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1 Introduction

Consider a linear regression of an outcome Yi on a vector of mutually exclusive treatment

indicatorsXi and a vector of flexible controlsWi. The treatments are assumed to be as good as

randomly assigned, conditional on the controls. For example, Xi may indicate the assignment

of individuals i to different interventions in a stratified randomized control trial (RCT), with

the randomization protocol varying across some experimental strata indicators in Wi. Or,

in an education value-added model (VAM), Xi might indicate the matching of students i

to different teachers or schools with Wi including measures of student demographics, lagged

achievement, or other controls which yield a credible selection-on-observables assumption. The

regression might also be the first stage of an instrumental variables (IV) regression, perhaps

leveraging the as-good-as-random assignment of multiple decision-makers (e.g. bail judges

or benefit administrators) indicated in Xi, conditional on some controls Wi. These sorts of

regressions are widely used across many fields in economics.1

This paper shows that such multiple-treatment regressions generally fail to identify convex

weighted averages of heterogeneous treatment effects, and discusses solutions to this problem.

The problem may be surprising given an influential result in Angrist (1998), showing that

regressions on a single binary treatmentDi and flexible controlsWi estimate a convex weighted

average of treatment effects whenever Di is conditionally as good as randomly assigned. We

show that this result does not generalize to multiple treatments. Despite a set of treatments

being completely randomly assigned within groups, as in a stratified multi-armed RCT, a

regression on treatment and strata indicators generally fails to yield causally interpretable

regression coefficients. Instead, regression estimates of each treatment’s effect are generally

contaminated by a non-convex average of the effects of other treatments: the regression

coefficient for a given RCT treatment arm generally incorporates the effects of all arms.

We first derive a general characterization of this “contamination bias” in multiple-treatment

regressions. To separate the problem from the well-known challenge of omitted variables

bias (OVB), we assume a best-case scenario where the covariate parametrization is flexible

enough to include the treatment propensity scores (e.g., with a linear covariate adjustment,

we assume that the propensity scores are linear in the covariates). This condition holds triv-

ially if the only covariates are strata indicators. We show that the regression coefficient on

each treatment identifies a convex weighted average of its causal effects, plus a contamination

1Prominent RCT examples where randomization probabilities vary across strata include Project STAR
(Krueger, 1999) and the RAND Health Insurance Experiment (Manning et al., 1987). Prominent VAM
examples include studies of teachers (Kane & Staiger, 2008; Chetty et al., 2014), schools (Angrist et al., 2017;
Angrist et al., 2021; Mountjoy & Hickman, 2020), and healthcare institutions (Hull, 2018a; Abaluck et al.,
2021; Geruso et al., 2020). Prominent “judge IV” examples include Kling (2006), Maestas et al. (2013), and
Dobbie and Song (2015).
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bias term that is generally non-zero. The bias term is given by a linear combination of the

causal effects of other treatments, with weights that sum to zero. As a result, each treatment

effect estimate will generally incorporate the effects of other treatments, unless the effects are

uncorrelated with the contamination weights. Since the contamination weights sum to zero,

some are necessarily negative—further complicating the interpretation of the coefficients.

Contamination bias arises because regression adjustment for the confounders in Wi is

generally insufficient for making the other treatments ignorable when estimating a given

treatment’s effect, even when this adjustment is flexible enough to avoid OVB. To see this

intuition clearly, consider the most flexible specification of controls as a set of strata indica-

tors. OVB is avoided when the treatments are as good as randomly assigned within strata.

But because the treatments enter the regression linearly, the Angrist (1998) result implies

that the causal interpretation of a given treatment’s coefficient is only guaranteed when its

assignment depends linearly on both the strata indicators and the other treatment indicators.

With mutually exclusive treatments, this condition fails because the dependence is inherently

nonlinear—the probability of assignment to a given treatment is zero if an individual is as-

signed to one of the other treatments, regardless of their stratum, but strata indicators affect

the treatment probability otherwise. Such dependence generates contamination bias.

Contamination bias also arises under an alternative “model-based” identifying assump-

tion that, instead of making assumptions on the treatment’s “design” (i.e. propensity scores),

assumes the regression parametrization of covariates is flexible enough to include the con-

ditional mean of the potential outcome under no treatment, Yi(0). In a linear model with

two-way unit and time fixed effects, this reduces to the parallel trends restriction used in

difference-in-differences (DiD) and event study regressions. It is common for Xi to include

multiple indicators in such settings—for example, the leads and lags relative to a treatment

adoption date used to support the parallel trends assumption or estimate treatment effect

dynamics.2 We show that replacing the restriction on propensity scores with an assump-

tion on Yi(0) generates an additional issue: the own-treatment effect weights are no longer

guaranteed to be positive. This result shows that the negative weighting and contamination

bias issues documented previously in the context of two-way fixed effects regressions (e.g.,

Goodman-Bacon, 2021; Sun & Abraham, 2021; de Chaisemartin & D’Haultfœuille, 2020,

2022; Callaway & Sant’Anna, 2021; Borusyak et al., 2022; Wooldridge, 2021; Hull, 2018b)

are more general—and conceptually distinct—problems.3 Negative weighting arises because

regressions leveraging model-based restrictions on Yi(0) are generally not robust to treatment

effect heterogeneity. Contamination bias arises because linear regression fails to account for

2Alternatively Xi may indicate multiple contemporaneous treatments, as in certain “mover” regressions.
3Our analysis also relates to issues with interpreting multiple-treatment IV estimates (Behaghel et al., 2013;

Kirkeboen et al., 2016; Kline & Walters, 2016; Hull, 2018c; Lee & Salanié, 2018; Bhuller & Sigstad, 2022).
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the non-linear dependence across multiple dependent treatments and controls.

Even more broadly, contamination bias can arise in descriptive regressions which seek to es-

timate averages of certain conditional group contrasts without assuming a causal framework—

as in studies of treatment or outcome disparities across multiple racial or ethnic groups, studies

of regional variation in healthcare utilization or outcomes, or studies of industry wage gaps.4

Our analysis shows that in such regressions the coefficient on a given group or region averages

the conditional contrasts across all other groups or regions, with non-convex weights.

Our bias characterization also has implications for IV regressions leveraging multiple corre-

lated instruments, such as indicators for as good as randomly assigned judges. Contamination

bias in the first-stage regression of treatment on multiple instruments and flexible controls

(e.g. courtroom fixed effects) can generate violations of the effective first-stage monotonicity

restriction, even when conventional first-stage monotonicity is satisfied unconditionally. We

show how this problem is distinct from previous concerns over the monotonicity assumption

in judge IV designs (Mueller-Smith, 2015; Frandsen et al., 2019; Norris, 2019; Mogstad et al.,

2021) and over insufficient flexibility in the control parametrization (Blandhol et al., 2022).5

We then discuss three solutions to the contamination bias problem, and their trade-offs, in

the baseline case of conditionally ignorable treatments. One conceptually principled solution

is to adapt approaches to estimating the average treatment effect (ATE) of a conditionally

ignorable binary treatment (see Imbens & Wooldridge, 2009, for a review) to the multiple

treatment case (e.g. Cattaneo, 2010; Chernozhukov et al., 2021; Graham & Pinto, 2022). For

example, one could run an expanded regression that includes interactions between the treat-

ments and demeaned controls.6 Such ATE estimators achieve the semiparametric efficiency

bound under an assumption of strong overlap of the covariate distribution for units in each

treatment arm. But this approach may be infeasible or yield imprecise estimates under limited

overlap—a common scenario in practice (Crump et al., 2009).

This practical consideration motivates an alternative solution: estimating a weighted av-

erage of treatment effects, as regression does in the binary treatment case, while avoiding the

contamination bias of multiple-treatment regressions. We derive the weights that are “easiest”

to estimate, in that they minimize a semiparametric efficiency bound under homoskedasticity.

These optimal weights are convex and coincide with the implicit linear regression weights

when the treatment is binary (i.e. the Angrist (1998) case), formalizing a virtue of regression

adjustment. In the multiple treatment case, the optimal weights for a given treatment-control

contrast are similarly convex and given by a linear regression which restricts estimation to

4Prominent examples of such analyses respectively include Fryer and Levitt (2013), Skinner (2011), and
Krueger and Summers (1988).

5The contamination bias issue is also distinct from the Freedman (2008a, 2008b) critique of regression to
analyze randomized trials, which concerns estimation, not identification.

6In the judge IV case, the analogous solution interacts judge indicators with courtroom fixed effects.
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the individuals who are either in the control group or the treatment group of interest. For

estimating effects that are directly comparable across multiple treatments, our optimality

characterization leads to a new estimator of convex average effects. We give guidance for

how applied researchers can gauge the extent of contamination bias in practice and apply the

different solutions with help from a new Stata package, multe.7

We illustrate the contamination bias problem and solutions in an application to the Project

STAR trial, which randomized students within schools to either a small classroom treatment,

a teaching aide treatment, or control conditions. We find the potential for sizeable bias in

estimates of both treatment effects, from regressions with school fixed effects, due to significant

treatment effect heterogeneity. Nevertheless, we show that the actual contamination is likely

to be minimal because the effect heterogeneity turns out to be largely uncorrelated with

the contamination weights. The application thus highlights the importance of testing the

empirical relevance of theoretical concerns with how regression combines heterogeneous effects.

We structure the rest of the paper as follows. Section 2 illustrates contamination bias

in a simple example with two mutually exclusive treatment indicators and one binary con-

trol. Section 3 characterizes the general problem in regressions with multiple treatments and

flexible controls, and discusses connections to previous analyses. Section 4 discusses the ro-

bustness and efficiency properties of three solutions. Section 5 gives guidance for measuring

and avoiding contamination bias in practice, and illustrates these tools in the Project STAR

experiment. Section 6 concludes. All proofs and extensions are given in Appendix A.

2 Motivating Example

We build intuition for the contamination bias problem in two simple examples. We first review

how regressions on a single randomized binary treatment and binary controls identify a convex

average of heterogeneous treatment effects. We then show how this result fails to generalize

when we introduce an additional treatment arm. We base these examples on a stylized version

of the Project STAR experiment, which we return to in our application in Section 5.2.

2.1 Convex Weights with One Randomized Treatment

Consider the regression of an outcome Yi on a single treatment indicator Di ∈ {0, 1}, a single

binary control Wi ∈ {0, 1}, and a constant:

Yi = α+ βDi + γWi + Ui. (1)

7The Stata package is available at https://github.com/gphk-metrics/stata-multe.
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By definition, Ui is a mean-zero regression residual that is uncorrelated with Di and Wi.

Krueger (1999), for example, primarily studied the effect of small class size Di on the test

scores Yi of middle school students indexed by i. Project STAR randomized students to

classes within schools with at least three classes per grade. The number of students assigned

to each intervention thus varied both by the number of students in a school and the relative

classroom size. To account for this non-random treatment variation, Krueger (1999) followed

earlier analyses of Project STAR in estimating regressions with school (and sometimes school-

by-period) fixed effects as controls. Such specifications are often found in stratified RCTs

with varying treatment assignment rates across a set of pre-treatment strata. If we imagine

two such strata, demarcated by a binary indicator Wi, then eq. (1) corresponds to a stylized

two-school version of a Project STAR regression.

We wish to interpret the regression coefficient β in terms of the causal effects of Di on

Yi. For this we use potential outcome notation, letting Yi(d) denote the test score of student

i when Di = d. Individual i’s treatment effect is then given by τi = Yi(1) − Yi(0), and we

can write realized achievement as Yi = Yi(0) + τiDi. To formalize the random assignment

of treatment within schools, we assume that Di is conditionally independent of potential

outcomes given the control Wi:

(Yi(0), Yi(1)) ⊥ Di |Wi. (2)

Angrist (1998) showed that regression coefficients like β identify a weighted average of

within-strata ATEs, with convex weights.8 In our stylized Project STAR regression, this

result shows that:

β = φτ(0) + (1− φ)τ(1), where φ =
var(Di |Wi = 0)Pr(Wi = 0)

∑1
w=0 var(Di |Wi = w) Pr(Wi = w)

∈ [0, 1] (3)

gives a convex weighting scheme, and τ(w) = E[Yi(1) − Yi(0) | Wi = w] is the ATE in

school w ∈ {0, 1}. Thus, in our example the coefficient β identifies a weighted average of

school-specific small classroom effects τ(w) across the two schools.

Equation (3) can be derived by applying the Frisch-Waugh-Lovell (FWL) Theorem. The

multivariate regression coefficient β can be written as a univariate regression coefficient from

regressing Yi onto the population residual D̃i from regressing Di onto Wi and a constant:

β =
E[D̃iYi]

E[D̃2
i ]

=
E[D̃iYi(0)]

E[D̃2
i ]

+
E[D̃iDiτi]

E[D̃2
i ]

, (4)

8See Słoczyński (2022) for an alternative representation of this estimand, in terms of conditional average
effects on the treated and untreated, under slightly different assumptions.
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where we substitute the potential outcome model for Yi in the second equality. Since Wi is

binary, the propensity score E[Di | Wi] is linear and the residual D̃i is mean independent of

Wi (not just uncorrelated with it): E[D̃i |Wi] = 0. Therefore,

E[D̃iYi(0)] = E[E[D̃iYi(0) |Wi]] = E[E[D̃i |Wi]E[Yi(0) |Wi]] = 0. (5)

The first equality in eq. (5) follows from the law of iterated expectations, the second equality

follows by the conditional random assignment of Di and the third equality uses E[D̃i |Wi] = 0.

Hence, the first summand in eq. (4) is zero. Analogous arguments show that

E[D̃iDiτi] = E[E[D̃iDiτi |Wi]] = E[E[D̃iDi |Wi]E[τi |Wi]] = E[var(Di |Wi)τ(Wi)],

where var(Di | Wi) = E[D̃2
i | Wi] gives the conditional variance of the small-class treatment

within schools. Since E[var(Di | Wi)] = E[E[D̃2
i | Wi]] = E[D̃2

i ], it follows that we can write

the second summand in eq. (4) as

β =
E[var(Di |Wi)τ(Wi)]

E[var(Di |Wi)]
= φτ(0) + (1− φ)τ(1),

proving the representation of β in eq. (3).

The key fact underlying this derivation is that the residual D̃i from the auxiliary regression

of the treatment Di on the other regressors Wi is mean-independent of Wi. By the FWL

theorem, treatment coefficients like β can always be represented as in eq. (4) even without

this property. We next show, however, that the remaining steps in the derivation of eq. (3) fail

when an additional treatment arm is included. This failure can be attributed to the fact that

the auxiliary FWL regression delivers a treatment residual that is uncorrelated with—but

not mean-independent of—the other regressors. The lack of mean independence leads to an

additional bias term in the expression for the regression coefficient.

2.2 Contamination Bias with Two Randomized Treatments

In reality, as noted above, Project STAR randomized two mutually exclusive interventions

within schools: a reduction in class size (Di = 1) and the introduction of full-time teaching

aides (Di = 2). We incorporate this extension of our stylized example by considering a

regression of student achievement Yi on a vector of two treatment indicators, Xi = (Xi1, Xi2)
′,

where the first element Xi1 =  {Di = 1} indicates assignment to a small class and the second

element Xi2 =  {Di = 2} indicates assignment to a class with a full-time aide. We continue

6



to include a constant and the school indicator Wi as controls, yielding the regression

Yi = α+ β1Xi1 + β2Xi2 + γWi + Ui. (6)

To account for the second treatment, the observed outcome is now given by Yi = Yi(0) +

τi1Xi1 + τi2Xi2, with τi1 = Yi(1) − Yi(0) and τi2 = Yi(2) − Yi(0) denoting the potentially

heterogeneous effects of a class size reduction and introduction of a teaching aide, respectively.

As before, we analyze this regression by assuming Xi is conditionally independent of the

potential achievement outcomes Yi(d) given the school indicator Wi,

(Yi(0), Yi(1), Yi(2)) ⊥ Xi |Wi.

