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1 Introduction

Measuring the external costs of air pollution has been the subject of intense scrutiny –

naturally so, given that a full accounting is necessary to implement policies that induce polluters

to internalize the society-wide costs of their emissions. Recent research has highlighted the

substantial costs of pollution in terms of health, worker productivity, crime, and decision-

making (Aguilar-Gomez et al., 2022). Of particular note, air pollution can also impact student

learning (Ebenstein et al., 2016; Persico and Venator, 2021; Gilraine, 2020; Duque and Gilraine,

2020; Heissel et al., 2020; Mullen et al., 2020; Marcotte, 2017); an effect that is likely to be of

first-order importance given the link between human capital and economic growth.

A key environmental story of the past two decades has been the dramatic improvements in

air quality in the U.S. (Currie and Walker, 2019). This pollution decline – largely driven by

the decline in coal use – may therefore have materially affected student learning. In addition,

data indicate that low-income and minority students are likelier to reside in high-pollution areas

(Currie et al., 2020), signalling that improved air quality may have also reduced the pervasive

test score gaps we observe in education.

This paper investigates the implications of the recent air quality improvements on America’s

education system. To do so, we gather satellite-based measures of fine particulate matter –

measured by PM2.5 concentrations1 – to gauge the air quality faced by students in the near-

universe of school districts in the United States each academic year. These data are then

linked to test score data from the Stanford Education Data Archive (Reardon et al., 2021)

covering over 10,000 school districts from 2008-09 through 2017-18. We supplement these data

with additional data sources that allow us to control for potential biases arising from other

determinants of student achievement that are correlated with air quality, such as local economic

conditions (Chay and Greenstone, 2003) and weather (Park et al., 2020). Uniquely, we can also

directly account for student sorting by using information on the residential locations of over

80 million Americans aged 18-50 to control for the moving rates for each district-year in the

country. An OLS regression indicates that each microgram per cubic meter (µg/m3) increase

in PM2.5 concentrations is associated with a 0.0035 standard deviation decline in student test

scores.

To the extent that our detailed controls are insufficiently rich, however, concerns may re-

main that there exists some unobservable determinant of student achievement that is correlated

with air quality. In addition, air quality is likely to be measured with error (Diao et al., 2019;

Richmond-Bryant and Long, 2020), attenuating our estimates. We therefore turn to an in-

strumental variable approach to deal with these issues. Specifically, we develop two empirical

strategies based on instrumental variables that leverage variation coming from nearby power

plants, which generate roughly thirty percent of particulate matter pollution in the U.S. (in

2019) (McDuffie et al., 2021).

1We use fine particulate matter (PM2.5) as our measure of air quality because the scientific literature highlights
that these particles are particularly detrimental to health because their small size allows them to penetrate lung
tissue and get into the bloodstream (CDC, 2019). Numerous studies have documented that elevated PM2.5
levels can irritate the throat and lungs exacerbating cardiovascular and respiratory disease, leading to increased
hospitalizations and mortality (American Lung Association, 2020; Deryugina et al., 2021).
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First, we develop an instrument that exploits variation in the proximity of districts to

coal power plants and year-to-year fluctuations in power production at these plants, as in

Duque and Gilraine (2020). Specifically, we instrument for air quality using the yearly coal-

based energy production occurring within 60km of a school district. The choice of 60km is

informed by prior research which finds a strong relationship between coal power production

and PM2.5 concentrations only for locations within roughly 40-60km of the plant (Levy et al.,

2002; Clay et al., 2016). We confirm this relationship, showing that increased power production

within 60km of a school district significantly raises PM2.5 concentrations and correspondingly

lowers student test scores; increased power production located further than 60km away has

limited impacts on air quality and no effect on test scores. Our IV estimates indicate that each

microgram per cubic meter (µg/m3) increase in PM2.5 concentrations causes a 0.02 standard

deviation decline in test scores. These estimates are larger in magnitude compared to our OLS

estimates, as expected given we suspect OLS regressions will feature severe attenuation bias in

this context.

Second, we implement a shift-share design that uses national changes in fuels used for power

production by interacting pre-existing shares for four fuel sources (coal, oil, gas, and renewables)

nearby a district with annual aggregate growth in each source to instrument for the pollution

faced by a school district. We motivate our shift-share instrument by highlighting the dramatic

shift from coal to natural gas as the primary fuel used for power production during our time

period; a motivation supported by the Rotemberg weights in our shift-share design (Goldsmith-

Pinkham et al., 2020). Estimates from our shift-share instrument are near-identical to those

from the first instrumental variable strategy and indicate that each microgram per cubic meter

(µg/m3) increase in PM2.5 concentrations causes a 0.02 standard deviation decline in test scores.

Our shift-share instrument mirrors the few industries exposed to aggregate shocks setting

considered in Goldsmith-Pinkham et al. (2020). Following Goldsmith-Pinkham et al. (2020),

we therefore validate our shift-share design by recasting it as a difference-in-differences design.

To do so, we focus on coal – the fuel that contributes the most to particulate pollution – and

divide school districts into those with high and low nearby coal production in the pre-period.

We then use the sharp 16% drop in aggregate coal production that occurred in 2011-12 as

our event,2 which should affect high-coal districts more than low-coal districts. We show that

high- and low-coal districts (as defined using the pre-period) have similar trends in terms of

both air quality and test scores leading up to 2011-12, providing support for the parallel trends

assumption underlying our difference-in-differences design – and our shift-share instrument more

generally – that test scores in high- and low-coal districts would trend similarly after 2011-12

in the absence of the national decline in coal use. After 2011-12, however, these trends diverge

with high-coal school districts seeing sharp improvements in air quality and test scores.

While both of our empirical strategies leverage variation in air quality coming from en-

ergy production, the identifying source of variation differs. In the first strategy, identification

comes from year-to-year changes in coal-based energy production, while in our second strategy

2The dramatic shift from coal to natural gas was driven by the shale revolution which caused a pronounced fall
in natural gas prices, leading to a switch away from coal to natural gas (Federal Energy Regulatory Commission,
2012).
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identification comes from exogenous exposure to national changes in the fuels used for energy

production. Irrespective of which empirical strategy we use, our estimates yield a similar re-

sult in that each µg/m3 increase in PM2.5 decreases test scores by 0.02 standard deviations.

These estimates are robust to including additional controls to account for student sorting, local

economic conditions, and weather.

We next tie our findings to how the dramatic improvements in U.S. air quality have impacted

the country’s educational performance. We calculate that the average student saw their PM2.5

exposure drop a full 3µg/m3 over the last two decades. Our estimates therefore indicate that

this drop in pollution exposure raised test scores nationwide by a full 0.06 standard deviations.

This is a economically meaningful effect; in comparison, an oft-cited nationwide policy that

releases the bottom 5% of teachers according to value-added would only raise test scores by

0.02-0.025 standard deviations (Gilraine et al., 2020).

We also investigate how the drop in pollution exposure impacted equity in the education

system. We find that the black-white PM2.5 exposure gap declined by 0.50µg/m3 over the

last two decades, lowering the black-white test score gap by 0.01 standard deviations. Overall

our findings indicate that improvements in air quality over the past two decades have raised

nationwide test scores and improved equity, although further gains are possible. For instance,

the elimination of black-white differences in particulate exposure would further close the black-

white test score gap by 0.024 standard deviations.

The rest of the paper is organized as follows: The next section describes the two instrumental

variable strategies that we use. Section 3 then introduces the data and Section 4 presents our

results. Section 5 discusses the implication of these results and concludes.

2 Empirical Framework

Our goal is to relate particulate matter measured by PM2.5 concentrations to test scores.

