
NBER WORKING PAPER SERIES

HOW UNDERVALUED IS THE COVID-19 VACCINE? EVIDENCE FROM DISCRETE 
CHOICE EXPERIMENTS AND VSL BENCHMARKS

Patrick Carlin
Brian E. Dixon
Kosali I. Simon
Ryan Sullivan
Coady Wing

Working Paper 30118
http://www.nber.org/papers/w30118

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2022

The views expressed here are those of the authors and do not reflect the official policy or position 
of the Department of Defense, the US Government, any other institution with which the authors 
are affiliated, or the National Bureau of Economic Research. Special thanks to Denvil Duncan, 
Seth Freedman, David R. Henderson, Thomas J. Kniesner, Lisa Robinson, Justin Ross, W. Kip 
Viscusi, Dan Sacks and seminar participants at the American Economic Association, Society for 
Benefit-Cost Analysis, and Southern Economic Association conferences, UNLV, San Diego State 
University, and Naval Postgraduate School for helpful comments. The authors would like to 
acknowledge the Regenstrief Institute, Inc. for its support, especially the Public Relations team 
and the Center for Biomedical Informatics, of this non-funded research project during the 
epidemic. Thanks are due also to research team members Shaun Grannis, Monica Kasting, Jon 
Macy, and the Microsoft news team for their support in developing and implementing the banner 
advertisements (Mary L. Gray, Vera Chan, Juan Lavista Ferres, Matt Lindenburg, and Erin Van 
Noy) and Mandi Hall of Microsoft Research Health Futures Group. We are grateful to Ashley 
Wiensch for administrative support.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2022 by Patrick Carlin, Brian E. Dixon, Kosali I. Simon, Ryan Sullivan, and Coady Wing. All 
rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without 
explicit permission provided that full credit, including © notice, is given to the source.



How Undervalued is the Covid-19 Vaccine? Evidence from Discrete Choice Experiments
and VSL Benchmarks
Patrick Carlin, Brian E. Dixon, Kosali I. Simon, Ryan Sullivan, and Coady Wing
NBER Working Paper No. 30118
June 2022
JEL No. H0,I0,I12,I18,I28

ABSTRACT

Two discrete choice experiments conducted early in the Covid-19 vaccination campaign show 
that people dramatically undervalue the Covid-19 vaccine, relative to benchmarks implied by the 
value of a statistical life (VSL). Our first experiment found that median willingness to pay (WTP) 
for initial vaccination is around $50, only 2 percent of the WTP implied by standard VSL 
calculations. Our second experiment found the median person was willing to accept (WTA) about 
$200 to delay the second dose, only 32 percent of the WTA implied by standard VSL 
calculations. While standard economic models imply that vaccines are undervalued because of 
their large externalities, we interpret the finding that WTP estimates are well below the VSL 
benchmarks as evidence that internalities play a substantial role. This evidence that people 
undervalue even the private benefits of vaccination suggests that there may be a role for 
government beyond conventional efforts to correct externalities.

Patrick Carlin 
Indiana University
patcarli@iu.edu

Brian E. Dixon
Regenstrief Institute, Inc. 
and Indiana University 
Richard M. Fairbanks School of 
Public Health
1101 W. 10th St. 
Indianapolis, IN 46202 
bedixon@regenstrief.org

Kosali I. Simon
O’Neill School of Public and 
Environmental Affairs 
Indiana University
1315 East Tenth Street
Bloomington, IN 47405-1701
and NBER
simonkos@indiana.edu

Ryan Sullivan
Naval Postgraduate School
699 Dyer Road 
Monterey, CA 93943 
rssulliv@nps.edu

Coady Wing
Indiana University 
1315 E 10th St 
Bloomington, IN 47405 
cwing@iu.edu



1 Introduction

Evidence from the clinical trials and from post-market studies shows that Covid-19 vaccines
are highly effective at reducing the risk of severe illness, hospitalization, and death. Recent
work suggests that the initial vaccine roll out managed to avert about 140, 000 Covid-19
deaths by May 9, 2021 in the US (Gupta et al., 2021). Despite these substantial benefits,
only about 63% of people have received two doses of the Covid-19 vaccine and only 22% have
received a booster dose. In other words, take-up seems quite low for what appears to be a
very high value form of medical care. Economic theory suggests we should not be surprised
that vaccine take-up is below the socially optimal level because vaccination generates positive
externalities, creating an incentive for unvaccinated people to free-ride.

Although the externalities argument is a logical place to start the analysis, it does not
seem to provide a sufficient explanation for low vaccine take-up in the US. The private
benefits of vaccination are large, and government policies make the vaccine available for free,
although people still incur time and effort costs. A zero out-of-pocket price – sound economic
advice in the face of positive externalities – acts as a Pigouvian-style subsidy that should
eliminate or at least substantially dull the incentive to free-ride. And yet, vaccine take-up is
still relatively low.

Alternative theories from behavioral public finance may help explain why vaccine take-up
is so low in the US. Previous research suggests that consumer demand may be affected by
psychological factors that lead people to make systematic mistakes in the evaluation of costs
and benefits (Mullainathan et al., 2012; Allcott and Knittel, 2019; Chetty et al., 2009; Allcott
et al., 2014). In particular, low vaccine take-up may be rooted in an internality: people do
not fully value even the private benefits of the vaccination. In this sense, the Covid-19 vaccine
is an example of the broader concern that behavioral hazards lead people to under-consume
“high value” medical care (Baicker et al., 2015). The possibility that people make systematic
decision errors in vaccine choices undermines the idea that choices “reveal” preferences and
that the only remaining economic problem is externality.

In this paper, we present the first evidence measuring the existence and magnitude of
Covid-19 vaccine internalities. Our empirical strategy uses two discrete choice survey exper-
iments distributed early in 2021 using banner ads on MSN.com. One experiment presented
people with a vignette describing an opportunity to be vaccinated early for a price. The
other described an opportunity to delay the second dose of the vaccine for a given reward.
We use the experiments to estimate willingness to pay (WTP) for and willingness to accept
(WTA) the vaccine. We also recover the value of statistical life (VSL) implied by people’s

1



decisions in the experiments. A central idea is that these estimated parameters may include
or be shaped by decision errors that generate internalities. To assess this possibility, we con-
struct benchmarks of WTP and WTA using external estimates of VSL from other contexts.
Since these external VSL estimates are unlikely to be subject to vaccine related decision
errors, we view the benchmarks as a reasonable approximation to the “true” or “full” WTP
and WTA in the absence of internalities. The ratio of the experimental parameters to the
benchmarks provides a measure of undervaluation due to an internality.

The results of our analysis suggest that people substantially undervalue the private ben-
efits associated with Covid-19 vaccination. The early vaccination experiments indicate that
the median person was willing to pay about $50 to be vaccinated for Covid-19 four months
early. In contrast, our VSL-benchmark implies that a typical person would have been will-
ing to pay about $2, 700 to be vaccinated four months early if she valued the fatality risk
reduction of the vaccine using a VSL of $11.4 million, which is the figure used by the federal
Department of Health and Human Services (HHS). The VSL-benchmark WTP is more than
50 times higher than the median WTP recovered from the experiment. In the experiment,
people act as if their own VSL is around $210, 000, which is far lower than the VSL people
seem to use in other settings like labor markets and product markets. The delayed second
dose experiments also point to undervaluation. They suggest that the median person was
willing to delay the second dose of the vaccine in return for a transfer of about $200. Bench-
marks based on the HHS VSL imply that WTA compensation for a delayed second dose
should be closer to $619. Implicitly, people in the delayed second dose experiments seem to
use a VSL of $3.7 million when making their choices, much smaller than standard estimates
of the VSL in non-Covid settings.

Taken together, the results show that people value the first dose of the vaccine at about
2% of its full value and the second dose at about 32% of its full value. While standard
models imply that vaccines are undervalued because of their large externalities, our results
imply substantial undervaluation due to internalities.

2 Background

2.1 Behavioral Hazards in Health Care

There is a growing literature concerned with how to perform policy analysis in market settings
where behavioral biases influence the choices people make (Mullainathan et al., 2012; Allcott,
2013). An overarching issue is that the possibility of behavioral biases implies that observed
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choices cannot be trusted to reveal preferences. This creates a major methodological problem
for efforts to understand the welfare consequences of different public policies or market
environments. For example, health economists have devoted considerable effort to measuring
the extent and size of moral hazard responses to health insurance by focusing on the price
elasticity of demand for medical care (Pauly, 1968; Cutler and Zeckhauser, 2000). There is
convincing evidence from experiments and quasi-experiments that the demand for medical
care falls with exogenous changes in the out-of-pocket price of care (Einav and Finkelstein,
2018). However, recent work by Baicker et al. (2015) points out that – in the presence of
behavioral biases – evidence that people reduce their medical care utilization in response to
price changes does not necessarily indicate moral hazard. This kind of revealed preference
argument falls away when people’s decisions may reflect systematic mistakes that may be
related to false beliefs, inattention, salience, or present bias. Baicker et al. (2015) argue
that people often do seem to under-consume high value medical care and over-consume low
value medical care. A strict proponent of the revealed preference theory would argue that
consumers are the best evaluator of the value of medical care. If people choose not to
consume health services that experts consider valuable, then perhaps the experts are simply
wrong. What kind of evidence supports the claim that it is the consumers who are making
mistakes about the value of care?

One kind of evidence that Baicker et al. (2015) discuss comes from studies that compare
the price elasticity of demand for high value and low value medical care. They reason that
– in the absence of decision errors on the part of consumers – one would expect demand for
high value medical care to be more price inelastic than demand for low value medical care.
In contrast to this intuition, they point to several examples from high quality empirical stud-
ies showing that exogenous increases in co-insurance and co-payment parameters generate
similar declines in the utilization of health care that is thought to be high value and low
value. For example, in their analysis of data from the Rand Health Insurance Experiment,
Lohr et al. (1986) group health conditions into categories defined by expert opinions of the
effectiveness of available medical treatments. Random assignment to the cost-sharing plan
leads to similar and large reductions in utilization for conditions where medical care was con-
sidered highly effective and for conditions where medical care was considered less effective. In
another example, Chandra et al. (2010) group prescription medications into three categories:
acute care medications, chronic care medications, and lifestyle medications.1 They find that

1Cutting back on acute care medications would be expected to generate adverse health events within
1-2 months. Cutting back on chronic care medication might generate adverse health events within a year.
Lifestyle medications (antihistimines, acne medications, etc) probably do not protect against adverse events
and instead provide relief from symptoms.
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cost sharing leads to similar reductions in the utilization of all three classes of drugs.
Baicker et al. (2015) also discuss a second type of evidence that people under-consume

high value care, which involves measuring the health effects of exogenous variation in co-
insurance or co-pay parameters. For instance, the study by Chandra et al. (2010) find some
evidence that increasing co-pays also generate more hospitalizations downstream. This sug-
gests that people cut back on care that had substantial health benefits. Similarly, Choudhry
et al. (2011) find that eliminating cost sharing for post-heart attack medications increases
adherence and reduces some measures of subsequent vascular events. What makes these
results surprising is that the reductions in health seem much more valuable than the savings
from reduced health care spending. And indeed, when Baicker et al. (2015) combine these
health responses with assumptions about the value of a statistical life, they do find that the
change in utilization was too large to be explained by conventional theories of moral hazard.

