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1 Introduction

A growing academic literature has offered a myriad of competing explanations for why

financial markets react strongly to the actions and announcements of central banks. A

classic view is that surprise central bank announcements proxy for shocks to a nominal

interest rate rule of the type emphasized by Taylor (1993), which have short-run affects

on the real economy in a manner consistent with canonical New Keynesian models

(e.g., Christiano, Eichenbaum, and Evans (2005)). More recently, other hypotheses

have emerged, including the effects such announcements have on financial market risk

premia, the information they impart about the state of the economy (the “Fed informa-

tion effect”), or the role they play in revising the public’s understanding of the central

bank’s reaction function and objectives.

As the mushrooming debate over how to interpret this evidence indicates, many

questions about the interplay between markets and monetary policy remain unan-

swered. In this paper we consider three of them. First, theories focused on a single

channel of monetary transmission are useful for elucidating its marginal effects, but

may reveal only part of the overall picture. To what extent are several competing ex-

planations or others entirely playing a role simultaneously? Second, monetary policy

communications cover a range of topics from interest rate policy, to forward guidance,

to quantitative interventions, to the macroeconomic outlook. How do these varied com-

munications affect market participants’perceptions of the primitive economic sources

of risk hitting the economy in real time? Third, high frequency events studies only

capture the causal effects of the surprise component of a policy announcement, a lower

bound on its overall impact. How much of the causal influence of shifting monetary

policy occurs outside of tight windows around Fed communications, effects that are by

construction impossible to observe from high-frequency event studies?

Our contribution to addressing these questions is to integrate a high-frequency mon-

etary event study into a mixed-frequency macro-finance model and structural estima-

tion. We examine Fed communications alongside both high- and lower-frequency data

through the lens of a structural equilibrium asset pricing model with New Keynesian

style macroeconomic dynamics, using dozens of series ranging from minutely financial
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market data to biannual survey forecast data in our structural estimation. The model

and estimation allow us to infer jumps in investor beliefs about the latent state of

the economy, the perceived sources of economic risk, and the future conduct of mon-

etary policy, all in response to Fed news. The novelty of this approach allows us to

investigate a variety of possible explanations for why markets respond strongly and

swiftly to central bank actions and announcements, providing granular detail on the

perceived economic sources of risk responsible for observed forecast revisions and fi-

nancial market volatility. The mixed-frequency structural estimation further permits

us to quantify the causal effects of changing monetary policy that may occur outside of

tight windows surrounding Fed communications. The general approach can be applied

in a wide variety of other structural and semi-structural settings, whenever a granular

understanding of financial market responses to almost any type of news is desired.

In this paper, we apply the approach to a two-agent asset pricing model with New

Keynesian style macroeconomic dynamics in which the two agents have heterogeneous

beliefs, as in Bianchi, Lettau, and Ludvigson (2022). One agent is a representative

“investor” who is forward-looking, reacts swiftly to news, and earns income solely

from investments in the stock market and a one-period nominal bond. Macroeconomic

dynamics are specified by a set of equations similar to those commonly featured in

New Keynesian models, and can be thought of as driven by a representative “house-

hold/worker” that supplies labor and has access to the nominal bond but holds no

stock market wealth. Unlike investors, the household/worker forms expectations in a

backward-looking manner using adaptive learning rules.

An important feature of our model is that the conduct of monetary policy is not

static over time, but is instead subject to infrequent nonrecurrent regime shifts, or

“structural breaks,”that take the form of shifts in the parameters of a nominal interest

rate rule. Such regime changes in what we refer to as the conduct of monetary policy

give rise to endogenously long-lasting changes in real interest rates in the model and are

conceptually distinct from those generated by the monetary policy shock, an innovation

in the nominal rate that is uncorrelated with inflation, economic growth, and shifts in

the policy rule parameters.

We explicitly model investor beliefs about future regime change in the conduct of

monetary policy. Investors in the model closely monitor central bank communications
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for information that would lead them to revise their perceived probability of transi-

tioning out of the current policy regime into a perceived “Alternative regime” that

they believe will come next. Investors are aware that they may change their minds

subsequently about the likelihood of near-term monetary regime change, and take that

into account when forming expectations.

A Fed announcement in our model is bonafide news shock to which investors may

react by revising their nowcasts and forecasts of the current and future economic state,

their beliefs about the future conduct of monetary policy, and their perceptions of fi-

nancial market risk. To ensure that model expectations evolve in a manner that closely

aligns with observed expectations, we map the theoretical implications for these beliefs

into data on numerous forward-looking variables, including household and professional

forecast surveys and financial market indicators from spot and futures markets, esti-

mating all parameters and latent states.

We begin by documenting the existence of distinct regimes in historical data dur-

ing which the real federal funds rate has persistently deviated from a widely used

measure of the neutral rate of interest, a deviation we refer to as the monetary pol-

icy spread, or mps. These deviations are characterized by infrequent, nonrecurrent

regime shifts, i.e., “structural breaks,” in the mean of mpst that divide the sample

from 1961:Q1 to 2020:Q1 into three distinct subperiods: a “Great Inflation” regime

(1961:Q1-1978:Q3), a “Great Moderation”regime (1978:Q4-2001:Q1), and a “Post Mil-

lennial”regime (2001:Q2-2020:Q1). We use this estimated regime sequence to pin down

the timing of policy regime changes in the structural model, while the structural esti-

mation is used to assess the extent to which estimated policy rules shifted (if at all),

across these exogenously identified subperiods.

Our main empirical results may be summarized as follows. First, the structural

estimation implies that investors seldom learn only about conventional monetary policy

shocks from central bank announcements. Instead, jumps in financial market variables

are typically the result of a mix of factors, including announcement-driven revisions in

investor beliefs about the in the composition of primitive economic shocks that investors

perceive are hitting the economy and/or about the probability of near-term monetary

regime change.

For example, on January 3, 2001 the Fed surprised markets by reducing its target
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for the federal funds rate by 50 basis points, causing the stock market to vault 4.2% in

the 20 minutes following the announcement. Yet our estimates imply that the percep-

tion of a surprisingly accommodative monetary policy shock played only a small role in

the stock market surge. Instead, the market jumped upward because investors revised

down their perception current-period financial market liquidity premia, and revised up

their perception of current-period aggregate demand and the corporate earnings share.

On April 18, 2001, the market leapt 2.5% after the Greenspan Fed again surprised

with another 50 basis point reduction in the funds rate. As for the January 3rd an-

nouncement, the big driver of the stock market surge was not the surprise cut in rates,

but instead a jump upward in this case in the perceived probability that Fed policies

going forward would more aggressively protect against the downside risks that affect

stocks. The results for this event are new to the literature and illustrate an important

channel of monetary transmission to markets, namely the role of Fed communications

in altering investor beliefs about future Fed policy to contain economic risks, thereby

immediately impacting subjective risk premia.

Our second main finding is that fluctuating beliefs about the conduct of future

monetary policy generate significant market volatility throughout the sample and that

most of the variation in these beliefs occurs at times that are not close to a policy

announcement. An obvious explanation for this result is that most Fed announcements

are not immediately associated with a change in the policy stance, but instead provide

“forward guidance” in the form of a data-dependent sketch of what could trigger a

change in the conduct of policy down the road. These results underscore the challenges

with relying solely on high-frequency event studies for quantifying the channels of

monetary transmission to markets and the real economy.

Finally, our results indicate that investor beliefs about a future monetary policy

regime change are especially important for the stock market because of their role in

shaping perceptions of equity market risk. We find that the S&P 500 would have been

50% higher than it was in February of 2020 had investors counterfactually believed that

the Fed was very likely to shift in the next year to a policy rule that featured greater

activism to stabilize economic volatility, thereby lowering the quantity of risk in the

stock market.

The research in this paper connects with a large and growing body of evidence that
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the values of long-term financial assets and expected return premia respond sharply to

the announcements of central banks.1 A classic assumption of this literature is that

high-frequency financial market reactions to Fed announcements proxy for conventional

monetary policy “shocks,” i.e., innovations in a Taylor (1993)-type nominal interest

rate rule. By contrast, Jarocinski and Karadi (2020), Cieslak and Schrimpf (2019) and

Hillenbrand (2021) argue that some of the fluctuations are likely driven by the revelation

of private information by the Fed, a “Fed information effect” channel emphasized in

earlier work by Romer and Romer (2000), Campbell, Evans, Fisher, and Justiniano

(2012), Melosi (2017), and Nakamura and Steinsson (2018), while Cieslak and Pang

(2021) identify monetary, growth, and risk premium shocks from Fed news using sign-

restricted VARs. Bauer and Swanson (2023) instead argue that markets are surprised

by the Fed’s response to recent economic events, while Bauer, Pflueger, and Sundaram

(2022) use survey data to estimate perceived policy rules, finding that they are subject

to substantial time-variation. The mixed-frequency structural approach proposed in

this paper can be used to empirically diagnose and distinguish among these types of

alternative channels in the propagation of news shocks. We also add to this literature

by providing evidence that expected return premia vary, in part, because the perceived

quantity of stock market risk fluctuates with beliefs about future monetary policy

conduct.

The papers cited above form their conclusions from reduced-form specifications or

event studies possibly combined with estimations of restricted VARs, a natural starting

point. Yet the absence of a rich structural interpretation of these events makes it

challenging to provide richer detail on why markets react so strongly to Fed news or to

investigate whether multiple channels may be playing a role simultaneously, gaps our

structural approach is designed to fill.

Our work relates to a theoretical literature focused on the implications of monetary

policy for asset prices. Piazzesi (2005) finds that accounting for monetary policy sig-

nificantly improves the performance of traditional yield curve models with three latent

factors. Kekre and Lenel (2021) and Pflueger and Rinaldi (2020) develop carefully cal-

1See Cochrane and Piazzesi (2002), Piazzesi (2005), Bernanke and Kuttner (2005), Krishnamurthy
and Vissing-Jorgensen (2011), Hanson and Stein (2015), Gertler and Karadi (2015), Gilchrist, López-
Salido, and Zakrajšek (2015), Brooks, Katz, and Lustig (2018), Kekre and Lenel (2021), and Pflueger
and Rinaldi (2020).
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ibrated theoretical models that imply stock market return premia vary in response to

a monetary policy shock. These theories use different mechanisms but are all silent on

the possible role of Fed announcement information effects or of changing policy rules

in driving market fluctuations, features that are at the heart of our analysis.

The two-agent structural model of this paper builds on Bianchi, Lettau, and Lud-

vigson (2022) (BLL hereafter), who focus on the low frequency implications for asset

valuations of changes in the conduct of monetary policy. The mixed-frequency struc-

tural approach of this paper offers a significant methodological advance over BLL and

to the best of our knowledge the extant literature, by developing a methodology to

exploit large datasets of relevant information at different frequencies, integrating an

event study into a structural model, and explicitly modeling investor beliefs about fu-

ture monetary policy in the minutes surrounding Fed announcements as well as at lower

frequencies. Moreover, unlike BLL and the extant literature, we model regime changes

in the conduct of monetary policy as nonrecurrent regimes, i.e., structural breaks, a

more plausible specification given that new policy regimes are never expected to be

identically equal to old ones. This in turn requires a model of how expectations are

formed in the presence of structural breaks. We show how forward looking variables,

such as survey expectations and asset prices, can be used both to estimate the market’s

perceived probability of a near-term policy regime change, and to extract beliefs about

the nature of future policy regimes.

In contemporaneous work, Caballero and Simsek (2022) also study a two-agent,

“two-speed”economy with investors and households similar in spirit to our framework,

in which the Fed directly controls aggregate asset prices in an attempt to steer the

spending decisions of households. This differs from our study in that it is a purely the-

oretical investigation that studies asset pricing at an abstract level by thinking of the

risky asset price as a broad-based financial conditions index. Our work is an empirical

compliment that address the questions posed above by integrating a high-frequency

monetary event study into a mixed-frequency asset pricing model and structural esti-

mation, specifically modeling the risky asset as the stock market.

Finally, our mixed-frequency structural approach connects with a pre-existing reduced-

form forecasting/nowcasting literature using mixed-frequency data in state space mod-

els with the objective of augmenting lower frequency prediction models with more
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timely high-frequency data (e.g., Giannone, Reichlin, and Small (2008), Ghysels and

Wright (2009), Schorfheide and Song (2015)). Our use of mixed-frequency data is

designed for a very different purpose, namely as way of integrating a high-frequency

event study into a structural model and estimation for the purpose of modeling and

measuring news shocks. We use high-frequency, forward-looking data available within

the decision interval to infer revisions in the intraperiod beliefs of investors about the

economic state to be realized at the end of the decision interval. This allows us to

treat Fed announcements as bonafide news shocks (as perceived by investors) rather

than as ultra high frequency primitive shocks. In the process, we preserve a corner-

stone of high-frequency event study design, which is to measure the causal effect of the

announcement itself, while plausibly holding fixed the current economic state.

The rest of this paper is organized as follows. The next section presents preliminary

empirical evidence that we use to pin down the timing of monetary regime changes in

our sample. Section 3 describes the mixed-frequency structural macro-finance model

and equilibrium solution. Section 4 describes the structural estimation, while Section

5 presents our empirical findings from the structural estimation. Section 6 concludes.

A large amount of additional material on the model, estimation, and data has been

placed in an Online Appendix.

2 Preliminary Evidence

In the structural model of the next section, investors form beliefs about future regime

change in the conduct of monetary policy.2 We therefore begin by presenting prelimi-

nary evidence suggestive of infrequent, sizable shifts in the conduct of monetary policy

over our the course of our sample.

To that end, Figure 1 plots the difference between a key instrument of monetary

policy, namely the federal funds rate measured for the purposes of this plot in real terms

as the nominal rate minus a four quarter moving average of inflation, and an estimate

of the neutral rate of interest, denoted r∗, from Laubach and Williams (2003).3 We

2As in BLL, infrequent shifts in the stance of monetary policy generate persistent changes in real
interest rates if aggregate inflation expectations are dominated by households who form beliefs using
adaptive learning rules subject to substantial inertia, and forward-looking investors understand this.

3In Laubach and Williams (2003) the neutral or natural rate is a purely empirical measure that
amounts to estimates of the level of the real federal funds rate that consistent with no change in
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refer to this spread between the real funds rate and this measure of r∗, as the monetary

policy spread, and denote its time t value asmpst. Since the Federal Reserve targets the

federal funds rate but in theory has no control over the neutral rate, a non-zero value

for mpst may be considered a measure of the stance of monetary policy, i.e., whether

monetary policy is accommodative or restrictive.

Next, we allow for the possibility of infrequent regime changes in the mean of mpst,

denoted rξPt , governed by a discrete valued latent state variable, ξ
P
t that is presumed

to follow a NP -state nonrecurrent regime-switching Markov process, i.e., structural

breaks. That is, when the stance of monetary policy shifts, there is no expectation that

it must move to a regime that is identically equal to one in the past (mathematically

a probability zero event), though it could be quite similar. BLL estimate a similar

specification using recurrent regime-switching with two latent states. The specification

here is more general and more plausible, since the estimation is free to choose rξPt values

across regimes that are arbitrarily close to those that have occurred in the past, without

restricting them to be identically equal.

Figure 1 reports the results for the case of two structural breaks (NP = 3) with the

estimated regime subperiods reported in the figure notes. Regimes in which the mean

of mpst is positive are labeled restrictive, while those in which the mean is negative are

labeled accommodative.4

The first subperiod of accommodative monetary policy spans 1961:Q1 to 1978:Q3,

where mpst is persistently negative and its mean rξPt = −2.67% at the posterior mode.

This period coincides with a run up in inflation and with two oil shocks in the 1970s

that were arguably exacerbated by a Fed that failed to react suffi ciently proactively

((Clarida, Gali, and Gertler (2000); Lubik and Schorfheide (2004); Sims and Zha (2006);

Bianchi (2013))). We refer to this first regime as the “Great Inflation”regime. A second

inflation.
4The specification that is estimated is

mpst = rξPt + εrt ,

where εrt ∼ N
(
0, σ2

r

)
, and rξPt is a time-varying intercept governed by a discrete valued latent state

variable, ξPt , that follows a NP -state nonrecurrent regime-switching Markov with transition matrix H.

Bayesian methods with flat priors are used estimate the parameters θr =
(
rξPt , σ

2
r, vec (H)

′
)′
over the

period 1961:Q1-2020:Q1 and to estimate the most likely historical regime sequence for ξPt over that
sample. Details of this procedure are provided in the Online Appendix.
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regime begins in 1978:Q4, when a structural break in the series drove an upward jump

in the mpst, leaving its mean rξPt = 1.38% at the posterior mode. This period of

restrictive monetary policy lasted until 2001:Q1 and covers the Volcker disinflation and

moderation in economic volatility that followed. We label this second subperiod the

“Great Moderation”regime. The third “Post Millennial”regime starts in 2001:Q4 and

represents a new prolonged period of accommodative monetary policy, where rξPt =

−1.27% at the posterior mode. The beginning of this regime follows shortly after the

inception of public narratives on the “Greenspan Put,”the perceived attempt of Chair

Greenspan to prop up securities markets in the wake of the IT bust, a recession, and the

aftermath of 9/11, by lowering interest rates. The low mps subperiod at the end of the

sample overlaps with the explicit forward guidance “low-for-long”policies under Chair

Bernanke that repeated promised over several years to keep interest rates at ultra low

levels for an extended period of time. Below we refer to the Great Inflation, the Great

Moderation and the Post Millennial regimes in abbreviated terms as the GI, GM, and

PM regimes.

Figure 1: Breaks in Monetary Policy

Policy regime sequence based on breaks in the mean of the Monetary Policy Spread

1970 1980 1990 2000 2010 2020

-0.06

-0.04

-0.02

0

0.02

0.04

Great Inflation Regime Great Moderation Regime Post-Millennial Regime Regime mean mps (data)

Burns accommodation

Greenspan put

Bernanke low for long

Volcker disinflation

Accommodative Accommodative

Restrictive

Notes: Monetary policy spread mpst ≡ FFRt − Expected Inflationt − r∗t . r∗ is from Laubach and

Williams (2003). The blue (dashed) line represents the data. The red (solid) line is the estimated

regime mean rξPt . Accommodative regimes have rξPt < 0; restrictive regimes have rξPt > 0. Great

Inflation Regime: 1961:Q1-1978:Q3. Great Moderation Regime: 1978:Q4-2001:Q3. Post-Millennial

Regime: 2001:Q4-2020:Q1. The sample spans 1961:Q1-2020:Q1.
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Figure 1 shows that the low frequency deviations of the mpst from zero are quan-

titatively large and persistent across the three estimated regime subperiods. We argue

that such evidence is consistent with structural change in the conduct of monetary pol-

icy over the course of our sample, but in the next section we formally assess the extent

to which estimated monetary policy rules actually shifted across these subperiods. To

accomplish this, we set the break dates for regime changes in the policy rule in the

structural estimation to coincide with the regime sequence for ξPt displayed in Figure 1.

We use Bayesian model comparison of different estimated structural models to decide

on the appropriate number NP of policy regimes, and find NP = 3 works well. With

this, our structural estimation spans three different policy regimes across the Great

Inflation, the Great Moderation, and the Post Millennial subperiods shown in Figure

1.

The preliminary evidence in this section allows us to build a structural model to fit

these model-free empirical facts, rather than establishing evidence about the sequence

of regimes that would be contingent on the details of the structural model. It should be

emphasized, however, that the preliminary evidence of this section is used only to set

the timing of policy regime changes in the structural model. In particular, all regime-

dependent parameters of the policy rule are freely estimated under symmetric priors,

so are treated as equally likely to increase or decrease across the regime subperiods for

ξPt , if they change at all.