To analyze the coefficient on Xi1, we again use the FWL theorem to write

β1 =
E[

≈

Xi1Yi]

E[
≈

X2
i1]

=
E[

≈

Xi1Yi(0)]

E[
≈

X2
i1]

+
E[

≈

Xi1Xi1τi1]

E[
≈

X2
i1]

+
E[

≈

Xi1Xi2τi2]

E[
≈

X2
i1]

, (7)

where
≈

Xi1 again denotes a population residual, but now from regressing Xi1 on Wi, a constant,

and Xi2. Unlike before, this residual is not mean-independent of the remaining regressors

(Wi, Xi2) because the dependence between Xi1 and Xi2 is non-linear. When Xi2 = 1, Xi1

must be zero regardless of the value of Wi (because they are mutually exclusive) while if

Xi2 = 0 the mean of Xi1 does depend on Wi unless the treatment assignment is completely

random. Thus, in general,
≈

Xi1 6= Xi1 − E[Xi1 |Wi, Xi2].

Because
≈

Xi1 does not coincide with a conditionally de-meaned Xi1, we can not generally

reduce eq. (7) to an expression involving only the effects of the first treatment arm, τi1. It turns

out that we nevertheless still have E[
≈

Xi1Yi(0)] = 0, as in eq. (5), since the auxilliary regression

residuals are still uncorrelated with any individual characteristic like Yi(0).
9 In this sense, the

regression does not suffer from OVB. However, we do not generally have E[
≈

Xi1Xi2τi2] = 0.

Instead, simplifying eq. (7) by the same steps as before leads to the expression

β1 = E[λ11(Wi)τ1(Wi)] + E[λ12(Wi)τ2(Wi)] (8)

as a generalization of eq. (3). Here λ11(Wi) = E[
≈

Xi1Xi1 | Wi]/E[
≈

X2
i1] can be shown to

be non-negative and to average to one, similar to the φ weight in eq. (3). Thus, if not for

the second term in eq. (8), β1 would similarly identify a convex average of the conditional

9To see this, note that in the auxiliary regression Xi1 = µ0+µ1Xi2+µ2Wi+
≈

Xi1 we can partial out Wi and

the constant from both sides to write X̃i1 = µ1X̃i2 +
≈

Xi1. Thus,
≈

Xi1 = X̃i1 − µ1X̃i2 is a linear combination

of residuals which, per eq. (5), are both uncorrelated with Yi(0). It follows that E[
≈

Xi1Yi(0)] = 0.
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ATEs τ1(Wi) = E[Yi(1) − Yi(0) | Wi]. But precisely because
≈

Xi1 6= Xi1 − E[Xi1 | Wi, Xi2],

this second term is generally present: λ12(Wi) = E[
≈

Xi1Xi2 | Wi]/E[
≈

X2
i1] is generally non-

zero, complicating the interpretation of β1 by including the conditional effects of the other

treatment τ2(Wi) = E[Yi(2)− Yi(0) |Wi].

The second contamination bias term in eq. (8) arises because the residualized small class

treatment
≈

Xi1 is not conditionally independent of the second full-time aide treatment Xi2

within schools, despite being uncorrelated with Xi2 by construction. This can be seen by

viewing
≈

Xi1 as the result of an equivalent two-step residualization. First, both Xi1 and

Xi2 are de-meaned within schools: X̃i1 = Xi1 − E[Xi1 | Wi] = Xi1 − p1(Wi) and X̃i2 =

Xi2 − E[Xi2 |Wi] = Xi2 − p2(Wi) where pj(Wi) = E[Xij |Wi] gives the propensity score for

treatment j. Second, a bivariate regression of X̃i1 on X̃i2 is used to generate the residuals
≈

Xi1. When the propensity scores vary across the schools (i.e. pj(0) 6= pj(1)), the relationship

between these residuals varies by school, and the line of best fit between X̃i1 and X̃i2 averages

across this relationship. As a result, the line of best fit does not isolate the conditional (i.e.

within-school) variation in Xi1: the remaining variation in
≈

Xi1 will tend to predict Xi2 within

schools, making the contamination weight λ12(Wi) non-zero.

2.3 Illustration and Intuition

A simple numerical example helps make the contamination bias problem concrete. Suppose,

in the previous setting, school 0 (indicated by Wi = 0) assigned only 5 percent of the students

to the small classroom treatment, with 45 percent of the students assigned to a classroom

with a full-time aide and the rest assigned to the control group. In school 1 (indicated by

Wi = 1), there was a substantially larger push for students to be placed into treatment groups,

such that 45 percent of students were assigned to a small classroom, 45 percent were assigned

to a classroom with a full-time aide, and only 10 percent were assigned to the control group.

Therefore, p1(0) = 0.05, p2(0) = 0.45, while p1(1) = p2(1) = 0.45. Suppose that the schools

have the same number of students, so that Pr(Wi = 1) = 0.5. It then follows from the above

formulas that λ12(0) = 99/106 and λ12(1) = −99/106.

As reasoned above, the contamination weights are non-zero because the within-school

correlation between the residualized treatments, X̃i1 and X̃i12, is heterogeneous: in school 0

it is about −0.2, while in school 1 it is −0.8.10 The overall regression of X̃i1 on X̃i2 averages

over these two correlations, leading to a misspecified residual
≈

Xi1 that is correlated with Xi2

within each school. Figure 1 illustrates this averaging by plotting the different potential pairs

of the two demeaned treatments (X̃i1, X̃i2), with the two school strata in different colors

and shapes. The figure shows how within the first school, the value of the demeaned class

10Here the conditional correlation is corr(X̃i1, X̃i12 | Wi) = −
√

p1(Wi)/(1− p1(Wi))
√

p2(Wi)/(1− p2(Wi)).
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Figure 1: Regression of Small Classroom Treatment on Class Aide Treatment

Notes: This figure plots values of the demeaned class aide treatment (X̃2i, the x-axis) against
values of the demeaned small classroom treatment (X̃1i, the y-axis) in our numerical example. The
size of the points corresponds to the density of observations. The solid red and blue lines mark
the within-school regression of the two residualized treatments, while the dashed black line is the

overall regression line. The residuals from this line give
≈

Xi1.

aide treatment is only weakly predictive of the small classroom treatment, but it is highly

predictive in the second school. The overall regression line in black averages over these two

relationships, yielding residuals which are predictive of the value of the class aide treatment.

To illustrate the potential magnitude of bias in this example, suppose that classroom

reductions have no effect on student achievement (so τ1(0) = τ1(1) = 0), but that the effect

of a teaching aide varies across schools. In the school 1 the aide is highly effective, τ2(1) = 1

(which may be the reason for the higher push in this school to place students into treatment

groups), but in the school 0, the aide has no effect, τ2(0) = 0. Equation (8) then shows that

the regression coefficient on the first treatment identifies

β1 = E[λ11(Wi) · 0] + E[λ12(Wi)τ2(Wi)] = 0 + (−99/106× 1 + 99/106× 0)/2 ≈ −0.47.

Thus, in this example, a researcher would conclude that small classrooms have a sizeable

negative effect on student achievement (equal in magnitude to around half of the true teaching

aide effect in school 1), despite the true small-classroom effect being zero for all students. This

treatment effect coefficient can be made arbitrarily large or small (and positive or negative),

depending on the heterogeneity of the teaching aide effects across schools.

To build further intuition for eq. (8), it is useful to consider two cases where the contam-

ination bias term is zero. First, suppose the average effects of the teaching aide treatment

are constant across the two schools: τ2(0) = τ2(1) ≡ τ2. Since regression residuals are by
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construction uncorrelated with the included regressors, E[λ12(Wi)] = E[
≈

Xi1Xi2]/E[
≈

X2
i1] = 0.

Thus, the contamination weights on the second treatment effects average to zero, and the

contamination bias disappears: E[λ12(Wi)τ2(Wi)] = E[λ12(Wi)]τ2 = 0. More generally, the

contamination bias will be small when the variation in average teacher’s aide treatment ef-

fects across schools τ2(Wi) is small, or when this treatment effect heterogeneity is only weakly

correlated with the contamination weights across schools.

Second, consider the case where Xi1 and Xi2 are independent conditional on Wi, such

as when the small classroom and teacher aid interventions are independently assigned within

schools (in contrast to the previously assumed mutual exclusivity of these treatments). In this

case the conditional expectation E[Xi1 | Wi, Xi2] = E[Xi1 | Wi] will be linear, since Xi1 and

Xi2 are unrelated given Wi, and will thus be identified by the auxiliary regression of Xi1 on

Wi, Xi2, and a constant. Consequently, the
≈

Xi1 residuals will coincide with Xi1−E[Xi1 |Wi].

The coefficient on Xi1 in eq. (6) can therefore be shown to be equivalent to the previous

eq. (3), identifying the same convex average of τ1(w). This case highlights that dependence

across treatments is necessary for the contamination bias to arise.

Before proceeding to a general characterization of contamination bias, we note that the

above intuition about the non-linear conditional expectation E[Xi1 | Wi, Xi2] also suggests

a simple solution to the problem. By including interactions of Wi and Xi2 in eq. (6), the

auxiliary regression of Xi1 on the other regressors will be saturated and thus will capture the

inherent nonlinearity in E[Xi1 | Wi, Xi2]. We show below how such interacted regressions

can obviate contamination bias. In particular, we show how a particular interacted regression

specification gives an efficient estimator of (unweighted) ATEs that is immune to the bias

of the simpler specification. We then propose a new class of estimators which—as with the

Angrist (1998) result for binary treatments—identify a convex average of conditional ATEs.

These estimators may yield smaller standard errors, while still being free from bias.

3 General Problem

We now derive a general characterization of the contamination bias problem, in regressions

of an outcome Yi on a K-dimensional treatment vector Xi and flexible transformations of a

control vector Wi. We focus on the case of mutually exclusive indicators Xik =  {Di = k} for

values of an underlying treatment Di ∈ {0, . . . ,K} (with the  {Di = 0} indicator omitted).

We extend the characterization to a general treatment vector in Appendix A.1.

We suppose the effects of Xi on Yi are estimated by a partially linear model:

Yi = X ′
iβ + g(Wi) + Ui, (9)
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where β and g are defined as the minimizers of expected squared residuals E[U2
i ]:

(β, g) = argmin
β̃∈RK ,g̃∈G

E[(Yi −X ′
iβ̃ − g̃(Wi))

2] (10)

for some linear space of functions G. This setup nests linear covariate adjustment by setting

G = {α + w′γ : [α, γ′]′ ∈ R
1+dim(Wi)}, in which case eq. (9) gives a linear regression of Yi on

Xi, Wi, and a constant. The setup also allows for more flexible covariate adjustments—such

as by specifying G to be a large class of “nonparametric” functions (e.g. Robinson, 1988).

Two examples highlight the generality of this setup and are useful for developing our

characterization of contamination bias below:

Example 1 (Multi-Armed RCT). Wi is a vector of mutually-exclusive indicators for experi-

mental strata, within which Xi is randomly assigned to individuals i. g is linear.

Example 2 (Two-Way Fixed Effects). i = (j, t) indexes panel data, with a fixed set of units

j = 1, . . . , n observed over periods t = 1, . . . , T . Wi = (Ji, Ti) where Ji = j and Ti = t

denote the underlying unit and period, and g(Wi) = α + ( {Ji = 2}, . . . , {Ji = n}, {Ti =
2}, . . . , {Ti = T})′γ includes unit and period indicators. Xi contains indicators for leads and

lags relative to a deterministic treatment adoption date, A(j) ∈ {1, . . . , T}.

Example 1 nests the motivating RCT example in Section 2, allowing for an arbitrary number

of experimental strata in Wi and random treatment arms in Xi. Example 2 shows that our

setup can also nest the kind of regressions considered in a recent literature on DiD and related

regression specifications (e.g. Goodman-Bacon, 2021; Hull, 2018b; Sun & Abraham, 2021; de

Chaisemartin & D’Haultfœuille, 2020, 2022; Callaway & Sant’Anna, 2021; Borusyak et al.,

2022; Wooldridge, 2021). We elaborate on the connections to this literature in Appendix B

by considering general two-way fixed effect specifications with non-random treatments. These

include specifications with multiple static treatment indicators, as in “mover regressions” that

leverage over-time transitions, as well as dynamic event study specifications.11

As a first step towards characterizing the β treatment coefficient vector, we solve the

minimization problem in eq. (10). Let X̃i denote the residuals from projecting Xi onto the

control specification, with elements X̃ik = Xik−argming̃∈G E[(Xik− g̃(Wi))
2]. It follows from

the projection theorem (e.g. van der Vaart, 1998, Theorem 11.1) that

β = E[X̃iX̃
′
i]
−1E[X̃iYi]. (11)

11Some papers in this DiD literature study issues we do not consider, such as when researchers fail to
include indicators for all relevant treatment states. This specification of Xi will generally add bias terms to
our decomposition of β, below. Similarly, we do not consider multicollinearity issues like in Borusyak et al.
(2022), by implicitly assuming a unique solution to eq. (10). For event studies this means we assume some
units are never treated, with A(j) = ∞. See Roth et al. (2022) for a recent review of the literature.
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A further application of the FWL theorem allows us to write each treatment coefficient as

βk =
E[

≈

XikYi]

E[
≈

X2
ik]

,

where
≈

Xik is the residual from regressing X̃ik on X̃i,−k = (X̃i1, . . . , X̃i,k−1, X̃i,k+1, . . . , X̃iK)′.

3.1 Causal Interpretation

We now consider the interpretation of each treatment coefficient βk in terms of causal effects.

Let Yi(k) denote the potential outcome of unit i when Di = k. Observed outcomes are

given by Yi = Yi(Di) = Yi(0) +X ′
iτi where τi is a vector of treatment effects with elements

τik = Yi(k)− Yi(0). We denote the conditional expectation of the vector of treatment effects

given the controls by τ(Wi) = E[τi | Wi], so that τk(Wi) is the conditional ATE for the

kth treatment. We let p(Wi) = E[Xi | Wi] denote the vector of propensity scores, so that

pk(Wi) = Pr(Di = k | Wi). Our characterization of contamination bias doesn’t require the

propensity scores to be bounded away from 0 and 1 and in fact allows them to be degenerate,

i.e. pk(w) ∈ {0, 1} for all w. This is the case in Example 2, since Xi is a non-random function

of Wi. We return to practical questions of propensity score support in Section 4.

We make two assumptions to interpret βk in terms of the effects τi. First, we assume

mean-independence of the potential outcomes and treatment, conditional on the controls:

Assumption 1. E[Yi(k) | Di,Wi] = E[Yi(k) |Wi] for all k.

A sufficient condition for this assumption is that the treatment is randomly assigned condi-

tional on the controls, making it conditionally independent of the potential outcomes:

(Yi(0), . . . , Yi(K)) ⊥ Di |Wi. (12)

Such conditional random assignment appears in Example 1. In Example 2, where treatment

is a non-random function of the unit and time indices in Wi, Assumption 1 holds trivially.

Second, we assume G is specified such that that one of two conditions holds:

Assumption 2. Let µ0(w) = E[Yi(0) |Wi = w] and recall pk(w) = E[Xik |Wi = w]. Either

pk ∈ G (13)

for all k, or

µ0 ∈ G. (14)
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The first condition requires the covariate adjustment to be flexible enough to capture each

treatment’s propensity score. For example, with a linear specification for g, eq. (13) requires

the propensity scores to be linear in Wi (cf. eq. (30) in Angrist & Krueger, 1999). This

condition holds trivially in Example 1, since Wi is a vector of indicators for groups within

which Xi is randomly assigned. When this condition holds, the projection of the treatment

onto the covariates coincides with the vector of propensity scores, and the projection residuals

coincide with the conditionally demeaned treatment vector X̃i = Xi − p(Wi).