While these two lines of evidence are not definitive proof that behavioral biases play a
major role in health care consumption decisions, they do seem to indicate a disconnect be-
tween realized choices and what might be called the underlying fundamentals that economists
and physicians think make up the value of specific types of medical care. At a high level,
this comparison of observed choices and fundamentals represents a method for measuring the
existence and magnitude of behavioral biases. In this paper, we are concerned with the possi-
bility that behavioral biases – internalities – may be partly responsible for low take-up of the
Covid-19 vaccine. The central hypothesis is that one or more behavioral biases leads people
to undervalue the net (private) benefits of vaccination. To test the theory, we conducted
discrete choice survey experiments that provide a platform for estimating WTP, WTA, and
VSL in a setting that should incorporate Covid-19 vaccine perceptual errors. Then we use
external estimates of VSL to construct benchmark measures of WTP and WTA for the vac-
cine in the absence of perceptual errors. The ratio of these two sets of measures provides a
measure of the size of the behavioral distortion. This approach of combining survey exper-
iments with VSL benchmarks to measure internalities provides a novel way to understand
the reasons for low vaccine take-up and related concepts such as vaccine hesitancy. The
overall method is closely connected to conventional (non-behavioral) research on WTP for
the Covid-19 vaccine and with the broader literature on VSL and money-risk trade-offs. The
remainder of this section gives some background on these areas of work.
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Table 1: WTP Estimates for Covid-19 Vaccination

Country Sample Size Authors Median WTP Estimate
(US$2020)*

Bangladesh 894 Banik et al. (2021) $5
Bangladesh 697 Kabir et al. (2021) $7
Brazil 1402 Godói et al. (2021) $21
Chile 531 Cerda and García (2021) $232
Chile 566 García and Cerda (2020) $185
China 2058 Wang et al. (2021) $15
China 2126 Han et al. (2021) $46
China 3541 Lin et al. (2020) $28
China 1179 Zhang et al. (2021) $112
Ecuador 1050 Sarasty et al. (2020) $90
Ethiopia 301 Shitu et al. (2021) $5
India 2451 Goruntla et al. (2021) $7
Indonesia 1359 Harapan et al. (2020) $31
Kenya 1050 Carpio et al. (2021) $59
Malaysia 1159 Wong et al. (2020) $31
Pakistan 2158 Arshad et al. (2021) $3
Vietnam 651 Nguyen et al. (2021) $14
Vietnam 495 Vo et al. (2021) $86
United States 584 Catma and Reindl (2021) $260
United States 1285 Catma and Varol (2021) $319
United States 2000 Carpio et al. (2021) $723
US, UK, Spain, Italy 4313 Costa-Font et al. (2021) $150

Overall Median Estimate $39

Notes: *Median WTP estimates were taken from each of the respective studies. If no median estimate was available, then
the mean WTP estimate was used. If only a range was reported, then the mid-point value was used.
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2.2 Willingness to Pay For The Covid-19 Vaccine

We reviewed 22 studies from 16 countries that estimate consumer WTP for the Covid-19
vaccine using a range of stated preference and contingent valuation methodologies. These
studies all interpret the results through the lens of the standard (non-behavioral) model
and do not consider the possibility that estimates are too low due to internalities. Table
1 shows the citation, sample size, and median WTP estimates for vaccination from each of
these study.2 The median WTP estimates range in value from $3 (Arshad et al., 2021) to
$723 (Carpio et al., 2021). Figure 1 shows how estimated WTP varies with GDP per capita
across studies conducted in different countries. The graph shows that WTP for the vaccine
is typically higher in wealthier countries. All of the studies we reviewed were designed to
estimate WTP to be fully vaccinated for Covid-19. None of the studies consider how people
value expedited vs. delayed vaccination, which is important given that much of the policy
debate revolved around how to target and ration the vaccine in the early stages of the roll
out. In addition, none of the studies consider the possibility that people may “undervalue”
the vaccine due to behavioral hazards.

2.3 Valuing Mortality Risk

The concept of the value of a statistical life (VSL) is widely used in economics to characterize
the tradeoffs people make between money and fatality risks. In its most basic form, the VSL
is calculated by estimating how much people are willing to pay for small reductions in
mortality risk. For example, a large literature estimates VSL by measuring compensating
wage differentials across jobs with different fatality risks (Kniesner et al., 2012; Kniesner and
Viscusi, 2019; Leeth and Ruser, 2003; Viscusi, 1993, 2018; Viscusi and Aldy, 2003). As a
hypothetical example, consider two identical jobs that only differ in terms of safety. The low
risk job is completely safe with a 0 in 100,000 chance of a workplace injury resulting in death.
In the high risk job, 1 in 100,000 workers die from workplace injuries in a year. Suppose
that the high risk job pays $110 more per year in extra salary. A person who prefers the low
risk job is willing to give up $110 per year to reduce her mortality risk by 1 in 100,000. The

2The median WTP estimates were taken from each of the respective studies (Banik et al., 2021; Kabir
et al., 2021; Godói et al., 2021; Cerda and García, 2021; García and Cerda, 2020; Wang et al., 2021; Han
et al., 2021; Lin et al., 2020; Zhang et al., 2021; Sarasty et al., 2020; Shitu et al., 2021; Goruntla et al., 2021;
Harapan et al., 2020; Carpio et al., 2021; Wong et al., 2020; Arshad et al., 2021; Nguyen et al., 2021; Vo
et al., 2021; Catma and Reindl, 2021; Catma and Varol, 2021; Carpio et al., 2021; Costa-Font et al., 2021). If
a study did not report a median WTP estimate, we report the mean WTP estimate instead. If a study only
reports a range of values for WTP, we report the mid-point of the range. All WTP estimates are reported
in US 2020 dollars.
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VSL is obtained by dividing the compensating wage differential by the difference in mortality
risk. In this example, V SL = $110

1/100,000
= $11, 000, 000. A pool of 100,000 workers – each

paying $110 for safety – would be spending $11 million to save one life. Since the specific
life saved is unknown ex ante, the measure is known as the value of a statistical life. Similar
calculations are made by consumers in product markets where safety features are important.
Economists have found people are willing to pay more for cars with air bags, healthy foods,
high-quality medical care, etc. However, budget constraints play a role in what is affordable
(Gayer et al., 2000; Liu et al., 2005; Gyrd-Hansen et al., 2008; Rohlfs et al., 2015).

Researchers have estimated VSL in the US and other countries using revealed preference
approaches (labor and product market studies of compensating differentials), stated prefer-
ence (questionnaires on risk valuation), or some combination across these types of studies.
The results are remarkably consistent. Most studies imply that the VSL in the US is be-
tween $6 and $15 million (US$2020), with the best estimates centered around $11 million
(US$2020) (Hammitt, 2020; Kniesner et al., 2012; Kniesner and Viscusi, 2019; Robinson and
Hammitt, 2016; Viscusi, 2018, 2020b, 2021a,b; US Department of Transportation, 2016; US
Department of Health and Human Services, 2016; Environmental Protection Agency, 2010).
Three different federal agencies (HHS, DOT, and EPA) provide VSL guidelines to use in
cost-benefit analyses (US Department of Health and Human Services, 2016; US Department
of Transportation, 2016; Environmental Protection Agency, 2010). After updating for in-
flation and earnings, HHS recommends using an $11.4 million VSL, DOT recommends an
$11.7 million VSL, and EPA recommends a $10.8 million VSL (US$2020). Other agencies
typically use one of these estimates or turn to VSL estimates from the economics literature
(Armey et al., 2021; Aldy and Viscusi, 2008; Council of Economic Advisors, 2019; Knies-
ner et al., 2015; Kniesner and Viscusi, 2019; Viscusi, 2018, 2019a; Viscusi and Aldy, 2003;
Viscusi, 2021b).

2.4 Possible Problems With A VSL Benchmark

External VSL estimates will likely not include the perceptual errors involved in Covid-19
vaccine decisions. This makes them a natural benchmark for trying to gauge the magnitude
of Covid vaccine decisions. If experimental estimates of WTP for the vaccine are substantially
lower than a benchmark based on VSL estimates, that would suggest that low vaccine take-
up is influenced by internalities. The ratio of the experimental WTP estimates and the VSL
benchmarks provides a measure of the degree to which internalities lead people to undervalue
the vaccine. We formalize the logic of this argument later in the paper.

7



Figure 1: Estimated WTP for the Covid-19 Vaccine Across Studies by Country GDP
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where the study was conducted. The radius of the scatter points is proportional to the sample size of the
study: the smallest study has N = 301 observations, and the largest study has N = 4, 313 observations.

8



Despite the attractiveness of VSL benchmarking, there are some reasons to interpret them
cautiously. One issue is that the VSL may vary substantially across people. It makes sense
that the benefits of risk reduction are smaller when one has less time left, and the empirical
literature does find evidence that VSL falls with age (Murphy and Topel, 2006; Robinson
et al., 2021; Viscusi and Aldy, 2007; Aldy and Viscusi, 2008; Viscusi, 2020b). Since Covid-19
has a particularly high mortality rate among older people, age-specific VSL estimates may
be important for thinking about how much people are willing to pay for the vaccine.3 In
addition to age, economic theory suggests that VSL may rise with income and wealth to the
extent that safety is a normal good. Most studies find that the income elasticity of the VSL
is around 1.0 (US Department of Transportation, 2016; Hammitt and Robinson, 2011; US
Department of Health and Human Services, 2016; Lindhjem et al., 2011; Kniesner et al., 2010;
Viscusi and Aldy, 2003; Viscusi and Masterman, 2017a,b; Masterman and Viscusi, 2018).
Covid-19 fatalities have been concentrated among lower income sub-populations (Jung et al.,
2021). In that sense, it is possible that WTP for the Covid-19 vaccine may be lower than
anticipated because lower income groups are using a low VSL to make choices.

A second challenge arises because the VSL concept does not easily extend to non-marginal
(large) changes in risk, in part because budget constraints matter more for non-marginal
changes. For instance, most people do not seem willing to pay $1.1 million to reduce their
risk of death by 1 in 10, even though this would be a good price for such a safety improvement
at prevailing VSLs (Alolayan et al., 2017; Eeckhoudt and Hammitt, 2001, 2004; Hammitt,
2020; Kaplow, 2005; Robinson et al., 2021). In practice, the size of the risk reduction does
not seem to distort VSL calculations until mortality risks exceed 1 per 1,000 (Hammitt,
2020; Robinson et al., 2021). Covid-19 mortality risks are far smaller than 1 per 1,000 for
most people in the overall population. However, among high risk Covid-19 groups (nursing
home populations, the oldest old, and people with multiple comorbidities), the fatality risk

3A variety of papers report age-adjusted VSL in the context of the Covid-19 epidemic. Greenstone
and Nigam (2020) was the first paper to apply age-adjusted VSL values to Covid-19 fatalities. They use a
structural VSL model borrowed from Murphy and Topel (2006) and apply those values to projected fatalities
from Ferguson et al. (2020). Using these assumptions, Greenstone and Nigam (2020) estimate a weighted
average value of $4.51 million per statistical life in their analysis. Viscusi (2020b) applies a value per
statistical life year (VSLY) methodology to adjust the Covid-19 fatalities by age. He finds an age-adjusted,
weighted average value of $5.2 million per statistical life when applying the values across the distribution of
Covid-19 fatalities. Robinson et al. (2021) use a similar methodology focusing on HHS guidelines and find an
age-adjusted VSL of $4.47 million per statistical life after adjusting the values by the VSLY method. Most
of the age-adjusted, Covid-19 VSL estimates in the literature are shown to be roughly equal to half of the
overall population-wide VSL values. There have been ethical and empirical concerns raised in the past with
using age-adjusted VSLs for benefit-cost analysis in society. These concerns are one of the main reasons why
invariant VSLs (and not age-adjusted values) are typically used in analyses by government agencies. See
Kniesner et al. (2006) and Viscusi (2020a) for a review of this literature.
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from Covid-19 may exceed 1 in 1,000, and so these non-marginal risks may be important to
consider.

A third concern is that the people may not value all reductions in mortality risk equally. A
growing literature suggests people use a higher VSL when faced with risks related to a dreaded
disease or cause of death.4 These results may indicate that people have preferences defined
over different deaths and injuries. However, it is also possible that the variation in cause of
death specific VSLs reflects biases from the salience of particular symptoms, incorrect beliefs
about health conditions and treatments, or non-standard decision processes. An important
question is whether these kinds of biases are relevant for a disease like Covid-19 and for
preventive actions like receiving the Covid-19 vaccine. In a paper closely related to this
one, Liu et al. (2005) examine WTP to reduce the risk of infection and death from severe
acute respiratory syndrome (SARS) in Taiwan during the spring of 2003. Their implied VSL
estimates suggest that SARS fatalities were valued higher than normal fatalities in Taiwan
by between 25% to 435%. Likewise, Gyrd-Hansen et al. (2008) use a survey questionnaire
to determine WTP estimates to avoid fatalities related to an influenza pandemic in Norway.
Combining the WTP estimates with fatality risk measures, the authors estimate a mean
implied VSL of $9.7 million per statistical life (US$2008), which was at the upper range of
the VSL estimates at the time (Viscusi and Aldy, 2003; De Blaeij et al., 2003; Elvik, 1995).

4The impact of dread and uncertainty on VSL and WTP estimates comes up quite often in the literature,
not only for epidemics, but also for other types of deaths as well (Chilton et al., 2006; Hammitt and Liu, 2004;
Jones-Lee and Loomes, 1995; Liu et al., 2005; McDonald et al., 2016; Riddel and Shaw, 2006; Robinson et al.,
2010; Viscusi et al., 2014; Viscusi, 2019b). Viscusi et al. (2014) find cancer fatalities have a VSL premium
of around 21% in comparison to “regular” deaths. Robinson et al. (2010) study WTP to avoid terror attacks
and find that people seem to use a VSL that is twice as high as the typical VSLs reported in the literature.
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3 MSN Survey and Experiments

We collected data using an Internet survey distributed using banner ads displayed on Mi-
crosoft News (www.msn.com) between February 25, 2021 and March 22, 2021. Participation
in the survey was voluntary: people clicked on the banner ad to complete the survey (Dixon
et al., 2021). The survey instrument collected information on the respondent’s demographic
characteristics, zip code, and Covid-19 related experiences, knowledge, and opinions. We
linked the survey records with county-level data on confirmed Covid-19 cases and deaths
from the database maintained by The New York Times (2021).5 Figure 2 shows the state
of the pandemic at the time of the survey. The graphs in the left panel show 7-day moving
averages for cases, fatalities, and vaccinations while those in the right panel show cumulative
cases, fatalities, and vaccinations. The vertical black lines represent the beginning and end
of our survey period. The graphs indicate that the survey was in the field as cases and
fatalities fell following a spike during Christmas and New Year and as the vaccination effort
began in the US.

