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Following Solow (1956) textbook models of economic growth assume that TFP
growth is exponential: dAt = gAtdt, where A is TFP and g is constant or at least
highly persistent. I examine data across many countries and time periods and I find
that, in nearly all cases, productivity growth is in fact linear: dAt = bdt where b is
constant, at least within broad historical periods.

I start my investigation with the US using data from Fernald (2012) – “Fernald” –
and Bergeaud et al. (2016)– “BCL”. I find that TFP growth is linear in the US during the
post war period. Using data from Bergeaud et al. (2016), US TFP growth after World
War 2 is well described by the following statement: Hicks-neutral TFP, normalized to 1
in 1947, increases each year by about 0.0245, i.e., 2.45% of its initial value, not 2.45% per
year. Using data from Fernald (2012) for the private sector, the same statement holds
with an annual increments of 0.0276. The size of the increments does not appear to
change over 80 years. There is no TFP slowdown, or, to put it differently, the perceived
TFP slowdown is the result of using a misspecified model as a benchmark. Initial trend
growth is around 2.5%. After 40 year, TFP doubles, and since increments are constant,
the trend growth rate is half of what it used to be. After 60 years later, it is only one
percent.

A crucial point is that Hicks-neutral linear TFP growth implies a non-linear and
convex time path for labor productivity and GDP per capita because of capital ac-
cumulation. The linear TFP model predicts the correct non-linear evolution of labor
productivity while the exponential model over-predicts the level of future labor produc-
tivity.

BCL data covers 129 years (1890-2019) and 23 countries. In the long sample I
estimate models with time varying trend growth, either exponential ĝt or linear b̂t. For
US TFP the additive growth model’s 10-year forecast errors are 25% to 45% lower than
those of the exponential growth model. TFP dynamics are better described by the
additive model for each of the 23 countries in the BCL sample. I also consider a sample
of OECD countries that are not in the BCL sample (e.g., Korea) and I show that their
TFP growth is linear. TFP growth paths in Thailand and Taiwan, two prime example
of “miracle growth” in Asia, are also linear.

The exponential growth model fails in two related dimensions. The first failure is
that it predicts periods of exponential productivity growth that simply do not exist
in the data. The second failure is that the trend growth rates are unstable. Tests of
structural breaks in the exponential model find a large number of breaks. By contrast,
the additive TFP model displays few breaks and, in most cases, these breaks have a
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plausible economic interpretation in terms of General Purpose Technologies (GPTs).
For example, the process of US TFP increments has only one break over the past 130
years, around 1930, following the large-scale implementation of the electricity revolution
(Gordon, 2016).

For a given b the linear model converges to a balanced growth path with a constant
capital/output ratio. The capital labor ratio, labor productivity, and GDP per capita
grow indefinitely, and with increasing increments. The model therefore does not predict
stagnation: incomes are increasing ever faster even as growth rates tend to zero.

Finally, I investigate growth before 1890 using GDP per capita to construct proxies
for TFP. For the UK, I find two breaks between 1600 and 1914. The first is between 1650
and 1700, when growth becomes positive. The second is around 1830. These breaks are
consistent with historical research on the first and second industrial revolutions (Mokyr
and Voth, 2010).

Literature This papers sheds light on existing puzzles in the growth literature. I make
two contributions to growth accounting. The perceived TFP slowdown is the result of a
misspecified model, since growth was never actually exponential, and the additive model
provides useful benchmarks and forecasts across a wide variety of countries and time
periods. The additive model also sheds light on the role of human capital accumulation,
as in Mankiw et al. (1992), and on the distinction between Hicks-neutral and Harrod-
neutral progress. The results in this paper also speak to the correct specification of
models of endogenous growth, such as Romer (1986b), Lucas (1988) and Aghion and
Howitt (1992). These models assume a knowledge production function that delivers
a constant growth rate. My results suggest that the knowledge production function
should deliver constant productivity increments instead, with changes in the size of the
increments happening only around the discovery of new GPTs. These insights relate to
Jones (2009) and to the recent work of Bloom et al. (2020) on the declining productivity
of research and development activities.1

1Alexey Guzey, in a blog post, has criticized Bloom et al. (2020)’ assumption of exponential growth
as a benchmark for measuring labor productivity. See https://guzey.com/economics/bloom/#bloom-
et-al-appear-to-not-realize-that-most-of-the-data-they-analyze-in-the-paper-including-the-us-tfp-does-
not-exhibit-exponential-growth.
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1 Evidence from US Growth

