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1. Introduction

In any given choice situation some of the available alternatives may be inherently complex and,
therefore, hard to evaluate. Insurance contracts, for instance, might consist of tens or even
hundreds of clauses, which collectively make it difficult to assess a particular plan. Durable
goods might have dozens of attributes that jointly determine value, and policy proposals
often contain a great number of details that bedevil decision-making. Strategies in dynamic
games can include so many contingencies that identifying an optimal one becomes nearly
impossible. The goal of this paper is to better understand how complexity of this kind affects
choice behavior.
Drawing on the notion of Kolmogorov complexity in information theory, we conceive of an

object’s complexity as the length of its efficient representation. For example, in a dynamic
game, the inherent complexity of an action may correspond to the size of the ensuing subgame.
The complexity of a contract might be approximated by the number of non-redundant clauses;
and in the context of durable goods, complexity may correspond to the length of the array of
relevant attributes.1 We propose that alternatives with longer efficient representations are
more challenging to evaluate, and that this difficulty manifests itself in decision-making as
errors in the perception of value. A decision maker may only be able to precisely evaluate
alternatives with relatively short representations. When an alternative’s representation exceeds
a certain limit, evaluations become noisy.
Our analysis begins by incorporating this idea into an empirically testable theory of

choice. The theory has two main ingredients. The first one adapts the familiar random-utility
framework to study complexity. In the model, each alternative is characterized by its true
value and its inherent object complexity, i.e., the length of its efficient representation. The
decision maker (DM) relies on her skill to break down complexity and evaluate an alternative’s
value. By skill, we mean the DM’s cognitive resources, experience, expertise, and so on. Skill
formally corresponds to the maximal representation length the DM is able to evaluate without
error. When an object’s inherent complexity exceeds the DM’s skill, she only obtains a noisy
estimate of value. The accuracy of the estimate depends negatively on how much of the
object’s representation she was unable to process.
The second ingredient of our theory incorporates this noisy evaluation process into a model

of choice. Here, we build on Simon’s (1955; 1972) seminal work on bounded rationality and
satisficing. According to Simon, individuals may not consider all possible options and pick

1For longer object representations to imply higher complexity, all alternatives have to be described in the
same language, although the language need not be the same across contexts. Unlike Kolmogorov complexity,
we do not insist on the shortest possible representation. In fact, in some economic environments, strategic
parties, such as firms, can deliberately simplify or complicate object descriptions in order to achieve their
goals.
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the best, but examine a rather small number, making a choice as soon as they find one
alternative that they regard as satisfactory. In our model, the decision maker has in mind an
aspiration level that she wishes to exceed. She lists all available alternatives in random order,
and sequentially evaluates them until she encounters one whose estimated value exceeds the
aspiration level. This is the alternative she chooses.

After developing the model’s predictions, we test them in a novel dataset on chess endgames.
Chess is an environment that admits an unambiguous measure of value as well as a natural
measure of object complexity.

Every board configuration in a chess game corresponds to a choice set in which the
alternatives are all available legal moves. By Zermelo’s Theorem (1913), any chess move is of
one of three types. A winning move allows the current player to move to force a win. A losing
move enables her opponent to guarantee himself a win, whereas a drawing move lets both
players force a draw. Although computing these types is generally infeasible in the opening
and middlegame phases, endgames with up to six pieces have been definitively solved by
modern computers. We can therefore measure the true value of all endgame moves.

As in any dynamic game, assessing the value of a chess move requires DMs to examine
the ensuing subgame. Because larger game trees are likely harder to evaluate than smaller
ones, we propose to equate the inherent complexity of a move with the size of the subsequent
subgame. As an empirical proxy for the size of a subgame, we rely on what chess players
refer to as depth-to-mate (DTM). DTM is a theoretical metric of how fast the dominant
player can force a checkmate when the losing player resists as long as possible. In our data,
moves’ DTM is strongly correlated with the length of actual play, suggesting that DTM is a
useful proxy for the size of the ensuing subgame and, therefore, the difficulty of evaluating
the corresponding move.

Our data come from two sources. The first one is lichess.org, one of the three most
popular internet chess servers. We have information on the universe of moves in all rated
games on the platform from January 2013 through August 2020.2 We augment these data
with information from the Syzygy and Nalimov endgame tablebases (Nalimov et al. 2000;
Man 2013). Both databases record the type of every available move in all non-trivial endgame
positions with up to six pieces—just as in Zermelo’s Theorem. The Nalimov database also
contains information on moves’ DTM, our proxy for object complexity. Our analysis focuses
on the choices of nearly a quarter million experienced users, ranging from seasoned hobbyists
to the best players in the world. In total, we observe about 227 million choices from sets with
approximately 4.6 billion alternatives.

2Rated games are consequential in the sense that their outcomes directly affect users’ strength ratings and
rankings on the site. Anecdotal evidence suggests players care intensely about their ratings.

2



The first part of our empirical investigation examines how object complexity affects choice
behavior. Comparing moves of the same type across otherwise similar choice sets, we observe
that winning moves become less likely to be chosen as their DTM increases. For losing moves,
the reverse holds. To see the economic significance of this result, consider a two-node increase
in the DTM of a winning move. According to our estimates, such an increase corresponds to
a 1.0–2.3 p.p. decrease in the choice frequency of the corresponding move, which translates
to a 10%–24% reduction relative to the mean choice frequency of winning moves.

We further document that, within the same the choice set, winning moves with a low DTM
are more often selected than their counterparts with higher DTM. The opposite holds for losing
moves. We prove that the former finding is inconsistent with the predictions of maximization-
based models in which the DM conducts noisy evaluations of all alternatives before choosing
the one with the maximal estimated value. Our theory thus yields a new empirical test that
leverages object complexity to distinguish satisficing from noisy maximization.

In the second part of the empirical analysis, we probe the model predictions about skill and
complexity. Given that our data contain approximately 3.4 million moves by chess masters,
of which nearly 350,000 were made by grandmasters, we can ask whether highly skilled
players are less likely to make mistakes when object complexity is large. By mistake we
mean choosing a drawing or losing move in the presence of at least one winning alternative.
Consistent with the theory, we only detect large differences between titled and untitled players
when the minimal DTM among winning moves is relatively high, i.e., when every move is
hard to evaluate. Taking one step beyond the theory, we document that skill and time are
complements in moderating the adverse effect of object complexity. When players are afforded
more time to make decisions, titled players’ frequency of suboptimal choices declines by more
than that of untitled ones.

In the last part of the analysis, we examine set- rather than object-level factors that
complicate decision making. Confirming previous work by Anderson et al. (2017), we document
that chess players are more likely to make mistakes as the share of winning moves in the choice
set decreases. Going beyond Anderson et al. (2017), we show that the mix of suboptimal
alternatives is another key determinant of mistake probabilities. Consider, for example,
replacing a single losing move in the choice set with a drawing alternative. Based on our
estimates, such a change increases the frequency of mistakes on average by about .84 p.p.—or
14% relative to the mean frequency of mistakes. Contrary to psychological notions of choice
overload (Iyengar and Lepper 2000), we find that what matters for the quality of decision
making in this setting is the composition of the choice set, not its size. Once we carefully
control for the fraction of winning, drawing, and losing moves in the set, the number of
available alternatives and the frequency of mistakes are practically uncorrelated.
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The work in this paper speaks directly to the theoretical literature on how complexity
considerations affect outcomes in single- and multi-person environments. This research usually
conceives of complexity as affecting behavior through constraints on agents’ computational
abilities and memory (e.g., Neyman 1985; Rubinstein 1986; Abreu and Rubinstein 1988; Kalai
and Stanford 1988; Salant 2011; Wilson 2014; Jakobsen 2020). A high-level takeaway is that
computational constraints can greatly affect both individual and strategic outcomes.

Our contribution relative to extant theoretical work is twofold. First, we draw on the notion
of Kolmogorov complexity to develop a tractable model of choice that highlights objects’
inherent complexity as a source of boundedly rational behavior. Second, we provide evidence
on the empirical relevance of complexity considerations in general, and object complexity in
particular.

In addition, our work complements a growing experimental literature on complexity in
decision-making (see, e.g., Huck and Weizsäcker 1999; Gabaix et al. 2006; Abeler and Jäger
2015; Bossaerts and Murawski 2017; Enke and Graeber 2021). Rubinstein (2007, 2016), for
instance, shows that decisions that require explicit cognitive reasoning take far longer to
complete than those that do not. Caplin et al. (2011) provide evidence that individuals rely
on satisficing in choice environments in which evaluating each option takes time and effort.
Oprea (2020) develops a revealed-preference methodology to measure the cost of complexity.
He finds subjects are willing to pay significant amounts in order to avoid tasks that are
inherently complex. Overall, laboratory experiments support the idea that complexity can
affect decision-making.