3.1 Discrete Choice Experiments

The survey also included an experimental module in which we implemented two discrete
choice experiments. The first experiment examined willingness to pay for early vaccination.
The second examined willingness to accept compensation for delaying the second dose of the
vaccine.

Early Vaccination Experiment In the early vaccination experiment, respondents were
presented with the following vignette:

In a typical year, many people choose to be vaccinated at local pharmacies for diseases
like influenza, shingles, meningitis, and chicken pox. You can pay for out-of-pocket
for most vaccinations. Prices range from about $50 for a flu shot to about $180 for a
shingles vaccine. Of course, many of these vaccines are also covered by health insurance
plans and so many people do not pay an out-of-pocket price.

5To perform the zipcode to county record linkage, we used a crosswalk managed by the US Department of
Housing and Urban Development’s Office of Policy Development and Research. When a zipcode belongs to
multiple counties, we assigned the zip code to the county that represents the highest share of its addresses.
(HUD Policy Development and Research, 2021) The New York Times data on Covid-19 cases and deaths
sometimes uses non-standard geography by combining cases and deaths from certain counties. For example,
the five counties in New York City (New York, Kings, Queens, Bronx and Richmond) are combined into
a single geographical unit called "New York". Therefore, we also combine New York City zip codes into a
single geographic unit for our analysis.

12



Suppose that in 4 months, you will be able to receive the COVID-19 vaccine for free.

However, for a fee, you could receive the COVID-19 vaccine today at a local phar-

macy in the same way that people are often vaccinated for other conditions such as

influenza, shingles, meningitis. That is, you would pay the fee and a pharmacist or

nurse practitioner would administer an injection.

Subjects were randomly assigned to one of five treatment arms with different price offerings:
$50, $100, $200, $500, $1000. Let pj for j = 1...5 represent the price offering in the jth

treatment arm. After reading the vignette, people were asked the following discrete choice
question:

If the out-of-pocket fee was $pj , would you choose to pay the fee and be vaccinated

today rather than wait 4 months?

People answered Yes or No to the question, and the responses became the main dependent
variable in our analysis of the early vaccination experiment.

Delayed Second Dose Experiment In the delayed second dose experiment, respondents
were presented with the following vignette:

The Covid-19 vaccine is designed to be administered in two doses spaced a few weeks

or months apart. Most of the protective effect of the vaccine occurs with the first dose.

Given limited supplies of the vaccine, some researchers argue that we should delay

giving people second doses until more people have received a first dose. Some people

are more comfortable with this option than others. Suppose that you have just been

vaccinated with your first dose.

As before, subjects were randomly assigned to one of five treatment arms differentiated by
transfer offerings: $5, $10, $50, $100, $200. Let tj represent the bonus offering in the jth

group. After reading the vignette, people were asked the following question:

Would you agree to delay your second dose for 3 months in return for a cash bonus of

$tj?

People answered Yes or No to the question, and these responses became the main dependent
variable in our analysis of the delayed second dose experiment.
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3.2 Survey Weights

Because the survey sample is not a random sample from a well-defined population, we devel-
oped survey weights to bring the age, gender, and race/ethnicity distribution of the survey
sample in line with the US population. To construct the weights, we obtained the 2019
American Community Survey (ACS) and limited the sample to adults (18+). We harmo-
nized the ACS measures of age, gender, and race/ethnicity to match the coding used in the
MSN data, and stacked the MSN and ACS data into a single data file. In the stacked data
file, we let Ai be a dummy variable indicating that person was drawn from the ACS data
rather than the MSN data. Xi is a vector of harmonized demographic covariates: indicators
for gender, Hispanic ethnicity, racial groups (White, Black, Asian, Native American, Other),
and six adult age ranges (18-19, 20-34, 35-44, 45-54, 55-64, 65+). We fit logistic regression
models of ACS membership (Ai) on the covariates (Xi).6 We used the estimated coefficients
from the model to compute the predicted probability that each person belongs to the ACS
sample. For each member of the MSN sample, the survey weight is wi = p̂i/(1− p̂i), where
p̂i is the predicted probability for person i. Table 2 shows summary statistics comparing the
ACS estimates of the composition of adults in the US with the raw MSN sample and the
weighted MSN sample.7 The procedure re-weights the MSN sample so that it mimics the
characteristics of the ACS data. Although the weights make the sample more representative
on basic demographics, they do not guarantee that the MSN data are representative of the
US population of adults on additional non-demographic factors that were not accounted for
in our logistic regressions. Thus, the external validity of our results should be interpreted
cautiously.

6We estimated the models using ACS sampling weights for the ACS data and setting the weight equal to
1 for each member of the MSN sample.

7In practice, we normalize the weights to sum to 1 across observations in the MSN sample.
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Table 2: Weighted and Unweighted Demographic Variable Means

Variable ACS Raw MSN Weighted MSN

18–39 0.39 0.08 0.44
40–64 0.40 0.40 0.38
65+ 0.22 0.52 0.18
Female 0.51 0.38 0.54
White 0.63 0.78 0.56
Black 0.12 0.06 0.13
Hispanic 0.16 0.08 0.19
Asian 0.06 0.03 0.09
Other 0.03 0.04 0.03

N 2,600,000 1737 1737

Notes: The first column shows weighted averages in the ACS data for each demographic variable. The second column shows
the averages in the raw data from the MSN experiment for each demographic variable. The third column shows the
weighted averages in the data from the MSN experiment for each demographic variable. The overall number of respondents
of the survey was 2157, but we drop 420 due to non-response to questions relevant for analysis. This leaves N=1737 total
respondents included in the main analysis.
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4 Vaccine Choices With Internalities

We interpret the discrete choice experiments from the perspective of a behavioral model in
which people’s choices may be influenced by errors in the way people perceive the benefits
of vaccination (Mullainathan et al., 2012). These errors drive a wedge between the choices
people make in the experiment and the choices that would maximize their “experienced
utility”.

In the early vaccination experiment, people are asked whether they would prefer to be
vaccinated now for a specified price of p, rather than wait four months to be vaccinated for
free. Suppose that ci is the person’s initial wealth and ωi is the benefit of early vaccination
expressed in wealth-equivalent units. ei is a perceptual error – also expressed in units of
wealth. The person’s utility is an increasing and concave function of final wealth, net of real
and perceived vaccination benefits and costs. Specifically, the person’s utility function is
ui(ci+ vi(ωi+ ei− p)), where vi = 1 if the person opts for early vaccination and vi = 0 if she
chooses to forgo early vaccination. The person opts for early vaccination if ωi+ei > p. When
ei = 0, there is no perceptual error, and the person chooses early vaccination when the private
benefits exceed private costs. In contrast, when ei < 0, the person makes choices with an
internality: perceived private benefits are smaller than the real benefit she would experience
if vaccinated. The internality leads people to forego early vaccination inappropriately if
wi− p < −ei, so that the perceptual error is larger than the net-of-price true benefit of early
vaccination.8

In the absence of the perceptual error, ωi is the highest price the person would be willing
to pay (WTP) for early vaccination. In other words, ωi is is the person’s true or experienced
WTP for early vaccination. In contrast, ωi+ei represents the person’s decisionWTP, which
is the highest price the person is willing to pay for early vaccination when the perceptual
error – ei – is included in the calculus. We assume the benefits of vaccination are derived
from its effects on the risk of mortality. Suppose that being vaccinated four months early
reduces mortality by m deaths per 100, 000. Then the person’s true or experienced VSL is
V SLEi = ωi

m
. This is a measure of how much wealth the person would be willing to give up in

return for the mortality reduction produced by the vaccine, in the absence of the perceptual
errors.9 When perceptual errors do influence decisions, the person will make choices that

8A perceptual error smaller than −(wi− p) would create a non-binding internality because it would not
change the person’s discrete choice decision outcome. When ei > 0, the perceptual error would lead people
to overvalue the vaccine and could lead some people to opt for vaccination even when the true benefits do
not justify the costs.

9In this framework, we assume that the private benefits a person experiences from the vaccine are derived
only from the way the vaccine reduces the person’s risk of mortality. In practice, the vaccine may produce
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imply a different valuation of mortality risk. In particular, V SLDi = ωi+ei
m

represents the
person’s decision VSL. In the case of an internality, V SLDi < V SLEi implies that people
make choices about risk using a VSL that is too low relative to their true preferences.

In the delayed second dose experiment, the person’s utility is ui(ci+si(ti−µi−ei)), where
si = 1 when the second dose is delayed, ti is transfer payment for delaying, µi is the benefit
from an on-schedule second dose, and ei is the perceptual error. In the absence of perceptual
errors, µi is the smallest transfer that the person would be willing to accept (WTA) in return
for delaying the second dose. When perceptual errors are involved, µi + ei is the smallest
transfer the person would be WTA to delay. When ei < 0, people do not internalize the
full private benefits of the on-schedule second dose. If completing an on-time second dose
reduces the risk of mortality by m deaths per 100, 000, then the person’s experienced VSL
is given by V SLEi = µi

m
. Her decision VSL is V SLDi = µi+ei

m
. An internality manifests as a

lower effective WTA: people are too willing to give up their second dose. They act as if their
VSL is low because V SLDi < V SLEi .

The ratio of decision utility parameters to experience utility parameters provides one way
to measure the degree to which perceptual errors affect the demand for early vaccination
and second doses. Specifically, IEV = ωi+ei

ωi
× 100 expresses the person’s decision WTP as a

percentage of her true WTP for early vaccination. Similarly, IDSD = µi+ei
µi
× 100 represents

the person’s decision WTA as a percentage of her true WTA compensation for delaying the
second dose. Both of these measures will be less than 100 in the case of an internality.

5 Econometric Methods

5.1 Experimental Estimates of WTP, WTA, and VSL

We use the experimental data to construct estimates WTP, WTA, and VSL that are inclusive
of perceptual errors related to Covid-19 vaccines. Let i = 1...NMSN index the participants
in the discrete choice experiments. In the early vaccination experiment, let Vi(p) = 1(ωi +

ei ≥ p) be a binary potential outcome indicating whether the person would choose early
vaccination if the out-of-pocket price was p. As before, ωi represents the person’s true
benefits for earlier vaccination, and ei represents a perceptual error. Then WTPE

i = ωi

other benefits as well. In addition to reducing mortality, it may reduce the risk of non-fatal illness, reduce
the risk of transmitting Covid-19 to another person, and provide a sense of social participation. In principle,
the person’s valuation of the vaccine – ωi is a valuation of the entire bundle of attributes. In this more
complex setting, the VSL would have to be derived by estimating the component of ωi that comes from
mortality risk, holding constant these other attributes. We abstract from that complexity in our analysis.
But we return to the issue of non-mortality benefits of vaccination in the discussion section of the paper.
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is the person’s “experienced WTP”, and WTPD
i = ωi + ei is the person’s “decision WTP”.

Pi is the person’s randomly assigned price offering. Random assignment makes it credible
to assume that price offerings are statistically independent of a person’s true benefits and
perceptual errors regarding vaccination. As a result, each of the five arms of the experiment
uncovers a point along the cumulative distribution function of WTPD

i in the study sample.
To see the argument, consider subjects assigned to the jth arm of the study so that Pi = pj.
One minus the expected value of the realized choice in this arm of the study is:

1− E[Vi|Pi = pj] = 1− E[Vi(pj)|Pi = pj]

= 1− Pr[ωi + ei ≥ pj|Pi = pj]

= 1− Pr[ωi + ei ≥ pj]

= FD
WTP (pj)

The first and second equality replace realized choice outcomes with the underlying struc-
ture. The third equality imposes independence, and the fourth equality follows from the
definition of a cumulative distribution, where FD

WTP (p) = Pr(ωi + ei ≤ p). A parallel argu-
ment applies to the analysis of the Delayed Second Dose experiment. The take-up rates in the
five arms of that study uncover values of FWTAD() at each of the compensation offerings.10

The randomized experimental design provides a credible way to identify several points
along the distributions represented by FWTPD(pj) and FWTAD(tj). We estimate these points
from the data in two different ways. First, we form non-parametric estimates by simply
computing the take-up rates in each arm of the experiment. For instance, ̂FD

WTP (100) =

1−
∑N

i=1 Vi×1(Pi=100)∑N
i=1 1(Pi=100)

is a simple estimator of the share of the population with decision WTP
less than $100. To improve the external validity of the estimated distributions, we also
estimate these sample means using the survey weights. To improve statistical precision, we
also use simple regression models to estimate points along the two CDFs. Specifically, we fit
regressions of take-up on a linear function of price: Vi = α + β × Pi + εi. With estimated
regression coefficients in hand, the height of the CDF can be estimated using fitted values
for each price point of interest. For example, ˜FD

WTP (100) = 1 − (α̂ + β̂ × 100) is a simple
10In this case, we let µi represent the person’s experienced benefit from an on-schedule second dose,

and we let ei represent the perceptual error. Then WTAE
i = µi is the person’s true or experienced WTA

compensation in return for delaying the second dose, and WTAD
i = µi + ei is the person’s decision WTA.

