitoring, and new source review. We hypothesize that counties that experience

air quality improvements due to ECA have less need to engage in costly efforts to reduce pollution

from other sources to maintain compliance with the NAAQS. We refer to this type of response as

rebound.

Three features restrict the scope for emissions rebound. First, rebound will only occur where

the NAAQS result in costly pollution reduction efforts, such that pollution is below the uncon-

strained optimum. Second, since non-attainment of the NAAQS results in costly regulation, we

expect rebound is unlikely when it might lead a county to enter non-attainment or to remain in

non-attainment.16 Third, counties must also have the ability to change emissions relatively eas-

ily.17

16Importantly, there is uncertainty as to whether a given level of emissions would result in ambient air quality
that leads to non-attainment. Sources of uncertainty include outside pollution, weather, legal conditions required for
monitor observations to be considered for design values, etc.

17Response could take a number of forms: (1) altering the issuance of air quality alert days can impact pollution
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We expect that these incentives for a rebound effect vary across counties as a function of their

risk of falling into non-attainment status. Counties with the lowest pollution levels have low incen-

tives to rebound if they are not constrained by the NAAQS. Because our sample restricts to counties

with consistently monitored air quality recordings over the entire sample period, we exclude coun-

ties with the lowest pollution levels that are least likely to be constrained by the NAAQS. Counties

with higher pollution levels are more likely to be constrained, but only counties sufficiently far

from the threshold might benefit from increasing emissions without risk of entering or remaining

in non-attainment. Counties above the threshold may not have the ability to rebound if regulators

carefully monitor emissions, such as through new source review. However, it is difficult to define

a domain of counties that have a flexible source of emissions and are not so “close” to the non-

attainment threshold that rebound becomes too risky. Within our sample, we expect the likelihood

for rebound will be lowest near the regulatory threshold. Although we cannot rule out rebound

in counties above the regulatory threshold a priori, we note that the restrictions on new emissions

in these locations limit their flexibility for rebound. Therefore, we expect the highest potential

for rebound for counties sufficiently below the regulatory threshold so as to not risk entering non-

attainment.

To examine this pattern, we allow the effect of the ECA to differ along with the distance to the

regulatory threshold. We estimate,

Yimy =
∑
k

βk1[Di ∈ k]× CMAQi × postECAmy + δXimy + τry + αis + εimy (4)

where Di represents county i’s pre-policy distance to the regulatory threshold. We define Di as the

county 2012 PM2.5 maximum design value as a percent of the standard.18 We classify this distance

into seven bins of 2012 PM2.5 as a fraction of the standard: less than 60%, 60-70%, 70-80%, 80-

90%, 90-100%, 100-110%, and over 110%. Other variables are defined as in equation (1). The

estimates are unweighted and standard errors are clustered at the county level.

from cars, (2) changing emissions at a source that has flexibility in production duration/timing, (3) altering strategic
behavior on known monitoring days, etc. Unfortunately, we cannot measure each of these potential response channels.

18We obtained the EPA records used to determine compliance with the NAAQS. For 2012, the NAAQS required
counties’ PM2.5 to meet two thresholds: (i) annual mean PM2.5 averaged over three years, DV1 year, less than
12µgm−3 and (ii) 98th percentile of daily mean PM2.5 averaged over three years, DV24 hours, less than 35µgm−3.
We then defined distance to the regulatory threshold, Di = 100 ∗max{DV1 year

12 , DV24 hours

35 }.
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Figure A10 reports the results of estimating equation (4). We found a pattern consistent with

our hypothesis that increases in on-land emissions offset declines from at-sea emissions: as the

county’s risk of violating the regulatory threshold decreased, the impact of the ECA was more

muted. Although rebound could have occurred elsewhere, this evidence indicates it is concentrated

in counties below 80 percent of the regulatory standard. The counties at greatest risk of violating

the Clean Air Act threshold, from 90 to 100 percent of the regulatory standard, experienced the

greatest declines in PM2.5 as a result of the ECA policy. Although this decline appears larger than

what the ECA plausibly delivered, we fail to reject the null that the magnitude is equivalent to -1.