Outside of the laboratory, tests of fundamental decision-theoretic concepts remain rare.3

As Chiappori et al. (2002) note, nonexperimental settings may be intractable, with choice
sets that need not be known in their entirety, or even be specified ex ante. Moreover,
theoretical predictions may hinge on subtle properties of utility functions, intricacies of
payoff structures, and individuals’ beliefs—all of which are typically unobserved by the
econometrician. As a result, we know little about how complexity affects decision-making in
real-world environments.4

Chess endgames provide an almost ideal empirical setting to study this question. In addition
to yielding observable variation in complexity and admitting an ordinal measure of alternatives’

3A related literature asks whether some of the basic tenets of game theory are consistent with observed
behavior in different real-world environments. Walker and Wooders (2001), Chiappori et al. (2002), Palacios-
Huerta (2003), and Hsu et al. (2007) all study minimax play in professional sports, while Spenkuch et al.
(2018) examine backward induction in sequential voting. On the whole, the evidence from these settings
corroborates theory more closely than one might have guessed based on an abundance of negative findings
from the laboratory (see, e.g., Camerer 2003 for a review).

4Levitt and List (2007) argue that even if individuals consistently make mistakes in the laboratory,
competitive forces and experience may limit such behavior in the real world.

4



value, chess possesses at least four additional attractive features. First, the rules of the game
are known to players and there is virtually no uncertainty about primitives such as choice
sets. Yet, evaluating different moves often strains the bounds of human cognition. Second,
data on chess games are abundant. We therefore have enough statistical power to test even
subtle theoretical predictions. Third, chess games are played under different time controls,
and there are large differences in players’ skill. This allows us to analyze how complexity,
skill, and time interact. Fourth, we study experienced players in a familiar environment, thus
minimizing the risk that our findings are due to an unfamiliar setting or driven by learning.5

Finally, scholars have long been intrigued by chess as a game that is theoretically trivial but
practically intractable. Chess is a finite, two-player, zero-sum game with perfect information
(Neumann 1928).6 It is well known that, in any board configuration, either White has a
winning strategy, Black possesses such a strategy, or both sides can guarantee themselves
a draw (Zermelo 1913; Neumann and Morgenstern 1944). In the words of Osborne and
Rubinstein (1994, p. 6):

The existence of such strategies suggests that chess is uninteresting because it has only one possible
outcome. Nevertheless, chess remains a very popular and interesting game. [...] Even if White,
for example, is shown one day to have a winning strategy, it may not be possible for a human
being to implement that strategy. Thus while the abstract model of chess allows us to deduce a
significant fact about the game, at the same time it omits the most important determinant of
the outcome of an actual play of chess: the players’ “abilities.” Modeling asymmetries in abilities
and in perceptions of a situation by different players is a fascinating challenge for future research,
which models of “bounded rationality” have begun to tackle.

To this we only add that it is also important to empirically explore deviations from optimal
play; and our study can be understood as taking a step in this direction.

2. Theory

Our analysis begins by developing a general model of satisficing with evaluation errors. After
specializing the model to the case of chess and deriving its empirical predictions, we explain
how to leverage object complexity to empirically distinguish between satisficing and standard
forms of utility maximization.

5For conflicting evidence as to whether experience and skill in one strategic environment transfer to another
one, see Palacios-Huerta and Volij (2008, 2009), Wooders (2010), and Levitt et al. (2010, 2011).

6There is a question as to whether chess should, in fact, be considered a finite game (see, e.g., the discussion
in Osborne and Rubinstein 1994, p. 100). At least since 2014, the FIDE rule book specifies that a game is
automatically drawn if the same position has occurred five times (cf. Article 9.6.1). Under official rules, chess
is thus finite.
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2.1. General Setup

A decision maker (DM) chooses a single object from every choice set A ⊆ X, where X is the
grand set of all feasible alternatives. Each object x ∈ X is characterized by a pair (vx, σx),
where vx denotes the true value of x to the DM and σx corresponds to its inherent complexity.
The latter can be thought of as the length of an efficient representation of the object.

When the DM encounters an alternative x, she relies on her skill, S, to estimate vx. By skill,
we refer to the ability of the DM to break down complexity using her cognitive resources,
experience, and so on. The outcome of the evaluation process is a noisy estimate:

(1) ux = vx + εx,

where the evaluation error εx is distributed normally with mean zero and standard deviation
max{0, σx − S}. Thus, when an object’s inherent complexity is smaller than the DM’s skill,
the DM can correctly assess its true value. When object complexity exceeds the DM’s skill,
however, the DM needs to contend with noise in the evaluation process. The amount of noise
increases in object complexity, and the DM’s assessments are only correct in expectation.

In choosing from choice set A, the DM wishes to pick a high-value object while economizing
on effort. To this end, she follows a satisficing procedure whereby she selects the first
“satisfactory” alternative she encounters. Formally, the DM has in mind an aspiration level T .
She randomly draws an object from A and evaluates it. The object is chosen if its estimated
value exceeds T . Otherwise, the DM discards the object as non-satisfactory and draws the
next one (without replacement). She continues in this fashion until she finds a satisfactory
object or until she exhausts all alternatives in A without making a choice. In the latter case,
the DM chooses the last object that she examined.7

The outcome of this choice procedure can be summarized by a random choice function C
that maps every choice set A and every x ∈ A to the probability C(x,A) of selecting x from
the set A. Choice behavior is stochastic because object evaluations are noisy and because the
evaluation order is random.8

7If the DM recalls the entire history of u’s then she may choose the u-maximal object. This form of recall
complicates the analysis to follow without adding substantive insights. Intuitively, this is because in the large
sets we consider and assuming the threshold is not too high, exhausting all alternatives without exceeding T
is a low probability event with a second-order effect on the theory’s empirical predictions.

8The evaluation order does not favor any of the alternatives. Conditional on not stopping and not having
been evaluated yet, every alternative x is equally likely to be examined next, and its conditional choice
probability is determined by vx and σx. If the evaluation order is allowed to favor some alternatives over
others, then any random choice function C can be rationalized by a choice procedure that (i) draws the
first alternative to be evaluated with its choice probability, and (ii) always chooses the alternative that is
evaluated.
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2.2. Application to Chess

In chess, the set X is the set of all possible legal moves of all pieces, and a choice set
corresponds to all legal moves in some board configuration. Players’ choice sets can thus be
directly mapped to board configurations.
By Zermelo’s Theorem, starting from any given configuration, either White can force a win,

Black can force a win, or both sides can guarantee themselves a draw. It is therefore possible
to associate every move in any board configuration with the ultimate outcome of the game
under subsequent optimal play. A move that allows the DM to force a win yields positive
payoff W , whereas a move that enables her opponent to do so produces a negative payoff
L = −W . Moves that lead to draws generate a payoff of D = 0.9 Hence, vx ∈ {W,D,L} for
every move x. As a matter of terminology, we say move x in some choice set is of type W , or
simply a W -move, if vx = W , with analogous designations for moves that yield payoffs of D
and L.
Our analysis focuses on choice sets that include at least one W - and at least one D- or

L-move. In these sets, it is clear what it means to choose suboptimally. Moreover, the value
of the maximal alternative remains unchanged as moves are added to the choice set. Both of
these features are helpful in the empirical analysis.
We make two further assumptions. The first assumption guarantees that the DM stops and

makes a choice whenever she encounters a W -move that she can correctly evaluate.

Assumption 1: The threshold T is between D and W .

The second assumption is only relevant for Predictions 1 and 4. It states that the inherent
complexity of a D-move is not “too small” relative to that of L-moves. In Section 3, we argue
that this assumption is plausible in the context of chess.

Assumption 2: In any choice set, the inherent complexity of any D-move is at least half
of the inherent complexity of any L-move.

Under these assumptions, the model predicts that the choice probabilities of individual
moves increase in their values.

Prediction 1: The choice probability of every W -move in a choice set exceeds the choice
probability of every D-move in the same set, which in turn is larger than the choice probability
of every L-move in the set.

9The assumed payoff structure reflects the fact that chess is usually considered a zero-sum symmetric game.
This payoff structure is not critical for our analysis. For the predictions below, it suffices to assume that
W > D > L and modify Assumption 2 appropriately.
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Figure 1: Stochastic Evaluation of Moves
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Notes: Figure illustrates the evaluation process in our model, as applied to chess.

Figure 1 provides a graphical intuition for this and subsequent predictions. Area I in this figure
corresponds to the probability that the DM discards a W -move, conditional on encountering
one. Areas II and III correspond to the probability of accepting a D- or an L-move. Given
that W > T > D and in light of the symmetric distribution of evaluation errors, areas I and
II must each be smaller than one half. This observation, combined with random sampling of
alternatives, means W -moves are chosen more frequently than D-moves. Figure 1 also makes
clear why the inherent complexity of D-moves cannot be “too small” relative to moves of
type L for Prediction 1 to hold. If it were, then area III may be larger than area II, which
would imply that the choice probability of the corresponding L-move is larger than that of
the corresponding D-move.

2.3. Object Complexity

The model makes two predictions regarding the connection between object complexity and
choice behavior. The first prediction pertains to changes in the complexity of a single move,
holding all else equal.

Prediction 2: As the complexity of a W -move increases, its choice probability decreases
and that of all other available moves increases. As the complexity of an L- or D-move
increases, its choice probability increases and all other choice probabilities decrease.

To build intuition, recall that higher object complexity corresponds to noisier evaluations
of the respective moves and thus to “wider” distributions in Figure 1. Hence, an increase
in the complexity of a W -move leads to more probability mass in area I, which implies a

8



lower choice probability. As for the remaining moves’ choice probabilities, they move in the
opposite direction because the evaluation order is random, and in any given order, the choice
probabilities of all subsequent moves must offset the change in the choice probability of the
current move. For D- or L-moves, an increase in object complexity leads to more probability
mass in area II or III, and thus to opposite comparative statics.
The second prediction compares choice probabilities within the same set.

