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1 Introduction

Artificial intelligence (AI) advances have been coming at a rapid pace for the past decade.
This has been accompanied by increasing speculation about the potential impact of AI.
What are AI’s complements and substitutes? The research to date has primarily focused on
the role AI will play in substituting for humans in the performance of specific occupational
tasks. However, recent advances in machine learning constitute advances in the statistics of
prediction and, hence, are substitutes for human prediction (Agrawal et al. (2018b)). In this
paper, we consider the role of prediction in decision-making under uncertainty and evaluate
its potential to substitute for other ways risk in decisions is managed. Relative to the
dominant view of AI as a technology for labor substitution for individual tasks, the distinct
perspective provided here focuses on precisely where the impact of AI in the economy is
likely to be. Taking this view focuses attention on the factors employed in risk management
strategies.

Seen as prediction, a key question for understanding the impact of AI relates to how
it changes the role of decisions in organizations. In particular, we examine how AI might
enable different types of decision-making. Having better signals about the environment leads
to the explicit use of those signals when actions are chosen. In the absence of those signals,
production processes are organized around rules. Rules are actions made that do not adjust
to their environment as those choosing the action do not have signals that would cause such
adjustment. Put differently, without predictions, it might be best to always to the same
thing (to follow a rule). Prediction enables choices (decisions).

There are two consequences of a change from rules to decisions. First, rules do not change
as new information arises, implying that there are efficiency consequences that depend on
the realization of that uncertainty. This causes organizations to set up alternative activities
designed to support rules. These alternatives, which Ehrlich & Becker (1972) labeled ‘insur-
ance’ (that mitigates losses) and ‘protection’ (that reduces the probability of bad outcomes),
reduce the negative consequences of a bad outcome. The focus of this paper is to exam-
ine how decision-making and risk management strategies change when prediction improves,
building on the framework in Agrawal et al. (2019).

If prediction substitutes away from rules towards decisions, the need for those activities
is reduced. Second, rules create a certain degree of reliability in organizations where there
are a number of interrelated decisions. If everyone else is always doing the same thing,
then coordination is straightforward. If prediction triggers a shift to decisions, this reduces
reliability and may reduce the productivity of complementary tasks. It is this potential
that caused Bresnahan (2020) to conclude that AI adoption would only occur where such
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interrelationships did not exist – that is, when AI is adopted for a modular task. By contrast,
we argue that this potential creates new opportunities for organizational or system change
that itself requires new activities designed to more explicitly coordinate tasks to avoid the
negative consequences of reduced reliability.1

In contrast, much of the existing AI literature focuses on the impact of AI on labor with
an emphasis on automation of human tasks by thinking machines (e.g. Felten et al. (2018),
Acemoglu & Restrepo (2019), Rock (2019), Frank et al. (2019), Das et al. (2020), Acemoglu
(2021)). The fundamental assumption driving these approaches is that AI improvements are
a substitute for cognition at a task level. This view is related to a conception of AI that is
quite common in popular culture and also in the aspirations of computer scientists pushing
for what is termed “artificial general intelligence" (AGI). The problem is that this is not the
technological advance that computer science over the last decade has achieved. Instead, the
advances that we have seen are in machine learning which is more properly characterized
as an advance, albeit a significant one, in statistics; in particular, in statistics to generate
predictions (Agrawal et al. (2018b)).

Our focus on AI as prediction suggests that AI’s impact will be primarily in organizations
structured around uncertainty. This viewpoint is a significant challenge to the current pre-
sumption in economics that AI will, at a first order, spur capital to labor substitution and,
indeed, to the notion that AI adoption is human cognition substitution. Instead, it is more
consistent with Bresnahan (2020), who emphasizes that AI adoption will change systems.
Our results suggest that AI will substitute for insurance and protection. There is no reason
to suppose that these insurance and protection activities involve a lower capital intensity
than those in the economy. Thus, their removal may reduce the average capital intensity
of production. Moreover, to the extent that AI prediction opens up the explicit decisions
in tasks rather than rules, there is an increased use of human cognition in the form of the
application of judgment (Agrawal et al. (2018a)).

More generally, the empirical implications of our framework are not about the identifica-
tion of tasks that AI can do, nor about the types of workers that AI will replace. Instead, our
framework provides insight into the types of organizations that will benefit from AI, and the
challenges to AI adoption more generally. Our framework suggests that AI adoption will be
more straightforward when uncertainty constrains what an organization can do, and when
multiple decisions can be easily coordinated through communication. When communication
between decision-makers is difficult, or when uncertainty plays little obvious role in how an
organization operates, AI adoption will be limited.

The paper proceeds as follows. In Section 2, we discuss examples of insurance (reducing
1This is explored in more detail in Agrawal et al. (2021).
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the consequences of a bad state should it occur) and protection (reducing the chance of a
bad state occurring) in dealing with uncertainty, and the use of rules by many organizations
to reduce that uncertainty. This discussion will hint at a role for better prediction to reduce
the need to depend on rules. After this motivating discussion, in Section 3, we introduce a
formal model to explore the conditions under which is it beneficial to switch from using a
rule to using a decision. We define protection and insurance, and demonstrate that when
prediction (through AI) is good enough, it reduces the need for protection and insurance.
This enables organizations to move from rules where they do the same action regardless of the
state to decisions. However, when the stakes of the decision are high, specifically when the
payoffs are asymmetric and getting the decision wrong can be particularly consequential, we
show that rules maintain their appeal and the returns to AI adoption are lower. In Section
4, we explore how insurance, protection, and prediction interact when there are multiple
decisions within an organization. The interaction of decisions leads to a phenomenon we call
the AI Bullwhip Effect. The need to coordinate can mean that AI complements insurance,
though not protection. We conclude with a discussion of the implications of the model for
understanding the impact of AI more broadly and offer some directions for future research.

2 Risk Management Activities

Our formal model will show that what AI prediction has the potential to substitute for
are other ways in which the risk associated with actions taken under uncertainty are man-
aged. Before moving to the formalities, it is useful to discuss briefly what we mean by risk
management.

To adopt AI, you must have something to predict. Specifically, there has to be something
about the world that is uncertain and that you believe will impact your business. In some
cases, uncertainty is obvious. Credit card companies know they don’t know which transac-
tions are fraudulent. Amazon knows they don’t know what their customers want to buy at
any given time. These happen to be industries where the uncertainty is there for all to see.

But what if that isn’t the case? Uncertainty is costly and there are many things that we
do to protect ourselves from that uncertainty. If we have done this successfully, we might no
longer be aware that uncertainty was there, let alone that it could be embraced more directly
and overcome using AI prediction. Consider airport terminals. Many of these are currently
designed to be a destination in and of themselves. The reason is that it is expected that many
people will spend time waiting in airports. Hence, it is an opportunity to provide commercial
activities that can be consumed while waiting – e.g., shopping but in some cases, sports and
entertainment facilities. If that goal is achieved, people will be less concerned about the time
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they spend at airports and hence, it will be less obvious that changes – such as AI prediction
to optimize airport arrival times or security line transit – will be valued. Contrast this with
private terminals that are spartan precisely because, in their case, travellers do not have to
adhere to a schedule and instead, flexibility allows them to minimize any waiting time.

