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1 Introduction

Lies are a pervasive feature of communication, even when it is subject to intense public and media

scrutiny. For example, during his tenure as U.S. president, Donald Trump made over 20,000 false

or misleading claims.1 However, such lies are also often detectable. Monitoring and fact-checking

should constrain how much license a sender of communication has when making false statements.

Interestingly, however, in the face of increased fact-checking and media focus, Trump’s rate of lying

increased rather than decreased—a development that runs counter to this intuition.

By incorporating probabilistic lie detection in a model of Bayesian persuasion (Kamenica and

Gentzkow, 2011; Kamenica, 2019) this paper shows that a sender of communication may optimally

choose to lie more frequently when it is more likely that his false statements will be flagged

as lies. The central innovation of our model—that lies are sometimes detectable—is a natural

assumption for many applications of (Bayesian) persuasion including political campaigns, courts,

advertising, expert advice, lobbying, and financial disclosure. For example, in a court case, facts

may surface that contradict the statements of a plaintiff, defendant, or witness and affect the

judge’s or the jury’s verdict.2 Similarly, a pre-sale inspection of a product may reveal that the

seller has misrepresented some of the product’s features which in turn may influence the buyer’s

purchase decision.

In our model, a Sender and a Receiver engage in one round of communication. The Sender

observes a binary state of nature and commits to a messaging strategy. We assume that the

message space equals the state space and define a lie as a message that differs from the true state

of nature. If the Sender tells a lie, it is flagged as such with some probability. The Receiver

observes both the message and the lie detection outcome and then takes an action. Whereas the

Sender prefers the Receiver to take the “favorable” action regardless of the state of nature, the

Receiver wants to match the action to the underlying state. Finally, the payoffs are realized for

both parties.

Our model delivers the following set of results. First, the Sender lies more frequently when the
1See https://www.washingtonpost.com/politics/2020/07/13/president-trump-has-made-more-than-20

000-false-or-misleading-claims/ for a comprehensive analysis of this behavior.
2Courts also focus on demeanor (e.g., facial expression, tone of voice, body language, gaze) as a lie detection

tool, but the effectiveness of this policy is not supported by scientific studies (Simon-Kerr, 2020).
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lie detection technology improves. Second, as long as the lie detection probability is sufficiently

small, the equilibrium payoffs of both players are unaffected by the lie detection technology be-

cause the Sender simply compensates by lying more frequently in the unfavorable state of nature

by claiming that the state is favorable. That is to say, the lie detection technology changes the

Sender’s message strategy but does not impact the payoff of either player. Third, when the lie de-

tection technology is sufficiently reliable, any further increase in the lie detection probability causes

the Sender to lie more frequently in the favorable state of nature, and the Sender’s (Receiver’s)

equilibrium payoff decreases (increases) with this probability.

Our framework is sufficiently tractable to allow us to analyze a number of extensions. First,

our main results continue to hold under partial commitment for the Sender. Second, they do not

rely on the fully revealing nature of a lie in our model. They continue to hold even when the

state is not binary and thus detection of a lie does not fully reveal the state of nature. Third,

we consider alternative detection technologies such as truth or state detection and show that the

central insights of our model continue to hold. Fourth, we analyze the (nontrivial) case in which

the default action coincides with the Sender’s preferred action and show that the main results are

analogous to those in the baseline model.

Our paper also contributes to the study of constrained information design (Doval and Skreta,

2018; Galperti and Perego, 2019). One of the key assumptions in the information design literature

is that the information designer (i.e., the Sender in our setting) can commit and flexibly choose

any information structure. This assumption is quite important as it often results in an obedience-

principle representation which simplifies these problems. In reality, however, the designer may not

be able to commit to all information structures and the exact nature of the constraints depends on

the particular application. Our paper studies one such constraint (i.e., lie detection) which imposes

realistic limits on the power of the designer and analyzes the optimal design problem under this

constraint.

Two recent papers (Balbuzanov, 2019; Dziuda and Salas, 2018) also investigate the role of lie

detection in communication. Their most significant difference with respect to our paper lies in

the commitment assumption of the Sender. In both papers, the communication game takes the
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form of cheap talk (Crawford and Sobel, 1982) rather than Bayesian persuasion as in our paper.

We defer the detailed comparison of these papers with our work to Section 4. In addition, Jehiel

(2021) considers a setting with two rounds of communication à la Crawford and Sobel (1982) but

includes the innovative feature that a Sender who lied in the first period cannot remember the

exact lies that she told. However, the potential inconsistency of messages never arises in any pure

strategy equilibrium. As a result, no lies are ever detected in equilibrium.

Related theoretical work on lying in communication games also includes Kartik et al. (2007)

and Kartik (2009), who do not consider lie detection but instead introduce an exogenous cost of

lying tied to the size of the lie in a cheap talk setting. They find that most types inflate their

messages, but only up to a point. In contrast to our results, they obtain full information revelation

for some or all types depending on the bounds of the type and message space. Guo and Shmaya

(2021) considers a communication protocol in which the message space is over the distribution of

states, and the Sender incurs a miscalibration cost if a message differs from the induced posterior

of the message in equilibrium. They show that when this cost is sufficiently high, the Sender can

obtain his commitment payoff. In contrast, if the Sender in our model loses all commitment power,

he cannot obtain the commitment payoff for any lie detection probability.

A large and growing experimental literature (Gneezy, 2005; Hurkens and Kartik, 2009; Sánchez-

Pagés and Vorsatz, 2009; Ederer and Fehr, 2017; Gneezy et al., 2018) examines lying in a variety

of communication games. Most closely related to our work is Fréchette et al. (forthcoming), who

investigate models of cheap talk, information disclosure, and Bayesian persuasion in a unified

experimental framework. Their experiments provide general support for the strategic rationale be-

hind the role of commitment and, more specifically, for the Bayesian persuasion model of Kamenica

and Gentzkow (2011).

Finally, our paper is related to recent work on communication in political science. Whereas we

focus on an improvement in the Receiver’s communication (i.e., lie detection) technology, Gehlbach

et al. (2022) analyze how improvements that benefit the Sender (e.g., censorship and propaganda)

impact communication under Bayesian persuasion. In a related framework that can be recast as

Bayesian persuasion, Luo and Rozenas (2018) study how the electoral mechanism performs when
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the government (the Sender) can rig elections by manipulating the electoral process ex ante and

falsifying election returns ex post.

2 Model

Consider the following simple model of Bayesian persuasion in the presence of lie detection. Let

ω ∈ {0, 1} denote the state of the world and Pr(ω = 1) = µ ∈ (0, 1). The Sender (S, he) observes

ω and sends a message m ∈ {0, 1} to the Receiver (R, she). In Section 2.3, we specify the exact

nature of the Sender’s communication strategy.

2.1 Lie Detection Technology

If the Sender lies (i.e., m ̸= ω), the Receiver is informed with probability q ∈ [0, 1] that the message

is a lie and thus learns ω perfectly. With remaining probability 1− q, she is not informed. If the

Sender does not lie (i.e., m = ω), the message is never flagged as a lie, and the Receiver is not

informed. Formally, the detection technology can be described by the following relation:

d(m,ω) =


lie, with probability q if m ̸= ω

¬lie, with probability 1− q if m ̸= ω

¬lie, with probability 1 if m = ω

With a slight abuse of notation, we denote d = {lie,¬lie} as the outcome of the detection result.

The detection technology is common knowledge. In a standard Bayesian persuasion setup, this

detection probability q is equal to 0, giving us an immediately comparable benchmark.

Note that lie detection here is different from state detection. While the former would inform

the Receiver of the true state conditional on a lie, the latter would inform her of the true state

independently of the message. Section 4 discusses the differences between the two in more detail.3

3Messages in our model are defined to have literal meanings, and thus they are classified as lies if they do not
match the true state of nature. Under an alternative definition, a message is a lie if, in equilibrium, it induces
an action inconsistent with the true state of nature. This alternative definition is more complicated and involves
calculating a fixed point. Essentially, one starts with an arbitrary lying set L ⊂ {(m = 1, ω = 1), (m = 1, ω =
0)} × {(m = 0, ω = 1), (m = 0, ω = 0)} and then solves for the Sender’s optimal solution when any pair in L
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2.2 Payoffs

Given both m and d, the Receiver takes an action a ∈ {0, 1}, and the payoffs are realized. The

payoffs are defined as follows:

uS(a, ω) = 1{a=1}

uR(a, ω) = (1− t)× 1{a=ω=1} + t× 1{a=ω=0}, 0 < t < 1

That is, the Sender wants the Receiver to always take the action a = 1 regardless of the state,

while the Receiver wants to match the state. The payoff from matching state 0 may differ from

the payoff from matching state 1. Given the payoff function, the Receiver takes action a = 1 if

and only if

Pr(ω = 1 | m, d) ≥ t

and therefore one could also interpret t as the threshold of the Receiver’s posterior belief above

which she takes a = 1. In the main body, we assume t ∈ (µ, 1) to capture the more interesting case

in which the Receiver’s default action differs from the Sender’s preferred action. However, unlike

in standard persuasion models, the case is nontrivial even if t ≤ µ because no purely uninformative

message exists. We defer the detailed discussion of this case to Section 4.4.