Then FWTAD (t) is the cumulative distribution of decision WTA in the study population. Si(t) is a potential
outcome indicating whether the person chooses to delay the second dose when offered a transfer worth t.
The five arms of the study uncover values of FWTAD () at each of the compensation offerings.
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estimator of fraction of people with decision WTP less than $100. Our preferred approach fits
the models using weighted least squares to incorporate the survey weights, which improves
external validity. We use the same basic approach to estimate the distribution of decision
WTA from the second dose experiments. In practice, the linear regressions provide a very
close correspondence to the sample means but with tighter standard errors. Throughout, we
estimate the distribution of WTPD and WTAD for the whole sample and for three separate
age groups (18-39, 40-64, and 65+) to accommodate age-related differences in Covid-19
mortality (Centers for Disease Control and Prevention, 2021). We also explore heterogeneous
responses that allow the coefficient on price to vary with age, stated vaccine hesitancy, and
geographic variation in the local severity of the epidemic.

To construct estimates of decision VSL in the experiments, we estimate the expected
reduction in fatality risk from being vaccinated four months early. Among all adults in the
US, there were 25.04 Covid-19 deaths per 100, 000 during the four month period between
March 1 and June 30, 2021. Haas et al. (2021) find that the vaccine is 96.7% effective at
preventing Covid-19 deaths.11 Thus, m̂EV = .967 × 25.04 = 24.21 represents the expected
reduction in fatality risk from being vaccinated four months early for all adults.12 We
compute the implied VSL at the price in each arm of the experiment. Specifically, V SLp =
p
ˆmEV

represents the implied decision VSL for a person with WTPD
i = p.

The WTA estimates from the delayed second dose experiment also imply a VSL. To
construct an estimate of the mortality effects of delayed dose, we assume that delaying the
second dose increased expected fatality risks by about 24.7%.13 Pooling all adults, there
were 21.96 Covid-19 deaths per 100, 000 people in the US during the three month window
between March 1 and May 31, 2021. Accordingly, we let m̂DSD = .247 × 21.96 = 5.42 be
the expected increase in fatality risk from delaying the second dose by three months. The
implied VSL at transfer t is V SLp = c

ˆmDSD
. This is the VSL a person would be using if her

WTA compensation for delaying the second dose was exactly equal to $c.

5.2 Benchmark VSL Calculations

The challenge in determining whether people undervalue vaccines due to internalities is that
the experiments do not separately identify the true WTP/WTA parameters and the per-

11This study was conducted in Israel. While the setting is not the same for the respondents in our study,
the time periods are very similar. Their analysis was conducted from January 24 to April 3, 2021.

12We compute corresponding estimates for other age groups by changing the baseline Covid-19 fatality
rates.

13To arrive at this number, we took 96.7% and subtracted 72% using Dagan et al. (2021)’s estimate of
first dose efficacy. This study was conducted in Israel December 20, 2020 to February 1, 2021.
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ceptual errors. To make progress, we compare the experimental estimates with benchmarks
based on external estimates of VSL. Specifically, let V SLHHS represent the point estimate of
VSL that the US Department of Health and Human Services (HHS) uses in its benefit-cost
analyses. If m̂ is the expected reduction in fatality risk from earlier vaccination, then a
person using the standard VSL would be willing to pay ωHHS = V SLHHS× ˆmEV in order to
be vaccinated four months early. Similarly, if ˆmDSD is the increase in fatality risk associated
with delaying the second dose, then a person using the HHS VSL would be willing to accept
νHHS = V SLHHS × ˆmDSD in compensation for delaying the second dose of the vaccine by
three months. With the the benchmark estimates in hand, we measure the degree of under-
valuation due to internalities using the ratio of the approximate median decision WTP to
the implied WTP from the VSL benchmark. These are our empirical analogues to IEV and
IDSD metrics described in the theoretical model. In addition to benchmarks based on the
HHS VSL, we also examine benchmarks based on other external VSL estimates, including
age-adjusted VSLs.

6 Results

Table 3 shows the age, gender, and racial composition of each of the five treatment groups
in the two discrete choice experiments. There are between 343 and 349 people in each
arm of the experiment. The groups are well-balanced on measured covariates, supporting
the stronger assumption that the groups are also well-balanced on unmeasured traits that
determine WTP, WTA, and VSL.
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Table 3: Covariate Balance in the WTP and WTA Experiments

Panel A: WTP Experiment

$50 Offer $100 Offer $200 Offer $500 Offer $1000 Offer

18–39 0.10 0.12 0.07 0.09 0.09
40–64 0.50 0.47 0.55 0.49 0.47
65+ 0.40 0.41 0.38 0.41 0.44
Female 0.37 0.38 0.33 0.41 0.39
White 0.72 0.78 0.80 0.78 0.80
Black 0.07 0.04 0.05 0.07 0.06
Hispanic 0.10 0.08 0.07 0.08 0.06
Asian 0.03 0.04 0.03 0.02 0.03
Other 0.07 0.05 0.05 0.05 0.05

N 345 346 348 349 349

Panel B: WTA Experiment

$5 Offer $10 Offer $50 Offer $100 Offer $200 Offer

18–39 0.09 0.10 0.09 0.08 0.12
40–64 0.48 0.50 0.49 0.54 0.50
65+ 0.43 0.41 0.42 0.38 0.37
Female 0.35 0.34 0.39 0.42 0.37
White 0.77 0.76 0.77 0.80 0.78
Black 0.06 0.07 0.05 0.06 0.06
Hispanic 0.07 0.09 0.07 0.07 0.08
Asian 0.03 0.05 0.04 0.02 0.03
Other 0.07 0.04 0.07 0.05 0.05

N 348 343 345 343 345

Notes: Panel A shows the average of each demographic variable for each of the five price offerings. Panel B shows the
average of each demographic variable for each of the five transfer offerings. The averages are unweighted.
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Figure 3 plots the fraction of participants who preferred to be vaccinated four months
early in each of the five price offering groups. The navy points show the average take-up
rate in each arm of the study, computed using the survey weights. The dashed pink lines
show fitted values from a linear regression of take-up on randomly assigned prices, also
estimated using the survey weights. The top left panel shows the full sample (18+), and the
remaining panels show the results for people 18-39, 40-64, and 65+. In all four age groups,
the proportion of participants who says they would choose early vaccination is falling as out-
of-pocket price rises, and the regressions provide an excellent approximation to the simple
averages. Column 1 of Table 6 shows the estimated intercept and slope from the linear model
for the full sample. The slope on price is 0.0004, which implies that a $100 increase in prices
would reduce vaccine take-up by about 4 percentage points. Column 2 shows estimated
coefficients from a regression of take-up on dummy variables each treatment arm from $100

to $1, 000; the $50 arm is the reference group. Fitted values from these regressions are equal
to the sample means plotted in the graph. The coefficients from the models show that the
vaccine demand was substantively and statistically significantly lower in the higher price
treatment arms. The top panel of Figure 3 shows that – in the overall sample (18+) – the
take-up rate never rises above 0.50. About 42% of the sample chose early vaccination when
assigned a price offering of $50. This implies that $50 represents the 100× (1− .42) = 58th

percentile of the distribution of WTP in our study population. In other words, more than half
of the respondents were willing to pay less than $50 to be vaccinated. The oldest age group
(65+) had higher early vaccine take-up rates than younger age groups; the lone exception
to this pattern is in the $1000 experimental offer where the 18-39 age group had a slightly
higher take-up rate.

Figure 4 shows a parallel set of results from the Delayed Second Dose experiment. This
time, the graphs plot the weighted proportion of participants who said they would be willing
to delay their second dose for three months at each transfer offering. The navy points show
the take-up rates in each arm of the experiment. The dashed pink lines are the fitted values
from the weighted regressions. The lines slope up, which illustrate that more people are
willing to delay the second dose as the transfer on offer increases in value. Table 7 shows
parameter estimates from the linear model and dummy variable specifications for the full
sample.
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Comparing the two experiments suggests that demand for early vaccination (Figure 3)
is more price sensitive than demand for timely second doses (Figure 4). For example, using
the extreme values ($50 and $1000) of the price offerings, the arc price elasticity of demand
for early vaccination is .07−.42

.245
× ($1000−$50

$525
)−1 ≈ −.8, implying that a 10% increase in the

price would reduce take-up of early vaccination by about 8%. In contrast, computed with
the extreme values of $5 and $200, the arc elasticity of delayed second doses was .40−.24

.32
×

($200−$5
$102.50

)−1 ≈ .3. Raising the compensation offer by 10% increases the fraction of people
willing to delay the second dose by 2.6%. As we explained earlier, the results of the clinical
trials and post-market studies, suggest that mortality risk falls by about 24.21 deaths per
100, 000 for the first dose and by about 5.42 deaths per 100, 000 for the second dose. Following
the intuition about the standard (non-behavioral) case in Baicker et al. (2015), we would
have expected demand for the first dose to be more inelastic than demand for the second
dose. The pattern of elasticities across the two experiments suggests that behavioral errors
may play a role in vaccine demand. In addition to being less price sensitive when it comes
to delaying the second dose, people also have lower levels of take-up for delaying the dose at
any price. Fewer than half of the respondents in each age group said they would be willing to
delay the second dose at any of the price offerings. Once again, the oldest age group (65+)
appears to value the vaccines more. Across every experimental offering, the 65+ age group
has a lower proportion of participants willing to delay their second dose.

Table 4 shows our efforts to compare decision utility and experience utility based valu-
ations for the early vaccination experiments. Panel A shows the take-up rates observed in
each arm and age group in the experiment, based on fitted values from the linear regression
models. Subtracting these take-up rates from 1 leads to estimates of the CDF of decison
WTP at each price level. For example, the estimates imply that in the full sample, $50 rep-
resents the 58th percentile of the distribution of decision WTP among adults. For simplicity,
we treat $50 as the approximate median of the decision WTP distribution.

Panel B shows the Covid-19 fatality risk for the adults over 18 population during the
four months following our experiment was about 25.04 per 100, 000 people. Recent work by
Haas et al. (2021) suggests that vaccination reduces the fatality rate by 96.7%, which implies
that being vaccinated four months early would reduce a person’s Covid-19 fatality risk by
24.21 per 100, 000. This is a large reduction in risk overall. However, there are substantial
differences across age groups in the fatality risk reduction associated with early vaccination.
Among people over 65, early vaccination would reduce fatality risk by 78.87 per 100, 000.
But in the 18-39 age group, early vaccination would reduce fatality risk by only 1.74 per
100,000.
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Table 4: Vaccinations, Willingness to pay, Fatality Risk, and Implied Covid-19 VSL Estimates
(Four Month Early Vaccination Experiment)

18+ 18–39 40–64 65+

Panel A: Proportion Who Respond Yes

$50 Experiment 0.42 0.34 0.45 0.59
$100 Experiment 0.41 0.32 0.43 0.56
$200 Experiment 0.37 0.30 0.38 0.51
$500 Experiment 0.26 0.23 0.24 0.35
$1000 Experiment 0.07 0.11 0.01 0.09

Panel B: Covid-19 Fatality Risk

Covid-19 fatalities (from 3/1/2021 - 6/30/2021) 64,577 1,767 18,518 44,292
Population (in millions) 257.94 98.38 105.26 54.30
Covid-19 Fatality Risk (per 100,000) 25.04 1.80 17.59 81.56
96.7% Fatality Risk Reduction (per 100,000) 24.21 1.74 17.01 78.87

Panel C: Implied VSL Estimates (in 2020 millions of dollars)

$50 Experiment Offer $0.21 $2.88 $0.29 $0.06
$100 Experiment Offer $0.41 $5.76 $0.59 $0.13
$200 Experiment Offer $0.83 $11.52 $1.18 $0.25
$500 Experiment Offer $2.07 $28.79 $2.94 $0.63
$1000 Experiment Offer $4.13 $57.58 $5.88 $1.27

Panel D: Expected Median WTP Estimates

HHS Age-Invariant VSL (in 2020 millions of dollars) $11.41 $11.41 $11.41 $11.41
Expected Median WTP Estimate (using invariant VSL) $2,761 $198 $1,940 $8,996
Age-Adjusted VSL (in 2020 millions of dollars) $11.41 $12.62 $9.86 $3.99
Expected Median WTP Estimate (using age-adjusted VSL) $2,761 $219 $1,678 $3,148

Notes: Proportions in Panel A are based on weighted averages of take-up of early vaccination for each price offering and age
group. The population data in Panel B are available at:
https://www.census.gov/data/tables/2020/demo/popest/2020-demographic-analysis-tables.html. The fatality data in Panel
B are available at: https://data.cdc.gov/NCHS/Provisional-COVID-19-Deaths-by-Sex-and-Age/9bhg-hcku/data. The
Implied VSL Estimates in Panel C assume a 96.7% fatality risk reduction (Haas et al. 2021) due to early vaccination by
four months. The Expected Median WTP in Panel D is based off HHS estimates of Age-Invariant and Age-Adjusted VSL.
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Panel C shows the implied VSL estimates for each of the experimental price offerings,
which are constructed by dividing each price by the expected reduction in mortality risk.
Using the full sample of adults, a person who is willing to pay $50 to be vaccinated 4 months
early would be using (implicitly) a VSL of $50

24.21×100,000−1
≈ $210, 000. Likewise, someone

willing to pay $1, 000 for early vaccination would be using a VSL of $4.13 million. Moving
across the columns in Panel C gives implied VSLs for each age group: the reduction in
mortality risk is larger for older people, and so the implied VSL at any price point is falling
with age.