Table A9 column (3) summarizes the differential effects of the ECA for counties further from

the Clean Air Act regulatory threshold relative to counties close the regulatory threshold. It reports

the estimates of a variation of equation (4) where the counties with pre-policy PM2.5 within 90

to 100 percent of the regulatory threshold are the omitted category. We found that all counties

had significantly smaller declines in PM2.5 resulting from the ECA relative to the group that

was closest to violating the Clean Air Act. The most significant offsetting effects appear to have

occurred in counties below and furthest from the threshold. The results suggest a rebound from

other emissions that entirely offset the air quality improvements from the ECA among counties

with pre-policy PM2.5 below 80 percent of the regulatory threshold. However, we underscore that

other features of the setting could have also diminished the effect of the policy for these counties.

Overall, our evidence is only suggestive of the premise that rebound emissions muted the ben-

efits of the ECA policy. Additional results in the Appendix report consistent yet inconclusive

estimates of an increase in reported emissions corresponding to rebound incentives. Unpacking

the extent of regulatory interaction between the CAA and other policies is an important area for

future research.

5.3 Individual Behavior

Next, we explore whether policy-induced improvements in air quality had a subsequent impact

on individuals’ behavior. Increased time spent outdoors, for example, could increase individuals’

duration of exposure to the now lower level of air pollution. Because ex-ante models do not take

into account such behavioral changes, realized health benefits may differ from anticipated benefits.
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First, we explore the effect of the ECA adoption on campsite reservations using data from

national park sites. Our outcomes of interest include the inverse hyperbolic sine of the number of

campsite visits, days, and visitors.19 We estimate,

Yimy = βCMAQi × postECAmy + δXimy + τry + αis + εimy (5)

where i indexes a county in year-month ym. We include region-by-year, τry, and county-by-

season, αis fixed effects. The other variables are defined analogously to equation (1). We also

estimate results at the facility-year-month level that include region-by-year, facility-by-month, and

year-by-month fixed effects.

Figure A11 shows the event-study style results from estimating equation (5). Prior to policy

adoption in 2012, there is no evidence of differential pre-trends. After the policy began in 2012,

there is a statistically significant increase in campsite reservations, and this increase is significant

throughout the post-policy period. Columns (1), (3) and (5) of Table A11 show regression results

from estimating equation (5) at the county level, while columns (2), (4), and (6) show facility level

specifications including additional controls for facility-by-season and year-by-month fixed effects.

A one-unit increase in CMAQ prediction is associated with a 14-16 percent increase in the number

of visits, people, and days, after the ECA was implemented.

Next, we supplement these findings with data on time spent outdoors from the ATUS. Our

outcome of interest is the inverse hyperbolic sine of total minutes spent outdoors.20 We estimate,

Yjimy = βCMAQi × postECAmy + δXimy + πZijmy + τry + αis + θym + εijmy (6)

where j indexes individuals in county i in year-month ym. The regression includes an additional

set of individual-level controls, Zijmy, which include gender, race, ethnicity, education, age, pres-

19We use the inverse hyperbolic sine transformation rather than log transformation due to the presence of zeros. The
inverse hyperbolic sine allows for the same interpretation as taking the natural log, but preserves zeros (Burbidge et
al., 1988). Table A12 shows the results are robust to using a log transformation instead of the inverse hyperbolic sine.

20In Table A13 we report results for the extensive margin and intensive margin using a log specification that ex-
cludes zeros. The extensive margin estimates are only marginally insignificant (p-value=0.11) and indicate a 9 percent
increase in spending any time outdoors. We further explore the distributional effects across bins of time spent outdoors
in Table A14 where we observe shifts in both the lower and upper tails of the distribution. In the lower tail, there is
a shift from zero minutes to between 0-1 hour. In the upper tail, we observe another shift from 3-5 hours to over 5
hours, indicating that for some individuals the gain in time outdoors may be larger.

27



ence of children in the household, and indicators for the day of the week of the survey and whether

it was a holiday. The regression includes region-by-year (τry), county-by-season (αis), and year-

by-month (θym) fixed effects. Other variables are defined analogously to equation (1) and the

regression is weighted using survey weights.