Prediction 3: Fix a choice set A and two moves x, y ∈ A with σx < σy. If both are
W -moves then the choice probability of x is larger than that of y. However, if both are D- or
L-moves then the choice probability of x is smaller than that of y.

Intuitively, a more complex W -move has more probability mass below the threshold than
a simpler one, which implies that it is chosen with smaller probability. For two D- or two
L-moves, larger complexity implies more mass above the threshold, and hence the opposite
ranking of choice probabilities.
An immediate consequence of the discussion above is that mistakes become more likely as

the complexity of any move in the choice set increases. By mistake, we mean that the DM
picks a D- or an L-move in the presence of at least one W -alternative. Since we model the
skill of the DM as equivalent to a reduction in the complexity of all moves, we also obtain
the following corollary.

Corollary 1: Mistake probabilities decrease in the skill of the DM whenever her skill is
lower than the largest object complexity in the choice set.

2.4. Satisficing vs. Maximization

Our satisficing-with-evaluation errors model combines two related but conceptually distinct
ideas. First, we stipulate a noisy evaluation process that resembles the familiar random-
utility framework in discrete-choice models (Luce 1959; Marschak 1960; McFadden 1974).
An important difference between the evaluation process in our model and the standard
discrete-choice setup is that εx in eq. (1) corresponds to an error in perception. Moreover, the
variance of the error term depends directly on the object’s inherent complexity and the DM’s
skill. This feature is essential for generating predictions on how object complexity affects
choice.
The second idea is to incorporate noisy evaluations into a satisficing choice procedure.

Drawing directly on Simon’s (1955; 1972) discussion of bounded rationality and satisficing
in chess, we model the DM as searching for and accepting the first “good enough” move.
According to Simon (1955, p. 100), “in actual human decision-making, alternatives are often

9



examined sequentially. [...] If a chess player finds a forced mate for his opponent, he generally
adopts this alternative without worrying whether another alternative also leads to a forced
mate.”
Would the model yield similar predictions if it featured a standard maximization procedure

rather than satisficing? By standard maximization, we mean any choice procedure in which
• the DM considers all moves in the choice set, obtains estimates of their values, and

forms, for each move, a posterior belief about its value;
• the ranking of moves’ expected values according to the posterior coincides with the

ranking of the estimates; and
• the DM chooses the move with the highest posterior expected value.

Such a procedure encompasses a large class of models. Perhaps most importantly, it includes
the standard “maxxux”–approach in the discrete-choice literature. It also includes some
models of noisy cognition, in which agents choose the alternative with the highest Bayesian
posterior mean (see, e.g., Woodford 2020 for a review).
Standard maximization and satisficing yield opposing predictions regarding the effect of

object complexity on choice probabilities. Specifically, under maximization, the reverse of
Prediction 3 holds.

Proposition 1: Assume standard maximization as choice procedure, and consider any
choice set A with two W -moves x, y ∈ A such that σx < σy. The choice probability of x is
smaller than that of y.

The intuition for Proposition 1 is as follows. Although the distribution of the difference
uy − ux is symmetric with mean zero, the distribution of uy has “thicker” tails and, most
importantly, a thicker right tail than that of ux. The thicker right tail implies a positive
probability of uy being greater than ux conditional on both of them exceeding “large” thresholds.
Under maximization, the threshold they need to exceed is the maximum among all other
moves and so, in expectation, it is large.
Proposition 1 and Prediction 3 provide a foundation for a new empirical test that distin-

guishes satisificing from utility maximization. This test is applicable in any environment in
which there are at least two optimal alternatives that differ from one another in their inherent
complexity. Satisficing predicts that the less complex optimal alternative will be chosen more
often whereas maximization predicts the reverse.

3. Data

Taking the theory to the data requires information on actual choice behavior, as well as
the available alternatives’ values and object complexity. In this section, we describe how we
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Figure 2: Screenshot of a Rated Game on Lichess

Notes: Figure shows a screenshot from a rated game between registered users on lichess.org.
The green squares highlight the most recent move, i.e., pc4.

assemble a data set on chess endgames that contains this information.
Information on choice behavior comes from lichess.org, one of the three most popular

online chess platforms. Funded by donations, Lichess is ad free and allows anyone to play
live chess games at no cost through a high-quality graphical user interface (see Figure 2 for
a screenshot of a typical game). Although Lichess offers a choice between many different
time limits, the majority of games that are actually hosted on the platform can be broadly
classified as “speed chess,” i.e., games in which players have significantly less time to complete
their moves than under classical time controls.10 Lichess further distinguishes between casual
and rated games. The latter determine player ratings and are therefore only available to
registered users. In a nutshell, a player’s strength rating increases (decreases) whenever she
wins (loses) a rated game, and it increases (decreases) by more the stronger (weaker) her
opponent was.11 Anecdotal evidence from online messaging boards suggests that users often
care intensely about their rating. Since high ratings tend to be a source of pride among chess
players, Lichess has a strict policy against computer-assisted play. Enforcement of this policy
relies on a variety of methods, including community reporting of suspected offenders and
automatic detection algorithms.
We have data on the universe of rated games between human players from January 2013

10Some of our analyses restrict attention to games with classical controls, in which time pressure is less of
an issue. As a robustness check, we also estimate alternative specifications that control for how much time a
player has left on the clock. The results are qualitatively equivalent to those below (cf. Appendix C).

11In calculating ratings, Lichess implements the Glicko-2 algorithm, which extends the better-known ELO
system by incorporating a measure of uncertainty in approximately Bayesian fashion (Glickman 1999, 2000).
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through August 2020. The available information includes players’ usernames, ratings and real-
world titles, if any (i.e., candidate master, national master, international master, grandmaster,
etc.), the date and start time of the game, its outcome, and the precise sequence of moves.12

We can therefore reconstruct all choice sets that a player faced as well as the moves she chose.
We augment these data with information on moves’ types and, for W - and L-moves, their

depth-to-mate (DTM). In principle, this information is computable for any legal move in any
chess game, but doing so is computationally infeasible in the opening and middlegame phases.
Our analysis thus focuses on endgame configurations with six or fewer pieces, which have
been definitively solved by computer algorithms.13

These algorithms begin by constructing an exhaustive list of all possible (up to symmetry)
legal board configurations with three chess pieces.14 Every configuration is examined, and
the ones in which the player to move is in checkmate are stored as “mated in 0.” Next,
all configurations with the other side to move are evaluated. If one of them can reach a
configuration that has previously been determined to be “mated in 0” by executing a legal
move, then it is stored as “mate in 1.” To find the set of configurations that are “mated in 2,”
the algorithm looks for configurations from which all possible legal moves lead to “mate in 1”
configurations; and to determine configurations that are “mate in 3,” it subsequently checks
for configurations from which it is possible to directly reach a configuration that is known to
be “mated in 2.” Proceeding recursively, a configuration is classified as “mated in l” if and
only if it is impossible to avoid moving to configurations that are “mate in w,” with w = l− 1

for at least one available legal move and w ≤ l− 1 for all others. By contrast, a configuration
is marked as “mate in w” if it is possible to move to another one that is “mated in w − 1.”
This procedure continues until no further progress at classifying configurations is made, at
which point all remaining configurations with three chess pieces are designated as “drawn.”
Essentially the same algorithm is next applied to board configurations with four pieces, then
five, and then six.
The end result is a so-called tablebase in which board configurations are classified as either

“drawn,” “mated in l,” or “mate in w.” A particular move is said to be of type W with DTM
d if it results in a new board configuration that, with the other player to move, is known
to be “mated in d − 1.” Thus, the minimal DTM among all available W -moves from any
configuration that is “mate in w” is, by construction, equal to w. Similarly, a move is said to

12Lichess verifies that users do, indeed, hold the real-life titles they claim.
13Although board positions with seven pieces have, in principle, been solved as well, we do not rely on them

in the analysis, because doing so would be impractical. Specifically, the open-source Syzygy tablebases do
not contain information on DTM. The commercially available seven-piece Lomonosov tablebases do contain
information on DTM but require about 140TB of storage. They are thus too large to be usable in most
computing environments.

14It is not necessary to consider configurations with two lone kings, as these are automatically drawn.
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Figure 3: Example of an Endgame Table

8 zzZzzZz1•TkzzZ
7 zZzzZzzZzzZz
6 5XQzZ3VrzZzzZz2–Un
5 zZzzZzzZz6šYPz
4 zzZzzZzzZzzZ
3 zZzzZzzZzzZz
2 zzZz1•TKzzZzzZ
1 zZzzZzzZzzZz

a b c d e f g h

Move Evaluation
Qc6 W in 19
Qa8 W in 21
Qa3 W in 47
Qa7 D
Qa5 D
Qa4 D
Qa2 D
Qa1 D
Qb5 D
Qd3 D
Qe2 D
Qf1 D

Move Evaluation
Qb7 D
ph6 L in 34
Qc4 L in 34
Qc8 L in 34
Ke2 L in 32
Ke3 L in 32
Kd3 L in 32
Qb6 L in 32
Ke1 L in 30
Kd1 L in 28
pg6 L in 28

Notes: Figure provides an example of the information in endgame tablebases. The left panel shows the
board configuration that is to be evaluated, assuming it is White’s turn. Yellow-colored squares help
visualize the set of available moves. The right panel shows the computer evaluation of each legal move,
drawing on the Nalimov endgame tables. W , D, and L denote win-, draw-, and loss-moves from the
perspective of the current player.

be an L-move with DTM d if it leads to a configuration that is “mate in d− 1.” The maximal
DTM among all L-moves from any configuration that is “mated in l” equals l. Moves that
result in “drawn” configurations are classified as type D.15

For a concrete example of the content of such a tablebase, consider Figure 3. The left panel
depicts the board configuration that is being examined, with the data for each available
legal move shown on the right. The assessment of a move consists of two components: its
type (i.e., W , D, or L), and, for a W - or L-move, its DTM. In this particular example, Qc6
corresponds to “W in 19,” which means that, if White moves the queen to c6, then White
can force checkmate in nineteen moves regardless of Black’s response.