3 Mixed-Frequency Macro-Finance Model

This section presents a two-agent dynamic asset pricing model of monetary policy

transmission. Risky asset prices are determined by the behavior of a forward-looking

representative investor who reacts swiftly to news and forms beliefs about future mon-

etary policy. Households/workers supply labor, invest only in the bond, and form

expectations using adaptive learning rules that predominate in aggregate inflation and

output growth expectations. It is through such heterogeneity in beliefs that regime

changes in the conduct of monetary policy have large and prolonged effects on real

interest rates, despite the forward-looking, non-inertial nature of market participant
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expectations.5

Let the decision interval t of both agents be monthly and let lowercase variables

denote log variables, e.g., ln (Dt) = dt. We work with a risk-adjusted loglinear approx-

imation to the model that can be solved analytically, in which all random variables are

conditionally lognormally distributed.

Asset Pricing Block Assets are priced by a representative investor who con-

sumes per-capita aggregate shareholder payout, Dt and earns all income from trade

in two assets: a one-period nominal risk-free bond and a stock market. The investor’s

intertemporal marginal rate of substitution in consumption is the stochastic discount

factor (SDF) and its logarithm takes the form:

mt+1 = ln
(
βp
)

+ ϑpt − σp (∆dt+1) . (1)

where σp is a relative risk aversion coeffi cient and ln
[
βp exp (ϑpt)

]
is a subjective time

discount factor that varies over time with the patience shifter ϑpt that individual in-

vestors take as given, driven by the market as a whole.6 A time-varying specification

for the subjective time-discount factor is essential for ensuring that, in equilibrium,

investors are willing to hold the nominal bond at the interest rate set by the central

bank’s policy rule, specified below.

Aggregate payout is derived from a time-varying shareKt of real output Yt, implying

Dt = KtYt or in logs dt−ln(Yt) = kt. Since in the model all earnings are paid out to

shareholders, we refer to Kt simply as the earnings share hereafter. Variation in kt,

follows an exogenous primitive process:

kt − k = (1− ρk)λk,∆y∆yt + ρk
(
kt−1 − k

)
+ σkεk,t.

Thus kt varies with economic growth and an independent i.i.d. shock εkt ∼ N (0, 1).

5As in BLL, persistent monetary non-neutrality is an endogenous outcome of the inertia in house-
hold inflation expectations evident from household surveys, as discussed further below.

6This specification for ϑpt is a generalization of those considered in previous work (e.g., Campbell
and Cochrane (1999) and Lettau and Wachter (2007)) where the preference shifter is taken as an
exogenous process that is the same for each shareholder. Combining (1) and (3) below, we see that
ϑp,t is implicitly defined as

ϑpt = −
[
it − Ebt [πt+1]

]
+ Ebt [σp∆dt+1]− .5Vbt [−σp∆dp,t+1 − πt+1]− lpt − ln

(
βp
)
.
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The first-order-condition for optimal holdings of the one-period nominal risk-free

bond with a face value equal to one nominal unit is

LP−1
t Qt = Ebt

[
Mt+1Π−1

t+1

]
, (2)

where Qt is the nominal bond price, Ebt denotes the subjective expectations of the
investor, and Πt+1 = Pt+1/Pt is the gross rate of general price inflation. Investors’

subjective beliefs, indicated with a “b”superscript, play a central role in asset pricing

and are discussed in detail below. Investors have a time-varying preference for nominal

risk-free assets over equity, accounted for by LPt > 1, implying that Qt is higher than

it would be absent these benefits, i.e., when LPt = 1.

Taking logs of (2) and using the properties of conditional lognormality delivers the

real interest rate as perceived by the investor:

it − Ebt [πt+1] = −Ebt [mt+1]− .5Vbt [mt+1 − πt+1]− lpt (3)

where it = −ln (Qt), πt+1 ≡ ln (Πt+1) is net inflation, Vbt [·] is the conditional variance
under the subjective beliefs of the investor, and lpt ≡ ln (LPt) > 0. Variation in lpt

follows an AR(1) process

lpt − lp = ρlp
(
lpt−1 − lp

)
+ σlpεlp,t

subject to an i.i.d. shock εlp,t ∼ N (0, 1).

Let PD
t denote total value of market equity, i.e., price per share times shares out-

standing. Optimal shareholder consumption obeys the following log Euler equation:

pdt = κpd,0 + Ebt [mt+1 + ∆dt+1 + κpd,1pdt+1] +

+.5Vbt [mt+1 + ∆dt+1 + κpd,1pdt+1] ,

where pdt ≡ln
(
PD
t /Dt

)
. The log equity return rDt+1 ≡ ln

(
PD
t+1 +Dt+1

)
− ln

(
PD
t

)
obeys

the following approximate identity (Campbell and Shiller (1989)):

rDt+1 = κpd,0 + κpd,1pdt+1 − pdt + ∆dt+1,

where κpd,1 = exp(pd)/(1+exp(pd)), and κpd,0 = log
(
exp(pd) + 1

)
−κpd,1pd. Combining

the above, the log equity premium as perceived by the investor is:

Ebt
[
rDt+1

]
−
(
it − Ebt [πt+1]

)︸ ︷︷ ︸
subj. equity premium

=

[
−.5Vbt

[
rDt+1

]
− COVbt

[
mt+1, r

D
t+1

]
+.5Vbt [πt+1]− COVbt [mt+1, πt+1]

]
︸ ︷︷ ︸

subjective risk premium

+ lpt︸︷︷︸,
liquidity Premium

(4)
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where COVbt [·] is the investor’s subjective conditional covariance.
The equity premium has two components, a subjective risk premium is attribut-

able to the agent’s subjective perception of risk, and a “liquidity premium” lpt that

represents a time-varying preference for risk-free nominal debt over equity. The sub-

jective risk premium varies endogenously in the model with fluctuations in investor

beliefs about the conduct of future monetary policy, as explained below. The liquidity

premium captures all sources of time-variation in the equity premium other than those

attributable to subjective beliefs about the monetary policy rule. These could include

variation in the liquidity and safety attributes of nominal risk-free assets (e.g., Krish-

namurthy and Vissing-Jorgensen (2012)), variation in risk aversion, flights to quality,

or jumps in sentiment.

Macro Dynamics Macroeconomic dynamics feature a set of equations in the

style of prototypical New Keynesian models, but with two distinctive features: adaptive

learning, and regime changes in the conduct of monetary policy.7 Strictly speaking we

consider equations (5) through (7) below as equilibrium dynamics and not a micro-

founded structural model. We consider an equilibrium in which bonds are in zero-net-

supply in both the macro and asset pricing blocks and thus there is no trade between

the asset pricing agent and macro agent.8

Let ln (At/At−1) ≡ gt represent the stochastic trend growth of the economy, which

follows an AR(1) process gt = g+ρg (gt−1 − g)+σgεg,t, εg,t ∼ N (0, 1). Log of detrended

output in the model is defined as ln (Yt/At). Let variables with tildes, e.g., ỹt =

ln (Yt/At), denote detrended variables. Thus ỹt > 0 (< 0) when yt is above (below)

potential output, so ỹt 6= 0 can be interpreted as a New Keynesian output gap. In

keeping with New Keynesian models, we write most equations in the macro block in

terms of detrended real variables.

Macroeconomic dynamics satisfy a loglinear Euler or “IS”equation that is a function

7See Galí (2015), Chapter 3.
8Models with trade are computationally slow to solve and would present a significant challenge to

the structural estimation of this paper; hence we leave this to future research. However, an empirically
plausible version of our model with trade may not imply appreciably different aggregate dynamics
that are the focus of this paper. See for example Chang, Chen, and Schorfheide (2021), who provide
econometric evidence that spillovers between aggregate and distributional dynamics in heterogeneous
agent models are generally small.
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of household consumption (1−Kt)Yt:9

ỹt = Emt (ỹt+1)− σ [it − Emt (πt+1)− r] + ft (5)

where Emt (·) is the expectation under the subjective beliefs of the macro agent, r is
the steady state real interest rate, and ft is a demand shock and also absorbs any

variation in the macro agent’s consumption attributable to movements in the labor

share, ln (1−Kt). The demand shock follows an AR(1) process ft = ρfft−1 + σfεf ,

εf ∼ N (0, 1). The coeffi cient σ in (5) is a positive parameter.

Inflation dynamics are described by the following equation, which takes the form of

a New Keynesian Phillips curve:

πt − πt = β (1− λπ,1 − λπ,2)Emt [πt+1 − πt] + βλπ,1 [πt−1 − πt] (6)

+βλπ,2 [πt−2 − πt] + κ0ỹt + κ1ỹt−1 + σµεµ,t

where πt denotes the household’s perceived trend inflation rate (specified below) and

εµ,t ∼ N (0, 1) is a markup shock.10 Lags beyond the current values of variables are

used to capture persistent inflation dynamics. The coeffi cients β, λπ1 , λπ2 , κ0, and κ1

are positive parameters.

The central bank obeys the following nominal interest rate rule subject to nonre-

current regime changes in its parameters:

it −
(
r + πTξpt

)
=

(
1− ρi,ξpt − ρi2,ξpt

) [
ψπ,ξpt π̂t,t−3 + ψ∆y,ξpt

(
4∆̂yt,t−3

)]
(7)

+ρi1,ξpt

[
it−1 −

(
r + πTξpt

)]
+ ρi2,ξpt

[
it−2 −

(
r + πTξpt

)]
+ σiεi.

The central bank is presumed to react to quarterly data (at monthly frequency) given

that it is unlikely to react to the more volatile monthly variation in growth and inflation.

Thus π̂t,t−3 ≡
∑2

l=0

(
πt−l − πTξpt

)
is quarterly inflation in deviations from the implicit

time t target πT
ξpt
, 4∆yt,t−3 ≡ 4

∑2
l=0 (∆yt − g) is annualized quarterly output growth in

deviations from steady-state growth g, and εi,t ∼ N (0, 1) is an i.i.d. monetary policy

9We assume that the Euler equation (5) holds under nonrational expectations. Honkapohja, Mitra,
and Evans (2013) provide microfoundations for such Euler equations with nonrational beliefs.
10This equation can be micro-founded by assuming that managers of firms are workers who form

expectations as households/workers do rather than as shareholders do, consistent with evidence that
the discount rates managers use when making investment and employment decisions are different
from those observed in financial markets (Gormsen and Huber (2022)), and with evidence that those
expectations do not appear rational (Gennaioli, Ma, and Shleifer (2016)).
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shock. Lags of the left-hand-side variable appear in the rule to capture the observed

smoothness in adjustments to the central bank’s target interest rate.

The interest rate policy rule allows for nonrecurrent regime changes in the conduct

of monetary policy driven by ξpt , which indexes changes in the parameters of (7). The

parameter πT
ξPt
plays the role of an implicit time-t inflation target. In particular, this

time-varying parameter may deviate from the central bank’s stated long-term inflation

objective when it is actively trying to move inflation back toward that objective. The

activism coeffi cients ψπ,ξPt , and ψ∆y,ξPt
that govern how strongly the central bank re-

sponds to deviation from the implicit target and to economic growth, are also subject

to regime shifts, as are the autocorrelation coeffi cients ρi,ξPt and ρi2,ξpt .We treat shifts in

the policy rule parameters as exogenous and latent parameters to be estimated.11 These

coeffi cients vary with ξPt and the identified regime sequence for rξPt from Figure 1. It

is important to emphasize, however, that we freely estimate the policy rule parameters

under symmetric priors, so they could in principle show no shift across regimes.

The macro agent’s expectations about inflation are formed using an adaptive algo-

rithm on the autoregressive process, πt = α + φπt−1 + ηt, where the agent must learn

about α. Each period, agents update a belief αmt about α. Define perceived trend infla-

tion to be the limh→∞ Emt [πt+h] and denote it by πt. Given the presumed autoregressive

process, it can be shown that πt = (1− φ)−1 αmt and that Emt [πt+1] = (1− φ)πt + φπt.

We allow the evolution of beliefs about αmt and πt to potentially reflect both an

adaptive learning component as well as a signal about the central bank’s inflation

target that could reflect the opinion of experts (as in Malmendier and Nagel (2016)) or

a credible central bank announcement. For the adaptive learning component, we follow

evidence in Malmendier and Nagel (2016) that the University of Michigan Survey of

Consumers (SOC) mean inflation forecast is well described by a constant gain learning

algorithm. Combining these yields updating rules for αmt and πt :

αmt =
(
1− γT

) [
αmt−1 + γ

(
πt − φπt−1 − αmt−1

)]
+ γT

[
(1− φ) πTξt

]
(8)

πt =
(
1− γT

) [
πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)

]
+ γTπTξt , (9)

11This approach that side-steps the need to take a stand on why the Fed changes its policy rule. The
reasons for such changes are diffi cult to credibly identify as a function of past historical data, due to the
degree of discretion the Fed has in interpreting its dual mandate and because distinct policy regimes
likely result from gradual learning interacting with the bespoke perspectives of different central bank
leaders across time.
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where γ is the constant gain parameter that governs how much last period’s beliefs αmt−1

and πt−1 are updated given new information, πt. The second term in square brackets

captures the effect of the signal about the current inflation target πTξt. The parameter

controls the informativeness of the inflation target signal. If γT = 1, the signal is

completely informative and the agent’s belief about trend inflation is the same as the

current target. If γT = 0, the signal is completely uninformative and the agent’s belief

about trend inflation depends only on the adaptive learning algorithm. A weight of

γT < 1 could arise either because the target is imperfectly observed, or because central

bank announcements about the target are not viewed as fully informative or credible.

Small values for γT are indicative of slow learning and low central bank credibility,

since in that case the macro agent continues to base inflation expectations mostly on a

backward looking rule even when there has been a shift in the inflation target.

Finally, expectations about detrended output follow a simple backward looking rule:

Emt (ỹt+1) = %1ỹt−1 + %2ỹt−2 + %3ỹt−3. (10)

Investors take the above dynamics into account when forming expectations but they

must form beliefs about the future conduct of monetary policy.

Investor Beliefs About Future Monetary Policy Investors understand that

the true data generating process for the monetary policy rule is subject to infrequent,

nonrecurrent regime changes. We further assume that investors closely follow cen-

tral bank communications and thus can observe/accurately estimate the current rule.

What they are uncertain about is how long the current regime will last, and what will

come after the current regime ends. This specification is consistent with the observed

practice of the Fed to clearly telegraph any change in the stance of policy, but to be

comparatively vague about how long that change will last and what will come after-

wards.12 Thus investors must contemplate a future with a central bank that could

operate differently from the one today or any that has come before.

To model these circumstances, we assume that, for each time t policy rule regime

indexed by ξPt , investors hold in their minds a perceived “Alternative policy rule”

12The specification would closely approximate one with learning, since learning about Markov-
switching parameters in structural models tends to be fast.
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indexed by ξAt that they believe will come next, whenever the current policy regime

ends:

it −
(
r + πT

ξAt

)
=

(
1− ρi,ξAt − ρi2,ξAt

) [
ψπ,ξAt π̂t,t−3 + ψ∆y,ξAt

(
4∆̂yt,t−3

)]
(11)

+ρi1,ξAt

[
it−1 −

(
r + πTξpt

)]
+ ρi2,ξAt

[
it−2 −

(
r + πTξpt

)]
+ σiεi,

Investors do not have perfect foresight. When the current policy regime ends, the

new policy regime that replaces it will never be exactly as previously imagined by the

investor. When a regime ends, investors update their understanding of the new current

policy rule and proceed to contemplate a new perceived Alternative for the next rule.

Investors in the model form beliefs not only about what the next policy rule ξAt
will look like, but also about the likelihood of switching to ξAt by the beginning of

next period. Specifically, for each ξPt , investors have beliefs about the probability of

remaining in ξPt versus changing to ξ
A
t next month, but do not consider anything after

that. This latter aspect of the specification is a form of bounded rationality that is

arguably plausible in the context of infrequent regime changes. In the nonrecurrent

regime setup of the model, this implies that the pondered Alternative is treated as an

absorbing state as of time t, since the probability of returning to any previous rule

must be zero by definition.

We formalize these ideas with a belief regime sequence governed by a discrete-

valued variable ξbt ∈ {1, 2, ...B,B + 1} with B + 1 states. Define the overall policy

regime ξt =
{
ξPt , ξ

b
t

}
as characterized by the current policy regime ξPt and a belief ξ

b
t

about the probability of staying in ξPt versus moving to ξ
A
t . To keep notation simple,

we exclude ξAt from the set of arguments of ξt, but it should be kept in mind that

each ξPt has associated with it a single perceived Alternative policy rule ξ
A
t . Thus with

Np = 3 true policy regimes over the course of the sample, there are also 3 perceived

Alternative regimes over the same time span.

The regimes ξbt = 1, 2, ...B represent a grid of beliefs taking the form of perceived

probabilities that the current policy rule will still be in place next period. The regime

ξbt = B + 1 is a belief regime capturing the perceived probability of staying in the

Alternative regime once it is reached. We order these so that belief regime ξbt = 1 is

the lowest perceived probability that the current policy rule will remain in place and

ξbt = B is the highest.
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The perceived regimes are modeled with a transition matrix taking the form:

Hb =


pb1ps pb2p∆1|2 · · · pbBp∆1|B 0
pb1p∆2|1 pb2ps pbBp∆2|B 0
...

...
. . .

...
...

pb1p∆B|1 pbBps 0
1− pb1 1− pb2 · · · 1− pbB pB+1,B+1 = 1

 , (12)

whereHb
ij ≡ p

(
ξbt = i|ξbt−1 = j

)
and

∑
i 6=j p∆i|j = 1−ps. In the above, pb1 is the subjec-

tive probability of remaining in the current policy rule under belief 1. For example, e.g.,

pb1 = 0.05 implies that investors believe there is a 5% chance that the current policy

rule will still be in place next period. The non-zero off diagonal elements in the upper

left B × B submatrix allow for the possibility that investors might receive subsequent

information that could change their beliefs, and take that into account when forming

expectations. The parameter, ps is the probability investors assign to not changing

their minds, i.e., to having the same beliefs tomorrow as today. The parameter p∆i|j

is the probability that agents assign to changing to belief i tomorrow as a result of

new information, conditional on having belief j today. Thus pbjps measures the sub-

jective probability of being in belief j tomorrow, conditional on having belief j today,

while pbjp∆i|j is the subjective probability of being in belief i tomorrow conditional on

having belief j today. Finally, 1 − pbi is the probability of having belief i today but

exiting to the Alternative regime tomorrow. The parameter pB+1,B+1 is the perceived

probability of remaining in the Alternative regime conditional on having moved there.

With perceived nonrecurrent regimes and our bounded rationality assumption, this

probability is unity by definition. The model of beliefs therefore takes the form of a

reducible Markov chain, implying that investors believe with probability 1 that they

will eventually transition out of the current policy rule to the perceived Alternative

rule.

Equilibrium An equilibrium is defined as a set of prices (bond prices, stock

prices), macro quantities (inflation, output growth, inflation expectations), laws of mo-

tion, and investor beliefs such that the equations in the asset pricing block are satisfied,

the equations in the macro block are satisfied, with investor beliefs about monetary pol-

icy characterized by the perceived Alternative policy rule (11) and the perceived belief

regime sequence described above with transition matrix (12).
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Model Solution To solve the model we use the algorithm of Farmer, Waggoner,

and Zha (2011) applied to solve the system of model equations that must hold in equilib-

rium. The Online Appendix explains the approximation used to preserve lognormality

of the entire system using the methodology in Bianchi, Kung, and Tirskikh (2018) who

in turn build on Bansal and Zhou (2002). The solution of the model takes the form of

a Markov-switching vector autoregression (MS-VAR) in the state vector

St =
[
SMt ,mt, pdt, kt, lpt,Ebt (mt+1) ,Ebt (pdt+1)

]
,

where SMt ≡ [ỹt, gt, πt, it, πt, ft]
′, with

St = C
(
θξPt , ξ

b
t ,H

b
)

︸ ︷︷ ︸
level

+ T (θξPt , ξ
b
t ,H

b)︸ ︷︷ ︸
propagation

St−1 +R(θξPt , ξ
b
t ,H

b)︸ ︷︷ ︸
amplification

Qεt, (13)

where C (·) , T (·) , and R (·) are matrices whose elements depend on primitive para-
meters, εt = (εf,t, εi,t, εg,t, εµ,t, εk,t, εlp,t) is the vector of primitive Gaussian shocks, and

θξPt is a vector of parameters that includes policy rule parameters that vary with ξ
P
t

and each regime’s associated Alternative rule parameters that vary with ξAt .