Figure A12 shows the event-study style results from estimating equation (6). There is no

evidence of differential pre-trends prior to policy adoption. After the ECA was adopted, there was a

gradual increase in time spent outdoors. Column (7) in Table A11 suggests that a one-unit increase

in CMAQ prediction leads to an 8 percent increase in minutes spent outdoors. Relative to the

baseline, this represents an increase of 1.2 minutes. In Table A15, we provide additional placebo

tests on time spent on activities that are unlikely to be impacted by changes in air quality, such

as sleeping, housework, and buying groceries. Reassuringly, we find no statistically significant

impacts on these outcomes.

Across both datasets and a variety of measures, results suggest that policy-induced changes in

air quality led to increased time spent outdoors. These behavioral changes can impact the reduced

form effect of the ECA policy on health through decreased exposure to pollution or increased

exercise, for example. Such complex behavioral changes make it especially important to quantify

the health benefits of pollution regulation through ex-post policy evaluation.

6 Discussion & Conclusion

Policymakers frequently rely on the predictions of scientific models to anticipate the air qual-

ity improvement from a policy; yet, researchers infrequently test for differences between ex-ante

and ex-post estimates. In this setting, only about half of the intended fine particulate matter im-

provements were realized, and we document evidence consistent with behavioral responses among

shippers, other polluters, and individuals that are likely to contribute to deviations from the pol-

icy’s anticipated impact. Our approach may be replicated in other settings with scientific research

employing atmospheric transport model scenarios to improve estimation and policy evaluation.

Our results provide the first ex-post evaluation of US maritime emissions regulation. The US

ECA led to meaningful improvements in fine particulate matter, infant health, and mortality as

a result of maritime emissions controls. Combining CMAQ measurements with our estimated
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effect — that one unit of predicted fine particulate matter reduction from the ECA led to a 2

percent decline in low birth weight infants — and scaling by population, we calculate that the

US ECA led to approximately 1,536 fewer low birth weight infants per year in areas near ship

traffic. Similarly, we calculate that the policy resulted in a reduction of approximately 228 deaths

per year under age one.21 Using the EPA’s value of a statistical life, this translates into $2.16

billion per year. The total benefits from improved health increase by an additional $139 million

per year when we incorporate the effects of low birth weight on earnings (using estimates from

Bharadwaj et al. (2018)) and the census bureau’s work-life earnings.22 The benefits to improved

infant health alone are almost as large as the estimated cost of the policy, $3.2 billion in 2020.23

Incorporating additional health benefits from cleaner air, such as fewer emergency room visits and

hospitalizations, would likely lead to even higher total benefits. Moreover, research has shown that

individuals respond to pollution information by exhibiting costly avoidance behaviors (Neidell,

2009; Deschenes et al., 2017; Keiser et al., 2018; Zhang and Mu, 2018). Our results on time spent

outdoors provide evidence that individuals reduced avoidance in response to reduced air pollution

from the ECA policy, so the health benefits alone can be considered a lower bound of the total

benefits.

These findings are especially important given the IMO’s recent adoption of a new global mar-

itime sulfur emission standard in 2020, reducing sulfur content from 3.5 percent to 0.5 percent

globally. Low-sulfur fuel can cost 30-50 percent more than bunker fuel, and fuel accounts for up to

75 percent of an ocean carrier’s operation costs. This new regulation was estimated to cost the ship-

ping industry between $10 to $60 billion per year depending on fuel prices (Corbett et al., 2016).

Yet, our results suggest the potential for large benefits to human health in coastal areas throughout

the world that have not yet adopted an ECA regulation. As of 2020, only the North American

ECA, Baltic Sea ECA, and North Sea ECA were in effect. The health benefits from countries

adopting the IMO’s new global standard are likely to be quite large given that many countries had

not regulated maritime sulfur emissions near coastal areas as of the time of our study.
21Figures A3 and A4 show the distribution of these health improvements spatially.
22We note that our estimates do not capture fetal deaths. To the extent that reduced air pollution from the policy

decreased fetal deaths as well, the benefits we measure here are understated.
23To the extent that ship operators changed their routes to avoid using the more expensive low-sulfur fuel, the cost

estimate may be an overestimate.

29



References
Alexander, Diane and Hannes Schwandt, “The Impact of Car Pollution on Infant and Child

Health: Evidence from emissions cheating,” Review of Economic Studies, 2022.

Arceo, Eva, Rema Hanna, and Paulina Oliva, “Does the Effect of Pollution on Infant Mortal-
ity Differ Between Developing and Developed Countries? Evidence from Mexico City,” The
Economic Journal, 2016, 126 (591), 257–280.