Endgame tablebases do not contain a measure of subgame depth for D-moves. To the best
of our knowledge, there is no general approach to even identify D-moves by means other
than elimination, which is how computer algorithms proceed. A classification-by-elimination
approach, however, does not lend itself to a natural measure of complexity for D-moves—
other than suggesting it may be large relative to that of other alternatives in the choice set.
While one could, in principle, calculate the depth of the subgame associated with a particular
D-move by iteratively developing the game tree, doing so at scale is computationally infeasible.
We therefore refrain from quantifying object complexity for D-alternatives, and restrict our
empirical tests of Predictions 2 and 3 to W - and L-moves.16

15For additional information on algorithmic analysis of chess endgames, see, e.g., Thompson (1986).
16Prediction 1 relies on Assumption 2, which intuitively says that identifying a D-move with certainty is at

least half as difficult as identifying L-moves. Per the discussion above, this assumption may be reasonable.
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Given the results of extant computer analyses, the true value, or type, of essentially any
endgame move is known with certainty, as is the DTM of W - and L-moves.17 We retrieve the
relevant information for every legal move in every endgame configuration in the Lichess data
by running several billion queries against the Syzygy and Nalimov tablebases (Nalimov et al.
2000; Man 2013).18

Our final sample contains nearly 227 million decision problems with a total of over 4.6
billion legal moves. There are four distinct sources of selection into this sample. First, we
restrict attention to choice sets that contain at least one W - and at least one D- or L-move.
We impose this restriction for expositional convenience. When a board configuration admits
at least one W -move, any choice of a D- or L-alternative is unambiguously a mistake. In
addition, we can distinguish “small” mistakes from “large” ones. The former correspond to
picking a D-move in the presence of one or more of type W , while the latter consist of
choosing an L-move instead. A disadvantage of this restriction is that the choice sets in our
sample contain an above average share of W -moves.

The second and related source of selection pertains to how often different individuals reach
a winning position, i.e., an endgame position with at least oneW -move. The strongest players,
for instance, may often mate their opponents before reaching the endgame stage. Similarly,
very weak players may rarely be in a position to win endgames and might thus also be
underrepresented in our sample. In what follows, we address this issue in two ways. First,
whenever appropriate, we control for player fixed effects. Second, we reweight observations
so that all players receive equal weight in our analysis. The results below should hence be
interpreted as referring to a typical decision by the average player in our sample.19

Third, to minimize the risk that our findings are due to an unfamiliar setting or a lack of
experience with similar decision problems, we exclude, for every player, the first one thousand
endgame moves from winning positions. We are thus left with highly experienced DMs who
are very familiar with the task at hand.

Finally, users on Lichess are not a random subset of all experienced chess players. In the

It is also reasonable to interpret our empirical test of Prediction 1 as a joint test of the prediction and
Assumption 2.

17The only exceptions are positions with castling rights and configurations in which a lone king faces five
other pieces. The former are extremely rare in endgames (< .01% of available legal moves in our data), while
the latter are uninteresting (because 98.8% of available moves are of type W ). Our empirical work excludes
all board configurations for which information on DTM is not available.

18As a technical side note, the Syzygy tablebases do not contain information on DTM. In contrast to the
Nalimov tables, they do, however, take into account the fifty-move stalemate rule. In rare instances, the
fifty-move rule matters for correctly determining whether one player can unilaterally invoke a draw. We
therefore rely on win-draw-loss information from the Syzygy database, while information on DTM comes
from Nalimov’s database.

19For robustness checks in which every individual observation receives the same weight, see Appendix C.
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appendix, we address this potential source of concern by replicating our main results in an
independent data set covering a large number of chess games in international tournaments.
These data come from the online publication The Week in Chess (TWIC), which covers
“all the latest news and games from international chess.” The main disadvantage of this
alternative data set is that there is less variation in the skill of players, and that it is more
than two orders of magnitude smaller. These limitations notwithstanding, the TWIC data
yield qualitatively similar conclusions (cf. Appendix D).

4. Descriptive Statistics

We next describe some of the basic features of our data, starting with the distributions of
key variables. The upper two panels in Figure 4 display histograms for the total number of
available legal moves in the DM’s choice set (left) and for the number of W -, D-, and L-moves
(right). Choice sets contain, on average, about 20.6 moves, of which 15.5 are W -moves. There
is significant variation in choice-set size ranging from less than a handful of moves to more
than thirty, or even fifty alternatives. Most, but by no means all, of this variation is due to
differences in the availability of W -moves. The data therefore allow us to study choices from
small, medium, and large sets.

The lower two panels of Figure 4 demonstrate that there is significant variation in our
measure of object complexity. The lower-left panel depicts a histogram of the DTM of all
available W - and L-moves. The modal DTM is 15 among the former and 24 among the
latter. Given the size of the sample, there are millions of legal moves with DTM of five or
less, and millions of moves with DTM of more than fifty. The lower-right panel plots the
distribution of the minimal DTM among W -moves at the choice-set level. The histogram in
this panel indicates that the data include choice sets in which evaluating some of the moves is
straightforward, others where accurately classifying optimal moves likely exceeds the bounds
of human cognition, and a great range of intermediate cases.

Figure 5 presents a binscatter plot of the relationship between moves’ theoretical DTM
and the total number of subsequent moves in the same game. The former may differ from the
latter for a variety of reasons. For example, if the dominant player succeeds in mating her
opponent but does not take the shortest path to victory, then the total number of subsequent
moves may exceed the initial move’s DTM. If, however, the losing player resigns or does not
hold out as long as possible, then there will be fewer subsequent moves than implied by DTM.
Importantly for our purposes, we observe a monotonically increasing relationship between
moves’ DTM and the length of the realized path of play. In other words, higher-DTM moves
are, indeed, associated with longer subgames.

Some of our analysis focuses on suboptimal choice and mistakes. The summary statistics
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Figure 4: Distributions of Key Variables

(a) Choice-Set Size
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(c) DTM of All Available W - and L-Moves
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Notes: Panel (a) presents the distribution of the number of available moves, with panel (b) distinguishing
between W -, D-, and L-moves. Panel (c) shows the distribution of DTM among W - and L-moves, and
panel (d) depicts the distribution of the smallest DTM among all W -moves in the choice set.

Figure 5: Greater Depth to Mate is Associated with Longer Realized Game Paths
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Notes: Figure shows binned scatter plots of the relationship between chosen moves’ DTM (x-axis) and the
total number of subsequent moves in the same game (y-axis). Hollow circles correspond to within-bin
averages for all games, while solid circles restrict attention to games in which one of the players is eventually
mated. The solid and dashed lines show the lines of best fit in the respective underlying move-level data.
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in Table 1 show that about 6% of observed moves are mistakes. Given that, on average,
W -moves account for about 75% of all available moves in a choice set, mistakes occur at
nearly one quarter the rate one would expect if DMs were choosing at random. There is thus
evidence of significant skill among the players in our data. Yet, the raw data also imply that
mistakes occur with a certain regularity. They are not rare events. Moreover, mistakes tend
to be consequential. A player whose current move is a mistake is about 43 p.p.—or roughly
58%—less likely to ultimately win the game than one who chooses a W -move. At the same
time, the probability of a loss more than doubles.20

To study choices at a more granular level, we partition the data into classes of choice sets
so that two sets are in the same class if and only if they have the same number of W -, D-,
and L-moves. We observe 9,701 such classes with more than a hundred choices. For each
class, we calculate the empirical frequency with which a legal move of a particular type is
chosen, and plot the observed differences in Figure 6.

The top-left panel shows a histogram of differences in choice frequency between D- and
W -moves—one estimate for each class—and the bottom-left panel does so for the difference
between D- and L-alternatives. To the right of each histogram, we show the CDF of the
associated p-values. Under the null hypothesis that choice probabilities do not depend on
moves’ types, the p-values of the estimated differences should be approximately uniformly
distributed over the unit interval. This is not the case. In the vast majority of classes of choice
sets, different types of moves are chosen with frequencies that are statistically distinguishable
at conventional significance levels. More importantly, the signs of the observed differences are
generally as postulated by the theory. That is, W -moves are more likely to be chosen than
D-moves in over 99% of classes, and D-moves are more likely to be chosen than L-moves in
over 93% of classes. Prediction 1 is thus borne out in the data.