My main sources of data – Fernald (2012) and Bergeaud et al. (2016) – assume a Cobb-
Douglas production function, so I will do the same in most of the paper. Aggregate
value value added (GDP, Yt) is given by

Yt = AtK
α
t L

1−α
t , (1)

where At is TFP, Kt is the flow of capital services and Lt is the flow of labor services.
Section 3 discusses more general production functions F (K,L,A) and compares Hicks
and Harrod neutrality in the context of linear growth. My goal is to understand the
long-term dynamics of TFP. Since at least Solow (1956) economists have assumed that
A follows a geometric process, which I call model G2:

E [At+τ | At] = At (1 + g)τ . (2)

I will show that growth is additive and that the TFP process is better described by
model D (as in “difference”):

E [At+τ | At] = At + bτ, (3)

where b is a parameter that measures the size of increments. I start my investigation
with post-war US data. The empirical justification is that this is the most widely used
and reliable data. The theoretical justification is that one might expect different TFP
dynamics between countries at the frontier and countries catching up to the frontier.
The main advantage of post-war US data, then, is that one can reasonably argue that
the US was at the technological frontier during the entire period. For the same reason
I will focus on the UK when studying productivity before 1900.

1.1 Main Data Sources

My primary sources for TFP are Fernald (2012) (Fernald) and Bergeaud et al. (2016)
(BCL). Let ABCLt and AFt denote the BCL and Fernald measures of TFP. There are
several differences between these two datasets. BCL covers 23 countries from 1890
to 2019 and their data allow the analysis of a long sample as well as international

2Jensen’s inequality terms do not play a significant role in the empirical analysis of this section.
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comparisons in Section 2. Fernald’s series cover only the US business sector, while BCL
include households and the government. Fernald includes an adjustment for capacity
utilization to make the series comparable to the theoretical benchmark. Finally, Fernald
also includes an adjustment for human capital, following Mankiw et al. (1992). Formally,
BCL assume that Lt = Ht, total hours worked, while Fernald assumes Lt = QtHt where
Qt is an index of labor quality based on education. Using (1), we see that the Fernald’s
measure comparable to the BLC measure is

AFQt = AFt Q
1−α
t

where AFt is Fernald’s labor-quality-adjusted TFP measure. Figure 11 in the Appendix
shows the three TFP series, where ABCLt is normalized to 1 in 1947 to be comparable
with Fernald’s measures. The key point is that none of the series is well described by
the exponential process (2) with constant g. AFQt and ABCLt are well described by the
additive process (3) with constant b. The AFt displays some slow down in the later part
of the sample even according to (3) because some of the measured productivity gains
are attributed to the labor quality factor. This speaks to the model specification issue
that I discuss in details in Section 3.

1.2 Postwar U.S. TFP

The simplest way to start comparing model D and model G is to consider the following
experiment. Suppose that two agents, George and Daniela, are asked in the middle of
the sample (1983) to predict the level of TFP in the second half of the sample (1984-
2019). The agents have access to data from the end of World War 2 until 1983. The two
agents have dogmatic beliefs regarding the correct model of economic growth. George
believes in model G from equation (2) while Daniela believes in model D from equation
(3). George therefore fits a log linear model over the years 1947 : 1983 and predicts
future (log) TFP as

log
(
Â

(G)
t

)
= âg + ĝt

for t = 1984 : 2019. Daniela instead fits a linear model and predicts future TFP as
Â

(D)
t = â + b̂t. Figure 1 shows that Daniela would have made a much better forecast

than George. George is puzzled by the TFP slowdown while Daniela does not perceive
an obvious long term break in her model (although there are some meaningful medium
term deviations). The results obtained from AFQt and ABCLt are virtually identical so I
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Figure 1: Out-of-Sample TFP Forecasts
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Notes: BCL TFP is in based on $US 2010. Fernald unadjusted TFP, AFQt = AFt Q
1−α
t . Both are

normalized to 1 in 1947. Models are estimated over 1947-1983. The forecast 1984-2019 is out-of-sample.
Data source: Fernald (2012) and Bergeaud et al. (2016).

focus on one measure (BCL) for brevity.
Figure 1 reveals a new fact and makes an important empirical point. The new fact is

that there is no TFP slowdown in the US according to model D. The important empirical
point is that, with realistic values for TFP growth rates, the distinction between models
D and G requires at least 10 years of out-of-sample forecasts.

Fact 1. There is no TFP slowdown in the US according to model D.