2.1 Examples of insurance

Retail inventory : To see how risk management plays a role in concealing uncertainty, consider
the canonical task of acquiring a stock of products prior to knowing fully what demand will
be. While it is possible to match supply with demand if your customers are willing to wait
for orders to be filled, when customers have a preference for fast fulfillment, goods must be
produced prior to precisely knowing what demand will be. In this case, while a retailer may
luck out and order the exact amount demanded, invariably there are two types of mismatches
that can arise – a supply shortage or a surplus.

In choosing how much to stock, a seller must balance these two mismatches. A shortage
means that you have forgone sales. A surplus means that you have unsold inventory. How-
ever, only one sort of mismatch provides options for insurance (for reducing the consequences
of being in the worse state). If you have a shortage, those customers may never return. On
the other hand, if you have a surplus, you have options. You might discount your product
to encourage more sales or you might be able to re-sell them in other markets or store them
to sell later. Only if these options do not exist, as they might not for perishable goods, do
you have to dispose of the goods and book the loss. Thus, precisely because insurance is a
strong option, many sellers tend to order more than they might expect to sell.

Perhaps nowhere do we see this attention to an insurance type strategy more clearly
than in fashion. High quality garments take time to produce. That means that designers
and manufacturers must forecast demand a season or more in advance. But fashion purchases
are complex. They are not simply driven by the need for clothing. Most consumers already
have clothes. Instead, they are also driven by a preference to send social messages. If
designers anticipate those social messages correctly, demand will be high. If they do not do
so – say, by picking colors that turn out to be unappealing – then demand may be very low.
In 2018, Burberry threw away stock worth $36 million. What’s more, that value was six
times more than they had to deal with in 2013. Rare are fashion items that sell out. Much
more common is a large volume of unsold stock at the end of a season.

Fashion waste has led to a raft of insurance-like choices. There are perennial end of
season discount sales and a host of outlet malls to unload excess stock. Some retailers ship
unsold stock to the Southern hemisphere to take advantage of the alternating seasons. Each
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of these options involves discounts that may themselves make it harder to sell clothing at
full price in the first place. For this reason, Burberry, a luxury brand, decided to forego the
insurance and dispose of their excess rather than cause price seeking across time. Below we
will consider explicitly the interaction between the adoption of AI prediction and inventory
management.

With AI prediction, an additional choice may present itself. It may be possible to change
what is produced based on predicted demand. If the predictions are good enough, there
will be little need to worry about too much or too little inventory.2 To the extreme, better
prediction could mean there is no need for insurance practices like warehouse sales at all.

Fire prevention: Another example of insurance is the preparations for fires in buildings.
In 2019, as a horrified world watched, Paris’ famed Notre Dame cathedral burned. At the
time, there was a real fear that the entire structure would be destroyed, wiping away centuries
of history and one of France’s major cultural icons. But a few hours later, the fire was under
control. While the damage was extensive, a remarkable amount of the building was saved
including the two front towers. What was lost was the largely wooden roof and a spire that
stood atop it. Most critically, and some would say miraculously, no lives were lost.

While no one would have expected market insurance could cover what might be lost from
a fire at Notre Dame, other ways of reducing fire damage were also limited. There was no
sprinkler system installed throughout the roof because it was too complicated in the old
building, potentially increasing fire risk because of the wiring requirements. Moreover, the
roof was a lattice built from what was now old wood, so nested that it was referred to as
‘The Forest.’ Thus, the building itself was not protected by fire-resistant materials the way
many newer buildings are.

A considered risk-management system was developed instead. The idea was to rapidly
respond to any fire, what we label ‘insurance’ as in the ability to reduce the damage from
a harmful event (what economists would call a bad state) when it occurs. This involved
regular training exercises by the Paris fire department, the installation of a ‘dry pipe’ to
bring water in if needed, the assumption that the old oak frame would not burn quickly and,
finally, an alert system that allowed for the fire response to be triggered rapidly.

2The industry has evolved further to deal with these issues, including attempts at prediction. There is,
of course, an entire industry to make sure that the designers’ choices of what is fashionable is communicated
to the public. That can help sure-up demand to some degree. However, more recently, clothing manufactures
have changed their production and distribution so that they can, if high demand is observed, supply the
market quickly – in weeks rather than months. Companies like Zara, HM and Forever 21 specialize in such
fast fashion. This fashion is low cost but also low quality. It is designed, however, to sell rather than become
excess stock. That said, being low cost, the costs of that outcome are correspondingly lower as well and so
fashion waste has grown. It is like ‘whack-a-mole.’ Try to reduce waste in one dimension and it appears in
another way.
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Ultimately, the response ‘worked’ in terms of saving the entire building and lives but the
fact that the fire was so large was because the alert system was flawed. It took 30 minutes
from the time a fire alert was seen by the security guard on duty before the fire was located
and responders informed.3 This was a combination of inexperience of the guard on duty and
the confusing nature of the alert system. By the time firefighters actually arrived, it was out
of control. Not only that, the dry pipe system had a previously undetected leak and so water
had to be drawn from the Seine.4 The ultimate conclusion was that the fire management
plan was sound but had been poorly designed and required more redundancies.

How we deal with the possibility of fire is a microcosm of the options available to manage
risk. Notre Dame is an example of an insurance strategy, which involves dealing with the
consequences of bad outcomes when they occur. They put in resources, not to prevent fire or
minimize the probability that a fire occurred, but instead, to make sure they could contain
any fire that did arise. Ultimately, that system was itself not perfect but what did work
worked well enough to prevent the worst outcomes. By contrast, this option is not used for
most buildings. Instead, a sprinkler system might be installed to reduce the damage any
fire might cause. But the goal is the same. Fires themselves are not prevented but their
consequences are directly dealt with.

2.2 Examples of protection

We can also prevent fire by (a) choosing building materials that cannot catch fire or (b)
choosing what activities can be conducted in buildings to minimize the probability of a fire.
In the first case, we make investments that reduce the probability that a building can catch
fire. In the second case, we avoid ‘playing with matches’ and other activities that can cause
fires in the first place. Thus, rather than an insurance response, in managing risk we can
choose to protect against the risk directly or by exercising more caution in our activities.
Which of these risk management options we choose depends on a number of trade-offs that
can be different depending on context.