20Mistakes do not always result in forgone wins because the player’s opponent may subsequently also
choose a suboptimal move. Similarly, due to the potential for mistakes in future moves, choosing a W -move
in a particular instance does not automatically mean that the player will ultimately win the game.
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Table 1: Summary Statistics

Percentile

Variable Mean SD 25% 50% 75% 95% N

A. Move Characteristics
Type:
W -Move 0.69 0.46 4,617,441,573
D-Move 0.23 0.42 4,617,441,573
L-Move 0.08 0.27 4,617,441,573

DTM:
W -Moves 25.89 17.88 13 23 33 59 3,457,878,398
L-Moves 30.35 13.46 22 28 36 50 296,522,573

B. Choice-Set Characteristics
Set Composition:

Total Number of Legal Moves 20.58 10.35 13 20 28 38 226,955,095
Number of W -Moves 15.48 11.09 6 15 24 34 226,955,095
Number of D-Moves 3.81 4.30 1 2 5 13 226,955,095
Number of L-Moves 1.29 2.73 0 0 2 7 226,955,095

DTM of W -Moves:
Shortest 20.91 16.18 9 17 29 51 226,955,095
Median 25.81 17.34 13 22 33 59 226,955,095
Longest 31.62 20.05 17 27 39 69 226,955,095

DTM of L-Moves:
Shortest 26.95 11.39 20 26 34 44 77,045,730
Median 30.19 12.50 22 28 36 48 77,045,730
Longest 34.27 16.31 24 32 40 60 77,045,730

C. Outcomes
Mistakes:

Any Type of Error 0.06 0.24 226,955,095
Small Mistake 0.05 0.23 226,955,095
Large Mistake 0.01 0.08 226,955,095

Result of Game:
If Current Move is Mistake:

Win Game 0.31 0.46 13,052,773
Draw 0.49 0.50 13,052,773
Lose Game 0.19 0.40 13,052,773

If Choose W -Move:
Win Game 0.74 0.44 213,902,322
Draw 0.20 0.40 213,902,322
Lose Game 0.05 0.22 213,902,322

D. Timing
Time Left on Clock (in sec.) 72.35 192.87 8 22 69 296 212,295,223
Deliberation Time (in sec.) 1.66 3.07 0 1 2 5 212,249,738

E. Player Characteristics
Total Number of Endgame Moves 2,584 2,469 1,297 1,793 2,877 6,696 237,232
Average Rating 1,733 281 1,533 1,716 1,917 2,222 237,232
Real-World Title 0.01 0.10 237,232

Notes: Table displays summary statistics for selected variables in the data. Each observation in panel A corresponds to a legal
move, and observations in panels B–D correspond to decision problems. Panel E contains player-level information.
Observations are reweighted so that all players receive equal weight. The number of observations related to the timing of
moves is smaller because the raw data do not include this information for games that were played prior to April 2017.18



Figure 6: Comparing Choice Frequencies of W -, D-, and L-Moves

(a) Difference in Frequency of Choosing D- and W -Moves
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(c) Difference in Frequency of Choosing D- and L-Moves
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(d) CDF of p-values for Differences in Panel (c)

K-S test statistic:  0.593
p-value: <0.001
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Notes: Figure compares choice frequencies of individual W -, D-, and L-moves. Panel (a) plots the distribution of estimated
mean differences in choice frequencies of D- and W -moves in choice sets with identical composition of moves, conditional on
observing at least 100 choices from sets with that makeup. Negative estimates imply that, in the respective classes of choice
sets, D-moves are, on average, less frequently chosen than W -alternatives. Panel (b) depicts the empirical CDF of the
two-sided p-values associated with the estimated differences in panel (a). It also shows results from a Kolmogorov-Smirnov
test against the null hypothesis of a uniform distribution of p-values. Panel (c) mirrors panel (a) but focuses on the difference
in choice frequencies between D- and L-moves. Positive estimates imply that D-moves are, on average, more frequently chosen
than L-alternatives. Panel (d) presents the empirical CDF of p-values for the null hypothesis that, in choice sets with a
particular composition, L-moves are as frequently chosen as D-moves. All p-values account for two-way clustering by player
and game.
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5. Object Complexity and Choice Frequencies

Predictions 2 and 3 relate object complexity to choice probabilities. Prediction 2 is concerned
with how choice probabilities change as, all else equal, evaluating a particular legal move
becomes more difficult. Because every board configuration is associated with a fixed choice
set, the relevant empirical comparisons are necessarily across decision problems. By contrast,
Prediction 3 compares the choice probabilities of different moves of the same type within the
same choice set. According to Prediction 3, we should see that the W -move with the smallest
DTM is chosen more frequently than the W -alternative with the second-smallest DTM value,
which, in turn, is picked more often than that with the third-smallest value, and so on. For
L-moves, the opposite pattern should emerge.

5.1. Across-Choice-Set Comparisons

To investigate Prediction 2, we focus on W - and L-moves and estimate the following econo-
metric model:

(2) Choosea = ωDTMa ×Wa + ιDTMa × La + πWa + φA\a + µp + εa.

Here, Choosea is an indicator for whether player p facing choice set A picked move a, DTMa

denotes that move’s depth to mate, Wa and La are indicators for its type, and µp is a player
fixed effect. We also include φA\a, a fixed effect for the other moves in the choice set. In
constructing this fixed effect, we assume that, in line with the theory, moves can be reduced to
their types and inherent complexity. Since we do not measure object complexity for D-moves,
φA\a conditions (only) on the vector of DTM values for W - and L-moves and the type
composition of the choice set, i.e., the number of W -, D-, and L-alternatives. By including
φA\a, we aim to approximate the thought experiment in which we vary the object complexity
of one particular alternative, holding the values and object complexity of all other moves
fixed.
Table 2 shows results from estimating variants of the regression model in eq. (2). In the

first three columns, we study W - and L-moves from all board configurations. In the last three
columns, we restrict attention to choice sets that do not contain any D-moves. The idea that
our fixed effects appropriately control for the object complexity of all other moves is most
plausible in the latter set of specifications. Reassuringly, the results in both sets of columns
are qualitatively similar. Regardless of which sample we consider, we find that individual
W -moves are significantly less likely to be chosen as object complexity increases. By contrast,
the choice probabilities of L-moves increase in their inherent complexity.
The estimates in Table 2 are not only directionally consistent with Prediction 2, but are
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Table 2: Choices as a Function of DTM

(1) (2) (3) (4) (5) (6)

Probability of Choosing Move

W -Moves L-Moves W - &
L-Moves

W -Moves L-Moves W - &
L-Moves

DTM × W -Move (÷ 100) –1.140 –0.974 –0.521 –0.333
(0.002) (0.002) (0.004) (0.003)

DTM × L-Move (÷ 100) 0.034 0.007 0.066 0.054
(0.001) (0.001) (0.002) (0.002)

W -Move (÷ 100) 63.450 41.857
(0.069) (0.114)

Fixed Effects:
Number of W - × D- × L-Moves
× Complexity of Other Moves Yes Yes Yes Yes Yes Yes

Player Yes Yes Yes Yes Yes Yes

Board Configurations All All All | D |= 0 | D |= 0 | D |= 0

Mean of LHS Variable (%) 9.397 0.785 8.495 10.881 1.183 8.078

R2 0.372 0.209 0.368 0.513 0.209 0.494
N 3,457,878,398 296,522,573 3,754,400,971 398,856,135 111,905,262 510,761,397

Notes: Entries are coefficients and standard errors from estimating ω, ι, and π in variants of eq. (2) by ordinary least squares.
All regressions control for player fixed effects as well as a fixed effect for the combination of the number of W -, D-, and
L-moves and the vector of DTMs of all other W - and L-moves in the same choice set, as explained in the text. The unit of
observation in each regression is an available legal W - or L-move, and observations are reweighted so that all decision
problems for a particular player and all players receive equal total weight in the full sample of moves. The sample in cols.
(1)–(3) includes all board configurations in our data, whereas cols. (4)–(6) restrict attention to configurations for which the
associated choice sets do not contain D-moves. All estimates are scaled to correspond to the percentage-point change in choice
probability associated with a one-unit increase in the respective regressor. Standard errors are two-way clustered by player
and game, and are shown in parentheses.

also economically large. According to the coefficients in cols. (1) and (4), increasing DTM
by two nodes decreases the choice probability of the corresponding W -move by 1.0–2.3 p.p.
This decrease translates to a 10%–24% reduction relative to the mean choice probability
of W -moves. The evidence in this table therefore suggests that object complexity is an
empirically meaningful determinant of choice.

5.2. Within-Choice-Set Comparisons

Our examination of Prediction 3 begins by looking at the raw data. We first partition choice
sets into classes according to the number of available W -moves. In the left panel of Figure 7,
we then plot, for each class, the empirical frequency with which DMs choose the W -move
with the smallest DTM, the second-smallest DTM, and so on. We observe large and precisely
estimated differences in choice frequencies. In line with Prediction 3, these frequencies decrease
monotonically in moves’ relative complexity, and all differences are statistically significant at
conventional levels.