1.3 Capital Accumulation and Labor Productivity

Let us know study the accumulation of capital. Define the capital labor ratio as

kt ≡ Kt/Lt,

where, in the BCL data, Kt is the real capital stock and Lt measures hours worked.
The first order condition for capital demand in the neoclassical growth model equates
the marginal product of capital (MPK) to the user cost (defined as χ). BCL do not
consider changes in the user cost and the first order condition is simply

k1−α
t =

α

χ
At. (4)
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Equation (4) says that the normalized inverse MPK (IMPK) is proportional to A.3

Model G therefore predicts that k1−α
t grows exponentially, while model D says that it

grows linearly. Figure 2 presents the forecasts for k1−α
t based on models D and G with

α = 0.3, the value used by BCL. For model D we have

E
[
k1−α
t

]
= âimpk + b̂impkt (5)

For model G we have the formula in logs. Once again we find that the log-linear model
with constant growth widely missed the mark, while the additive model gives a useful
forecast. This test is obviously a test of the joint hypothesis of linear TFP growth and a
constant user cost, together with Cobb-Douglass capital demand. This last assumption
is certainly not correct in many cases, but the data reveals that it may still provide a
useful approximation. The main reason for fitting equation (5), however, is to be able
to forecast labor productivity (and GDP per capita).

Once we have a forecast for the capital labor ratio we can use our forecast for TFP
to create a forecast for labor productivity λt, defined as output per hour:

λt ≡
Yt
Lt

= Atk
α
t . (6)

Model D offers a forecast for labor productivity as

λ̂t =
(
â+ b̂t

)(
âimpk + b̂impkt

) α
1−α

Note that labor productivity is convex in time even under additive growth since it
depends on the product of both TFP and capital intensity. I could use the forecasts for
IMPK and TFP to similarly create a forecast for model G but that would be a straw
man since we have already seen that model G fails to predict either A or IMPK. To
give model G a chance, I create directly a forecast of labor productivity by fitting the
series for log (λt) in the first half of the sample. Model G therefore gains two degrees of
freedom. Panel (b) in Figure 2 shows that the convex-linear forecast of model D predicts
correctly the evolution of labor productivity in the long term. Model G does not.

US growth is better described as additive rather than multiplicative. Instead of stat-
3Users of model G typically interpret equation (4) as saying that capital grows grows exponentially,

just like A, as a rate (1 + g)
1/(1−α). Equivalently, if the model is written with Harrod-neutral tech-

nological progress, Yt = Kα
t (ZtHt)

1−α then capital is proportional to Zt. I return to these issues in
Section 3.

7



Figure 2: Out-of-Sample IMPK and LP Forecasts
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0.7, normalized to 1 in 1947. Models are estimated over 1947-1983. The forecast

1984-2019 is out-of-sample. Labor productivity is real GDP per hour. Data source: Bergeaud et al.
(2016).

ing that the average growth rate of TFP is 1.45%, which is correct but not particularly
useful, it is more relevant to say that TFP increases by 0.0245 points each year starting
from a normalized value of 1 in 1947. For labor productivity, both the additive growth
model and the multiplicative growth model predict an increasing size of productivity in-
crements, but at different speeds. The additive model D predicts that labor productivity
increments increase with the square of the time horizon, while the geometric model G
predicts exponentially increasing increments. Model G does not describe the data with
a constant growth rate. Model D describes the data relatively well with year-on-year
increments of about $1560 per full time worker ($0.87 per hour, assuming 1800 hours
worked in a year) around 2010.

Fact 2. Postwar US TFP growth is well described by Model D with increments of ∆ =

0.0245 points each year starting from a normalized value of 1 in 1947. Model D also
predicts the correct non-linear evolution of labor productivity.

1.4 U.S. TFP, 1890-2019

Let us know extend the methodology and the sample, taking into account that trend
growth can change over time. Our agents now forecast time varying growth according
to a standard exponential smoothing model

Et [∆t+1] = (1− ζ)Et−1 [∆t] + ζ∆t (7)
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with ∆t ≡ At − At−1 for model D and gt = At/At−1 − 1 instead of ∆t for model G.
There are two ways to set the smoothing parameter. One can argue on theoretical

grounds that changes in the trend growth rates of TFP are decadal phenomena. This
approach suggests values of ζ between 0.05 and 0.1. At 0.05, the sensitivity of the trend
estimate to the most recent observation is the same as that of a 20-year moving average.
Below 0.05 the model would take too long to adjust to changing trend growth. At 0.1 the
sensitivity would be the same as that of a 10-year moving average. The main advantage
of this approach is that it avoids any risk of over-fitting or p-hacking. I will simply
report the results for 0.05 and 0.1 (and intermediate values) and see if the results are
robust.

