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1 Introduction

We study the link between a broad class of additive random utility �discrete-choice� models of

demand, that are well-known to �t individual-level choice behavior with micro data, and a represen-

tative consumer theory of aggregate demand. At least since Archibald et al. (1986), the literature

on di�erentiated products markets has sought a connection between the convenient representa-

tive consumer framework (e.g., Spence, 1976; Dixit and Stiglitz, 1977), in which the representative

consumer consumes all the product variety, and the empirical reality whereby most individual con-

sumers' consumption bundles exhibit mostly corner solutions. A closely related concern is whether

the representative consumer's utility function is also normative, so it can be treated as a social

welfare function for the underlying consumer population (e.g., Dow and da Costa Werlang, 1988).

The extant literature has only been able to obtain a closed-form solution for the special cases

of simple Logit and Nested Logit discrete-choice models, both of which can be rationalized by the

endogenous consumption of a single representative consumer with variations of CES preferences

(e.g., Anderson et al., 1987, 1992; Verboven, 1996). This link has been relied on extensively to

justify the use of the CES representative consumer functional form to derive practical macroeconomic

models with imperfect competition in the literatures on industrial organization (e.g., Judd, 1985;

B. Curtis Eaton, 1989; Zhelobodko et al., 2012; Dhingra and Morrow, 2019), macroeconomics (e.g.,

Blanchard and Kiyotaki, 1987), monetary policy (e.g., Beck and Lein, 2020), economic growth (e.g.,

Romer, 1987), trade and economic geography (e.g., Krugman, 1995; Melitz, 2003, 2008; Fajgelbaum

et al., 2011; Khandelwal, 2010; Bernini and Tomasi, 2015; Crin'o and Ogliari, 2017), labor (e.g.,

Berger et al., Forthcoming; Card, 2022) and ideal price index measurement (e.g., Redding and

Weinstein, 2020). In their list of research priorities, Anderson et al. (1992, p.91) speci�cally indicate:

�...it would be interesting to �nd the form of the representative consumer's utility function for

other discrete choice models, such as the Probit, the nested MNL, and the GEV.� We generalize

the link between the representative consumer model and a broad class of discrete-choice, additive

random utility models of consumer behavior that have been widely studied in the empirical marketing

literature.

We study the Hurwicz and Uzawa (1971) integrability of the expected discrete-continuous de-

mand function corresponding to a consumer with perfect substitutes preferences (i.e., linear indi�er-

ence curves) and an absolutely-continuous, additive random utility component, hereafter the additive

random utility model (ARUM). In the ARUM, individual demand exhibits corner solutions for all

but at most one of the market goods (e.g., Deaton and Muellbauer, 1980; Hanemann, 1984). We

derive and characterize the indirect utility function for the ARUM for any absolutely continuous,

full-support distribution, of the random-utility component. We also derive necessary conditions

on the functional form of each product's mean utility in order for the ARUM discrete-continuous

demand model to satisfy integrability.

To establish the link to a representative consumer theory, we then study the aggregate demand
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from an underlying population of consumers making discrete choices. From the Gorman form of

the indirect utility, it follows that the expected discrete-continuous aggregate demand system for

the ARUM always has a positive and normative representative consumer formulation with a class

of preferences that nests the popular CES model depending on the assumed distribution of the

random utility. We therefore generalize Anderson et al. (1987, 1992); Verboven (1996) beyond simple

Logit or one-level Nested Logit. We present a number of examples, including the Becker-Lancaster

�characteristics� models, GEV, random-coe�cients Logit and multinomial Probit models that allow

for �exible substitution patterns between products and for which the representative consumer's

demand and indirect utility can be expressed in closed form in most cases. This characterization

of the normative representative consumer's indirect utility function facilitates a practical means for

welfare analysis utilizing a broad class of ARUM discrete-choice models of demand. Many of these

formulations do not exhibit the IIA property or the corresponding unrealistic consumer substitution

patterns associated with the popular logit model and its CES formulation.1 We also explore ARUM

formulations that allow for both heterogeneous preferences and incomes at the individual level, that

should lead to more robust ideal price index and cost-of-living measurements (e.g., Redding and

Weinstein, 2020).

In practice, many empirical applications of discrete-choice analysis to individual-level demand

impose indivisibility, requiring consumers to form totally-inelastic demands over the chosen alterna-

tive (e.g., Berry et al., 1995; Goldberg, 1995). We show that the Hurwicz and Uzawa-integrability of

the expected pure-discrete-choice aggregate demand function corresponding to indivisible goods fails,

even for the simple Logit model. Indivisibility can lead to well-known problems with the budget-

balancedness condition (Nocke and Schutz, 2017), with either a non-binding budget constraint or

negative consumption of the outside good. In some cases, a stronger version of quasi-linear integra-

bility Nocke and Schutz might hold.

The representative consumer formulation for a broad class of underlying populations of consumers

making discrete choices provides additional empirical justi�cation for such popular representative

consumer models as the CES and its variants used for macro modeling and welfare analysis. In a

broad study of consumer packaged goods shopping behavior in the U.S., Dubé (2019) �nds that

consumers select a single brand alternative in a category for over 90% of the observed transactions.

However, our results herein are limited to discrete-choice models in which individual consumers

purchase at most a single product. Our results do not extend to the more general context of multiple-

discrete-choice whereby a consumer purchases an assortment of di�erent products in the category,

with corner solutions arising for a subset of the available products (e.g., Wales and Woodland, 1983;

Lee and Pitt, 1986; Hendel, 1999; Kim et al., 2002; Dubé, 2004; Bhat, 2005, 2008).

Our work adds to the extant literature on expected discrete-continuous demand systems with

1Helpman (2011) discusses the adverse implications of the CES representative consumer model's IIA property for
the estimated gains from variety in a model of trade. Usual solutions, like the nested logit, only partially o�set these
problems between nests and require the researcher to pre-classify products into nests.
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single-product choices (e.g., Dubin and McFadden, 1984; Hanemann, 1984; Chiang, 1991; Chinta-

gunta, 1993). Typically, that literature derives demand from the �dual� problem and applyies Roy's

Identity to a pre-speci�ed indirect utility function. In contrast, we derive the demand and indirect

utility functions from the �primal� problem with ARUM form. From the primal problem, we �nd

that the necessary conditions for integrability exclude the use of arbitrary �exible functional forms

for the ARUM indirect utility function. In addition, we establish that this class of models has a

positive and normative representative consumer formulation with a known class of preferences.