To do so, we start with the following OLS model:

ys,d,c,t = α+ βPM2.5d,t + γXs,d,c,t + ηWd,t + ωs + θd + ϕc + νt + ϵs,d,c,t , (1)

where ys,d,c,t is the test score for subject s in district d for cohort c during year t. PM2.5d,t is the

nine-month average of PM2.5 leading up to the school testing month for district d in year t, which

we refer to as the school-year average PM2.5. We also incorporate various district-cohort-year

demographics, Xs,d,c,t, that could be related to testing performance, including: cohort lagged

test scores, percent of students with special needs, percent English Language Learners, racial

composition, enrollment, percent tested, percent economically disadvantaged, and the gender

composition of tested students.3 As shown by Currie et al. (2020), changes in pollution levels

may induce changes in sorting patterns. To control for this, Xs,d,c,t also includes the percentage

of individuals aged 18 to 50 moving in and out of district d during year t. In addition, weather

or local economic activity can affect both test scores (Park et al., 2020) and pollution. We

3Unfortunately, percent of students with special needs and percent English Language Learners are only avail-
able at the district-year level.
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therefore also include controls for local economic conditions in Xs,d,c,t and include the control

vector Wd,t which contains controls for temperature and precipitation. We also include subject

(ωs), district (θd), cohort (ϕc), and year (νt) fixed effects. Standard errors are clustered at the

district level.

Econometric Concerns: There are two major econometric concerns with the estimation of

equation (1). First, PM2.5 is measured with error (see Diao et al. (2019); Richmond-Bryant and

Long (2020)). The key reason for this measurement error is that PM2.5 monitors are sparse,

with only around 1,100 air monitors covering the entire United States. To estimate PM2.5 for

areas without monitors, researchers use state-of-the-art models that combine satellite retrievals

of aerosol optical depth, chemical transport modeling, and ground-based measurements (see

Section 3 for more details). These models, however, only explain about 70 percent of variation

in PM2.5 concentration (Van Donkelaar et al., 2019), indicating that there is likely substantial

measurement error, which will lead to OLS estimates being attenuated.

Second, there may be unobservable time-varying local characteristics that influence both

pollution and student performance. For example, increased local economic activity may draw

in new high-performing students or raise current students’ performance through an income effect

(Dahl and Lochner, 2012) and simultaneously increase pollution. While the inclusion of local

economic and sorting controls should help, concerns may remain. To deal with these concerns

we use an instrumental variables approach that leverages differential exposure to fuel types used

in nearby power production, detailed below.

2.1 Instrumental Variable Strategy 1: Year-to-Year Coal Power Production

Our first strategy mirrors Duque and Gilraine (2020) and exploits variation in the proximity

of districts to coal power plants and year-to-year fluctuations in power production at these

plants. We implement this strategy by instrumenting for a district’s PM2.5 exposure with

the yearly power production in nearby coal plants. Specifically, for each district we calculate

the total coal power production occurring within 20 km bins of a district’s centroid, up to a

maximum of 60 km. Our distance choice is informed by prior research which finds a strong

relationship between coal power production and PM2.5 concentrations only for locations within

roughly 40-60 km of the plant, but not beyond (Levy et al., 2002; Clay et al., 2016). We

then instrument for PM2.5 using the total coal power production occurring within these three

separate distance bins.

We therefore estimate the following two-stage least squares system:

PM2.5d,t = α+
∑
i

ξicoali,d,t + γXs,d,c,t + ηWd,t + ωs + θd + ϕc + νt + ϵs,d,c,t (2)

ys,d,c,t = α+ υ ̂PM2.5d,t + γXs,d,c,t + ηWd,t + ωs + θd + ϕc + νt + ϵs,d,c,t , (3)

where coali,d,t is the amount of coal production (in one million MwH units) within i ∈ {0-20,
20-40, 40-60} km of district d during school year t, and all other variable are defined in Equation

(1). The coefficients of interest in the first-stage, ξi, represent how much PM2.5 increases when
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coal power production increases by one million MwH. Intuitively, we expect that ξi should be

strictly positive and decrease as i gets larger: coal production increases district pollution levels

but its effect falls as that production takes place further from the district. In the second-stage,

the coefficient of interest is υ which indicates the decline in test scores when PM2.5 exposure

increases by one microgram per cubic meter (µg/m3).

2.2 Instrumental Variable Strategy 2: Shift-Share Instrument

The composition of energy production in the United States has changed substantially over

the past decade with the dominant fuel shifting from coal to natural gas – see Figure A.1 for a

visualization of these national trends. The academic year 2011-12 in particular marked an ex-

ceptional shift with coal use dropping a dramatic sixteen percent that year alone to a thirty-year

low (US Energy Information Administration, 2021a; Federal Energy Regulatory Commission,

2012). Given that natural gas emits substantially less air particulates (US Energy Information

Administration, 2021b), the rapid shift from coal to natural gas should cause pronounced im-

provement in air quality for districts in areas that used to rely on coal for energy production.

This motivates our shift-share instrument that leverages this change in fuels used for power pro-

duction by interacting pre-existing shares for four fuel sources (coal, oil, gas, and renewables)4

nearby a district with annual aggregate growth in each source.

Formally, we construct our shift-share instrument by interacting 2004-05 fuel shares across

the four fuel sources (coal, oil, gas, and renewables) with annual aggregate growth in each

source. The two-stage estimation is:

PM2.5d,t = α+
∑
f

δ2005,f,dΓt,f + γXs,d,c,2005 · νt + ηWd,t + ωs + θd + ϕc + νt + ϵs,d,c,t (4)

ys,d,c,t = α+ ρ ̂PM2.5d,t + γXs,d,c,2005 · νt + ηWd,t + ωs + θd + ϕc + νt + ϵs,d,c,t (5)

where δ2005,f,d is the share of district d’s 2004-05 fuel production within 40km of its centroid

from source f ∈ {coal, gas, oil, renewables}, Γt,f is the growth rate of fuel f in year t, and

all other variable are defined in equation (1). Following Goldsmith-Pinkham et al. (2020), we

construct Xs,d,c,2005 ·νt by interacting our district-level controls in 2004-05 with year fixed effects

since controls measured after shifts in fuel sources can cause bias as these shifts may also affect

the district covariates themselves.5 The regressions are weighted by the total aggregate power

production in 2004-05 within 40km. The shift-share instrument can be thought of as using the

fuel shares to measure the extent to which a district is exposed to aggregate changes in fuel

production.

4These four fuel sources covered more than 98 percent of energy production in the United States in 2009 (US
Energy Information Administration, 2021a). Note that we classify nuclear energy as renewable since nuclear
reactors do not emit any air pollution.

5There are two exceptions to this. First, we control for lagged cohort test scores so that our outcome can be
interpreted as test score growth. Second, we use time-varying weather controls as we would not expect shifts in
fuel sources to impact weather (at least locally and in the relatively short-term) and so the weather controls are
unaffected by the policy change negating the reason controls are fixed in the shift-share design.
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3 Data

This section provides a brief overview of the datasets that we use. Appendix B provides

more detail.

3.1 School District Performance and Demographics

School district performance data is from the Stanford Education Data Archive (SEDA)

for the school years 2008-09 to 2017-18 (Reardon et al., 2021). This dataset constructs a

national scale of district performance using proficiency rates from reading and mathematics state

assessment exams. Since state assessments may differ in terms of their proficiency standards,

Reardon et al. (2021) bring in test score results from the nationwide National Assessment of

Educational Progress to place district performance across different states on the same scale.

The test scores are reported in standardized deviations relative to the average performance of

a national reference cohort for the same subject and grade.6 In our analysis we stack the math

and reading test score data and so our findings indicate the average impact on math and reading

scores.