Panel D in Table 4 shows how the implied VSL estimates from the discrete choice exper-
iments compare to more standardized values in the general VSL literature (US Department
of Health and Human Services, 2016; Robinson et al., 2021). The calculations from Panel
B indicate the 18+ age group could reduce their fatality risk by 24.21 per 100,000 by being
vaccinated four months early. How much should someone be willing to pay for this fatality
risk reduction?

HHS recommends using a VSL of $11.41 million for benefit-cost analysis; this number is
a typical point estimate from the better studies in the economics literature. The HHS VSL
implies that people are willing to pay $114.10 to reduce their mortality risk by 1 per 100, 000.
Thus, a person with the HHS VSL would be willing to pay up to $11.41 million×0.0002421 =

$2, 761. Right away, it is clear that a WTP of $2, 761 would be a substantial outlier in the
distribution of WTP implied by our Early Vaccination experiment. As Panel A shows, the
take-up rate in the $50 group was only 42%, implying that median willingness to pay to
be vaccinated four months early was less than $50 in the experiment. Treating $50 as the
median decision WTP and $2, 761 as the median experienced WTP suggests that decision
utility is only $50

$2,761
× 100 ≈ 1.8% of experienced utility. Equivalently, we can measure

undervaluation using the ratio of implied VSL to the HHS VSL produces at the median
WTP. That gives: $210,000

$11,410,000
× 100 ≈ 1.8% of the full HHS VSL.

The implied VSLs shown in Table 4 are below the HHS value of $11.41 million for nearly
all of the age groups and price levels that would occupy a substantial share of the WTP
distribution. And this same basic result holds even when we allow for an age-adjusted
VSL. The age-adjusted calculations indicate the average person should have WTP of $2, 761
with values ranging from $219 for younger people and $3, 148 for the older people. These
benchmark estimates of WTP given conventional VSL numbers are much larger than the
WTP estimates we recovered from the discrete choice experiment. Taken together, our
analysis suggests that the people in our study undervalued the mortality risk reduction
provided by the Covid-19 vaccines by an economically important margin. One interpretation
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is that the WTP derived in the experiment comes from decision utility functions that contain
perceptual errors that lead people to undervalue the vaccine relative to the utility the person
would actually experience from the reduction in risk created by the vaccine. In other words,
the results suggest that there are large internalities associated with the demand for the
Covid-19 vaccine.

Table 5 compares the way people make trade-offs between money and risks in the Delayed
Second Dose experiment. Panel A presents the fraction of respondents who indicated they
would delay the second dose for three months at each level of the randomly assigned transfer,
based on fitted values from the linear regressions. Panel B shows the implied fatality risk from
delaying the second dose caseloads during the March 1, 2021 through May 31, 2021 period
and estimates of second dose efficacy (Haas et al., 2021; Dagan et al., 2021). These figures
imply that delaying the second dose would increase fatality risk by 24.7%, which implies an
additional 5.42 additional deaths per 100, 000 for the overall sample. The expected fatality
increases range from 0.38 per 100, 000 for the 18-39 age group to 17.86 per 100, 000 for people
over age 65.

Panel C shows the VSL estimates implied by each level of compensation for the delay.
The results suggest people use a higher VSL when considering whether to delay the second
dose than when thinking about whether to pay for an earlier first dose. In the overall sample
(18+), the VSL estimates remain well below the HHS standard of $11.4 million at each
transfer level. But the results differ by age. Among people age 18-39, someone with WTA
compensation in the $50 to $200 range is implicitly using a VSL in the range of $13 million
to $53 million. These VSLs are larger than the HHS standard, which suggests people are
actually over valuing the second dose relative to its effects on mortality risk. In contrast,
older adults are too willing to accept compensation for the delay. People over age 65 who
would delay the second dose for even $200 would be using an implicit VSL of about $1.1

million.
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Table 5: Delayed Doses, Willingness to accept, Fatality Risk, and Implied Covid-19 VSL Estimates
(Three Month Second Dose Delay Experiment)

18+ 18–39 40–64 65+

Panel A: Proportion Who Respond Yes

$5 Experiment 0.24 0.30 0.22 0.15
$10 Experiment 0.24 0.30 0.23 0.15
$50 Experiment 0.28 0.33 0.27 0.16
$100 Experiment 0.32 0.36 0.33 0.18
$200 Experiment 0.40 0.43 0.44 0.21

Panel B: Covid-19 Fatality Risk

Covid-19 fatalities (from 3/1/2021 - 5/31/2021) 56,638 1,499 15,872 39,267
Population (in millions) 257.94 98.38 105.26 54.30
Covid-19 Fatality Risk per 100,000 21.96 1.52 15.08 72.31
24.7% Fatality Risk Increase (per 100,000) 5.42 0.38 3.72 17.86

Panel C: Implied VSL Estimates (in 2020 millions of dollars)

$5 Experiment Offer $0.09 $1.33 $0.13 $0.03
$10 Experiment Offer $0.18 $2.66 $0.27 $0.06
$50 Experiment Offer $0.92 $13.29 $1.34 $0.28
$100 Experiment Offer $1.84 $26.57 $2.68 $0.56
$200 Experiment Offer $3.69 $53.14 $5.37 $1.12

Panel D: Expected Median WTA Estimates

HHS Age-Invariant VSL (in 2020 millions of dollars) $11.41 $11.41 $11.41 $11.41
Expected Median WTA Estimate (using invariant VSL) $619 $43 $425 $2,037
Age-Adjusted VSL (in 2020 millions of dollars) $11.41 $12.62 $9.86 $3.99
Expected Median WTA Estimate (using age-adjusted VSL) $619 $47 $367 $713

Notes: Proportions in Panel A are based on weighted averages of willingness to accept payment for the delay of the second
dose for each transfer offering and age group. The population data in Panel B are available at:
https://www.census.gov/data/tables/2020/demo/popest/2020-demographic-analysis-tables.html. The fatality data in Panel
B are available at: https://data.cdc.gov/NCHS/Provisional-COVID-19-Deaths-by-Sex-and-Age/9bhg-hcku/data. The
Implied VSL Estimates in Panel C assume a 24.7% fatality risk increase (Haas et al. 2021; Dagan et al. 2021) due to
delaying the second dose by three months. The Expected Median WTA in Panel D is based off HHS estimates of
Age-Invariant and Age-Adjusted VSL.
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Panel D shows estimates of the WTA compensation for delayed second doses that would
prevail if people used a standard VSL. At the HHS age-invariant VSL, adults (18+) would be
willing to delay the second dose for $619. Panel A shows that about 40% of people would be
willing to delay the second dose for less than $200. If we treat $200 as the (not quite) median
WTA compensation for delaying, then the experiments suggest that the typical person values
the second dose at about $200

$619
×100 ≈ 32% of its full value. However, the VSL benchmark of

WTA compensation for a delayed second dose differs across age groups. People ages 18-39
would be willing to delay the second dose in return for only $43 if they value fatality risks
using the HHS VSL. Treating $200 as the approximate median WTA among 18-39 year olds
suggests that they value the second dose at $200

$43
≈ 4.6 times its true value. In contrast,

adults over age 65 who use the HHS VSL would need a transfer of $2, 037 in order to delay
the second dose willingly.14 Using the age-adjusted VSL figures partially reconciles the gap.
If older adults use an age-adjusted VSL of $3.9 million, they would be willing to delay the
second dose in return for a $713 transfer.

The results from the delayed second dose experiment suggest that people undervalue
the second dose of the vaccine: given the VSL benchmarks, most people in our sample
should require a bigger transfer in order to delay the second dose than their behavior in
the experiment would indicate. However, the discrepancy between the VSL Benchmark
valuation and the experimental results is smaller for the second dose than the first dose.
This may indicate that some form of endowment effect takes hold once people begin a two-
dose regimen. One implication is that inducing people to obtain their first shot is apt to be
more difficult than motivating them to obtain their second dose. Tables A.1 and A.2 in the
Appendix present the same exercise with unweighted predicted responses in Panel A. The
results are not very sensitive to weighting.

We also examined models that allow the responses to the randomly assigned price and
transfer variables to differ by age, self-reported vaccine hesitancy, and the local severity of
the Covid-19 epidemic at the time of the survey. Table 6 shows estimates where the outcome
is a binary variable indicating that the person would opt for early vaccination. The first
column is a weighted linear regression only including price, which matches the pink lines in
Figure 3. In the second column, we include dummies for each price offering (leaving out $50
as the reference category), which matches the blue points in Figure 3. The results in both of
the first two columns indicate take-up is falling in price. The results from the third column

14The experiment does not provide a non-parametric approximation of the median WTA: only 20% of
people over 65 have WTA compensation less than $200, and the extrapolation needed to compute the median
would move well outside the range of the data. Thus, we do not compute a measure of undervaluation or
overvaluation of the second dose for people over age 65.
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of Table 6 show that interest in early vaccination take-up is falling in the price offering for
both younger and older participants. The arc price elasticity of demand for early vaccination
was about -.81 for people under 65 and -2.06 for people over age 65, suggesting that demand
for early vaccination was more sensitive to price among older people.15 The fourth column
allows for heterogeneity by vaccine hesitancy. The non-hesitant group has a higher baseline
demand, and their demand is falling in price. In contrast, demand for early vaccination
among people who are vaccine hesitant is lower and almost flat with respect to price. The
price elasticity of demand is -1.03 among the non-hesitant and .18 (weakly positive but not
statistically different from zero) among the hesitant. One interpretation of these results is
that it may be difficult to motivate a vaccine hesitant population using price instruments.
The fifth column explores the possibility that demand for early vaccination depends on the
prevailing prevalence of Covid-19. We allow the effects of the randomly assigned prices to
vary with the log of the Covid-19 deaths in a person’s zip code. The results provide no
significant evidence that people living in areas with more severe epidemics were more price
responsive.

Table 7 reports results for models where the outcome indicates that the person was
willing to delay the second shot. The third column shows estimates of price responsiveness
among older and younger people. The fraction willing to delay the second dose rises with
the value of the transfer, and the coefficient on the interaction term (Transfer Offer × 65+)
is small and not statistically different from zero. The fourth column shows estimates from
models that allow the effects of the transfer to differ by self-reported vaccine hesitancy.
Among non-hesitant respondents, the fraction who would delay the second dose rises with
the transfer offer and the arc elasticity is .35. But the interaction term (transfer × Hesitant)
is negative and statistically significant. The fraction that agrees to delay the second dose is
actually falling in the transfer offer for the hesitant sample, and the arc elasticity is -.36. This
counter-intuitive result suggests that the hesitant population may be difficult to motivate
using price incentives. The fifth column examines how the effects of transfer offerings on
openness to a delayed second dose depends on prevailing epidemiological conditions. The
results suggest that transfers are more effective at inducing people to delay their second dose
when local epidemiological conditions are more severe: the coefficient on the transfer (main
effect) is positive and significant, and the coefficient on the interaction term (Transfer ×
ln(DeathsPer1000)) is also positive. The arc elasticity for people living in areas at the 20th

15We compute the arc elasticity as ε = (
ˆYmax− ˆYmin

ˆYmid
)× (pmax−pmin

pmid
)−1 where pmax, pmin, and pmid are the

maximum, minimum, and midpoint price or transfer offers, Ŷp is the average predicted value when the price
is set to p, and all other covariates are equal to their means.
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percentile of the distribution of deaths per 1000 is .18. In contrast, among people living in
areas at the 80th percentile of the distribution of deaths, the arc elasticity is .36. Demand
for on-time second doses is more price elastic when the local epidemic is severe than when
the local epidemic is mild. Tables A.3 and A.4 replicate these results with demographic
covariates and show similar results.