Our results on the integrability of aggregate discrete-choice demand systems also relate to the

recent literature studying non-binding budget constraints and the potential for strictly negative

consumption of the numeraire good in the context of indivisibility (Hosoya, 2017; Nocke and Schutz,

2017, 2018). Our results add to this literature by demonstrating the (non)-integrability of a similar

class of aggregate demand systems with indivisibility when we assume the representative consumer

faces a binding budget constraint.

The remainder of the article is organized as follows. Section 2 presents the setup of ARUM in-

dividual demand with perfect substitutes preferences under divisibility and establishes the Hurwicz

and Uzawa (1971) integrability of the individual expected demand. Section 3 studies the aggregation

problem of the ARUM individual expected demand, establishes the existence of the positive and nor-

mative representative consumer associated with the demand system, and presents several examples.

Section 4 studies the integrability problem of the ARUM individual demand under indivisibility.

Section 5 concludes.

2 Individual Demand with Perfect Substitutes Preferences and Di-

visible Goods

In this section, we start with the general formulation of the ARUM for an individual consumer

with perfect substitutes preferences. We �rst derive the corresponding expected discrete-continuous

demand system. We then prove the Hurwicz and Uzawa (1971) integrability of the expected demand

system and characterize the analytic form of the corresponding indirect utility function.

2.1 Perfect Substitutes and Discrete-Continuous Choice

We focus on a market that supplies J variants of a di�erentiated product � brands. An individual

consumer consumes at most one of the brands. To obtain this discrete-choice behavior, we use a

random-utility formulation in which consumers perceive the J brands as perfect substitutes as in the

simple re-packaging model with varieties (e.g., Deaton and Muellbauer, 1980; Hanemann, 1984).2

2We do not consider the alternative �mutual exclusivity� formulation of discrete-choice herein (e.g., Hanemann,
1984).
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Formally, a consumer with total income y chooses a consumption bundle q = (q1, ..., qJ)
′ to solve

the following utility-maximization problem:

q∗ = argmax
q∈RJ

+

J∑
j=1

qjψj (ϵj) s.t. q′p ≤ y (2.1)

where ψ = (ψ1, ..., ψJ)
′, is the vector of constant marginal utilities for each product, or �brand

qualities,� with ψj ≥ 0, p = (p1, ..., pJ)
′ are the strictly positive brand prices, and ϵ = (ϵ1, ..., ϵJ)

′ ∼
Fϵ (ϵ) is a vector of random-utility disturbances with absolutely-continuous distribution function

Fϵ (ϵ) with full support on RJ .

Due to the linearity of the indi�erence curves associated with the perfect substitutes preferences,

the utility maximization problem (2.1) leads to a corner solution in which only a single brand is

chosen.3 The consumer chooses brand j (WLOG) if

pj
ψj (ϵj)

= min
k∈{1,2,...,K}

{
pk

ψk (ϵk)

}
.

Assumption 1. log (ψj (ϵj)) = θj + ϵj , ∀j, where θj ∈ R is the deterministic component of product

j′s quality.

Under Assumption 1, the consumer chooses brand j if,

ϵj − ϵk ≥ [θk − log (pk)]− [θj − log (pj)] ,∀k
= − (δj − δk) ,

(2.2)

where δj := θj − log (pj). The corresponding probability that the consumer chooses brand j is

πj (δ (p)) ≡ Pr (ϵj − ϵk ≥ δk − δj , ∀k)
=
∫∞
−∞

∫ δj−δ1+ϵ̃
−∞ · · ·

∫ δj−δj−1+ϵ̃
−∞

∫ δj−δj+1+ϵ̃
−∞ · · ·

∫ δj−δJ+ϵ̃
−∞

fϵ (ϵ1, ..., ϵj−1, ϵ̃, ϵj+1, ..., ϵJ) dϵJ ...dϵj+1dϵj−1...dϵ1dϵ̃

(2.3)

which does not depend on the consumer's income.

Therefore, the consumer has the following expected discrete-continuous demand for brand j:

qj (p, y) ≡ Eϵ

[
q∗j |p

]
= πj (δ (p))

y

pj
. (2.4)

4

3Note that the probability of ties is zero because Fϵ (ϵ) is absolutely continuous on RJ .
4There is no loss of generality in the fact that δj = θj − log (pj) has a coe�cient equal to −1 on log-price. This

property is a result, not an assumption, and will be true for any random utility distribution, Fϵ (ϵ) . From an empirical
perspective, this result also does not imply that log-price has a coe�cient equal to −1 in the demand system qj (p, y).
As we show in Section 3.3 below, the scale of the random utility distribution enters the demand model qj (p, y) as the
price coe�cient.
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The following analysis will help with the integrability results derived in the sections below. The

expected indirect brand utility per unit purchased with expectations taken against the distribution

of ϵ is

G (δ) := Eϵ

[
max

j∈{1,2,...,J}
{δj + ϵj}

]
. (2.5)

In a pure discrete-choice model with totally-inelastic quantity demanded, G (δ) is the social surplus

function (e.g., McFadden, 1981; Small and Rosen, 1981). From the Williams-Daly-Zachary (WDZ)

theorem (Williams, 1977; Daly and Zachary, 1978; Fosgerau et al., 2013, WDZ thoeorem henceforth),

we know that:

∇δG (δ) = π′ (2.6)

where π = (π1, π2, ..., πJ)
′ is the vector of choice probabilities. Therefore, we can re-write the

consumer's choice probability for brand j (2.3) as

πj (δ (p)) =
Hj (δ)∑J

k=1Hk (δ)
(2.7)

where H (δ) := exp (G (δ)) is a choice probability generating function (Fosgerau et al., 2013). In the

remainder of the paper, we let Hj (·) denote the partial derivative of H (·) with respect to its jth

element δj : Hj (δ) := {∇δH (δ)}j . Similarly, we let Hjk (δ) denote the cross partial derivative with

respect to δj and δk, which we assume exist and are continuous on RJ as in McFadden (1981). As

is well-known in the literature, the formulation of the choice probability in (2.7) is consistent with

any absolutely-continuous distribution of the random utilities, Fϵ (ϵ), including popular empirical

implementations like the simple Logit, GEV, Probit and random coe�cients models.

It follows immediately that since G (δ) is convex in δ (Rust, 1994; Chiong et al., 2016; Chiong

and Shum, 2019), H (δ) is also convex in δ because exp (·) is a nondecreasing convex function on R.
Hj (δ) is non-negative for any δ ∈ RJ and for any j because H (δ) and πj are all strictly positive.

2.2 Integrability of the Individual's Expected Demand System

We now state and prove the main results of the paper. We �rst establish the integrability of the

expected individual discrete-continuous demand function (2.4). We then derive the analytic form of

the corresponding expenditure function and indirect utility function.