The right panel of Figure 7 repeats this analysis for L-moves. Choice frequencies for L-moves
are much smaller and less precisely estimated. This is partly due to the relatively low number
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Figure 7: Choice Frequencies, by Relative Object Complexity

(a) W -Moves

0
.1
.2
.3
.4
.5
.6
.7

0
.1
.2
.3
.4
.5
.6
.7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

|W | = 2 |W | = 3 |W | = 4

|W | = 5 |W | = 6 |W | ≥ 7

C
ho

ic
e 

Fr
eq

ue
nc

y

W-Moves Ordered from Shortest to Longest DTM

(b) L-Moves

0

.01

.02

0

.01

.02

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

|L| = 2 |L| = 3 |L| = 4

|L| = 5 |L| = 6 |L| ≥ 7

C
ho

ic
e 

Fr
eq

ue
nc

y

L-Moves Ordered from Shortest to Longest DTM

Notes: Figure compares choice frequencies of W - and L-moves according to the ordering of their DTMs relative to other
moves of the same type in the same choice set. Panel (a) does so for W -moves, and panel (b) focuses on L-moves. Each plot
within either panel restricts attention to choice sets that contain a particular number of W - or L-moves with distinct DTM
values. Error bars correspond to 95%-confidence intervals and account for two-way clustering by player and game.

of choice sets with more than three L- alternatives (cf. Figure 4). Comparing mean choice
frequencies within the same class, we find that out of fifty-six possible pairwise comparisons,
over 80% have the correct sign according to Prediction 3 and over 55% are statistically
significant at the 5%-level. Only three comparisons, corresponding to about 5% of the total,
have the wrong sign and are significant at the 5%-level. Given that some false positives are
expected even if the null hypothesis holds, we conclude that the data are broadly consistent
with the theory.

Under the maintained assumption of noisy evaluations, the ranking of choice frequencies
for W -moves in the left panel of Figure 7 is inconsistent with standard maximization (cf.
Proposition 1). This is perhaps not surprising. First, the majority of games in our data are
best thought of as “speed chess,” and players may simply not have enough time to seriously
consider all available moves. Second, some of the choice sets in the data are so large that
DMs might find it challenging to evaluate all, or even most, alternatives. Third, the data
include choice sets from which skilled-enough players may instantly recognize and gravitate
towards very simple moves. For all of these reasons, we view the above findings as a “proof
of concept” for our empirical test. It indeed distinguishes satisficing from maximization in
an environment where satisficing is most likely to occur. It is entirely possible that choice
behavior exhibits different patterns when choice sets are small, time pressure is not an issue,
or none of the available moves are simple.

To investigate this possibility, we compute within-choice-set correlations between choice
frequencies and moves’ relative complexity in such settings. Table 3 presents our estimates,
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which are based on the following econometric model:

(3) Choosea = βPercentileRanka + χA,p + εa,

where Choosea denotes an indicator for whether a player p facing choice set A picked move a,
χA,p is a fixed effect for the particular decision problem of that player (i.e., the task of choosing
a move from A), and PercentileRanka corresponds to the respective move’s DTM-based
percentile ranking among all available moves of the same type. By construction, this variable
is equal to zero for the simplest W - and L-moves in each choice set, and one for the most
complex ones.21

The coefficient of interest is β. Under the parametric assumptions behind eq. (3), β
corresponds to the average difference in choice probability between the simplest and most
complex moves of the same type. Since our empirical specification controls for χA,p, all
identifying variation comes from comparing alternatives within the same choice set.

Cols. (1A) and (1B) of Table 3 confirm that, in the full sample, choice frequencies and
relative complexity are negatively correlated among W -moves, and positively correlated
among L-moves. Taking the point estimates at face value, the simplest winning move in a
choice set is about 30 percentage points more likely to be chosen than its most complex
counterpart, while the simplest losing move is about 0.3 percentage points less likely to be
selected than the most complex one. Relative to the respective mean choice frequencies, the
coefficients in cols. (1A) and (1B) are very large.

The next three columns restrict attention to settings that meet one of the following criteria:
(i) long time controls (so that each player has, in expectation, at least twenty-five minutes
for deliberation per game); (ii) small choice sets (with ten or fewer moves); (iii) none of the
available alternatives are easily recognizable as good (because minimal DTM exceeds fifty).
Consistent with satisficing, we continue to find that W -moves’ choice frequencies are strongly
negatively correlated with their complexity. For L-moves, the opposite pattern holds.

The last column presents estimates of β, excluding the simplest move of a given type in
every choice set. Although the coefficient in col. (5A) does decrease in magnitude, it remains
very large relative to the mean choice frequency of the remaining moves. Thus, Prediction 3
continues to hold.

Going beyond aggregate correlations, Figure 8 examines the relationship between choice

21Formally, PercentileRanka ≡ ra−1
MA−1 where ra corresponds to move a’s ordinal DTM-based rank among

moves of the same type in choice set A (simplest = 1, second-simplest= 2, and so on), and MA denotes the
total number of moves of that type. Using moves’ percentile rank enables us to sidestep issues related to the
fact that different choice sets contain different numbers of W - and L-moves. Appendix Table AT.1 presents
results based on ordinal rather than percentile rank. Both sets of results are qualitatively equivalent.
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Table 3: Within-Choice-Set Correlations between Relative Complexity and Choice Frequencies

Panel A: W -Moves
Probability of Choosing Move

(1A) (2A) (3A) (4A) (5A)

Percentile Rank (÷ 100) –30.147 –32.921 –54.851 –23.424 –9.009
(0.017) (0.116) (0.044) (0.064) (0.007)

Fixed Effects:
Player × Choice Set Yes Yes Yes Yes Yes

Sample Full Long Time
Controls

≤ 10 Total
Moves

DTM ≥ 50 Excl. Simplest
Move

Mean of LHS Variable (%) 10.305 11.129 26.210 14.992 4.301

R2 0.234 0.246 0.319 0.208 0.133
N 3,435,257,516 92,878,586 148,599,747 89,336,853 2,986,665,574

Panel B: L-Moves
Probability of Choosing Move

(1B) (2B) (3B) (4B) (5B)

Percentile Rank (÷ 100) 0.266 0.148 1.308 0.189 0.576
(0.005) (0.019) (0.030) (0.051) (0.012)

Fixed Effects:
Player × Choice Set Yes Yes Yes Yes Yes

Sample Full Long Time
Controls

≤ 10 Total
Moves

DTM ≥ 50 Excl. Simplest
Move

Mean of LHS Variable (%) 0.452 0.188 1.352 0.588 0.498

R2 0.277 0.276 0.306 0.344 0.270
N 277,507,532 8,300,536 34,762,492 4,095,758 175,675,645

Notes: Entries are coefficients and standard errors from estimating β in eq. (3) by ordinary least squares. The upper panel
restricts attention to different samples of W -moves, while the lower panel focuses on L-alternatives. As explained in the text,
all regressions control for a decision problem fixed effect, i.e., a fixed effect for a particular player and the set from which she
chooses. The unit of observation in each regression is an available legal W - or L-move, and observations are reweighted so that
all moves for a given player and all players receive equal total weight. All estimates are scaled to correspond to the
percentage-point change in choice probability associated with a one-unit increase in the respective move’s percentile rank, as
defined in the text. Standard errors are two-way clustered by player and game, and are shown in parentheses.

frequencies and relative complexity at the level of individual players. To give maximization
its best shot, we restrict attention to decision problems that simultaneously meet criteria (i),
(ii), and (iii) above. In these settings, players have time to consider all available alternatives,
none of which are easily recognizable as good. Focusing on W -moves in this highly selected
sample, we estimate the regression model in eq. (3) for every player for whom we observe at
least ten such decisions.

The left panel of Figure 8 plots the distribution of the resulting point estimates. For
over 90% of players, choice frequencies are negatively correlated with W -moves’ relative
complexity. The right panel of Figure 8 shows the empirical CDF of the one-sided p-values
associated with the estimates on the left. The relevant p-values are one-sided because the null
hypothesis of noisy maximization implies that β ≥ 0 (cf. Proposition 1). Under this null, the
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Figure 8: Testing Noisy Maximization at the Player Level

(a) Player-Level Estimates of β for W -Moves
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Notes: Figure presents player-level tests of Proposition 1. Panel (a) plots histograms of estimates of β in eq. (3), restricting
attention to W -moves in decision problems in which a player chooses from ten or fewer alternatives with minimal DTM
among W -moves of at least fifty, subject to classical or less restrictive time controls. We estimate β̂ separately for all players
for whom we observe at least ten such decision problems. Estimates are scaled to be directly comparable to their counterparts
in the upper panel of Table 3. Panel (b) shows the empirical CDF of the one-sided p-values associated with the point
estimates in panel (a). It also shows results from a Kolmogorov-Smirnov test against the null hypothesis of a uniform
distribution of p-values. All p-values account for clustering across moves in the same choice set.

distribution of p-values should first-order stochastically dominate the uniform distribution.22

This, however, is not what we observe. The actual distribution of p-values is first-order
stochastically dominated by the uniform distribution and a formal Kolmogorov-Smirnov test
rejects the limit case of uniformity at the 99%-confidence level.
We conclude that simpler winning moves tend to be chosen more frequently than more

complex ones, even in settings in which players are a priori most likely to exhibit maximization-
based behavior. We can thus reject noisy maximization as the primary choice procedure in
the data.