2.3 Strategies

We assume that the Sender has full commitment power, as is common in the Bayesian persuasion

framework.4 Specifically, the strategy of the Sender is a mapping m : {0, 1} −→ ∆({0, 1}), and the

strategy of the Receiver is a mapping a : {0, 1} × {lie,¬lie} −→ ∆({0, 1}). Formally, the Sender

triggers lie detection with probability q. This provisional solution generates a new lying set L′. A consistency
condition L = L′ is thus required to close the model. We do not adopt this alternative definition because it leads
to a multiplicity of equilibria, which makes analyzing comparative statics difficult.

4For a detailed discussion and relaxation of this assumption, see Min (2021), Fréchette et al. (forthcoming),
Lipnowski et al. (forthcoming), and Nguyen and Tan (2021). Titova (2021) shows that with binary actions and
a sufficiently rich enough state space, verifiable disclosure enables the Sender’s commitment solution to be an
equilibrium. In Section 4.1, we show that our results continue to hold under partial commitment.
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chooses m(·) to maximize

Eω,d,m[uS(a (m(ω), d(m(ω), ω)) , ω)]

where a(m, d) maximizes

Eω[uR(a, ω) | m, d]

The two expectation signs are taken with respect to different variables. The expectation sign in

the Sender’s payoff is taken with respect to both ω, d, and perhaps m if the strategy is mixed,

whereas the (conditional) expectation sign in the Receiver’s payoff is only taken with respect to

ω. Due to the simple structure of the model, it is without loss of generality to assume that the

Sender chooses only two parameters p0 = Pr(m = 0 | ω = 0) and p1 = Pr(m = 1 | ω = 1) to

maximize Pr(a(m, d) = 1), which we write as Pr(a = 1) henceforth for brevity of notation. We

denote the optimal reporting probabilities of the Sender by p∗0 and p∗1 and the ex ante payoffs under

this reporting probabilities as US and UR.

3 Analysis

3.1 Optimal Messages

Given the Sender’s reporting strategy, the Receiver could potentially see four types of events to

which she needs to react when choosing action a.

First, the Receiver could observe the event (m = 0, d = lie) that occurs with probability

µ(1 − p1)q. Given the lie detection technology, the Receiver is certain that the message m = 0 is

a lie. Therefore, the state of the world ω must be equal to 1; that is,

Pr(ω = 1 | m = 0, d = lie) = 1
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As a result, the Receiver optimally chooses a = 1. 5

Second, the event (m = 0, d = ¬lie) could occur with probability µ(1− p1)(1− q) + (1− µ)p0.

In that case, the Receiver is uncertain about ω because she does not know whether the Sender lied

or not. Her posterior probability is given by

Pr(ω = 1 | m = 0, d = ¬lie) = µ(1− p1)(1− q)

µ(1− p1)(1− q) + (1− µ)p0
≡ µ0

Hence, the Receiver takes action a = 1 if and only if µ0 ≥ t. We denote the posterior following

this event by µ0 (thus omitting the lie detection outcome d = ¬lie) for brevity of notation. When

p0 = 0, p1 = 1, this event occurs with 0 probability, so the belief is off-path and not restricted

by Bayesian updating. However, the off-path belief does not matter for the Sender because if the

Sender chooses the strategy that renders (m = 0, d = ¬lie) a zero-probability event, he does not

care about how the Receiver responds to that event. For expositional convenience, define µ0 = 0

when p0 = 0, p1 = 1.

Third, (m = 1, d = lie) occurs with probability (1− µ)(1− p0)q. Because a lie was detected,

the Receiver is again certain about ω, and therefore her posterior probability is given by

Pr(ω = 1 | m = 1, d = lie) = 0

which immediately implies the action a = 0.

Fourth, (m = 1, d = ¬lie) occurs with probability µp1 + (1− µ)(1− p0)(1− q). The Receiver

is again uncertain about ω. Her posterior is given by

Pr(ω = 1 | m = 1, d = ¬lie) = µp1
µp1 + (1− µ)(1− p0)(1− q)

≡ µ1

and the Receiver takes action a = 1 if and only if µ1 ≥ t. Analogously, for brevity of notation, we

denote the posterior following this event by µ1 (thus omitting the lie detection outcome d = ¬lie).

Similarly, if p0 = 1, p1 = 0, this event occurs with 0 probability, and the belief µ1 is not well defined,
5The posterior belief following detection of a lie is always degenerate because the state space is binary. However,

the binary structure does not drive the main results on players’ equilibrium payoffs as we explain in Section 4.2.
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but again this does not matter for the Sender. For simplicity, define µ1 = 0 when p0 = 1, p1 = 0.

Given these optimal responses of the Receiver, the relationships between the posteriors µ0, µ1

and the posterior threshold t divide up the strategy space into four different types of strategies,

which we denote by I, II, III, and IV, respectively. For each strategy type, the Receiver’s response

as a function of (m, d) is the same, making it easy to find the specific optimal strategy. We are

then left to pick the best strategy out of the four candidates. These types of strategies are defined

as follows:

I. µ0 < t, µ1 < t: For this type of strategy, the Receiver chooses a = 1 only if (m = 0, d = lie)

and chooses a = 0 otherwise because the posteriors µ0 and µ1 are insufficiently high to

persuade her to choose S’s preferred action. Only if the Sender lies in state ω = 1 and his

message is detected as a lie is the Receiver sufficiently convinced that a = 1 is the right

action. The maximal probability that the Receiver chooses a = 16 is given by

PrI(a = 1) = sup
p0,p1∈[0,1]

µ(1− p1)q s.t. µ0 < t, µ1 < t

II. µ0 ≥ t, µ1 < t: The Receiver chooses a = 1 if (m = 0, d = lie) or (m = 0, d = ¬lie) and

chooses a = 0 otherwise. The maximal probability that the Receiver chooses a = 1 is given

by

PrII(a = 1) = sup
p0,p1∈[0,1]

µ(1− p1) + (1− µ)p0 s.t. µ0 ≥ t, µ1 < t

III. µ0 < t, µ1 ≥ t: The Receiver chooses a = 1 if (m = 0, d = lie) or (m = 1, d = ¬lie) and

chooses a = 0 otherwise. The maximal probability that the Receiver chooses a = 1 is given

by

PrIII(a = 1) = sup
p0,p1∈[0,1]

µp1 + µ(1− p1)q + (1− µ)(1− q)(1− p0) s.t. µ0 < t, µ1 ≥ t

IV. µ0 ≥ t, µ1 ≥ t: The Receiver chooses a = 1 if (m = 0, d = lie), (m = 0, d = ¬lie) or
6The choice set of the maximization problem is not closed, so the maximum may not be achieved a priori.
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(m = 1, d = ¬lie) and chooses a = 0 otherwise. The maximal probability that the Receiver

chooses a = 1 is given by

PrIV(a = 1) = sup
p0,p1∈[0,1]

1− (1− µ)(1− p0)q s.t. µ0 ≥ t, µ1 ≥ t

Table 1 summarizes when the Receiver chooses a = 1 under the different types of strategies.

Notably, given the definition of off-path beliefs, (0, 1) is a type III strategy, and (1, 0) is a type I

strategy. We are now ready to state the main proposition of our model.

d = lie d = ¬lie
m = 0 I, II, III, IV II, IV
m = 1 III, IV

Table 1: Cases where the Receiver chooses a = 1 under I, II, III, and IV.

Proposition 1. Let q = 1 − µ(1−t)
t(1−µ)

∈ (0, 1). If q ≤ q, the Sender’s optimal strategy is a type III

strategy, in which the Sender always tells the truth under ω = 1 but lies with positive probability

under ω = 0. If q > q, the Sender’s optimal strategy is a type IV strategy, in which the Sender lies

with positive probability under both states.

In Figure 1, we graphically illustrate how these four strategy types are divided. The proof

involves sequential comparisons between the four type-optimal strategies. First, there exists some

type II strategy that is better than all type I strategies. Consider a particular strategy p0 = p1 = 0

of type II (i.e., the Sender totally misreports the state). Following this strategy, the Receiver takes

action a = 1 if and only if ω = 1, which occurs with probability µ. This strategy may not be

optimal among all type II strategies, but it is sufficient to beat all strategies of type I since for

those strategies the Receiver takes action a = 1 only if ω = 1 and (m = 0, d = lie), which occurs

with a probability less than µ.

Second, there exists some type III strategy that is better than all type II strategies. Within

type II strategies, we need to focus only on the ones with p1 = 0 because lying more under state

ω = 1 relaxes both constraints and is beneficial for the Sender. Now, for any type II strategy of
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Figure 1: Equilibrium message strategies for different detection probabilities q.

the form (p0, 0), consider a strategy (p̃0, 1) such that p0 = (1− p̃0)(1− q). It can then be verified

that this is a type III strategy. Moreover, this new strategy is equally as good as (p0, 0) for the

Sender by construction.