The following Theorem 1 establishes the integrability of the demand function (2.4) by showing

that it satis�es the necessary and su�cient conditions from Hurwicz and Uzawa (1971).

Theorem 1. The demand function q (p, y) of the form (2.4) is integrable in the Hurwicz and Uzawa

(1971) sense as, for any p ∈ RJ
+ and for any income level y ∈ R+, it satis�es the following conditions:

(i) (Di�erentiability of Demand) q (p, y) is a continuously di�erentiable function with bounded

partial derivatives,

(ii) (Budget Balancedness) p′q = y,
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(iii) (Slutsky Symmetry) The associated Slutsky matrix S :=
{

∂qk
∂pj

+ qk
∂qk
∂y

}
j,k∈{1,2,...,J}

is sym-

metric, and

(iv) (Negative Semide�niteness of Slutsky Matrix) S is negative semide�nite.

Proof. See Appendix A.

An interesting component of the proof is that a necessary and su�cient condition for the Slutsky

Symmetry and Negative Semide�niteness of the ARUM demand system is that the mean utility

per unit consumed of a brand has the form: δj = cj − η log (pj) where cj ∈ R and η ≥ 0. This

condition holds mechanically for our ARUM, where η = 1 and cj = θj . However, it also shows why

alternative, ad hoc formulations of the discrete-continuous demand system might not be integrable.

For instance, some researchers have used the dual approach to derive the discrete-continuous model

of demand from a �exible functional form assumption for the indirect utility (e.g., Hanemann, 1984;

Chiang, 1991; Chintagunta, 1993).

The following corollary characterizes the analytic forms of the expenditure function and indirect

utility functions, respectively, corresponding to the expected demand system (2.4).

Corollary 1. The expenditure function corresponding to the demand function (2.4) is

e (p, u) =
u

H (δ (p))
, u ≥ 0,

and the corresponding indirect utility function is

v (p, y) = yH (δ (p)) . (2.8)

Proof. See Appendix A.

Theorem 1 and Corollary 1 characterize the preferences of a broad class of ARUM models with

choice probabilities, {πj (p)}Jj=1, spanning many well-known discrete-choice models from the empir-

ical literature including Logit, random coe�cients (�mixed�) Logit, GEV and Probit.

An immediate consequence of Corollary 1 is that the indirect utility function for our expected

aggregate discrete-continuous-choice demand system (2.4) has the Gorman form. We will use this

property extensively in the aggregation results below.

3 Aggregate-Discrete-Continuous-Choice Demand and the Repre-

sentative Consumer

We now derive the aggregate demand and representative consumer formulation corresponding to

the ARUM from Section 2. The Gorman form of the indirect utility function leads to the well-

known result that aggregate demand depends only on aggregate income and is independent of the
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distribution of income across consumers. Furthermore, from the Gorman form, it follows that a

positive and normative representative consumer exists and can be used for welfare analysis. We

now derive the analytic form of aggregate demand and characterize the class of preferences for the

representative consumer corresponding to the ARUM.

3.1 Aggregate Demand

Consider a population of N consumers indexed i = 1, ..., N each with ARUM preferences as in

Section 2.1 and incomes
{
yi
}N
i=1

. The corresponding expected aggregate discrete-continuous-choice

demand system is:

Qj (p, Y ) =
N∑
i=1

qij
(
p, yi

)
=
Y

pj
πj (δ (p)) for j = 1, ..., J (3.1)

where Y =
∑N

i=1 y
i is the aggregate income.

The demand system (3.1) can also be derived as the aggregation over a continuum of consumers

making deterministic choices, as in Anderson et al. (1992) for the case of pure discrete choice with

indivisible goods. Suppose the population consists of a continuum of consumers with mass N and

income distribution Fy (·). The corresponding aggregate demand system is:

Qj (p, Y ) = N
∫∫

1 (δj + ϵj ≥ δk + ϵk ∀k ̸= j) yi

pj
dFy

(
yi
)
dFϵ (ϵ)

= Y
pj
πj (δ (p))

(3.2)

where πj (δ (p)) =
Hj(δ)∑J

k=1 Hk(δ)
as before in (2.7) and Y = N

∫
yidFy

(
yi
)
is aggregate income.

3.2 The Representative Consumer

We now characterize the representative consumer formulation of the aggregation of the ARUM. Of

particular interest is the ability to use the representative consumer for welfare analysis.

Consider a Bergson-Samuelson social welfare function (Samuelson, 1956)W : RN → R that maps

vectors of individual utilities,
(
u1, u2, ..., uN

)
, into a �social utility� and is increasing, continuously

di�erentiable, and concave. We can de�ne the social indirect utility function as the solution to the

following income allocation problem:

vW (p, Y ) = max
{yi}Ni=1

W
(
v1
(
p, y1

)
, ..., vN

(
p, yN

))
(3.3)

s.t.
∑N

i=1 y
i = Y,

where vi
(
p, yi

)
is consumer i's indirect utility function. A positive representative consumer with

demand Q (p, Y ) =
∑N

i=1 q
i
(
p, yi,W

)
is also a normative representative consumer with respect to
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the social welfare function W (·) when her indirect utility is v (p, Y ) = vW (p, Y ).

The following proposition establishes that a positive and normative representative consumer for

our ARUM exists and has an analytic form for her indirect utility.

Proposition 1. (Integrability of the Aggregate Discrete-Continuous-Choice Demand System) The

demand systemQ (p, Y ) characterized by (3.1) corresponds to a representative consumer with indirect

utility

v (p, Y ) = Y ·H (δ (p)) (3.4)

where

v (p, Y ) = vW (p, Y )

for any Bergson-Samuelson social welfare function, W (·).

Proof. See Appendix B.

The proof of Proposition 1 relies on the Gorman form of the indirect utility in the ARUM (2.8).

The proposition establishes that a population of consumers with perfect substitutes preferences,

divisible consumption and an absolutely-continuous distribution of random utility always has a

positive and normative representative consumer. This result applies in both the case of a population

of N consumers and a population with a continuum of consumers with total mass N .

This characterization of the representative consumer formulation spans many popular empirical

ARUM models such as random coe�cients models (e.g., mixed-Logit), multinomial Probit and GEV.

Below we provide some examples. However, for many popular empirical models like mixed-Logit

and multivariate Probit, the function H (·) may not have a closed-form representation and would

need to be computed numerically.

Proposition 1 generalizes Anderson et al. (1987) and Anderson et al. (1992, Section 3.7), who

study the CES representative consumer with aggregate Logit discrete-choice demand, as well as

Verboven (1996, Section 4) who studies the extension to a Nested Logit model. Our results are also

related to Anderson et al. (1992, Section 3.4) who prove the existence of a representative consumer

for the pure discrete-choice model under indivisible (not divisible) goods and quasi-linear preferences.