In Example 2, with Xi being a deterministic function of unit and time indices and g(Wi)

including unit and time fixed effects, eq. (13) fails because the propensity scores are binary—

they cannot be captured by a linear combination of the two-way fixed effects. However,

eq. (14) can still be satisfied by a parallel trends assumption: that the average untreated

potential outcomes Yi(0) are linear in the unit and time effects. We elaborate on this setup

and assumption in Appendix B.12

Under either condition in Assumption 2, the specification of controls is flexible enough to

avoid OVB. To see this formally, suppose all treatment effects are constant: τik = τk for all

k. This restriction lets us write Yi = Yi(0) +X ′
iτ , where τ is a vector collecting the constant

effects. The only source of bias when regressing Yi on Xi and controls is then the unobserved

variation in the untreated potential outcomes Yi(0). But it follows from the definition of β in

eq. (11) that there is no such OVB when Assumption 2 holds; the coefficient vector identifies

the constant effects:

β = E[X̃iX̃
′
i]
−1E[X̃iYi] = E[X̃iX̃

′
i]
−1(E[X̃iYi(0)] + E[X̃iX̃

′
i]τ)

= E[X̃iX̃
′
i]
−1E[X̃iE[Yi(0) |Wi]]
︸ ︷︷ ︸

=0

+τ = τ.

Here the first line uses the fact that E[X̃iX
′
i] = E[X̃iX̃

′
i] because X̃i is a vector of projection

residuals, and the second line uses the law of iterated expectations and Assumption 1. Under

eq. (13), E[X̃i | Wi] = 0, so that the term in braces is zero by another application of the law

of iterated expectations: E[X̃iE[Yi(0) | Wi]] = E[E[X̃i | Wi]E[Yi(0) | Wi]] = 0. It is likewise

zero under eq. (14) since X̃i is by definition of projection orthogonal to any function in G such

that E[X̃iE[Yi(0) | Wi]] = E[X̃iµ0(Wi)] = 0. Hence, OVB is avoided in the constant-effects

case so long as either the propensity scores or the untreated potential outcomes are spanned by

the control specification. Versions of this robustness property have been previously observed

in, for instance, Robins et al. (1992).

12Identification based on eq. (13) can be seen as “design-based” in that it leverages only the conditional
random assignment of Di and specifies the treatment assignment process. Identification based on eq. (14) can
be seen as “model-based” in that it makes no assumptions on the treatment assignment process but specifies
a model for the unobserved untreated potential outcomes.
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When treatment effects are heterogeneous but Xi contains a single treatment indicator, β

identifies a weighted average of the conditional effects τ(Wi). Specifically, since we still have

E[X̃iYi(0)] = 0 under Assumptions 1 and 2, it follows from eq. (11) that

β =
E[X̃iXiτi]

E[X̃2
i ]

= E[λ11(Wi)τ(Wi)], with λ11(Wi) =
E[X̃iXi |Wi]

E[X̃iXi]
, (15)

where the second equality uses iterated expectations and the fact that E[X̃2
i ] = E[X̃iXi].

Under eq. (13), E[X̃iXi | Wi] = E[X̃2
i | Wi] = var(Xi | Wi), so the weights further simplify

to λ11(Wi) = var(Xi|Wi)
E[var(Xi|Wi)]

≥ 0. This extends the Angrist (1998) result to a general control

specification; versions of this extension appear in, for instance, Angrist and Krueger (1999),

Angrist and Pischke (2009, Chapter 3.3), and Aronow and Samii (2016). The result provides a

rationale for estimating the effect of a scalar as good as randomly assigned treatment using a

partially linear model: so long as the specification of G is rich enough so that eq. (13) holds, this

model will identify a convex average of heterogeneous treatment effects. Moreover, as we will

show in Section 4, the weights λ11(Wi) are efficient in that they minimize the semiparametric

efficiency bound (conditional on the controls) for estimating some weighted-average treatment

effect. This result makes the partially linear specification (9) especially appealing with a single

binary treatment. On the other hand, when eq. (14) holds but eq. (13) does not, the weights

λ11(Wi) need not be positive. We return to this point in Section 3.2.

The next proposition shows that with multiple treatments, the interpretation of β becomes

more complicated because of contamination bias:

Proposition 1. Under Assumptions 1 and 2, the treatment coefficients in the partially linear

model (9) identify

βk = E[λkk(Wi)τk(Wi)] +
∑

ℓ6=k

E[λkℓ(Wi)τℓ(Wi)], (16)

where

λkk(Wi) =
E[

≈

XikXik |Wi]

E[
≈

X2
ik]

and λkℓ(Wi) =
E[

≈

XikXiℓ |Wi]

E[
≈

X2
ik]

.

These weights satisfy E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0. Furthermore, if eq. (13) holds,

λkk(Wi) ≥ 0 for each k.

Proposition 1 shows that the coefficient on Xik in eq. (9) is a sum of two terms. The first

term is a weighted average of conditional ATEs τk(Wi), with weights λkk(Wi) that average

to one and are guaranteed to be convex when eq. (13) holds. This term generalizes the

characterization of the single-treatment case, eq. (15). The second term is a weighted average

of treatment effects for other treatments τℓ(Wi), with weights λkℓ(Wi) that average to zero.
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Because these contamination weights are zero on average, they must be negative for some

values of the controls unless they are all identically zero.13

Each treatment coefficient βk thus generally suffers from contamination bias. Two ex-

ceptions are when λkℓ(Wi) = 0 almost-surely for all ℓ 6= k, and when the conditional ef-

fects of these other treatments are homogeneous such that τℓ(Wi) = τℓ. In the second

case E[λkℓ(Wi)τℓ(Wi)] = τℓE[λkℓ(Wi)] = 0, so there is no contamination bias term. By

the law of iterated expectations the first case holds if E[
≈

Xik | Xi,−k,Wi] = 0, or, equiv-

alently, if the conditional expectation of Xik given Xi,−k and Wi is partially linear (i.e.

E[Xik | Xi,−k,Wi] = X ′
i,−kα + gk(Wi) for some vector α and gk ∈ G). In other words, it

holds when the assignment of treatment k depends linearly on the other treatment indicators

and a flexible function of the controls. This condition is the analog of condition (13) if we

interpret Xik as a binary treatment of interest, and X ′
i,−kα + gk(Wi) as a specification for

the controls. However, with mutually exclusive treatments, it cannot hold unless treatment

assignment is unconditionally random. In particular, since Xik must equal zero if the unit is

assigned to one of the other treatments regardless of the value of Wi, we have αℓ = −gk(Wi)

for all elements αℓ of α. This in turn implies the assignment of treatment k doesn’t depend

on Wi, which can’t be the case unless the propensity score pk(Wi) is constant.

A third weaker case of no contamination bias is when the weights λkℓ(Wi) and conditional

ATEs τℓ(Wi) vary, but are uncorrelated with each other. More generally, contamination bias

will tend to be small when the contamination weights λkℓ(Wi) and the conditional ATEs τℓ(Wi)

are only weakly correlated: that is, when the factors influencing treatment effect heterogeneity

are largely unrelated to the factors influencing the treatment assignment process. We return

to this possibility in our empirical application (Section 5.2).

We make three further remarks on our general characterization of contamination bias:

Remark 1. Since the weights in eq. (16) are functions of the variances E[
≈

X2
ik] and covariances

E[
≈

XikXiℓ] and E[
≈

XikXik], they are identified and can be used to further characterize each

βk coefficient. For example, the contamination bias term can be bounded by the identified

contamination weights λkℓ(Wi) and bounds on the heterogeneity in conditional ATEs τℓ(Wi).

We illustrate such an approach in our empirical application.

Remark 2. The results in Proposition 1 are stated for the case when Xi are mutually exclusive

treatment indicators. In Appendix A.1 we relax this assumption to allow for combinations

of non-mutually exclusive treatments (either discrete or continuous). In this case, the own-

13Proposition 1 complements an algebraic result in Chattopadhyay and Zubizarreta (2021, Section 7.1),
which shows that the regression estimator of βk can be written in terms of weighted sample averages of
outcomes among units in different treatment arms (regardless of whether Assumptions 1 and 2 hold). In
contrast, our analysis interprets regression estimands in terms of weighted averages of conditional ATEs under
a broad class of identifying assumptions.
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treatment weights λkk(Wi) may be negative even if eq. (13) holds.

Remark 3. While we derived Proposition 1 in the context of a causal model, an analogous

result follows for descriptive regressions that do not assume potential outcomes or impose

Assumption 1. Consider, specifically, the goal of estimating an average of conditional group

contrasts E[Yi | Di = k,Wi = w]−E[Yi | Di = 0,Wi = w] with a partially linear model eq. (9)

and replace condition (14) with an assumption that E[Yi | Di = 0,Wi = w] ∈ G. The steps

that lead to Proposition 1 then show that such regressions also generally suffer from con-

tamination bias: the coefficient on a given group indicator averages the conditional contrasts

across all other groups, with non-convex weights. Furthermore, the weights on own-group con-

ditional contrasts are not necessarily positive. These sorts of conditional contrast comparisons

are therefore not generally robust to misspecification of the conditional mean, E[Yi | Di,Wi].

3.2 Implications

Proposition 1 shows that treatment effect heterogeneity can induce two conceptually distinct

issues in flexible regression estimates of treatment effects. First, with either single or multiple

treatments, there is a potential for negative weighting of a treatment’s own effects when con-

dition (14) holds but condition (13) fails. This negative weighting issue is relevant in various

DiD regressions and related estimators which rely on such models for untreated potential

outcomes (via parallel trends assumptions) while conditioning on treatment assignment. Al-

though the recent DiD literature focuses on two-way fixed effect regressions, Proposition 1

shows such negative weighing can arise more generally—such as when researchers allow for

linear trends, interacted fixed effects, or other extensions of the basic parallel trends model.

None of these alternative specifications for g are in general flexible enough to capture the

degenerate propensity scores and hence ensure that eq. (13) holds.14

Second, in the multiple treatment case, there is a potential for contamination bias from

other treatment effects regardless of which condition in Assumption 2 holds. This form of

bias is thus relevant whenever one uses an additive covariate adjustment, regardless of how

flexibly the covariates are specified. Versions of this problem have been noted in, for example,

the Sun and Abraham (2021) analysis of DiD regressions with treatment leads and lags or

the Hull (2018b) analysis of mover regressions (see Appendix B).15

14More broadly, negative weighting issues arise whenever the covariate specification is not flexible enough
for eq. (13) to hold. For example, consider a scalar covariate Wi with a uniform distribution on [0, 1], and a
binary treatment with non-linear propensity score p(Wi) = min(2Wi, 0.9). Suppose that Yi(0) = 0, so that (14)
holds. Then λ11(Wi) is negative for Wi ≥ 2911/3402 ≈ 0.855. If, say Yi(1) = Wi, so that τ(Wi) = Wi ≥ 0,
the regression coefficient on the treatment is negative despite uniformly non-negative treatment effects.

15The negative weights issue raised in de Chaisemartin and D’Haultfœuille (2020) (when K = 1), and the
related issue that own-treatment weights may be negative in Sun and Abraham (2021) and de Chaisemartin
and D’Haultfœuille (2022) (when K > 1), arise because the treatment probability is not linear in the unit and
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The characterization in Proposition 1 also relates to concerns in interpreting multiple-

treatment IV estimates with heterogeneous treatment effects (Behaghel et al., 2013; Kirke-

boen et al., 2016; Kline & Walters, 2016; Hull, 2018c; Lee & Salanié, 2018; Bhuller & Sigstad,

2022). This connection comes from viewing eq. (9) as the second stage of an IV model es-

timated by a control function approach; in the linear IV case, for example, g(Wi) can be

interpreted as giving the residuals from a first-stage regression of Xi on a vector of valid

instruments Zi. In the single-treatment case, the resulting β coefficient has an interpretation

of a weighted average of conditional local average treatment effects under the appropriate

first-stage monotonicity condition (Imbens & Angrist, 1994). But as in Proposition 1 this

interpretation fails to generalize when Xi includes multiple mutually-exclusive treatment in-

dicators: each βk combines the local effects of treatment k with a non-convex average of the

effects of other treatments.

Finally, Proposition 1 has implications for single-treatment IV estimation with multiple

instruments and flexible controls. The first stage of such IV regressions will tend to have the

form of eq. (9), where now Yi is interpreted as the treatment and Xi gives the vector of in-

struments. Proposition 1 shows that the first-stage coefficients on the instruments βk will not

generally be convex weighted average of the true first-stage effects τik. Because of this non-

convexity, the regression specification may fail to satisfy the effective monotonicity condition

even when the true effects are always positive. In other words, the cross-instrument contam-

ination of causal effects may cause monotonicity violations, even when specifications with

individual instruments would be appropriate. This issue is distinct from previous concerns

over monotonicity failures in multiple-instrument designs (Mueller-Smith, 2015; Frandsen et

al., 2019; Norris, 2019; Mogstad et al., 2021), which are generally also present in such just-

identified specifications. It is also distinct from some concerns about insufficient flexibility in

the control specification when monotonicity holds unconditionally (Blandhol et al., 2022).

This new monotonicity concern may be especially important in “examiner” IV designs,

which exploit the conditional random assignment to multiple decision-makers. Many studies

leverage such variation by computing average examiner decision rates, often with a leave-one-

out correction, and use this “leniency” measure as a single instrument with linear controls.

These IV estimators can be thought of as implementing versions of a jackknife IV estimator

(Angrist et al., 1999), based on a first stage that uses examiner indicators as instruments,

similar to eq. (9). Proposition 1 thus raises a new concern with these IV analyses when

controls (such as time fixed effects) are needed to ensure ignorable treatment assignment.16

time effects. If eq. (13) holds with K = 1, Proposition 1 shows β estimates a convex combination of treatment
effects. This covers the setting considered in Theorem 1(iv) in Athey and Imbens (2022). In their Comment
2, Athey and Imbens (2022) say that “the sum of the weights [used in Theorem 1(iv)] is one, although some
of the weights may be negative.” Proposition 1 shows these weights are, in fact, non-negative.

16As we discuss in Section 4, one solution to this problem is to interact the examiner instruments with the
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4 Solutions

We now discuss solutions to the contamination bias problem raised by Proposition 1. We focus

in this discussion on the case of conditionally ignorable treatment assignment (in the sense

that eq. (12) holds, and the propensity scores are not degenerate) since solutions that allow

for degenerate propensity scores are generally different and have been previously explored in

the literature in the context of DiD regressions. We refer readers to de Chaisemartin and

D’Haultfœuille (2022), Sun and Abraham (2021), Callaway and Sant’Anna (2021), Borusyak

et al. (2022), and Wooldridge (2021) for such solutions.

We propose three solutions, each targeting a distinct causal parameter. First, in Sec-

tion 4.1, we discuss estimation of ATEs. The other two solutions, discussed in Sections 4.2

and 4.3, estimate weighted averages of individual treatment effects using weights that are “eas-

iest” to estimate in that they minimize the semiparametric efficiency bound for estimating

weighted ATEs under homoskedasticity. If the weights are allowed to vary across treatments,

it is optimal to estimate the effect of each k using the partially linear model in eq. (9), but

in a sample restricted to individuals in the control group and to those receiving treatment k.

If the weights are constrained to be common across treatments, this leads to a new weighted

regression estimator.

4.1 Estimating Average Treatment Effects

Many estimators exist for the ATE of binary treatments—see Imbens and Wooldridge (2009)

for a review. A number of these approaches extend naturally to multiple treatments, including

matching, inverse propensity score weighting, regressions with interactions, or doubly-robust

combinations of these methods (see, among others, Cattaneo (2010), Chernozhukov et al.

(2021), and Graham and Pinto (2022)).