In our model to follow, we distinguish between insurance (reducing the cost of bad out-
comes) and protection (reducing the probability of bad outcomes). Fire management involves
both. But our focus here is on the activities that support each type of risk management
strategy. As we will see, prediction is often a substitute for those activities so, in order to
understand the broad impacts of AI adoption, it is important to identify those activities
explicitly.

Brick houses : Consider, for instance, the protection story encapsulated by the children’s
3https://www.nytimes.com/interactive/2019/07/16/world/europe/notre-dame.html
4https://www.phcppros.com/articles/10231-lessons-in-fire-protection-from-notre-dame-cathedral
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story, The Three Little Pigs. In that story, three pigs, faced with a threat of a big-lunged
wolf, build houses made out of straw, wood and bricks respectively. At the end of the day,
only the brick house is effective against the wolf which justifies the expense in terms of time,
materials and forgone leisure, that pig incurred. The moral of the story is that you have to
pay a price to be safe. The related moral is that you should pay that price but, as economists,
we cannot as readily accept that conclusion. Costs must always be weighed against benefits.
Still, the idea is that once it is decided that a brick house is worth building, then a rule is
created: Build brick houses because the chance a wolf might come by is high enough.

Over time, the rule becomes invisible. Brick becomes part of the building code for city,
and even if the wolf population disappears, people will keep building their houses from
brick. When protection turns into a rule, it may be difficult for organizations to recognize
the benefit of AI in reducing the underlying uncertainty.

More generally, we have building codes that precisely specify various measures that must
be taken to protect those inside buildings from uncertainty events. These include the afore-
mentioned fire prevention but also damage from weather, foundation security, and other
natural phenomena like earthquakes.

Hedgerows : Consider the long-standing protection employed for farming in England –
building hedgerows. A hedgerow is a carefully planted set of robust trees and plants that
can serve as a wall between fields. This is extremely useful if your field is full of farm animals
and you do not want to employ a person to ensure they do not wander off. It is also useful if
you do not want a heavy rainfall to cause soil to erode too quickly or if you want to protect
crops from strong winds. Given all this protection against risky events, it is not surprising
that this practice was the origin of the term, hedging, which evolved to have a broader
(insurance) meaning.

But hedgerows come at a cost. By dividing farmland, they make it impossible to use cer-
tain farming techniques – including mechanization – that are only efficient for large swathes
of land. After World War II, the British government actually gave subsidies for the removal
of hedgerows for this purpose although in some cases, that removal was excessive given their
role in risk management. Today, there are moves to restore hedgerows led most prominently
by the Prince of Wales.5

5From https://www.washingtonpost.com/graphics/2019/world/british-hedgerows/

The BBC recently aired a documentary called “Prince, Son and Heir: Charles at 70.”
In the show, Prince Charles’s two sons discuss their father’s passion.
“He loves his hedgelaying,” Prince William says.
“Whichever policeman is on duty at the time puts the sledgehammer and ax in the boot of the
car,” Prince Harry says. “Off they go. They spend two hours wrestling with bushes to try to
lay a hedge because he hates fences.”
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We see many situations where costly investments are made to cover or shelter a decision-
maker from risk. Miles of highways are cocooned with guard rails to prevent cars from
going down embankments, hills, or into on-coming traffic. Most of these are, fortunately,
never used but each allowed a road to be built in a way that might otherwise have not been
sufficiently safe given the fallibility of human drivers.

Aircraft life vests : What these protection measures have in common is that they typically
generate what look like over-engineered solutions. They are designed to be rated up to a
certain set of events – the once-in-a-lifetime storm or the once in a century flood. When
those events occur, the engineering looks worthwhile. But, in their absence, there is cause
to wonder. For many years, as Levitt & Dubner (2005) pointed out, life vests and rafts on
aircrafts – not to mention the safety demonstrations of each – appeared to be wasteful given
no aircraft had successfully landed on water. Then, in 2009, Captain Sullenberger landed
a USAir plane with no working engines on the Hudson River. Does that one example of a
low probability event make the precautionary life vests worth it? It is hard to know. But it
could certainly not be concluded that the absence of a possible outcome would cause us to
assess the probability of that outcome at zero.

Levitt and Dubner’s main point, however, is that while it is often possible when protec-
tion activities are employed to measure the likelihood or change in likelihood of underlying
uncertainty over time, it is not possible to measure whether the investments made to re-
duce the probability of a consequence are excessive as the very risk management strategy
employed takes away that information. It is entirely possible that too much is being wasted
on something that, for other reasons, is no longer a high risk at all.

2.3 Summary

The model below will consider the two, distinct risk-management strategies of insurance
and protection. Insurance involves mitigating the downside risk outcomes (say by having
a payout in the case of a fire) while protection involves reducing the probability itself of a
bad outcome (say by using different building materials).6 There is no necessary bright line
between each and sometimes risk management involves the use of both even though they are
ultimately serving the same end. However, what we want to emphasize is that each strategy
has potentially different implications as to how we observe and learn about the underlying
uncertainty that requires risk management in the first place.

Harry says, “Some come back covered in blood because at some point something he has been
cutting has flung up.”

6This distinction was first made by Ehrlich & Becker (1972).
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Figure 1: Insurance vs Protection under Fire Risk

The key focus here is how risk-management and then prediction impact decisions. Con-
sider the following example. Fires can happen independently of what people do but, as is
readily apparent, fires can also be started by the activity of people. This is why we don’t
like children or basically anyone else to ‘play with matches.’ Notre Dame’s fire risk would
be much lower if people weren’t allowed in and it didn’t have to accommodate people by
having, say, electric or other forms of lighting and temperature control in the building.

When you could visit Notre Dame, worshippers could light a candle. Obviously, candles
aren’t necessarily the greatest risk for causing a fire in a centuries old cathedral but many
buildings prevent activities with open flames. However, for illustration purposes, consider
Notre Dame’s decision to allow candle lighting or not. The relevant decision tree is depicted
in on the left hand side of Figure 1. Allowing candles risks a fire disaster but permits a
better experience visiting Notre Dame. Not allowing candles reduces fire risk – actually in
the figure it eliminates it – but diminishes the experience. Notre Dame previously allowed
candles so must have judged that the additional fire risk was low enough relative to the
benefits of having a good experience over a diminished one.

However, as already noted Notre Dame engaged in an insurance risk strategy that involved
being ready to fight a fire should it arise and, thereby, mitigate the extent of the disaster that
might otherwise occur. The upper right hand side of Figure 1 depicts how this insurance
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strategy changes the decision tree facing Notre Dame. With insurance in place, the potential
downside outcome if a fire arises is reduced and will make it safer to permit candles.