However, Nocke and Schutz (2017) show that the quasi-linear pure discrete-choice model can generate

negative consumption, leading to a non-binding budget constraint. This problem does not arise in

our model where the quantities consumed will be strictly positive due to divisibility. In Section 4

below, we show that integrability does not hold in the Hurwicz and Uzawa (1971) sense for a pure

discrete-choice aggregate demand system with indivisible quantities.

The following corollary indicates how to conduct welfare analysis using the normative represen-

tative consumer formulation in 1.

Corollary 2. (Welfare Analysis with the Aggregate Discrete-Continuous-Choice Demand System)

Consider the representative consumer characterized by (3.4). The represenative consumer's compen-
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sating variation for a change in price from p0 to p1is

CV = Y 0H
(
δ
(
p1
))

−H
(
δ
(
p0
))

H (δ (p1))
.

Proof. See Appendix B for derivation.

Below we explore several commonly-used example of ARUMs from the empirical literature for

which H (·) can be derived in closed form in most cases.

Proposition 1 can be extended in several ways to connect various assumptions about the repre-

sentative consumer to other popular implementations of the discrete-choice model.

3.2.1 Adding a Numeraire

Many empirical applications include an additional, divisible numeraire good to allow for the case that

some consumers do not purchase any of the brands in the commodity group. Consider the following

extension of our model in Section 2 to include the consumption qz ∈ R+ of a numeraire good (all

other goods) with price normalized to one. We rede�ne the consumer's utility-maximization problem

(2.1) as follows

(q∗, q∗z) = argmax
(q,qz)∈RJ+1

+

 J∑
j=1

qjψj (ϵj)

 (qz)
α s.t. qz + q′p ≤ y. (3.5)

The consumer's expected demand is as follows

qj (p, y) =
1

1 + α
· y
pj

· πj (3.6)

qz (p, y) =
α

1 + α
· y (3.7)

where the choice probabilities {πj}Jj=1 are identical to (2.2) and the aggregate demand system is

Qj (p, Y ) =

I∑
i=1

qij =
Y

pj
πj (p) for j = 1, ..., J. (3.8)

Appendix B.3 shows that Proposition 1 still holds for the aggregate demand system (3.8) and

that the corresponding representative consumer still has preferences with indirect utility: v (p, Y ) =
Y

1+α {H (δ (p))}
(

αY
1+α

)α
. Once again, this result generalizes for any absolutely-continuous distribu-

tion of random utility.
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3.2.2 Characteristics Models

Proposition 1 also nests characteristics models in the spirit of Lancaster (1966). We can re-write

the deterministic component of consumer's quality as θj = x′
jβ where xj is a vector of product

characteristics and β is a vector of tastes. We then obtain

δj (pj ,xj) = − log pj + x′
jβ (3.9)

and the proof of Proposition 1 remains the same.

3.3 Examples

We now work out a number of representative consumer formulations that correspond to popular

speci�cations of discrete-choice demand at the individual consumer level. In several cases, we show

that models with �exible substitution patterns can still generate a tractable and analytic form for

the representative consumer. However, our results generalize to a much broader class of discrete-

choice models, such as the multinomial Probit, which does not exhibit the IIA property. While a

positive and normative representative consumer exists for the multinomial Probit, H (δ) and v (p, Y )

can only be derived numerically due to the non-analytic form of the integration over a multivariate

Normal distribution.

Example 1. (Simple Logit and One-level Nested Logit Demand) As an illustrative example, we

re-work the example of Verboven (1996, Section 4) to determine the representative consumer's

preferences for a population of underlying consumers whose product choices are drawn from the

Nested Logit model. Suppose aggregate demand (3.1) has the the one-level aggregate discrete-

continuous-choice Nested Logit demand functional form:

Qj (p, Y ) =
Y

pj

(exp (σδj))
1
λl

(∑
k∈Bl

(exp (σδk))
1
λl

)λl−1

∑
1≤K≤K

(∑
k∈BK

(exp (σδk))
1

λK

)λK
for j = 1, ..., J,

where Bl denotes the group to which product j belongs and σ = 1/µ > 0, where µ is the scale

parameter of the GEV random utility distribution. The corresponding function H (δ) is then as

follows:

H (δ) =


∑

1≤K≤K

 ∑
k∈BK

(exp (σδk))
1

λK

λK


1
σ

(3.10)
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From Proposition 1, the representative consumer's indirect utility function is

v (p, Y ) = Y


∑

1≤K≤K

 ∑
k∈BK

(exp (σδk))
1

λK

λK


1
σ

(3.11)

and the corresponding direct utility function is

u (Q) =
∑

1≤K≤K

 ∑
k∈BK

C
σ

σ+λK
k Q

σ
σ+λK
k


σ+λK
σ+1

, (3.12)

where Ck = exp (θk). We can easily conduct welfare analysis by substituting the formulation of

H (δ) from (3.10) into (2) to obtain the compensating di�erential for a price change.

If we let Ck = 1 ∀k, ρ = σ
σ+1 , and ρK = σ

σ+λK
, the utility function (3.12) reduces to the

Nested Logit model of demand in Verboven (1996, Section 4). If we also let λK =1, the model

further reduces to to the simple Logit model of demand studied by Anderson et al. (1987, 1992)

with standard CES direct utility function.

Example 2. (�Product Di�erentiation� Logit (GEV)) We now derive the indirect utility function

for a representative consumer with demand equivalent to the �Product Di�erentiation� version of the

aggregate discrete-continuous GEV Logit demand system (e.g., Bresnahan et al., 1997). Suppose

aggregate demand (3.1) has the the aggregate discrete-continuous-choice �Product Di�erentiation

Logit� demand functional form:

Qj (p, Y ) =
Y

pj

(exp (σδj))
1
λg
∑

g ag

(∑
k∈Bgl(j)

(exp (σδk))
1
λg

)λg−1

∑
g ag

(∑
Bgl∈g

(∑
k∈Bgl

(exp (σδk))
1
λg

)λg
) for j = 1, ..., J,

where Bgl(j) denotes the group to which product j belongs. The corresponding probability gener-

ating function H (δ) is then as follows:

H (δ) =

{∑
g

ag (H
g (δ))σ

} 1
σ

=


∑
g

ag

∑
Bgl∈g

 ∑
k∈Bgl

(exp (σδk))
1
λg

λg



1
σ

, (3.13)

where Hg (δ) is the same as in the Nested Logit and for each g, ag ∈ (0, 1] such that
∑

g ag = 1,
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and λg ∈ (0, 1). From Proposition 1, the representative consumer's indirect utility function is

v (p, Y ) = Y


∑
g

ag

∑
Bgl∈g

 ∑
k∈Bgl

(exp (σδk))
1
λg

λg



1
σ

. (3.14)

This formulation allows for more �exible underlying substitution patterns at the individual con-

sumer level when the nests are overlapping. At the same time, this formulation still generates an

analytic formulation of the representative consumer's demand and indirect utility. We can easily

conduct welfare analysis by substituting the formulation of H (δ) from (3.13) into (2) to obtain the

compensating di�erential for a price change.