Rather than reviewing all of these approaches, we briefly outline a simple implementation

of one method which follows the intuition given at the end of Section 2. Namely, one may

estimate the ATE vector τ by expanding the partially linear model in eq. (9) to include

treatment interaction terms. This generalizes the implementation in the binary treatment

case discussed in Imbens and Wooldridge (2009, Section 5.3). Consider the model

Yi = X ′
iβ + q0(Wi) +

K∑

k=1

Xik (qk(Wi)− E[qk(Wi)]) + U̇i, (17)

where qk ∈ G, k = 0, . . . ,K and we continue to define β and the functions qk as minimizers of

controls, which would amount to computing “leniency” separately within location and time cells. This may
greatly increase the effective number of instruments, heightening concerns of many-instrument bias in finite
samples as well as the importance of appropriate leave-one-out corrections (e.g., Kolesár, 2013).
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E[U̇2
i ]. When G consists of linear functions, eq. (17) specifies a linear regression of Yi on Xi,

Wi, a constant, and the interactions between each treatment indicator Xik and the demeaned

control vector Wi − E[Wi]. Define µk(w) = E[Yi(k) | Wi = w] for k = 0, . . . ,K, so that

τk(w) = µk(w) − µ0(w). When Assumption 1 holds, and G is furthermore rich enough to

ensure µk ∈ G for k = 0, . . . ,K, then β = τ . Moreover, qk(w) = τk(w) for k = 1, . . . ,K, such

that the regression identifies both the unconditional and conditional ATEs.

Following the intuition at the end of Section 2, the added interactions in eq. (17) ensure

that each treatment coefficients βk is determined only by the outcomes in treatment arms

with Di = 0 and Di = k, avoiding the other-treatment contamination bias in Proposition 1.

Demeaning the qk(Wi) in the interactions ensures they are appropriately centered to interpret

the coefficients on the uninteracted Xik as ATEs.

Estimation of eq. (17) by least squares is conceptually straightforward, with sample av-

erages replacing expectations. Furthermore, it can be shown that the resulting estimator

achieves the semiparametric efficiency bound under strong overlap (i.e. when the propensity

score is bounded away from zero and one) when implemented as a series estimator: it is im-

possible to construct another regular estimator of the ATE with smaller asymptotic variance.

Nonetheless, under weak overlap, the estimator may be imprecise, with poor finite-sample

behavior. This is not a shortcoming of the specific estimator: Khan and Tamer (2010) shows

that identification of the ATE is irregular under weak overlap, and it is not possible to estimate

it at a
√
N -rate. These results formalize the intuition that it is difficult to reliably estimate the

counterfactual outcomes for observations with extreme propensity scores. Overlap concerns

tend to be more severe with multiple treatments, because some propensity scores necessarily

become closer to zero or one as more treatment arms are added. We thus next turn to the

problem of estimating weighted averages of conditional ATEs that downweight these difficult-

to-estimate counterfactuals.

4.2 Efficient Weighted Averages of Treatment Effects

Suppose in a sample of observations i = 1, . . . , N we wish to estimate a weighted average

of conditional potential outcome contrasts
∑N

i=1 λ(Wi)
∑K

k=0 ckµk(Wi)/
∑N

i=1 λ(Wi), where

µk(Wi) = E[Yi(k) | Wi], c is a (K + 1)-dimensional contrast vector with elements ck, and

λ(Wi) is some weighting scheme.17 We focus on two specifications for the contrast vector,

leading to two alternatives to estimating the ATE based on eq. (17). First, for separately

estimating the effect of each treatment k, we set ck = 1, c0 = −1, and set the remaining entries

of c to 0. The contrast of interest then becomes
∑N

i=1 λ(Wi)
∑K

k=0 τk(Wi)/
∑N

i=1 λ(Wi), the

17In a slight abuse of notation relative to Section 3, the weights λ here are not required to average to one.
Instead, we scale the estimand by the sum of the weights,

∑N

i=1 λ(Wi).
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weighted ATE of treatment k across different strata. Second, we specify c so as to allow us

to simultaneously contrast the effects of all K treatments—we discuss this further below.

Given the contrast vector c, we consider the problem of finding the weighting scheme

λ(Wi) that is the “easiest” to estimate in that it leads to the smallest possible standard errors.

This objective has three motivations. First is a robustness concern: a researcher would like to

estimate a given contrast as efficiently as possible, at least under the benchmark of constant

treatment effects, while being robust to the possibility that the effects are heterogeneous.

Under constant effects the weighting λ(Wi) is of course immaterial. But the robustness

property ensures that the estimand retains a causal interpretation as a convex average of

conditional contrasts under weak conditions, avoiding the contamination bias displayed by the

regression estimator per Proposition 1. Such a motivation presumably underlies the popularity

of regression as a tool for estimating the effect of a binary treatment: the regression estimator

is efficient under homoskedasticity and constant treatment effects, while, by the Angrist (1998)

result, retaining a causal interpretation under heterogeneous effects.

The second motivation is that the easiest-to-estimate weighting scheme gives a bound on

the information available in the data: if these weights nonetheless yield overly large standard

errors, inference on other treatment effects (such as the unweighted ATE) will be at least as

uninformative. Computing standard errors for this efficient weighted average of treatment

effects can be useful as it reveals whether informative conclusions (regardless of how one

specifies the treatment effect of interes) are only possible under additional assumptions or

with the aid of additional data. If the easiest-to-estimate weighting scheme yields small

standard errors even though the standard errors for the unweighted ATE are large, it can

be concluded that the data is informative about some treatment effects—even if it is not

informative about the unweighted average.

In fact, our solution below shows that in the binary treatment case the easiest-to-estimate

weighting scheme is exactly the same as the weights used by regression. This special case

illustrates the second motivation: the optimal binary treatment weights are proportional to

the conditional variance of treatment, var(Di | Wi) = p1(Wi)(1 − p1(Wi)), which tend to

zero as p1(Wi) tends to zero or one. Regression thus downweights observations with extreme

propensity scores where the estimation of counterfactual outcomes is difficult, avoiding the

poor finite-sample behavior of ATE estimators under weak overlap and allowing regression

to be informative even in cases when it is not possible to precisely estimate the unweighted

ATE. More generally, since regression solves the efficient binary treatment weighting scheme,

regression estimates establish the extent to which internally valid and informative inference

for any causal effect are possible with the data at hand.

The third motivation for the easiest-to-estimate weighting scheme is that it offers an
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intermediate point along a particular robustness-efficiency “possibility frontier.” The ATE

estimator based on the interacted specification in eq. (17) lies on one end of this frontier,

being the most robust to treatment effect heterogeneity (i.e. retaining a clear interpretation

regardless of the form of τ(w) or how it relates to the propensity scores). But this robustness

comes at the cost of large standard errors and non-standard inference under weak overlap.

The regression estimator based on eq. (9) lies on the other end of the frontier: it is likely to

be precise even when overlap is weak (and is efficient under homoskedasticity if the partly

linear model in eq. (9) is correct, such that treatment effects are constant). But this efficiency

comes at the cost of contamination bias under heterogeneous treatment effects. The easiest-

to-estimate weighting scheme lies in between these extremes, purging contamination bias and

retaining good performance under weak overlap by giving up control over the weights it uses

to aggregate the conditional treatment effects τ(w).18

We derive the easiest-to-estimate weighting scheme for multiple treatments in two steps.

First, we establish an efficiency benchmark—a semiparametric efficiency bound—for estima-

tion of a given weighted average of treatment effects under the idealized scenario that the

propensity score is known. Second, we determine which weighted average minimizes the semi-

parametric efficiency bound over the choice of λ(Wi). When the contrast vector is specified to

allow simultaneous comparison of all treatments, estimation of this efficient weighted average

leads to a new estimator; we discuss its implementation when the propensity score is not

known in Section 4.3.

The following proposition establishes the first step of our derivation:

Proposition 2. Suppose eq. (12) holds in an i.i.d. sample of size N , with known non-

degenerate propensity scores pk(Wi). Let σ2k(Wi) = var(Yi(k) | Wi). Consider the problem

of estimating the weighted average of contrasts

θλ,c =
1

∑N
i=1 λ(Wi)

N∑

i=1

λ(Wi)
K∑

k=0

ckµk(Wi),

where the weighting function λ and contrast vector c are both known. Suppose the weighting

function satisfies E[λ(Wi)] 6= 0, and that the second moments of λ(Wi) and µ(Wi) are bounded.

Then, conditional on the controls W1, . . . ,WN , the semiparametric efficiency bound is almost-

surely given by

Vλ,c =
1

E[λ(Wi)]2
E

[
K∑

k=0

λ(Wi)
2c2kσ

2
k(Wi)

pk(Wi)

]

. (18)

18There are other approaches to resolving the robustness-efficiency tradeoff, such as seeking efficient es-
timates subject to the weights λ remaining “close” one, or placing some restrictions on the form of effect
heterogeneity, in contrast to leaving it completely unrestricted as we do here (see Mogstad et al. (2018) for an
example of this approach in an IV setting). We leave these alternatives to future research.
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As formalized in the proof (see Appendix A.2), the efficiency bound Vλ,c establishes a lower

bound on the asymptotic variance of any regular estimator of θλ,c under the idealized situation

of known propensity scores.19

To establish the second step, we choose λ to minimize eq. (18). Simple algebra shows that

this variance-minimizing weighting scheme uses weights that are given (up to an arbitrary

constant) by

λ∗c(Wi) =

(
K∑

k=0

c2kσ
2
k(Wi)

pk(Wi)

)−1

. (19)

The asymptotic variance of this easiest-to-estimate weighting,

Vλ∗

c ,c = E





(
K∑

k=0

c2kσ
2
k(Wi)

pk(Wi)

)−1




−1

,

is the harmonic mean of
∑K

k=0
c2
k
σ2
k
(Wi)

pk(Wi)
. In contrast, the efficiency bound for the unweighted

contrast is given by the arithmetic mean E
[(
∑K

k=0
c2
k
σ2
k
(Wi)

pk(Wi)

)]

, which can be considerably

bigger when the propensity scores are not bounded away from zero or one. An appealing

feature of the variance-minimizing weighting scheme is that it yields weights that are non-

negative, λ∗c ≥ 0, so that θλ∗

c ,c represents a convex average of conditional contrasts (i.e. an

average for some well-defined subpopulation).

When the contrast vector c is selected to estimate the weighted average effect of a particular

treatment k, Proposition 2 implies that the regression weights are efficient:

Corollary 1. For some k ≥ 1, let ck be a vector with elements ckj = 1 if j = k, ckj = −1

if j = 0, and ckj = 0 otherwise. Suppose that the conditional variance of relevant potential

outcomes is homoskedastic: σ2k(Wi) = σ20(Wi) = σ2. Then the variance-minimizing weighting

scheme is given by λ∗
ck

= λk, where

λk(Wi) =
p0(Wi)pk(Wi)

p0(Wi) + pk(Wi)
, (20)

with the semiparametric efficiency bound given by

Vλk,ck = σ2E

[
p0(Wi)pk(Wi)

p0(Wi) + pk(Wi)

]−1

, (21)

19The efficiency bound for the population analog θ∗λ,c = E[λ(Wi)
∑K

k=0 ckµk(Wi)]/E[λ(Wi)] has an addi-

tional term, E[λ(Wi)
2(
∑K

k=0 ckµk(Wi)−θ∗λ,c)
2]/E[λ(Wi)]

2, reflecting the variability of the conditional average
contrast. The optimal weights for θ∗λ,c thus depend on the nature of treatment effect heterogeneity. By focus-
ing on θλ,c, we avoid this term, which allows us to characterize the optimal weights in eq. (19) while remaining
completely agnostic about heterogeneity in treatment effects. See Crump et al. (2006) for additional discussion
in the context of a binary treatment.
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where p0(Wi) = Pr(Di = 0 |Wi) = 1−∑K
k=1 pk(Wi).

Per eq. (15), the optimal weighting λk coincides with the implicit weighting of conditional

ATEs from the partially linear model (9) when it is fit only on observations with Di ∈ {0, k}.
This follows since the propensity score in the subsample is given by Pr(Di = k | Wi, Di ∈
{0, k}) = pk(Wi)

p0(Wi)+pk(Wi)
, making λk(Wi) in eq. (20) the conditional variance of the treatment

indicator. Moreover, it follows by standard arguments that regressing Yi onto Xik and g(Wi)

in the subsample with Di ∈ {0, k} efficiently estimates this weighted average effect provided

g is sufficiently flexible (such as when g is linear and Wi consists of group indicators).20

When the treatment Di is binary, this simply amounts to running a regression on the binary

treatment indicator, with an additive covariate adjustment.

Corollary 1 thus gives justification for estimating the effect of any given treatment k by a

partially linear regression with an additive covariate adjustment in the subsample with Di ∈
{0, k}. To estimate the effects of all treatments, one runs K such regressions, restricting the

sample to one treatment arm and the control group. Such one-treatment-at-a-time regressions

are simple to implement and do not require explicitly estimating the propensity score. The

regression coefficients are causally interpretable as weighted averages of conditional treatment

effects τk(Wi), so long as pk/(p0 + pk) ∈ G. Moreover, the weighted averages are locally

efficient in the sense of Corollary 1.21

While the robustness property of the one-treatment-at-a-time regression is well-established,

by Angrist (1998) and subsequent extensions, our efficiency characterization appears novel.

It builds on earlier results in Crump et al. (2006, Corollary 5.2) (a working paper version

of Crump et al., 2009) and Li et al. (2018, Corollary 1), who show that the weighting

p1(Wi)(1− p1(Wi)) is optimal for estimating the effect of a binary treatment in that it mini-

mizes the asymptotic variance of a particular class of inverse propensity score weighted estima-

tors. Our Corollary 1 extends the optimality of this weighting to all regular estimators, and

to multiple treatments. Importantly, this result formalizes a common motivation for using

regression to estimate the effects of a single treatment instead of more involved unconditional

ATE estimators: when treatment effect heterogeneity is minimal or only weakly correlated

with the λ∗k(Wi) weights, the regression’s weighted-average effect will be close to the ATE

while being more precisely estimated.

A shortcoming of the optimal weighting scheme in Corollary 1 is that it is treatment-

20As we discuss in the next subsection, when the propensity score is unknown, the semiparametric efficiency
bound for estimating θλk,ck has an additional term relative to eq. (21) arising from the estimation of the
optimal weights eq. (20). Thus, while the regression estimator is semiparametrically efficient, it does not
generally attain the efficiency bound derived in Proposition 2 that assumes a known propensity score.

21As usual, homoskedasticity is a tractable baseline: the arguments in favor of ordinary least squares
regression following Corollary 1 can be extended to favor a (feasible) generalized least squares regression when
σ2(Wi) is known or consistently estimable.

23



specific, so comparisons of the “one-at-a-time” weighted-average effects across treatments are

generally not causally interpretable.22 This issue is especially salient when the control group

is arbitrarily chosen, such as in teacher VAM regressions which omit an arbitrary teacher from

estimation and seek to make causal comparisons across all teachers.23

We thus turn to the question of how Proposition 2 can be used to select an efficient

weighting scheme that allows for simultaneous comparisons across all treatment arms. We

are interested in reporting estimates of a vector βλC of K coefficients with elements βλC,k =
∑N

i=1 λ
C(Wi)τk(Wi)/

∑N
i=1 λ

C(Wi), where the weights λC are common across treatment arms.