The lower right hand side also shows an alternative protection strategy. That strategy
changes the decision tree and makes it more attractive to permit candles. It does so by
directly reducing the probability that a fire will occur. With that protection in place, candles
are less of a risk. Recall that such protection strategies would involve first resistant building
materials. 7

When insurance and protection are used, decision makers find it less inefficient to always
choose the same action. They rely on a rule, and do not respond to the underlying state.
When insurance and protection are first implemented, decision-makers might appreciate
the risks they are managing and the reasons for the rules. However, as time goes on, the
rationale may itself recede. Some of this is by design, as one of the advantages of good risk
management is not having to worry about uncertainty. But it is also possible that, as the
underlying causes of uncertainty shift, or the trade-offs between alternative options change,
the risk management strategy itself becomes sub-optimal. In other words, by virtue of past
risk management choices, the uncertainty decision-makers might face is hidden. From the
perspective of AI adoption, this means that the prediction problems that might be solved
may simply not be defined or even noticed. This is both a detriment to businesses tied to old
ways of risk management and an opportunity for others looking to apply AI in new areas. If
the uncertainty were known, the potential for AI to provide predictions and enable decisions
would be clear.

In the case of fire, AI prediction of fire risk could enable new decisions, beyond the
current options of more robust materials, less use of fire, and fast response when a fire
occurs. Instead, AI prediction could enable decisions on more types of materials or new
types of activities that seemed risky under rules, but aren’t when predictions are available.
Under rules, it may not be clear that the uncertainty limits the scope of decision-making.

3 Basic Model

Our model focuses on decisions under uncertainty; initially, for a single task. An agent has a
choice between two actions, a ∈ {1, 2}. There are two possible states of the world θ ∈ {1, 2}
that determine the payoffs from those actions. If the action choice matches the state, there
is a payoff of R while if the action does not match the state, the payoff is r < R. The prior

7Interestingly, a sprinkler system has an impact on both the risk of a disastrous fire (by enabling an
automatic response as soon as fire is detected) and by being an automated clean-up (via the use of water).
Thus, some risk management strategies have elements of protection and insurance.
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probability that θ = 1 is p > 1
2
. Thus, absent any other information, it is optimal for the

agent to choose a = 1 always earning an expected payoff of pR + (1 − p)r. Choosing one
action all of the time is what we will term, following a rule.

By contrast, if the agent has perfect information regarding the state, then they will match
the action with the state. This would result in a payoff of R and would be implemented by
a state-contingent decision. When the action chosen varies with the predicted state, as it
would in the case of perfect information, we term this, making a decision.8 When an agent
is following a rule they have no need for a prediction of the state whereas the opposite is
true if they are making a decision.

Our focus here is what drives an agent to make a decision rather than follow a rule; in
particular, the role better prediction plays in this. This is done in the context of three options
the agent can take for mitigating the negative impacts involved in not matching the action
with the correct state. The first two are from Ehrlich & Becker (1972) while the contribution
of this paper is to add the third so as to analyze the impact of artificial intelligence following
Agrawal et al. (2019) but incorporating explicitly risk management strategies used under
rules or decisions.

• Protection: this is a costly, preemptive action designed to shift the probabilities asso-
ciated with the more frequent state, θ = 1. For instance, this might be building with
strong materials like brick. We assume that at a cost, C(x), which is non-decreasing
and convex, the agent can choose a higher level of p+x. We assume that C ′(1−p) =∞
so that setting x = 1− p is never optimal.

• Insurance: this is a costly, preemptive action designed to increase the downside payoff
(r) from the risky action. We assume that at a cost, c(∆), the downside risky payoff
becomes r+∆. c is convex and non-decreasing. We also assume that c′(R− r) =∞ so
that setting ∆ = R− r is never optimal. An example of this would be slack in system
or inventories; that is, prepared resources to be able to react in a crisis.

• Prediction: this is the acquisition of information that provides a signal of the state
of the world so that mismatches can be avoided if the (posterior) probability that the
unmatched state arises is too high. Thus, we assume that there is a signal that with
probability e accurately reveals the correct state and with probability 1− e reveals the
incorrect state. If a signal of state 1 is received, then the posterior probability that
it is actually state 1 is p(1) = ep

ep+(1−e)(1−p) . If a signal of state 2 is received, then the

8There is a sense in which choosing an action when you have a perfect prediction is hardly ‘deciding.’
However, the model below will accommodate prediction errors although assumptions will be made such that
it is still an optimal decision to the follow the prediction. Doing this, however, will involve an explicit cost.
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posterior probability that it is actually state 2 is 1 − p(2) = e(1−p)
(1−e)p+e(1−p) . We assume

that e > 1
2
so the signals are informative. In this case, the agent will only choose to

follow the signal if the error rate is sufficiently small.

The activities of protection and insurance can be varied. For instance, as noted above,
if you were worried about the risk of damage from fire in a building, you can ensure the
building is made with nonflammable materials that would shift the probability of a fire
spreading (protection) or build in an alarm system that quickly alerted the fire department
(insurance). By contrast, you could use an AI to predict whether a fire was likely. Such a
prediction would allow you to monitor whether conditions are such that a fire may occur and
take preemptive action to stop it from occurring. By predicting when a fire would occur,
and enabling a decision of whether to quickly act to put out a fire, this would reduce the
need for protection and for insurance.

3.1 Information processing costs

If (x,∆) = (0, 0), following the prediction by making a decision generates an expected payoff
of:9

eR + (1− e)r

By contrast, not following the prediction (i.e., a rule) yields pR+ (1− p)r. All other things
being equal, following the prediction will be optimal if e ≥ p.

However, other things are not equal. While a rule involves not making an on-going
choice (although it is effectively made when the rule is formed), a decision requires continual
attention. In particular, if information in the form of AI prediction is being fed into the
decision, then the act of choice involves information processing costs that may be primarily
cognitive.

Thus, we will assume that processing information is not costless for the decision-maker.
This is captured simply by assuming that if the agent wants to follow the prediction, it costs
them λ to do so. In this case, they will choose to make a decision rather than follow a rule
if:

eR + (1− e)r − λ ≥ pR + (1− p)r =⇒ e− p ≥ λ

R− r
.

Note that when x and ∆ are positive, this inequality becomes e− (p+ x) ≥ λ
R−(r+∆)

. Thus,
it is easy to see that as e increases, the returns to making a decision over following a rule
rise. By contrast, higher x or ∆ reduce the returns to decision-making.

9The expected payoff is (ep+(1−e)(1−p))(p(1)R+(1−p(1))r)+(e(1−p)+(1−e)p)((1−p(2))R+p(2)r)
which collapses to epR+ (1− e)(1− p)r + e(1− p)R+ (1− e)pr = eR+ (1− e)r.
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3.2 No Prediction

Without prediction, because p is assumed to be greater than 1
2
, it is optimal for the agent

to follow the rule of setting a = 1. However, they can engage in preemptive expenditures in
self-insurance and self-protection. Thus, the agent solves:

max
x,∆

(p+ x)R + (1− p− x)(r + ∆)− C(x)− c(∆)

Note that the mixed partial derivative of this objective function with respect to (x,∆) is −1

so self-insurance and self-protection are substitutes. Given our assumptions on the costs of
these actions, there is an interior solution which we denote by (x∗RULE,∆

∗
RULE). These are

characterized by (R− r −∆) = C ′(x∗RULE) and 1− p− x∗RULE = c′(∆∗RULE), respectively.