SEDA also contains information on district-grade-year demographics such as total enroll-

ment, number of students tested, gender and racial shares, and the percentage of special needs

students and English learner students. In the shift-share design, we use data from the National

Center for Education Statistics to gather these same demographics.

We add to the student testing dataset information on whether each state tested students in

the fall, spring, or year-round. While testing is usually done in the spring, in the early years

of the sample, a few states tested in the fall or year-round (see Table A.1). However, these

states switched to spring testing eventually when they adopted Common Core standards. For

our main analyses we restrict our sample to states who test in the spring so that we can focus

on exposure to PM2.5 during the academic year. We have confirmed that the vast majority

of testing in these states occurs during May.7 We show later in robustness exercises that the

inclusion of non-spring testing states does not affect our results.

3.2 Pollution

Our pollution data come from Van Donkelaar et al. (2019) who produce monthly PM2.5

concentrations at a 0.01 degree by 0.01 degree resolution (roughly 1.1km by 1.1km at the

equator) for the United States (excluding Hawaii) from 2008-2018. We assign each cell in these

gridded raster data to a school district using its centroid.8 The average PM2.5 experienced by

a school district during a given month is then the average PM2.5 across all cells located in the

school district. In our main results, we take the average of these monthly PM2.5 levels during

6See Fahle et al. (2021) for the technical documentation.
7While states often have wide testing windows, student testing almost always occurs in May. For example,

during our sample period California’s testing window ran from the start of March to the start of June (e.g.,
2014-15 testing window was March 4 - June 4). The overwhelming majority of schools, however, conducted their
tests in May.

8District locations are determined using the shapefile provided by Reardon et al. (2021).
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the academic year (September to May) as the air pollution that students have experienced.

These monthly PM2.5 concentration estimates come from state-of-the-art environmental

science research that combines spatially-continuous measurements of pollution from satellites

(i.e., aerosol optical depth) with other observable pollution correlates such as emissions invento-

ries, chemical transport models, land use characteristics, and weather patterns (Di et al., 2016;

Hammer et al., 2020). The basic idea in these papers is to use model selection techniques to

build a predictive model of PM2.5 concentrations by correlating EPA monitor data with the

pollution correlates listed above. The chosen model then predicts pollution in regions without

air monitor data.

These data have very good in-sample fit as they match the “true” PM2.5 concentrations

(as measured by the EPA air monitors) very well. That said, the measures are not perfect:

Van Donkelaar et al. (2019) conduct a cross-validation exercise which withholds a random 10

percent of the EPA monitors from their sample and find that only 70 percent of the observed

variation in PM2.5 is explained by their model. The significant measurement error is likely

to materially attenuate OLS estimates of pollution on test scores, motivating the instrumental

variable approach we take.9

3.3 Energy Production

Data on plant-level energy production by fuel source are from the Energy Information Ad-

ministration (EIA) form 923. The EIA form is a mandatory report for all electric power plants

connected to the electrical grid that have a total generating capacity of one megawatt or more.

The survey contains information on monthly power production at the plant level, which we ag-

gregate up to plant level production for each school year from 2008-2009 to 2017-2018. (School

years are defined as running from September to May). We then merge each plant’s latitude and

longitude from EIA form 860 onto these data.

3.4 Controls

Weather: One salient concern is that weather can directly influence pollution and student

performance (Park et al., 2020). We therefore construct weather controls using data from

the National Oceanic and Atmospheric Administration’s Daily Global Historical Climatology

Network, which includes daily station-level data for thousands of weather stations across the

United States. We restrict our data to stations reporting valid readings for at least 95 percent of

school days10 and impute the small proportion of missing daily observations using the nearest

station. Our weather data include approximately 5,400 weather stations that record daily

temperature data and 6,500 stations that register precipitation data for the school years 2008-

09 to 2017-18. Each school district is assigned to the weather station nearest to its centroid,

resulting in average distances of 11.9 and 10.7 miles between a district’s centroid and the nearest

9In addition to classical measurement error, Fowlie et al. (2019) find evidence that satellite-derived PM2.5
estimates are biased downward for high PM2.5 concentrations. In our context, this will bias our estimates
downward as the shifts in PM2.5 caused by reduced energy production will be more pronounced than we estimate.

10We define school days in our data as any weekday from September 1 to May 31.
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temperature and precipitation station, respectively.

We use the matched station-district data to construct flexible controls for the weather ex-

perienced by students. For each academic year, we construct means of daily temperature highs

and lows as well as counts of the number of days falling within six temperature bins to capture

extreme temperature events. Similarly, for each academic year we control for mean precipita-

tion and counts of days with precipitation falling into two bins, accounting for heavy levels of

rainfall. Similar controls are also constructed for snowfall, given the possibility that snow may

lead to school closures that can independently affect student achievement (Goodman, 2014).

(More detail on the exact weather controls is provided in Table A.8.)

Moving Controls: We use records on residential address history from the data company

Infutor, which tracks individual addresses through credit history information. The addresses

in Infutor contain street address, city, and zip code, which we geocode to get latitude and

longitude. In our sample we focus on individuals aged between 18 - 50, whose address we can

match to a school district using district shapefiles from Reardon et al. (2021). We have roughly

84 million unique individuals in the dataset. We then construct the move-in rate by calculating

the fraction of residents of district d who moved in during year t, and the move-out rate as the

fraction of residents of district d who left at year t. Note that the move rates are calculated

by academic year, so that individuals who moved in September or later of year t are coded as

moving in the academic year ending in t+ 1.

Local Economic Controls: Lastly, we bring in local economic controls at the district level

from the American Community Survey. Our controls include percentage employed, percentage

in the labor force, percentage employed in the utilities and manufacturing sector, percentage

with a bachelor’s degree or higher, and percentage of single mother households, which may

change in response to shifting energy demand.

Our data consists of 11,476 unique districts over the academic years 2008-09 through 2017-

18. Table B.1 in the Appendix presents summary statistics for our sample. The average district

has a school-year mean PM2.5 of 7.19 (to put this in perspective, the CDC considers 12 µg/m3

to be the acceptable annual level). The average school district consists of 73% white students,

with Hispanics being the largest minority group at 13%. Roughly 4% of students are learning

English as a second language, and 14% are classified as special needs. Close to half of students

are eligible for a free or a reduced lunch. The average move-in and move-out rates for a district

are both around 4 percent.

4 Results

We start by running the OLS regression described in Equation (1), with Panel A of Table

A.2 presenting the results across four columns with varying sets of controls. Our preferred

specification is in Column (4), which includes all controls. Looking at the first row, we see

that air particulate matter decreases test scores: A one microgram per cubic meter (µg/m3)

increase in PM2.5 concentration is associated with a 0.0035 standard deviation lower test score.
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As previously discussed, however, we suspect that OLS estimates are materially attenuated due

to measurement error in the PM2.5 variable. Given this, we turn to results from our two IV

strategies.

4.1 Instrumental Variable Strategy I: Year-to-Year Coal Power Production

First, we implement the IV strategy that leverages year-to-year variation in coal production

as described in Section 2.1. Before running the IV regression, we provide some visual evidence

of the relationships between coal power production, PM2.5, and test scores that underlie the

IV regression.

Figure 1(a) plots the coefficients for our first-stage regression of PM2.5 on coal production

given by equation (2) for each 20km distance bin. Each coefficient represents the effect of a one

million MwH increase in coal production among plants in that distance bin on average school-

year PM2.5. As expected, coal-based power production that occurs close to the district centroid

has the greatest effect on air pollution. For plants within 40km, a one million Mwh increase

in production causes a 0.075 increase in the district’s PM2.5 concentration. The relationship

between power production and PM2.5 then declines by roughly half for plants 40-60km away

and by two-thirds for plants beyond 60km.