Example 3. (Random Coe�cients Logit) As another illustrative example, we derive the indirect

utility function for a representative consumer with demand equivalent to the aggregate discrete-

continuous random coe�cients Logit demand system. In the trade literature, allowing for random

coe�cients to o�set the implications of the IIA property in a Logit have been shown to lead to

markedly di�erent measurements of the gains from product variety (e.g., Sheu, 2014). Unlike the

Nested Logit and GEV speci�cations above, the random coe�cients �mixed logit� does not require

pre-classifying products into nests.

For the case of a discrete distribution of heterogeneity, we have:

Qj (p, Y ) =
Y

pj

K∑
i=1

exp
(
δj + νij

)
∑

k exp
(
δk + νik

)λi for j = 1, ..., J (3.15)

where δj = γ̄j − ln pj and

ν :=


γ1 − γ̄, with probability λ1

...

γK − γ̄, with probability λK

.

From the WDZ theorem, we know that:

∇δG (δ) = (π1, π2, ..., πJ)

where πj =
∑K

i=1

exp(δj+νij)∑
k exp(δk+νik)

λi, ∀j and G (δ) := ln (H (δ)) =
∑

i ln
(∑

k exp
(
δk + νik

))
λi. Hence,

the formulation of H (δ) is as follows:

H (δ) = exp

(∑
i

ln

(∑
k

exp
(
δk + νik

))
λi

)
. (3.16)
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From Proposition 1, the representative consumer has the following indirect utility function:

v (p, Y ) = Y
{∏

i

(∑
k exp

(
δk + νik

))
λi
}
. (3.17)

Equations (3.15) and (3.17) indicates that the richer underlying behavior of a heterogeneous popu-

lation of consumers making discrete choices can be captured using a representative consumer model

without losing analytic tractability. Once again, we can easily conduct welfare analysis by substi-

tuting the formulation of H (δ) from (3.15) into (2) to obtain the compensating di�erential for a

price change.

For the case of an absolutely continuous distribution of heterogeneity, Fν (ν), we have:

Qj (p, Y ) =
Y

pj

∫
exp (δj + νj)∑
k exp (δk + νk)

dFν (ν) for j = 1, ..., J

where H (δ) is as follows:

H (δ) = exp

(∫
ln

(∑
k

exp (δk + νk)

)
dFν (ν)

)
.

The representative consumer's indirect utility function is:

v (p, Y ) = Y

{
exp

[∫
ln
∑
k

exp (δk + νk) dFν (ν)

]}
. (3.18)

However, this speci�cation requires numerical integration and does not yield closed-form expressions

for demand, indirect utility and H (δ).

Example 4. (Simple Logit with a Continuum of Products) We now consider the typical di�er-

entiated products model used in the macro and trade literatures which assumes a continuum of

products distributed uniformly over the choice set Ω (or the �continuous Logit� (Ben-Akiva et al.,

1985)). Although this example is technically not nested in Proposition 1, which only considers the

case with a �nite number of products, we show that the corresponding indirect utility function still

has the form of (3.4). As always, a consumer chooses brand j if

ϵ(j)− ϵ(ω) ≥ δ(ω)− δ(j), ∀ω ∈ Ω.

The expected demand for brand j across the population of consumers with measure N is

Qj (p, Y ) =
Y

p(j)

exp(σθ(j))p(j)−σ∫
ω∈Ω exp(σθ(ω))p(ω)−σdω

for j ∈ Ω. (3.19)

Now consider the usual representative consumer model with CES utility de�ned over a continuum
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of brands and with income Ny. The utility function is given by

u =

(∫
ω∈Ω

exp(σθ(ω))
σ

σ+1Q(ω)
σ

σ+1dω

)σ+1
σ

.

It is straightforward to show that the corresponding demand function is

Qj (p, Y ) = Y exp(θ(j))p(j)−σ−1P−1

=
Y

p(j)

exp(σθ(j))p(j)−σ∫
ω∈Ω exp(σθ(ω))p(ω)−σdω

, (3.20)

where P =
∫
ω∈Ω exp(θ(ω))p(ω)−σdω is the Dixit-Stiglitz price index. The equivalence of the aggre-

gate demand (3.19) and the representative consumer's demand (3.20) establishes the representative

consumer formulation for a population of consumers making discrete choices from a continuum of

product alternatives. It is also straightforward to show that the representative consumer's indirect

utility function is:

v (p, Y ) = Y

(∫
ω∈Ω

exp (δ(ω)) dω

) 1
σ

which has the same form as (3.4).

Example 5. (Multinomial Probit) We now explore the implementation of our results for a popula-

tion of consumers making Probit discrete choices with correlated random utilities. Since a multino-

mial Probit demand system cannot be derived in closed form, our analysis herein will be numeric.

We use parameter values for the trinomial Probit demand system for competing Chinese movie

theaters in Dubé et al. (2017):5

u1 = δ1 + ϵ1 = −0.0486− 0.5474 log p1 + ϵ1

u2 = δ2 + ϵ2 = −0.1460− 0.5474 log p2 + ϵ2

u0 = δ0 + ϵ0 = ϵ0

, ∆ϵ ≡

[
ϵ1 − ϵ0

ϵ2 − ϵ0

]
∼ N

([
0

0

]
,

[
1 −0.1739

−0.1739 1.1745

])
(3.21)

where alternative j = 0 is a no-purchase alternative.

We now illustrate our �ndings by computing the aggregate welfare change associated with a

change in the movie theater price level from p0 = ($75, $75) to p1 = ($20, $20). In Dubé et al.