3.3 Prediction

Suppose a prediction is available and suppose that the agent follows the prediction and
makes a decision. Note that in the absence of insurance and protection (i.e., ∆ = x = 0),
prediction yields an expected payoff of eR + (1 − e)r − λ. Compared to a rule without
insurance or protection, with an expected payoff of pR+ (1−p)r, prediction will be adopted
if (e− p)(R − r) ≥ λ (and a decision will substitute for a rule). Thus, in this baseline case,
it is clear that prediction quality, e, must be at least p for the adoption of prediction to be
worthwhile.

When insurance and protection are available, then the agent solves:

max
x,∆

eR + (1− e)(r + ∆)− C(x)− c(∆)− λ

The following proposition characterizes how this changes the levels of insurance and protec-
tion.

Proposition 1 If the agent moves from a rule to a decision:

1. Protection is reduced; i.e., x∗RULE > x∗DEC = 0.

2. Insurance is reduced (increased) if e is sufficiently high (low); i.e., ∆∗DEC ≤ (>)∆∗RULE
if e ≥ (<)p+ x∗RULE

Proof. If the agent makes a decision, x∗DEC = 0; i.e., there is no return to protection.
For insurance, recall that ∆∗RULE satisfies p + x∗RULE = 1− c′(∆∗RULE) while ∆∗DEC satisfies
e = 1−c′(∆∗DEC) so that ∆∗DEC ≤ (>)∆∗RULE if e ≥ (<)p+x∗RULE. Note also, by the envelope
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theorem, t(r + ∆∗(t))− c(∆∗(t)) is increasing in t so that (1− e)(r + ∆∗DEC)− c(∆∗DEC) ≤
(>)(1− p−x∗RULE)(r+ ∆∗RULE)− c(∆∗RULE) if e ≥ (<)p+x∗RULE. Thus, for sufficiently high
quality prediction, insurance will fall.

Thus, for sufficiently high quality prediction, both insurance and protection activities are
reduced as AI is adopted. Of course, AI will only be adopted if e is sufficiently high. This
fact allows us to demonstrate the following:

Corollary 1 When (x,∆) are endogenous, a necessary condition for making a decision to
be preferred to a rule is that e > p.

Proof. The agent will choose decisions over rules if:

(e− p− x∗RULE)(R− r) + (1− p− x∗RULE)∆∗RULE + (1− e)∆∗DEC

≥ λ+ c(∆∗DEC)− c(∆∗RULE)− C(x∗RULE)

Note that at e = p+x∗RULE, ∆∗DEC = ∆∗RULE and, thus, the incremental payoff from making a
decision is C(x∗RULE)−λ. If this is positive, then making a decision is optimal if e ≥ p+x∗RULE
which, in turn, implies that insurance will decline following AI adoption. By contrast, when
e = p, then ∆∗DEC ≥ ∆∗RULE. The payoff from making a decision is:

pR + (1− p)(r + ∆∗DEC)− c(∆∗DEC)− λ

and from following a rule is:

(p+ x∗RULE)R + (1− p− x∗RULE)(r + ∆∗RULE)− c(∆∗RULE)− C(x∗RULE)

By the envelope theorem, following a rule results in a higher payoff. Thus, a necessary con-
dition for making a decision to be optimal is that e > p (as it would also be in the absence
of insurance and protection).

Therefore, given that insurance will only increase if a decision is made instead of a rule if
e − p ≤ x∗RULE, when protection is relied upon under a rule, this raises the likelihood that
insurance may increase following AI adoption rather than decrease. Good predictions reduce
the need for protection. With information about the state, it becomes possible to respond
without needing to invest to change the likelihood of one state or another. For example, good
predictions on where soil might erode reduce the need to build hedges everywhere. With
excellent predictions, insurance is less useful. Firms can make inventory decisions confident

15



that they will be correct. However, if predictions are good enough to enable decision-making
instead of rules (but far from perfect), then insurance can be even more valuable. It enables
the organization to reduce the risk from a wrong decision.

3.4 AI Adoption

Thusfar, we have considered the choice between rules and decisions assuming the agent
was starting from scratch. Because AI prediction is a recent technological development,
when considering its adoption, this is undertaken in a context where an agent has already
previously chosen self-insurance and self-protection levels and these are fixed. Suppose those
levels are xRULE and ∆RULE respectively. Thus, the existing payoff (ignoring sunk insurance
and protection costs) is (p+ xRULE)R + (1− p− xRULE)(r + ∆RULE).

What level of {e, λ} will cause a switch from a rule to AI adoption and a decision being
made?

Proposition 2 AI prediction will be adopted if (e− p− xRULE)(R− r −∆RULE) ≥ λ.

Proof. Given that x and ∆ are fixed, this leads to an expected payoff, if AI prediction is
used, of eR + (1− e)(r + ∆RULE)− λ. Thus, AI prediction will be adopted if:

eR + (1− e)(r + ∆RULE)− λ ≥ (p+ xRULE)R + (1− p− xRULE)(r + ∆RULE)

which gives the condition of the proposition.

Note that a necessary condition for AI adoption here is that e > p+xRULE. Thus, Proposition
1 shows that AI adoption will result in a reduction in ∆. Moreover, the higher are xRULE
and ∆RULE, the lower is the return to adopting AI. In other words, if the actions that can
be made to mitigate the waste associated with rules are more effective, the lower are the
returns to adoption AI prediction.

3.5 Asymmetric Stakes

The model here presents AI adoption in the context of how prediction might be used to
alter how an agent manages risk when facing choices made under uncertainty. Bresnahan
(2020) argued that one of the constraints on businesses adopting AI prediction is that they
face what he terms ‘high stakes loss functions.’ In explaining this, he contrasted Amazon’s
recommendations to customers of what they might purchase with Facebook’s predictions of
whether content posted is unsafe or offensive. In Amazon’s case, Bresnahan argued that the
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loss function involved low stakes because an incorrect recommendation may lead to a loss sale
but not necessarily a lost customer. By contrast, a “false positive" prediction from Facebook’s
content AI, may lead to inappropriate content being posted that may drive customer churn
or, at the very least, controversy. He argued that this is why Amazon relies on its AI for
recommendations while Facebook employs a large labor force for content moderation that
works alongside its AI.10

To explore this within the context of the model here we need to enrich the payoff space.
The model here treats both states as symmetric in terms of their impact on payoffs; that is,
match the right state to the right action and the agent earns R while a mismatch earns r or
more broadly, r + ∆. While for the analysis of a rule this assumption is innocuous, when a
decision is being made, it has the effect of creating a symmetry in the stakes – that is, the
loss from an error, being R− (r + ∆) in each case.