Next, Figure 1(b) presents results of a reduced form regression of test scores on coal produc-

tion. These regressions are identical to those in Figure 1(a), but replace PM2.5 levels with test

scores. The point estimates in 1(b) indicate that increased coal production nearby a district

decreases that district’s test scores. Indeed, a similar relationship between distance and the

impact of coal production that we observed in Figure 1(a) reveals itself: a one million MwH

increase in production plants within 40km causes a 0.0019 standard deviation decline in student

test scores. The relationship between power production and test scores then declines by roughly

half for plants 40-60km away and disappears for plants beyond 60km.

Taken together, the two figures highlight that proximity to coal production is a strong

predictor of a district’s PM2.5 levels and test scores. Notably, there is a large drop in the effect

of coal-based power production on PM2.5 pollution levels (and test scores) at distances beyond

40-60km. These findings corroborate prior work showing that PM2.5 levels drop significantly

outside of a 40-60km distance from coal plants (Levy et al., 2002; Clay et al., 2016). Our

reduced form findings then show a similar relationship whereby the impact of coal-based power

production on test scores dissipates past 40-60km, in line with the point at which the impact

of coal use on district PM2.5 levels also fall. The fact that the impact of coal power production

on PM2.5 and test scores fall in tandem as we look at districts further away from the coal

plant implies that our IV estimates are nearly identical for our three IVs that use coal-based

production in 20km bins up to 60km. Table A.3 confirms that this is indeed the case.

We next run the IV regression described by equations (2) and (3), with results reported in

Panel A of Table (1). Taking our preferred estimates in Column (4) with all controls, the IV

results indicate that a one microgram per cubic meter (µg/m3) increase in PM2.5 concentration

reduces district test scores by 0.021 standard deviations. The estimate is statistically significant

and larger in magnitude compared to the OLS estimate, in line with the IV estimate correcting
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Figure 1: Distance to Coal Plants
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(b) Test Scores
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Notes: Figure 1(a) plots the coefficients for our first-stage regression of PM2.5 on coal production for each 20km
distance bin up to 100km. Each coefficient represents the effect of a one million MwH increase in coal production
on average PM2.5 during the academic year. The figure therefore visualizes the first-stage of the IV regression
given by equation (2). Figure 1(b) then plots the coefficients for a reduced form regression of test scores on coal
production for each 20km distance bin up to 100km. The horizontal line in each figure represents a point estimate
of zero, while the whiskers around each point estimate represent 95% confidence intervals with standard errors
clustered at the district level. The specification used matches those of Column (1) in Table 1, with only controls
for student covariates included. A full list of controls is available in Table A.8.

for attenuation bias.

Validity: Our instrument leverages year-to-year production variation for identification. The

year-to-year production variation guards against bias coming from individuals sorting into

more/less polluted areas that are not captured by our moving controls. Specifically, since

production changes every year, bias coming from sorting must be driven by students moving

districts yearly in response to the yearly production changes which seems unlikely. In addition,

the fact that our IV estimates are similar when coal production in each distance bin – namely

production within 0-20km, 20-40km, and 40-60km of the coal plant – are used separately as

instruments alleviates concerns over the economic impacts of plant downsizing or closures driv-

ing our result. Specifically, we would expect the local economic impacts of plant closures (e.g.,

via job losses) to be concentrated in the region close to the plant (i.e., the 0-20km bin). In

Table A.3, however, we observe similar estimates regardless of whether the 0-20km or 40-60km

production instruments are used.

4.2 Instrumental Variable Strategy II: Shift-Share Instrument

Our second empirical strategy is a shift-share instrument that leverages the differential

exposure of districts to national changes in fuels used for power production. We start by

describing the key identifying variation that underlies the shift-share instrument; namely, the

drastic shift from coal to natural gas. Figure A.1 shows aggregate power production from coal
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and natural gas over our time period and indicates that there is a pronounced decline in coal-

based power production with a corresponding rise in natural gas power production over time,

with this shift becoming especially pronounced starting in the 2011-12 school year.

Our shift-share instrument takes full advantage of these national changes in the mix of fuels

used for power production by comparing school districts with different exposures to various

fuels used for nearby power production. To do so, we use the interaction between a district’s

pre-existing fuel shares (measured in 2004-05) and annual national growth in each fuel source

to instrument for the pollution faced by a school district as described by equations (4) and (5).

Panel B of Table 1 reports the results.11 Our preferred coefficient in Column (4) is -0.017, which

is similar to our estimate from the first empirical design (-0.021). Taken together, our two IV

strategies indicate that each µg/m3 of PM2.5 concentration reduce test scores by roughly 0.02

of a standard deviation.

Validity: Recent work by Borusyak et al. (2021) and Goldsmith-Pinkham et al. (2020) highlight

how to validate the shift-share research design. We motivated our shift-share instrument by

emphasizing the dramatic shift from coal to natural gas. Following Goldsmith-Pinkham et al.

(2020), we confirm that this motivation is borne out empirically by calculating the Rotemberg

weights for our four fuels sources. We find that exposure to nearby coal energy production is the

most important source of variation in the shift-share instrument, receiving a Rotemberg weight

of 0.50. Gas and oil-based energy production are also important sources of variation and have

Rotemberg weights of 0.21 and 0.27, respectively. The renewable energy sector provides little

identifying variation here – as we would expect as it is emissions-free – receiving a Rotemberg

weight of only 0.02. Given that our motivation is confirmed in the data, our shift-share setup

resembles the few industries exposed to a common shock setting considered in Goldsmith-

Pinkham et al. (2020). The validity of our instrument therefore relies on the assumption that

the differential effect of higher exposure of one power producing industry (compared to another)

only affects the change in test scores through air pollution, and not through any potential

confounding channel.

We follow Goldsmith-Pinkham et al. (2020) and test the validity of our identifying assump-

tion in two ways. First, we investigate the correlation between districts’ initial exposure shares

(constructed using 2004-05 electricity production) and the characteristics of those districts in

that initial period. To control for regional variation in fuel mixes, correlation coefficients are

calculated within states and then averaged across all states. These correlations are reported

in Table A.4. Importantly, we find limited correlation between 2004-05 fuel shares and the

moving controls as well as the local economic controls. This is reassuring as it shows the initial

fuel shares that we use to construct our instrument are not correlated with factors that predict

changes in test scores, which is encouraging that omitted variables are not biasing estimation.

In addition, we note that our point estimates are quite stable across the different sets of controls

we use (see columns (1)-(4) in Table 1), which is comforting as movements in point estimates

11Compared to our first IV design displayed in Panel A, our shift-share design has roughly 90,000 fewer
observations. The cause of the drop in observations is twofold: (i) district characteristics are missing in 2004-05
(needed to construct controls), and (ii) there is no power production occurring within 40km of the district’s
centroid in 2004-05. Roughly three-quarters of the observation loss comes from the latter cause.
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Table 1: Main Results

Outcome: Standardized Test Scores

(1) (2) (3) (4)

Panel A: Empirical Strategy I: Distance and Production Variation

IV Estimate −0.0198∗∗∗ −0.0198∗∗∗ −0.0204∗∗∗ −0.0206∗∗∗

(µg/m3) (0.0042) (0.0042) (0.0045) (0.0045)

First-Stage F-stat 203.92 202.15 191.48 191.39
Observations 701,199 694,257 694,257 694,257

Panel B: Empirical Strategy II: Shift-Share Instrument

IV PM2.5 Estimate −0.0176∗∗∗ −0.0206∗∗∗ −0.0181∗∗ −0.0165∗∗

(µg/m3) (0.0050) (0.0064) (0.0071) (0.0069)