Solving the model relies on the assumption that both types of agents have a monthly

decision interval and that the economic state St is observed at the end of each month.

With these assumptions, investor expectations in the presence of nonrecurrent regime

switching and the perceived Alternative policy rule maybe be computed for any variable,

as explained in detail in the Online Appendix.

Equation (13) shows that the realized policy regime ξPt (along with the associated

Alternative regime ξAt ) and investor beliefs ξ
b
t about the probability of a shift in the

policy rule amplify and propagate shocks in three distinct ways. First, there are “level”

effects, captured by the coeffi cients C
(
θξPt , ξ

b
t ,H

b
)
, that affect the economy absent

shocks. These are driven by changes in the central bank’s objectives such as the inflation

target, as well as by the perceived risk of the stock market given by the risk-premium

terms in (4). Second, there are “propagation”effects governed by the matrix coeffi cient

T (θξPt , ξ
b
t ,H

b) that determine how today’s economic state is related to tomorrow’s.

Third, there are “amplification”effects governed by the matrix coeffi cient R(θξPt , ξ
b
t ,H

b)

that generate endogenous heteroskedasticity of the primitive Gaussian shocks.

The heteroskedasticity implies that perceived quantity of risk in the stock market

varies endogenously with the expected future conduct of monetary policy. Indeed, it
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is only through R(θξPt , ξ
b
t ,H

b) that the subjective risk premium in (4) varies, which in

turn varies only with (i) realized regime changes ξPt in the conduct of monetary policy—

each of which are associated with a distinct perceived Alternative regime ξAt —and (ii)

time-varying beliefs ξbt about the probability of switching to ξ
A
t by next period. The

perceived quantity of risk can be especially sensitive to the activism coeffi cient in the

perceived Alternative rule, ψ∆y,ξAt
, which reflects investor beliefs about how strongly

future monetary policy will respond to fluctuations in economic growth. The greater

ψ∆y,ξAt
is relative to ψ∆y,ξPt

, the more agents perceive that future central bank policy

will do more to proactively limit economic volatility and thus the systematic risks that

affect stocks.

Investor Information and Updating Let It denote the time t information set of
investors, which includes the current policy regime ξPt , their current beliefs about mon-

etary policy governed by ξbt and their perceived Alternative regime ξ
A
t , and additional

data available at mixed frequencies that we don’t explicitly specify. Investors can ob-

serve the economic state St only at the end of each month. Unlike households, investors

in the model attend closely to central bank communications intramonth whenever they

occur, and their beliefs may exhibit jumps in response to those communications. Any

news that the investor attends to within a month results in the updating of a nowcast

of St, which they can produce by filtering the timely, high-frequency information in It.
Investors use It in two ways. First, given a baseline monthly decision interval, they

update their previous nowcasts and subjective expectations once St is observed at the

end of every t. Second, investors allocate attention to updating nowcasts of St and

beliefs ξbt about future monetary policy at specific times within a month when the cen-

tral bank releases information. This higher-frequency attentiveness to Fed news echoes

real-world “Fed watching”and is the mechanism through which the model accommo-

dates swift market reactions to surprise central bank announcements, driving jumps in

investor perceptions of stock market risk COVbt
[
mt+1, r

D
t+1

]
.

4 Structural Estimation

The system of estimable equations may be written in state-space form by combining

the state equations (13) with an observation equation taking the form
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Xt = Dξt,t + Zξt,t [S ′t, ỹt−1]
′
+ Utvt (14)

vt ∼ N (0, I) ,

where Xt denotes a vector of data, vt is a vector of observation errors, Ut is a diagonal

matrix with the standard deviations of the observation errors on the main diagonal, and

Dξt,t, and Zξt,t are parameters mapping the model counterparts of Xt into the latent

discrete- and continuous-valued state variables ξt and St, respectively, in the model.

The matrices Zξt,t, Ut, and the vector Dξt,t depend on t independently of ξt because

some of our observable series are not available at all frequencies and/or over the full

sample. As a result, the state-space estimation uses different measurement equations

to include these series when the relevant data are available, and exclude them when

they are missing.

We estimate the state-space representation using Bayesian methods using a modi-

fied version of Kim’s (Kim (1994)) basic filter and approximation to the likelihood for

Markov-switching state space models, and a random-walk metropolis Hastings MCMC

algorithm to characterize uncertainty. The parameters of the monetary policy rule es-

timated under symmetric priors, while the priors on the other parameters are standard

and specified to be loosely informative except where there are strong restrictions dic-

tated by theory, e.g., risk aversion must be non-negative. A complete description of

the priors is provided in the Online Appendix.

Mixed-Frequency Filtering Algorithm The filtering algorithm described in

this section is used to infer real-time jumps in investor beliefs in response to news events

and refers to the state space equations (13) and (14). We provide a short description

of the algorithm, with greater detail provided in the Online Appendix.

The algorithm uses mixed-frequency data but differs from common reduced-form

settings in which high-frequency data are used primarily to augment prediction models

with more timely information, an objective typically accomplished by specifying the

state/transition equations at the highest frequency of data used. Our mixed-frequency

algorithm is designed for a very different purpose, namely as way of integrating a high-

frequency event study into a structural model and estimation for the purpose of model-

ing and measuring market reactions to news shocks. In our setting, the state/transition
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equation is part of the structural model and the data sampling interval of needs to cor-

respond to the optimizing decision intervals of agents. The mixed-frequency algorithm

described below models the idea that investors have monthly decision/forecasting inter-

vals, but update their perception (i.e., nowcast) of the current end-of-month economic

state on the basis of new information that arrives within the month. Within-month

nowcasts of the St are then supplanted by their observed values the end of each t.

The algorithm may be summarized as follows. Suppose we have information up

through the end of month t−1 and new high-frequency information arrives at t−1+δh.

Here δh ∈ (0, 1) represents the number of time units that have passed during month t

up to point t− 1 + δh. For example, for our minutely data, δi could correspond to the

number of time units that have passed when we are at 10 minutes before or 20 minutes

after an FOMC announcement. The algorithm involves iterating on the following steps:

(i) Kalman Filter: Conditional on ξbt−1 = j and ξbt = i run the Kalman filter for i, j =

1, 2, ..., B to produce S(i,j)
t|t−1 and its mean squared error P

(i,j)
t|t−1. At t−1+δh, compute

updated conditional forecast errors e(i,j)
t|t−1+δh,t−1 = Xδh

t−1+δh
−Di−Zi

[
S

(i,j)′

t|t−1, ỹt−1

]′
for the subset of series Xδh available at t− 1 + δh. Fixing S

(i,j)
t|t−1 and P

(i,j)
t|t−1 from

t− 1, use e(i,j)
t|t−1+δh,t−1 to re-run the filter and update to S

(i,j)
t|t−1+δh

and P (i,j)
t|t−1+δh

.

(ii) Hamilton Filter: With e(i,j)
t|t−1+δh,t−1 in hand, re-run the Hamilton filter to esti-

mate new regime probabilities Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
, Pr

(
ξbt |Xt−1+δh , X

t−1
)

for i, j = 1, 2, ..., B.

(iii) Approximations: Collapse the B × B values of S(i,j)
t|t−1+δh

and P (i,j)
t|t−1+δh

into B

values S(j)
t|t−1+δh

and P (j)
t|t−1+δh

using Kim’s (Kim (1994)) approximation.

(iv) Store or Iterate: If t−1+δh = t iterate forward by setting t−1 = t and return to

step (i). Otherwise store the updates S(j)
t|t−1+δh

, P (j)
t|t−1+δh

,Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
,

and Pr
(
ξbt |Xt−1+δh , X

t−1
)
and return to step (i) at the next intramonth time unit

δk > δh, keeping t− 1 fixed.

Several points about this algorithm bear noting. First, because intramonth updates

of St and Pr
(
ξbt |Xt−1+δh , X

t−1
)
are based on filtering numerous forward-looking series

from markets and surveys, the procedure can be run pre- and post-announcement to
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infer how investors revise their beliefs and expectations in response to Fed communi-

cations, without having to take a stand on their unobservable forecasting models or

information sets. The notation “t|t− 1 + δh, t− 1”given in subscript explicitly denotes

that the algorithm employs a subset of timely forward-looking data available at t−1+δh

to estimate how intraperiod news affects the structural shocks investors perceive will

be realized at the end of t, conditional on observing the full St−1 vector at t− 1. This

is distinct from filtering the time t latent state St conditional on t−1 + δh information,

which in our setting would require a structural model of ultra high frequency primitive

shocks. The approach here instead treats Fed announcements as bonafide news shocks

(as perceived by investors), in alignment with the high-frequency event study literature

that analyzes market movements in very narrow windows around news events with the

express purpose of measuring the causal effect of the news per se, holding fixed the

structural economic state.

Second, the filter can be rerun as frequently as desired without iterating forward to

the next period, allowing for repeated updates on the perceived St and Pr
(
ξbt |Xt−1+δh , X

t−1
)

at any point within a month even as the transition dynamics are still specified across

months. It is therefore straightforward to handle news events that are spaced non-

uniformly over the sampling interval, as when the number of FOMC meetings during

a month varies over the sample.

Third, the entire perceived state vector St may be reestimated at any point within

a month, provided only that a subset of data are available at frequencies higher than a

month. Thus we can infer revisions to e.g., investor nowcasts of aggregate demand or of

the earnings share from the information encoded in more timely financial market data,

even if data on output, earnings, inflation, etc., are only available once per month.

Data and Measurement This section describes the data, which spans January

1961 through February 2020. Our full sample of Fed news consists of 220 Federal Open

Market Committee (FOMC) press releases spanning February 4th, 1994 to January

29th, 2020. Observations on most series are available monthly. For quarterly GDP

growth we interpolate to monthly frequency using the method in Stock and Watson

(2010). An explicit description of the mapping between our observables and model

counterparts and complete description of each data series and sources is given in the
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Online Appendix.

We use high-frequency pre- and post-FOMC observations on the following variables:

daily survey expectations of inflation and GDP growth from Bloomberg (BBG), daily

observations on the 20-year Baa credit spread with the 20-year Treasury bond rate (Baa

spread hereafter), minutely observations on four distinct federal funds futures (FFF)

contract rates with different expiries, and minutely observations on the S&P 500 market

value. These high-frequency data serve two purposes. First, they allow us to measure

the causal effect of Fed news in tight windows around announcements. Second, timely

information on these forward-looking series allow us to control for the possibility that

markets may be surprised by the reaction of the Fed to economic news that pre-dated

the FOMC announcement but arrived after the latest observations on stale monthly

survey data (Bauer and Swanson (2023)). By conditioning on close-range, pre- and

post-announcement observations for inflation and GDP growth expectations and credit

spreads (the day before and day after), interest rate futures, and the stock market (10

minutes before and 20 minutes after), post-announcement jumps recorded from our

estimation cannot be readily attributed to stale economic news that came out earlier

in the announcement month.

At lower frequencies, we use the household-level Survey of Consumers (SOC) from

the University of Michigan to discipline household expectations and three additional

professional forecaster surveys from Bluechip (BC), Survey of Professional Forecasters

(SPF) and Livingston (LIV) to discipline investor expectations. We measure investor

expectations at multiple horizons using the four different professional surveys and treat

each of these as a noisy signal on the true underlying investor expectations process.

A number of series are used because they have obvious model counterparts. Data

for Gross Domestic Product (GDP) growth and inflation are mapped into the model

implications for output growth and inflation; data on the current effective federal funds

rate (FFR) are mapped into the model’s implications for the current nominal interest

rate; data on the FFF market and the BC survey measure of the FFR 12 months-

ahead are mapped into the model’s implications for investor expectations of the future

FFR.13 Recalling that the model of investor beliefs given in (12) takes the form of a

13In principle, fed funds futures market rates may contain a risk premium that varies over time. If
such variation exists, it is absorbed in the estimation by the observation error for these equations. In
practice, risk premia variation in fed funds futures is known to be small when that variation is measured
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reducible Markov chain, its clear that their longer-run forecasts are dominated by the

perceived Alternative rule. The inclusion of data on long-dated FFF contracts and

survey forecasts of the funds rate a year or more out are therefore especially helpful for

identifying the parameters of the Alternative policy rule.

We discipline the earnings share of output Kt with observations on the ratio of S&P

500 earnings to GDP. Since Yt in the model is divided between shareholder cash-flow

Dt = KtYt and worker compensation with all earnings are paid out to shareholders,

we account for the fact that earnings in the data differs from the payout shareholders

actually receive by mapping the theoretical concept for kt into its respective data series

allowing for observation error in the relevant observation equation.

Finally, data on the Baa spread are mapped into the model’s implications for the

liquidity premium, lpt, a catchall for many factors outside of the model that could effect

the subjective equity premium, including changes in the perceived liquidity and safety

attributes of Treasuries, default risk, flights to quality, and/or sentiment. We use the

Baa spread as an observable likely to be correlated with many of these factors, but our

measurement equation allows for both a constant and a slope coeffi cient on the Baa

spread along with observation error, in order to soak up variation in this latent variable

that may not move identically with the spread.

Estimating Beliefs We take the parameters pbi in Hb from a discretized beta

distribution, estimating its mean and variance as additional parameters of the struc-

tural estimation. The parameters p∆i|j are specified as (1− ps)
(
ρ
|i−j−1|
b /

∑
i 6=j ρ

|i−j−1|
b

)
,

where ps and ρb < 1 are also estimated parameters and |i−j−1| measures the distance
between beliefs j and i, for i 6= j ∈ (1, 2, ..., B) . This creates a decaying function that

makes the probability of moving to contiguous beliefs more likely than jumping to very

different beliefs.

Let T be the sample size used in the estimation and let the vector of observations

as of time t be denoted by Xt. Let Pr
(
ξbt = i|XT ;θ

)
≡ πit|T denote the probability that

ξbt = i, for i = 1, 2,...,B+ 1, based on information that can be extracted from the whole

sample and knowledge of the parameters θ, while πt|T is a (B + 1)×1 vector containing

over the short 30-minute windows surrounding FOMC announcements that we analyze (Piazzesi and
Swanson (2008)).
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the elements
{
πit|T

}B+1

i=1
. We refer to these as the smoothed regime probabilities. The

time t perceived probability of exiting the current policy rule, i.e., of transitioning in the

next period to the Alternative policy regime ξAt , is given by P
bE

t ≡
∑B

i=1 π
i
t|T (1− pbi).

The time t perceived probability of exiting the current policy rule and transitioning in

h periods to ξAt is P
bE

t+h,t = 1′B+1

(
Hb
)h
πt|T , where 1′B+1 is an indicator vector with 1 in

the (B + 1)th position and zeros elsewhere. We use these estimated regime probabilities

to compute the most likely belief regime at each point in time and track how it changes

around Fed announcements and the whole sample. In the applied estimation, we set

B = 11.

5 Estimation Results

This section presents results from the structural estimation based on the modal values

of the posterior distribution for the parameters. In general the estimated credible sets

indicate that the parameters are tightly identified and we report other moments of

the posterior in Table A.1 of the Online Appendix. In the estimation, we allow for

observation errors on all variables except for inflation, GDP growth, the FFR, and the

SP500-lagged GDP ratio. For professional forecasters, we have multiple measures of

expectations, which we treat as noisy signals on the latent “market”expectation. The

estimated model-implied series (based on smoothed estimates St|T of St and exploiting

the mapping to observables in (14)) track their empirical counterparts closely, as shown

in Figure A.1 of the Online Appendix.

Parameter and Latent State Estimates Table 1 reports the posterior modes

for the policy rule parameters πT
ξPt
, ψπ,ξPt , ψ∆y,ξPt

and ρi,ξPt , where we use symmetric

priors. The previously estimated regime subperiods reported in Figure 1 are associ-

ated with quantitatively large changes in the estimated policy rule, as well as in the

associated Alternative policy rules that we estimate investors perceived would come

next. The Great Inflation (GI) regime (1961:Q1-1978:Q3) is characterized by a high

estimated inflation target and a moderate level of inflation activism (ψπ,ξPt ) relative to

output activism (ψ∆y,ξPt
). The perceived Alternative policy rule for this subperiod has a

much lower inflation target, but features less activism against both inflation and output

growth, with inflation stabilization perceived as the main objective. The anticipation of
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Table 1: d
Table 1: Taylor Rule Parameters

Great Inflation Regime Great Moderation Regime Post-Millennial Regime
Realized Alternative Realized Alternative Realized Alternative

πTξ 12.5335 3.3930 2.2249 0.7463 2.4961 0.0608
ψπ 1.8866 0.6893 2.0546 2.7719 0.9189 0.8102
ψy 1.0113 0.4488 0.1170 0.6520 0.0710 0.5625
ψπ/ψy 1.8655 1.5359 17.5607 4.2514 12.9423 1.4404
ρi,1 + ρi,2 0.9954 0.9804 0.9850 0.9608 0.9956 0.8885

Notes: Posterior mode values of the parameters for the current and Alternative policy rules. Great

Inflation Regime: 1961:Q1-1978:Q3. Great Moderation Regime: 1978:Q4-2001:Q3. Post-Millennial

Regime: 2001:Q4-2020:Q1. The estimation sample spans 1961:Q1-2020:Q1.

a lower inflation target is in fact a defining feature of the subsequent Great Moderation

(GM) regime that began in 1978:Q4. The GM also featured a stronger emphasis on

inflation stabilization than the GI regime but little activism on economic growth. This

latter aspect of the realized GM regime was not well anticipated by investors during

the GI regime according to the estimates of the Alternative rule in the GI subperiod.

Moving to the Post-Millennial (PM) regime, we find that policy rule parameters then

shifted back toward slightly more accommodative values with a higher implicit inflation

target, but with far less activism on inflation and comparably low activism on output

growth .

The estimated perceived Alternative policy rules of each regime show how investors

expected policy to change in the future. In the GM regime, investors evidently expected

the next rule to have an inflation target that was even lower than what was actively in

place at the time, along with greater activism in stabilizing both inflation and economic

growth. In the PM period investors expected an inflation target that was lower still, but

with a greater emphasis on output growth stabilization relative to inflation stabilization

compared to the realized rule during the PM period. Thus both the GM and PM

periods are characterized by expectations that the next policy rule would be both more

hawkish and more active on output growth than the realized rules of those periods.

Since more activism on output growth is indicative of more aggressive action to stabilize

the real economy, these features of the perceived Alternative rules are closely related

to perceived risk in the stock market, as discussed below.

A comment is in order about the estimated magnitudes for πT
ξPt
shown in Table

1. Although this parameter plays the role of an “inflation target”in the interest rate
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rule, unlike traditional New Keynesian models with a time invariant inflation target,

πTξt here is more appropriately thought of as an implicit time t target rather than an

explicit long-run objective. To understand why, consider the PM period as an example.