Suppose, instead, we introduce asymmetric stakes. We do this in two ways. First, we
assume that if a = 1 when θ = 2, the agent’s uninsured payoff is r2 while if a = 2 when
θ = 1, it is r1. Second, we assume that insurance expenditures are state directed. That is,
the agent chooses {∆1,∆2} at cost c(∆1) + c(∆2) where ∆θ are insurance levels if there is
a mismatched action for θ (i.e., a 6= θ). To focus on the stakes issue we assume here that
p = 1

2
. c is assumed to be convex. For the choice of protection, we will now assume that

C(.) is a function of |x| to reflect the notion that x can be negative and shift probabilities
away from state 1.

With this set-up we can show the following:

Proposition 3 Suppose that r1 < r2. When choosing a rule, it is optimal to set a = 1,
x∗RULE > 0 and ∆∗2,RULE > ∆∗1,RULE = 0. When choosing to make a decision, the agent
chooses x∗DEC ≤ 0 and ∆∗2,DEC ≥ ∆∗1,DEC > 0. An increase in the stakes, R − r1, leads to a
decrease in x∗DEC and ∆∗1,DEC, an increase in ∆∗2,DEC and a reduction in the returns to AI
adoption.

Proof. Note that r1 < r2 implies that choosing a = 2 involves generically higher stakes than
a = 1; that is, a higher potential loss R − r1 from a mismatch. Given these changes, if the
agent adopts a rule with a = 1 always their expected payoff is (1

2
+x)R+ (1

2
−x)(r2 + ∆2)−

c(∆1)− c(∆2)− C(|x|). Clearly, with this rule it is optimal to set ∆1 = 0.
Now consider the impact of AI prediction on decision-making. In this case, the agent’s

expected payoff is:

(e(1
2

+ x) + (1− e)(1
2
− x))(

e(
1
2

+x)

e(
1
2

+x)+(1−e)( 1
2
−x)

R + (1− e(
1
2

+x)

e(
1
2

+x)+(1−e)( 1
2
−x)

)(r2 + ∆2)

10See also Athey et al. (2020) for a discussion of when AI’s versus people have priority in making decisions.
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+(e(1
2
− x) + (1− e)(1

2
+ x))(

e(
1
2
−x)

e(
1
2
−x)+(1−e)( 1

2
+x)

R + (1− e(
1
2
−x)

e(
1
2
−x)+(1−e)( 1

2
+x)

)(r1 + ∆1)

−c(∆1)− c(∆2)− C(|x|)− λ

= eR + (1− e)((1
2
− x)(r2 + ∆2) + (1

2
+ x)(r1 + ∆1))− c(∆1)− c(∆2)− C(|x|)− λ

Maximizing this with respect to {x,∆1,∆2} gives x∗DEC ≤ 0 and ∆∗2 ≥ ∆∗1 > 0.
Note that the payoff under AI adoption is supermodular in {r1, x,∆1,−∆2}. Thus, as r1

falls (i.e., stakes rise), x∗DEC falls, as does ∆∗1 while ∆∗2 rises.

When following a rule, the agent is at risk of realizing a payoff of r2 when they choose
a = 1 always. Thus, they invest in insurance (∆2) and protection (x) to manage that risk.
By contrast, when making a decision, they are at risk of either r1 or r2. Thus, there is
positive demand for insurance on either outcome. However, as r1 < r2, there is an incentive
to shift the probabilities of each state towards θ = 2 being more likely. Note also that, for
insurance on a θ = 2 outcome, ∆∗2 will be higher with a decision than a rule case if and only
if (1− e)(1

2
− x∗DEC) > 1

2
− x∗RULE or e < x∗RULE−x

∗
DEC

1
2
−x∗DEC

. Interestingly, for insurance on θ = 2,
this is now a complement with greater protection in the form of a more negative x.

The example of fire protection also shows the impact of asymmetric stakes. The conse-
quences of a fire can be devastating. This increases the benefit of investing in protection.
An AI might reduce the chance of a catastrophic fire by predicting it before it occurs, but
there remains a real risk of a bad outcome. Instead, a rule of using fire-preventing materials
might be better.

Finally, note that Proposition 3 confirms our intuition that when stakes are higher,
there is a reduced incentive to move away from a rule to a decision using prediction. This
confirms, for instance, the contrast between Amazon and Facebook discussed earlier. Note,
however, that Facebook does actually use AI prediction to assist in identifying unsafe content.
Proposition 3 shows that because of this, they will want to reduce the probability of that
occurring – i.e., engage in more protection against θ = 1 when choosing a = 2 (akin to
allowing content to be posted). Thus, one view of Facebook’s employment of thousands of
content moderators is that (a) they choose to rely on AI prediction and (b) they decided not
to have a rule that led to very little content being posted.

3.6 Empirical implications

What this means is that AI adoption needs to be understood in the context of existing
methods of mitigating the consequences of uncertainty. The first aspect of this follows
directly, and perhaps obviously, from the viewpoint of AI as prediction: AI will be adopted
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in decisions where there is a clear benefit from reduced uncertainty. The other aspects require
an understanding of rules, protection, and insurance. We expect AI to reduce the need for
rules and increase the ability to use decisions. Decision-making will become a more important
aspect of work, as Deming (2021) showed is already happening. With AI’s diffusion, we
expect this to accelerate. Furthermore, we expect AI to reduce the need for protection-
related investments.11 There will be less need to address uncertainty in advance, and more
need to respond as things are happening. For insurance, the implications are ambiguous and
depend on the quality of the predictions and whether the AI enables decisions over rules.

4 Multiple Tasks

Up until this point, we have considered a model of a single task and the impact of AI on
whether that task is guided according to rules (that are state invariant) or decisions (that are
not). The literature that evaluates the labor market impacts of AI typically envisages that
while AI adoption is at the task level, there are a number of tasks that combine to produce
the output of any firm. Those tasks are usually assumed to be complements. Thus, to the
extent that the adoption of AI in one task raises productivity of that task, the marginal
product of other tasks are similarly enhanced. In this respect, substitution of capital for
labor in one task can lead to an improvement in wages and the demand for labor in other
tasks.

The model here similarly involves the outcome that AI adoption, when it occurs, is
productivity enhancing in that the expected payoff from the task is improved. However,
what happens if there is more than one task and those tasks are interrelated in that there
are benefits to aligning the decisions across tasks (see Agrawal et al. (2021)). For instance,
as well as there being benefits to matching an action to a state, there may be benefits in
matching (or aligning) actions across tasks. One way to achieve such alignment is via explicit
coordination (say, through communication) but this involves its own costs. Moreover, as we
will show, those costs vary depending on whether AI is adopted or not. Indeed, despite there
being complements amongst tasks, we highlight the possibility that AI adoption reduces
rather than enhances the productivity of interrelated tasks.