Figure 3 shows the raw and smoothed series for ζ = 0.05 and ζ = 0.1. The data is
from Bergeaud et al. (2016) and winsorized in the first and last percentiles to remove limit
extreme outliers during WW2. The model is initiated over the first 10 observations, 1891
to 1900. As expected the trend growth of the economy changes over this long sample.

The other way to choose ζ is to estimate it in some sample. The advantage is
obvious, but the cost is that we waste a sample where we cannot perform out-of-sample
tests. Thankfully the two approaches turn out to yield similar results. The smoothing
parameter that minimizes the RMSE of one-year forecasts from (7) for the US over 1890-
2019 is ζ = 0.0664. If we consider the RMSE of 10-year ahead forecasts, the optimal
parameter is ζ = 0.055 (see below for this calculation). In the remaining of the paper I
will therefore use ζ = 0.05.

The extreme heteroskedasticity of growth rates is also apparent in Panel (b) of Figure
3. TFP growth rates are much more volatile before than after WW2 – 4.9% vs 1.5%
– and volatility declines further after 1980. Romer (1986a) discusses the first fact,
McConnell and Perez-Quiros (2000) discuss the second fact, which became known as
the great moderation puzzle. These puzzles do not exist in Model D. The standard
deviation of TFP changes is 0.13 before WW2 and 0.11 since 1947, and the difference is
not statistically significant. Formally, define the residuals for model G as

ηgt = gt − Et−1 [gt]

and similarly for model D, η∆
t = ∆t − Et−1 [∆t]. Table 1 shows that the volatility

of TFP growth rates declines significantly over time. I use the absolute value of the
unexpected shock to avoid the influence of outliers but the results are similar if I use
squared residuals instead, as in ARCH models. Average absolute deviation is 2.5% in the
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Figure 3: US TFP, 1890-2019

(a) TFP Changes. Model D.

-.1
0

.1
.2

1900 1920 1940 1960 1980 2000 2020
Year

dtfp Smoothing 0.05 Smoothing 0.1

Changes

(b) TFP Growth Rates. Model G.

-.1
-.0

5
0

.0
5

.1
.1

5

1900 1920 1940 1960 1980 2000 2020
Year

gtfp Smoothing 0.05 Smoothing 0.1

Growth Rates

Notes: Models are estimated over 1947-1980. The left panel show the prediction of a linear model. The
right panel shows the prediction of a log-linear model. US TFP is from the updated work of Bergeaud
et al. (2016).

sample, and decline by 3.6 basis point each year on average. Over 50 years the volatility
changes by 1.8% which is almost 3/4 of the sample average. By contrast the trend is
small and insignificant for model D. The change over 50 years is only 10% of the sample
average.

Fact 3. There is no volatility puzzle for model D.

Forecasts Let us know study the forecasting accuracy of the two models as in Figure
1, but instead of performing once test pre/post 1980, I compute real-time rolling esti-

Table 1: Volatility of TFP Growth, US 1890-2019
Model G Model D

100∗ |ηgt |
∣∣η∆
t

∣∣
(Year-1955) -0.036 -0.011

t -6.5 -1.1
Constant 2.49 5.62

t 11.8 15.1
N 129 129
R2 0.247 0.009

Notes: Dependent variables scaled by 100. For model G the dependent variable is residual growth rate
of TFP. For model D the dependent variable is the residual of the first difference of TFP. Data from
Bergeaud et al. (2016), US, 1890-2019.
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Table 2: RMSE for US TFP Forecasts, 1890-2019

Smoothing Parameter ζ = 0.05 ζ = 0.1
Forecast Horizon 10 years 20 years 10 years 20 years

Model D .086 .145 .090 .147
Model G .107 .209 .114 .237

Notes: US TFP is from the updated work of Bergeaud et al. (2016)

mates and out-of-sample forecasts using (7). Figure 4 shows the 10-year out-of-sample
predictions for the level of TFP from model D

EDt−10 [At] = At−10 + 10b̂t−10 (8)

and from model G
EGt−10 [At] = At−10 (1 + ĝt−10)10 , (9)

where b̂t−10 ≡ Et−10 [∆t−9], ĝt−10 = Et−10 [gt−9] are the trends estimated 10 years before
and I use the fact that Et [∆t+k] = Et [∆t+1] = b̂t for all k ≥ 1. I then define the long
term forecast error as