Auffhammer, Maximilian and Ryan Kellogg, “Clearing the air? The effects of gasoline content
regulation on air quality,” American Economic Review, 2011, 101 (6), 2687–2722.

Banzhaf, Spencer, Lala Ma, and Christopher Timmins, “Environmental justice: The economics
of race, place, and pollution,” Journal of Economic Perspectives, 2019, 33 (1), 185–208.

Barreca, Alan and Jessamyn Schaller, “The impact of high ambient temperatures on delivery
timing and gestational lengths,” Nature Climate Change, 2020, 10 (1), 77–82.

Baum-Snow, Nathaniel, “Did Highways Cause Suburbanization?,” The Quarterly Journal of Eco-
nomics, 2007, 122 (2), 775–805.

Becker, Randy and Vernon Henderson, “Effects of Air Quality Regulations on Polluting Indus-
tries,” Journal of Political Economy, 2000, 108 (2), 379–421.

Bester, C Alan, Timothy G Conley, Christian B Hansen, and Timothy J Vogelsang, “Fixed-
b Asymptotics for Spatially Dependent Robust Nonparametric Covariance Matrix Estimators,”
Econometric Theory, 2016, 32 (1), 154–186.

Bharadwaj, Prashant, Petter Lundborg, and Dan-Olof Rooth, “Birth weight in the long run,”
Journal of Human Resources, 2018, 53 (1), 189–231.

Black, Sandra E, Paul J Devereux, and Kjell G Salvanes, “From the cradle to the labor market?
The effect of birth weight on adult outcomes,” The Quarterly Journal of Economics, 2007, 122
(1), 409–439.

Burbidge, John B, Lonnie Magee, and A Leslie Robb, “Alternative transformations to handle
extreme values of the dependent variable,” Journal of the American Statistical Association, 1988,
83 (401), 123–127.

Capaldo, Kevin, James J Corbett, Prasad Kasibhatla, Paul Fischbeck, and Spyros N Pandis,
“Effects of Ship Emissions on Sulphur Cycling and Radiative Climate Forcing Over the Ocean,”
Nature, 1999, 400 (6746), 743–746.

Chay, Kenneth and Michael Greenstone, “Air Quality, Infant Mortality, and the Clean Air Act
of 1970,” NBER Working Paper, 2003, (w10053).

Corbett, James J, James J Winebrake, Edward W Carr, Jukka-Pekka Jalkanen, Lasse Jo-
hansson, Marje Prank, Mikhail Sofiev, SG Winebrake, and A Karppinen, “Health Impacts
Associated with Delay of MARPOL Global Sulphur Standards,” IMO MEPC 70/INF, 2016, 34.

, , Erin H Green, Prasad Kasibhatla, Veronika Eyring, and Axel Lauer, “Mortality from
Ship Emissions: A Global Assessment,” Environmental Science & Technology, 2007, 41 (24),
8512–8518.

Currie, Janet, “Inequality at birth: Some causes and consequences,” American Economic Review,

30



2011, 101 (3), 1–22.

and Matthew Neidell, “Air Pollution and Infant Health: What Can We Learn from California’s
Recent Experience?,” The Quarterly Journal of Economics, 2005, 120 (3), 1003–1030.

and Reed Walker, “Traffic Congestion and Infant Health: Evidence from E-ZPass,” American
Economic Journal: Applied Economics, 2011, 3 (1), 65–90.

, Matthew Neidell, and Johannes F Schmieder, “Air Pollution and Infant Health: Lessons
from New Jersey,” Journal of Health Economics, 2009, 28 (3), 688–703.

Deschenes, Olivier, Michael Greenstone, and Joseph S Shapiro, “Defensive investments and the
demand for air quality: Evidence from the NOx budget program,” American Economic Review,
2017, 107 (10), 2958–2989.

Duflo, Esther, “The Economist as Plumber,” American Economic Review, 2017, 107 (5), 1–26.

Eyring, Veronica, HW Köhler, J Van Aardenne, and A Lauer, “Emissions From International
Shipping: 1. The Last 50 Years,” Journal of Geophysical Research: Atmospheres, 2005, 110
(D17).