11It is possible that the number of tasks increases substantially as a result of better prediction. Thus, AI
would reduce the proportion of tasks that use insurance or protection but still increase the total amount of
insurance and protection.
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4.1 The AI Bullwhip Effect

Suppose there are two tasks. The first, that we have already analysed, is chosen by agent A
who selects a. The second is chosen by agent B who selects b ∈ {1, 2}. Both agents choose
their actions to maximize total joint payoff so there are no incentive issues.

Should a = b, then a benefit of Γ is conferred but should a 6= b, the incremental payoff
is γ < Γ. We also assume that at a cost of Θ, a can be communicated to B prior to b being
chosen. In this situation, Γ is always realized.

First, suppose that A chooses to follow a rule whereby a = 1 always. In this case, B will
always find it optimal to choose b = 1. In this case, the expected payoff will be:

(p+ x)R + (1− p− x)(r + ∆) + Γ− c(∆)− C(x)

Note that because A follows a rule, B can align their action without any communica-
tion/coordination. This structure implies that x∗RULE and ∆∗RULE are not changed from
the baseline model.

Now consider what happens should A choose to make a decision and follow the AI pre-
diction. What should B do? In the absence of communication, a = 1 which arises with
probability ep + (1 − e)(1 − p) as compared with e(1 − p) + (1 − e)p for a = 2. Note that
ep+ (1− e)(1− p) > e(1− p) + (1− e)p =⇒ (e− 1

2
)(p− 1

2
) > 0 which is always true. Thus,

a = 1 is A’s most likely action and so it is optimal for B to set b = 1 always. In this case,
the expected payoff is:

eR+(1−e)(r+∆)+(e(p+x)+(1−e)(1−p−x))Γ+(e(1−p−x)+(1−e)(p+x))γ−c(∆)−C(x)−λ

Note that while ∆∗DEC is the same in the basic model, here, there is an extra incentive to
choose x∗DEC > 0 as this increases the probability that Γ rather than γ is realized.

The key feature of AI adoption in a multi-task environment is that the performance
of the second interrelated task is degraded. While a rule leads to that task generating Γ

always, when AI is adopted, that falls to Γ− (e− (p+ x)(2e− 1))(Γ− γ). This illustrates a
bullwhip effect associated with AI. Because AI adoption means that A varies their action, this
makes it more difficult for B to align with that choice which means that the full alignment
benefits are not realized. As noted earlier, protection plays a role in mitigating these effects
by reducing the probability that A receives a prediction that θ = 2. In the appendix, we
provide a canonical example of multi-decision implications where the decisions are the price
and quantity decisions of a firm that can use inventories as a form of insurance. Inventories
play an insurance role in that they reduce the consequences that arise if there are shortages
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as a result of difficulties to predict demand. Better prediction may then reduce the need for
inventories but, as we show, this also depends on how tightly coordinated supply decisions
are with information regarding demand. These issues are further developed in Gans (2022).

4.2 Managing alignment costs

There are two broad ways in which alignment costs that come from adopting AI can be
managed. The first is to invest in communication. If this is done, then A and B are always
aligned and Γ is realized. Thus, the cost of adopting AI in a multitask setting is limited to
Θ; the cost of communication.

The second way is to invest in insurance for B’s task. Thus, suppose that, at a cost of
CB(∆B), if there is misalignment the incremental payoff is increased by ∆B to γ + ∆B. The
choice of ∆B will be determined by the first order condition: e− (p+ x)(2e− 1) = C ′B(∆∗B).
Notice that ∆B and x are complements. This is another manifestation of the AI bullwhip
effect that in a multitask environment, adopting AI leads to more investments in insurance
and protection than in a single task environment.

The investments in insurance (∆B) reduce the loss from misalignment. Note, however,
that such investments are not required if communication investments are made. Those
communication investments, in this model, eliminate the AI bullwhip effect.

Overall, multiple tasks generate a barrier to AI adoption. Without communication, the
need to coordinate creates incentives to continue to follow a rule even if it is clear that
the decision might be wrong given the state. If AI is adopted, it can create incentives to
invest in insurance beyond what would be needed absent the AI. In this case, the insurance
is to mitigate the negative consequences for the second decision-maker whose objective is
alignment, rather than just matching the state.

Empirically, this suggests that companies are likely to improve communications processes
when adopting AI, particularly in settings where bullwhip effects are anticipated.

5 Conclusion

In this paper, we have presented a model of decision-making uncertainty and examined three
distinct risk-mitigation tools. Protection involves reducing the chance of a negative state
occurring, just like the hedgerows throughout England that protect against soil erosion.
Insurance involves mitigating the consequences of a negative state after it occurs, such as a
quick response plan should a fire break out. Prediction involves providing information about
the state, and enabling different actions depending on the expected state. Today’s AI is best
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understood as a prediction technology, so we have focused on how better prediction through
AI affects the other risk-mitigation tools.

We have shown that better prediction reduces the need for protection. Instead of reducing
the chance of one state or another, AI enables the decision-maker to respond optimally given
the state. When the AI becomes good enough, it will also reduce the need for insurance.
Prediction with AI will generate more decisions and fewer rules. Decision-making will be
an increasingly important aspect of work. We have also demonstrated that coordination
between decisions within organizations is especially important with prediction, and so within-
organization communication is likely to increase.

One direction for future research is to estimate the impact of AI adoption on insurance
and protection. For example, a study of industries that includes some companies that adopt
AI for decision-making and others that continue with rules might lend itself to a difference-
in-differences type of estimation that focuses on the change in investments in insurance and
protection before versus after the adoption of AI relative to similar companies that do not
adopt or that adopt significantly later. Another direction for future research concerns an
empirical analysis of alignment costs. In this case, one could measure the investment in
communication at companies before versus after AIs are adopted in Bullwhip-type settings
compared to communication investments in similar companies with Bullwhip potential that
do not adopt AIs.

Overall, our approach is to focus on AI as it has been developed over the past decade or so.
It is prediction technology. As such, in contrast to the existing literature which emphasizes
how AI will be able to perform work as well as people and replace labor, we examine how
organizations will be able to change the systems they use to address uncertainty.
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A Appendix

A.1 A canonical example

To provide an example of how the adoption of AI in one task can impact upon other tasks
as well as on risk management choices, we examine a situation of a firm choosing price
and quantity under uncertainty. Consider a firm facing uncertain demand. Specifically, for
price (P ) and quantity (Q), (inverse) demand is θ − Q where we assume that θ ∈ {1, 2} as
before. The firm has unit production costs of w per unit. If θ was known to all in the firm,
P ∗ = 1

2
(θ + w), Q = 1

2
(θ − w) and π = (P − w)Q = 1

4
(θ − w)2.