7 Discussion

This paper uses discrete choice survey experiments in conjunction with VSL benchmarks to
assess the degree to which people may undervalue the Covid-19 vaccines. The qualitative
pattern of the experimental results is logical. Demand for early vaccination is falling in the
price, while the fraction of people who are willing to delay the second dose rises with the level
of compensation. However, the experiments suggest that people value first and second doses
much less than would be expected given external estimates of the value of a statistical life.
A person making choices using a “typical” VSL would be willing to pay more than $2, 700 to
be vaccinated four months early. The experiment implies median willingness to pay for early
vaccination is less than $50. In other words, the median person values the vaccine at less
than 2% of its “true” value. The level of demand for the vaccine exhibited in the experiment
suggests people are using a VSL of around $210, 000, well below the VSLs found in the
economics literature, which are typically closer to $11 million. The behavioral public finance
literature offers one interpretation of our results: people may exhibit “internalities” when
making choices about Covid-19 vaccination. Internalities that lead people to undervalue the
private benefits of the vaccine offer an explanation for low vaccine take-up that is distinct
from arguments rooted in positive externalities, although it is possible for both internalities
and externalities to occur at the same time.
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Table 6: WTP Regression Results
(1) (2) (3) (4) (5)

Price Offer –0.0004*** –0.0003*** –0.0004*** –0.0004***
(0.0001) (0.0001) (0.0001) (0.0001)

1(price=100) 0.0054
(0.0669)

1(price=200) –0.1461**
(0.0618)

1(price=500) –0.3104***
(0.0529)

1(price=1000) –0.3338***
(0.0597)

65+ 0.2068***
(0.0461)

Price Offer*65+ –0.0002**
(0.0001)

Hesitant –0.4749***
(0.0483)

Price Offer*Hesitant 0.0006***
(0.0001)

ln(Deaths per 1000) –0.0263
(0.0540)

Price Offer*ln(Deaths per 1000) 0.0000
(0.0001)

Constant 0.4429*** 0.4584*** 0.4069*** 0.4536*** 0.4872***
(0.0292) (0.0473) (0.0346) (0.0411) (0.0333)

Mean of Dependent Var 0.3552 0.3552 0.3552 0.2671 0.3586
R-squared 0.0818 0.1029 0.0983 0.1676 0.1070
N 1,672 1,672 1,672 941 1,550

Notes: The dependent variable is equal to 1 if the respondent is willing to pay for the early vaccination offering and zero
otherwise. The symbols *** indicate statistically significant at the one percent level, ** at the five percent level, and * at
the ten percent level. Column 1 presents the simple weighted regression of take-up of early vaccination on price. Column 2
presents a non-parametric version where we include dummy variables for each price offering ($50 is the reference group).
Columns 3-5 include interactions of age, vaccine hesitancy, and logged deaths in the county, respectively.
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Table 7: WTA Regression Results
(1) (2) (3) (4) (5)

Transfer Offer 0.0008*** 0.0009*** 0.0013*** 0.0007**
(0.0003) (0.0003) (0.0004) (0.0003)

1(transfer=10) 0.1067*
(0.0554)

1(transfer=50) 0.1298**
(0.0524)

1(transfer=100) 0.2427***
(0.0554)

1(transfer=200) 0.2027***
(0.0558)

65+ –0.1087***
(0.0379)

Transfer Offer*65+ –0.0006
(0.0004)

Hesitant 0.0439
(0.0780)

Transfer Offer*Hesitant –0.0019**
(0.0008)

ln(Deaths per 1000) –0.0347
(0.0486)

Transfer Offer*ln(Deaths per 1000) 0.0009**
(0.0005)

Constant 0.2348*** 0.1604*** 0.2569*** 0.2474*** 0.2436***
(0.0261) (0.0322) (0.0317) (0.0392) (0.0292)

Mean of Dependent Var 0.2517 0.2517 0.2517 0.2969 0.2532
R-squared 0.0182 0.0325 0.0350 0.0422 0.0344
N 1,667 1,667 1,667 937 1,545

Notes: The dependent variable is equal to 1 if the respondent is willing to accept payment for the delay of the second dose
and zero otherwise. The symbols *** indicate statistically significant at the one percent level, ** at the five percent level,
and * at the ten percent level. Column 1 presents the simple weighted regression of willingness to delay the second dose on
transfer. Column 2 presents a non-parametric version where we include dummy variables for each transfer offering ($5 is the
reference group). Columns 3-5 include interactions of age, vaccine hesitancy, and logged deaths in the county, respectively.
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Our study has important limitations. We interpret our results through the lens of behav-
ioral public finance theories that distinguish between decision utility and experienced utility.
We operationalize the distinction by using the data from the discrete choice experiments to
measure WTP, WTA, and VSL parameters that are derived from people’s decision utility
functions. We try to approximate the same parameters from people’s experienced utility
functions using benchmark VSL calculations from the literature. Although we think this
framework is natural and plausible, we cannot guarantee that these two analytic approaches
map directly to the underlying theoretical constructs. One obvious concern is that our ev-
idence on parameters from the “decision utility” function comes from survey experiments
rather than real world decisions with actual consequences. Stated preference methods like
the ones we use are always controversial. Hausman (2012) summarizes some of the strongest
criticisms of the method. One of the biggest worries is that stated preference approaches
often generate “hypothetical response bias”, which usually induce people to overstate how
much they value a given choice option. For instance, some analysts argue that the upward
bias is severe and that stated preference valuation estimates should be divided by 2 or 3
(Hausman, 2012). It is worth noting that our study does not suggest people overvalue the
vaccine: the main conclusion is they undervalue the vaccine substantially.

Another limitation of our study is that it says little about the source of the internalities
that seem to drive undervaluation. We are not able to explore or disentangle behavioral biases
related to false beliefs, present bias, or salience bias. In addition, the implied VSL and WTP
estimates calculated in this study all assume the WTP values are for personal mortality
risk reduction, which may not be entirely accurate. It is possible that non-fatal valuations
may influence behavior as well (Kniesner and Sullivan, 2020; Robinson et al., 2021). Other
factors such as dread and uncertainty over the negative effects from the vaccine, inaccurate
risk perceptions, anchoring bias, and reservations about jumping the queue may also play a
role in the calculations.

The results of the study suggest people value first and second doses quite differently and
in ways that indicate an internality may be at work. Specifically, we found that people tended
to use a lower (implicit) VSL when deciding whether to pay to be vaccinated early than when
deciding whether to accept compensation for delaying the second dose. This is concerning
since the first dose likely produces a larger effect on mortality risk. The endowment effect is
one possible explanation for this result. Whatever the reason, our results suggest the biggest
hurdle for getting the public vaccinated is "getting them in the door" for their first shot.

Broadly speaking, the results suggest getting a super-majority of the public to become
vaccinated may prove to be extremely difficult. Other research has found small vaccinations
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incentives ($10 or $50) do not appear to work very well with large portions of the population
(Chang et al., 2021). Our results are in line with what these other studies have found. If
policy makers choose to offer financial incentives to vaccinate the unvaccinated, then the
dollar values offered will likely have to be much higher than those offered in previous studies
and particularly high for the extremely vaccine hesitant population. A large share of the
participants in our study appears to have negative WTP for the vaccine. Using regressions
to extrapolate outside the range of our data suggests that about 20% of the sample would
need to be paid more than $950 to be vaccinated early.

As Covid-19 transitions from the pandemic to an endemic disease, it seems likely that
annual Covid-19 vaccination will become an important public health goal. Our research
suggests that – at least at present – internalities may be an important barrier to high levels
of regular vaccination. Further research on public policy responses to vaccine internalities
may help improve social outcomes related to many transmittable diseases going forward.
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Table A.1: Vaccinations, Willingness to pay, Fatality Risk, and Implied COVID-19 VSL Estimates
(Four Month Early Vaccination Experiment)

18+ 18–39 40–64 65+

Panel A: Proportion Who Respond Yes

$50 Experiment 0.51 0.35 0.47 0.59
$100 Experiment 0.48 0.33 0.44 0.57
$200 Experiment 0.44 0.30 0.40 0.52
$500 Experiment 0.29 0.22 0.26 0.36
$1000 Experiment 0.06 0.08 0.02 0.10

Panel B: Covid-19 Fatality Risk

Covid-19 fatalities (from 3/1/2021 - 6/30/2021) 64,577 1,767 18,518 44,292
Population (in millions) 257.94 98.38 105.26 54.30
Covid-19 Fatality Risk (per 100,000) 25.04 1.80 17.59 81.56
96.7% Fatality Risk Reduction (per 100,000) 24.21 1.74 17.01 78.87

Panel C: Implied VSL Estimates (in 2020 millions of dollars)

$50 Experiment Offer $0.21 $2.88 $0.29 $0.06
$100 Experiment Offer $0.41 $5.76 $0.59 $0.13
$200 Experiment Offer $0.83 $11.52 $1.18 $0.25
$500 Experiment Offer $2.07 $28.79 $2.94 $0.63
$1000 Experiment Offer $4.13 $57.58 $5.88 $1.27

Panel D: Expected Median WTP Estimates using HHS Values

HHS Age-Invariant VSL (in 2020 millions of dollars) $11.41 $11.41 $11.41 $11.41
Expected Median WTP Estimate (using invariant VSL) $2,761 $198 $1,940 $8,996
HHS Age-Adjusted VSL (in 2020 millions of dollars) $11.41 $12.62 $9.86 $3.99
Expected Median WTP Estimate (using age-adjusted VSL) $2,761 $219 $1,678 $3,148

Notes: Proportions in Panel A are based on unweighted averages of take-up of early vaccination for each price offering and
age group. The population data in Panel B are available at:
https://www.census.gov/data/tables/2020/demo/popest/2020-demographic-analysis-tables.html. The fatality data in Panel
B are available at: https://data.cdc.gov/NCHS/Provisional-COVID-19-Deaths-by-Sex-and-Age/9bhg-hcku/data. The
Implied VSL Estimates in Panel C assume a 96.7% fatality risk reduction (Haas et al. 2021) due to early vaccination by
four months. The Expected Median WTP in Panel D is based off HHS estimates of Age-Invariant and Age-Adjusted VSL.
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Table A.2: Delayed Doses, Willingness to accept, Fatality Risk, and Implied COVID-19 VSL Estimates
(Three Month Second Dose Delay Experiment)

18+ 18–39 40–64 65+

Panel A: Proportion Who Respond Yes

$5 Experiment 0.20 0.33 0.22 0.15
$10 Experiment 0.20 0.33 0.22 0.15
$50 Experiment 0.23 0.34 0.27 0.17
$100 Experiment 0.27 0.36 0.32 0.19
$200 Experiment 0.35 0.38 0.43 0.23

Panel B: Covid-19 Fatality Risk

Covid-19 fatalities (from 3/1/2021 - 5/31/2021) 56,638 1,499 15,872 39,267
Population (in millions) 257.94 98.38 105.26 54.30
Covid-19 Fatality Risk per 100,000 21.96 1.52 15.08 72.31
24.7% Fatality Risk Increase (per 100,000) 5.42 0.38 3.72 17.86

Panel C: Implied VSL Estimates (in 2020 millions of dollars)

$5 Experiment Offer $0.09 $1.33 $0.13 $0.03
$10 Experiment Offer $0.18 $2.66 $0.27 $0.06
$50 Experiment Offer $0.92 $13.29 $1.34 $0.28
$100 Experiment Offer $1.84 $26.57 $2.68 $0.56
$200 Experiment Offer $3.69 $53.14 $5.37 $1.12

Panel D: Expected Median WTA Estimates using HHS Values

HHS Age-Invariant VSL (in 2020 millions of dollars) $11.41 $11.41 $11.41 $11.41
Expected Median WTA Estimate (using invariant VSL) $619 $43 $425 $2,037
HHS Age-Adjusted VSL (in 2020 millions of dollars) $11.41 $12.62 $9.86 $3.99
Expected Median WTA Estimate (using age-adjusted VSL) $619 $47 $367 $713