To see the intuition for this result, note that the type II and III strategies are totally symmetric

if lie detection technology is not available (q = 0) since, in this case, the messages have no intrinsic

meaning and we could always rename the messages. However, the introduction of a lie detection

technology (q > 0) generates an intrinsic meaning for the message that the Sender uses. In

particular, an on-path message that was not detected as a lie always carries some credibility for

the state to which it corresponds. Now, this additional source of credibility breaks the symmetry.

By definition, type II strategies are such that (m = 0, d = ¬lie) suggests ω = 1 with a sufficiently

high probability while (m = 1, d = ¬lie) suggests ω = 0 with a sufficiently high probability.

Loosely speaking, it is harder to persuade the Receiver to take a = 1 using type II strategies since

the Sender needs to counter the intrinsic credibility of messages.

By transitivity, both type I and type II strategies are suboptimal relative to type III strategies,

and we need to focus only on the comparison between type III and type IV strategies. Interestingly,

as suggested by Figure 1 (a), type IV strategies do not exist when q is small. The proof is

given in Appendix A. Intuitively, when q = 0, our setup yields the standard Bayesian persuasion
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benchmark, which essentially involves only two events (m = 0, d = ¬lie) and (m = 1, d = ¬lie).

In this case, we know that it is impossible to induce a = 1 under both events because by the

martingale property, the posteriors following two events must average to the prior, suggesting that

some posterior is lower than the prior and must induce a = 0. However, the presence of lie detection

extends the information from m to a couple (m, d), and the martingale property requires only

the four posteriors’ average over the prior. Furthermore, the posterior following (m = 1, d = lie)

is 0. Therefore, if q is sufficiently large, it is possible to support the two posteriors following

(m = 1, d = ¬lie) and (m = 0, d = ¬lie) to be both higher than the prior and even higher than

the threshold t.

As shown by Figure 1 (a), the constraint µ0 < t is implied by the constraint µ1 ≥ t. Hence, the

set of type III strategies is compact, and the associated maximization problem admits a solution.

Combining this observation with the previous arguments, we immediately obtain the first half of

Proposition 1 (i.e., the Sender’s optimal strategy is a type III strategy if q ≤ q). In particular, the

optimal strategy takes the following form:

p∗0 =
q − q

1− q
and p∗1 = 1

This result is reminiscent of that in Kamenica and Gentzkow (2011), where the Receiver is indif-

ferent between two actions when she takes the preferred action a = 1 and certain of the state when

she takes the less preferred action a = 0.

If the detection probability q is larger than q, the two lines that characterize the constraints

in the right panel of Figure 1 intersect, implying that the set of type III strategies is no longer

closed. However, the associated maximization problem still admits a solution: (p0, p1) = (0, 1),

which is a type III strategy according to the off-path beliefs specified earlier. This strategy can

be shown to be optimal within type III strategies in two steps. First, increasing p1 relaxes both

constraints and improves the Sender’s expected payoff at the same time (i.e., being more sincere in

the favorable state benefits the Sender unambiguously). Thus, the optimal type III strategy, if it

exists, must be of the form (p0, 1). Second, the whole segment from (0, 1) to (1, 1) corresponds to

type III strategies when q > q. Hence, the optimal strategy on this segment is the leftmost point
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(0, 1), as it involves sending the persuasive message m = 1 as frequently as possible.

However, this optimal type III strategy, denoted as p̂ in Figure 1 (b), is no longer globally

optimal because the set of type IV strategies is nonempty and the optimal type IV strategy is

better than p̂. In fact, we can prove the stronger statement that p̂ is worse than any type IV

strategy p whenever the latter is feasible. To this end, we decompose the value of a strategy for

the Sender into two parts: the expected payoff in the favorable state ω = 1 and the expected payoff

in the unfavorable state ω = 0. The strategy p̂ induces a = 1 for sure when ω = 1 because the

Sender always truthfully sends m = 1, which is credible and is never flagged as a lie. Meanwhile,

any strategy p of type IV also induces a = 1 for sure. Such a strategy could induce three different

events: (m = 1, d = ¬lie), (m = 0, d = ¬lie), (m = 0, d = lie). The first two events successfully

persuade the Receiver to take a = 1 by the definition of type IV strategies. The last event directly

informs the Receiver that ω = 1, so it also induces a = 1. Hence, the strategies p̂ and p align in

the expected payoff in the favorable state ω = 1. However, they differ in the expected payoff in

the unfavorable state ω = 0. Given p̂, the Sender always lies and sends the message m = 1 when

ω = 0, which induces a = 1 only if the lie is not detected. Given p, the Sender sometimes tells the

truth by sending the message m = 0 as well, but by the definition of type IV strategies, m = 0 is

now a risk-free way to induce a = 1 since it will never be flagged as a lie in the unfavorable state

ω = 0. Hence, the strategy p results in a higher expected payoff for the Sender in the unfavorable

state as well as overall. Mathematically,

US(p̂) = µ︸︷︷︸
Pr(ω=1)

×
Pr(a=1|ω=1; p̂1)︷ ︸︸ ︷

1× 1 + (1− µ)︸ ︷︷ ︸
Pr(ω=0)

×
Pr(a=1|ω=0; p̂0)︷ ︸︸ ︷
1× (1− q)

and

US(p) = µ︸︷︷︸
Pr(ω=1)

×
Pr(a=1|ω=1; p1)︷ ︸︸ ︷

[p1 × 1 + (1− p1)× (1− q) + (1− p1)× q]

+ (1− µ)︸ ︷︷ ︸
Pr(ω=0)

×
Pr(a=1|ω=0; p0)︷ ︸︸ ︷

[p0 × 1 + (1− p0)× (1− q)]
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where the first term (µ× 1) is the same for the two expressions but the second term is larger for

US(p) since p0 is not multiplied by 1− q but instead by 1. As we argued above, the main benefit

of p relative to p̂ is that the “safer” message m = 0 is sent more frequently in p. Thus, the optimal

type IV strategy must involve the highest p0 or the least lying in the unfavorable state. Such a

strategy, given by p∗ in Figure 1 (b), is also globally optimal by the previous arguments provided

that q > q. The expressions are given by

p∗0 =
1− q

(2− q)q
(q − q) and p∗1 =

1− q

(2− q)q

[
1

1− q
− (1− q)

]

Although the optimal strategy features partial lying under both states, the Sender still lies more

in the unfavorable state than in the favorable state (p∗0 < p∗1).

Interestingly, the difference between the Sender’s payoffs from strategies p̂ and p∗ is non-

monotonic in the detection probability q. When q = q, p̂ coincides with p∗, so they are equally

good. In the case when q = 1, it is as if the Receiver is informed about the state with probability

1, so any strategy results in the same payoff for the Sender. Only when q ∈ (q, 1) does p∗ yield a

strictly higher payoff than p̂.

Finally, the threshold q where the optimal strategy switches from a type III to a type IV

strategy is decreasing in µ and increasing in t. To see the intuition for this result, fix the lie

detection probability q ∈ (0, 1). If a weak signal is sufficient to persuade the Receiver (i.e., the

prior µ is already close to the threshold t), a type IV strategy is optimal for the Sender. On the

other hand, if the signal has to be very convincing to persuade the Receiver (i.e., the threshold t

is much larger than the prior µ), a type III strategy is optimal for the Sender.

3.2 Comparative Statics

We now consider the comparative statics of our model with respect to the central parameter of

the lie detection probability q to show how the optimal communication and the payoffs of the

communicating parties change as the lie detection technology improves.
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3.2.1 Optimal Messages

Proposition 2 describes how the structure of the optimal message strategy (p∗0, p
∗
1) changes as the

detection probability varies. Figure 2 plots these optimal reporting probabilities as a function of

q. For comparison, the probabilities pBP
0 and pBP

1 are the equilibrium reporting probabilities that

would result in a standard Bayesian persuasion setup without lie detection.

Proposition 2. As the lie detection probability q increases,

1. p∗0 = Pr(m = 0 | ω = 0) is decreasing over [0, q] and has an inverse U shape over (q, 1].

2. p∗1 = Pr(m = 1 | ω = 1) is constant over [0, q] and decreases over (q, 1].

If q ≤ q = 1 − µ(1−t)
t(1−µ)

, p∗0 is decreasing in q, and p∗1 is constant at 1. In this range of q, the

Sender’s optimal strategy lies in III, which involves truthfully reporting the state ω = 1 (i.e.,

p1 = 1) but progressively misreporting the state ω = 0 as the lie detection technology improves

(i.e., p0 < 1 and is decreasing with q).

If q > q, p∗0 initially increases and then decreases. In contrast, p∗1 decreases over the entire

range of [q, 1]. In this range, the Sender’s optimal strategy lies in IV which involves misreporting

both states of the world.