If we are equally interested in all K(K + 1) contrasts (that is, weighted averages µj(Wi) −
µk(Wi), for all j 6= k, j, k = 0, . . . ,K), a natural approach is to choose the weighting scheme

λC that minimizes the average variance across all contrasts:

∫

Vλ,cdF (c) =
1

E[λ(Wi)]2

K∑

k=0

2

K + 1
E

[
λ(Wi)

2σ2k(Wi)

pk(Wi)

]

,

where F gives the uniform distribution over the possible (now random) contrasts c, so that

cj = 1 with probability 1/(K + 1) and −1 with probability 1/(K + 1). Minimizing this

expression over λ is equivalent to minimizing eq. (18) with c2k = 2/(K + 1), which leads to

the following result:

Corollary 2. Let F denote the uniform distribution over the possible contrast vectors. Sup-

pose that σ2k(Wi) = σ2 for all k. Then the weighting scheme minimizing the average variance

bound
∫
Vλ,cdF (c) is given by

λC(Wi) = 1
/ K∑

k=0

pk(Wi)
−1. (22)

The weights λC generalize the intuition behind the single binary treatment (Corollary 1),

placing higher weight on covariate strata where the treatments are evenly distributed, and

putting less weight on strata with limited overlap. When the treatment is binary, K = 1, the

weights reduce to the one-at-a-time weights in Corollary 1, λC(Wi) = λ1(Wi) = λ0(Wi) =

p1(Wi)p0(Wi). With multiple treatments, however, the weights λC remain the same for every

treatment, allowing for simultaneous comparisons across all treatment pairs (k, ℓ). Again,

an appealing feature of these weights is that they are non-negative, so that βλC represents

22Formally, for treatments 1 and 2, we estimate the weighted averages
∑

i
λ1(Wi)τ1(Wi)/

∑

i
λ1(Wi) and

∑

i
λ2(Wi)τ2(Wi)/

∑

i
λ2(Wi). Because the weights λ1 and λ2 differ, the difference between these estimands

cannot generally be written as a convex combination of conditional treatment effects τ1(Wi)− τ2(Wi).
23Note that this critique also applies to the own-treatment weights in Proposition 1. Thus even without

contamination bias one may find the implicit multiple-treatment regression weighting unsatisfying.
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a convex average of conditional contrasts. We next consider estimating this convex average

using a weighted regression approach.

4.3 Estimating Efficiently Weighted Average Effects

If the propensity scores p(Wi) were known, one could estimate βλC by a weighted regression

of Yi onto Xi and a constant, with each observation weighted by λC(Wi)/pDi
(Wi). When

the treatment is binary, this estimator reduces to the estimator studied in Li et al. (2018).

Since the propensity score is unknown, we replace the infeasible weights with feasible weights

λ̂C(Wi)/p̂Di
(Wi), where p̂k(Wi) is a feasible estimate of the propensity score and λ̂C(Wi) =

1/
∑K

k=0 1/p̂k(Wi). When G is finite-dimensional, we may use the regression estimator that

projects Xik onto g(Wi):

p̂k(Wi) = argmin
p̃∈G

N∑

i=1

(Xik − p̃(Wi))
2 .

With linear G, for example, p̂k(Wi) is simply the fitted value from a linear regression of Xik

on Wi and a constant. The resulting estimator can be written as

β̂λ̂C,k =
1

∑N
i=1

λ̂C(Wi)
p̂k(Wi)

Xik

N∑

i=1

λ̂C(Wi)

p̂k(Wi)
XikYi −

1
∑N

i=1
λ̂C(Wi)
p̂0(Wi)

Xi0

N∑

i=1

λ̂C(Wi)

p̂0(Wi)
Xi0Yi. (23)

When the treatment is binary and G is linear, this weighted regression estimator coincides

with the usual (unweighted) regression estimator that regresses Yi onto Di and Wi.
24

We now show that the estimator β̂λ̂C
is efficient in the sense that is achieves the semipara-

metric efficiency bound for estimating βλC :

Proposition 3. Suppose eq. (12) holds in an i.i.d. sample of size N , with known non-

degenerate propensity scores pk(Wi). Let β∗
λC ,k

= E[λC(Wi)τk(Wi)]/E[λC(Wi)], and α∗
k =

β∗
λC ,k

+E[λC(Wi)µ0(Wi)]/E[λC(Wi)]. Suppose that the fourth moments of λC(Wi) and µ(Wi)

are bounded, and that pk ∈ G, (µk(Wi)−α∗
k)

λC(Wi)
2

pk′ (Wi)2
∈ G, and (µk(Wi)−α∗

k)
λC(Wi)
pk(Wi)

∈ G for all

k, k′. Then, provided it is asymptotically linear and regular, β̂λ̂C achieves the semiparametric

24To see this, note that in this case λ̂(Wi) = p̂1(Wi)p̂0(Wi), so that β̂λ̂C,1 =
∑

N
i=1

(1−p̂1(Wi))DiYi∑
N
i=1

(1−p̂1(Wi))Di

−
∑

N
i=1

p̂1(Wi)(1−Di)Yi∑
N
i=1

p̂1(Wi)(1−Di)
=

∑
N
i=1

(Di−p̂1(Wi))Yi∑
N
i=1

(Di−p̂1(Wi))2
, where the second equality uses the least-squares normal equations

∑N

i=1 Xi1 =
∑N

i=1 p̂1(Wi) and
∑

i
Xi1p̂1(Wi) =

∑N

i=1 p̂1(Wi)
2.
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efficiency bound for estimating βλC, with diagonal elements of its asymptotic variance of:

1

E[λC(Wi)]2
E

[
λC(Wi)

2σ20(Wi)

p0(Wi)
+
λC(Wi)

2σ2k(Wi)

pk(Wi)

+λC(Wi)
2(τk(Wi)− β∗λC,k)

2

(
K∑

k′=0

λC(Wi)
2

pk(Wi)3
− 1

)]

.

This efficiency result doesn’t rely on homoskedasticity: under heteroskedasticity, the estima-

tor β̂λ̂C
is still efficient for βλC (although the weighting λC(Wi) need not be optimal under

heteroskedasticity). It is stated under the high-level condition that β̂λ̂C
is regular; the proof

uses calculations from Newey (1994) to verify the estimator achieves the efficiency bound.

Primitive regularity conditions will depend on the form of G and are omitted for brevity.

Remark 4. The asymptotic variance of the estimator β̂λC is larger than the asymptotic variance

of the infeasible estimator that replaces the estimated weights λ̂C(Wi)/p̂Di
(Wi) in eq. (23)

with the infeasible weights λC(Wi)/pDi
(Wi). The latter achieves the asymptotic variance

implied by Corollary 2,

1

E[λC(Wi)]2
E

[
λC(Wi)

2σ20(Wi)

p0(Wi)
+
λC(Wi)

2σ2k(Wi)

pk(Wi)

]

. (24)

The extra term of the asymptotic variance in Proposition 3 relative to eq. (24) reflects the

cost of having to estimate the weights.25

5 Practical Guidance and Application

5.1 Measuring and Avoiding Contamination Bias

A researcher interested in estimating the effects of multiple dependent treatments with re-

gression can use Proposition 1 to measure the extent of contamination bias in her estimates.

When the treatment assignment is conditionally ignorable, she can further compute one of

the three alternative estimators discussed in Section 4.26 Here we provide practical guidance

on both procedures, which we illustrate in an application in the next subsection.

For simplicity, we focus on the case where g is linear and eq. (9) is estimated by ordinary

25The extra term shows this cost is zero if either there is no treatment effect heterogeneity, so that τk(Wi) =
β∗

λC ,k
, or if the treatment assignment is completely randomized so that pk(Wi) = 1/(K+1). In the latter case

λ∗(Wi) = 1/(K+1)2 so
∑K

k=0 λ
C(Wi)

2/p(Wi)
3 = 1. The extra term can be avoided altogether if we interpret

β̂λ̂C as an estimator of βλ̂C . This follows from arguments in Crump et al. (2006, Lemma B.6).
26We again refer readers to de Chaisemartin and D’Haultfœuille (2022), Sun and Abraham (2021), Callaway

and Sant’Anna (2021), Borusyak et al. (2022), and Wooldridge (2021) for solutions under a parallel trends
assumption.
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least squares (OLS). We assume Assumption 1 and both conditions in Assumption 2 hold,

such that all propensity scores pk and potential outcome conditional expectation functions

µk are linearly spanned by the controls Wi. These conditions hold, for example, when Wi

contains a set of mutually exclusive group indicators.

Under this setup, we can decompose the OLS estimator β̂ from the uninteracted regression

Yi = α+
K∑

k=1

Xikβk +W ′
iγ + Ui, (25)

and obtain a sample analog of the decomposition in Proposition 1. To this end, note that the

own-treatment and contamination bias weights in Proposition 1 are identified by the linear

regression of Xi on the residuals X̃i. Specifically, λkℓ(Wi) is given by the (k, ℓ)th element of

the K ×K matrix

Λ(Wi) = E[X̃iX̃
′
i]
−1E[X̃iX

′
i |Wi].

An estimate of this weight matrix is given by the sample analog:

Λ̂i = (Ẋ ′Ẋ)−1ẊiX
′
i,

where Ẋi is the sample residual from an OLS regression of Xi on Wi and a constant, and Ẋ

is a matrix collecting these sample residuals. The (k, ℓ)th element of Λ̂i estimates the weight

that observation i puts on the ℓth treatment effect in the kth treatment coefficient. For k = ℓ

this is an estimate of the own-treatment weight in Proposition 1; for k 6= ℓ this is an estimate

of a contamination weight.

Under linearity, the kth conditional ATEs may be written as τk(Wi) = γ0,k + W ′
iγW,k,

where γ0,k and γW,k are coefficients in the interacted regression specification

Yi = α0 +
K∑

k=1

Xikγ0,k +W ′
iαW,0 +

K∑

k=1

XikW
′
iγW,k + U̇i. (26)

Estimating eq. (26) by OLS yields estimates τ̂k(Wi) = γ̂0,k +W ′
i γ̂W,k. For each observation i,

we stack the set of conditional ATE estimates in a K × 1 vector τ̂(Wi).

Using OLS normal equations, we then obtain the exact decomposition

β̂ =

N∑

i=1

diag(Λ̂i)τ̂(Wi) +

N∑

i=1

[Λ̂i − diag(Λ̂i)]τ̂(Wi), (27)

which is the sample analog of the population decomposition in Proposition 1. The first

term in this decomposition estimates the own-treatment effect components, E[λkk(Wi)τk(Wi)],
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while the second term estimates the contamination bias components,
∑

ℓ6=k E[λkℓ(Wi)τℓ(Wi)].

If the contamination bias term is large for some β̂k, it suggests the estimate of the kth

treatment effect is substantially impacted by the effects of other treatments. Researchers can

also compare the first term of eq. (27) to other weighted averages of own-treatment effects,

including the ones discussed next, to gauge the impact of the regression weighting diag(Λ̂i).
27

Further analysis of the estimated weights λ̂kℓ(w) =
∑N

i=1  {Wi=w}Λ̂i,kℓ
∑N

i=1  {Wi=w} can shed more light

on the regression estimates in β̂. For example, the contamination weights for ℓ 6= k can

be plotted against the treatment effect estimates τ̂ℓ(Wi) to visually assess the sources of

contamination bias. Low bias may arise from limited treatment effect heterogeneity or a low

correlation between such heterogeneity and the contamination weights.

Implementing the alternative estimators from Section 4 is also straightforward under the

linearity assumptions. For the first solution, estimating the interacted regression

Yi = α0 +

K∑

k=1

Xikτk +W ′
iαW,0 +

K∑

k=1

Xik(Wi −W )′γW,k + U̇i. (28)

by OLS yields estimates of the unweighted ATEs τk = E[τk(Wi)]. Here W = 1
N

∑

iWi

is the sample average of the covariate vector. The estimates are numerically equivalent to

τ̂k = γ̂0,k +W ′γ̂W,k, where γ̂0,k and γ̂W,k are OLS estimates of eq. (26).

The second solution is to estimate the uninteracted regression,

Yi = α̈k +Xikβ̈k +W ′
i γ̈k + Üik (29)

among observations assigned either to treatment k or the control group, Di ∈ {0, k}, for each

of the treatments k = 1, . . . ,K. These one-treatment-at-a-time regressions estimate convex

weighted averages of treatment effects, with weights that are efficient under homoskedasticity

(in the sense of corollary 1) but which will generally vary across the different treatments. This

can make comparisons across treatment arms difficult.

The third solution is to estimate an efficiently weighted average of the conditional ATEs,

with weights that are constrained to be common across treatments. Under linearity, we can

estimate the common weights λC as

λ̂C(Wi) =

(
K∑

k=0

p̂k(Wi)
−1

)−1

, (30)

27When the covariates are not saturated, it is possible that the estimated weighting function Λ̂(w) =
1
N

∑N

i=1  {Wi = w}Λ̂i is not positive-definite for some or all w. In particular, the diagonal elements of Λ̂(w)

need not all be positive. However, it is guaranteed that the diagonal of Λ̂(w) sums to one and the non-diagonal
weights sum to zero, since

∑N

i=1 Λ̂i = Ik.
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where p̂k(Wi) = Xik − Ẋik denote estimated propensity scores. We then regress Yi on Xi,

weighting each observation by λ̂C(Wi)/p̂Di
(Wi).

While the second and third solutions may yield more precise estimates than the equal-

weighted ATE estimates, the gains in precision are achieved by changing the estimand to a

different convex average of conditional treatment effects. In particular, covariate values w

where the propensity score pk(w) is close to zero for some k will be effectively discarded.

On the other hand, if the conditional treatment effects τ(Wi) are approximately inde-

pendent of the propensity scores p(Wi), the weighting scheme may have little effect on the

estimands, even if the treatment effect heterogeneity is substantial. In such cases, we also

expect the contamination bias to be small, since the contamination weights are a function of

the propensity scores. We next investigate this possibility in our application.

5.2 Application

We illustrate the empirical relevance of our analysis using data from Project STAR, as ana-

lyzed in Krueger (1999). The Project STAR RCT randomized 11,600 students in 79 public

Tennessee elementary schools to one of three types of classes: regular-sized (20–25 students),

small (target size 13–17 students), or regular-sized with a teaching aide. The proportion of

students randomized to the small class size and teaching aide treatment varied over schools,

due to school size and other constraints on classroom organization. Students entering kinder-

garten in the 1985–1986 school year participated in the experiment through the third grade.

Other students entering a participating school in grades 1–3 during these years were similarly

randomized between the three class types. We focus on kindergarten effects, where differential

attrition and other complications with the experimental analysis are minimal.28 All analyses

in this section are conducted with our Stata package, multe, which researchers can use to

gauge the extent of contamination bias in similar applications.

Column 1 of Panel A in Table 1 reports estimates of kindergarten treatment effects in

a sample of 5,868 students initially randomized to the small class size and teaching aide

treatments. Specifically, we estimate the uninteracted regression in eq. (25), where Yi is

student i’s test score achievement at the end of kindergarten, Xi = (Xi1, Xi2) are indicators

for the initial experimental assignment to a small kindergarten class and a regular-sized class

with a teaching aide, respectively, and Wi is a vector of school fixed effects. We follow

Krueger (1999) in computing Yi as the average percentile of student i’s math, reading, and

word recognition score on the Stanford Achievement Test in the experimental sample. As in

28Students in regular-sized classes were randomly reassigned between classrooms with and without a teaching
aide after kindergarten, complicating the interpretation of the aide effect in later grades. The randomization
of students entering the sample after kindergarten was also complicated by the uneven availability of slots in
small and regular-sized classes (Krueger, 1999).
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Table 1: Project STAR Contamination Bias and Treatment Effect Estimates

A. Contamination Bias Estimates
Regression Own

Bias
Worst-Case Bias

Coefficient Effect Negative Positive
(1) (2) (3) (4) (5)

Small Class Size 5.357 5.202 0.155 -1.654 1.670
(0.778) (0.778) (0.160) (0.185) (0.187)

Teaching Aide 0.177 0.360 -0.183 -1.529 1.530
(0.720) (0.714) (0.149) (0.176) (0.177)

B. Treatment Effect Estimates
Unweighted Efficiently-Weighted

(ATE) One-at-a-time Common
(1) (2) (3)

Small Class Size 5.561 5.295 5.563
(0.763) (0.775) (0.764)
[0.744] [0.743] [0.742]

Teaching Aide 0.070 0.263 -0.003
(0.708) (0.715) (0.712)
[0.694] [0.691] [0.695]

Notes: Panel A estimates the contamination bias and range of potential contamination bias in regression
estimates of small class and teaching aide treatment effects for the Project STAR kindergarten analysis. The
analysis sample includes 5,868 students. Column 1 reports estimates from a partially linear model in eq. (25).
Columns 2 and 3 estimate the own- and cross-treatment decomposition of this estimate in eq. (27). Columns
4 and 5 reports the smallest (largest) possible contamination bias from reordering the conditional ATEs to
be as negatively (positively) correlated with the cross-treatment weights as possible. Panel B summarizes
estimates of small class and teaching aide treatment effects from different specifications in the kindergarten
sample of Project STAR. Column 1 reports estimates of small class and teaching aide treatment effects from
the interacted model in eq. (28). Column 2 reports estimates from the treatment-specific regressions in eq. (29).
Column 3 reports estimates from the efficiently weighted specification, using the estimated weights in eq. (30).
Robust standard errors are reported in parentheses. Standard errors that assume the propensity scores are
known are reported in square brackets.
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the original analysis (Krueger, 1999, column 6 of Table V, panel A), we obtain a small class

size effect of 5.36, with a heteroskedasticity-robust standard error of 0.78, and a teaching aide

effect of 0.18 (standard error 0.72).29

As discussed in Section 2, treatment assignment probabilities vary across the schools,

indicated by the fixed effects in Wi. If treatment effects also vary across schools, and if this

variation is correlated with the contamination weights λkℓ(Wi), we expect the estimated effect

of small class sizes to be partly contaminated by the effect of teaching aides (and vice versa).