(2017), the latter price represented the equilibrium prices at an o�-peak hour of the day whereas

the former prices represented the typical �regular� box o�ce prices. We assume that the aggregate

income level of the representative consumer is Y 0 = 1, 000. We compute G (δ (p)) using Monte

5Dubé et al. (2017) look at demand between two competing movie theaters along with a �no purchase� outside
alternative.
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Carlo simulation to evaluate the integral over the Gaussian random utility terms:

H (δ (p)) ≡ exp (G (δ (p)))

= exp

(
Eϵ

[
max

j∈{1,2,0}
{δj +∆ϵj}

])
≈ exp

(
1

Ns

Ns∑
s=1

{
max

j∈{1,2,0}

{
δj +∆ϵsj

}})
,

where ∆ϵ0 = ϵ0− ϵ0 = 0 and Ns = 5, 000 simulation draws. The compensating di�erential, CV , can

then be calculated using Corollary 2. The simulation gives H
(
δ
(
p0
))

= 1.005, H
(
δ
(
p1
))

= 1.046,

and CV = $39 as the compensating variation associated with the price decrease.

4 (Non)-Integrability of the Aggregate Pure-Discrete-Choice De-

mand System with Perfect Substitutes and Indivisibility

We now turn to another popular implementation of the discrete-choice model in empirical research

that assumes indivisibility of the products. We show that this pure discrete-choice model is not

integrable in the sense of Hurwicz and Uzawa (1971) as the budget balancedness condition no longer

holds for the aggregate demand system over the entire domain of prices and income levels. Therefore,

the representative consumer formulation from Proposition 1 no longer holds. Even under Nocke and

Schutz (2017)'s stronger form of quasi-linear integrability, the pure discrete-choice model of demand

is only integrable in the special case of a linear marginal utility of expenditure on other goods and

services.

To obtain the usual pure discrete-choice model, we retain the assumption of perfect substitutes

preferences, as in Section 2. Unlike the case of divisible goods, we now need to include a numeraire

good comprising expenditure on other goods and services to satisfy the adding-up condition with

indivisibility of the quantity of the products consumed.

The consumer's choice-speci�c values have the well-known additive random utility form

vj = θj + g (y − pj) + ϵj j = 1, 2, ..., J

= δj + ϵj
(4.1)

where we normalize δJ ≡ 0. The consumer's probability of choosing alternative j is

πj (δ (p) , y) ≡ Pr (ϵj − ϵk ≥ δk − δj ,∀k)
=
∫∞
−∞

∫ δj−δ1+ϵ̃
−∞ · · ·

∫ δj−δj−1+ϵ̃
−∞

∫ δj−δj+1+ϵ̃
−∞ · · ·

∫ δj−δJ+ϵ̃
−∞

fϵ (ϵ1, ..., ϵj−1, ϵ̃, ϵj+1, ..., ϵJ) dϵJ ...dϵj+1dϵj−1...dϵ1dϵ̃.

(4.2)
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The consumer has the following expected demand for the numeraire good:

qz (p, y) ≡ Eϵ [q
∗
z |p] = y −

J∑
j=1

πj (δ (p) , y) pj . (4.3)

If there are N consumers in the market with aggregate income Y = Ny, then the expected

aggregate demand system is given by:

Qj (p, Y ) = Nπj for j = 1, ..., J (4.4)

Qz (p, Y ) = N

y − J∑
j=1

πjpj


where the brand-choice probabilities {πj}Jj=1 are given by (4.2).

The Hurwicz and Uzawa integrability of the demand system (4.4) requires Qj (p, Y ) ≥ 0 and

Qz (p, Y ) ≥ 0 over the entire price-income space, RJ
++×R+. To see that demand is not de�ned over

the entire domain, consider the case where Y < min {pj , j = 1, ..., J} and, hence, Qz (p, Y ) < 0.

Indeed, empirical applications of the pure discrete-choice model must restrict the domain to ensure

Y ≥ max {pj , j = 1, ..., J} to ensure the empirical demand model is well de�ned. We state the non-

integrability in the Hurwicz and Uzawa (1971) sense of the demand system (4.4) in the following

proposition.6

Proposition 2. (Non-Hurwicz and Uzawa-integrability of Aggregate Pure Discrete-Choice Demand

Model) The aggregate pure discrete-choice demand system (4.4) does not satisfy the budget balanced-

ness condition and, therefore, is not integrable in the sense of Hurwicz and Uzawa (1971).

Nocke and Schutz (2017) propose a stronger form of �quasi-linear integrability� that is de�ned

only on the restricted domain of (p, Y ) where Qj (p, Y ) ≥ 0 and Qz (p, Y ) ≥ 0. The following

proposition establishes that the demand system (4.4) is quasi-linear integrable only in the special

case of linear utility for the numeraire: g (Y − pj) = α (Y − pj) where α > 0.

Proposition 3. (Quasi-linear Integrability of Aggregate Pure Discrete-Choice Demand System When

the Marginal Utility of Income is Linear in the Numeraire) Assume g (Y − pj) = α (Y − pj) for

some constant α > 0 in the aggregate pure discrete-choice demand system given by (4.4). Then, the

demand system is quasi-linearly integrable.

Proof. See Appendix C.1.

6The non-integrability result also holds if we add a J + 1 �no purchase� (e.g., home production) option in the
choice set with pJ+1 = 0 and E (vJ+1) = 0, as is often the case in empirical settings. Demand for the numeraire

Qz (p, y) = N
(
y −

∑J+1
j=1 πjpj

)
= N

(
y −

∑J
j=1 πjpj

)
can be negative for a small y whenever πJ+1 ̸= 1, leading to

the failure of Hurwicz-Uzawa integrability. For example, πJ+1 ̸= 1 whenever g (y − pj) is �nite and the random utility
is absolutely-continuously distributed with full-support.
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The proof relies on the fact that linearity ensures that income, Y , �di�erences out� of the brand

choice probabilities (4.4), thereby satisfying Theorem 1 (iv) for quasi-linear integrability in Nocke and

Schutz (2017). It is unlikely that quasi-linear integrability would hold under more general, non-linear

forms of g (Y − pj) since income would no longer di�erence out of the brand choice probabilities.

5 Conclusions

We have shown that the expected aggregate demand corresponding to a broad class of ARUMs is

integrable and has a normative representative consumer formulation with a speci�c form of prefer-

ences. We provide several examples of representative consumer formulations that can be rationalized

as populations of consumers with discrete-continuous demands generating �exible substitution pat-

terns between products. However, we also show that in the case of indivisible quantities, or �pure

discrete choice,� integrability fails. Even a stronger form of quasi-linear integrability only holds

under the special case of quasi-linearity in a numeraire good.
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Appendix

A Appendix of Section 2: Proof of Theorem 1 and Corollary 1

This Appendix proves that the demand system (2.4) satis�es the four necessary and su�cient con-

ditions for Hurwicz and Uzawa (1971) integrability and derives the exact form of the corresponding

indirect utility function. We break this proof into three sub-sections. We prove the budget balanced-

ness and di�erentiability conditions in Section A.1, and the Slutsky Symmetry condition in Section

A.2. In Section A.3, we �rst characterize the expenditure function and indirect utility functions

corresponding to the demand system (2.4) and use them to establish the negative semi-de�niteness

condition, which completes the proof of integrability.