Fann, Neal, Karen Wesson, and Bryan Hubbell, “Characterizing the Confluence of Air Pollution
Risks in the United States,” Air Quality, Atmosphere & Health, 2016, 9 (3), 293–301.

Figlio, David, Jonathan Guryan, Krzysztof Karbownik, and Jeffrey Roth, “The effects of poor
neonatal health on children’s cognitive development,” American Economic Review, 2014, 104
(12), 3921–55.

Fowlie, Meredith, Mar Reguant, and Stephen P Ryan, “Market-Based Emissions Regulation
and Industry Dynamics,” Journal of Political Economy, 2016, 124 (1), 249–302.

Gamper-Rabindran, Shanti and Christopher Timmins, “Hazardous waste cleanup, neighbor-
hood gentrification, and environmental justice: Evidence from restricted access census block
data,” American Economic Review, 2011, 101 (3), 620–24.

Gillingham, Kenneth and Pei Huang, “Racial Disparities in the Health Effects from Air Pollu-
tion: Evidence from Ports,” NBER Working Paper, 2021, (w29108).

Hellenic Shipping News, 2015 SOx Limits: Is The World Fleet Scrubbing Up? 2014.

Hernandez-Cortes, Danae and Kyle C Meng, “Do Environmental Markets Cause Environmental
Injustice? Evidence from California’s Carbon Market,” 2021.

Jacobson, Mark Z, Atmospheric Pollution: History, Science, and Regulation, Cambridge Univer-
sity Press, 2002.

Keiser, David, Gabriel Lade, and Ivan Rudik, “Air pollution and visitation at US national parks,”
Science advances, 2018, 4 (7), eaat1613.

Klotz, Richard and Julia Berazneva, “Local Standards, Behavioral Adjustments, and Welfare:
Evaluating California’s Ocean-Going Vessel Fuel Rule,” Journal of the Association of Environ-
mental and Resource Economists (forthcoming), 2022.

Knittel, Christopher R, Douglas L Miller, and Nicholas J Sanders, “Caution, Drivers! Children
Present: Traffic, Pollution, and Infant Health,” Review of Economics and Statistics, 2016, 98 (2),
350–366.

31



Lindgren, Samuel, “The coast is clear: Shipping emission standards, air quality and infant health,”
Transportation Research Part D: Transport and Environment, 2021, 100, 103067.

Liu, Huan, Mingliang Fu, Xinxin Jin, Yi Shang, Drew Shindell, Greg Faluvegi, Cary Shindell,
and Kebin He, “Health and Climate Impacts of Ocean-Going Vessels in East Asia,” Nature
Climate Change, 2016.

Luechinger, Simon, “Air Pollution and Infant Mortality: A Natural Experiment from Power Plant
Desulfurization,” Journal of Health Economics, 2014, 37, 219–231.

Marcus, Michelle, “On the Road to Recovery: Gasoline Content Regulations and Child Health,”
Journal of Health Economics, 2017, 54, 98–123.

Moore, Thomas J, Jessica V Redfern, Michael Carver, Sean Hastings, Jeffrey D Adams,
and Gregory K Silber, “Exploring ship traffic variability off California,” Ocean & Coastal
Management, 2018, 163, 515–527.

Moretti, Enrico and Matthew Neidell, “Pollution, Health, and Avoidance Behavior: Evidence
from the Ports of Los Angeles,” Journal of Human Resources, 2011, 46 (1), 154–175.

Neidell, Matthew, “Information, avoidance behavior, and health the effect of ozone on asthma
hospitalizations,” Journal of Human resources, 2009, 44 (2), 450–478.

Oreopoulos, Philip, Mark Stabile, Randy Walld, and Leslie L Roos, “Short-, Medium-, and
Long-Term Consequences of Poor Infant Health: An Analysis Using Siblings and Twins,” Jour-
nal of Human Resources, 2008, 43 (1), 88–138.

Oster, Emily, “Unobservable selection and coefficient stability: Theory and evidence,” Journal of
Business & Economic Statistics, 2019, 37 (2), 187–204.

Sanders, Nicholas and Alan I Barreca, “Adaptation to Environmental Change: Agriculture and
the Unexpected Incidence of the Acid Rain Program,” NBER Working Paper, 2021, (w28591).