The structural estimation implies that, to achieve the observed average CPI inflation

of roughly 1.96% over this period, πT
ξPt
needed to be 2.5%, well above what ultimately

became the explicitly stated long-run objective of 2% in 2012. Forward guidance “low-

for-long” interest rate policies and quantitative easing, two tools that were employed

at the zero-lower-bound (ZLB), are channels that manifest in the model as a higher

values for πT
ξPt
, since with γT > 0 these tools generate higher perceived trend inflation by

households even as nominal interest rates remain unchanged at the ZLB (see equation

(9)).

Table 2 presents estimation results for key model parameters other than those of

the policy rule.14 It is worth emphasizing that the estimates imply a very high level of

inertia in household inflation expectations. The constant gain parameter γ controlling

the speed with which beliefs about inflation are updated with new information on

inflation is estimated to be quite low (γ = 0.0001). Furthermore, the parameter γT

controlling the speed with which household perceived trend inflation is influenced by

shifts in the implicit inflation target is also estimated to be small (γT = 0.006). Taken

together, these findings imply that households revise their beliefs about trend inflation

only very slowly over time, both in response to changes in the implicit inflation target

and with past inflation realizations.

Table 2: dTable 2: Other Key Parameters

Parameter Mode Parameter Mode Parameter Mode Parameter Mode
σ 0.1099 γT 0.0056 σf 6.4950 σlp 0.2059
β 0.7566 σp 6.8680 σi 0.0353 σg 1.4543
φ 0.7510 βp 0.9964 σµ 0.1308
γ 0.0001 ps 0.9409 σk 6.3224
Notes: Posterior mode values of the parameters named in the row. The estimation sample spans

1961:Q1-2020:Q1.

We estimate a moderate level of risk aversion for the investor (σP = 6.9). In terms of

the magnitude of the primitive economic shocks, monthly demand shocks are estimated
14The model has a large number of additional auxiliary parameters that are used to map observables

into their model counterparts. To conserve space, these additional parameters are reported in the
Online Appendix.
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to be the largest quantitatively (σf = 6.5), compared to “supply side”shocks to trend

growth (σg = 1.45) or the markup shock (σµ = 0.13). Finally, the parameter ps is

estimated to be 0.94, indicating that investors maintain very firmly held beliefs, rarely

contemplating the possibility that they may change their minds about the likelihood

of moving to the next policy rule on the basis of new information.

Before leaving this section we report the model implications for basic asset pricing

moments. Table 3 shows the annualized mean and standard deviation of the log excess

return on equity, as measured by the log difference in the S&P 500 stock market value,

the real interest rate, as measured by the difference between the annualized FFR and

the average of the one-year-ahead forecast of inflation averaged across the SPF, BC,

SOC, and Livingston surveys,15 and the log difference in real, per capita S&P 500

earnings growth. The model based moments for these series are based on the modal

parameter and latent state estimates and match their data counterparts closely.

Table 3: dTable 3: Asset Pricing Moments

Moments Model Data
Mean StD Mean StD

Log Excess Return 7.20 14.93 7.42 14.85
Real Interest Rate 1.65 2.48 1.72 2.53
Log Real Earning Growth 2.62 25.06 1.96 17.24

Notes: Annualized monthly statistics (means are multiplied by 12 and standard deviations by
√

12) and

reported in units of percent. Excess returns are the log difference in the SP500 market capitalization

minus FFR. Real interest rate is FFR minus the average of the one-year ahead forecasts of inflation

across the BC, SPF, SOC, and Livingston surveys. SP500 Earnings is deflated using the GDP deflator

and divided by population. The sample is 1961:M1 - 2020:M2.

Investor Beliefs About Monetary Policy Over the Sample Figure 2 plots

the estimated perceived probability that investors assign to being in a new policy rule

regime in one year’s time. Specifically, the figure reports the end-of-the-month value

for P
bE

t+12,t ≡ πB+1
t+h,t|T = 1′B+1

(
Hb
)12

πt|T , where 1′B+1 is an indicator vector with 1 in

the (B + 1)th position and zeros elsewhere and πt|T is the vector of smoothed time t

belief regime probabilities. The vertical lines mark the timing of the two realized policy

15We interpolate the biannual Livingston survey observations to obtain monthly values, and only
average in the observations for the quarterly SPF with the monthly BC, SOC, and interpolated-to-
monthly Livingston surveys when observations on the SPF are not missing.
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regime changes in our sample.

Figure 2: Perceived Probability of Monetary Policy Regime Change
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Notes: Estimated end-of-month perceived probability that investors assign to exiting the current

monetary policy rule within one year. The sample spans 1961:M1-2020:M2.

Figure 2 shows that the perceived probability of a policy rule regime change fluc-

tuates strongly over the sample and typically increases before a realized policy change,

suggesting that financial markets have some ability to anticipate the realized shifts in

the conduct of policy even though they cannot perfectly predict what the next policy

rule will look like. The perceived probability of a policy rule change also spikes upward

sharply in the financial crisis when no actual change occurred subsequently, though

this movement in beliefs is short-lasting. One interpretation of this brief spike is that

investors may have initially believed the Fed could shift to more aggressive stabilization

of economic growth but soon realized that the severity of the crisis and the reality of

the ZLB would constrain their ability to do so.

An important feature of the findings displayed in Figure 2 is that investor beliefs

about the probability of a regime change in the Fed’s policy rule continuously evolve

outside of tight windows surrounding policy announcements. Indeed, most of the vari-

ation in investor beliefs about the future conduct of monetary policy occurs at times

over the sample that are not close temporally to an FOMC announcement, indicating
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that the causal effect of central bank policy on investor beliefs and therefore on markets

is substantially more far reaching than what can be observed from market reactions

in tight windows surrounding Fed communications.16 An obvious explanation for this

result is that most Fed announcements are not immediately associated with a change

in the rule. Instead, what they mainly provide is a form of forward guidance on the

factors that are likely to trigger a change in the policy stance down the road. As new

data become available in between Fed communications, investor beliefs about future

monetary policy are then shaped by what was previously communicated, having conse-

quences for markets even if current policy is unchanged. Because high frequency event

studies surrounding Fed communications only capture the causal effects of the surprise

component of any announcement, they are by construction incapable of accommodat-

ing these additional channels of influence outside of tight windows around events. The

estimates portrayed in Figure 2 are key inputs into our estimated overall causal impact

of the Fed on markets over the sample, discussed below in Section 5.

To underscore this point, Figure 3 shows the change in the estimated perceived

probability of a monetary policy regime change within the next year this time in tight

windows around every FOMC announcement in our sample. We see that most FOMC

announcements result in little if any change in the perceived probability of a regime

change in monetary policy, again implying that financial markets do not learn about

the possibility of policy regime change only from the surprise component of a policy

announcement. Naturally, many FOMC announcements carry little news of any kind,

consistent with the majority of points lining up along the horizontal line at zero and

the idea that significant changes in the policy rule are infrequent.

Nevertheless, we find that some announcements are associated with sizable changes

in the perceived probability of exiting the current policy regime. The largest decline in

this perceived probability occurred on January 22nd, 2008 when the FOMC announced

a 75 basis point reduction in the fed funds rate target and the perceived probability

of a regime change in the next year declined by more than 2% in the 30 minutes sur-

rounding the FOMC press release. The largest increase in the perceived probability of

a policy regime change occurs on April 18th, 2001 when the FOMC announced a 50

16Brooks, Katz, and Lustig (2018) report a related finding for the Treasury market with evidence
of persistent post-FOMC announcement drift in longer term yields.
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Figure 3: Change in the probability of a policy switch around FOMC an-
nouncements
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Notes: Pre-/post- FOMC announcement log changes (10 minutes before/20 minutes after) in the

probability that financial markets assign to a switch in the monetary policy rule occurring within one

year. The full sample has 220 announcements spanning February 4th, 1994 to February 28th, 2020.

The sample reported in the figure is 1993:M1-2020:M2.

basis point reduction in the fed funds rate. In this case the perceived probability of

policy regime change increased more than 1%. The January 22, 2008 announcement

refers to a weakening economic outlook and downside risks to growth; it is thus not

surprising that this announcement lowered the subjective probability of transitioning

to the more hawkish and more active perceived Alternative policy rule that investors

expected to come next. By contrast, although the FOMC press release for April 18,

2001 also referenced a weakening economy and rising uncertainty, our estimates im-

ply that the announcement is associated with increase in the subjective probability of

transitioning to the similarly more hawkish and more active GM perceived Alternative

regime. Although both FOMC actions were driven by a weakening outlook, the eco-

nomic contexts were very different. In April 2001, the U.S. economy had yet to near

the ZLB in post-war history, and the 50 basis point cut in the target rate was from a

higher 5% level. These conditions along with the Fed rate cuts may have signaled that
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the Fed was both willing and able to undertake an aggressive stabilization of economic

growth. But in January 2008 the world was in financial crisis and U.S. economy had

been near the ZLB as recently as 2003. Moreover, the 75 basis point cut in the target

rate was from a lower 4.25% level. Taken together, these conditions may have created

the expectation that rates would soon return to near-ZLB levels, limiting the Fed’s

capacity to stabilize growth.

High-Frequency Analysis To study why markets sometimes react strongly to

Fed announcements, we investigate what happens in tight windows around FOMC

press releases. In our analysis the pre-FOMC value is always either 10 minutes before

or the day before the FOMC press release time, depending on data availability (daily

versus minutely), and the post-FOMC value is either 20 minutes after or the day

after the release. Figure 4 displays the log change in pre-/post- FOMC announcement

values of variables we measure at high frequency, for each FOMC announcement in our

sample. Some announcements are associated with declines in the stock market within

30 minutes surrounding the FOMC press release that exceed 2% in absolute terms or

increases above 4%, as when the FOMC met off-cycle on January 3, 2001 and decided

to lower the target for the federal funds rate by 50 basis points. Many announcements

also produce large jumps in other financial market variables such as FFF rates and the

Baa spread.

The mixed-frequency structural approach developed in this paper allows us to in-

vestigate a variety of possible explanations for these large market reactions. Consider

an FOMC announcement in month t. As above, let δh ∈ (0, 1) represent the number of

time units that have passed during month t up to some particular point t− 1 + δh. Let

Sit|t−1+δh
denote a filtered estimate of the perceived economic state that will be revealed

at the end of t from data up to time t−1+δh, conditional on ξ
b
t = i. We use the filtering

algorithm described above along with high-frequency, forward-looking data on investor

expectations and financial markets to obtain estimates of the pre- and post-FOMC

announcement values of Sit|t−1+δh
, and the associated filtered belief regime probabilities

πit|t−1+δh
≡ Pr

(
ξbt = i|Xt−1+δh , X

t−1
)
, where δh assumes distinct values dpre and dpost

that denote the times right before and right after the FOMC meeting. Announcement-

related revisions in S and in πi are computed by taking the difference between the
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Figure 4: HF Changes in Prices and Expectations
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Notes: Log change in the observed variables in a short time-window around FOMC meetings. For all

but panels (b) and (c), this corresponds to a change measured from 10 minutes before to 20 minutes

after an FOMC statement is released. For panels (b) and (c), this corresponds to one day before to one

day after the FOMC statement is released. The full sample has 220 FOMC announcements spanning

February 4th, 1994 to February 28th, 2020. The sample reported in the figure is 1993:M1-2020:M2.

estimated values for these variables pre- and post-announcement. These differences

represent our estimates of the market’s revised nowcasts for S and beliefs about the

future conduct of monetary policy that are attributable to the FOMC announcement.

Figure 5 displays the percent changes in pre-/post- announcement values of different

elements of St for every FOMC announcement in our sample. The figure shows that

some FOMC announcements led to frequent and large changes in investor perceptions

about trend growth gt, detrended output, ỹt, inflation, current demand ft, the earnings

share kt, and the liquidity premium lpt. This evidence implies that FOMC announce-

ments occasionally convey substantive information that causes investors to significantly

revise their beliefs about the state of the economy and its core driving forces.

To make further progress of our understanding of what markets learn from FOMC

announcements, we use estimates of Sit|t−1+δh
and the belief regimes πit|t−1+δh

in the

minutes and days surrounding an FOMC meeting to observe changes in the perceived
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Figure 5: HF Changes in State Variables
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Notes: Estimated changes in the perceived state of the economy from 10 minutes before to 20 minutes

after an FOMC press release. The full sample has 220 FOMC announcements spanning February 4th,

1994 to February 28th, 2020. The sample reported in the figure is 1993:M1-2020:M2.

shocks εit|t−1+δh
that investors must have discerned in order to explain revisions in

Sit|t−1+δh
and πit|t−1+δh

. To do so we exploit the model solution

Sit|t−1+δh
= C

(
θξPt , ξ

b
t = i,Hb

)
+ T (θξPt , ξ

b
t = i,Hb)Sjt−1 +R(θξPt , ξ

b
t = i,Hb)Qεit|t−1+δh

,

(15)

where εit|t−1+δh
denotes the perceived Gaussian shocks estimated on the basis of data

available at time t−1+δh, conditional on being in belief regime ξ
b
t = i. Given estimates

of Sit|t−1+δh
, C (·), T (·) , R (·) , Q, and Sjt−1 using the most likely belief regime j at t−1,

use (15) to solve for εit|t−1+δh
. The contribution of one particular perceived shock k is

to variation in Sit|t−1+δh
is given by:

S·,kt|t−1+δh
=
∑B

i=1 π
i
t|t−1+δh

R(θξPt , ξ
b
t = i,Hb)Qεi,kt|t−1+δh

(16)

where εi,kt|t−1+δh
is a vector constructed by setting each element of εit|t−1+δh

to zero other

than the kth. The contribution of the belief regime is the remaining part:

S·,bt|t−1+δh
=
∑B

i=1 π
i
t|t−1+δh

[
C
(
θξPt , ξ

b
t = i,Hb

)
+ T (θξPt , ξ

b
t = i,Hb)Sjt−1

]
. (17)

35



Finally, the contribution of revisions in investors perceptions of the shocks and/or about

the probability of regime shifts in the policy rule to jumps in observed variables Xt is

computed by taking the difference between the post- and pre-announcement values of

S·,kt|t−1+δh
and S·,bt|t−1+δh

and linking them back to Xt using the mapping (14).

Figure 6 reports the decomposition for four different high-frequency observable vari-

ables in Xt and a selection of FOMC announcements based on 10 most important pre-

/post- announcement changes in the 6-month FFF rate. For all such events the model

is able to match the direction of the jump in the observed series (given by the black

dot) and in most cases the magnitude is also in line with the data. The largest jump in

the FFF rate occurs during the financial crisis on January 22, 2008 when the FOMC

announced the lowering of the target for the FFR by 75 basis points. From panel

(c) we observe that most of the selected FOMC announcements are associated with a

downward revision in the 6-month FFF rate, implying that markets were surprised by

monetary policy that was more accommodative than anticipated, consistent with evi-

dence in Cieslak (2018) and Schmeling, Schrimpf, and Steffensen (2020) who argue that

markets systematically underestimated the Fed’s response to large adverse economic

shocks, and more generally with the arguments of Bauer and Swanson (2023), who

argue that markets are often surprised by the Fed’s response to economic events. Im-

portantly, however, these announcements are rarely estimated to be solely attributable

to a perceived monetary policy shock. Indeed, most announcements convey information

about non-monetary shocks as well.

The January 22, 2008 announcement, for example, caused an upward revision in the

perceived markup and demand shocks, which combined to explain a jump upward in

the BBG expected inflation measure. The BBG forecast of GDP growth over the next

year also jumped up, driven mostly by an upward revision in perceived trend growth.

These factors more than offset the effect of a revision upward in perceived demand,

which causes survey respondents to expect slower future growth from a higher current

nowcast. The stock market increased by 1.45% in the 30 minutes surrounding the

January 22, 2008 announcement, pushed up by revisions in a variety of perceived shocks,

including upward revisions in the perceived aggregate demand shock, trend growth

shock, earnings share shock, in addition to the perception of a more accommodative
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Figure 6: Top Ten FOMC: 6-month FFF rate
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(b) One y Bloomberg Expected GDP growth
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(c) FFF 6-month
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Notes: Decomposing jumps in Bloomberg expected inflation, Bloomberg expected GDP growth, the

6-month FFF rate, and the stock market attributable to revisions in perceived shocks and beliefs

about the probability of policy regime change for the 10 most relevant FOMC announcements based

on changes in the 6-month FFF rate. The sample is 1961:M1-2020:M2.

monetary policy shock.17 The market increase would have been even larger had it not

been simultaneously dragged down by a decline in the perceived probability of a policy

rule change over the next year, which dashed expectations that the Fed could soon shift

to a policy regime where it could more aggressively stabilize economic growth.

Overall, these findings speak to the importance of “information effects”as empha-

sized by Romer and Romer (2000), Campbell, Evans, Fisher, and Justiniano (2012),

and Nakamura and Steinsson (2018). Other authors, notably Jarocinski and Karadi

(2020) and Cieslak and Schrimpf (2019), have used a positive stock price response to

a Fed tightening to identify instances where a Fed information effect was particularly

strong, since under standard economic theory a surprise monetary policy tightening

should cause stock prices to fall rather than rise. The mixed-frequency approach of

this paper complements this literature by using a structural model to add granular de-

17For the stock market, the black dot and red triangles coincide as we do not allow for observation
error in that series.
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tail on the perceived sources of primitive economic risk responsible for observed changes

in perceptions about the economic state, and shows that such information effects can

be present even if the funds rate and the stock market commove in the direction that

standard economic theory predicts.

Figure 7 reports the decomposition for a selection of FOMC announcements based

on the 10 most important absolute changes in the stock market. The most quantita-

tively important announcement in our sample for the stock market occurred on January

3, 2001 when the target funds rate was lowered by 50 basis points and the S&P 500

surged 4.2% in the 30 minute window surrounding the news. Yet Figure 7 shows that

the main driver of the market jump was not the surprise decline in the funds rate

per se. Indeed, the perception of a surprisingly accommodative monetary policy shock

played only a small role. Instead, the estimates imply that the main drivers were an

upward revision in the nowcast for the corporate earnings share, a downward revision

in investor nowcasts of the liquidity premium component of the equity premium. This

announcement was also associated with a downward revision in the perceived trend

growth rate of the economy, contributing to the jump downward in expected GDP

growth in panel (b). However, since output growth itself did not fall, this shows up as

an upward revision in the perceived output gap and thus a higher perceived demand

shock, driving the increase in expected inflation observed in panel (a). The second

and third most important FOMC events for the stock market were those on April 18,

2001 and October 29, 2008, respectively, when the market increased 2.5% and declined

2%, respectively, in the 30 minutes surrounding those press releases. For the April 18,

2001 event, investor beliefs about the probability of near-term monetary policy regime

change played the largest quantitative role in the market’s jump. We discuss the role

and channel through which beliefs affect markets in the next section.

Discount Rate or Cash Flow Effects? In principle, the actions and announce-

ments of central banks can affect financial markets through either discount rate or cash

flow effects, or both. To study these different channels, we decompose price-lagged

output ratio into components of the representative investor’s subjective expectations.