Net of any contamination bias, we expect each βk to identify a weighted average of own

treatment effects τk(Wi), with convex weights given by λkk(Wi).

Columns 2 and 3 of Table 1 apply the decomposition in eq. (27) to the regression coef-

ficients in column 1. The contamination bias appears to be minimal. The small class size

regression estimate of 5.36 is composed of a weighted average of small class size treatment

effects equalling 5.20 and a weighted average of teaching aide treatment effects equalling 0.16.

Similarly, the teaching aide regression coefficient of 0.18 decomposes into a weighted average

of teaching aide treatment effects equalling 0.36 and a weighted average of small class size

effects equalling −0.18. Netting out the contamination bias estimate doubles the teaching

aide effect estimate, from 0.18 to 0.36, but the estimate remains statistically insignificant

with standard errors of around 0.71.

The lack of meaningful bias in the regression estimates of Project STAR effects is due to

a weak correlation between the conditional treatment effects τ(Wi) and the contamination

weights. These correlations are shown in Figure 2, which plots estimates of the school-specific

treatment effects τk(Wi) against the own-treatment and contamination weights λkk(Wi) and

λkℓ(Wi) for ℓ 6= k. Panels A and C show that the own-treatment weight correlation is negative

for the small class size treatment (−0.19) and positive for the aide treatment (0.25). The

partially linear regression model’s estimate of own-treatment effects (column 2 of Table 1)

thus understates the average small class size effect and overstates the average aide effect,

relative to the ATE. Panels B and D further show that correlation between estimated cross-

treatment effects and weights is positive for the small class effect estimate (0.10) and negative

for the aide effect estimate (−0.13). There is thus positive contamination bias in the partially

linear regression model’s estimate of small class size effects and negative contamination bias

in the regression’s aide effect estimate, as shown in column 2 of Table 1. But neither set of

correlations is strong enough to meaningfully bias the estimates.

Importantly, Figure 2 shows that the lack of contamination bias is not due to a lack of

treatment effect heterogeneity across schools. There is considerable variation along the y-axis

29Our sample and estimates are very similar to—but not exactly the same as—those in Krueger (1999). We
use robust (non-clustered) standard errors throughout this analysis, since the randomization of students to
classrooms is at the individual level (Abadie et al., 2017). Results are similar when we cluster by classroom.
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Panel A: Small Class
Own-Treatment Weight

Panel B: Aide
Cross-Treatment Weight

Panel C: Aide
Own-Treatment Weight

Panel D: Small Class
Cross-Treatment Weight

Figure 2: Project STAR Treatment Effects and Regression Weights

Note: This figure shows correlations between estimated school-specific treatment effects and the
implicit school-specific regression weights in column 1 of Table 1. Panels A and B show correlations
for the decomposition of the small class treatment effect estimate in columns 2 and 3 of Table 1.
Panel A plots the estimated small class treatment effects by school against the estimated own-
treatment weights, while Panel B plots the estimated teaching aide treatment effects by school
against the estimated cross-treatment weights. Panels C and D show analogous correlations for
the decomposition of the teaching aide treatment effect estimate in columns 2 and 3 of Table 1.
Panel C plots the estimated teaching aide treatment effects by school against the estimated own-
treatment weights, while Panel D plots the estimated small class treatment effects by school against
the estimated cross-treatment weights. Correlations and lines of best fit are reported on each panel.
The size of the points is proportional to the number of students enrolled in each school.
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of each plot. Adjusting for estimation error, we find a standard deviation of τk(Wi) across

the schools indexed by Wi of 12.7 for the small class treatment and of 10.9 for the aide

treatment.30 Both standard deviations are an order of magnitude larger than the standard

errors in Table 1. Thus, had the experimental design been such that the contamination

weights strongly correlate with this variation, sizeable contamination bias could have resulted.

In practice, the variation in school-specific propensity scores pk(Wi) appears to have been

largely unrelated to school-specific treatment effects.31

To illustrate the potential for contamination bias in this setting, we compute worst-case

(positive and negative) weighted averages of the estimated τk(Wi) by re-ordering them across

the computed cross-treatment weights λkℓ(Wi). This exercise highlights potential scenarios

in which the randomization strata happened to have been highly correlated with the het-

erogeneity in treatment effects. Columns 4 and 5 in Table 1 show that both bounds on

possible contamination bias are an order of magnitude larger than the actual contamination

bias: [−1.65, 1.67] for the small class size treatment and [−1.53, 1.53] for the teaching aide

treatment.32 The worst-case contamination bias equals about 30% of the small class size

treatment’s magnitude. The relative magnitude is limited by the fact that the school-specific

teaching aide treatment effects are all fairly small, so even if the contamination weights aver-

age them in the worst possible way we still end up with only a moderate bias. In contrast, the

small class size effects are much bigger, so the potential contamination bias in the teaching

aide treatment is large relative to the magnitude of the teaching aide treatment effect. Overall,

for both treatments, the underlying heterogeneity in this setting makes severe contamination

bias possible even though actual contamination bias turns out to be relatively small.

Panel B of Table 1 illustrates the three solutions to the contamination bias problem dis-

cussed in Section 4. Column 1 estimates the unweighted ATEs of the small class size and

teaching aide treatment, by estimating the interacted regression specification in eq. (28). Col-

umn 2 estimates the one-treatment-at-a-time regressions in eq. (29) for k = 1, 2. Finally,

column 3 estimates the efficiently-weighted ATEs of each treatment, by running a weighted

regression of Yi onto Xi, using the common weight estimates in eq. (30).

As discussed in Remark 4, the optimal weighting schemes underlying the estimates in

columns 2 and 3 of Panel B are derived under the assumption that the propensity scores are

known. To gauge the relative importance of this assumption, Panel B also reports a version of

30We adjust for estimation error by subtracting the average squared standard error from the empirical
variance of the treatment effect estimates and taking the square root.

31The own-treatment weights in Figure 2 are highly correlated with the respective treatment propensity
score. For the small class size (teaching aide) treatment this correlation is 0.92 (0.73).

32The point estimates and standard errors in Columns 4 and 5 in Table 1 do not account for the fact that
the re-ordering is based on estimates of τk(Wi) rather than the true treatment effects. This biases the reported
estimates away from zero. The reported estimates and associated confidence intervals can be interpreted as
giving an upper bound for the worst-case contamination bias.

33



the standard errors computed under the assumption that the sample treatment probabilities

in each school match the true propensity scores.33 This changes the standard errors little,

showing that there is minimal cost to estimating the optimal weights.34

There turns out to be little difference between the partially linear model estimates of

Project STAR treatment effects and these alternative estimates. In columns 1 and 2 of Panel

B we estimate a small class size effect of 5.56 and 5.30, which are close to the 5.36 estimate in

column 1 of Panel A. Teaching aide effect estimates are also similar: 0.07 and 0.26 in columns 1

and 2 of Panel B, compared to 0.18 in column 1 of Panel A. The efficiently weighted estimates

in column 3 of Panel B are again similar: 5.56 for the small class size treatment and 0.00 for

the teaching aide treatment. Interestingly, the standard errors are roughly constant across

the columns, regardless of whether the propensity score is treated as known.

6 Conclusion

Regressions with multiple treatments and flexible controls are common across a wide range

of empirical settings in economics. We show that such regressions generally fail to estimate

a convex weighted average of heterogeneous effects, with coefficients on each treatment gen-

erally contaminated by the effects of other treatments. We provide intuition for why the

influential result of Angrist (1998) fails to generalize to multiple treatments, and show how

the contamination bias problem connects to a recent literature studying DiD regressions and

related estimators. We discuss three alternative estimators that are free of this bias, including

a new estimator that efficiently weights conditional average treatment effects. The analysis

underling this estimator also formalizes a virtue of regression adjustment in the binary treat-

ment case: the weighting that it implicitly uses to combine heterogeneous treatment effects

minimizes the semiparametric efficiency bound for convex weighted averages of ATEs.

Our application to Project STAR shows that significant contamination bias could arise

in RCTs when there is significant treatment effect heterogeneity. Whether the bias does

arise, however, depends on the correlation between effect heterogeneity and the contamina-

tion weights we derive in our theoretical analysis. Researchers can estimate this correlation,

and report it alongside the alternative estimates that are free of contamination bias. Such

investigation reveals whether, as in our application, the results based on alternative estima-

tors are more similar than the worst-case bounds implied by the theory. Broadly, our analysis

33This is the case under stratified block randomization, where a fixed proportion of students is assigned
to the two treatments. In contrast, sample treatment proportions need not match the true propensity scores
under a Bernoulli trial where each student is assigned to treatments according to a coin toss.

34The standard errors reported in parentheses in Panel B are valid for the population analogs βk and βλC ,
i.e. E[λk(Wi)τk(Wi)]/E[λk(Wi)] and E[λC(Wi)τk(Wi)]/E[λC(Wi)]. Since these standard errors are potentially
conservative when viewed as standard errors for βk and βλC , the standard error comparison gives an upper
bound on the cost to estimating the optimal weights.
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highlights the importance of testing the empirical relevance of theoretical concerns with how

regression combines heterogeneous effects.

We expect the tools in this paper to be especially relevant in modern RCT designs that gen-

erate substantial variation in treatment propensity scores to maximize efficiency (e.g. Tabord-

Meehan, 2021). Propensity scores are also likely to vary dramatically in quasi-experimental

analyses, such as with teacher VAMs, where a large number of covariates are needed to make

the conditionally ignorability of treatment plausible. Contamination bias diagnostics can be a

useful tool for ensuring the reliability and robustness of regression estimates in such settings.
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Appendix A Proofs

A.1 Proof of Proposition 1

We prove a generalization of the Proposition 1 which allows any vector of treatments Xi

(which may not be binary or mutually exclusive). We continue to consider the partially linear

model in eq. (9), and maintain Assumption 2, as well as conditional mean-independence of

the potential outcomes E[Yi(x) | Xi,Wi] = E[Yi(x) | Wi], which extends Assumption 1. We

also assume that the potential outcomes Yi(x) are linear in x, conditional on Wi:

E[Yi(x) |Wi = w] = E[Yi(0) |Wi = w] + x′τ(w),

for some function τ . This condition holds trivially in the main-text discussion of mutually ex-

clusive binary treatments. More generally, τk(w) corresponds to the conditional average effect

of increasing Xik by one unit among observations with Wi = w. Although this assumption is

not essential, it considerably simplifies the derivations. We continue to define τ = E[τ(Wi)]

as the average vector of per-unit effects.

We now prove that under these assumptions βk is given by the expression in eq. (16).

We further prove that E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0 for ℓ 6= k in general, and that

λkk(Wi) ≥ 0 in the case of mutually exclusive treatment indicators.

First note that by iterated expectations and conditional mean-independence, E[
≈

XikYi] =

E[E[
≈

XikYi | Xi,Wi]] = E[
≈

XikE[Yi(0) | Wi]] + E[
≈

XikX
′
iτ(Wi)]. By definition of projection,

E[X̃ig(Wi)] = 0 for all g ∈ G (van der Vaart, 1998, Theorem 11.1); thus if eq. (14) holds

E[
≈

XikE[Yi(0) | Wi]] = 0. Similarly, under eq. (13), E[
≈

Xik | Wi] = 0, so by iterated expecta-

tions, E[
≈

XikE[Yi(0) |Wi]] = E[E[
≈

Xik |Wi]E[Yi(0) |Wi]] = 0. Thus,

βk =
E[

≈

XikX
′
iτ(Wi)]

E[
≈

X2
ik]

=
E[

≈

XikXikτk(Wi)]

E[
≈

X2
ik]

+

∑

ℓ6=k E[
≈

XikXiℓτℓ(Wi)]

E[
≈

X2
ik]

.

This proves eq. (16).

To show that E[λkk(Wi)] = 1 and E[λkℓ(Wi)] = 0 for ℓ 6= k in general, note that

E[λkk(Wi)] =
E[

≈

XikXik]

E[
≈

X2
ik]

= 1,

since
≈

Xi,k is a residual from projecting Xik onto the space spanned by functions of the form

g̃(Wi) +X ′
i,−kβ̃−k, so that E[

≈

XikXik] = E[
≈

X2
ik]. Furthermore,

≈

Xi,k must also be orthogonal

to Xi,−k by definition of projection, so that E[λkℓ(Wi)] = E[
≈

XikXiℓ]/E[
≈

X2
ik] = 0.

Finally, we show that λkk(Wi) ≥ 0 if eq. (13) holds and Xi consists of mutually exclusive

40



indicators. To that end, observe that λkℓ(Wi) is given by the (k, ℓ) element of

Λ(Wi) = E[X̃iX̃
′
i]
−1E[X̃iX

′
i |Wi]

If Equation (13) holds, then we can write this as Λ(Wi) = E[v(Wi)]
−1v(Wi) where v(Wi) =

E[X̃iX̃
′
i | Wi]. If X is a vector of mutually exclusive indicators, then v(Wi) = diag(p(Wi))−

p(Wi)p(Wi)
′. Let v−k(Wi) denote the submatrix with the kth row and column removed, and

let p−k(Wi) denote subvector with the kth row removed. Then by the block matrix inverse

formula,

λkk(Wi) =
pk(Wi)(1− pk(Wi))− E[pk(Wi)p−k(Wi)

′]E[v−k(Wi)]
−1p−k(Wi)pk(Wi)

E[pk(Wi)(1− pk(Wi))]− E[pk(Wi)p−k(Wi)′]E[v−k(Wi)]−1E[pk(Wi)p−k(Wi)]

Note p0(Wi) = 1 −∑K
k=1 pk(Wi) and pk(Wi)p−k(Wi) = v−k(Wi)ι − p0(Wi)p−k(Wi), where ι

denotes a (K − 1)-vector of ones. Thus, the numerator can be written as

pk(Wi)(1− pk(Wi))− ι′p−k(Wi)pk(Wi)

+ E[p0(Wi)p−k(Wi)
′]E[v−k(Wi)]

−1p−k(Wi)pk(Wi)

= pk(Wi)p0(Wi) + E[p0(Wi)p−k(Wi)
′]E[v−k(Wi)]

−1p−k(Wi)pk(Wi).

The eigenvalues of E[v−k(Wi)] are positive because it is a covariance matrix. Furthermore,

the off-diagonal elements of E[v(Wi)] are negative, and hence the off-diagonal elements of

E[v−k(Wi)] are also negative. It therefore follows that E[v−k(Wi)] is an M -matrix (Berman

& Plemmons, 1994, property D16, p. 135). Hence, all elements of E[v−k(Wi)]
−1 are positive

(Berman & Plemmons, 1994, property N38, p. 137). Thus, both summands in the above

expression are positive, so that λkk(Wi) ≥ 0.

A.2 Proof of Proposition 2

The parameter of interest θλ,c depends on the realizations of the controls. We therefore derive

the semiparametric efficiency bound conditional on the controls; i.e. we show that eq. (18) is

almost-surely the variance bound for estimators that are regular conditional on the controls.