0 q 1

pBP
0

1

III IV

q

p∗0

(a) p∗0 ≡ Pr(m = 0 | ω = 0)

0 q 1

pBP
1 = 1

III IV

q

p∗1

(b) p∗1 ≡ Pr(m = 1 | ω = 1)

Figure 2: Equilibrium reporting probabilities p∗0 and p∗1 as a function of q for µ = 1
3 and t = 1

2
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For q = 0, we have the Bayesian benchmark. Recall from Kamenica and Gentzkow (2011) that

if an optimal signal induces a belief that leads to the worst action for the Sender (a = 0 in our

case), the Receiver is certain of her action at this belief. In addition, if the optimal signal induces

a belief that leads to the best action for the Sender (a = 1 in our case), the Receiver is indifferent

between the two actions at this belief.

Now consider the addition of a lie detection technology. As the lie detection probability q

increases, (m = 1, d = ¬lie) becomes more indicative of the favorable state ω = 1, and therefore

the Receiver would strictly prefer to take the favorable action a = 1. As a response, the Sender

would like to send the message m = 1 more often while still maintaining that (m = 1, d = ¬lie)

sufficiently persuades the Receiver to take action a = 1. Because the Sender already sends the

message m = 1 with probability 1 under ω = 1, the only way to increase the frequency of m = 1 is

to send such a message more often in the unfavorable state ω = 0 (i.e., lie more frequently if ω = 0).

In other words, the Sender increases the frequency of lying just enough about the unfavorable state

(ω = 0) to make the Receiver indifferent when choosing the favorable action a = 1.

Recall that in the canonical Bayesian persuasion setup, the Receiver is held to her outside option

of obtaining no information whatsoever. Thus, when the lie detection probability q increases, the

Receiver is more certain that (m = 1, d = ¬lie) means ω = 1 and would obtain a larger surplus

from the improvement in the lie detection technology. However, as long as p∗0 is greater than 0,

the Sender can simply undo this improvement by lying more about ω = 0 (i.e., reduce p∗0 even

further), thereby “signal-jamming” the information obtained by the Receiver.

However, once the detection probability q rises above q, it is no longer possible for the Sender

to simply lie about the unfavorable state because he already maximally lies about it at q. His

optimal messaging strategy is now a type IV strategy when q > q. Under a type IV strategy, the

Receiver takes the unfavorable action a = 0 only if he receives a message m = 1 that is flagged

as a lie. This is because with a type IV strategy, the Receiver has access to a reliable enough lie

detection technology that a lie involving the message m = 1 is sufficiently likely to be detected as

a lie and will then induce the unfavorable action a = 0. At the same time, the Receiver is also

very likely to be notified of a lie involving the message m = 0, which the Sender can use to his
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advantage to ensure that the Receiver chooses the favorable action a = 1. Therefore, at q = q, the

Sender wants to increase the frequency of the message m = 0, which he achieves by both increasing

p0 and decreasing p1. However, when the detection probability is close to 1 (i.e., the lie detection

technology is almost perfect), p1 is close to 0, and any message m = 1 is very likely to be a lie.

To make sure that a message m = 1 that is not detected as a lie still sufficiently persuades the

Receiver to choose a = 1 (i.e., does not violate the constraints µ0 ≥ t and µ1 ≥ t required for a

type IV strategy), the Sender also has to decrease p0 while decreasing p1.

These perhaps surprising comparative statics, especially those for the type IV strategy, are

partly due to the asymmetric nature of the signal structure (as in Engers et al. (1999)), which,

in our case, detects only lies rather than detecting both lies and truths, and partly due to the

persuasion game leading to a mixed strategy equilibrium. Such mixed strategy equilibria often

have counterintuitive comparative statics properties, as Crawford and Smallwood (1984) point out.

3.2.2 Payoffs

Recall that US and UR denote the equilibrium payoffs of the Sender and the Receiver. We now

investigate how US and UR are affected by improvements to the lie detection technology. The

results are summarized in Proposition 3 and graphically depicted in Figure 3. For comparison,

UBP
S and UBP

R are the equilibrium payoffs that would result in a standard Bayesian persuasion setup

without lie detection, while UF
S and UF

R are the payoffs when there is no asymmetric information

and the Receiver is fully informed of the underlying state.

Proposition 3. As the lie detection probability q increases,

1. US is constant over [0, q] and decreases over (q, 1].

2. UR is constant over [0, q] and increases over (q, 1].

The Sender’s equilibrium payoff does not change for q ≤ q and decreases with q for q > q.

As long as q ≤ q, the Sender receives exactly the same payoff that he would receive under the

Bayesian Persuasion benchmark. Any marginal improvement to the lie detection technology (i.e.,

an increase in q) is completely offset by less truthful reporting when ω = 0 (i.e., a decrease in p∗0).
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UF
S

UBP
S

III IV

q
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(a) Sender’s Equilibrium Payoff

0 q 1

UBP
R

UF
R

III IV

q

UR

(b) Receiver’s Equilibrium Payoff

Figure 3: Equilibrium payoffs as a function of q for µ = 1
3
, t = 1

2
.

However, for q > q, any further improvements reduce the Sender’s payoff as the strategic effect of

less truthful reporting is dominated by the direct effect of improving q. In the limit case where

q = 1, the Sender has no influence anymore, and the action a = 1 is implemented only when the

state is ω = 1, which occurs with probability µ.

Analogously to the case of the Sender’s payoff, the Receiver’s payoff is also constant at the

Bayesian persuasion benchmark as long as q ≤ q and then increases with q for q > q as the lie

detection technology starts to bite. If having access to the lie detection technology required any

costly investment, the Receiver would only ever want to invest in improving lie detection if it raised

q above the threshold q. As q approaches 1, the Receiver’s payoff approaches her payoff under full

information UF
R . Intuitively, whenever a lie is not detected, the Receiver infers that the message

is equal to the state with a probability close to 1. Thus, regardless of the Sender’s strategy, the

Receiver gets almost full information.

4 Extensions and Discussion

Our baseline model considers the role of lie detection in a simple setting with full commitment and

binary states. We now investigate how alternative assumptions about the Sender’s commitment,
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the state space, and the detection technology modify our analysis.

4.1 Partial Commitment

In many communication models, the predictions crucially depend on the Sender’s ability to commit

to a particular messaging strategy. This is also true in our model if the Sender cannot commit at

all. However, under partial commitment, the main insights of our baseline model continue to hold.

If the Sender cannot commit at all to a communication strategy, then for any q ∈ [0, 1], the

derived optimal messaging strategy (p∗0, p
∗
1) in the baseline model fails to be part of an equilibrium.

For the purpose of illustration, let us restrict attention to the case in which the lie detection

technology is not particularly strong (i.e., q ≤ q). In this case, the optimal messaging strategy

(p∗0, p
∗
1) is equal to

(
q−q
1−q

, 1
)
. Given this strategy, (m = 1, ¬lie) induces a = 1, while (m = 0, ¬lie)

induces a = 0. Thus, the Sender would like to send message m = 1 with probability one in

both states if his commitment is not binding. The Receiver would then find it optimal to take

action a = 0 even after observing (m = 1, ¬lie). It can be shown that when the Sender lacks

all commitment, the Receiver is always strictly better off with a stronger lie detection technology

(i.e., a higher detection probability q > 0), in stark contrast to Proposition 3.

We now demonstrate the robustness of our main results to partial commitment. Following

Lipnowski et al. (forthcoming) and Min (2021), we assume that the Sender’s commitment binds

only probabilistically. The generalized game with partial commitment therefore proceeds as follows.

The Sender first declares a commitment strategy (p1, p1) ∈ [0, 1]2. He then privately learns the

true state ω ∈ {0, 1} and whether his commitment is binding. With probability α, his commitment

binds, and he has to send a message following the prespecified commitment strategy. Otherwise,

his commitment is not binding, and he can send any message m ∈ {0, 1} at his discretion. Let

(p̃0, p̃1) ∈ [0, 1]2 denote his strategy following a nonbinding commitment, where p̃i is the probability

that he sends a message i ∈ {0, 1} when the true state is i and the commitment does not bind. The

rest of the model is similar to our baseline model. Any message that is inconsistent with the true

state is identified as a lie with probability q regardless of the status of the commitment. Last, the

Receiver takes an action a ∈ {0, 1} after observing both the message and the lie detection outcome.
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She is aware that the Sender may not abide by his commitment strategy, and the probability α is

common knowledge. For simplicity, let the status of commitment be independent of both the true

state and the lie detection technology. The payoff functions are identical to those given in Section

2.2. Thus, the baseline model corresponds to the special case α = 1, whereas α = 0 instead leads

to a model of cheap talk with lie detection.

As usual, we focus on the Sender’s preferred equilibrium. Although a complete loss of commit-

ment drastically changes the equilibrium and the corresponding payoffs, the following proposition

suggests that a small loss of commitment has no impact on the key features of the equilibrium

strategy and the corresponding payoffs. We focus on the more relevant case q ≤ q because that is

where the equilibrium payoffs are constant in q in the baseline model.