Notes: Proportions in Panel A are based on unweighted averages of willingness to accept payment for the delay of the
second dose for each transfer offering and age group. The population data in Panel B are available at:
https://www.census.gov/data/tables/2020/demo/popest/2020-demographic-analysis-tables.html. The fatality data in Panel
B are available at: https://data.cdc.gov/NCHS/Provisional-COVID-19-Deaths-by-Sex-and-Age/9bhg-hcku/data. The
Implied VSL Estimates in Panel C assume a 24.7% fatality risk increase (Haas et al. 2021; Dagan et al. 2021) due to
delaying the second dose by three months. The Expected Median WTA in Panel D is based off HHS estimates of
Age-Invariant and Age-Adjusted VSL.
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Table A.3: Full WTP Regression Results
(1) (2) (3) (4) (5)

Price Offer –0.0004*** –0.0004*** –0.0004*** –0.0004***
(0.0001) (0.0001) (0.0001) (0.0001)

1(price=100) –0.0007
(0.0654)

1(price=200) –0.1689***
(0.0600)

1(price=500) –0.3204***
(0.0492)

1(price=1000) –0.3482***
(0.0593)

65+ 0.1349*** 0.1425*** 0.1995*** 0.0213 0.0992**
(0.0421) (0.0414) (0.0544) (0.0441) (0.0473)

Price Offer*65+ –0.0002**
(0.0001)

Hesitant –0.4655***
(0.0509)

Price Offer*Hesitant 0.0006***
(0.0001)

ln(Deaths per 1000) –0.0220
(0.0522)

Price Offer*ln(Deaths per 1000) 0.0000
(0.0001)

40–64 0.0300 0.0417 0.0293 0.0353 –0.0026
(0.0409) (0.0399) (0.0408) (0.0394) (0.0465)

Female –0.0391 –0.0425 –0.0392 –0.0639 –0.0116
(0.0358) (0.0354) (0.0357) (0.0424) (0.0352)

Black –0.0813 –0.0784 –0.0825 –0.0608 –0.1337*
(0.0670) (0.0663) (0.0659) (0.0705) (0.0696)

Hispanic –0.0495 –0.0473 –0.0479 –0.1145** –0.0687
(0.0557) (0.0544) (0.0557) (0.0549) (0.0588)

Other Race –0.0545 –0.0636 –0.0543 0.0012 –0.0077
(0.0675) (0.0668) (0.0673) (0.0697) (0.0781)

Constant 0.4576*** 0.4763*** 0.4463*** 0.4994*** 0.5038***
(0.0458) (0.0586) (0.0478) (0.0560) (0.0515)

Mean of Dependent Var 0.3552 0.3552 0.3552 0.2671 0.3586
R-squared 0.1035 0.1265 0.1061 0.1868 0.1280
N 1,672 1,672 1,672 941 1,550

Notes: The dependent variable is equal to 1 if the respondent is willing to pay for the early vaccination offering and zero otherwise. The symbols
*** indicate statistically significant at the one percent level, ** at the five percent level, and * at the ten percent level. Column 1 presents the
simple weighted regression of take-up of early vaccination on price. Column 2 presents a non-parametric version where we include dummy
variables for each price offering ($50 is the reference group). Columns 3-5 include interactions of age, vaccine hesitancy, and logged deaths in the
county, respectively. This table presents results similar to Table 6 but for regressions which include covariates.
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Table A.4: Full WTA Regression Results
(1) (2) (3) (4) (5)

Transfer Offer 0.0008*** 0.0009*** 0.0012*** 0.0006**
(0.0003) (0.0003) (0.0004) (0.0003)

1(transfer=10) 0.1026*
(0.0547)

1(transfer=50) 0.1364***
(0.0528)

1(transfer=100) 0.2403***
(0.0552)

1(transfer=200) 0.1905***
(0.0545)

65+ –0.1914*** –0.1968*** –0.1532*** –0.1602*** –0.2124***
(0.0438) (0.0436) (0.0511) (0.0538) (0.0495)

Transfer Offer*65+ –0.0005
(0.0004)

Hesitant 0.0286
(0.0771)

Transfer Offer*Hesitant –0.0018**
(0.0008)

ln(Deaths per 1000) –0.0315
(0.0487)

Transfer Offer*ln(Deaths per 1000) 0.0009*
(0.0005)

40–64 –0.0602 –0.0676 –0.0597 –0.0593 –0.0845*
(0.0446) (0.0444) (0.0446) (0.0491) (0.0508)

Female 0.0096 0.0053 0.0086 –0.0341 0.0351
(0.0371) (0.0368) (0.0371) (0.0464) (0.0371)

Black 0.0463 0.0460 0.0465 0.0796 0.0293
(0.0713) (0.0700) (0.0711) (0.0913) (0.0749)

Hispanic –0.0793 –0.0745 –0.0789 –0.1693*** –0.0763
(0.0595) (0.0586) (0.0595) (0.0623) (0.0638)

Other Race –0.0885 –0.0902 –0.0874 –0.1075 –0.0859
(0.0649) (0.0649) (0.0650) (0.0771) (0.0739)

Constant 0.3107*** 0.2401*** 0.3041*** 0.3439*** 0.3231***
(0.0498) (0.0537) (0.0513) (0.0622) (0.0544)

Mean of Dependent Var 0.2517 0.2517 0.2517 0.2969 0.2532
R-squared 0.0449 0.0598 0.0460 0.0796 0.0677
N 1,667 1,667 1,667 937 1,545

Notes: The dependent variable is equal to 1 if the respondent is willing to accept payment for the delay of the second dose and zero otherwise.
The symbols *** indicate statistically significant at the one percent level, ** at the five percent level, and * at the ten percent level. Column 1
presents the simple weighted regression of willingness to delay the second dose on transfer. Column 2 presents a non-parametric version where we
include dummy variables for each transfer offering ($5 is the reference group). Columns 3-5 include interactions of age, vaccine hesitancy, and
logged deaths in the county, respectively. This table presents results similar to Table 7 but for regressions which include covariates.

41



References
Aldy, J. E. and W. K. Viscusi (2008). Adjusting the value of a statistical life for age and
cohort effects. The Review of Economics and Statistics 90 (3), 573–581.

Allcott, H. (2013). The welfare effects of misperceived product costs: Data and calibrations
from the automobile market. American Economic Journal: Economic Policy 5 (3), 30–66.

Allcott, H. and C. Knittel (2019). Are consumers poorly informed about fuel economy?
evidence from two experiments. American Economic Journal: Economic Policy 11 (1),
1–37.

Allcott, H., S. Mullainathan, and D. Taubinsky (2014). Energy policy with externalities and
internalities. Journal of Public Economics 112, 72–88.

Alolayan, M. A., J. S. Evans, and J. K. Hammitt (2017). Valuing mortality risk in
kuwait: Stated-preference with a new consistency test. Environmental and Resource Eco-
nomics 66 (4), 629–646.

Armey, L. E., T. Kniesner, J. D. Leeth, and R. S. Sullivan (2021). Combat, casualties,
and compensation: Evidence from iraq and afghanistan. Contemporary Economic Policy ,
Forthcoming.

Arshad, M. S., I. Hussain, T. Mahmood, K. Hayat, A. Majeed, I. Imran, H. Saeed, M. O.
Iqbal, M. Uzair, W. Ashraf, et al. (2021). A national survey to assess the covid-19 vaccine-
related conspiracy beliefs, acceptability, preference, and willingness to pay among the
general population of pakistan. Vaccines 9 (7), 720.

Baicker, K., S. Mullainathan, and J. Schwartzstein (2015). Behavioral hazard in health
insurance. The Quarterly Journal of Economics 130 (4), 1623–1667.

Banik, R., M. Islam, M. U. R. Pranta, Q. M. Rahman, M. Rahman, S. Pardhan, R. Driscoll,
S. Hossain, M. Sikder, et al. (2021). Understanding the determinants of covid-19 vac-
cination intention and willingness to pay: findings from a population-based survey in
bangladesh. BMC Infectious Diseases 21 (1), 1–15.

Carpio, C. E., I. A. Coman, O. Sarasty, and M. García (2021). Covid-19 vaccine demand
and financial incentives. Applied Health Economics and Health Policy , 1–13.

Carpio, C. E., O. Sarasty, D. Hudson, A. Macharia, and M. Shibia (2021). The demand for
a covid-19 vaccine in kenya. Human Vaccines & Immunotherapeutics 17 (10), 3463–3471.

Catma, S. and D. Reindl (2021). Parents’ willingness to pay for a covid-19 vaccine for them-
selves and their children in the united states. Human Vaccines & Immunotherapeutics ,
1–7.

Catma, S. and S. Varol (2021). Willingness to pay for a hypothetical covid-19 vaccine in the
united states: A contingent valuation approach. Vaccines 9 (4), 318.

42



Centers for Disease Control and Prevention (2021). Provisional covid-19 death counts by
sex, age, and state.

Cerda, A. A. and L. Y. García (2021). Willingness to pay for a covid-19 vaccine. Applied
health economics and health policy 19 (3), 343–351.

Chandra, A., J. Gruber, and R. McKnight (2010). Patient cost-sharing and hospitalization
offsets in the elderly. American Economic Review 100 (1), 193–213.

Chang, T., M. Jacobson, M. Shah, R. Pramanik, and S. B. Shah (2021). Financial incen-
tives and other nudges do not increase covid-19 vaccinations among the vaccine hesitant.
Technical report, National Bureau of Economic Research.

Chetty, R., A. Looney, and K. Kroft (2009). Salience and taxation: Theory and evidence.
American economic review 99 (4), 1145–77.

Chilton, S., M. Jones-Lee, F. Kiraly, H. Metcalf, and W. Pang (2006). Dread risks. Journal
of Risk and Uncertainty 33 (3), 165–182.

Choudhry, N. K., J. Avorn, R. J. Glynn, E. M. Antman, S. Schneeweiss, M. Toscano, L. Reis-
man, J. Fernandes, C. Spettell, J. L. Lee, et al. (2011). Full coverage for preventive medica-
tions after myocardial infarction. New England Journal of Medicine 365 (22), 2088–2097.

Costa-Font, J., C. Rudisill, S. Harrison, and L. Salmasi (2021). The social value of a sars-
cov-2 vaccine: Willingness to pay estimates from four western countries.

Council of Economic Advisors (2019). Mitigating the impact of pandemic influenza through
vaccine innovation. washington, dc: Executive office of the president of the united states.

Cutler, D. M. and R. J. Zeckhauser (2000). The anatomy of health insurance. In Handbook
of health economics, Volume 1, pp. 563–643. Elsevier.

Dagan, N., N. Barda, E. Kepten, O. Miron, S. Perchik, M. A. Katz, M. A. Hernán, M. Lip-
sitch, B. Reis, and R. D. Balicer (2021). Bnt162b2 mrna covid-19 vaccine in a nationwide
mass vaccination setting. New England Journal of Medicine 384 (15), 1412–1423.

De Blaeij, A., R. J. Florax, P. Rietveld, and E. Verhoef (2003). The value of statistical life
in road safety: a meta-analysis. Accident Analysis & Prevention 35 (6), 973–986.

Dixon, B. E., S. Mukherjee, A. Wiensch, M. L. Gray, J. M. L. Ferres, and S. J. Grannis
(2021). Capturing covid-19-like symptoms at scale using banner ads on an online news
platform: Pilot survey study. J Med Internet Res 23 (5), e24742.

Eeckhoudt, L. R. and J. K. Hammitt (2001). Background risks and the value of a statistical
life. Journal of risk and uncertainty 23 (3), 261–279.

Eeckhoudt, L. R. and J. K. Hammitt (2004). Does risk aversion increase the value of mortality
risk? Journal of Environmental Economics and Management 47 (1), 13–29.

43



Einav, L. and A. Finkelstein (2018). Moral hazard in health insurance: what we know and
how we know it. Journal of the European Economic Association 16 (4), 957–982.

Elvik, R. (1995). A meta-analysis of value of life estimates for occupational and transport
safety. Institute of Transport Economics, Oslo.

Environmental Protection Agency (2010). Mortality risk valuation estimates.

Ferguson, N., D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia,
A. Boonyasiri, Z. Cucunuba Perez, G. Cuomo-Dannenburg, A. Dighe, and I. Dorigatti
(2020). Impact of non-pharmaceutical interventions (npis) to reduce covid-19 mortality
and healthcare demand.

García, L. Y. and A. A. Cerda (2020). Contingent assessment of the covid-19 vaccine.
Vaccine 38 (34), 5424–5429.

Gayer, T., J. T. Hamilton, and W. K. Viscusi (2000). Private values of risk tradeoffs at
superfund sites: housing market evidence on learning about risk. Review of Economics
and Statistics 82 (3), 439–451.

Godói, I. P. D., T. T. R. Sarmento, E. A. Reis, L. P. Gargano, B. Godman, F. d. A. Acurcio,
J. Alvares-Teodoro, A. A. Guerra Júnior, and C. M. Ruas (2021). Acceptability and
willingness to pay for a hypothetical vaccine against sars cov-2 by the brazilian consumer:
a cross-sectional study and the implications. Expert Review of Pharmacoeconomics &
Outcomes Research (just-accepted).