6. Moderators of Object Complexity

In the model, skill helps DMs offset the adverse effect of object complexity. An increase in
skill is analogous to a decrease in complexity for all moves in the choice set. Therefore, skilled
players are less likely to make sub-optimal choices than unskilled ones (cf. Corollary 1).
We test this prediction by distinguishing between titled and untitled players. About 1.5%

of decisions in our data are made by users who hold real-world chess titles, such as candidate
master, national master, international master, or grandmaster. These are some of the best

22That is, we should have Pr(p ≤ α | H0) ≤ α for all α ∈ [0, 1]. This claim follows from Definition 8.3.26
and Theorem 8.3.27 in Casella and Berger (2001). The intuition behind it is as follows. If β = 0, then the
observed p-values should be uniformly distributed over the unit interval. If β > 0, however, then we would
expect to see fewer small (one-sided) p-values and more large ones, implying first-order stochastic dominance.
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Table 4: Titled vs. Untitled Players’ Frequency of Mistakes

(1) (2) (3) (4)

Probability of Mistake

Titled Player (÷ 100) –0.813 –0.179
(0.048) (0.061)

Other Title (÷ 100) –0.768 –0.155
(0.051) (0.064)

Grandmaster (÷ 100) –1.134 –0.350
(0.130) (0.197)

Hypothesis Tests (p-value):
H0: No Differences between Players < 0.001 < 0.001 0.004 0.012
H0: Grandmasters = Other Titled Players 0.009 0.344

Fixed Effects:
Number of W - × D- × L-Moves
× Complexity of Moves Yes Yes Yes Yes

Mean of LHS Variable (%) 6.039 6.039 2.748 2.748

Board Configurations All All | D |= 0 | D |= 0

R2 0.366 0.366 0.410 0.410
N 226,955,095 226,955,095 27,600,514 27,600,514

Notes: Entries are coefficients and standard errors from estimating τ in variants of eq. (4) by ordinary least squares. As
explained in the text, all regressions include a fixed effect for the combination of the number of W -, D-, and L-moves and the
vector of all DTM values of the W - and L-moves in the choice set. The unit of observation in each regression is a decision
problem, and individual observations are reweighted so that all players receive equal total weight. The sample in cols. (1) and
(2) includes all board configurations in our data, whereas cols. (3) and (4) restrict attention to configurations for which the
associated choice sets do not contain D-moves. All estimates are scaled to correspond to the percentage-point change in the
probability of an error associated with a one-unit increase in the respective regressor. Standard errors are two-way clustered
by player and game, and are shown in parentheses.

chess players in the world, many of whom are professionals. By contrast, untitled users in
our sample are best thought of as experienced hobbyists. It is thus plausible that titled
players are, on average, more skilled than untitled ones. Given the sheer size of the data, we
observe enough decisions by either type of player to ask whether their mistake frequencies
are systematically different, and, if so, how skill and object complexity interact.

We study the first of these questions by estimating the specification

(4) Errord = τT itledp + ξA + εd,

where Errord indicates whether decision d from choice set A by player p is a mistake, and
Titledp indicates whether player p holds a title of candidate master or higher. We control for
the difficulty of players’ decision problems by adding a fixed effect, ξA, for the number of L−,
D-, and W -moves as well as the vector of DTM values for all L- and W -moves.

Relying on the regression specification above, the results in Table 4 imply that titled
players are, on average, significantly less likely to make mistakes than untitled ones. Cols.
(1) and (2) show fewer mistakes for all board configurations, while cols. (3) and (4) focus on
choice sets that do not contain D-moves. The estimates in cols. (2) and (4) even suggest that
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Figure 9: Titled vs. Untitled Players’ Frequency of Mistakes, by Minimal DTM among W -Moves

(a) Raw Data
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(b) Controlled Difference between Titled and Untitled Players
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Notes: Figure compares mistake frequencies for titled and untitled players by minimal DTM among available W -moves. Panel
(a) plots raw mistake frequencies, while panel (b) shows point estimates and 95%-confidence intervals for φi in eq. (5), i.e., the
difference in error rates between titled and untitled players when the length of the shortest winning path equals i. Negative
point estimates indicate fewer mistakes among titled players. Confidence intervals account for two-way clustering by player
and game.

grandmasters are less likely to err than other titled players facing similar choice sets. In chess,
grandmasters are typically regarded as the “best of the best,” but they only account for about
0.15% of decisions in our data, which may explain why the difference between them and
other titled players is only statistically significant in col. (2). The latter fact notwithstanding,
Corollary 1 is borne out in the data.

To address the question of how skill and object complexity interact, Figure 9 studies whether
mistake frequencies for titled and untitled players depend on the minimal DTM among W -
moves in the choice set. From a theoretical point of view, minimal DTM corresponds to the
minimal skill level that is required to precisely identify the value of at least one W -move in
the choice set. Empirically, the correlation between minimal DTM and other low-dimensional
proxies for object complexity, such as the average or median DTM, exceeds 0.9.

The left panel of Figure 9 plots raw mistake frequencies for titled and untitled players. For
minimal DTM values below thirty, we observe very small, if any, differences between both
sets of players. Only for choice sets in which evaluating W -moves is arguably difficult do we
see that titled players commit significantly fewer mistakes.

A potential issue with the raw data is that titled and untitled players might be choosing
from sets that are systematically different, even conditional on the same minimal DTM. The
right panel of Figure 9 addresses this concern by estimating the difference in the frequency of
mistakes controlling for the number of W−, D-, and L-moves as well as the DTM values of
all W - and L-moves. Specifically, the results in this panel correspond to {φi} in the following
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Figure 10: Mistake Frequencies, by Time Controls and Minimal DTM among W -Moves

(a) Mistakes Frequencies in the Raw Data
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(b) Controlled Difference Relative to Long Time Controls
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Notes: Figure compares mistake frequencies across different sets of time controls by minimal DTM among available W -moves.
Panel (a) plots raw mistake frequencies, while panel (b) shows estimated mean differences relative to long time controls after
conditioning on a fixed effect for the number of available moves of each type as well as the vector of DTM values for all L- and
W -moves. Confidence intervals account for two-way clustering by player and game.

regression:

(5) Errord =
120∑
i=1

φibDTMci,A × Titledp + ξA + εd,

where Errord, Titledp, and ξA are defined as in specification (4) above; and bDTMci,A is an
indicator equal to one if the minimal DTM among all W -moves in choice set A is equal to i.

The regression estimates accord with the model predictions. At the risk of overinterpreting
the patterns in the data, it appears that cognitive constraints begin to negatively affect
untitled players’ decision-making when minimal DTM is between twenty and thirty.

Skill is the only factor that moderates complexity in the model. In reality, there might
be additional moderators. For instance, DMs may examine alternatives in less depth when
afforded less time to make choices. If so, we would expect the frequency of mistakes to vary
with games’ time controls.

On Lichess, games are played subject to various time controls, which govern how fast
decisions need to be made. For the sake of parsimony, we broadly categorize the available
options as follows: (i) ultra-short time controls (UltraBullet and Bullet), which result in
matches that conclude within a few minutes; (ii) short time controls (Blitz and Rapid), under
which games have an expected duration of up to fifty minutes; and (iii) long time controls
(Classical and Correspondence), resulting in matches that can last hours, or even days.

As expected, Figure 10 shows that players are less likely to make mistakes when they
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Figure 11: Mistake Frequencies, by Skill Level and Time Controls

(a) Mistakes Frequencies in the Raw Data
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Notes: Figure compares the frequency of mistakes for titled and untitled players under different time controls. Panel (a) plots
raw frequencies, while panel (b) shows estimated mean differences between both sets of players, controlling for the number of
available moves of each type as well as the vector of DTM values for all L- and W -moves. Negative values correspond to fewer
mistakes among titled players. Moving from the left to the right within each panel, time constraints on players’
decision-making become less and less restrictive. Error bars correspond to 95%-confidence intervals and account for two-way
clustering by player and game. Braces indicate which estimated differences are being tested for equality.

are given more time to make a decision. Importantly, the gap in the frequency of mistakes
across different time controls tends to become wider as the minimal DTM among W -moves
increases. This observation is borne out in the raw data (left panel) as well as in regression
estimates analogous to those in Figure 9 (right panel). In sum, the evidence in Figures 9
and 10 suggests that both skill and time moderate the adverse impact of complexity on the
quality of decision-making.

This finding suggests that, in our model, the standard deviation of the evaluation error εx
might be more appropriately specified as max{0, σx − f(S, T )}, where T denotes time, and
∂f
∂S
, ∂f
∂T

> 0. Going one step further, we can ask whether ∂2f
∂S∂T

> 0. That is, are time and skill
complements?

The evidence in Figure 11 suggests that the answer is “yes”—at least in our setting. To
arrive at this conclusion, we implement a simple difference-in-differences approach. That is,
we compare the difference in the frequency of mistakes between titled and untitled players
across different sets of time controls. The left panel of Figure 11 shows that, in the raw data,
the gap between titled and untitled players widens as both are afforded more time to make
decisions. The right panel presents regression adjusted estimates for the difference between
both sets of players controlling, as above, for the number and types of all available moves
as well as the vector of DTM values. Reassuringly, the numbers in either panel suggest that
titled players benefit more from longer time controls than untitled ones. Thus, time and skill
appear to be complements.
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7. Complexity at the Set Level

Moving beyond object complexity and its moderators, there are likely other, set-level factors
that complicate choice. For instance, a large literature in psychology argues that choice set
size adversely affects decision-making (see, e.g., Iyengar and Lepper 2000; Schwartz 2004;
Chernev et al. 2015). In the context of chess, Anderson et al. (2017) show that players are
more likely to blunder when choosing from sets that contain a smaller share of W -moves.23 In
this section, we build on their work. We first return to the model and develop its predictions
on how the size and composition of the choice set affect mistake probabilities. We then verify
these predictions in the data. Finally, we propose a definition of composition complexity that
may be useful in other applications.