Throughout the proof, we omit the argument of H (·) , Hj (·) , Hjk (·), and δ (·) when it is clear

from the context for simplicity in the notation.

A.1 Proof of the Di�erentiability and Budget Balancedness

To establish di�erentiability, we substitute the discrete-choice probabilities (2.7) into (2.4):

qj (p, y) =
y

pj

Hj

H
for j ∈ {1, 2, ..., J} . (A.1)

Di�erentiability follows from the smoothness assumptions forH (δ) and δj (pj , ·, ·). The boundedness
of the partial derivatives of q (p, Y ) follows from the assumption that H (·) > 0, the mixed partial

derivatives Hjk (·) exist, and Hjk (·) is continuous on RJ ∀ j, k.
To show the budget balancedness, we show that for any y ≥ 0,

y =
J∑

k=1

pkqk (p, y) .

The right-hand side can be written as

J∑
k=1

pkqk (p, y) = y
J∑

k=1

πk (δ (p)) = y,

where equality to y follows from the fact that
∑J

k=1 πk (p) = 1.
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A.2 Proof of the Slutsky Symmetry Condition

We now establish the Slutsky symmetry of the individual demand system (2.4). Recall δj = θj −
ln (pj), which is continuously di�erentiable in pj . For k ̸= j,

∂qk (p, y)

∂pj
=
y

pk

{
δ′j (pj)Hjk

H
−
δ′j (pj)HjHk

H2

}
∂qk (p, y)

∂y
=

1

pk

Hk

H

The Slutsky symmetry condition is:

∂qk (p, y)

∂pj
+ qj (p, y)

∂qk (p, y)

∂y
=
∂qj (p, y)

∂pk
+ qk (p, y)

∂qj (p, y)

∂y
(A.2)

The left-hand side can be re-written as follows:

y

pk

{
δ′j (pj)Hjk

H
−
δ′j (pj)HjHk

H2

}
+

y

pjpk

{
HjHk

H2

}
=

1

H2

{
y

pk
δ′j (pj)HHjk −

y

pk
δ′j (pj)HjHk +

y

pjpk
HjHk

}
.

The symmetry condition becomes:

1

pk

[
δ′j (pj)HHjk − δ′j (pj)HjHk

]
=

1

pj

[
δ′k (pk)HHjk − δ′k (pk)HjHk

]
which further simpli�es to:

δ′j (pj)

pk
[HHjk −HjHk] =

δ′k (pk)

pj
[HHjk −HjHk] .

The Slutsky symmetry condition (A.2) can therefore be characterized as a system of ordinary dif-

ferential equations for each j, k pair:

pjδ
′
j (pj) = pkδ

′
k (pk) .

This yields the form of the solution:

δj (pj) = −η log pj + cj ,∀j (A.3)

for η ∈ R and some cj ∈ R, which is su�cient for Slutsky symmetry. Condition (A.3) is also

necessary for Slutsky symmetry due to the uniqueness of the solution of an ordinary di�erential
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equation (up to initial conditions determined by cj). This condition holds mechanically for the

ARUM where η = 1 and cj = θj .

A.3 Proof of the Negative Semide�niteness of the Slutsky Matrix and the In-

tegrability of the Expected Discrete-Continuous-Choice Demand System

In this section, we �rst characterize the expenditure function and indirect utility function corre-

sponding to the individual demand system (2.4). We then prove the negative semide�niteness of the

Slutsky matrix which both completes our proof of integrability and characterizes the corresponding

preferences. Our proof consists of showing that η > 0 in (A.3) is su�cient for the negative semidef-

initeness of the associated Slutsky matrix, which again holds mechanically for the ARUM where

η = 1.

The strategy for our proof is guess-and-verify. We start with the guess that the indirect utility

function corresponding to the ARUM individual demand system (2.4) has the form:

v (p, y) = yH (δ (p)) (A.4)

with corresponding expenditure function

e (p, u) =
u

H (δ (p))
, (A.5)

where the function H (·) is de�ned as in Section 2.1 and u ≥ 0 WLOG.7 Our intuition for this guess

comes from the following observation. The log-indirect utility function for the consumer problem

(2.1) where η = 1 is:

log {ṽ (p, y, ϵ)} = log

max
q∈RJ

+

J∑
j=1

qjψj (ϵj) s.t. q′p ≤ y


= max

j∈{1,2,...,J}
{log y + δj + ϵj} (A.6)

because of the corner solution in which the chosen brand k has demand: qk = y
pk
. Taking the

exponentiated form of the expectation of (A.6) with respect to the random utility, ϵ, gives:

exp (Eϵ [log ṽ (p, y, ϵ)]) = exp (log y + G (δ (p))) = yH (δ (p)) . (A.7)

We verify that the candidate e (p, u) is a valid expenditure function associated with the demand

system (2.4) by showing that it satis�es the two following su�cient conditions (for su�ciency, see,

e.g., Mas-Colell et al., 1995, p.80): (i) e (p, u) is concave, and, (ii)∇pe (p, u) evaluated at e (p, u) = y

generates the individual demand system (2.4), and therefore, the Hessian of e (p, u) lines up with

7See, e.g., Jackson (1986) which imposed similar restrictions.
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the Slutsky matrix we examined in Section A.2.

Lemma 1. The function (A.5) is concave in p and therefore, the associated Hessian is negative

semide�nite.

Proof. We can re-write the candidate expenditure function (A.5) as:

e (p, u) = u exp (−G (δ (p))) ,

which is nonnegative since u ≥ 0.

We �rst establish the convexity of H (δ (p)) = exp (G (δ (p))) in p. The function δj (pj) =

−η log pj +θj is convex in pj if and only if η ≥ 0. The surplus function, G (δ), is convex in δ because

the max function preserves convexity (Rockafellar, 1970, Theorem 5.5), and a linear combination of

convex functions, δj (pj) + ϵj (indexed by the realization of ϵ) with nonnegative weights associated

with the operator Eϵ, is convex (Rockafellar, 1970, p.33). Therefore, G (δ (p)) is convex in p and

the composite function exp (G (δ (p))) is also convex in p because exp (·) : R → R is convex and

non-decreasing (Rockafellar, 1970, Theorem 5.1).

Since H (δ (p)) is non-negative and convex in p, {H (δ (p))}−1 = exp (−G (δ (p))) is concave

(Rockafellar, 1970, p.32). It follows that e (p, u) is concave in p. The concavity also establishes the

negative semide�niteness of the Slutsky matrix generated from (A.5).