Relative to the earlier results in Hahn (1998) and Hirano et al. (2003), we need to account

for the fact that the data are no longer i.i.d. once we condition on the controls.

To that end, we use the notion of semiparametric efficiency based on the convolution

theorem of van der Vaart and Wellner (1989, Theorem 2.1) (see also van der Vaart & Wellner,

1996, Chapter 3.11). We first review the result for convenience. Consider a model {Pn,θ : θ ∈
Θ} parametrized by (a possibly infinite-dimensional) parameter θ. Let Ṗ denote a tangent
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space, a linear subspace of some Hilbert space with an inner product 〈·, ·〉. Suppose that

the model is locally asymptotically normal (LAN) at θ relative to a tangent space Ṗ: for

each g ∈ Ṗ, there exists a sequence θn(g) such that the likelihood ratios are asymptotically

quadratic, dPn,θn(g)/dPn,θ = ∆n,g − 〈g, g〉/2 + oPn,θ
(1), where (∆n,g)g∈Ṗ converges under

Pn,θ to a Gaussian process with covariance kernel 〈g1, g2〉. Suppose also that the parameter

βn(Pn,θ) is differentiable: for each g,
√
n(βn(Pn,θn(g)) − βn(Pn,θ)) → 〈ψ, g〉 for some ψ that

lies in the completion of Ṗ. Then the semiparametric efficiency bound is given by 〈ψ, ψ〉:
the asymptotic distribution of any regular estimator of this parameter, based on a sample

Sn ∼ Pn,θ, is given by the convolution of a random variable Z ∼ N (0, 〈ψ, ψ〉) and some other

random variable U that is independent of Z.

To apply this result in our setting, we proceed in three steps. First, we define the tangent

space and the probability-one set over which we will prove the efficiency bound. Next, we

verify that the model is LAN. Finally, we verify differentiability and derive the efficient

influence function ψ.

Step 1 By the conditional independence assumption in eq. (12), we can write the density

of the vector (Yi(0), . . . , Yi(K), Di) (with respect to some σ-finite measure) conditional on

Wi = w as f(y0, . . . , yK | w) ·∏K
k=0 pk(w)

 {d=k}, where f denotes the conditional density of

the potential outcomes, conditional on the controls. The density of the observed data SN =

{(Yi, Di)}Ni=1 conditional on (W1, . . . ,WN ) = (w1, . . . , wN ) is given by
∏N

i=1

∏K
k=0(fk(yi |

wi)pk(wi))
 {di=k}, where fk(y | w) =

∫
f(yk, y−k | w)dy−k.

Since the propensity scores are known, the model is parametrized by θ = f . Consider

one-dimensional submodels of the form fk(y | w; t) = fk(y | w)(1 + t × sk(y | w)), where

the function sk is bounded and satisfies
∫
sk(y | w)fk(y | w)dy = 0 for all w ∈ W with W

denoting the support of Wi. For small enough t, we have fk(y | w; t) ≥ 0 by boundedness

of sk; hence fk(y | w; t) is a well-defined density for t small enough. The joint log-likelihood,

conditional on the controls, is given by

N∑

i=1

K∑

k=0

 {Di = k}(log fk(Yi | wi; t) + log pk(wi)).

The score at t = 0 is
∑N

i=1 s(Yi, Di | wi), with s(Yi, Di | wi) =
∑K

k=0  {Di = k}sk(Yi | wi).

This result suggests defining the tangent space to consist of functions s(y, d | w) =
∑K

k=0  {d = k}sk(y | Wi = w), such that sk is bounded and satisfies
∫
sk(y | w)fk(y |

w)dy = 0 for all w ∈ W. Define the inner product on this space by 〈s1, s2〉 = E[s1(Yi, Di |
Wi)s2(Yi, Di |Wi)]. Note this is a marginal (rather than a conditional) expectation, over the

unconditional distribution (Yi, Di,Wi) of the observed data.
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We will prove the efficiency bound on the event E that (i) 1
N

∑N
i=1E[s(Yi, Di | Wi)

2 |
Wi] → E[s(Y,Di | Wi)

2], (ii) 1
N

∑N
i=1 λ(Wi) → E[λ(Wi)], and (iii) 1

N

∑N
i=1 λ(Wi)

∑K
k=0 ck ·

E[Yi(k)sk(Yi(k) | Wi) | Wi] →
∑K

k=0 ckE[λ(Wi)Yi(k)sk(Yi(k) | Wi)]. By assumptions of the

proposition, these are all averages of functions of Wi with finite absolute moments. Hence, by

the law of large numbers, E is a probability one set.

Step 2 We verify that the conditions (3.7–12) of Theorem 3.1 in McNeney and Wellner

(2000) hold on the set E conditional on the controls, with θN (s) = f(· | ·; 1/
√
N). Let

αNi =
∏K

k=0(fk(Yi | wi; 1/
√
N)/fk(Yi | wi))

 {Di=k} =
∏K

k=0(1 + sk(Yi | w)/
√
N) {Di=k}

denote the likelihood ratio associated with the ith observation. Since this is bounded by the

boundedness of sk, condition (3.7) holds. Also since (1+ tsk)
1/2 is continuously differentiable

for t small enough, with derivative sk/2
√
1 + tsk, it follows from Lemma 7.6 in van der

Vaart (1998) that N−1
∑N

i=1E[
√
N(α

1/2
Ni − 1) − s(Yi, Di | wi)/2 | Wi = wi]

2 → 0 such

that the quadratic mean differentiability condition (3.8) holds. Since sk is bounded, the

Lindeberg condition (3.9) also holds. Next, 1
N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] converges to

E[s(Y,Di | Wi)
2] = 〈s, s〉 on E by assumption. Hence, conditions (3.10) and (3.11) also hold.

Since the scores ∆N,s = 1√
N

∑N
i=1 s(Yi, Di | wi) are exactly linear in s, condition (3.12) also

holds. It follows that the model is LAN on E .

Step 3 Write the parameter of interest θλ,c as βN (f) =
∑N

i=1 λ(wi)
∫
y
∑K

k=0 ckfk(y |
wi)dy/

∑N
i=1 λ(wi). It follows that

√
N(βN (f(· | ·; 1/

√
N))− βN (f))

=
1

N−1
∑N

i=1 λ(wi)

1√
N

N∑

i=1

λ(wi)

∫

y

K∑

k=0

ck(fk(y | wi; 1/
√
N)− fk(y | wi))dy

=
1

N−1
∑N

i=1 λ(wi)

1

N

N∑

i=1

λ(wi)
K∑

k=0

ck

∫

ysk(y | wi)fk(y | wi)dy,

which converges to
∑K

k=0 ckE[λ(Wi)Yi(k)sk(Yi(k) | Wi)]/E[λ(Wi)] on E by assumption. We

can write this as 〈ψ, s〉, where

ψ(Yi, Di,Wi) =

K∑

k=0

 {Di = k}λ(Wi)ck
(Yi − µk(Wi)).

pk(Wi)E[λ(Wi)]
.

Observe that ψ is in the model tangent space, with the summands playing the role of sk(y | w)
(more precisely, since ψ is unbounded, it lies in the completion of the tangent space). Hence,

the semiparametric efficiency bound is given by E[ψ2].
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A.3 Proof of Proposition 3

We first derive the semiparametric efficiency bound for estimating βλC when the propensity

scores are not known, using the same steps, notation, and setup as in the proof of Proposition 1.

We then verify that the estimator β̂λ̂C
achieves this bound.

Step 1 Since the propensity scores are not known, the model is now parametrized by θ =

(f, p). Consider one-dimensional submodels of the form fk(y | w; t) = fk(y | w)(1 + tsy,k(y |
w)), and pk(w; t) = pk(w)(1+ tsp,k(x)), where the functions sy,k, sp,k are bounded and satisfy
∫
sy,k(y | w)fk(y | w)dy = 0 and

∑K
k=0 pk(w)sp,k(w) = 0 for all w ∈ W . These conditions

ensure that fk(y | w; t) and pk(w; t) are positive for t small enough and that
∑K

k=0 pk(w; t) =
∑K

k=0 pk(w) = 1, so that the submodel is well-defined. The joint log-likelihood, conditional

on the controls, is given by

N∑

i=1

K∑

k=0

 {Di = k}(log fk(Yi | wi; t) + log pk(wi; t)).

The score at t = 0 is given by
∑N

i=1 s(Yi, Di | wi), with s(Yi, Di | wi) =
∑K

k=0  {Di =

k}(sy,k(Yi | wi) + sp,k(wi)).

In line with this result, we define the tangent space to consist of all functions s(y, d |
w) =

∑K
k=0  {d = k}(sy,k(y | w) + sp,k(w)) such that sy,k and sp,k satisfy the above re-

strictions. Define the inner product on this space by the marginal expectation 〈s1, s2〉 =

E[s1(Yi, Di | Wi)s2(Yi, Di | Wi)]. We will prove the efficiency bound on the event E that

(i) 1
N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] → E[s(Y,Di | Wi)
2]; (ii) N−1

∑

i λ
C(Wi) → E[λC(Wi)];

(iii) N−1
∑

i λ
C(Wi)

∑K
k=0 ckE[Yi(k)sy,k(Yi | Wi) | Wi] →

∑K
k=0 ckE[λC(Wi)Yi(k)sy,k(Yi(k) |

Wi)]; (iv) N−1
∑N

i=1 λ
C(Wi)

2
∑

k,k′
sp,k(Wi)
pk(Wi)

ck′µk′(Wi) → E[λC(Wi)
2
∑

k,k′
sp,k(Wi)
pk(Wi)

ck′µk′(Wi)];

(v) N−1
∑N

i=1 λ
C(Wi)

2
∑K

k=0
sp,k(Wi)
pk(Wi)

→ E[λC(Wi)
2
∑K

k=0
sp,k(Wi)
pk(Wi)

]; and (vi) βλC → β∗
λC . Un-

der the proposition assumptions and the law of large numbers, E is a probability-one set.

Step 2 We verify that the conditions (3.7–3.12) of Theorem 3.1 in McNeney and Wellner

(2000) hold on the set E conditional on the controls, with θN (s) = (f(· | ·; 1/
√
N), p(·; 1/

√
N)).

Let αNi =
∏K

k=0(fk(Yi | wi; 1/
√
N)pk(wi; 1/

√
N)/fk(Yi | wi)pk(wi))

 {Di=k} =
∏K

k=0((1 +

N−1/2sy,k(Yi | Wi;N
−1/2))(1 + N−1/2sp,k(wi; 1/

√
N))) {Di=k} denote the likelihood ratio

associated with the ith observation. Since this is bounded by the boundedness of sy,k, sp,k,

condition (3.7) holds. Also, since (1+tsp,k)
1/2 and (1+tsy,k)

1/2 are continuously differentiable

for t small enough, it follows from Lemma 7.6 in van der Vaart (1998) that the quadratic mean

differentiability condition (3.8) holds. Since sk is bounded, the Lindeberg condition (3.9) also

holds. Next, 1
N

∑N
i=1E[s(Yi, Di | Wi)

2 | Wi] converges to E[s(Y,Di | Wi)
2] = 〈s, s〉 on
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E by assumption. Hence, conditions (3.10) and (3.11) also hold. Since the scores ∆N,s =
1√
N

∑N
i=1 s(Yi, Di | wi) are exactly linear in s, condition (3.12) also holds. It follows that the

model is LAN on E .

Step 3 Write the parameter of interest, βλC , as βN (θ) =
∑N

i=1 λ
C(wi)

∫
y
∑K

k=0 ckfk(y |
wi)dy/

∑N
i=1 λ

C(wi), where λC(wi) = 1/
∑K

k=0 pk(wi)
−1. Letting β̇N (θ) denote the derivative

of βN (θ(· | ·; t)) at t = 0, we have

√
N(βN (θ(· | ·; 1/

√
N))− βN (θ)) = β̇N (θ) + o(1).

Let h(w) = λC(w)
∑K

k=0 ck
∫
ysy,k(y | w)fk(y | w)dy, and h̃(Wi) =

∑K
k′=0 ck′µk′(Wi) − β∗

λC .

The derivative may then be written as

β̇N (θ) =
1

∑N
i=1 λ

C(wi)

N∑

i=1

(

h(wi) + λC(wi)
2

K∑

k=0

sp,k(wi)

pk(wi)

(
K∑

k′=0

ck′µk′(wi)− βN (θ)

))

→ 1

E[λC(Wi)]
E

[

h(Wi) + λC(Wi)
2

K∑

k=0

sp,k(Wi)

pk(Wi)

(
K∑

k′=0

ck′µk′(Wi)− β∗λC

)]

=
1

E[λC(Wi)]
E

[

λC(Wi)
K∑

k=0

Xki

(

ck
Yi − µk(Wi)

pk(Wi)
+ λC(Wi)

h̃(Wi)

pk(Wi)2

)

s(Yi, Di |Wi)

]

,

where the limit on the second line holds on the event E , and the third line uses E[Xki(Yi −
µk(Wi))s(Yi, Di | Wi) | Wi] = pk(Wi)E[Yi(k)sy,k(Yi(k) | Wi) | Wi] and E[Xkis(Yi, Di |
Wi) | Wi] = pk(Wi)sp,k(Wi). Since for any function a(Wi), E[a(Wi)s(Yi, Di | Wi)] = 0,

subtracting 1
E[λC(Wi)]

∑K
k=0E[λC(Wi)

2 h̃(Wi)
pk(Wi)

s(Yi, Di | Wi)] = 0 from the preceding display

implies
√
N(βN (θ(· | ·; 1/

√
N))− βN (θ)) = E[ψ(Yi, Di,Wi)s(Yi, Di |Wi)] + o(1), where

ψ(Yi, Di,Wi) =
K∑

k=0

Xki ·
(

λC(Wi)

E[λC(Wi)]
ck
Yi − µk(Wi)

pk(Wi)
+

λC(Wi)

E[λC(Wi)]
h̃(Wi)

(
λC(Wi)

p2k
− 1

))

.

Observe that ψ lies in the completion of the tangent space, with the expression in parentheses

playing the role of sy,k(Yi | Wi) + sp,k(Wi). Hence, the semiparametric efficiency bound is

given by E[ψ2], which yields the expression in the statement of the Proposition.

Attainment of the bound We derive the result in two steps. First, we show that

√
N(βλC − β∗λC ) =

1√
N

N∑

i=1

ψ∗(Wi) + op(1) and ψ∗(Wi) =
λC(Wi)

E[λC(Wi)]
(τ(Wi)− β∗λC).

(31)
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Second, we show that

√
N(β̂λ̂C

− β∗λC ) =
1√
N

N∑

i=1

ψ(Yi, Di,Wi) + op(1), (32)

where, letting ǫki = Yi − µk(Wi),

ψk(Yi, Di,Wi) =
λC(Wi)

E[λC(Wi)]

(

Xkiǫki
pk(Wi)

− X0iǫ0i
pk(Wi)

+ (τk(Wi)− β∗λC,k)λ
C(Wi)

∑

k′

Xk′i

pk′(Wi)2

)

.

Together, these results imply that the asymptotic variance of β̂λ̂C
as an estimator of βλC is

given by var(ψ − ψ∗), which coincides with the semiparametric efficiency bound.

Equation (31) follows directly under the assumptions of the proposition by the law of

large numbers and the fact that the variance of λC(Wi)(τ(Wi) − β∗
λC

) is bounded. To show

eq. (32), write β̂λ̂C,k = α̂k − α̂0, where α̂ is a two-step method of moments estimator based

on the (K + 1) dimensional moment condition E[m(Yi, Di,Wi, α
∗, p)] = 0 with elements

mk(Yi, Di,Wi, α
∗, p) = λC(Wi)

Xki

pk(Wi)
(Yi − α∗

k), and α∗ is a (K + 1) dimensional vector with

elements α∗
k = E[λC(Wi)µk(Wi)]/E[λC(Wi)].

Consider a one-dimensional path Ft such that the distribution of the data is given by F0.