Schlenker, Wolfram, “Daily Weather Data for Contiguous United States (1950-2019) - version
March 2020,” 2020. http://www.columbia.edu/~ws2162/links.html (accessed
March 3, 2022).

and W Reed Walker, “Airports, Air Pollution, and Contemporaneous Health,” The Review of
Economic Studies, 2015, 83 (2), 768–809.

Smith, TWP, JP Jalkanen, BA Anderson, JJ Corbett, J Faber, S Hanayama, E O’Keeffe,
S Parker, L Johansson, L Aldous et al., “Third IMO Greenhouse Gas Study 2014,” 2015.

Sofiev, Mikhail, James J Winebrake, Lasse Johansson, Edward W Carr, Marje Prank, Joana
Soares, Julius Vira, Rostislav Kouznetsov, Jukka-Pekka Jalkanen, and James J Corbett,
“Cleaner Fuels for Ships Provide Public Health Benefits with Climate Tradeoffs,” Nature Com-
munications, 2018, 9 (1), 406.

Tessum, Christopher W, David A Paolella, Sarah E Chambliss, Joshua S Apte, Jason D Hill,
and Julian D Marshall, “PM2.5 Polluters Disproportionately and Systemically Affect People
of Color in the United States,” Science Advances, 2021, 7 (18), eabf4491.

UNCTAD, “Review of Maritime Transport,” Technical Report ISBN: 978-92-1-113073-7, United
Nations, Geneva 2022.

32

http://www.columbia.edu/~ws2162/links.html


U.S. EPA, “Frequently Asked Questions about the Emission Control Area Application Process,”
Technical Report, Office of Transportation and Air Quality, U.S. Environmental Protection
Agency 2009.

, “Integrated Science Assessment for Particulate Matter,” US Environmental Protection Agency
Washington, DC, 2009.

, “Proposal to Designate an Emission Control Area for Nitrogen Oxides, Sulfur Oxides and
Particulate Matter: Technical Support Document,” Technical Report, Assessment and Standards
Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency 2009.

, “Regulatory Announcement: Designation of North American Emission Control Area to Reduce
Emissions from Ships,” Technical Report, U.S. Environmental Protection Agency, Office of
Transportation and Air Quality 2010.

, “Integrated Science Assessment for Oxides of Nitrogen - Health Criteria,” US Environmental
Protection Agency Washington, DC, 2016.

, “Integrated Science Assessment for Sulfur Oxides: Health Criteria ,” Technical Report, U.S.
Environmental Protection Agency, Office of Research and Development, National Center for
Environmental Assessment 2017.

, “Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index
(AQI),” Technical Report, Air Quality Assessment Division, Office of Air Quality Planning and
Standards, U.S. Environmental Protection Agency 2018.

Viana, Mar, V Rizza, Aurelio Tobías, E Carr, J Corbett, M Sofiev, A Karanasiou, G Buo-
nanno, and N Fann, “Estimated health impacts from maritime transport in the Mediterranean
region and benefits from the use of cleaner fuels,” Environment International, 2020, 138,
105670.

Wang, Chengfeng, James J Corbett, and Jeremy Firestone, “Modeling Energy Use and Emis-
sions from North American Shipping: Application of the Ship Traffic, Energy, and Environment
Model,” Environmental Science & Technology, 2007, 41 (9), 3226–3232.

Winebrake, James J, JJ Corbett, EH Green, A Lauer, and V Eyring, “Mitigating the Health
Impacts of Pollution from Oceangoing Shipping: An Assessment of Low-Sulfur Fuel Man-
dates,” Environmental Science & Technology, 2009, 43 (13), 4776–4782.

Zhang, Junjie and Quan Mu, “Air pollution and defensive expenditures: Evidence from
particulate-filtering facemasks,” Journal of Environmental Economics and Management, 2018,
92, 517–536.

Zhu, Junming and Jiali Wang, “The effects of fuel content regulation at ports on regional pollu-
tion and shipping industry,” Journal of Environmental Economics and Management, 2021, 106,
102424.

Zou, Eric Yongchen, “Unwatched Pollution: The Effect of Intermittent Monitoring on Air Qual-
ity,” American Economic Review, 2021, 111 (7), 2101–26.