We assume that the pricing decision is handled by agent A and the quantity decision
is handled by agent B. To align with the current model, we constrain the pricing and
quantity choices to those that generate the profit maximising outcomes with certainty. That
is, a ∈ {1

2
(1 + w), 1

2
(2 + w)} while b ∈ {1

2
(1− w), 1

2
(2− w)}.12 Given this, we can calculate

the profits that arise from various mismatch scenarios as summarized in Table 1.
Note there that there are two broad errors. If you produce too high a quantity, you have

wasteful expenditures. If you price high when demand is low, under the assumptions here
you cannot sell any units while you incur wasteful expenditures as a result. By contrast,
pricing low when you can price high, means missed sales even when you set b = Q∗2.

Table 1: Scenarios and Mismatches

State a b Expected Profit
θ = 1 P ∗1 Q∗1

1
4
(1− w)2

P ∗1 Q∗2
1
4
(1− w)2 − w 1

2

P ∗2 Q∗1 −1−w
2
w

P ∗2 Q∗2 −2−w
2
w

θ = 2 P ∗2 Q∗2
1
4
(2− w)2

P ∗2 Q∗1
1
4
(2− w)(1− w)

P ∗1 Q∗2
1
4
(2− w)(1− w)

P ∗1 Q∗1
1
4
(1− w)2

In the absence of AI prediction of demand, regardless of the state, there is a single
price and quantity chosen. There are four possible pairs here. The following proposition
characterizes what the optimal rule is depending upon the exogenous parameters of (p, w).

Proposition 4 In the absence of AI prediction of demand, it is optimal to choose:
12In reality, these will not be the prices and quantities chosen when there is uncertainty over demand

(Lim (1980)). However, the main point here will be illustrated well by this constrained model. The general
problem is examined by Gans (2022).
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1. {P ∗1 , Q∗1} if p ≥ max{1−w
1+w

, 3−2w
4−w2} with expected profit 1

4
(1− w)2;

2. {P ∗2 , Q∗2} if p < 3−2w
4−w2 for w < 0.210756 and p > 2−w

3−w−w2 for w < 0.210756 with expected
profit 1

4
(w − 2)(p(w + 2) + w − 2);

3. {P ∗1 , Q∗2} if 2−w
3−w−w2 < p < 1−w

1+w
with expected profit 1

4
(−p(w + 1) + w2 − 3w + 2).

Proof. First, note that {P ∗1 , Q∗1} is preferred to {P ∗2 , Q∗2} for p ≥ p11>22 ≡ 3−2w
4−w2 and is

preferred to {P ∗1 , Q∗2} for p ≥ p11>12 ≡ 1−w
1+w

. Second, {P ∗1 , Q∗2} is preferred to {P ∗2 , Q∗2} for
p > p12>22 ≡ 2−w

3−w−w2 . Note that these thresholds (i.e., p11>22 = p11>12 = p12>22) all coincide
for w = 0.210756. When w < 0.210756, p11>12 > p11>22 > p12>22 while for w > 0.210156,
p12>22 > p11>22 > p11>12. This confirms the rankings in the proposition.

Second, note that profits under {P ∗2 , Q∗1} only exceeds profits under {P ∗1 , Q∗2} if 1− 2w−
w2 < 0 or w >

√
2 − 1(> 0.210756). Note also that {P ∗1 , Q∗2} is dominated by {P ∗1 , Q∗1} if

p ≥ p11>21 ≡ 1
2+w

. Note, however, that if w =
√

2− 1, p11>21 = 0.414214. At this point, the
payoff (0.232233) from {P ∗2 , Q∗2} exceeds that of both {P ∗1 , Q∗1} and {P ∗2 , Q∗1} (0.0857863)
but for higher p > 1

2+w
the latter payoff is declining while the former is constant. Thus,

{P ∗2 , Q∗1} is dominated.

Note that {P ∗2 , Q∗1} is never chosen as it results in pure waste if θ = 1 and the same outcome
as {P ∗1 , Q∗2} if θ = 2. The interesting result is that {P ∗1 , Q∗2} can be preferred to either ‘fit’
options where price and quantity are aligned. This is because, while there is excess supply
when θ = 1, price is low reducing excess supply while potential excess demand is mitigated
when θ = 2 by having a larger quantity available. This means that, in contrast to our
baseline model, sometimes a rule with misaligned choices of a and b is preferable to aligned
choices.

This outcome only arises for w low. Hence, to focus on cases aligned with the baseline
model, we assume here that w = 0.585786 which means that {P ∗1 , Q∗1} is the optimal rule
when p is greater than 1

2
while {P ∗2 , Q∗2} is optimal otherwise; aligning this model as closely

as possible with the baseline model.
What happens if A has access to an AI prediction which accurately reveals θ with prob-

ability e and is mistaken with probability 1− e?

1. If A follows the prediction then, if b = Q∗1, expected profit is:

e(p1
4
(1−w)2 + (1− p)1

4
(2−w)(1−w)) + (1− e)(p1

4
(2−w)(1−w) + (1− p)1

4
(1−w)2)

= 1
4
(1− w)(1− e(2p− 1) + p− w)
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while if b = Q∗2, expected profit is:

e(p(1
4
(1−w)2 −w 1

2
) + (1− p)1

4
(2−w)2) + (1− e)(−p2−w

2
w + (1− p)1

4
(2−w)(1−w))

= 1
4

(
(2− w)(1− pw − p− w)− e

(
p
(
w2 − w + 1

)
+ w − 2

))
2. Given this B will choose Q∗1 rather than Q∗2 if e ≥ 1−w−p(3−w2)−w+1

p(w2+w−1)−1
.

The right hand side of the above inequality is (weakly) increasing in p and w.
Suppose that p = 0.6 and w = 1

2
so that the optimal rule involves {P ∗1 , Q∗1}. In this case,

if AI is adopted B will choose Q∗2. Thus, the net payoff to adopting AI is

1
4

(
(2− w)(1− pw − p− w)− e

(
p
(
w2 − w + 1

)
+ w − 2

))
− 1

4
(1− w)2

Thus, AI will be adopted if e > 0.809524. Interestingly, when AI is adopted more inventories
will be observed than when a rule is followed. This is in contrast to the result of Milgrom &
Roberts (1988) that information provision of this kind is a substitute with inventories.

What is going on here is the inventories can play a role when there is uncertainty in
providing insurance but also in buffering the AI bullwhip effect. The net effect on inventories
is a function of which role is more salient.

A.2 A Remark on Task Production Functions

The impact of AI adoption, therefore, impacts both on the productivity of individual tasks
and also on their interaction. In particular, it is possible that AI adoption increases the
elasticity of substitution between tasks muting the effects of changes in the marginal product
of individual tasks.
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