First-Stage F-stat 662.08 408.31 377.40 390.53

Observations 607,482 604,232 604,232 604,193

Controls Used:
Student Covariates Yes Yes Yes Yes
Local Economic Controls No Yes Yes Yes
Weather Controls No No Yes Yes
Sorting Controls No No No Yes

Notes: This table reports results from our two empirical strategies. Test scores are measured in
standard deviations, while PM2.5 is measured in micrograms per cubic meter (µg/m3). Panel A
displays the point estimates from our first empirical methodology leveraging year-to-year production
variation in nearby coal plants. In particular, we use yearly coal-based power production within
different distance bins as instruments for PM2.5, as described by equations (2) and (3). Panel
B reports results from our second empirical methodology which uses a shift-share instrument.
Specifically, we use the interaction between pre-existing exposure to different power production
interacted with national growth rates as our instrument, which is described in equations (4) and
(5). The ‘First-Stage F-stat’ in both panels displays the Kleibergen-Paap F statistic to assess the
statistical significance of the instruments’ ability to predict PM2.5. All regressions include subject,
district, cohort, and year fixed effects. The control variables used for each set of controls is given
in Table A.8. Standard errors are clustered at the district level. ***,** and * denote significance
at the 1%, 5% and 10% levels, respectively.
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when conditioning on observable confounders suggest the potential importance of unobserved

confounders (Altonji et al., 2005).

Second, we use a difference-in-differences design to explore whether there were parallel trends

before the shock to aggregate fuel composition. If parallel trends hold then it is likely that the

common shock to national fuel mixes caused the change in test scores, rather than pre-existing

differences between districts with different fuel shares. To conduct the difference-in-differences,

we compare districts that are exposed to high relative to low coal production before and after

the large decline in aggregate coal production in 2011-12. Specifically, we classify districts into

two groups – low and high – based on 2004-05 coal production that took place within 40km of

a district’s centroid. We focus only on districts that had some positive coal production within

that distance range12 and define “low” and “high” coal districts based on whether their exposure

to coal production in 2004-05 was above or below the mean.

Figure 2(a) displays the PM2.5 concentrations among low- (dashed line) and high-coal (solid

line) districts over time. As expected, there is a large drop in PM2.5 concentration in 2011-12

for high- relative to low-coal districts, which coincides with the significant decrease in U.S. coal

production that year. We therefore conduct the following regression using data from 2008-09

to 2015-16 to compare test scores in high- relative to low-coal districts relative to a reference

year (which we set as 2010-11):

ys,d,c,t = α+
∑

j ̸=2010−11

βjHighd ∗ 1{year=j}t + γXs,d,c,t + ηWd,t + ωs + θd + ϕc + νt + ϵs,d,c,t , (6)

where Highd is an indicator for being a high-coal district, 1{year=j} is a year indicator, and all

other variables are defined in equation (1).

We plot the βj coefficients for each year in Figure 2(b). In the years leading up to 2011-12,

we see that test score differences between high- and low-coal districts are stable. This provides

support for the parallel trends assumption underlying our difference-in-differences design – and

our shift-share instrument more generally – that test scores in high- and low-coal districts would

trend similarly after 2011-12 in the absence of the national decline in coal use. After 2011-12,

we see large increases in test scores among high- relative to low-coal districts, mirroring the

relative decline in PM2.5 concentrations in the high-coal districts.

12Effectively this restriction eliminates Western states that have never relied on coal for electricity and leaves
us with roughly 5,100 districts.
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Figure 2: Difference-in-Differences

(a) Pollution (PM2.5)

5

6

7

8

9

10

08−09 09−10 10−11 11−12 12−13 13−14 14−15 15−16
Academic Year

A
ve

ra
ge

 P
M

2.
5 

by
 H

ig
h 

&
 L

ow
−C

oa
l D

is
tr

ic
ts

Coal Status High Coal Low Coal

(b) Test Scores

−0.01

0.00

0.01

0.02

0.03

08−09 09−10 10−11 11−12 12−13 13−14 14−15 15−16
Academic Year

M
ea

n 
Te

st
 S

co
re

 H
ig

h−
C

oa
l v

s.
 L

ow
−C

oa
l D

is
tr

ic
ts

Notes: The left-hand figure shows the average PM2.5 levels for high-coal districts (solid line) and low-coal districts
(dashed line) from 2008-09 to 2015-16. The right-hand figure then shows the average test performance of high-
coal districts relative to low-coal districts as described in equation (6). The coefficient for the academic year
2010-11 is normalized to zero and whiskers represent 95% confidence intervals with standard errors clustered at
the district level. Controls for student covariates along with subject, district, cohort, and year fixed effects are
included.

4.3 Robustness

We perform three additional robustness checks to ensure that our results are invariant to

several choices we made. First, in Panel A of Table A.5 we re-run our shift-share specification

using fuel shares from energy production in 2000-01. This check alleviates concerns about

whether choosing 2004-05 to construct fuel shares is driving our results. Table A.5 shows

that we find similar results, with our preferred specification yielding a point estimate of -0.021

(compared to -0.017 when 2004-05 shares were used).

Second, our shift-share instrument was constructed using power production occurring within

40km of the school district. Panel B of Table A.5 shows the results if we change this distance

to within 60km of the district centroid. The results are quite similar: using all controls the

estimate is -0.0168 as compared to -0.0165 in the baseline shift-share instrument.

Third, in Table A.6 we use the entire sample of districts including those who did not test

during the spring. Column (1) runs our year-to-year production variation instrument while

Column (2) and (3) use the shift-share instrument with 2004-05 and 2000-01 shares, respectively.

Our estimates are similar to our main results, indicating that the exclusion of non-spring testing

states are not causing selection issues.

5 Discussion and Conclusion

Our two empirical strategies indicate that each µg/m3 reduction in PM2.5 increases test

scores by 0.02 standard deviations. Panel A of Table 2 places these estimates into perspective

by reporting the PM2.5 exposure an average student in the United States faced in 2002-03,

2010-11, and 2018-19. We see a large decline in pollution exposure over the last two decades:
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Table 2: Pollution Exposure and Test Score Gaps Over Time

Academic Year 2002-03 2010-11 2018-19
Change from

2002-03 to 2018-19

Panel A. Mean PM2.5 Exposure

Average PM2.5 Exposure 10.47 8.72 7.47 -3.00

Panel B. Black-White Exposure Gap

Black PM2.5 Exposure 11.51 9.60 8.10 -3.41
White PM2.5 Exposure 9.83 8.32 6.92 -2.91

Black-White PM2.5 Gap 1.68 1.28 1.18 -0.50

Panel C. Black-White Test Score Gap

Black Mean Test Score -0.61 -0.51 -0.47 0.14
White Mean Test Score 0.29 0.28 0.25 -0.04

Black-White Test
0.90 0.79 0.72 -0.18

Score Gap

Notes: This table reports average PM2.5 exposure nationwide over time, with Panel B splitting these
by race. We construct PM2.5 exposures by taking the grade 3-8 enrollment-weighted district PM2.5
measures for a given year, with enrollment data coming from the National Center for Education
Statistics (2022). Panel C then displays test scores by race, with test scores data coming from National
Assessment of Educational Progress (2022). To construct mean test scores by race, we use fourth grade
test scores from both mathematics and reading and standardize these test scores using the standard
deviation across all students for a given test-year combination. These standardized subject-specific
scores are then averaged.
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the average student saw their PM2.5 exposure drop a full 3µg/m3 from 2002-03 to 2018-19.

Our estimates therefore indicate that air quality improvements raised test scores nationwide

by a full 0.06 standard deviations. This nationwide test score impact is large; in comparison a

nationwide policy that releases the bottom 5% of teachers according to value-added would only

raise test scores by 0.02-0.025 standard deviations (Gilraine et al., 2020).