Start with
PD
t

Yt−1

=
PD
t

Dt

Dt

Yt

Yt
Yt−1
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Figure 7: Top Ten FOMC: SP500
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(b) One y Bloomberg Expected GDP growth
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(d) SP500
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Notes: See Figure 6. The figure reports a decomposition for the 10 most relevant FOMC announce-

ments based on changes in the SP500-lagged GDP ratio. The sample is 1961:M1-2020:M2.

or in logs

pgdpt = pdt + kt + ∆yt, (18)

where pgdpt ≡ ln
(
PD
t /Yt−1

)
and pdt ≡ ln

(
PD
t /Dt

)
. Let rext denote the log return rDt

in excess of the log real interest rate, rirt. Decompose pdt as in Campbell and Shiller

(1989) into the sum of three forward-looking terms:

pdt =
κpd,0

1− κpd,1
+ pdvt (∆d)− pdvt (rex)− pdvt (rir) (19)

where pdvt (x) ≡
∑∞

h=0 β
h
pEbt [xt+1+h], rirt+1 ≡

(
it+1 − Ebt [πt+1]

)
are computed under

the subjective expectations of the investor Ebt [·]. Subjectively expected return premia
pdvt (rex) are driven in the model by three factors: (i), realized regime change in mon-

etary policy ξPt , (ii) changing investor beliefs about the probability of future regime

change ξbt , and (iii) the liquidity premium lpt. Subjectively expected real interest rates

pdvt (rir) depend these factors, as well as on expectations about inflation and output

growth that enter the monetary policy rule.
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Substituting (19) into (18), we can decompose pgdpt into four components:

pgdpt = eyt︸︷︷︸
earning share

+ pdvt (∆d)︸ ︷︷ ︸
earnings

− pdvt (rex)︸ ︷︷ ︸
premia

− pdvt (rir)︸ ︷︷ ︸
real int rate

, (20)

where eyt ≡ κpd,0
1−κpd,1 +kt+∆yt is the earnings-to-lagged output ratio, or “earnings share”

for brevity.

Figure 8 decomposes historical variation in pgdpt into the estimated components of

(20). The solid (blue) line in each panel plots the data for pgdpt, measured as the S&P

500-lagged GDP ratio. The red lines in panels (a)-(d) successively cumulate the right

hand side components in (20) so that they add to the observed pgdpt as we move from

panel (a) to panel (d).

Figure 8: SP500-to-GDP decomposition
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Notes: Decomposition of the log SP500-to-lagged GDP ratio pgdp. The blue (solid) line represents
the data. The dashed (red) lines represent component in the model, decomposed as pgdpt = eyt +

pdvt (∆d)− pdvt (rex)− pdvt (rir) , where pdvt(x) ≡
∑∞
h=0 β

h
pEbt [xt+1+h]. Panel (a) plots pgdpt along

with eyt. Panel (b) plots pgdpt with eyt − pdvt (rex) . Panel (c) plots pgdpt with eyt − pdvt (rex) −
pdvt(rir). Panel (d) plots pgdpt in the data along with eyt + pdvt (∆d)− pdvt (rex)− pdvt (rir) . Great

Inflation Regime: 1961:Q1-1978:Q3. Great Moderation Regime: 1978:Q4-2001:Q3. Post-Millennial

Regime: 2001:Q4-2020:Q1. The sample spans 1961:M1 - 2020:M2

Panel (a) of Figure 8 shows that eyt alone plays little role in fluctuations in pgdpt

up to about the year 2000, but it declines sharply in the financial crisis of 2008/09
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contributing to the sharp drop in the stock market during the crisis and subsequently

boosting the market thereafter, echoing previous findings on the role of the earnings

share in Greenwald, Lettau, and Ludvigson (2019).

A comparison of panels (a) and (b) shows how the picture changes when we add

(the negative of) subjectively expected return premia −pdvt (rex) to eyt. The green

line in panel (b) plots a counterfactual in which we turn off the liquidity premium

shocks lpt, implying that—within a policy regime—the only factor driving fluctuations

in pdvt (rex) are changing investor beliefs about the probability of a regime change.

Outside of a few episodes, we see that the green counterfactual line is quite close to

the baseline estimate, implying that much of the variation in the estimated subjective

return premium is driven by beliefs about future policy regime shifts, rather than by

fluctuations in the liquidity premium. The exception to this occurs in the years after

the switch to the GM regime, where, absent liquidity shocks, the market would have

been substantially higher. Looking at the end of the GM regime, panel (b) shows that

lower subjective return premia drove a surge in the market because investors perceived

a greater likelihood that the central bank would move to a policy rule more focused on

stabilizing the real economy. This can be understood from the results reported in from

Figure 2, which shows the sharp rise in the perceived probability of regime change at

the end of the GM period, in conjunction with the parameter estimates of the perceived

Alternative rule that investors expected to come next from Table 1. These shifts in

beliefs about future policy drove down the perceived quantity of risk in the stock market

and drove up valuations.

Panel (c) of Figure 8 adds −pdvt (rir) to eyt − pdvt (rex), so that the differences

between panels (b) and (c) isolates the role of subjectively expected real interest rates

in stock market fluctuations. Expectations of persistently low future real rates helped

support the stock market in the GI regime from 1961:Q1-1978:Q3, but by contrast

expectations of persistently higher real rates pulled down the market with the shift to

a hawkish policy rule during the Volcker disinflation. Comparing panels (b) and (c)

we see that expectations of persistently higher future real interest rates largely explain

the low stock market valuations between 1978:Q3 to about 1990. Taken together, these

results imply that the Volcker disinflation and the Great Moderation that followed set

the stage for the high valuations in 1990s by reducing expected volatility and lowering
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subjective return premia, but initially the switch into the GM regime dragged the

market down through the shift to a more hawkish policy rule with persistently higher

real interest rates.

Finally, panel (d) of Figure 8 adds pdvt (∆d) to eyt−pdvt (rex)−pdvt (rir) . Expected

future cash flow growth plays a small role in these stock market fluctuations.

Figure 9 exhibits a counterfactual for the PM period with a slightly different de-

composition of pgdpt, this time adding only one of the pdv (·) terms in (20) at a time
to eyt. We use the notation

pgdprex,t ≡ eyt− pdvt (rex) ; pgdprir,t ≡ eyt− pdvt (rir) ; pgdp∆d,t ≡ eyt + pdvt (∆d) .

The solid (blue) line in each panel of Figure 9 plots our baseline estimate of

the component series named in the subpanel. For panel (a), which plots pgdpt, our

baseline model estimate and the data series coincide by construction. Panels (b)-(c)

plot the components pgdprex,t, pgdprir,t, and pgdp∆d,t, respectively. The red/dashed

(purple/dashed-dotted) line in each panel plots a counterfactual in which the belief

regime with the highest (lowest) perceived probability of exiting the policy rule was

always in place.18

Figure 9 conveys two main findings. First, it shows that investor beliefs about the

conduct of future monetary policy play an outsized role in stock market fluctuations.

This can be observed from the quantitatively large gap between the red and purple lines

in panel (a). Had investors counterfactually maintained the belief throughout the PM

period that the central bank was very likely to exit the PM policy rule, the stock market

would have been much higher than it actually was over most of this period. Second,

panels (b)-(d) show that the reason for this large discrepancy has to do with the affect of

these beliefs on investors’subjectively expected future return premia, rather than their

effect on subjectively expected real rates or payout growth. This can be observed by

noting that the red/blue line discrepancy is largest for pgdprex,t in panel (b), small for

pgdprir,t in panel (c), and non-existent for pgdp∆d,t in panel (d). In short, had investors

counterfactually believed throughout the PM period that monetary policy near-term

18The (B + 1) × 1 vector πt|T collects the estimated probabilities P
(
ξbt = i|XT ;θ

)
≡ πit|T that

ξbt = i, for i = 1, 2,...,B + 1. The red-dashed (purple dashed-dotted) counterfactual replaces πt|T with
a vector that has 1 as the first (Bth) element and zeros elsewhere.
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Figure 9: Counterfactual simulations: The Post-Millennial period
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Notes: Counterfactual for the post-Millennial period. The red/dashed (purple/dashed-dotted) line

plots a counterfactual in which the belief regime with the highest (lowest) perceived probability of

exiting the policy rule was always in place. Panel (a) plots the model implications for pgdpt. Panel (b)

plots pgdprex,t. Panel (c) plots pgdprir,t. Panel (d) plots pgdp∆d,t. The sample for the counterfactual

spans 2000:M3 to 2020:M2.

regime change was highly likely, the market would have been higher because subjective

equity risk premia would have been lower.

Figure 10 examines these forces at high frequency around FOMC announcements.

The figure decomposes the announcement-related jumps in pdt into fluctuations driven

by the pdvt (·) components on the right-hand-side of (19) for the 5 most relevant FOMC
announcements sorted on the basis of jumps in the estimated perceived probability of

a regime change in the conduct of monetary policy over the next year. Panel (a) of

Figure 10 shows how the perceived probabilities of a regime change shifted in the 30

minute windows surrounding each FOMC announcement, while panel (b) shows the

decomposition of the jump in pdt into its pdvt (·) components.
The April 18, 2001 announcement that the FOMC would lower its target for the

federal funds rate by another 50 basis points (following on the January 3, 2001 FOMC

decision that did the same) is the event associated with largest increase in the per-
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Figure 10: Jumps in risk perceptions, short rates, and earnings expectations
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Notes: Panel (a) shows the pre-/post-FOMC announcement change (10 minutes before/20 minutes

after) in the perceived probability of a monetary policy regime change occurring within one year,

for the 5 most quantitatively important FOMC announcements based on changes in investor beliefs

about regime change. Panel (b) decomposes the resulting jump in the log price-payout ratio pd =

pdvt (∆d)−pdvt(rex)− pdvt (rir) into movements in the subjective equity risk premia pdvt(rex) (yellow

bar), subjective expected real interest rates pdvt(RIR) (blue bar), and subjective expected payout

growth pdvt(∆d) (red bar). PD ratio is pdvt (∆d) − pdvt (rex) − pdvt (rir). The sample is 1961:M1-

2020:M2.

ceived probability of exiting the policy rule over the next 12 months. This increase

is depicted in panel (a). The stock market rose 2.5% in the 30 minute window sur-

rounding this announcement. Panel (b) shows that the most important contributor to

the surge in the market was not the surprise cut in rates per se, but instead a decline

in subjective return premia. The announcement triggered a jump upward in the per-

ceived probability of shifting within a year to a new policy regime characterized by

more aggressive stabilization of economic growth, which lowers expected volatility and

the perceived quantity of risk in the stock market. By contrast, subjectively expected

future real rates play a negligible role in the market’s surge, as indicated by the blue

bar in panel (b). The “Fed put”flavor (Cieslak and Vissing-Jorgensen (2021)) of this
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event shows how Fed news can move markets by altering beliefs about future policies

to limit downside risk, immediately changing risk premia.

The FOMC announcement of January 22, 2008, which is associated with the largest

absolute decline in the perceived probability of monetary regime change, is the mir-

ror image of the April 18, 2001 event. In this case, the perceived probability that

the central bank would soon transition to an Alternative policy rule capable of more

actively stabilizing the real economy falls, resulting in a large jump up in subjective

risk premia. Although p rose in the immediate aftermath of announcement, perceived

current-period payout d rose by even more, driving pd down. Ultimately, pd declines

because the higher subjective return premia pdvt (rex) and lower subjectively expected

future payout growth pdvt (∆d) outweigh the expectation of persistently lower future

real rates pdvt (rir) created by the announcement’s dovish tone.

In summary, the two events had opposite consequences for the stock market because

they had opposite effects on the perceived direction of future monetary policy. The

April 18, 2001 announcement left investors with the belief that the future Fed policy

would engage more actively in limiting the risks that affect the stock market, while

the January 22, 2008 announcement did just the opposite. These results suggest that

investors in 2008 were likely far more worried than those in 2001 that the Fed might

soon return to the ZLB with limited capacity for economic stabilization.

6 Conclusion

We integrate a high-frequency monetary event study into a mixed-frequency macro-

finance model and structural estimation. The approach allows for jumps at Fed an-

nouncements in investor beliefs, providing granular detail on why markets react to

central bank announcements. We also provide a methodology for modeling expecta-

tions in the presence of structural breaks, and show how forward-looking data can be

used to infer what agents expect from the next policy regime. The overall approach

can be used in a variety of other settings to provide a richer understanding of the role

of news shocks of any kind in driving financial market volatility.

The heightened responsiveness of financial markets to central bank communications

raises an important question: What are the underlying drivers of this phenomenon?

We find that the reasons involve a mix of factors, including revisions in investor beliefs
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about the latent state of the economy (“Fed information effects”), uncertainty over the

future conduct of monetary policy, and subjective reassessments of risk in the stock

market. These dynamics stem from three primary sources. First, beliefs about the

conduct of future policy react to Fed news even if current policy is unchanged, affecting

the perceived quantity of risk in the stock market. Second, realized shifts in the central

bank policy rule over the sample have had a persistent influence on short rates, affecting

valuations. Third, some announcements are associated with sizable shifts in investor

perceptions of the economic state, altering the composition of perceived shocks affecting

the economy.

The mixed-frequency structural approach developed here permits us to estimate

the effects of monetary policy over an extended sample, not merely in tight windows

around Fed announcements. Doing so, we find that beliefs about the future conduct

of monetary policy continuously evolve over time, implying that high-frequency event

studies understate the effect of central banks on markets.
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Online Appendix

Priors, Posterior, and Smoothed Series

Table A.1 describes the posterior (left-hand-side of the table) and prior (right-hand-side
of the table) distributions for the parameters of the model. In the column “Type," N
stands for Normal, G stands for Gamma, IG stands for Inverse Gamma, and B stands
for Beta distribution, respectively. For all prior distributions, we report the mean and
the standard deviation. The priors for all parameters are diffuse and centered around
values typically found in the literature. We choose symmetric priors for the parameters
of the realized and alternative policy rules. For the posterior, we report the mode and
90% credible sets. Table A.1: d

Table A.1: Parameters
Posterior Prior Posterior Prior

Mode 5% 95% Mean Std Type Mode 5% 95% Mean Std Type
πTξ 12.5335 12.2776 12.7404 5 2.5 G β 0.7566 0.7502 0.7612 0.8 0.1 B
ρi,1 1.2911 1.2768 1.3286 0.5 0.25 N κ1 0.0043 0.0042 0.0043 0.1 0.05 G
ψπ,1 1.8866 1.8425 1.9429 0.5 0.25 N γ 0.0002 0.0002 0.0002 0.05 0.02 B
ρi,2 + ρi,1 0.9954 0.995 0.9958 0.5 0.2 B ρg 0.1332 0.1322 0.1343 0.5 0.2 B
ψ∆y 1.0113 0.9969 1.0342 2 1 G κ0 0.0047 0.0047 0.0048 0.1 0.05 G
πTξ 3.393 3.3787 3.4945 5 2.5 G ρf 0.542 0.5384 0.5466 0.5 0.2 B
ρi,1 0.3597 0.3482 0.3648 0.5 0.25 N φ 0.751 0.7444 0.7592 0.5 0.2 B
ψπ,1 0.6893 0.6822 0.7196 0.5 0.25 N r̄ 0 0 0 0.0017 0.0008 G
ρi,2 + ρi,1 0.9804 0.9758 0.9818 0.5 0.2 B γT 0.0056 0.0055 0.0057 0.2 0.1 B
ψ∆y 0.4488 0.4328 0.4612 2 1 G exp(k̄) 0.0345 0.0342 0.0347 0.04 0.02 B
πTξ 2.2249 2.198 2.2694 5 2.5 G σp 6.868 6.8268 6.9741 4 2 G
ρi,1 1.1878 1.154 1.2017 0.5 0.25 N βp 0.9964 0.9963 0.9968 0.95 0.025 B
ψπ,1 2.0546 1.9692 2.074 0.5 0.25 N l̄p 0.0015 0.0015 0.0016 0.0033 0.0017 N
ρi,2 + ρi,1 0.985 0.9833 0.9866 0.5 0.2 B λπ,1 0.3127 0.3111 0.3162 0.5 0.2 B
ψ∆y 0.117 0.1136 0.1208 2 1 G λπ,2 0.3056 0.302 0.3075 0.5 0.2 B
πTξ 0.7463 0.7305 0.7705 5 2.5 G ρk 0.9967 0.9966 0.9972 0.8 0.1 B
ρi,1 0.5372 0.5261 0.5477 0.5 0.25 N ρlp 0.923 0.9162 0.9259 0.5 0.2 B
ψπ,1 2.7719 2.7013 2.8571 0.5 0.25 N %2 0.2418 0.2397 0.2434 0 1 N
ρi,2 + ρi,1 0.9608 0.9478 0.9652 0.5 0.2 B %3 0.1594 0.1584 0.161 0 1 N
ψ∆y 0.652 0.6334 0.6538 2 1 G λk,∆y 57.1559 56.3137 57.4958 20 10 G
πTξ 2.4961 2.4702 2.5226 5 2.5 G ps 0.9409 0.9357 0.9426 0.9 0.08 B
ρi,1 1.3435 1.2988 1.3645 0.5 0.25 N ρH 0.3026 0.3005 0.305 0.15 0.1 B
ψπ,1 0.9189 0.8852 0.9445 0.5 0.25 N mean beta bel 0.962 0.9612 0.963 0.6 0.25 B
ρi,2 + ρi,1 0.9956 0.995 0.9961 0.5 0.2 B std beta bel 0.0358 0.0353 0.0361 0.15 0.05 B
ψ∆y 0.071 0.0695 0.0726 2 1 G int BAA 0.0196 0.0195 0.0199 0.02 0.01 N
πTξ 0.0608 0.0582 0.0606 5 2.5 N scale BAA 0.9233 0.9161 0.9327 2 1 G
ρi,1 0.5183 0.5068 0.5309 0.5 0.25 N σf 6.495 6.2551 6.9863 5 5 IG
ψπ,1 0.8102 0.8032 0.8379 0.5 0.25 N σi 0.0353 0.0341 0.0366 0.0167 0.0167 IG
ρi,2 + ρi,1 0.8885 0.8765 0.8985 0.5 0.2 B σµ 0.1308 0.125 0.1376 1 1 IG
ψ∆y 0.5625 0.5498 0.5685 2 1 G σk 6.3224 6.1467 6.403 0.1 0.05 IG
σ 0.1099 0.1087 0.1109 2 1 G σlp 0.2059 0.1953 0.2155 0.0083 0.0083 IG
%1 0.543 0.5406 0.5453 1 1 N σg 1.4543 1.4077 1.5003 1 1 IG

Notes: The table describes the posterior and prior distributions for the parameters of the model. In

the column "Type“, N stands for Normal, G stands for Gamma, IG stands for Inverse Gamma, and

B stands for Beta distribution, respectively. For all prior distributions, we report the mean and the

standard deviation. For the posterior, we report the mode and 90% credible sets.
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Figure A.1: Smoothed Series
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Notes: The figure displays the model-implied series (red, solid line) and the actual series (blue dotted

line). The model-implied series are based on smoothed estimates St|T of St, and exploit the mapping to

observables in (14) using the modal parameter estimates. The difference between the model-implied

series and the observed counterpart is attributable to observation error. We allow for observation

errors on all variables except for GDP growth, inflation, the FFR, and the SP500 capitalization to

GDP ratio. Great Inflation Regime: 1961:Q1-1978:Q3. Great Moderation Regime: 1978:Q4-2001:Q3.

Post-Millennial Regime: 2001:Q4-2020:Q1. The sample is 1961:M1-2020:M2.

Data

Real GDP

The real Gross Domestic Product is obtained from the US Bureau of Economic Analysis.
It is in billions of chained 2012 dollars, quarterly frequency, seasonally adjusted, and at
annual rate. The source is from Bureau of Economic Analysis (BEA code: A191RX).
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The sample spans 1959:Q1 to 2021:Q2. The series was interpolated to monthly fre-
quency using the method in Stock and Watson (2010). The quarterly series was down-
loaded on August 20th, 2021.

GDP price deflator

The Gross Domestic Product: implicit price deflator is obtained from the US Bureau
of Economic Analysis. Index base is 2012=100, quarterly frequency, and seasonally
adjusted. The source is from Bureau of Economic Analysis (BEA code: A191RD). The
sample spans 1959:Q1 to 2021:Q2. The series was interpolated to monthly frequency
using the method in Stock and Watson (2010). The quarterly series was downloaded
on August 20th, 2021.