33



7 Figures

Figure 1: Sulfur Allowance Limits Within and Outside Emission Control Areas
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Note: California standard applies within 24 nautical miles of California’s coast. USA federal standard applies within 200 nautical miles of coast.
The International Maritime Organization (IMO) global standard applies elsewhere.

Figure 2: North American Emission Control Area Boundary

Note: Figure shows the regulated area for the North American Emission Control Area. Low sulfur fuel was required within the outlined boundary.
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Figure 3: CMAQ Predicted Decline in PM2.5 from ECA

(a) CMAQ Output (b) CMAQ EPA Predicted Change
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(c) CMAQ EPA Predicted Change for All Counties

Note: Figure shows the predicted decline in fine particulate matter from implementation of the North American Emission Control Area based on
the CMAQ model. Panel (a) depicts the annual average ambient PM2.5 in 2020 under two CMAQ scenarios: (i) without the ECA policy and (ii)
with the ECA policy. Panel (b) depicts the difference between the CMAQ scenarios of ambient PM2.5 in 2020 at (i) the cell level and (ii) the
population-weighted centroid for a sub-sample of counties. Panel (c) depicts the CMAQ predicted change at the population-weighted centroid for
all counties. Darker colors indicate a greater predicted decline in PM2.5. Data are from U.S. EPA (2009c).
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Figure 4: Effects of ECA on Air Quality
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Note: The unit of observation is a county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted
coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative to the year
before the ECA came into effect. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.

Figure 5: Effects of ECA on Infant Health
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Note: The unit of observation is a county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted
coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each conception year relative
to 2010. The omitted period is conceptions in 2010 because conceptions in 2011 and 2012 were be partially treated. Conceptions in 2013 and after
are fully treated during gestation. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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Figure 6: Effects of ECA on Mortality
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Note: The unit of observation is a county-year-month. The observations are weighted by the total population in panel a and the number of births
in panel b. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The
depicted coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative to
2011. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.

Figure 7: Ship Behavioral Response: Full vs. Partial ECA
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Note: The outcome is fine particulate matter. The unit of observation is a county-year-month. The observations are unweighted. The sample
includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted coefficients are
the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative to the year before the ECA
came into effect. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.

37



Figure 8: Disproportionate Exposure Among Populations Exposed to Maritime Pollution
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Note: Demographic information on the proportion of non-Hispanic whites, non-Hispanic blacks, non-Hispanic other race, and Hispanics from
2010 census tract data. We restrict to our analysis sample, which includes tracts within 200km of heavy ship traffic. Figure shows the cumulative
distribution of individuals by race/ethnicity over distance to a port in panel (a) and intensity of ship emissions in panel (b). We calculate distance
in kilometers from the population-weighted centroid of each tract to the nearest major port. The intensity of ship emissions is measured by the
predicted change from requiring low sulfur maritime fuel from the CMAQ model at the centroid of each census tract.
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8 Tables

Table 1: Summary Statistics 2008-2016

All in In 200k and
200k PM2.5 monitor

Outcomes
PM2.5 9.25 9.25
Low birth weight (per 1,000) 61.61 60.53
Birth weight (g) 3,304.18 3,305.18
Pre-term (per 1,000) 95.55 93.82
Gestation(weeks) 38.77 38.78
Deaths (per 1,000) - Under 1 6.06 6.61
Deaths (per 1,000) - All 0.63 0.63
Mother characteristics
Married 0.59 0.58
> HS Education 0.51 0.52
White 0.72 0.72
Hispanic 0.30 0.34
Over 35 0.18 0.19
Other controls
Min temperature 9.87 9.88
Max temperature 21.41 21.40
Precipitation 2.80 2.64
Unemployment rate 7.72 7.85
Observations
N conceptions/month 201.54 496.89
N counties 740.00 232.00

Note: The unit of observation is the county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample in column 1 includes all counties with population-weighted centroids within 200km of heavy ship traffic. Column 2 drops counties
without a PM2.5 monitor with at least one observation per year from 2008-2016. Means are reported for the main outcomes, demographic variables,
and key control variables.