Given that the decline in pollution exposure over the past two decades has disproportionately

benefited areas where African Americans reside (Currie et al., 2020), we also expect impacts

on test score equity. Panel B reports PM2.5 exposure for the average white and black student

in the United States. From 2002-03 to 2018-19 the black-white PM2.5 exposure gap declined

by 0.50µg/m3. This suggests that changes in pollution exposure decreased the black-white test

score gap by 0.01 standard deviations, or 6 percent of the 0.18 standard deviations decline in

the black-white test score gap over this period. These estimates assume that the impact of

pollution on test scores are homogeneous across racial groups. We investigate this assumption

in Table A.7, which presents our IV estimates for districts in the top tercile of percentage of

Black students (Column 1) and the lowest tercile (Column 2). The estimates from both sets of

districts are similar, suggesting that there is no significant difference in how pollution affects

test scores by the proportion of Black students. Thereofre, our estimates of the decline in air

pollution on the Black-white test score gap are unlikely to be confounded by heterogeneous

effects.

This paper analyzed the impact of recent air quality improvement on American education.

Using instrumental variables that leverage exposure to nearby power production, we find that

air pollution significantly lowers student test scores. Given that, the large 3µg/m3 drop in

PM2.5 concentrations experienced by the average student materially raised test scores nation-

wide. Substantial improvements to student performance and equity through cleaner air are still

possible, however. For example, decreasing average PM2.5 to that of the first quartile district

would raise nationwide test scores by 0.036 and completely eliminating black-white differences

in particulate exposure would further decrease the black-white test score gap by 0.024 standard

deviations.
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Jaeglé, Gan Luo, Fangqun Yu, Jamiu A. Adeniran, Jintai Lin, and Michael Brauer (2021),

“Source sector and fuel contributions to ambient PM2.5 and attributable mortality across

multiple spatial scales.” Nature communications, 12, 3594.

Mullen, Casey, Sara E Grineski, Timothy W Collins, and Daniel L. Mendoza (2020), “Effects of

PM2. 5 on third grade students’ proficiency in math and English language arts.” International

Journal of Environmental Research and Public Health, 17, 6931.

National Assessment of Educational Progress (2022), “NAEP data explorer.” Retrieved from

https://nces.ed.gov/nationsreportcard/data/.

National Center for Education Statistics (2022), “Common core of data.” Retrieved from https:

//nces.ed.gov/ccd/.

Park, R. Jisung, Joshua Goodman, Michael Hurwitz, and Jonathan Smith (2020), “Heat and

learning.” American Economic Journal: Economic Policy, 12, 306–39.

Persico, Claudia L. and Joanna Venator (2021), “The effects of local industrial pollution on

students and schools.” Journal of Human Resources, 56, 406–445.

Reardon, S. F., A. D. Ho, B. R. Shear, E. M. Fahle, D. Kalogrides, H. Jang, and

B. Chavez (2021), “Stanford education data archive (version 4.1).” Retrieved from

http://purl.stanford.edu/db586ns4974.

Richmond-Bryant, Jennifer and Thomas C. Long (2020), “Influence of exposure measurement

errors on results from epidemiologic studies of different designs.” Journal of Exposure Science

& Environmental Epidemiology, 30, 420–429.

US Energy Information Administration (2021a), “Form eia-923 detailed data with previous form

data (eia-906/920).” Retrieved from https://www.eia.gov/energyexplained/natural-

gas/natural-gas-and-the-environment.php.

US Energy Information Administration (2021b), “Natural gas explained.” Retrieved from

https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php.

20

https://nces.ed.gov/nationsreportcard/data/
https://nces.ed.gov/ccd/
https://nces.ed.gov/ccd/
https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php
https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php


Van Donkelaar, Aaron, Randall V. Martin, Chi Li, and Richard T. Burnett (2019), “Regional

estimates of chemical composition of fine particulate matter using a combined geoscience-

statistical method with information from satellites, models, and monitors.” Environmental

Science & Technology, 53, 2595–2611.

21



A Appendix Figures and Tables

Figure A.1: Aggregate U.S. Coal and Gas Electricity Production over Time

Notes: This figure plots total coal (solid line) and natural gas (dashed line) electricity production in the United
States from academic years 2008-09 to 2017-18. Academic years are defined as running from September-May.
The x-axis is academic year and the y-axis is aggregate production of each fuel in units of one million MwH.
Source: US Energy Information Administration (2021a).
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Table A.1: States that administered standardized testing in the Fall or
Year-round.

State Testing Calendar Year of Switch to Spring Testing
(1) (2) (3)

Delaware Year round 2014-2015

Idaho Year round 2014-2015

Iowa Year round 2014-2015

Maine Fall 2014-2015

Michigan Fall 2014-2015

New Hampshire Fall 2014-2015

North Dakota Fall 2014-2015

Oregon Year round 2013-2014

Rhode Island Fall 2015-2016

Vermont Fall 2014-2015

Wisconsin Fall 2014-2015

Notes: This table lists states that conducted standardized testing in the Fall or Year
round. Column (1) lists the state, Column (2) lists the testing calendar and Column
(3) lists the academic year that the state switched to testing in the spring. Source:
Author’s own calculations from news articles. See Appendix B.
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Table A.2: OLS Regression Results

Outcome: Standardized Test Scores

(1) (2) (3) (4)

PM2.5 −0.0034∗∗∗ −0.0035∗∗∗ −0.0034∗∗∗ −0.0035∗∗∗

(0.0005) (0.0005) (0.0005) (0.0005)

Lagged Test Score 0.4759∗∗∗ 0.4758∗∗∗ 0.4759∗∗∗ 0.4759∗∗∗

(0.0021) (0.0021) (0.0021) (0.0021)

% Black −0.4180∗∗∗ −0.4116∗∗∗ −0.4116∗∗∗ −0.4114∗∗∗

(0.0335) (0.0335) (0.0335) (0.0335)

% Hispanic −0.1775∗∗∗ −0.1715∗∗∗ −0.1715∗∗∗ −0.1752∗∗∗

(0.0257) (0.0257) (0.0256) (0.0257)

Avg. Max. Temp (F) 0.0006 0.0008∗

(0.0004) (0.0004)

Move-in Rate −0.0889∗∗

(0.0393)

Move-out Rate −0.0687
(0.0434)

Observations 701,199 694,257 694,257 694,257

Controls Used:
Student Covariates Yes Yes Yes Yes
Local Economic Controls No Yes Yes Yes
Weather Controls No No Yes Yes
Sorting Controls No No No Yes

Notes: This table reports the results from an OLS regression of test scores on PM2.5, as described
in equation (1). Test scores are measured in standard deviations, while PM2.5 is measured in
micrograms per cubic meter (µg/m3). All regressions include subject, district, cohort, and year
fixed effects. The control variables used for each set of controls is given in Table A.8. Standard
errors are clustered at the district level. ***,** and * denote significance at the 1%, 5% and 10%
levels, respectively.
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Table A.3: Instrumental Variable Strategy I: IV Estimates Across Distance Bins

Outcome: Standardized Test Scores

(1) (2) (3)

IV Estimate −0.023∗∗ −0.021∗∗∗ −0.019∗∗

(µg/m3) (0.009) (0.006) (0.008)

First-Stage F-stat 134.78 331.24 181.36
Observations 694,257 694,257 694,257

Instrument Coal 0-20km Coal 20-40km Coal 40-60km

Controls Used:
Student Covariates Yes Yes Yes
Local Economic Controls Yes Yes Yes
Weather Controls Yes Yes Yes
Sorting Controls Yes Yes Yes