7.1. Model Predictions

In the model, every object is characterized by its type and inherent complexity. Our analysis
thus far studied object complexity. We now focus on moves’ types.

Consider adding a move to the choice set. Random sampling together with noisy evaluations
imply that such an addition leads to choice probability shifting away from all previously
available moves toward the new one. Thus, if the added alternative is an L- or D-move, the
probability of making a mistake increases. If, however, the added move is a W -move then the
probability of making a mistake decreases. Comparing the effect of adding a D- to that of
adding an L-move, the model predicts that mistake probabilities increase by more when a
D-move is added to the choice set.

Prediction 4: For any choice set, adding a D-move to the set increases the probability of
a mistake by more than adding an L-move.

Returning to Figure 1, the intuition for Prediction 4 is that, given any evaluation order,
moving from area III to II results in a greater probability of accepting a suboptimal move.

Consider next replacing a W -move with an L- or D-alternative. Because this replacement
can be accomplished by first adding an L- or D-move to the set and then removing the
W -move, mistake probabilities increase. A more subtle change is to replace an L-move
with a D-move. By Prediction 4, this change in the composition of suboptimal alternatives
also increases mistake probabilities. Broadly summarizing, our model predicts that what
complicates decision-making is not necessarily the size of the choice set but its composition.
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Figure 12: Mistakes as Function of the Number and Type of Available Moves

(a) Mistakes vs. Choice-Set Size
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Notes: Panel (a) compares observed mistake rates for choice sets of a particular size with the frequency of mistakes that would
be expected if players chose a move at random. Panel (b) shows mistake rates for different shares of W -, D-, and L-moves.

7.2. Empirical Evidence

Drawing on the raw data, the left panel of Figure 12 depicts the relationship between the
size of the choice set and the frequency of mistakes. It also contrasts observed mistake rates
with the probability of making a mistake when choosing a move at random. There is a
clear negative association between the number of available alternatives and the frequency
of mistakes. However, because larger choice sets turn out to contain, on average, a greater
share of W -moves, the observed decline in the frequency of mistakes might be mechanical.
Measured as a fraction of the baseline risk of making a mistake when choosing at random,
error rates remain nearly constant over approximately 85% of our sample. Only for choice
sets with more than thirty moves do we observe some increase in relative risk. Taken at face
value, the evidence in this panel is difficult to reconcile with elementary notions of choice
overload, according to which larger choice sets are per se more complex.
What appears to affect mistake frequencies is the mix of moves. The right panel of Figure 12

illustrates this point by examining how the rate of mistakes varies with the relative frequency
of each type of move in the choice set. The entry on the bottom left, for instance, indicates
that when the fraction of W - and D-moves ranges from zero to ten percent each, about
16% of choices end up being mistakes. Comparing rows within the same column, we see
mistakes become more frequent as W -moves become relatively more scarce. And reading
across columns of the same row, mistakes also tend to increase as D-moves become more
frequent. In the bottom row, for instance, the frequency of mistakes increases from 16% to

23Anderson et al. (2017) do not distinguish between D- and L-alternatives, and they do not consider moves’
DTM in any of their analyses.
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more than 30%. Since comparisons within the same row hold the fraction of W -moves—and
hence the mechanical probability of making a mistake—approximately fixed, the data suggest
the quality of decision-making correlates with the composition of the remaining, inferior
alternatives.
To more rigorously establish that different types of changes to the choice set affect mistake

frequencies as predicted by the theory, we estimate η in the following econometric model:

(6) Errord = ηNumberMovestA + κ
bDTMc
A + θ−tA + µp + εd.

In this specification, Errord is an indicator for whether decision d of player p choosing from
choice set A is a mistake, and NumberMovestA denotes the number of available legal moves
of type t ∈ {W,D,L}. Although not required by the theory, we account (in a low-dimensional
way) for the contribution of object complexity to mistake frequencies by including κbDTMcA ,
a fixed effect for the minimal DTM among all available W -moves.24 The fixed effect θ−tA
controls in different ways for the number of moves in the same choice set that are not of type
t. As we vary θ−tA across columns in Table 5, the interpretation of η changes to closely align
with the different changes to choice-set composition that we discussed above. For example,
col. (6) conditions on the choice-set size and the number of W -moves, so that η̂ should be
interpreted as the change in mistake probabilities when an L-move is replaced with one of
type D. By including µp, the model in eq. (6) also controls for player fixed effects.
The regression in col. (1) of Table 5 conditions on the number of D- and L-moves. The

point estimate in this column therefore indicates that the frequency of mistakes decreases,
on average, by .279 p.p. for every W -move that is added to the choice set. This corresponds
to almost 5% of the mean frequency of mistakes. In analogous fashion, the coefficients in
cols. (2) and (3) imply that mistake frequencies respectively increase by .810 and .247 p.p.
as D- and L-moves are added to the choice set. The evidence in the first three columns of
Table 5 thus shows that whether mistakes become more or less frequent as the choice set
expands depends on the type of move that is being added. This pattern helps to explain
why the raw data yield little evidence of choice overload, i.e., why mistake frequencies are
not uniformly higher for larger choice sets. Perhaps more importantly, the increase in the
frequency of mistakes is significantly greater when a D- rather than an L-move is added to
the choice set (p < .001). This finding is consistent with Prediction 4.

24In Appendix Table AT.2, we show that controlling for object complexity is not necessary to obtain results
that are substantively equivalent to those in Table 5.
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Changes to the choice set that involve replacing one move with another one of a different
type are considered in cols. (4)–(6). The coefficient in col. (4) refers to a W -move being
replaced by a D-alternative, whereas that in col. (5) refers to a switch between W - and
L-moves. The point estimate in col. (6) tells us that, on average, mistake frequencies increase
by .841 p.p.—or about 15% of the mean mistake frequency—when an L-move is replaced by
a D-alternative.

Col. (7) considers homothetic enlargements of the choice set, i.e., expansions that hold
the share of W -, D-, and L-moves fixed. After carefully controlling for the composition of
available alternatives, we find no evidence to suggest that larger choice sets are associated
with more mistakes. Not only is the coefficient in col. (7) more than an order of magnitude
smaller than the other estimates in Table 5, it is, if anything, negative and very precisely
estimated.

In sum, the results in Table 5 are consistent with the theory’s predictions. Moreover, the
point estimates in cols. (1)–(6) are nontrivial in size—ranging from 4% to 21% of the mean
mistake rate in the data. Our findings, therefore, imply that complexity at the set level is
empirically relevant and closely related to the composition rather than the size of the choice
set.

7.3. Set-Level Complexity Beyond Chess

Motivated by these findings, we propose a concise, portable definition of what we call
composition complexity. Let A be a choice set, with V (A) = {vx | x ∈ A} denoting the set
of values in A. Let v̄(A) be the largest value in V (A), and let N(v, A) be the number of
objects in A that have value v. With this notation in hand and assuming that |V (A)| > 1,
the composition complexity of A is:

(7) Γ(A) ≡ −N(v̄(A), A) +
∑

v∈V (A)\v̄(A)

α(v̄(A)− v)N(v, A),

where α(·) is a positive and monotonically decreasing function.

The first term in this expression implies that as the number of maximal objects in the
choice set increases, the choice task becomes easier. The function α(·) in the second term
captures the key features of the analysis above. Positivity of α(·) means that adding non-
maximal objects increases complexity, and monotonicity implies that complexity increases as
suboptimal objects become more similar to optimal ones.25

25The exact cardinal specification of α(·) determines, together with the composition of the choice set, how
composition complexity changes when an object with value above v̄(A) is added to A.
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8. Concluding Remarks

This paper studies how complexity at the level of individual objects affects decision making.
We establish that object complexity affects choice in systematic ways. Choice frequencies of
optimal alternatives decrease in the respective object’s complexity, whereas choice frequencies
of suboptimal alternatives follow the opposite pattern. As a consequence, the frequency of
mistakes increases (decreases) as any of the available (sub)optimal alternatives becomes more
complex. We also develop an empirical test that leverages complexity to distinguish between
satisficing and a large class of maximization-based models. Based on this test, we reject
maximization as the primary choice procedure in our data.

Taking a step back, our analysis hints at the potential of developing a ranking of choice
sets according to their complexity. Take two sets A and B with the same support of values.
Based on our results, set B is more complex than set A if it is possible to transition from A

to B by iteratively applying any of the following operations:

• increasing the object complexity of some alternative,
• adding a suboptimal alternative, or
• removing an optimal one.

The resulting binary relation is transitive but incomplete, suggesting an avenue for future
research.

More broadly, our results on complexity in decision-making offer insights that may be
important in other real-world settings. For example, if consumers’ choice sets include products
by different firms, then firms with superior offerings may wish to simplify their product
descriptions. In contrast, firms with inferior offerings have an incentive to make their products
more complex. Firms also have an incentive to affect the order in which satisficing consumers
consider offerings even if doing so is costly. Similar incentives may be present in the design
and presentation of policy proposals, in strategic games, and in various other settings.
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