Goruntla, N., S. H. Chintamani, P. Bhanu, S. Samyuktha, K. V. Veerabhadrappa, P. Bhu-
palam, J. D. Ramaiah, et al. (2021). Predictors of acceptance and willingness to pay for
the covid-19 vaccine in the general public of india: A health belief model approach. Asian
Pacific Journal of Tropical Medicine 14 (4), 165.

Greenstone, M. and V. Nigam (2020). Does social distancing matter? University of Chicago,
Becker Friedman Institute for Economics Working Paper (2020-26).

Gupta, S., J. Cantor, K. I. Simon, A. I. Bento, C. Wing, and C. M. Whaley (2021). Vac-
cinations against covid-19 may have averted up to 140,000 deaths in the united states:
Study examines role of covid-19 vaccines and deaths averted in the united states. Health
Affairs 40 (9), 1465–1472.

Gyrd-Hansen, D., P. A. Halvorsen, and I. S. Kristiansen (2008). Willingness-to-pay for a
statistical life in the times of a pandemic. Health Economics 17 (1), 55–66.

Haas, E. J., F. J. Angulo, J. M. McLaughlin, E. Anis, S. R. Singer, F. Khan, N. Brooks,
M. Smaja, G. Mircus, K. Pan, et al. (2021). Impact and effectiveness of mrna bnt162b2
vaccine against sars-cov-2 infections and covid-19 cases, hospitalisations, and deaths fol-
lowing a nationwide vaccination campaign in israel: an observational study using national
surveillance data. The Lancet 397 (10287), 1819–1829.

44



Hammitt, J. K. (2020). Valuing mortality risk in the time of covid-19. Journal of Risk and
Uncertainty 61 (2), 129–154.

Hammitt, J. K. and J.-T. Liu (2004). Effects of disease type and latency on the value of
mortality risk. Journal of Risk and Uncertainty 28 (1), 73–95.

Hammitt, J. K. and L. A. Robinson (2011). The income elasticity of the value per statistical
life: transferring estimates between high and low income populations. Journal of Benefit-
Cost Analysis 2 (1), 1–29.

Han, K., M. R. Francis, R. Zhang, Q. Wang, A. Xia, L. Lu, B. Yang, and Z. Hou (2021).
Confidence, acceptance and willingness to pay for the covid-19 vaccine among migrants in
shanghai, china: A cross-sectional study. Vaccines 9 (5), 443.

Harapan, H., A. L. Wagner, A. Yufika, W. Winardi, S. Anwar, A. K. Gan, A. M. Setiawan,
Y. Rajamoorthy, H. Sofyan, T. Q. Vo, et al. (2020). Willingness-to-pay for a covid-19
vaccine and its associated determinants in indonesia. Human vaccines & immunothera-
peutics 16 (12), 3074–3080.

Hausman, J. (2012). Contingent valuation: from dubious to hopeless. Journal of economic
perspectives 26 (4), 43–56.

HUD Policy Development and Research (2021). Hud usps zip
code crosswalk files. Data retrieved September 2021 from
https://www.huduser.gov/portal/datasets/uspscrosswalk.htmla.

Jones-Lee, M. W. and G. Loomes (1995). Scale and context effects in the valuation of
transport safety. Journal of Risk and Uncertainty 11 (3), 183–203.

Jung, J., J. Manley, and V. Shrestha (2021). Coronavirus infections and deaths by poverty
status: The effects of social distancing. Journal of economic behavior & organization 182,
311–330.

Kabir, R., I. Mahmud, M. T. H. Chowdhury, D. Vinnakota, S. Saif Jahan, N. Siddika, S. N.
Isha, S. K. Nath, and E. Hoque Apu (2021). Covid-19 vaccination intent and willingness
to pay in bangladesh: A cross-sectional study. Vaccines 9 (5), 416.

Kaplow, L. (2005). The value of a statistical life and the coefficient of relative risk aversion.
Journal of Risk and Uncertainty 31 (1), 23–34.

Kniesner, T. J., J. D. Leeth, and R. S. Sullivan (2015). A new approach to evaluate safety and
force protection investments. Military cost-benefit analysis: Theory and practice, 237–260.

Kniesner, T. J. and R. Sullivan (2020). The forgotten numbers: A closer look at covid-19
non-fatal valuations. Journal of Risk and Uncertainty 61 (2), 155–176.

Kniesner, T. J. and W. K. Viscusi (2019). The value of a statistical life. Oxford Research
Encyclopedia of Economics and Finance, 19–15.

45



Kniesner, T. J., W. K. Viscusi, C. Woock, and J. P. Ziliak (2012). The value of a statistical
life: Evidence from panel data. Review of Economics and Statistics 94 (1), 74–87.

Kniesner, T. J., W. K. Viscusi, and J. P. Ziliak (2006). Life-cycle consumption and the
age-adjusted value of life. Contributions in Economic Analysis & Policy 5 (1).

Kniesner, T. J., W. K. Viscusi, and J. P. Ziliak (2010). Policy relevant heterogeneity in the
value of statistical life: new evidence from panel data quantile regressions. Journal of Risk
and Uncertainty 40 (1), 15–31.

Leeth, J. D. and J. Ruser (2003). Compensating wage differentials for fatal and nonfatal
injury risk by gender and race. Journal of Risk and Uncertainty 27 (3), 257–277.

Lin, Y., Z. Hu, Q. Zhao, H. Alias, M. Danaee, and L. P. Wong (2020). Understanding covid-
19 vaccine demand and hesitancy: A nationwide online survey in china. PLoS neglected
tropical diseases 14 (12), e0008961.

Lindhjem, H., S. Navrud, N. A. Braathen, and V. Biausque (2011). Valuing mortality risk
reductions from environmental, transport, and health policies: A global meta-analysis of
stated preference studies. Risk Analysis: An International Journal 31 (9), 1381–1407.

Liu, J.-T., J. K. Hammitt, J.-D. Wang, and M.-W. Tsou (2005). Valuation of the risk of sars
in taiwan. Health Economics 14 (1), 83–91.

Lohr, K. N., R. H. Brook, C. J. Kamberg, G. A. Goldberg, A. Leibowitz, J. Keesey, D. Re-
boussin, and J. P. Newhouse (1986). Use of medical care in the rand health insurance
experiment: diagnosis-and service-specific analyses in a randomized controlled trial. Med-
ical care 24 (9), S1–S87.

Masterman, C. J. and W. K. Viscusi (2018). The income elasticity of global values of a
statistical life: stated preference evidence. Journal of Benefit-Cost Analysis 9 (3), 407–
434.

McDonald, R. L., S. M. Chilton, M. W. Jones-Lee, and H. R. Metcalf (2016). Dread and
latency impacts on a vsl for cancer risk reductions. Journal of Risk and Uncertainty 52 (2),
137–161.

Mullainathan, S., J. Schwartzstein, and W. J. Congdon (2012). A reduced-form approach to
behavioral public finance. Annu. Rev. Econ. 4 (1), 511–540.

Murphy, K. M. and R. H. Topel (2006). The value of health and longevity. Journal of
political Economy 114 (5), 871–904.

Nguyen, L. H., M. T. Hoang, L. D. Nguyen, L. T. Ninh, H. T. T. Nguyen, A. D. Nguyen,
L. G. Vu, G. T. Vu, L. P. Doan, C. A. Latkin, et al. (2021). Acceptance and willingness
to pay for covid-19 vaccines among pregnant women in vietnam. Tropical Medicine &
International Health.

46



Pauly, M. V. (1968). The economics of moral hazard: comment. The american economic
review 58 (3), 531–537.

Riddel, M. and W. D. Shaw (2006). A theoretically-consistent empirical model of non-
expected utility: An application to nuclear-waste transport. Journal of Risk and Uncer-
tainty 32 (2), 131–150.

Robinson, L. A., M. Eber, and J. Hammitt (2021). Valuing covid-19 mortality and morbidity
risk reductions.

Robinson, L. A. and J. K. Hammitt (2016). Valuing reductions in fatal illness risks: Impli-
cations of recent research. Health Economics 25 (8), 1039–1052.

Robinson, L. A., J. K. Hammitt, J. E. Aldy, A. Krupnick, and J. Baxter (2010). Valuing
the risk of death from terrorist attacks. Journal of Homeland Security and Emergency
Management 7 (1).

Robinson, L. A., R. Sullivan, and J. F. Shogren (2021). Do the benefits of covid-19 policies
exceed the costs? exploring uncertainties in the age–vsl relationship. Risk Analysis 41 (5),
761–770.

Rohlfs, C., R. Sullivan, and T. Kniesner (2015). New estimates of the value of a statistical life
using air bag regulations as a quasi-experiment. American Economic Journal: Economic
Policy 7 (1), 331–59.

Sarasty, O., C. E. Carpio, D. Hudson, P. A. Guerrero-Ochoa, and I. Borja (2020). The
demand for a covid-19 vaccine in ecuador. Vaccine 38 (51), 8090–8098.

Shitu, K., M. Wolde, S. Handebo, and A. Kassie (2021). Acceptance and willingness to pay
for covid-19 vaccine among school teachers in gondar city, northwest ethiopia. Tropical
medicine and health 49 (1), 1–12.

The New York Times (2021). Coronavirus (covid-19) data in the united
states. Data retrieved September 2021 from https://github.com/nytimes/covid-19-
datahttps://github.com/nytimes/covid-19-data.

US Department of Health and Human Services (2016). Guidelines for regulatory impact
analysis.

US Department of Transportation (2016). Revised departmental guidance on valuation of a
statistical life in economic analysis.

Viscusi, W. K. (1993). The value of risks to life and health. Journal of economic litera-
ture 31 (4), 1912–1946.

Viscusi, W. K. (2018). Pricing lives: Guideposts for a safer society. Princeton University
Press.

47



Viscusi, W. K. (2019a). The mortality cost metric for the costs of war. Peace Economics,
Peace Science and Public Policy 25 (3).

Viscusi, W. K. (2019b). Utility functions for mild and severe health risks. Journal of Risk
and Uncertainty 58 (2), 143–166.

Viscusi, W. K. (2020a). Efficient ethical principles for making fatal choices. Notre Dame L.
Rev. 96, 1461.

Viscusi, W. K. (2020b). Pricing the global health risks of the covid-19 pandemic. Journal
of Risk and Uncertainty 61 (2), 101–128.

Viscusi, W. K. (2021a). Economic lessons for covid-19 pandemic policies. Southern Economic
Journal 87 (4), 1064–1089.

Viscusi, W. K. (2021b). Extending the domain of the value of a statistical life. Journal of
Benefit-Cost Analysis 12 (1), 1–23.

Viscusi, W. K. and J. E. Aldy (2003). The value of a statistical life: a critical review of
market estimates throughout the world. Journal of risk and uncertainty 27 (1), 5–76.

Viscusi, W. K. and J. E. Aldy (2007). Labor market estimates of the senior discount for
the value of statistical life. Journal of Environmental Economics and Management 53 (3),
377–392.

Viscusi, W. K., J. Huber, and J. Bell (2014). Assessing whether there is a cancer premium
for the value of a statistical life. Health economics 23 (4), 384–396.

Viscusi, W. K. and C. Masterman (2017a). Anchoring biases in international estimates of
the value of a statistical life. Journal of Risk and Uncertainty 54 (2), 103–128.

Viscusi, W. K. and C. J. Masterman (2017b). Income elasticities and global values of a
statistical life. Journal of Benefit-Cost Analysis 8 (2), 226–250.

Vo, N. X., T. T. H. Nguyen, P. Van Nguyen, Q. V. Tran, and T. Q. Vo (2021). Using
contingent valuation method to estimate adults’ willingness to pay for a future coronavirus
2019 vaccination. Value in health regional issues 24, 240–246.

Wang, J., Y. Lyu, H. Zhang, R. Jing, X. Lai, H. Feng, M. D. Knoll, and H. Fang (2021). Will-
ingness to pay and financing preferences for covid-19 vaccination in china. Vaccine 39 (14),
1968–1976.

Wong, L. P., H. Alias, P.-F. Wong, H. Y. Lee, and S. AbuBakar (2020). The use of the health
belief model to assess predictors of intent to receive the covid-19 vaccine and willingness
to pay. Human vaccines & immunotherapeutics 16 (9), 2204–2214.

Zhang, Y., X. Luo, and Z. F. Ma (2021). Willingness of the general population to accept and
pay for covid-19 vaccination during the early stages of covid-19 pandemic: a nationally
representative survey in mainland china. Human Vaccines & Immunotherapeutics 17 (6),
1622–1627.

48