Earnings Share Kt

The earnings share Kt is defined as 1 − LSt where LSt is the nonfarm business sec-
tor labor share. Labor share is measured as labor compensation divided by value
added. The labor compensation is defined as Compensation of Employees - Gov-
ernment Wages and Salaries- Compensation of Employees of Nonprofit Institutions
- Private Compensation (Households) - Farm Compensation of Employees - Housing
Compensation of Employees - Imputed Labor Compensation of Self-Employed. The
value added is defined as Compensation of Employees + Corporate Profits + Rental
Income + Net Interest Income + Proprietors’ Income + Indirect Taxes Less Subsi-
dies + Depreciation. The quarterly, seasonally adjusted data spans from 1959:Q1
to 2021:Q2. The source is from Bureau of Labor Statistics. The labor share index
is available at http://research.stlouisfed.org/fred2/series/PRS85006173 and the quar-
terly LS level can be found from the dataset at https://www.bls.gov/lpc/special\
_requests/msp\_dataset.zip. The series was interpolated to monthly frequency us-
ing the method in Stock and Watson (2010). The quarterly series was downloaded on
September 21th, 2021.

Federal funds rate (FFR)

The Effective Federal Funds Rate is obtained from the Board of Governors of the Federal
Reserve System. It is in percentage points, quarterly frequency, and not seasonally
adjusted. The sample spans 1960:02 to 2021:06. The series was downloaded on August
20th, 2021
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SP500 and SP500 futures

We use tick-by-tick data on SP500 index obtained from tickdata.com. The series was
downloaded on September 22th, 2021 from https://www.tickdata.com/ .We create
the minutely data using the close price within each minute. Within trading hours, we
construct SP500 market capitalization by multiplying the SP500 index by the SP500 Di-
visor. The SP500 Divisor is available at the URL: https://ycharts.com/indicators/
sp\_500\_divisor. We supplement SP500 index using SP500 futures for events that
occur in off-market hours. We use the current-quarter contract futures. We purchased
the SP500 futures from CME group at URL: https://datamine.cmegroup.com/. Our
sample spans January 2nd 1986 to September 17th, 2021. The SP500 futures data were
downloaded on October 6, 2021.

SP500 Earnings and Market Capitalization

We obtained monthly S&P earnings from multpl.com at URL: https://www.multpl.
com/shiller-pe. For S&Pmarket cap, we obtain the series from Ycharts.com available
at https://ycharts.com/indicators/sp%\_500\_market\_cap. Both series span
the periods 1959:01 to 2021:06 and were downloaded on December 22nd, 2021.

Baa Spread, 20-yr T-bond, Long-term US government securities

We obtained daily Moody’s Baa Corporate Bond Yield from FRED (series ID: DBAA)
at URL: https://fred.stlouisfed.org/series/BAA, US Treasury securities at 20-
year constant maturity from FRED (series ID: DGS20) at URL: https://fred.stlouisfed.
org/series/DGS20, and long-term US government securities from FRED (series ID:
LTGOVTBD) at URL: https://fred.stlouisfed.org/series/LTGOVTBD. The sam-
ple for Baa spans the periods 1986:01 to 2021:06. To construct the long term bond
yields, we use LTGOVTBD before 2000 (1959:01 to 1999:12) and use DGS20 after 2000
(2000:01 to 2021:06). The Baa spread is the difference between the Moody’s Corporate
bond yield and the 20-year US government yield. The excess bond premium is obtained
at URL: https://www.federalreserve.gov/econres/notes/feds-notes/ebp_csv.
csv. All series were downloaded on Feb 21, 2022.

Bloomberg Consensus Inflation and GDP forecasts

We obtain the Bloomberg (BBG) US GDP (id: ECGDUS) and inflation (id: ECPIUS)
consensus mean forecast from the Bloomberg Terminal available on a daily basis up to
a few days before the release of GDP and inflation data. The Bloomberg (BBG) US
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consensus forecasts are updated daily (except for weekends and holidays) and reports
daily quarter-over-quarter real GDP growth and CPI forecasts from 2003:Q1 to 2021Q2.
These forecasts provide more high-frequency information on the professional outlook
for economic indicators. Both forecast series were downloaded on October 21, 2021.

Livingston Survey Inflation Forecast

We obtained the Livingston Survey mean 1-year and 10-year CPI inflation forecast from
the Federal Reserve Bank of Philadelphia, URL: https://www.philadelphiafed.org/
surveys-and-data/real-time-data-research/livingston-historical-data. Our
sample spans 1947:06 to 2021:06. The forecast series were downloaded on September
20, 2021.

Michigan Survey of Consumers Inflation Forecasts

We construct MS forecasts of annual inflation of respondents answering at time t.
Each month, the SOC contains approximately 50 core questions, and a minimum of
500 interviews are conducted by telephone over the course of the entire month, each
month. We use two questions from the monthly survey for which the time series begins
in January 1978.

1. Annual CPI inflation: To get a point forecast, we combine the information in the
survey responses to questions A12 and A12b.

• Question A12 asks (emphasis in original): During the next 12 months, do
you think that prices in general will go up, or go down, or stay where they
are now?

• A12b asks (emphasis in original): By about what percent do you expect prices
to go (up/down) on the average, during the next 12 months?

2. Long-run CPI inflation: To get a point forecast, we combine the information in
the survey responses to questions A13 and A13b.

• Question A13 asks (emphasis in original): What about the outlook for prices
over the next 5 to 10 years? Do you think prices will be higher, about the
same, or lower, 5 to 10 years from now?

• A13b asks (emphasis in original): By about what percent per year do you
expect prices to go (up/down) on the average, during the next 5 to 10 years?

All series were downloaded on September 17th, 2021.
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Bluechip Inflation and GDP Forecasts

We obtain Blue Chip expectation data from Blue Chip Financial Forecasts. The surveys
are conducted each month by sending out surveys to forecasters in around 50 financial
firms such as Bank of America, Goldman Sachs & Co., Swiss Re, Loomis, Sayles &
Company, and J.P. Morgan Chase. The participants are surveyed around the 25th
of each month and the results published a few days later on the 1st of the following
month. The forecasters are asked to forecast the average of the level of U.S. interest
rates over a particular calendar quarter, e.g. the federal funds rate and the set of H.15
Constant Maturity Treasuries (CMT) of the following maturities: 3-month, 6-month,
1-year, 2-year, 5-year and 10-year, and the quarter over quarter percentage changes in
Real GDP, the GDP Price Index and the Consumer Price Index, beginning with the
current quarter and extending 4 to 5 quarters into the future.
In this study, we look at a subset of the forecasted variables. Specifically, we use

the Blue Chip micro data on individual forecasts of the quarter-over-quarter (Q/Q)
percentage change in the Real GDP, the GDP Price Index and the CPI, and convert
to quarterly observations as explained below.

1. CPI inflation: We use quarter-over-quarter percentage change in the consumer
price index, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the CPI (consumer
prices for all urban consumers). Seasonally adjusted, annual rate.”

Quarterly and annual CPI inflation are constructed the same way as for PGDP
inflation, except CPI replaces PGDP.

2. For real GDP growth, We use quarter-over-quarter percentage change in the Real
GDP, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the level of chain-
weighted real GDP. Seasonally adjusted, annual rate. Prior to 1992, Q/Q %
change (SAAR) in real GNP.”

The surveys are conducted right before the publication of the newsletter. Each issue
is always dated the 1st of the month and the actual survey conducted over a two-day
period almost always between 24th and 28th of the month. The major exception is the
January issue when the survey is conducted a few days earlier to avoid conflict with the
Christmas holiday. Therefore, we assume that the end of the last month (equivalently
beginning of current month) is when the forecast is made. For example, for the report
in 2008 Feb, we assume that the forecast is made on Feb 1, 2008.
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Survey of Professional Forecasters (SPF)

The SPF is conducted each quarter by sending out surveys to professional forecasters,
defined as forecasters. The number of surveys sent varies over time, but recent waves
sent around 50 surveys each quarter according to offi cials at the Federal Reserve Bank
of Philadelphia. Only forecasters with suffi cient academic training and experience as
macroeconomic forecasters are eligible to participate. Over the course of our sample,
the number of respondents ranges from a minimum of 9, to a maximum of 83, and the
mean number of respondents is 37. The surveys are sent out at the end of the first
month of each quarter, and they are collected in the second or third week of the middle
month of each quarter. Each survey asks respondents to provide nowcasts and quarterly
forecasts from one to four quarters ahead for a variety of variables. Specifically, we use
the SPF micro data on individual forecasts of the price level, long-run inflation, and
real GDP.1 Below we provide the exact definitions of these variables as well as our
method for constructing nowcasts and forecasts of quarterly and annual inflation for
each respondent.2

The following variables are used on either the right- or left-hand-sides of forecasting
models:

1. Quarterly and annual inflation (1968:Q4 - present): We use survey responses for
the level of the GDP price index (PGDP), defined as

"Forecasts for the quarterly and annual level of the chain-weighted GDP price
index. Seasonally adjusted, index, base year varies. 1992-1995, GDP implicit
deflator. Prior to 1992, GNP implicit deflator. Annual forecasts are for the
annual average of the quarterly levels."

Since advance BEA estimates of these variables for the current quarter are un-
available at the time SPF respondents turn in their forecasts, four quarter-ahead
inflation and GDP growth forecasts are constructed by dividing the forecasted
level by the survey respondent-type’s nowcast. Let F(i)

t [Pt+h] be forecaster i’s
prediction of PGDP h quarters ahead and N(i)

t [Pt] be forecaster i’s nowcast of

1Individual forecasts for all variables can be downloaded at
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters/historical-data/individual-forecasts.

2The SPF documentation file can be found at https://www.philadelphiafed.org/-/media/research-
and-data/real-time-center/survey-of-professional-forecasters/spf-documentation.pdf?la=en.

7



PGDP for the current quarter. Annualized inflation forecasts for forecaster i are

F(i)
t [πt+h,t] = (400/h)× ln

(
F(i)
t [Pt+h]

N(i)
t [Pt]

)
,

where h = 1 for quarterly inflation and h = 4 for annual inflation. Similarly, we
construct quarterly and annual nowcasts of inflation as

N(i)
t [πt,t−h] = (400/h)× ln

(
N(i)
t [Pt]

Pt−h

)
,

where h = 1 for quarterly inflation and h = 4 for annual inflation, and where
Pt−1 is the BEA’s advance estimate of PGDP in the previous quarter observed
by the respondent in time t, and Pt−4 is the BEA’s most accurate estimate of
PGDP four quarters back. After computing inflation for each survey respondent,
we calculate the 5th through the 95th percentiles as well as the average, variance,
and skewness of inflation forecasts across respondents.

2. Long-run inflation (1991:Q4 - present): We use survey responses for 10-year-ahead
CPI inflation (CPI10), which is defined as

"Forecasts for the annual average rate of headline CPI inflation over the next 10
years. Seasonally adjusted, annualized percentage points. The "next 10 years"
includes the year in which we conducted the survey and the following nine years.
Conceptually, the calculation of inflation is one that runs from the fourth quarter
of the year before the survey to the fourth quarter of the year that is ten years
beyond the survey year, representing a total of 40 quarters or 10 years. The
fourth-quarter level is the quarterly average of the underlying monthly levels."

Only the median response is provided for CPI10, and it is already reported as
an inflation rate, so we do not make any adjustments and cannot compute other
moments or percentiles.

3. Real GDP growth (1968:Q4 - present): We use the level of real GDP (RGDP),
which is defined as

"Forecasts for the quarterly and annual level of chain-weighted real GDP. Season-
ally adjusted, annual rate, base year varies. 1992-1995, fixed-weighted real GDP.
Prior to 1992, fixed-weighted real GNP. Annual forecasts are for the annual av-
erage of the quarterly levels. Prior to 1981:Q3, RGDP is computed by using the
formula NGDP / PGDP * 100."

All series were downloaded on September 17th, 2021.
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Fed Funds Futures

We use tick-by-tick data on Fed funds futures (FFF) and Eurodollar futures obtained
from the CME Group. Our sample spans January 3, 1995 to June 2, 2020. FFF
contracts settle based on the average federal funds rate that prevails over a given
calendar month. Fed funds futures are priced at 100 − f

(n)
t , where f (n)

t is the time-
t contracted federal funds futures market rate that investors lock in. Contracts are
monthly and expire at month-end, with maturities ranging up to 60 months. For the
buyer of the futures contract, the amount of

(
f

(n)
t − rt+n

)
× $D, where rt+n is the ex

post realized value of the federal funds rate for month t + n calculated as the average
of the daily Fed funds rates in month t + n, and $D is a dollar “deposit”, represents
the payoff of a zero-cost portfolio.
Contracts are cleaned following communication with the CME Group. First, trades

with zero volume, which indicate a canceled order, are excluded. Floor trades, which
do not require a volume on record, are included. Next, trades with a recorded expiry
(in YYMM format) of 9900 indicate bad data and are excluded (Only 1390 trades,
or less than 0.01% of the raw Fed funds data, have contract delivery dates of 9900).
For trades time stamped to the same second, we and keep the trade with the lowest
sequence number, corresponding to the first trade that second.
Fed funds futures trade prices were quoted in different units prior to August 2008.

To standardize units across our sample, we start by noting that Fed funds futures are
priced to the average effective Fed funds rate realized in the contract month. And in
our sample, we expect a reasonable effective Fed funds rate to correspond to prices in
the 90 to 100 range. As such, we rescale prices to be less than 100 in the pre-August
2008 subsample.3 After rescaling, a small number of trades still appear to have prices
that are far away from the effective Fed funds rates at both trade day and contract
expiry, along with trades in the immediate transactions. The CME Group could not
explain this data issue, so following Bianchi, Kind, and Kung (2019) and others in the
high frequency equity literature(Brownlees and Gallo 2006, Barndorff-Nielsen, Hansen,
Lunde, and Shephard 2008, Andersen, Bollerslev, and Meddahi 2005), we apply an
additional filter to exclude trades with such non-sensible prices. Specifically, for each
maturity contract, we only keep trades where

|pt − pt(k, δ)| < 3σt(k, δ) + γ,

where pt denotes the trade price (where t corresponds to a second), and pt(k, δ) and

3For trades with prices significantly greater than 100, we repeatedly divide by 10 until prices are
in the range of 90 to 100. We exclude all trades otherwise.
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σt(k, δ) denote the average price and standard deviation, respectively, centered with k/2
observations on each side of t excluding δk/2 trades with highest price and excluding
δk/2 trades with lowest price. Finally, γ is a positive constant to account for the cases
where prices are constant within the window. Our main specification uses k = 30,
δ = 0.05 and γ = 0.4, and alternative parameters produce similar results.

Structural Breaks as Nonrecurrent Regime-Switching

Let T be the sample size used in the estimation and let the vector of observations as
of time t be denoted zr,t, here zr,t = mpst. The sequence ξ

P
t = {ξP1 , ..., ξPT } of regimes

in place at each point is unobservable and needs to be inferred jointly with the other
parameters of the model. We use the Hamilton filter (Hamilton (1994)) to estimate
the smoothed regime probabilities P

(
ξPt = i|zr,T ;θr

)
, where i = 1, ..., NP . We then

use these regime probabilities to estimate the most likely historical regime sequence ξPt
over our sample as described in the next subsection.
To capture the phenomenon of nonrecurrent regimes, we suppose that ξPt follows a

Markov-switching process in which new regimes can arise but do not repeat exactly as
before. This is modeled by specifying the transition matrix over nonrecurrent states,
or “structural breaks.”If the historical sample has NP nonrecurrent regimes (implying
NP − 1 structural breaks), the transition matrix for the Markov process takes the form

H =



p11 0 · · · · · · · · · · · · 0
1− p11 p22 0 · · · · · · · · · 0

0 1− p22 p33 0 · · · · · · ...
... 0 1− p33

. . .
...

... 0
...

. . .
...

...
...

...
...

. . . pNP ,NP 0
0 · · · · · · · · · 0 1− pNP ,NP 1


, (A.1)

where Hij ≡ p
(
ξPt = i|ξPt−1 = j

)
. For example, if there were NP = 2 nonrecurrent

regimes in the sample, we would have

H =

[
p11 0

1− p11 1

]
.

The above process implies that, if you are currently in regime 1, you will remain there
next period with probability p11 or exit to regime 2 with probability 1 − p11. Upon
exiting to regime 2, since there are only two regimes in the sample and the probability
p12 of returning exactly to the previous regime 1 is zero, p22 = 1.
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Most Likely Regime Sequence

For regime switches in the mean of mpst where the specification that is estimated is

mpst = rξPt + εrt ,

εrt ∼ N (0, σ2
r), and rξPt is an intercept governed by a discrete valued latent state variable,

ξPt , that is presumed to follow a NP -state nonrecurrent regime-switching Markov with

transition matrixH. The vector θr =
(
rξPt , σ

2
r, vec (H)′

)′
denotes the set of parameters

to be estimated. The most likely regime sequence is the regime sequence ξP,T =

{ξ̂P1 , ..., ξ̂
P

T } that is most likely to have occurred, given the estimated posterior mode
parameter values for θr. This sequence is computed as follows.
Let P

(
ξPt = i|zt−1;θr

)
≡ πit|t−1. First, run Hamilton’s filter to get the vector of

filtered regime probabilities πt|t, t = 1, 2, ..., T . The Hamilton filter can be expressed
iteratively as

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hπt|t

where the symbol � denotes element by element multiplication, ηt is a vector whose
j-th element contains the conditional density p(mpst|ξPt = j;θr), i.e.,

ηj,t =
1√

2πσr
exp

{
− (mpst − rj)2

2σ2
r

}
,

and where 1 is a vector with all elements equal to 1. The final term, πT |T is returned
with the final step of the filtering algorithm. Then, a recursive algorithm can be
implemented to derive the other smoothed probabilities:

πt|T = πt|t �
[
H′
(
πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division. To choose the regime sequence most
likely to have occurred given our parameter estimates, consider the recursion in the
next to last period t = T − 1:

πT−1|T = πT−1|T−1 �
[
H′
(
πT |T (÷) πT |T−1

)]
.

Suppose we have Np = 3 regimes. We first take πT |T from the Hamilton filter and
choose the regime that is associated with the largest probability, i.e., if πT |T = (.8, .1, .1),
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where the first element corresponds to the probability of regime 1, we select ξ̂
P

T = 1,
indicating that we are in regime 1 in period T. We now update πT |T = (1, 0, 0) and
plug into the right-hand-side above along with the estimated filtered probabilities for
πT−1|T−1, πT |T−1 and estimated transition matrixH to get πT−1|T on the left-hand-side.
Now we repeat the same procedure by choosing the regime for T−1 that has the largest
probability at T − 1, e.g., if πT−1|T = (.2, .7, .1) we select ξ̂T−1 = 2, indicating that we
are in regime 2 in period T − 1, we then update to πT−1|T = (0, 1, 0), which is used
again on the right-hand-side now

πT−2|T = πT−2|T−2 �
[
H′
(
πT−1|T (÷) πT−1|T−2

)]
.

We proceed in this manner until we have a most likely regime sequence ξP,T for the
entire sample t = 1, 2, ..., T . Two aspects of this procedure are worth noting. First, it
fails if the updated probabilities are exactly (.333, .333, .333). Mathematically this is
virtually a zero probability event. Second, note that this procedure allows us to choose
the most likely regime sequence by using the recursive formula above to update the
filtered probabilities sequentially working backwards from t = T to t = 1. This allows
us to take into account the time dependence in the regime sequence as dictated by the
transition probabilities.
Follow the same procedure to obtain the most likely belief regime sequence ξbt , where

the structural model is described by B2 conditional densities

f
(
Xt−1+δh |ξ

b
t−1 = j, ξbt = i,Xt−1

)
= (2π)−NX/2 |f (i,j)

t|t−1+δh
|−1/2 exp

{
−1

2
e
(i,j)′
t|t−1+δh,t−1

f
(i,j)
t|t−1+δh,t−1

e
(i,j)
t|t−1+δh,t−1

}
.