Proposition 4. Assume q ≤ q = 1 − µ(1−t)
t(1−µ)

and α ≥ α = q−q
1−q

. Then, in the Sender’s preferred

equilibrium, p∗1 = 1, p̃∗0 = 0, p̃∗1 = 1, and p∗0 is such that the Receiver is indifferent between a = 0

and a = 1 after observing (m = 1, d = ¬lie). Moreover, US(q) and UR(q) are both constant in q.

By analogous arguments, if the lie detection technology is weak, it is impossible to induce a = 1

for both (m = 1, d = ¬lie) and (m = 0, d = ¬lie). The Sender can induce the favorable action for

at most one of the two events, and he prefers to induce it for the first event. Thus, the Receiver

takes action a = 1 if and only if (m = 1, d = ¬lie) or (m = 0, d = lie). Given the Receiver’s best

response, the Sender’s strategy following a nonbinding commitment (p̃0, p̃1) must be (0, 1) (i.e.,

he prefers to send m = 1 regardless of the state). Hence, the message generated from (p̃0, p̃1) is

totally uninformative per se, but the combination of m and d still provides some information.

Intuitively, in this case, it is as if the Receiver receives a signal of unknown informativeness. If

we ignore the lie detection technology, then with probability α, the message is generated according

to (p0, p1) and is partially informative. With probability 1−α, the message is generated according

to (p̃0, p̃1) and is totally uninformative. However, the average informativeness of these messages

must still satisfy the Receiver’s indifference condition. Thus, the Sender must commit to a more

informative messaging strategy than in the baseline model. In fact, in the Sender’s preferred

equilibrium, the probability of sending m = 0 under the favorable state in the prespecified strategy

20



satisfies

α[1− p∗0(α)] + 1− α =
1− q

1− q
, ∀α ≥ α

It follows then that p∗0 decreases in α. The lower bound on the probability that the commitment

binds also has a natural interpretation. If the average informativeness leaves the Receiver indif-

ferent, then the Receiver must prefer to take action a = 1 when the Sender commits to the most

informative signal (i.e., the truth-telling strategy (p0, p1) = (1, 1)). This condition implies the

lower bound on α.

On the other hand, p∗0 again decreases in q, highlighting the Sender’s strategic incentives to lie

more in the presence of a stronger lie detection technology. As in the baseline model, this strategic

effect exactly offsets the positive effect of increasing q because the probability of observing an

undetected lie that induces a = 1 is equal to

(1− µ)(1− q) · [α(1− p∗0) + 1− α] = (1− µ)(1− q)

which is constant in q. Consequently, both the Sender’s and the Receiver’s equilibrium payoffs are

also constant in q as long as q ≤ q. Thus, our main results do not hinge on the full commitment

assumption commonly used in Bayesian persuasion models.

4.2 Nonrevealing Lie Detection

In a binary-state environment, the lie detection technology considered in this paper is quite special

in the sense that whenever the Receiver learns that the Sender has lied, she immediately learns

the true state. However, Proposition 3 is not driven by this special feature.7 Intuitively, in a

binary-state environment, the lie detection technology forces the release of too much information

to the Receiver. Still, we can show that the Receiver does not benefit from a weak lie detection

technology, even in this case. Following this reasoning, when the Receiver’s posterior beliefs after
7In the three-state environment, the uniqueness of our equilibrium is not necessarily guaranteed. Thus, it is

hard to generalize the comparative statics of Proposition 2. However, in all of these equilibria, the Sender still has
a strategic incentive to change his messaging strategy in response to changes in the lie detection probability.
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a lie is detected are nondegenerate, the Receiver obtains less information. Therefore, we would

expect Proposition 3 to be strengthened instead of weakened. In fact, we show that in a three-state

environment, lie detection technology is completely useless in the sense that both the Sender’s and

the Receiver’s payoffs are unaffected by the strength of lie detection. This suggests that fully

revealing lie detection is not the driving force of our main results.8

Formally, let ω ∈ {0, λ, 1} be the state of the world and (P0, Pλ, P1) be the full-support prior

belief, where λ ∈ (0, 1). The message space is again restricted to be identical to the state space,

and a lie is detected with probability q ∈ [0, 1] whenever the message is inconsistent with the

true state. For simplicity, keep the player’s payoff functions unchanged. In particular, the Sender

always prefers a = 1 over a = 0 regardless of the true state, whereas the Receiver takes action

a = 1 if and only if her posterior mean is higher than an action threshold t. Assume t ∈ (µ, λ),

where µ = P1 + λPλ is the prior mean.9 The implication of this restriction is twofold. First, the

Receiver’s default action is a = 0. Second, if the Receiver knows that the state is λ, she prefers to

take an action a = 1. In other words, both ω = 1 and ω = λ are favorable states for the Sender.

To quantify the Receiver’s payoff explicitly, let her payoff function and expected payoff be

uR(a, ω) = (1− t) · 1{a=1,ω=1} + (λ− t) · 1{a=1,ω=λ} + t · 1{a=0,ω=0}

and

UR = (1− t) · Pr(a = 1, ω = 1) + (λ− t) · Pr(a = 1, ω = λ) + t · Pr(a = 0, ω = 0)

This payoff function is analogous to the one in the main body. The Receiver would like to take the

right action for each state but assigns different weights for different states. The particular choice

of weights induces a decision rule that it is optimal to take a = 1 if and only if the posterior is
8An alternative approach to modeling nonrevealing lie detection is to modify the lie detection technology by

introducing false alarms. In other words, a lie may be detected even if the message is consistent with the true state.
However, under this approach, all four posteriors are generically nondegenerate and the Sender’s strategy space
contains 24 = 16 regions, which substantially complicates the analysis. Therefore, we adopt the more tractable
approach of expanding the state space.

9The choice of t is not important for the extension. However, it affects two things and complicates the exposition.
First, it affects the Receiver’s payoff function. Second, it affects the Sender’s equilibrium payoff in the benchmark.
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higher than t.

The goal here is to show that both players’ payoffs are constant in q. To this end, we first

compute the Sender’s payoff in the benchmark scenario (q = 0) and then construct a strategy that

leads to the same payoff for the Sender with any detection probability. Last, we show that in

any Sender’s preferred equilibrium, the Receiver’s payoff is constant. Moreover, this constant is

independent of q.

The optimal signal/messaging strategy in the classical Bayesian persuasion framework with a

binary action has been analyzed in the literature. Ivanov (2021) shows that in a binary-action

and continuous-state environment, there exists an optimal strategy with a partitional structure,

where the Sender sends a message if the state is above some threshold and sends another message

otherwise. By applying this insight to our discrete-state model, we can determine that there exists

an optimal strategy with the following properties. The Sender sends one (another) message if

the state is strictly higher (lower) than some threshold state. Moreover, he mixes between two

messages at the threshold state. In particular, the following strategy achieves the optimum.

ω = 1 −→ m = 1

Strategy 1: ω = λ −→ m = 1

ω = 0 −→ m =


1, w.p. r

0, w.p. 1− r

where r solves

P1 + λPλ

P1 + Pλ + rP0

= t

Essentially, the mixing probability r ensures that the Receiver is indifferent after observing m = 0.

Given Strategy 1, the Receiver takes the favorable action if and only if she receives m = 1. Thus,

US(0) = P1 + Pλ + rP0 =
µ

t
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Now, suppose that there is a lie detection probability q > 0. In principle, this limits the Sender’s

scope to manipulate the Receiver’s posterior beliefs and thus potentially lowers the Sender’s payoff.

However, the following strategy yields the Sender the same payoff as in the benchmark. Moreover,

this strategy is independent of q, suggesting that lie detection has no impact on the Sender’s payoff

at all.

ω = 1 −→ m = λ

Strategy 2: ω = λ −→ m = 1

ω = 0 −→ m =


1, w.p. r

λ, w.p. s

0, w.p. 1− r − s

where r and s, respectively, solve


λPλ

Pλ+P0r
= t,

P1

P1+P0s
= t

The assumption µ < t < λ ensures that s, r, s + r ∈ (0, 1). Given Strategy 2, the Receiver

is indifferent after observing (m = 1, d = ¬lie), (m = 1, d = lie), (m = λ, d = ¬lie), and

(m = λ, d = lie). Thus, she takes the favorable action if and only if she receives m = 1 or m = λ,

regardless of the lie detection outcome. It follows that

US(q) = P1 + P0r + Pλ + P0s =
λPλ

t
+

P1

t
=

µ

t
= US(0), ∀q ∈ (0, 1] (1)

Lie detection is not useful here because conditional on this particular strategy, the message λ and

the message 1 are always lies whereas a message 0 is never a lie. Moreover, the probability of

lie detection is constant as long as the Sender is lying. Thus, lie detection does not provide any

additional information for the Receiver, no matter how strong the technology is.