Notes: This table reports results from the two-stage regression defined by equations (2)
and (3) when we use only one of our instruments – coal-based production within 0-20km,
20-40km, or 40-60km – rather than all three. Columns (1), (2), and (3) use coal production
at a distance of 0-20km, 20-40km, and 40-60km from the district centroid as an instrument,
respectively. Test scores are measured in standard deviations, while PM2.5 is measured in
micrograms per cubic meter (µg/m3). The ‘First-Stage F-stat’ in both panels displays the
Kleibergen-Paap F-stat of the first-stage, which gives the F-statistic from a F-test testing
the statistical significance of the instruments’ ability to predict PM2.5. All regressions
include subject, district, cohort, and year fixed effects. The control variables used for each
set of controls is given in Table A.8. Standard errors are clustered at the district level.
***,** and * denote significance at the 1%, 5% and 10% levels, respectively.
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Table A.4: Correlation between 2004-05 Fuel Shares and 2004-05
Covariates

Coal Gas Oil Renewable
Share Share Share Share
(1) (2) (3) (4)

% White −0.044 −0.042 0.003 0.067

% Black 0.050 0.035 −0.011 −0.076

% Hispanic −0.006 0.045 0.002 −0.018

% Asian 0.036 0.054 −0.033 −0.060

% Free Lunch −0.045 −0.032 0.052 0.047

% Special Needs −0.007 −0.034 0.017 0.032

% English Language 0.013 0.027 −0.048 0.001

Move-in 0.031 0.010 −0.076 0.008

Move-out 0.062 0.066 −0.049 −0.103

% Bachelor’s 0.048 0.050 −0.048 −0.059

% Employed −0.024 0.020 −0.014 −0.003

% Single Mother 0.078 0.045 −0.015 −0.095

Notes: This table lists the correlation between 2004-05 district covariates and
the 2004-05 share of total aggregate fuel production. To control for regional
variation in fuel mixes, correlation coefficients are calculated within states and
then averaged across all states. The four columns are the different types of fuels
(coal, gas, oil, renewables) and covariates are listed in the rows. Source: Author’s
own calculations from the 2005-2009 American Community Survey, US Energy
Information Administration (2021a) and Infutor.
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Table A.5: Robustness: Shift-Share Instrument

Outcome: Standardized Test Scores

(1) (2) (3) (4)

Panel A: Shift-Share Instrument, 2000-01 Shares

IV PM2.5 Estimate −0.023∗∗∗ −0.029∗∗∗ −0.023∗∗∗ −0.021∗∗∗

(µg/m3) (0.006) (0.007) (0.008) (0.007)

First-Stage F-stat 396.30 309.916 269.51 293.54

Observations 584,201 583,282 583,282 583,243

Panel B: Shift-Share Instrument: Production within 60km

IV PM2.5 Estimate −0.0166∗∗∗ −0.0213∗∗∗ −0.0185∗∗∗ −0.0168∗∗∗

(µg/m3) (0.0044) (0.0057) (0.0063) (0.0062)

First-Stage F-stat 857.80 512.49 453.59 479.41

Observations 663,594 660,017 660,017 659,905

Controls Used:
Student Covariates Yes Yes Yes Yes
Local Economic Controls No Yes Yes Yes
Weather Controls No No Yes Yes
Sorting Controls No No No Yes

Notes: This table reports results for two robustness tests from our shift-share empirical strategy.
In Panel A we run our baseline estimation but with shares defined in 2000-01. In Panel B
we run our baseline estimation but use production within 60km of a district centroid. Test
scores are measured in standard deviations, while PM2.5 is measured in micrograms per cubic
meter (µg/m3). Specifically, we use the interaction between pre-existing exposure to different
power production interacted with national growth rates as our instrument, which is described
in equations (4) and (5). The ‘First-Stage F-stat’ in both panels displays the Kleibergen-Paap
F-statistic to assess the statistical significance of the instruments’ ability to predict PM2.5. All
regressions include subject, district, cohort, and year fixed effects. The control variables used
for each set of controls is given in Table A.8. Standard errors are clustered at the district level.
***,** and * denote significance at the 1%, 5% and 10% levels, respectively.
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Table A.6: Robustness: Including Non-Spring Testing States

Outcome: Standardized Test Scores

(1) (2) (3)

IV Estimate −0.019∗∗∗ −0.018∗∗∗ −0.023∗∗∗

(µg/m3) (0.005) (0.006) (0.007)

Observations 774,627 678,795 652,580

Specification Coal Plant IV Shift-Shares 2004-05 Shift-Shares 2000-01

Controls Used:
Student Covariates Yes Yes Yes
Local Economic Controls Yes Yes Yes
Weather Controls Yes Yes Yes
Sorting Controls Yes Yes Yes

Notes: This table reports results using the entire sample of districts, regardless of whether they tested
during the spring or fall or year-round. Test scores are measured in standard deviations, while PM2.5
is measured in micrograms per cubic meter (µg/m3). Column (1) displays the point estimates from our
first empirical methodology leveraging year-to-year production variation. In particular, we use yearly coal-
based power production within different distance bins as instruments for PM2.5, as described by equations
(2) and (3). Column (2) reports results from our second empirical methodology which uses a shift-share
instrument. Specifically, we use the interaction between pre-existing exposure from 2004-05 to different
power production interacted with national growth rates as our instrument, which is described in equations
(4) and (5). Column (3) presents estimates of the shift-share instrument when using fuel shares from 2000-
01. All regressions include subject, district, cohort, and year fixed effects. The control variables used for
each set of controls is given in Table A.8. Standard errors are clustered at the district level. ***,** and *
denote significance at the 1%, 5% and 10% levels, respectively.
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Table A.7: Heterogeneity by Race and Income

Outcome: Standardized Test Scores

High % Black Low % Black Low % FRL High % FRL

(1) (2) (3) (4)

Panel A: Empirical Strategy I: Distance and Production Variation

IV PM2.5 Estimate −0.0219∗∗∗ −0.0228∗ −0.0263∗∗∗ −0.0119∗

(µg/m3) (0.0060) (0.0124) (0.0071) (0.0070)

First-Stage F-stat 103.13 28.79 73.13 67.87

Observations 261,350 233,301 266,002 250,290

Panel B: Empirical Strategy II: Shift-Share Instrument

IV PM2.5 Estimate −0.0196∗∗ −0.0150 −0.0106 −0.0284∗∗∗

(µg/m3) (0.0080) (0.0170) (0.0092) (0.0105)

First-Stage F-stat 223.45 71.24 155.83 164.18

Observations 241,245 205,267 245,680 212,174

Controls Used:
Student Covariates Yes Yes Yes Yes
Local Economic Controls Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes
Sorting Controls Yes Yes Yes Yes

Notes: This table reports results for districts in the top tercile of % of Black students in Column (1) and
the bottom tercile in Column (2). Terciles are calculated within states. In Panel A we run our baseline
estimation with the instrument using distance and production variation. In Panel B we use the Shift-Share
instrument. Test scores are measured in standard deviations, while PM2.5 is measured in micrograms per
cubic meter (µg/m3). Specifically, we use the interaction between pre-existing exposure to different power
production interacted with national growth rates as our instrument, which is described in equations (4) and
(5). The ‘First-Stage F-stat’ in both panels displays the Kleibergen-Paap F-statistic to assess the statistical
significance of the instruments’ ability to predict PM2.5. All regressions include subject, district, cohort,
and year fixed effects. The control variables used for each set of controls is given in Table A.8. Standard
errors are clustered at the district level. ***,** and * denote significance at the 1%, 5% and 10% levels,
respectively.
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Table A.8: Control Variables Sets