Define ξ∗t describe a B
2-state Markov chain incorporating all the (i, j) combinations

above and recast f (·) as B2 densities ηt = f (Xt−1+δh|ξ∗t = i,X t−1) to use in the com-
putation of πt|t.

Price-Output Decompositions

Mapping from price to output (measured as GDPt) is

Pt
GDPt−1

=
Pt
Dt

Dt

GDPt

GDPt
GDPt−1

pgdpt = pdt + kt + ỹt + gt − ỹt−1
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Below we decompose pdt to write:

pgdpt =
κpd,0

1− κpd,1
+ kt + yt + gt − ỹt−1︸ ︷︷ ︸

earning share component

+ pdvt (∆d)︸ ︷︷ ︸
earnings

− pdvt (rex)︸ ︷︷ ︸
premia

− pdvt (rir)︸ ︷︷ ︸
RIR

pgdprex,t =
κpd,0

1− κpd,1
+ kt + ỹt + gt − ỹt−1︸ ︷︷ ︸

earning share component

− pdvt (rex)︸ ︷︷ ︸
premia

pgdprir,t =
κpd,0

1− κpd,1
+ kt + ỹt + gt − ỹt−1︸ ︷︷ ︸

earning share component

− pdvt (rir)︸ ︷︷ ︸
RIR

pgdp∆d,t =
κpd,0

1− κpd,1
+ kt + ỹt + gt − ỹt−1︸ ︷︷ ︸

earning share component

+ pdvt (∆d)︸ ︷︷ ︸
earnings

where

pdt = κpd,0 + Ebt [mt+1 + ∆dt+1 + κpd,1pdt+1] +

+.5Vbt [mt+1 + ∆dt+1 + κpd,1pdt+1] .

The solution approximates around the balanced growth path with Dt+1
Dt

= G, where
G is the gross growth rate of the economy. The Euler equation under the balanced
growth path is

1 =

[
Mt+1

(
Pt+1/Dt+1 + 1

Pt/Dt

)
Dt+1

Dt

]
=

[
βp

(
Dt+1

Dt

)−σp (Pt+1/Dt+1 + 1

Pt/Dt

)
Dt+1

Dt

]

=

βpG1−σp︸ ︷︷ ︸
β̃p

(
P/D + 1

P/D

) =>

1

β̃p
=

(
P/D + 1

P/D

)
=>

P/D =
β̃p

1− β̃p
.

Denote the log steady state price-payout ratio as ln (P/D) = pd, thus we have

pd = ln

(
β̃p

1− β̃p

)
.
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κpd,1 = exp(pd)/(1 + exp(pd)) =
β̃p

1− β̃p

[
1 +

β̃p

1− β̃p

]−1

= β̃p

κpd,0 = ln(exp(pd) + 1)− κpd,1pd = ln

(
1

1− β̃p

)
− β̃pln

β̃p

1− β̃p
= −β̃plnβ̃p −

(
1− β̃p

)
ln
(

1− β̃p
)

The log return obeys the following approximate identity (Campbell and Shiller
(1989)):

rDt+1 = κpd,0 + κpd,1pdt+1 − pdt + ∆dt+1,

where κpd,1 = exp(pd)/(1+exp(pd)), and κpd,0 = log
(
exp(pd) + 1

)
−κpd,1pd. Combining

all of the above, the log equity premium is

Ebt
[
rDt+1

]
−
(
it − Ebt [πt+1]

)︸ ︷︷ ︸
Equity Premium

=

[
−.5Vbt

[
rDt+1

]
− COVbt

[
mt+1, r

D
t+1

]
+.5Vbt [πt+1]− COVbt [mt+1, πt+1]

]
︸ ︷︷ ︸

Risk Premium

+ lpt︸︷︷︸,
Liquidity Premium

Then

pdt = κpd,0 + Ebt
[
∆dt+1 − rDt+1 + κpd,1pdt+1

]
pdt = κpd,0 + Ebt

[
∆dt+1 −

(
rext+1 − rirt+1

)
+ κpd,1pdt+1

]
where Ebt

[
rext+1

]
= Ebt

[
rDt+1

]
− rirt+1, where rirt+1 ≡

(
it+1 − Ebt [πt+1]

)
.

Solving forward:

pdt = κpd,0 + Ebt
[
∆dt+1 − rext+1 − rirt+1

]
+

+κpd,1Ebt
[
κpd,0 + Ebt

[
∆dt+2 − rext+2 − rirt+1 + κpd,1pdt+2

]]
Thus:

pdt =
κpd,0

1− κpd,1
+
(
1∆d − 1E(rex) − 1rir

)∑∞
h=0 κ

h
pd,1Ebt [St+1+h]

where 1x is a vector of all zeros except for a 1 in the xth position. This can be
written as:

pdt =
κpd,0

1− κpd,1
+ pdvt (∆d)− pdvt (rex)− pdvt (rir)

Using the solution:

pdt =
κpd,0

1− κpd,1
+
(
1∆d − 1E(rex) − 1rb

) (
I− κpd,1Tξt

)−1 [
TξtSt + (I− κpd,1)−1Cξt

]
.
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Thus, we can decompose movements in the pdt into those attributable to expected
dividends, equity premia, and expected real interest rates:

pgdpt =
κpd,0

1− κpd,1
+ kt + yt + gt − yt−1︸ ︷︷ ︸

earning share component

+ pdvt (∆d)︸ ︷︷ ︸
earnings

− pdvt (rex)︸ ︷︷ ︸
premia

− pdvt (rir)︸ ︷︷ ︸
RIR

.

Solution and Estimation Details

This appendix presents details on the solution and estimation. An overview of the steps
are as follows.

1. We first solve the macro block set of equations involving a set of macro state
variables SMt ≡ [ỹt, gt, πt, it, πt, ft]

′. The MS-VAR solution consists of a system of
equations taking the form

SMt = CM

(
θξPt

)
+ TM(θξPt )SMt−1 +RM(θξPt )QMε

M
t ,

where εMt = (εf,t, εi,t, εg,t, εµ,t). Since this block involves no forward-looking vari-
ables and only depends on the pre-determined policy regimes, this block can be
solved analytically. See Bianchi, Lettau, and Ludvigson (2022).

2. Use the solution for SMt based on the current realized policy regime ξPt and then
resolve the model based on the Alternative regime, i.e., obtain

SMt = CM

(
θξAt

)
+ TM(θξAt )SMt−1 +RM(θξAt )QMε

M
t .

Store the two solutions. SMt under ξPt is mapped into the observed current macro
variables in our observation equation.

3. To identify the parameters of the Alternative policy rule, the perceived transition
matrix Hb and belief regime probabilities governing moving to the Alternative
rule, we use:

(a) Measures of expectations from professional forecast surveys and futures mar-
kets. Given the perceived transition matrix of the investor Hb, use it to
compute investor expectations for future macro variables that take into ac-
count the perceived probability of transitioning to the Alternative rule in
the future. See the section below on “Computing Expectations with Regime
Switching and Alternative Policy Rule.”These give us investor expectations
of the macro block variables used in our observation equation.
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(b) Stock prices. The asset pricing block of equations involves conditional sub-
jective variance terms that are affected by Markov-switching random vari-
ables in the model. The subsection “Risk Adjustment with Lognormal Ap-
proximation,”below explains the approximation used to preserve lognormal-
ity of the entire system. This part uses the approach in Bianchi, Kung, and
Tirskikh (2018) who in turn build on Bansal and Zhou (2002) and is com-
bined with the algorithm of Farmer, Waggoner, and Zha (2011) to solve the
overall system of model equations, where investors form expectations tak-
ing into account the probability of regime change in the future. The state
variables for the full system are

St =
[
SMt ,mt, pdt, kt, lpt,Ebt (mt+1) ,Ebt (pdt+1)

]
.

This leaves us with the MS-VAR solution consists of a system of equations
taking the form

St = C
(
θξPt , ξ

b
t ,H

b
)

+ T (θξPt , ξ
b
t ,H

b)St−1 +R(θξPt , ξ
b
t ,H

b)Qεt,

where εt = (εf,t, εi,t, εg,t, εµ,t, εk,t, εlp,t). Since pdt depends the risk adjust-
ment and Ebt (pdt+1) , its value is also informative about the parameters of
the Alternative rule, Hb and belief regime probabilities. Unlike the formulas
that are required to relate data on expectations to future macro variables in
step (a), the formulas governing these relationships are solved numerically
using the solution algorithm described above.

4. We estimate the model by combining the solution above with an observation
equation that includes macro, asset pricing, and survey expectation variables.
See the subsection “Estimation”below.

Computing Expectations with Regime Switching and Alternative Policy
Rule

In what follows, we explain how to use expectations to infer what alternative regimes
agents have in mind. Expectations about inflation, FFR, and GDP growth depend on
the regime currently in place, the alternative regime, and the probability of moving
to such regime. This note is based on “Methods for measuring expectations and un-
certainty” in Bianchi (2016). That paper explains how to computed expected values
in presence of regime changes. In the models described above, for each policy rule in
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place, agents would have different beliefs about alternative future policy rules. This
would lead to changes in expected values for the endogenous variables of the model.
Consider a MS model:

St = Cξt + TξtSt−1 +RξtQεt (A.2)

where ξt =
{
ξPt , ξ

b
t

}
controls the policy regime ξPt controls the policy rule currently in

place and the alternative policy rule, while the belief regime ξbt controls agents’beliefs
about the possibility of moving to the alternative policy rule.
Let n be the number of variables in St. Let m = B + 1 be the number of Markov-

switching states and define

ξt = i ≡
{
ξPt , ξ

b
t = i

}
, i = 1, ..., B + 1.

Define the mn× 1 column vector qt as:

qt
mn×1

=
[
q1′
t , ..., q

m′
t

]′
where the individual n × 1 vectors qit = E0

(
St1ξt=i

)
≡ E

(
St1ξt=i|I0

)
and 1ξt=i is an

indicator variable that is one when belief regime i is in place and zero otherwise. Note
that:

qit = E0

(
St1ξt=i

)
= E0 (St|ξt = i) πit

where πit = P0 (ξt = i) = P (ξt = i|I0). Therefore we can express µt = E0 (St) as:

µt = E0 (St) =
∑m

i=1 q
i
t = wqt

where the matrix w
n×mn

= [In, ..., In] is obtained placing side by side m n-dimensional

identity matrices. Then the following proposition holds:

PROPOSITION 1: Consider a Markov-switching model whose law of motion can be
described by (A.2) and define qit = E0

(
St1ξt=i

)
for i = 1...m. Then qjt = Cjπ

j
t +∑m

i=1 Tjq
i
t−1pji.

It is then straightforward to compute expectations conditional on the information
available at a particular point in time. Suppose we are interested in µt+s|t ≡ Ebt (St+s),
i.e. the expected value for the vector St+s conditional on the information set available
at time t. If we define:

qt+s|t =
[
q1′
t+s|t, ..., q

m′
t+s|t

]′
where qit+s|t = Ebt

(
St+s1ξt=i

)
= Ebt (St+s|ξt = i) πit+s|t, where π

i
t+s|t ≡ P

(
ξt+s = i|It

)
, we

have
µt+s|t = Ebt (St+s) = wqt+s|t, (A.3)

17



where for s ≥ 1, qt+s|t evolves as:

qt+s|t = Cπt+s|t + Ωqt+s−1|t (A.4)

πt+s|t = Hbπt+s−1|t (A.5)

with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (T1, ..., Tm)

(
Hb ⊗ In

)
, and C

mn×m
= bdiag (C1, ..., Cm) ,

where e.g., C1 is the n× 1 vector of constants in regime 1, ⊗ represents the Kronecker
product and bdiag is a matrix operator that takes a sequence of matrices and use them
to construct a block diagonal matrix.
The formulas above are used to compute expectations conditional on each belief

regime ξbt and policy rule regime ξ
P
t . For each composite regime ξt =

{
ξPt , ξ

b
t

}
, we can

obtain a forecast for each of the variables of the model. For example, conditional on
ξPt and ξ

b
t = j in place we have

qt,ξt=j = ej ⊗ St

where ej is a variable that has elements equal to zero except for the one in position ξ
b
t .

For example, with B = 5 belief regimes and ξbt = 3 we have

qt,ξt=3 = [0′,0′, S ′t,0
′,0′,0′]

′
.

where 0 and St are column vectors with n rows. We have B + 1 subvectors in qt,ξt=j
to take into account the alternative policy mix. The fact that all subvectors are zero
except for the one corresponding to the belief regime b = 3 reflects the assumption
that agents can observe the current state St and, by definition, their own beliefs (while
the econometrician cannot observe any of the two and she uses macro data and survey
expectations to estimate both St and agents’beliefs).
Thus, suppose we want to compute the expected value for a variable x over the

next year under the assumption that agents’beliefs are ξbt = j. With monthly data, we
have:

Ebt (xt,t+s|ξt = j) =
∑12

s=1 E
b
t (xt+s|ξt = j)

= ex
∑12

s=1 µt+s|t,ξt=j

= exw
∑12

s=1 qt+s|t,ξt=j

where for s ≥ 1, qt+s|t evolves as:

qt+s|t,ξt=j = Cπt+s|t + Ωqt+s−1|t,ξt=j (A.6)

πt+s|t,ξt=j = Hbπt+s−1|t,ξt=j (A.7)
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with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (T1, ..., Tm)

(
Hb ⊗ In

)
, and C

mn×m
= bdiag (C1, ..., Cm) ,

where e.g., C1 is the n× 1 vector of constants in regime 1, ⊗ represents the Kronecker
product and bdiag is a matrix operator that takes a sequence of matrices and use
them to construct a block diagonal matrix. The recursive algorithm is initialized with
πt|t,ξt=j = 1ξt=j and qt,ξt=j = ej ⊗ St.
The formulas (A.6) and (A.7) can be written in a more compact form. If we define

q̃t|t = [q′t|t, π
′
t|t]
′, with πt|t a vector with elements πit|t ≡ P (ξt = i|It) we can compute the

conditional expectations in one step:

µt+s|t = Ebt (St+s) = w̃Ω̃sq̃t|t (A.8)

where w̃ = [w, 0n×m] . The formula above can be used to compute the expected value
from the point of view of the agent of the model with beliefs ξt = j:

Ebt (xt+s|ξt = j) = exµt+s|t,ξt=j = exw̃Ω̃sq̃t|t,ξbt=j = exwΩ̃s{1,nm},{n(j−1)+1,nj}︸ ︷︷ ︸
Zξt,xt+s

St︸︷︷︸
(n×1)

+ exwΩ̃s{1,nm},nm+j︸ ︷︷ ︸
Dξt,xt+s

(A.9)

where Dξ.t,xt+s is a scalar, Zξ.t,xt+s is an (1× n) vector, Ω̃s
{1,nm},{n(j−1)+1,nj} is the sub-

matrix obtained taking the first nm rows and the columns from n(j − 1) + 1 to nj
of Ω̃s, while Ω̃s

{1,nm},nm+j is the submatrix obtained taking the first nm rows and the

nm+ j column of Ω̃s. Thus, we have that conditional on one belief regime and a policy
rule regime, we can map the current state of the economy St into the expected value
reported in the survey. The matrix algebra in (A.9) returns the same results of the
recursion in (A.6) and (A.7).
To see what the formulas above do, consider a simple example with B = 2 and we
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are currently in belief regime b = 2:

Ebt (xt+s|ξt = 2) = exw̃Ω̃sq̃t|t,ξt=2 = exw̃Ω̃s



0
n×1

St
n×1

0
n×1

0
1
0



= exw̃



Ω̃s
11 Ω̃s

12 Ω̃s
13 Ω̃s

14 Ω̃s
15 Ω̃s

16

Ω̃s
21 Ω̃s

22 Ω̃s
23 Ω̃s

24 Ω̃s
25 Ω̃s

26

Ω̃s
31 Ω̃s

32 Ω̃s
33 Ω̃s

34 Ω̃s
35 Ω̃s

36

Ω̃s
44 Ω̃s

45 Ω̃s
46

Ω̃s
54 Ω̃s

55 Ω̃s
56

Ω̃s
64 Ω̃s

65 Ω̃s
66





0
n×1

St
n×1

0
n×1

0
1
0



= exw̃



Ω̃s
12St + Ω̃s

15

Ω̃s
22St + Ω̃s

25

Ω̃s
32St + Ω̃s

35

Ω̃s
44

Ω̃s
54

Ω̃s
64


= ex

(
Ω̃s

12 + Ω̃s
22 + Ω̃s

32

)
St + ex

(
Ω̃s

15 + Ω̃s
25 + Ω̃s

35

)
Finally, suppose we are interested in the forecast Eb

t

(
xt,t+s|ξbt = j, ξpt

)
:

Ebt (xt,t+s|ξt = j) =
[
ex
∑12

s=1 wΩ̃s
{1,nm},{n(j−1)+1,nj}

]
︸ ︷︷ ︸

Zξt,xt,t+s

St︸︷︷︸
(n×1)

+ ex
∑12

s=1wΩ̃s
{1,nm},nm+j︸ ︷︷ ︸

Dξt,xt,t+s

(A.10)
Thus, we can include Zξt,xt,t+s as a row in Zξt and Dξt,xt,t+s as a row in Dξt in the

mapping from the model to the observables described in (A.11). Note that the matrix
Z and vector D are now regime dependent.
For GDP growth, we are interested in the average growth over a certain horizon.

Our state vector contains ỹt. Thus, we can use the following approach:

Ebt
[
(gdpt+h − gdpt)h−1|ξt = j

]
= Ebt

[
(ỹt+h − ỹt + hg)h−1|ξt = j

]
= h−1Ebt [ỹt+h|ξt = j]− h−1ỹt + g

where g is the average growth rate in the economy and ỹt is GDP in deviations from
the trend. With deterministic growth we have gdpt+h− gdpt−hg ≡ ỹt+h− ỹt. We then
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have

Ebt
[
(gdpt+h − gdpt)h−1|ξt = j

]
= h−1Ebt [ỹt+h|ξt = j]− h−1ỹt + g

= h−1

eỹwΩ̃s
{1,nm},{n(j−1)+1,nj}︸ ︷︷ ︸

Zξt,ỹt+s

St︸︷︷︸
(n×1)

+ eỹwΩ̃s
{1,nm},nm+j︸ ︷︷ ︸
Dξt,ỹt+s

− eỹSt

+ g

= h−1
[
eỹwΩ̃s

{1,nm},{n(j−1)+1,nj} − eỹ
]

︸ ︷︷ ︸
Zξt,ỹt+s−ỹt

St︸︷︷︸
(n×1)

+ h−1 eỹwΩ̃s
{1,nm},nm+j︸ ︷︷ ︸

Dξt,ỹt+s

+ g

The expected values for the endogenous variables depend on the perceived transition
matrix Hb and the properties of the alternative regime. The latter can be seen by
recalling that the regime ξt = B + 1 applies to the perceived Alternative regime.
Thus, data from survey expectations and futures markets provide information about
the perceived probability of moving across belief regimes as well as the parameters of
the Alternative regime.