Since we focus on the Sender’s preferred equilibrium, the Receivers’ payoff is potentially
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nonunique. Fortunately, that is not the case here. Lemma 1 guarantees that the Receiver’s payoff

is unique. In addition, it is always linear in the Sender’s equilibrium payoff with a negative slope.

Lemma 1. Fix a lie detection probability q ∈ [0, 1]. If µ < t < λ, then in any Sender’s preferred

equilibrium,

UR(q) = (1− t)P1 + (λ− t)Pλ + t[1− US(q)]

Here is the key intuition behind this result. Note that both ω = 1 and ω = λ are favorable states

for the Sender. Thus, it is optimal to induce a = 1 under those two states, which suggests Pr(a =

1, ω = 1) = Pr(a = 1, ω = λ) = 1 in any Sender’s preferred equilibrium. Then, the Receiver’s

expected payoff depends only on Pr(a = 0, ω = 0). However, this probability is completely

determined by the Sender’s optimality condition and is therefore linked to the Sender’s equilibrium

payoff. Roughly speaking, the Sender wishes to minimize this probability conditional on Pr(a =

1, ω = 1) = Pr(a = 1, ω = λ) = 1.

When we combine equation (1) and Lemma 1, it is immediate that the Receiver’s equilibrium

payoff is also independent of q and given by

UR(q) = (1− t)P1 + (λ− t)Pλ + t− µ = tP0

Our analysis thus suggests that fully revealing lie detection does not drive Proposition 3.

4.3 Truth and State Detection

First, consider a different detection technology that informs the Receiver with probability r that a

message is truthful. That is, rather than being able to (probabilistically) detect a lie, the Receiver

can (probabilistically) detect that a message is truthful. Truth detection is perhaps a less realistic

assumption, as it is arguable easier to detect whether the Sender has lied than whether he has sent

a truthful message (Vrij et al., 2011).

In our setting, truth detection turns out to be payoff-equivalent to lie detection. Therefore,

all of our insights about the equilibrium payoffs as a function of the lie detection probability q
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in Figure 3 also hold for the truth detection probability r. However, under truth detection, the

Sender’s optimal communication strategy is completely flipped and has some unnatural features.

When the truth detection probability r is low but positive, it is optimal for the Sender to always lie

in the favorable state (i.e., p1 = 0) and to choose p0 such that the Receiver is indifferent between

a = 0 and a = 1 upon a message m = 0 that is not marked as truth.

Second, combining lie detection and truth detection such that they are perfectly positively

correlated is equivalent to state detection. Assume that with probability q = r, the Receiver

learns the state ω regardless of the message sent by the Sender. With such a state detection

technology, the analysis becomes much simpler, as we simply return to the Bayesian persuasion

benchmark. This is because the Sender’s message does not influence at all whether the Receiver

learns the state and any message m is only relevant whenever the Receiver does not learn the state.

This finding contrasts with the literature on noisy cheap talk, in which adding communication error

or noise influences the messaging strategies and can improve welfare (Blume et al., 2007).

These observations highlight our interpretation of Bayesian persuasion under lie detection in

that the Sender’s messages have a literal meaning of truth and lies. Even though the Sender is

committing to the strategy—or, alternatively speaking, choosing an experiment—the strategies

employed by the Sender are not equivalent to just an arbitrary garbling of the state.

4.4 Default Action Coincides with Sender’s Preferred Action

In standard Bayesian persuasion models without lie detection, the Sender can always send a purely

uninformative signal. Therefore, a trivial case obtains if the Receiver’s default action coincides

with the Sender’s preferred action because the Sender can induce the Receiver to take this action

with probability one by committing to an uninformative signal. However, the messages in our

model have literal meanings and are subject to lie detection. Therefore, a purely uninformative

signal is unavailable to the Sender. Intuitively, lie detection forces information transmission from

the Sender to the Receiver, which makes the Sender’s optimization problem nontrivial even when

the Receiver’s default action coincides with the Sender’s preferred action.

In this extension, we analyze the scenario in which the prior mean µ is higher than the action
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threshold t. The results are analogous to those in the baseline model. As before, the Sender’s

maximization problem is solved by considering the four subproblems. The only change relative to

the baseline model is that Region IV now exists for any q ∈ [0, 1], as shown in Figure 4.

0 1

1

p∗

p̄

II

IV

III

p0

p1
µ0 = t
µ1 = t

(a) q ≤ q̃

0 1

1

p∗

II

IV

I

III

p0

p1
µ0 = t
µ1 = t

(b) q > q̃

Figure 4: Equilibrium message strategies for different detection probabilities q (µ ≥ t).

The optimal messaging strategy p∗ is always in Region IV. When q ∈ q̃ ≡ 1 − t(1−µ)
µ(1−t)

, the

strategy (p0, p1) = (1, 0) would induce the Receiver to take a = 1 with probability one and is thus

optimal.10 Under this strategy, the Sender reports m = 0 with probability one in both states. If the

message is flagged as a lie, the Receiver immediately learns that the true state is ω = 1. Otherwise,

by the martingale property, her posterior mean would drop. Nonetheless, if q is sufficiently small,

her posterior mean would be close to the prior mean, which is still higher than the action threshold.

Hence, the Receiver is always willing to take the favorable action.

If q is sufficiently large, such a strategy is no longer sustainable, and it is impossible to induce

a = 1 with probability one. For example, in the extreme case where q = 1, it is as if the Receiver

learns the true state. Hence, it must be that the Receiver takes action a = 1 if and only if ω = 1.

In fact, the Sender’s optimal messaging strategy is again characterized by the intersection of two

indifference conditions: µ0 = t and µ1 = t, as in Figure 4 (b).
10It is not unique, however, because the Receiver actually strictly prefers to take a = 1 when she observes

(m = 0,¬lie). Other optimal strategies include the segments from p∗ to p̄.
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Given the discussion above, the Sender’s (Receiver’s) payoff is initially constant in q when q ≤ q̃

and then is decreasing (increasing) in q when q > q̃. This is consistent with Proposition 3.

Admittedly, the fact that the Sender cannot induce the Receiver to always take the favorable

action even when µ ≥ t suggests some tension between our model and the standard persuasion

paradigm. In the standard paradigm without lie detection, this case is trivial, whereas in ours,

it is not. However, it is easy to reconcile this tension by introducing an additional stage prior

to the persuasion game in which the Sender decides whether to enter the game. If he enters, the

Sender and the Receiver play the persuasion game with lie detection specified in our main analysis.

Otherwise, the Sender cannot send any message, and the Receiver takes an action based on her

prior. It is straightforward to show that the Sender enters the game if the Receiver’s default action

does not coincide with his preferred action. Otherwise, the Sender does not enter the game, but

the Receiver always takes action a = 1, consistent with the standard persuasion paradigm.

4.5 Related Literature

Balbuzanov (2019) and Dziuda and Salas (2018) study strategic communication in the presence

of a lie detection technology but in a cheap talk setting. The largest difference between these two

papers and ours therefore lies in the commitment power of the Sender. Although it is debatable

whether the extreme cases of full commitment (as in Bayesian persuasion) or no commitment (as

in cheap talk) constitute more plausible assumptions about real-life communication settings, we

believe that our model and its extensions are an important step toward studying communication

games with lie detection under full and partial commitment.

Our paper also differs from Balbuzanov (2019) in the payoff functions. In Balbuzanov (2019),

the Sender and the Receiver have some degree of common interest, whereas there is no common in-

terest in our model. Due to this difference, the Sender’s type-dependent preferences in Balbuzanov

(2019) permit fully revealing equilibria in some cases, as this feature allows the Receiver to tailor

message-specific punishment actions. In particular, fully revealing equilibria exist for some inter-

mediate degree of lie detectability if the Sender’s bias is small. However, the Sender in our model

never reveals the state perfectly due to the conflict in payoffs.
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Dziuda and Salas (2018) do not allow for common interest, and therefore, as in our paper, fully

revealing equilibria are impossible in their paper. In their continuous state model, there are many

off-path beliefs to be specified. To discipline these off-path beliefs, they impose two refinements.

They show that in all remaining equilibria, the lowest types lie but some higher types tell the

truth. However, the assumptions of our model allow the second refinement required by Dziuda

and Salas (2018) to be violated. Therefore, even irrespective of the commitment power of the

Sender, our model is not nested by theirs. Furthermore, in the baseline model of Dziuda and Salas

(2018), a higher lie detection probability leads to more truth-telling, which is the exact opposite

of our finding.

5 Conclusion

In this paper, we analyze the role of probabilistic lie detection in a model of Bayesian persuasion

between a Sender and a Receiver. We show that the Sender lies more when the lie detection

probability increases. As long as the lie detection probability is sufficiently small, the Sender’s and

the Receiver’s equilibrium payoffs are unaffected by lie detection technology because the Sender

compensates by lying more. Once the lie detection probability is sufficiently high, the Sender

can no longer maximally lie about the unfavorable state, and the Sender’s (Receiver’s) equilibrium

payoff decreases (increases) with the lie detection probability. Our model rationalizes that a sender

of communication chooses to lie more frequently when it is more likely that his false statements

will be flagged as lies.