Table 2: Effects of ECA on Air Quality and Demographic Characteristics

(1) (2) (3) (4)
PM2.5 Maternal Index Log(conceptions) Unemp. rate

Post-ECA*CMAQ -0.554 0.879 0.000 -0.108
(0.104)*** (0.676) (0.004) (0.088)

R2 0.60 0.95 0.99 0.93
N 24,901 25,052 25,052 25,052
N-counties 232 232 232 232
Mean 9.25 3305.18 2.33 7.85
%Change -5.99 0.03 0.04 -1.38

Note: The unit of observation is the county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. The observations are weighted by the number of births conceived in county i in year-month
ym in Columns 1, 2, and 4 and unweighted in Column 3. Reduced-form estimates are obtained from equation 1 with the modification of excluding
the outcome variables as controls in columns 2 and 4. The first-stage impact on PM2.5 is reported in column 1. Column 2 reports the effect on an
index of maternal characteristics, including education, marital status, race, ethnicity, age, smoking status, and diabetes. Column 3 repeats column
2 with the log number of conceptions as the outcome variable. Column 4 repeats column 2 with the unemployment rate as the outcome variable.
The insignificant coefficients in Columns 2-4 indicate there is no evidence of changes in underlying economic and demographic characteristics that
are correlated with the CMAQ policy variation. Robust standard errors clustered at the county level are reported in parentheses: * p < 0.1; **
p < 0.05; *** p < 0.01.
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Table 3: Effects of ECA and Air Quality on Health

(1) (2) (3) (4)
Low birth weight Preterm Deaths - all ages Infant Deaths

Panel A. Reduced Form

Post-ECA*CMAQ -1.326 -2.083 -0.006 -0.242
(0.348)*** (0.782)*** (0.003)** (0.089)***

R2 0.57 0.63 0.92 0.63
N 25,052 25,052 25,056 25,052
N-counties 232 232 232 232
Mean 60.53 93.82 0.64 6.59
%Change -2.19 -2.22 -0.92 -3.67

Panel B. 2SLS

PM2.5 2.674 4.141 0.011 0.425
(1.059)** (2.126)* (0.006)* (0.199)**

R2 0.45 0.53 0.91 0.61
N 24,901 24,901 24,905 24,901
F 18.33 18.33 30.40 27.37
N-counties 232 232 232 232
Mean 60.54 93.82 0.64 6.59
%Change 4.42 4.41 1.65 6.46

Panel C. OLS

PM2.5 -0.004 0.016 0.002 0.009
(0.036) (0.055) (0.000)*** (0.011)

R2 0.57 0.64 0.92 0.63
N 24,901 24,901 24,905 24,901
N-counties 232 232 232 232
Mean 60.54 93.82 0.64 6.59
%Change Post-ECA -0.01 0.02 0.29 0.14

Note: The unit of observation is the county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. The observations are weighted by the number of conceptions (columns 1-2), population
(column 3), and number of births (column 4). In Panel A, reduced-form estimates are obtained from equation 1. Panel B reports two-stage least
squares estimates based on equation 2. Panel C reports the naive OLS estimates of pollution on health. The effects are reported for outcomes: low
birth weight (<2,500g) per 1,000 (column 1), pre-term birth (<37 weeks) per 1,000 (column 2), deaths per 1,000 population (column 3), and infant
deaths per 1,000 births (column 4). Robust standard errors clustered at the county level are reported in parentheses: * p < 0.1; ** p < 0.05; ***
p < 0.01.

Table 4: Comparison of Magnitude to the Literature

Study Outcome Pollutant %∆ from 10% pollutant increase
Currie and Walker 2011 Low birth weight NO2, SO2 17.65
Alexander and Schwandt 2020 Low birth weight PM2.5, PM10, O3 10.3
H-L and Marcus Low birth weight PM2.5 4.1
Chay and Greenstone 2003 A Infant mortality TSP 5
Chay and Greenstone 2003 B Infant mortality TSP 3.5
Currie and Neidell 2005 Infant mortality CO 1.01
Luechinger 2014 Infant mortality SO2 0.89
Gutierrez 2015 Infant mortality PM2.5, PM10 7.1
Knittel, Miller, Sanders 2016 Infant mortality PM10 10.3
Alexander and Schwandt 2020 Infant mortality PM2.5, PM10, O3 9.5
H-L and Marcus Infant mortality PM2.5 6.0

Note: Source of calculations from Alexander and Schwandt (2022).
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