Estimation

The solution of the model takes the form of a Markov-switching vector autoregression
(MS-VAR) in the state vector St =

[
SMt ,mt, pdt, kt, zt, lpt,Ebt (mt+1) ,Ebt (pdt+1)

]
. Here,

SMt is a vector of macro block state variables given by SMt ≡ [ỹt, gt, πt, it, πt, ft]
′. The

asset pricing block of equations involves conditional subjective variance terms that are
affected by Markov-switching random variables in the model. The subsection “Risk
Adjustment with Lognormal Approximation,”below, explains the approximation used
to preserve lognormality of the entire system.
The model solution in state space form is

Xt = Dξt,t + Zξt,t [S ′t, ỹt−1]
′
+ Utvt

St = C
(
θξPt , ξ

b
t ,H

b
)

+ T (θξPt , ξ
b
t ,H

b)St−1 +R(θξPt , ξ
b
t ,H

b)Qεt

Q = diag (σε1 , ..., σεG) , εt ∼ N (0, I)

U = diag (σ1, ..., σX) , vt ∼ N (0, I)

ξPt = 1...NP , ξ
b
t = 1, ...B + 1,Hb

ij = p
(
ξbt = i|ξbt−1 = j

)
.

where Xt is a NX × 1 vector of data, vt are a vector of observation errors, Ut is a
diagonal matrix with the standard deviations of the observation errors on the main
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diagonal, and Dξt,t, and Zξt,t are parameters mapping the model counterparts of Xt

into the latent discrete- and continuous-valued state variables ξt and St, respectively,
in the model. The vector Xt of observables is explained below. Note that the para-
meters Dξt,t, Zξt,t, and Ut vary with t independently of ξt because not all variables
are observed at each data sampling period. To reduce computation time, we calibrate
rather than estimate the parameters in U = diag (σ1, ..., σX) such that the variance of
the observation error is 0.05 times the sample variance of the corresponding variable
in X. In addition, some of the parameters in the system are dependent on the current
policy rule and the associated Alternative rule, ξPt , and the unobserved, discrete-valued
(B + 1)-state Markov-switching variable ξbt

(
ξbt = 1, 2, ..., B + 1

)
with perceived transi-

tion probabilities

Hb =


pb1ps pb2p∆1|2 · · · pbBp∆1|B 0
pb1p∆2|1 pb2ps pbBp∆2|B 0
...

...
. . .

...
...

pb1p∆B|1 pbBps 0
1− pb1 1− pb2 · · · 1− pbB pB+1,B+1 = 1

 ,
where Hb

ij ≡ p
(
ξbt = i|ξbt−1 = j

)
, and

∑
i 6=j p∆i|j = 1 − ps. We take the parameters

pbi from a discretized estimated beta distribution, where the mean and variance of
the beta distribution are estimated. We specify the probability of transitioning to
belief i tomorrow, conditional on having belief j today, while remaining in the same
policy regime, as p∆i|j ≡ (1− ps)

(
ρ
|i−j−1|
b /

∑
i 6=j ρ

|i−j−1|
b

)
, where ps and ρb < 1 are

parameters to be estimated and |i− j− 1| measures the distance between beliefs j and
i, for i 6= j ∈ (1, 2, ..., B) . This creates a decaying function that makes the probability
of moving to contiguous beliefs more likely than jumping to very different beliefs. For
computational reasons, we also eliminate very unlikely transitions (p∆i|j < 0.0001) by
setting their probabilities to zero.
We use the following notation:

CξPt ,i = C
(
θξPt , ξ

b
t = i

)
, TξPt ,j = T

(
θξPt , ξ

b
t = i

)
, RξPt ,j

= R
(
θξPt , ξ

b
t = i

)
Di,t = Dξt|ξbt=i, Zi,t = Zξt|ξbt=i.

Kim’s Approximation to the Likelihood and Filtering We use Kim’s (Kim
(1994)) basic filter and approximation to the likelihood.
First note that, from the econometricians viewpoint, investors are only ever observed

in the first B regimes, since the perceived Alternative is never actually realized. For
this reason the filtering algorithm for the latent belief regimes involves only the upper
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B × B submatrix of Hb, rescaled so that the elements sum to unity. Even though the
filtering loops over just B states rather than B + 1, this is done conditional on the
parameters for the full (B+ 1)× (B+ 1) transition matrix, which is estimated from all
the data by combining the likelihood with the priors, as described below.
The sample is divided into NP policy regime subperiods indexed by ξ

P
t . Denote the

last observation of each regime subperiod of the sample T1, ..., TNP . The algorithm for
the basic filter is described as follows.
Initiate values S̃0|0, P0|0, for the Kalman filter and Pr

(
ξb0
)

= π0 for the Hamilton
filter and initialize L (θ) = 0. Denote X t−1 ≡ {X1, ..., Xt−1} and ξPT =

{
ξP1 , ..., ξ

P
T

}
.

In the mixed-frequency estimation, we use intra-month data to provide “early”
estimates of the state space, while “final”estimates are obtained using a more complete
set of data available at the end of each month. Let t denote a month. Let dh denote
the number of time units that have passed within a month when we have reached
a particular point in time, and let nd denote the total number of time units in the
month. Then 0 ≤ dh/nd ≤ 1, and the intramonth time period is denoted t − 1 + δh

with δh ≡ dh/nd. For example, δ100 could denote the point within the month that is
exactly 10 minutes before an FOMC meeting during the month, while δ130 could denote
point in the month 20 minutes after the same meeting. Intra-month observations used
just prior to an FOMCmeeting will typically include the daily BBG consensus forecasts
and Baa credit spread from the day before the meeting, and the 10-minutes before FFF,
ED and stock market data. Intermonth observations for the point of the month right
after the FOMC meeting will typically include the daily BBG consensus forecasts and
Baa spread from the day after the meeting, and the 20-minutes after FFF, ED and
stock market data.

• For t = 1 to T1 and θξPt relevant when ξ
P
t = 1:

1. Suppose we have information up through month t−1 and new information arrives
at t − 1 + δh. Conditional on ξ

b
t−1 = j and ξbt = i run the Kalman filter given
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below for i, j = 1, 2, ..., B to update estimates of the latent state:

S
(i,j)
t|t−1 = CξPt ,i + TξPt ,iS

j
t−1|t−1

P
(i,j)
t|t−1 = TξPt ,iP

j
t−1|t−1T

′
ξPt ,i

+RξPt ,i
Q2R′

ξPt ,i
with Q2 ≡ QQ′

e
(i,j)
t|t−1+δh,t−1 = Xt−1+δh −Di,t−1+δh − Zi,t−1+δh

[
S

(i,j)′
t|t−1, ỹt−1

]
f

(i,j)
t|t−1+δh,t−1 = Zi,t−1+d1/ndP

(i,j)
t|t−1Z

′
i,t−1+d1/nd

+ U2
t−1+d1/nd

with U2
t ≡ UtU

′
t

S
(i,j)
t|t−1+δh

= S
(i,j)
t|t−1 + P

(i,j)
t|t−1Z

′
i,t−1+δh

(
f

(i,j)
t|t−1+δh,t−1

)−1

e
(i,j)
t|t−1+δh,t−1

P
(i,j)
t|t−1+δh

= P
(i,j)
t|t−1 − P

(i,j)
t|t−1Z

′
i,t−1+δh

(
f

(i,j)
t|t−1+δh,t−1

)−1

Zi,t−1+δhP
(i,j)
t|t−1

2. Run the Hamilton filter to calculate new regime probabilities Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)

and Pr
(
ξbt |Xt−1+δh , X

t−1
)
, for i, j = 1, 2, ..., B

Pr
(
ξbt , ξ

b
t−1|Xt−1

)
= Pr

(
ξbt |ξbt−1

)
Pr
(
ξbt−1|Xt−1

)
`
(
Xt−1+δh |X

t−1) =
∑B
j=1

∑B
i=1 f

(
Xt−1+δh |ξ

b
t−1 = j, ξbt = i,Xt−1

)
Pr
[
ξbt−1 = j, ξbt = i|Xt−1

]
f
(
Xt−1+δh |ξ

b
t−1 = j, ξbt = i,Xt−1

)
= (2π)−NX/2 |f (i,j)

t|t−1+δh
|−1/2

exp

{
−1

2
e
(i,j)′
t|t−1+δh,t−1

f
(i,j)
t|t−1+δh,t−1

e
(i,j)
t|t−1+δh,t−1

}
L (θ) = L (θ) + ln

(
`
(
Xt−1+δh |X

t−1))
Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)

=
f
(
Xt−1+δh |ξ

b
t , ξ

b
t−1, X

t−1)Pr
(
ξbt , ξ

b
t−1|Xt−1)

`
(
Xt−1+δh |Xt−1)

Pr
(
ξbt |Xt−1+δh , X

t−1
)

=

B∑
j=1

Pr
(
ξbt , ξ

b
t−1 = j|Xt−1+δh , X

t−1
)

3. Using Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
and Pr

(
ξbt |Xt−1+δh , X

t−1
)
, collapse the B × B

values of S(i,j)
t|t−1+δh

and P (i,j)
t|t−1+δh

intoB values represented by Sit|t−1+δh
and P i

t|t−1+δh
:

Sit|t−1+δh
=

∑B
j=1 Pr

[
ξbt−1 = j, ξbt = i|Xt−1+δh , X

t−1
]
S

(i,j)
t|t−1+δh

Pr
[
ξbt = i|Xt−1+δh , X

t−1
]

P it|t−1+δh =

∑B
j=1 Pr

[
ξbt−1 = j, ξbt = i|Xt−1+δh , X

t−1] P
(i,j)
t|t−1+δh

+
(
Si
t|t−1+δh

− S(i,j)
t|t−1+δh

)
(
Si
t|t−1+δh

− S(i,j)
t|t−1+δh

)′


Pr
[
ξbt = i|Xt−1+δh , Xt−1]

4. If t − 1 + δh = t, move to the next period by setting t − 1 = t and returning to
step 1
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5. else, store the updated S(j)
t|t−1+δh

, P (j)
t|t−1+δh

, Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
,

and Pr
(
ξbt |Xt−1+δh , X

t−1
)
, move to the next intramonth time unit δk > δh, and

repeat steps 1-5 keeping t− 1 fixed.

• At t = T1 + 1 use θξPt relevant when ξ
P
t = 2, set t− 1 = t, and repeat steps 1-5

• At t = T2 + 1 use θξPt relevant when ξ
P
t = 3, set t− 1 = t, and repeat steps 1-5

• ...

• At t = TNP−1 + 1 use θξPt relevant when ξ
P
t = NP , set t− 1 = t and repeat steps

1-5

• At t = TN = T stop. Obtain L (θ) =
∑T

t=1

∑
δh∈(0,1) ln (` (Xt−1+δh |X t−1)) .

The algorithm above is described in general terms; in principle the intramonth loop
could be repeated at every instant within a month for which we have new data. Since
we have only a subset of data intramonth, we vary the dimension of the vector of
observables Xt−1+δh as a function of time t − 1 + δh. In application, we repeat steps
1-5 only at certain minutes or days pre- and post-FOMC meeting. We initialize the
algorithm with guesses for the Markov-switching parameters that vary across regime
subperiods (only the policy rule parameters), while the fixed-coeffi cient parameters
have guessed values that are identical across regime subperiods. These guesses are
used to evaluate the posterior by combining the likelihood L (θ) with the priors. We
continue guessing parameters and evaluating the posterior in this manner, until we find
parameter values that maximize the posterior. With the posterior mode in hand, we
evaluate the entire posterior distribution, as described below.

Observation Equation The mapping from the variables of the model to the
observables in the data can be written using matrix algebra to obtain the observation
equation Xt = Dξt,t+Zξt,t [S ′t, ỹt−1]′+Utvt. Denote ĝt ≡ gt−g, and l̂pt = lpt− lp. Using
the definition of stochastically detrended output, we have ỹt = ln (Yt/At) , ∆ln (At) ≡
gt = g+ ρg (gt−1 − g) + σgεg,t ⇒ ỹt− ỹt−1 = ∆ln (Yt)− gt ⇒ ∆ln (Yt) = ỹt− ỹt−1 + gt =

ỹt− ỹt−1 + ĝt+g. Annualizing the monthly growth rates to get annualized GDP growth
we have ∆ln (GDPt) ≡ 12∆ln (Yt) = 12g + 12 (ỹt + ĝt − ỹt−1) . For quarterly GDP
growth we interpolate to monthly frequency using the method in Stock and Watson
(2010). For our other quarterly variables (SPF survey measures) and our biannual Liv
survey, we drop these from the observation vector in the months for which they aren’t
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available. The observation equation when all variables in Xt are available takes the
form:



∆ln (GDPt)
Inflation
FFR

SOC (Inflation)12m
SOC (Inflation)60m

f
(0)
t

BC (Inflation)12m
SPF (Inflation)12m
Liv (Inflation)12m

SPF (GDPDInfl)12m
BBG (Inflation)12m
Liv (Inflation)120m
SPF (Inflation)120m

BC (FFR)12m
BC (∆GDP )12m
BBG (∆GDP )12m
SPF (∆GDP )12m

f
(n)
t

Baat
pgdpt
EGDPt



=



12g
0
0
0
0
0

Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+120
Dξt,πt,t+120
Dξt,it,t+12
Dξt,yt+s
Dξt,yt+s
Dξt,yt+s
Dξt,it+n
CBaa

ln (K) + g
K



+



12 (ỹt + ĝt − ỹt−1)
12πt
12it[

h+ (h− 1)φ+ (h− 2)φ2 + ...+ φ11
]

(1− φ)πt + Σ12j=1φ
jπt[

h+ (h− 1)φ+ (h− 2)φ2 + ...+ φ59
]

(1− φ)πt + Σ60j=1φ
jπt

12it
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+120St
Zξt,πt,t+120St
Zξt,it,t+12,St
Zξt,yt+s−ytSt
Zξt,yt+s−ytSt
Zξt,yt+s−ytSt
Zξt,it+nSt

Bl̂pt
kt − k + pdt + ĝt + ỹt − ỹt−1

K (kt − k)



(A.11)

+Utvt

where we have used the fact that expectations for the macro agent in the model is:

Emt [πt,t+h] =
[
h+ (h− 1)φ+ (h− 2)φ2 + ...+ φh−1

]
αmt +

[
φ+ φ2 + ...+ φh

]
πt

=
[
h+ (h− 1)φ+ (h− 2)φ2 + ...+ φh−1

]
(1− φ) πt +

[
φ+ φ2 + ...+ φh

]
πt

The term Inflation in the above stands for CPI inflation; GDPDInfl refers to GDP
deflator inflation. The variable f (n)

t refers to the time-t contracted federal funds futures
market rate. Here we use n = {6, 10, 20, 35} . The variable pgdp is the log of the
SP500 capitalization-to-lagged GDP ratio, i.e., ln (Pt/GDPt−1); EGDPt is the level
of the SP500 earnings-to-lagged GDP ratio; taking a first order Taylor approximation
of EGDPt around the log earnings-output ratio, we have EGDPt ≈ K + K (kt − k),
whereK is the steady state level of EGDPt = exp (k). Baat is the Baa spread described
above, where CBaa and B and K are parameters. To allow for the fact that the true
convenience yield is only a function of Baat, we add a constant CBaa to our model-
implied convenience yield lpt and scale it by the parameter B to be estimated. Unless
otherwise indicated, all survey expectations are 12 month-ahead forecasts in annualized
units.
The above uses multiple measures of observables on a single variable, e.g., investor

expectations of inflation 12 months ahead are measured by four different surveys (BC,
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SPF, LIV, and BBG). In the filtering algorithm above, these provide four noisy signals
on the same latent variable.

Computing the Posterior

The likelihood is computed with the Kim’s approximation to the likelihood, as explained
above, and then combined with a prior distribution for the parameters to obtain the
posterior. A block algorithm is used to find the posterior mode as a first step. Draws
from the posterior are obtained using a standard Metropolis-Hastings algorithm ini-
tialized around the posterior mode. Here are the key steps of the Metropolis-Hastings
algorithm:

• Step 1: Draw a new set of parameters from the proposal distribution: ϑ ∼
N
(
θn−1, cΣ

)
• Step 2: Compute α (θm;ϑ) = min

{
p (ϑ) /p

(
θm−1

)
, 1
}
where p (θ) is the posterior

evaluated at θ.

• Step 3: Accept the new parameter and set θm = ϑ if u < α (θm;ϑ) where u ∼
U ([0, 1]), otherwise set θm = θm−1

• Step 4: If m ≥ nsim, stop. Otherwise, go back to step 1

The matrix Σ corresponds to the inverse of the Hessian computed at the posterior
mode θ. The parameter c is set to obtain an acceptance rate of around 30%. We
use four chains of 540, 000 draws each (1 of every 200 draws is saved). The four chains
combined are used to form an estimate of the posterior distribution from which we make
draws. Convergence is checked by using the Brooks-Gelman-Rubin potential reduction
scale factor using within and between variances based on the four multiple chains used
in the paper.

Risk Adjustment with Lognormal Approximation

The asset pricing block of equations involves conditional subjective variance terms
that are affected by Markov-switching random variables in the model. We extend the
approach in Bansal and Zhou (2002) of approximating a model with Markov-switching
random variables using a risk-adjustment while maintaining conditional log-normality.
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Consider the forward looking relation for the price-payout ratio:

PD
t = Ebt

[
Mt+1

(
PD
t+1 +Dt+1

)]
PD
t

Dt

= Ebt
[
Mt+1

Dt+1

Dt

(
PD
t+1

Dt+1

+ 1

)]
.

Taking logs on both sides, we get:

pdt = log
[
Ebt [exp (mt+1 + ∆dt+1 + κpd,0 + κpd,1pdt+1)]

]
.

Applying the approximation implied by conditional log-normality we have:

pdt = κ0 + Ebt [mt+1 + ∆dt+1 + κpd,1pdt+1] +

+.5Vbt [mt+1 + ∆dt+1 + κpd,1pdt+1] .

To implement the solution, we follow Bansal and Zhou (2002) and approximate the
conditional variance as the weighted average of the objective variance across regimes,
conditional on ξt. Using the simpler notation of the state equation,

St = Cξt + TξtSt−1 +RξtQεt,

the approximation takes the form

Vbt [xt+1] ≈ e′xEbt
[
Rξt+1QQ

′R′ξt+1

]
ex (A.12)

where ex is a vector used to extract the desired linear combination of the variables in
St. This approximation maintains conditional log-normality of the entire system. In
the solution, Cξt depends on the risk adjustment term V b

t [mt+1 + ∆dt+1 + κpd,1pdt+1]

which depends on Rξt . Conditional on the risk adjustment term, the numerical solution
delivers the appropriate coeffi cients, Cξt , Tξt , and Rξt . To solve this fixed point problem,
we employ the iterative approach of Bianchi, Kung, and Tirskikh (2018). Specifically,
we solve the model and get St for an initial guess on the risk adjustment V b

t , denoted
V
b(0)
t . Given the approximation (A.12) the term V bt [mt+1 + ∆dt+1 + κpd,1pdt+1] only de-
pends on ξt. For each policy regime ξ

P
t our initial guess V

b(0)
t is therefore one value

of V b
t for each of the belief regimes ξ

b
t . The initial solution based on the initial guess

V
b(0)
t gives an initial value for Rξt, denoted R

(0)
ξt
. So far we have not used (A.12). Then,

given R(0)
ξt
, we use (A.12) to get an updated V b(1)

t ≈ exE
b
t

[
R

(0)
ξt+1

QQ′R
(0)′
ξt+1

]
ex. Given

the updated risk adjustment V b(1)
t we resolve the model for St one more time, and verify

that the new Rξt+1 is the same as the one obtained before, i.e., the same as R
(0)
ξt+1
. Note

that, although V b
t [xt+1] depends on Rξt+1 only (it does not depend on Cξt due to the

approximation (A.12)), Rξt+1 does not depend on V
b
t . Thus, we can stop here.
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