These insights extend more generally and continue to hold under partial commitment for the

Sender, in richer state spaces, and under different detection technologies that inform the Receiver’s

action. Nonetheless, our analysis raises further questions about the role of lie detection under

Bayesian persuasion and communication more generally. For example, how does a richer action

space modify our insights? What happens if messages do not have a literal meaning and are

classified as lies if they induce an action that does not match the true state of nature? We leave

these and other interesting questions to future research.
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A Proofs

A.1 Proof of Proposition 1

We show that type I and II strategies are suboptimal because the resulting implementation prob-

abilities PrI(a = 1) and PrII(a = 1) are dominated by the probability PrIII(a = 1) resulting from

III. To see this, note first that

PrI(a = 1) ≤ µ ≤ PrII(a = 1)

The second inequality holds because (p0, p1) = (0, 0) is a type II strategy and gives value µ. In

fact, for a type II strategy, it is optimal to set p1 = 0 because this loosens both constraints and

improves the objective. Given this, µ1 = 0 < t is loose. Hence, the optimum requires

µ0 =
µ(1− q)

µ(1− q) + (1− µ)p0
= t

and hence

PrII(a = 1) = µ+
(µ
t
− µ

)
(1− q)

Similarly, in the maximization problem within type III strategies, it is optimal to set p1 = 1.

Then, µ0 = 0 < t becomes loose. The optimum requires p0 to be as small as possible while ensuring

that µ1 ≥ t. Define q ≡ 1− µ(1−t)
t(1−µ)

∈ (0, 1); then, there are two cases to consider.

• µ
µ+(1−µ)(1−q)

≤ t or q ≤ q. In this case, there exists p∗0 s.t. µ1 = t; that is, µ
µ+(1−µ)(1−p∗0)(1−q)

= t.

Therefore, PrIII(a = 1) = µ
t
.

• µ
µ+(1−µ)(1−q)

> t or q > q. In this case, µ1 ≥ t can never bind. Thus, the best option is to set

p = 0, which implies PrIII(a = 1) = µ+ (1− µ)(1− q).

Clearly, in either case, we have PrIII(a = 1) > PrII(a = 1), and therefore both type I and II

strategies are suboptimal. It therefore remains for us to compare PrIII(a = 1) and PrIV(a = 1).

(1) If µ
µ+(1−µ)(1−q)

≤ t, type IV strategies do not exist; i.e., there is no way to choose p0, p1 such
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that µ1 ≥ t and µ0 ≥ t. If this were the case, we would have

µp1
µp1 + (1− µ)(1− p0)(1− q)

≥ t

and

µ(1− p1)(1− q)

µ(1− p1)(1− q) + (1− µ)p
≥ t ⇐⇒ µ(1− p1)

µ(1− p1) + (1− µ) p
1−q

≥ t

which would imply

µp1 + µ(1− p1)

µp1 + µ(1− p1) + (1− µ)(1− p0)(1− q) + (1− µ) p
1−q

≥ t

and therefore

t ≤ µ

µ+ (1− µ)(1− p0)(1− q) + (1− µ) p
1−q

≤ µ

µ+ (1− µ)(1− q)

where the last inequality is binding if q = 0 or p = 0. This in turn yields t < µ
µ+(1−µ)(1−q)

,

which is a contradiction. Hence, if µ
µ+(1−µ)(1−q)

≤ t, the optimal strategy is

p∗0 = 1−
µ(1−t)
t(1−µ)

1− q
and p∗1 = 1

Alternatively,

p∗0 =
q − q

1− q
and p∗1 = 1

(2) If µ
µ+(1−µ)(1−q)

> t, it is now possible to induce µ1 ≥ t, µ0 ≥ t. In particular, the constraints

can be rewritten as two lines where the coordinates are p0 and p1. In particular, we have

µ1 ≥ t ⇔ (1− t)µp1 ≥ t(1− µ)(1− p0)(1− q)

which passes through (1, 0) and
(
0, t(1−µ)(1−q)

(1−t)µ

)
, where t(1−µ)(1−q)

(1−t)µ
< 1 by assumption. We
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also have

µ0 ≥ t ⇔ µ(1− t)(1− p1) ≥ t(1− µ)
p

1− q

which passes through (0, 1) and
(

µ(1−t)(1−q)
t(1−µ)

, 0
)
, where µ(1−t)(1−q)

t(1−µ)
< 1 because t > µ.

Since the objective is to maximize 1 − (1 − µ)(1 − p0)q, we want to find the point in type

IV strategies with the largest value of p0. Clearly, this point is at the intersection of the two

lines in Figure 1(b), given by

p∗0 = 1−
1− (1− q)µ(1−t)

t(1−µ)

(2− q)q
and p∗1 = 1−

1− (1− q) t(1−µ)
µ(1−t)

(2− q)q

where µ(1−t)
t(1−µ)

∈ (1− q, 1) by assumption. Alternatively,

p∗0 =
1− q

(2− q)q
(q − q) and p∗1 =

1− q

(2− q)q

[
1

1− q
− (1− q)

]
(2)

As a result, we have PrIII(a = 1) < PrIV(a = 1) because the following inequality holds:

PrIII(a = 1) = µ+ (1− µ)(1− q) = 1− (1− µ)q < 1− (1− µ)q(1− p∗0) = PrIV(a = 1)

A.2 Proof of Proposition 2

• If q ≤ q,

p∗0 =
q − q

1− q
and p∗1 = 1

Clearly, p∗0 = 1− 1−q
1−q

decreases in q, and p∗1 is constant in q.

• If q > q,

p∗0 =
1− q

(2− q)q
(q − q) and p∗1 =

1− q

(2− q)q

[
1

1− q
− (1− q)

]
(3)
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This implies

∂p∗0
∂q

=
(−2q + 1 + q) · (2− q)q − (2− 2q)(1− q)(q − q)

(2− q)2q2

=
−q2 + (q2 − 2q + 2)q

(2− q)2q2

Therefore,
∂p∗0
∂q

≥ 0 ⇐⇒ 1

q
≤ q2 − 2q + 2

q2
= 1 +

2− 2q

q2
(4)

The RHS decreases in q, meaning that the sign of the derivative changes at most one time.

Since the derivative is positive at q = q but negative at q = 1, we conclude that p∗0 is first

increasing and then decreasing in q over (q, 1].

On the other hand, p∗1 can be written as a product of (1−q)
(2−q)

and
1

1−q
−(1−q)

q
. Each term decreases

in q; then, it follows that p∗1 decreases in q over (q, 1].

A.3 Proof of Proposition 3

The expected payoff of the Sender is Pr(a = 1). There are two cases depending on whether q > q.

• If q ≤ q, then the Receiver chooses a = 1 whenever (m = 1, d = ¬lie) or (m = 0, d = lie).

However, the latter occurs with probability 0 in the equilibrium. Hence,

US = µ+ (1− µ)(1− p∗0)(1− q) =
µ

t
(5)

which is constant in q. Essentially, any marginal improvement in the lie detection technology

(i.e., an increase in q) is completely offset by less truthful reporting when ω = 0 (i.e., a

decrease in p∗0).

• If q > q, then the Receiver always chooses a = 1 unless (m = 1, d = lie). Thus,

US = 1− (1− µ)(1− p∗0)q = 1− t(1− µ)− µ(1− t)(1− q)

t(2− q)
(6)
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which is decreasing in q as

∂US

∂q
=

−µ(1− t)t(2− q)− t[t(1− µ)− µ(1− t)(1− q)]

t2(2− q)2

=
−µ(1− t)− t(1− µ)

t(2− q)2

< 0

The Receiver’s expected payoff is t · Pr(a = ω = 0) + (1− t) · Pr(a = ω = 1). Again, there are

two cases.

• If q ≤ q, then the Receiver matches the state ω = 0 correctly if (ω = 0,m = 0) or if

(ω = 0,m = 1, d = lie) and matches the state ω = 1 correctly if ω = 1. In sum,

UR = (1− µ)t · [p∗0 + (1− p∗0)q] + µ(1− t)

= (1− µ)t · [1− (1− p∗0)(1− q)] + µ(1− t)

= (1− µ)t ·
[
1− µ(1− t)

t(1− µ)

]
+ µ(1− t)

= (1− µ)t

which is constant in q.

• If q > q, then the Receiver matches the state ω = 0 correctly if (ω = 0,m = 1, d = lie) and

matches the state ω = 1 correctly if ω = 1. In sum,

UR = (1− µ)t · (1− p∗0)q + µ(1− t)

= (1− µ)t ·
1− (1− q)µ(1−t)

t(1−µ)

2− q
+ µ(1− t)

=
(1− µ)t+ t(1− µ)

2− q

which is increasing in q.

A.4 Proof of Lemma 1

In Step 1, we characterize the properties of the Sender’s preferred equilibria and show that in any

equilibrium preferred by the Sender, the Receiver always takes a = 1 under state 1 and λ. In Step
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2, we decompose the payoff US(q) and link it to UR(q).