We now verify that e (p, u) is the expenditure function associated with the individual demand

system (2.4).

Lemma 2. Let δj = − log pj + θj. For the expenditure function (A.5),

∇pe (p, u)
∣∣
e(p,u)=y

=

(
y

p1
π1, ...,

y

pJ
πJ

)
,

where u is the utility level that satis�es e (p, u) = y.

Proof. By Shephard's lemma and the duality of demand, we obtain:

∂
{

u
H(δ(p))

}
∂pj

=
uHj (δ (p))

pjH (δ (p))2
, j = 1, ..., J

=
uπj

pjH (δ (p))
. (A.8)

Evaluating (A.8) at y = e (p, u) ≡ u
H(δ(p)) gives

∂
{

u
H(δ(p))

}
∂pj

∣∣∣∣
u=yH(δ(p))

=
y

pj
πj ,
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which is the ARUM discrete-continuous-choice demand system (2.4). This result also con�rms that

the Slutsky matrix in Section A.2 is the Hessian of e (p, u).

The non-negativity of H (δ (p)) and the unboundedness of income, y, ensures that the corre-

sponding indirect utility function, v (p, y) = yH (δ (p)) , has the range R+.

B Proofs of Section 3

B.1 Proof of Proposition 1

The individual's indirect utility function

vi
(
p, yi

)
= yiH (δ (p)) ,

has the Gorman form. Therefore, the positive representative consumer with income level Y =∑N
i=1 y

i has the indirect utility function

v (p, Y ) = Y H (δ (p)) ,

and demand q (p, Y ) =
∑N

i=1 q
i
(
p, yi

)
when Roy's identity is applied, for any p ∈ RJ

+ and for

any allocation of income
{
y1, y2, ..., yN

}
(see, e.g., Varian, 1992, Section 9.4). The Gorman form

also ensures that the representative consumer is normative robust to any increasing, continuously

di�erentiable, and concave social welfare function W (·) (see, e.g., Mas-Colell et al., 1995, pp.119-

120.).

B.2 Proof of Corollary 2

The representative consumer's compensating variation is characterized by v
(
p0, Y 0

)
= v

(
p1, Y 0 − CV

)
.

Substituting v
(
p0, Y 0

)
= Y 0H

(
δ
(
p0
))

and v
(
p1, Y 0 − CV

)
=
(
Y 0 − CV

)
H
(
δ
(
p1
))

back and

equating gives

Y 0H
(
δ
(
p0
))

=
(
Y 0 − CV

)
H
(
δ
(
p1
))
.

Rearranging gives

CV = Y 0H
(
δ
(
p1
))

−H
(
δ
(
p0
))

H (δ (p1))
.

B.3 Extension to Including the Numeraire

The remainder of the this subsection consists of extending the results above to include the nu-

meraire in a manner similar to Anderson et al. (1992, Section 3.7) and Verboven (1996, Section 4).

Speci�cally, we use the Cobb-Douglas bivariate utility over the numeraire and the products group.
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Let Y =
∑N

i=1 y
i be the representative consumer's total income. We have shown the existence of

the direct utility function u(Q1,..., QJ) such that the observed demand system Q (p, Y ) solves the

usual budget-constrained utility maximization problem:

max
(Q1,...,QJ )

u (Q1,..., QJ) s.t.
∑

1≤j≤J

pjQj = Y.

We now modify the utility function u(Q1,..., QJ) as u(Q1,..., QJ)Q
α
z . The separability of the Cobb-

Douglas utility u(Q1,..., QJ)Q
α
z between the consumption of the products, (Q1,..., QJ), and of the

numeraire, Qz, ensures that the representative consumer always spends Y/(1 + α) and αY/(1 + α)

on the inside goods and the numeraire, respectively. Therefore,

(Q1,..., QJ ;Qz) :=

Q1,..., QJ ;Y −
J∑

j=1

pjQj


solves

max
(Q1,...,QJ ,Qz)

u (Q1,..., QJ)Q
α
z s.t. Qz +

∑
1≤j≤J

pjQj = Y.

It is straightforward to verify that the resulting demand system has the following form:

Qj (p, Y ) =

(
1

1 + α

)
Y

pj

Hj

H
for j ∈ {1, 2, ..., J}

Qz (p, Y ) =

(
α

1 + α

)
Y. (B.1)

C Proofs of Section 4

C.1 Proof of Proposition 3

Nocke and Schutz (2017) de�ne quasi-linear integrability as follows:

De�nition. (Quasi-linear Integrability) A demand system Q (p, Y ) is quasi-linearly integrable if

there exist a set X ⊂ RJ and a function u : X → R such that for every (p, Y ) ∈ RJ
++ × R+ where

Qz (p, Y ) ≥ 0, Q (p, Y ) is the unique solution of

max
(Q,Qz)

(Qz + u (Q)) s.t. Qz + p′Q ≤ Y,Qz ≥ 0,q ∈ X .

Theorem 1 of Nocke and Schutz (2017) shows that a demand system is quasi-linear integrable

if and only if the substitution matrix
(
∂Qj(p,Y )

∂pk

)
1≤j,k≤J

is symmetric and negative semide�nite for

every p ∈ RJ
++ and Y ∈ R+ for which the demand is well-de�ned. In our case, we need non-

negative consumption of the numeraire: Qz (p, Y ) ≡ Y −
∑J

j=1 pjQj (p, Y ) ≥ 0. We now show
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that the expected aggregate pure discrete-choice demand system (4.4) satis�es this condition when

g (Y − pj) = α (Y − pj).

Consider the function NG (δ (p)). The substitution matrix is the Hessian of NG (δ (p)) with

respect to p. The symmetry of the substitution matrix follows from the assumed smoothness of

H (·) function.
The negative semide�niteness follows from the following argument. We claim the concav-

ity of G (δ (p)) in p, which would imply the negative semide�niteness of the substitution matrix(
∂Qj(p,Y )

∂pk

)
1≤j,k≤J

. Recall the de�nition of G (δ (p)) under the assumed form of δj with α > 0:

G (δ (p)) = E
[
max
1≤j≤J

{−αpj + θj + ϵj}
]
.

Dividing the above equality by −α gives

− 1

α
G (δ (p)) = E

[
max
1≤j≤J

{
pj −

1

α
(θj + ϵj)

}]
.

Because we can consider the term − 1
α (θj + ϵi,j) as a location and scale transform of the random

utility term ϵ supported on the entire RJ , − 1
αG (δ (p)) is convex in p. In turn, G (δ (p)) = (−α) ·(

− 1
αG (δ (p))

)
, is concave in p because −α < 0 .
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