Let pk,t(Wi) = EFt
[Xki | Wi] denote the propensity score along this path. The derivative of

E[mk(Yi, Di,Wi, α
∗, pt)] with respect to t evaluated at t = 0 is

E

[

λC(Wi)Xki

pk(Wi)
(Yi − α∗

k)

(

λC(Wi)
K∑

k′=0

ṗk′(Wi)

pk′(Wi)2
− ṗk(Wi)

pk(Wi)

)]

=
K∑

k′=0

E[δkk′(Wi)
′ṗk′(Wi)],

where ṗk denotes the derivative of pk,t at t = 0, and

δk,k′(Wi) = λC(Wi)(µk(Wi)− α∗
k)

(
λC(Wi)

pk′(Wi)2
−  {k = k′}

pk(Wi)

)

.

Under the assumptions of the proposition, δk,k′ ∈ G. It therefore follows by Proposition 4 in

Newey (1994) that the influence function for α̂k is given by

1

E[λC(Wi)]

(

λC(Wi)Xki

pk(Wi)
(Yi − α∗

k) +
∑

k′

δkk′(Wi)(Xk′i − pk′(Wi))

)

=
λC(Wi)

E[λC(Wi)]

(

Xkiǫki
pk(Wi)

+ (µk(Wi)− α∗
k)λ

C(Wi)
∑

k′

Xk′i

pk′(Wi)2

)

,

which yields eq. (32).
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Appendix B Connections to Difference-in-Differences Literature

In this appendix we elaborate on the connections between Proposition 1 and the recent liter-

ature studying potential biases from heterogeneous treatment effects in DiD regressions and

related specifications (e.g. Goodman-Bacon, 2021; Sun & Abraham, 2021; Hull, 2018b; de

Chaisemartin & D’Haultfœuille, 2020, 2022; Callaway & Sant’Anna, 2021; Borusyak et al.,

2022; Wooldridge, 2021). We first show how our framework fits a two-way fixed effects regres-

sion with a general treatment specification. We then show how Proposition 1 applies to four

particular treatment specifications: a static binary treatment with a single intervention date,

a static binary treatment with multiple intervention dates, a dynamic “event study” treat-

ment specification, and a static multivalued treatment specification (or “movers regression”).

In each case we discuss whether there is a potential for bias—either contamination bias or

own-treatment negative weighting—and give a numerical illustration.

Consider a panel of units indexed by j = 1, . . . , n which are observed over time periods

t = 1, . . . T . For simplicity, we assume the panel is balanced such that the sample size is

N = nT . For an observation i = (j, t), let Ji = j and Ti = t denote the corresponding unit

and time period, respectively. A two-way fixed effects specification sets Wi = (Ji, Ti) and

g(Wi) = α + ( {Ji = 2}, . . . , {Ji = n}, {Ti = 2}, . . . , {Ti = T})′γ, with the indicators

 {Ji = 1} and  {Ti = 1} omitted to avoid perfect collinearity.

To study these specifications, we follow de Chaisemartin and D’Haultfœuille (2020) and

Borusyak et al. (2022) in considering the n observed units as fixed, and we condition on their

treatment status (results when the units are sampled from a large population are analogous).

For each unit j, we observe a (random) T -vector of outcomes Yj = (Yj1, . . . , YjT ) and a (fixed)

T -vector of (K + 1)-valued treatments Dj = (Dj1, . . . , DjT ), with Djt ∈ {0, . . . ,K}. As in

the main text, Xjt denotes a K-vector of treatment indicators derived from Djt. As we show

below, Xjt will vary in complexity depending on whether the regression specification allows

for dynamic treatment effects.

We make two assumptions on the potential outcomes. First we assume that potential

outcomes Yjt(d) depend only on the current treatment status d, such that Yjt = Yjt(Djt). As

we show below, this assumption need not rule out dynamic treatment effects depending the

specification of Djt (e.g. Djt can index each of the periods after an intervention). Second, we

make a parallel trends assumption by writing untreated potential outcomes as

Yjt(0) = αj + λt + ηjt,

for fixed αj and λt, and assuming

E[ηjt] = 0. (33)
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Together these expressions imply E[Yjt(0)] = αj+λt, which is how parallel trends is sometimes

formalized (c.f. Assumption 1 in Borusyak et al. (2022); weaker versions of the parallel trends

assumption yield analogous results). We do not restrict the dependence of ηjt across units

or time, nor do we make restrictions on the potentially random treatment effects τjt,k =

Yjt(k)− Yjt(0). Collecting these effects in a vector τjt, we have

Yjt = X ′
jtτjt + αj + λt + ηjt. (34)

This outcome model reduces to a textbook two-way fixed effects model under the assumption

of constant treatment effects: τjt = β for all (j, t).

To fit this setup into the framework of Section 3, we interpret the expectation in eq. (9) as

averaging over the unobserved shocks affecting potential outcomes for the observed units and

time periods. That is (β, g) = argminβ̃∈RK ,g̃∈G N
−1
∑n

j=1

∑T
t=1Eτ,η[(Yjt −X ′

jtβ̃ − g̃(Wjt))
2],

where Eτ,η[·] denotes expectation over the joint distribution of {τjt, ηjt}n,Tj=1,t=1. The parallel

trends assumption implies µ0(Wi) = αJi + λTi
, so that eq. (14) in Assumption 2 holds under

the two-way fixed effects specification. In other words, the parallel trend assumption implies

that our controls g(Wi) correctly specify the untreated potential outcome mean. Additionally,

Assumption 1 holds trivially because the treatment vector is non-random.

To make the link to Proposition 1, note that X̃jt = Xjt − X̄j − X̄t + X̄ coincides with

the sample residual from regressing Xi onto unit and time effects. Here X̄j = 1
T

∑T
t=1Xjt,

X̄t =
1
n

∑n
j=1Xjt, and X̄ = 1

n

∑n
j=1 X̄j . We may then write eq. (11) as

β =





n∑

j=1

T∑

t=1

Eτ,η[X̃jtX̃
′
jt]





−1
n∑

j=1

T∑

t=1

Eτ,η[X̃jtYjt] =





n∑

j=1

T∑

t=1

X̃iX̃
′
i





−1
n∑

j=1

T∑

t=1

X̃jtX
′
jtE[τjt],

where the second equality uses eqs. (33) and (34), and the fact that only ηjt and τjt are

stochastic. Proposition 1 implies that the coefficient on the kth element on Xjt is given by

βk =
∑

j,t

λkk(j, t)E[τjt,k] +
∑

ℓ6=k

∑

j,t

λkℓ(j, t)E[τjt,ℓ] (35)

where

λkk(j, t) =

≈

Xjt,kXjt,k
∑

j,t

≈

X2
jt,k

, and λkℓ(j, t) =

≈

Xjt,kXjt,ℓ
∑

j,t

≈

X2
jt,k

,

and
≈

Xjt,k is the sample residual from regressing X̃jt,k onto the remaining elements of X̃jt.

Recall that since we do not assume that eq. (13) holds, it is not guaranteed that λkk(j, t) ≥ 0.

To unpack this result, we now consider four special cases from the literature.
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Static treatment for a single intervention date First, consider the canonical DiD case

where the first n1 < n units are treated in the last T1 < T periods and are untreated in the

earlier periods 1, . . . , T − T1. The remaining units are never treated. Treatment effects are

assumed to be static, in that outcomes only depend only on the current treatment status.

This nests the simplest DiD specification where T = 2 and T1 = 1 (e.g. Card & Krueger,

1994). Let Djt ∈ {0, 1} denote the indicator that unit j is treated in period t. In this

setup there are only two unique treatment vectors Dj , either a vector of zeros or a vector

of a series of zeros followed by a series of ones, so Xjt =  {j ≤ n1} {t > T − T1} and

X̃jt =  {j ≤ n1} {t > T − T1} − T1
T  {j ≤ n1} − n1

n  {t > T − T1} + n1T1
N from the above

expressions. Since Xjt is scalar,
≈

Xjt,1 = X̃jt and the second term in eq. (35) drops out; the

remaining first term can be shown to simplify to:

β1 =
∑

j,t

λ11(j, t)E[τjt,1], λ11(j, t) =
(1− n1

n )(1− T1
T )Xjt

(1− n1
n )(1− T1

T )n1T1
nT

=
Xjt

n1T1/N
,

which is simply the average treatment effect for the n1T1 treated observations.

Thus, although the propensity score cannot be written as a linear combination of unit and

time indicators (E[Xjt |Wjt] = Xjt = αJiλTi
) and hence eq. (13) does not hold, the canonical

DiD specification estimates a weighted average of treatment effects with positive and easily

interpretable weights. Moreover, because the treatment is binary, there is no contamination

bias from other treatments. These results are consistent with the literature, which finds no

negative weighting issues with non-staggered and static DiD interventions.

Static treatment with multiple intervention dates Next, consider a DiD setting where

units adopt (and potentially drop) a binary treatment at different time periods—a case that

de Chaisemartin and D’Haultfœuille (2020) and Goodman-Bacon (2021) study in detail. For

example, different states j may choose to roll out a policy in different time periods and a

researcher wishes to estimate the average effect of this policy using this staggered adoption.

We continue to assume that the treatment is static, such that potential outcomes are still

only indexed by the binary treatment Djt. However, instead of two unique treatment paths

as in the previous example, now the treatment vectors Dj = (Dj1, . . . , DjT ) take on different

values depending on the intervention date (i.e. T1 now varies across the units j).

As before, since Djt is binary, there is no scope for contamination bias in this setting.

We continue to have X̃jt =
≈

Xjt,1 and the second term in eq. (35) drops out. The remain-

ing term coincides with the expression for the regression estimand that de Chaisemartin and

D’Haultfœuille (2020) give in their Theorem 1. The treatment weights λ11(j, t) are not guaran-

teed to be convex since eq. (13) does not hold. In contrast, Athey and Imbens (2022) consider
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staggered DiD regressions where eq. (13) holds because intervention timing is assumed to be

random (in place of the parallel trends assumption). Under this design-based assumption,

Proposition 1 shows the treatment weights (corresponding to those in Theorem 1(iv) of Athey

and Imbens (2022)) are convex.

To illustrate the negative weighting problem in our framework, consider a case with three

time periods (T = 3) and three groups of units: E , L, and N , with respective sizes nE , nL,

and nN . Units j ∈ E are “early adopters”, and are treated beginning in period 2. Units

j ∈ L are “late adopters”, and are treated only in period 3. Units in the last group are never

treated.35 Following the same steps as before, we obtain β1 =
∑

j,t λ11(j, t)E[τjt,1] with

λ11(j, 3) =
nE + 2nN

κ
j ∈ L,

λ11(j, 2) =
nN + 2nL

κ
j ∈ E ,

λ11(j, 3) =
nN − nL

κ
j ∈ E ,

where κ = 2(nEnL + nEnN + nNnL) and λ11(j, t) = 0 otherwise. The first two of these

expressions are always non-negative, but the sign of λ11(j, 3) for early adopters depends on

the relative sizes of the other two groups. If there are more late adopters than never adopters,

this weight is negative. Otherwise, all weights are positive.

Event study with staggered intervention dates Next, consider an “event study” setting

in which each unit j starts being treated in period A(j) ∈ {1, 2, . . . , T} ∪ ∞ and remains

treated thereafter, with A(j) = ∞ denoting a unit that is never treated. We allow for dynamic

effects by letting Djt = t − A(j) index the number of periods since the treatment adoption

date (breaking with our usual indexing convention of Djt ≥ 0), assuming no anticipation effect

one period before adoption, and correspondingly normalizing Djt = −1 for the never-treated

group. Xjt then consists of indicators for all leads and lags relative to the adoption date:

Xjt = ( {Djt = −(T − 1)}, . . . , {Djt = −2}, {Djt = 0}, . . . , {Djt = T − 1})′, with the

indicator for the period just prior to adoption (Djt = −1) excluded. This specification avoids

perfect collinearity when all treatment adoption dates are represented in the data (including

the never-treated group). Sun and Abraham (2021) and Borusyak et al. (2022) study such

“fully-dynamic” event study specifications.

Since Xjt is now a vector, the second contamination bias term in eq. (35) will generally

be present. As such, Sun and Abraham (2021) and Borusyak et al. (2022) study the potential

for contamination across estimates of post- and pre-treatment effects (with the latter used

in conventional pre-trend specification tests). Furthermore, like in the previous case with

35This example is a special case of the example discussed in Figure 2 of Goodman-Bacon (2021).
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static treatment, the own-treatment weights in the first term are potentially negative. While

random treatment timing assumptions may solve the issue of negative own treatment weights,

contamination bias remains a concern even under such assumptions.

To illustrate the potential for contamination bias, consider again the example with early,

late, and never adopters and T = 3, except we now allow the treatment effect to be dynamic.

Let τjts = Yjt(s) − Yjt(0), s ∈ {−2, 1, 0, 1} denote the effect on unit j in time period t of

adopting the treatment s periods ago. If s is negative, we interpret this as the anticipation

effect of adopting the treatment −s periods from now. Under our assumptions τjt,−1 = 0, such

that there is no anticipation effect immediately before treatment adoption. To test whether

the two-period-ahead anticipation effect is zero, and whether the effect of the treatment

fades out over time, we let Xjt = ( {Djt = −2}, {Djt = 0}, {Djt = T − 1})′. Thus,

for instance, Xj1 = (1, 0, 0)′ for late adopters while Xj2 = (0, 1, 0)′ for early adopters. Let

τE,ts = n−1
E

∑

j∈E E[τjts] denote the average effect among early adopters, and define τL,ts

similarly. Then some (rather tedious) matrix algebra shows that:

β =







τL,1,−2

0

τE,3,1







+ λE,0τE,2,0 + λL,0τL,3,0,

where

λE,0 =
1

ζ







3nLnE + nNnE

3nLnE + 2nNnE

−nLnN






, λL,0 =

1

ζ







−3nLnE − nNnE

3nEnL + 2nNnL

nNnL






,

and ζ = 2(3nLnE + nEnN + nLnN ). In other words, the estimand for the two-period-ahead

anticipation effect β1 equals the anticipation effect for late adopters in period 1 (this is the

only group we ever observe two periods before treatment) plus a contamination bias term

coming from the effect of the treatment on impact. Similarly, the estimand for the effect of

the treatment one period since adoption, β3, equals the effect for early adopters in period 3

(this is the only group we ever observe one periods after treatment) plus a contamination bias

term coming from the effect of the treatment on impact. The estimand for the effect of the

treatment upon adoption, β0, has no contamination bias, and equals a weighted average of

the effect for early and late adopters. In this example, the own treatment weights are always

positive, but the contamination weights can be large. For instance, with equal-sized groups,

λE,0 = (2/5, 1/2,−1/10)′ and λL,0 = (−2/5, 1/2, 1/10)′, so the contamination weights in the

estimand β1 are almost as large as the own treatment weights for β2.
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Mover regressions: multiple treatments with multiple transitions. Finally, consider

a “mover regression” in a setting with a static multivalued treatment Djt ∈ {0, . . . ,K} with

multiple transitions of units between treatment states, leading to multiple treatment paths.

This setting has been studied by Hull (2018b) and de Chaisemartin and D’Haultfœuille (2022).

Our Proposition 1 shows that such specifications can suffer from two distinct sources of bias:

own-treatment negative weighting from multiple transitions and contamination bias from the

multiple treatments. As before the former bias disappears under random treatment timing

(as in Athey and Imbens (2022)), or other assumptions which make eq. (13) hold.

To illustrate this case, consider a setting with T = 3 periods, K = 3 treatments, and three

groups of units, E , L, and N . Units in the first group start out untreated, move to treatment 2

in period 1, and move to treatment 3 in period 3. Units in the second group start in treatment

1, move to being untreated in period 2, and move to treatment 2 in period 3. Units in group

N are never treated. This example is isomorphic to the previous event study example, in

that it leads to the same regression specification and the same eq. (35) characterization of

regression coefficients. Thus there are no negative own-treatment weights in this example,

but there are potentially large contamination weights depending on the relative group sizes.
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