Step 1:

Let the Sender’s strategy be represented by a = {aij}i,j∈{0, λ, 1}, where aij is the probability of

sending message j under state i. Let X be the set of pairs (m, d), where (m, d) ∈ {0, λ, 1} ×

{lie, ¬lie}. Let µm,d denote the posterior mean after observing (m, d) ∈ {0, λ, 1} × {lie, ¬lie}.

The formulas of the posterior means are given by

µ1, lie =
q · λPλaλ1

q · (Pλaλ1 + P0a01)

µ1,¬lie =
P1a11 + λPλaλ1(1− q)

P1a11 + Pλaλ1(1− q) + P0a01(1− q)

µλ, lie =
q · P1a1λ

q · (P1a1λ + P0a0λ)

µ1,¬lie =
λPλaλλ + P1a1λ(1− q)

Pλaλλ + P1a1λ(1− q) + P0a0λ(1− q)

µ0, lie =
q · (P1a10 + λPλaλ0)

q · (P1a10 + Pλaλ0)

µ0,¬lie =
(P1a10 + λPλaλ0)(1− q)

P0a00 + (P1a10 + Pλaλ0)(1− q)

where the off-path beliefs are equal to zero. Moreover, let num(x) = µx ·Pr(x) to be the numerator

of µx. Denote as X1 = {(m, d) ∈ X |µm,d ≥ t} the set of message-detection pairs under which the

Receiver takes action a = 1. An observation is that the sum of the six numerators equals µ and

the sum of the six denominators equals 1. Thus, for any strategy a, the Sender’s payoff is equal to

∑
x∈X1

Pr(x) ≤

∑
x∈X1

µx · Pr(x)

t
≤ µ

t
(7)

We know from equation (1) that µ
t

is exactly the Sender’s optimal payoff in this case. Thus, it

suffices to find conditions on a such that both equalities in equation (7) are attained. The first

equality requires that ∀x ∈ X1, the Receiver is indifferent after observing x, i.e., µx = t. This

immediately implies a10 = aλ0 = 0 because otherwise µ0, lie > t by the assumption t < λ. Next, we

consider two cases.
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If a1λ > 0, then the second equality requires (λ, lie) ∈ X1. Otherwise,

∑
x∈X1

num(x) ≤ µ− q · P1a1λ < µ

Analogously, (λ, ¬lie) ∈ X1. However, if (λ, lie), (λ, ¬lie) ∈ X1, then by the implication of the

first equality, it must be that aλλ = 0 and thus aλ1 = 1. Repeat the arguments; the second equality

requires (1, lie), (1, ¬lie) ∈ X1, and the first inequality requires a11 = 0 and thus a1λ = 1. In

summary, the Sender always sends message 1 under state λ and sends message λ under state 1.

Moreover, (λ, ¬lie), (λ, lie) (1, ¬lie), (1, lie) all induce action a = 1. Thus, Pr(a = 1, ω = 1) =

Pr(a = 1, ω = λ) = 1.

In the second case, suppose a1λ = 0, which implies a11 = 1. By the second equality, (1, ¬lie) ∈

X1. Now, aλ1 must be 0. Otherwise, the second equality also requires (1, lie) ∈ X1. However,

then the first equality is violated, as t ≤ µ1,¬lie < µ1, lie. In summary, the Sender is totally

truthful under state 1 and λ. Moreover, (λ, ¬lie), (1, ¬lie) both induce action a = 1. Again,

Pr(a = 1, ω = 1) = Pr(a = 1, ω = λ) = 1.

Step 2:

Note that the Sender’s equilibrium payoff can be decomposed in the following way.

US(q) = Pr(a = 1) = P1 · Pr(a = 1, ω = 1) + Pλ · Pr(a = 1, ω = λ) + P0 · Pr(a = 1, ω = 0)

Step 1 implies Pr(a = 1, ω = 1) = Pr(a = 1, ω = λ) = 1 so that

US(q) = P1 + Pλ + P0 · [1− Pr(a = 0, ω = 0)]

At the same time, the Receiver’s expected payoff is reduced to

UR(q) = (1− t)P1 + (λ− t)Pλ + tP0 · Pr(a = 0, ω = 0)

= (1− t)P1 + (λ− t)Pλ + t[1− US(q)]

which concludes the proof.
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A.5 Proof of Proposition 4

Due to the binary structure, if d = lie, the true state is perfectly revealed. We need to focus only

on the Receiver’s responses when d = ¬lie. The formulas of the relevant posterior likelihood ratios

are given by

l0 ≡ l|m=0,d=¬lie =
αµ(1− p1)(1− q) + (1− α)µ(1− p̃1)(1− q)

α(1− µ)p0 + (1− α)(1− µ)p̃0
,

l1 ≡ l|m=1,d=¬lie =
αµp1 + (1− α)µp̃1

α(1− µ)(1− p0)(1− q) + (1− α)(1− µ)(1− p̃0)(1− q)

With a slight abuse of notation, we can partition the set of Sender’s strategies (p0, p1, p̃0, p̃1) into

four types. A type I strategy implies l0, l1 < t
1−t

. A type II strategy implies l0 ≥ t
1−t

, l1 < t
1−t

.

A type III strategy implies l0 < t
1−t

, l1 ≥ t
1−t

. A type IV strategy implies l0, l1 ≥ t
1−t

. We first

demonstrate that a type IV strategy does not exist if q ≤ q. We then compute the optimal type

III strategy and argue that it dominates any type I or II strategy.

First, for the purpose of contradiction, suppose that a type IV strategy exists; then,

αµ(1− p1)(1− q) + (1− α)µ(1− p̃1)(1− q)

α(1− µ)p0 + (1− α)(1− µ)p̃0
≥ t

1− t

which implies

αµ(1− p1) + (1− α)µ(1− p̃1)

α(1− µ)p0(1− q) + (1− α)(1− µ)p̃0(1− q)
>

t

1− t
(8)

At the same time, l1 ≥ t
1−t

suggests that

αµp1 + (1− α)µp̃1
α(1− µ)(1− p0)(1− q) + (1− α)(1− µ)(1− p̃0)(1− q)

≥ t

1− t
(9)

Combining the two inequalities (8) and (9) yields

µ

(1− µ)(1− q)
>

t

1− t

This is in contradiction with the assumption that q ≤ q. Therefore, a type IV strategy is not
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available. Next, we derive the optimal type III strategy, where the objective function is given by

U III
S = µ{α[p1 + (1− p1)q] + (1− α)[p̃1 + (1− p̃1)q]}

+ (1− µ)[α(1− p0)(1− q) + (1− α)(1− p̃0)(1− q)]

Note that in any type III strategy, it must be that p̃0 = 0 and p̃1 = 1 because the message m = 1

induces a = 1 with a higher probability than the message m = 0. Furthermore, at the optimum,

it must be that p1 = 1 because increasing p1 relaxes the constraint l1 ≥ t
1−t

while improving

the objective. Finally, the constraint on l1 must bind at the optimum, which, after we plug in

p1, p̃0, p̃1, implies

α(1− p0) + 1− α =
µ(1− t)

t(1− µ)(1− q)
(10)

The assumptions q ≤ q and α ≥ α ensure that the solution to equation (10) belongs to [0, 1].

Given this strategy, the Sender’s payoff is equal to

U III
S = µ[α + (1− α)] + (1− µ)[α(1− p0)(1− q) + (1− α)(1− q)]

= µ+
µ(1− t)

t
=

µ

t

This strategy dominates any type I strategy because the Sender there obtains a positive payoff

only if ω = 1, m = 0, d = lie, which occurs with a probability bounded above by µq. Finally, we

need to derive the optimal type II strategy, where the objective function is given by

U II
S = µ[α(1− p1) + (1− α)(1− p̃1)] + (1− µ)[αp0 + (1− α)p̃0]

Analogously, in any type II strategy, it must be that p̃0 = 1 and p̃1 = 0 because the message m = 0

induces a = 1 with a higher probability than the message m = 1. Furthermore, at the optimum,

it must be that p1 = 0 because decreasing p1 relaxes the constraint l0 ≥ t
1−t

while improving

the objective. Finally, the constraint on l0 must bind at the optimum, which, after we plug in

p1, p̃0, p̃1, implies

αp0 + 1− α =
µ(1− t)(1− q)

t(1− µ)
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Thus, the Sender’s payoff is reduced to

U II
S = µ+

µ(1− t)(1− q)

t

which, for any q > 0, is smaller than U III
S . Therefore, the globally optimal strategy is given by

(p∗0, 0, 1, 0), where p∗0 solves equation (10). It has been shown that the Sender’s equilibrium payoff

equals µ
t
. Last, the Receiver’s equilibrium payoff equals

µ(1− t) + (1− µ)t · {α[p∗0 + (1− p∗0)q] + (1− α)q} = (1− µ)t

Both payoffs are constant in q.
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