Controls:
Student Sorting Local Economic

Weather
Covariates Controls Controls

Cohort lagged test scores X
% Tested: male X
% Black X
% Hispanic X
% White X
% Tested X
Total Enrollment X
% English Language Learner X
% Special Needs X
% Free & Reduced Lunch X

Move-in rate X
Move-out rate X

% Employed X
% Labor Force Participation X
% Employed in utility sector X
% Employed in manufacturing sector X
% Bachelor’s or higher X
% Single mother households X

Avg. Rainfall X
Days 1-2” Rainfall X
Days ≥ 2” Rainfall X
Avg. Snow X
Days 1-2” Snow X
Days ≥ 2” Snow X
Avg. Min. Temp. X
Avg. Max. Temp. X
Days ≥ 100F X
Days 90-100F X
Days 80-90F X
Days 10 -20F X
Days 0 -10F X
Days ≤ 0F X

Notes: This table lists the control variables used in each set of controls. “Student Controls” are from the Reardon
et al. (2021) and the National Center for Education Statistics. “Sorting Controls” are from Infutor. “Local
Economic Controls” are the ACS estimates from the Reardon et al. (2021). Weather Controls are from the National
Oceanic and Atmospheric Administration’s Daily Global Historical Climatology Network and are calculate as the
monthly averages from September to May. All regressions include subject, district, cohort, and year fixed effects.
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B Data Appendix

This appendix describes the data we use in detail and how we merge the various data sets

together.

SEDA Data: School district performance data is from the Stanford Education Data Archive

(SEDA) for the school years 2008-09 to 2017-18 (Reardon et al., 2021). Following the rec-

ommendation in the accompanying technical documents, we use the research file with ‘cohort

standardized’ test scores (i.e., use the “seda geodist long CS 4.1” research file). We then merge

the accompanying district covariate data file (which also includes the local economic controls)

on (“seda cov geodist long 4.1”). We drop any district-year observations with missing test score

information for that year. These data contain 1,127,781 district-subject-cohort-year observa-

tions, covering 11,806 school districts.

Pollution Data: Our next data set comes from Van Donkelaar et al. (2019) and contain

monthly PM2.5 concentrations at a 0.01 degree by 0.01 degree resolution (roughly 1.1km by

1.1km at the equator) for the United States (excluding Hawaii) from 2008-2018. Specifically, we

download the monthly North American Regional Estimates data files (titled V4.NA.02 PM2.5)

from September 2008 through May 2018, excluding the months of June, July, and August.

These data come in a gridded raster format; we use ArcGIS’s ‘raster to point’ tool to assign

each 0.01 degree by 0.01 degree cell to its centroid. We then use a point-in-polygon operation

to assign these data to school districts using the district shapefile that accompanies the SEDA

data (titled “seda shapefiles 2019 4.0”). All the monthly PM2.5 readings that are assigned to

a school district are then averaged, giving us average PM2.5 concentrations for each district-

month. We then merge these data onto the SEDA data. The merge rate is nearly perfect,

although we do lose 1.2 % of districts, leaving us with 1,121,041 district-subject-cohort-year

observations, covering 11,663 school districts.

Moving Data: We then merge in data on move-in and move-out rates at the district-academic

year level from Infutor. This dataset was calculated by geocoding residential addresses in

Infutor and matching each address to a school district. We then used information on when an

individual moved in and moved out of each address to calculate move rates. Our move rates

focus on individuals aged 18 to 50. The merge results in 1,120,717 observations with 11,655

unique school districts.

Energy Production Data: Data on energy production by fuel source come from the Energy

Information Administration EIA-923 form. This data contains information on monthly fuel

production from all large U.S. power plants. The fuel types we use are: coal, gas, oil, and

renewable (nuclear is classified as renewable). We calculate production for each plant over the

academic year, starting in September, from 08-09 to 17-18. Districts are matched to plants

based on the distance from the district centroid to the plant’s location. Merging in this dataset

results in no observations lost as districts that are not close (within 100km) to any power plant

are classified as having zero exposure to production.
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Weather Data: To build our weather controls we use data from the National Oceanic and

Atmospheric Administration’s Daily Global Historical Climatology Network, which includes

daily station-level data for weather stations across the United States. Weather stations in the

data often record only precipitation data, so we construct separate datasets for temperature,

precipitation, and snow. We define school days in our data as any weekday from September 1

to May 31 and keep weather stations with a valid reading for at least 95 percent of school days

following Park et al. (2020). For those few missing days, we impute missing daily observations

using the nearest weather station with a valid reading that day.

For temperature, our data cover 5,397 stations with valid temperature readings for at least

95 percent of school days during our time period; the missing daily observations which cover one

percent of the data – 109,246 out of 10,534,944 daily observations – are then imputed using the

nearest station with a valid temperature reading for that day. School districts are then assigned

to their nearest weather station, leaving us with 3,807 distinct weather stations covering the

11,655 school districts in our sample. On average, the nearest weather station is located 11.9

miles from a district’s centroid; the first and third quartiles of distance are 5.4 and 14.7 miles,

respectively.

The precipitation (snow) data cover 6,575 (4,225) stations with valid precipitation (snow)

readings for at least 95 percent of school days during our time period;13 the missing daily

observations which cover one (nine) percent of the data – 150,419 out of 12,834,400 (486,778

out of 5,467,150) daily observations – are then imputed using the nearest station with a valid

precipitation (snow) reading for that day. We then assign school districts to their nearest

weather station, leaving us with 4,582 (3,247) distinct weather stations covering the 11,655

school districts in our sample. On average, the nearest weather station is located 10.7 (14.9)

miles from a district’s centroid; the first and third quartiles of distance are 4.4 (5.8) and 13.2

(19.2) miles, respectively.

Sample Restrictions: We include lagged test scores as controls in our models, necessitating

us to drop our first year of data (2008-09) along with the first tested grade (third grade) to

maintain consistent sample sizes across specifications. This leaves us with 805,424 district-

subject-cohort-year observations, covering 11,496 school districts for grades 4-8 from 2009-10

through 2017-18. We also drop observations without information on district covariates, resulting

in 784,586 observations in our full sample (summary statistics in Column (1) of Table B.1).

Lastly, for our main analysis data set we drop districts in states that do not test in the

spring (see Table A.1), dropping 83,387 observations. Our final data contains 701,199 district-

subject-cohort-year observations covering 11,419 districts (summary statistics in Column (2) of

Table B.1).

13For snow, we only require the weather station to have valid readings for at least 75 percent of school days.
This decision is necessitated by the fact that many stations do not report snow readings in September or May.
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Table B.1: Summary Statistics

Summary Statistics Full Sample1 Analysis Sample2 Shift-Share Sample3

(1) (2) (3)

School-year Average PM2.5 7.19 7.22 7.44

Test score (std) 0.029 0.025 0.048

Lagged Test score (std) 0.030 0.028 0.05

% Black 8.6 9.1 9.5

% Hispanic 13.6 14.2 14.1

% Asian 2.1 2.2 2.5

% White 73.3 71.8 72.0

% Free and Reduced Lunch 48.9 49.7 47.9

% English Language Learner 4.26 4.45 4.46

% Special Needs 13.9 14 14.70

Move-in rate 0.049 0.047 0.048

Move-out rate 0.044 0.043 0.044

Observations 784,586 701,199 607,482
Number of Districts 11,476 11,419 9,691

1 Full Sample includes grades 4-8 for school years 2009-10 through 2017-18. (Grade 3 and school-year
2008-09 are excluded from our sample so that we can control for lagged cohort test scores.)

2 Analysis Sample is the same as Full Sample without states that have spring testing (see Table A.1
for a list of these States).

3 Shift-Share sample is the same as the Analysis Sample but is restricted to districts with: (i) district
covariates in 2004-05, and (ii) some positive power production within 40km in 2004-05.
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