εD,Gt =
At − ED,Gt−10 [Ai,t]

Ā
,

where Ā is the sample average of A. I use this normalization to ease the comparison
across datasets where TFP levels are defined in different ways. Table 2 reports the root
mean square errors (RMSE) of long term forecasts. Model D outperforms model G in all
cases and the relative performance of model D increases with the forecast horizon.4 The
main reason is that after a sequence of positive growth rates the multiplicative model
extrapolates exponential growth for 10 years, which systematically fails to materialize.

Fact 4. For US TFP over 1890-2019, model D’s long-term forecast errors are 25% to
40% higher than those of Model D.

Figure 3 shows that model G is unstable. The estimated trend growth rate is con-
stantly being revised. This is why model G is not useful as a long run growth model. To
illustrate the point consider the predictions one would make in 2020 regarding GDP in
2060, holding population constant so as not to introduce additional demographic forecast
errors. Using Fernald’s data, TFP is 3 in 2020. The estimate for TFP growth is 1.2%
with a standard deviation of 0.2% over the preceding 40 years. The estimate for TFP

4The same results hold if I compute the RMSE over relative errors Ai,t−ED,G
t−10[Ai,t]

Ai,t
.

11



Figure 4: US TFP Forecasts, Long Sample
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Notes: Forecast with smoothing parameter 0.05. US TFP is from the updated work of Bergeaud et al.
(2016).

increments is 0.027 with a standard deviation of 0.0036. The G-forecast for cumulative
growth between 2020 and 2060 is 2 (i.e., 1.012

40
1−α ) but the two standard errors range

is 1.6 to 2.6, which is one entire GDP of 2020, or $21 trillion. It is difficult to see the
usefulness of a forecast with such a wide error range. The D-forecast is 1.59 with a range
of 1.42 to 1.76, which is only one third of 2020 GDP.

1.5 TFP and GPT

Model D, unlike model G, appears to have only one break over the period 1890-2019.
We can formally test this idea following Bai and Perron (2003). The unconstrained test
finds one break in the ∆ [TFP ] series around 1930 (the point estimate is 1933). We can
test H0: no breaks versus H1: break in 1933. The W statistic is 21.72 and the p-value is
0.0. I emphasize, however, that while the existence of a break is clear, the date is really
an interval between the late 1920s and WW2.

The date of the break is consistent with Field (2003)’s argument that “the years 1929–
1941 were, in the aggregate, the most technologically progressive of any comparable period
in U.S. economic history.” This period corresponds to the large scale implementation
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Figure 5: US TFP under Electrification GPT Interpretation
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Notes: US TFP is from the updated work of Bergeaud et al. (2016), normalized to 1 in 1890.

of the discoveries of the second industrial revolution: electric light, electric power, and
the internal combustion engine, as discussed in Jovanovic and Rousseau (2005). Gordon
(2016) points out that it is somewhat surprising that “much of the progress occurred
between 1928 and 1950,” several decades after the discoveries were made. Following
David (1990), he explains the paradox by showing that the 1930s were a period of
follow-on inventions, such as the perfection of the piston power-powered aircraft and
television, and the increasing quality of machinery made possible by the large increases
in available horsepowers and kilowatt-hours of electricity.

Following these historical insights, figure 5 proposes an interpretation of US TFP
from 1890 to 2019, using linear growth with one structural break in 1933 after the
electrification revolution.

We can summarize this idea in the following remark, keeping in mind that we nor-
malize US TFP to 1 in 1890.

Fact 5. From 1890 to 1933, TFP increases by .017 each year until it reaches a level
around 1.75 in the early 1930s. From 1933 to 2019 TFP increases by .057 each year
(3.3 p.p. of its level in 1933) to reach a level around 8 at the end of the sample.

Proposition 1 summarizes our results so far.
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Proposition 1. Model G does not provide a good description of US TFP growth over
1890-2019, neither for volatility nor for long term forecasts. Model D provides a simple
and accurate description as

At − At−1 = bT + εt

where A1890 = 1, εt is iid with a mean absolute deviation of 0.056, b1890−1933 = 0.017 and
b1933+ = 0.057.

I will discuss the pre-1890 period in Section 4 but it is useful at this point to emphasize
that backcasting is the not the same as forecasting. My results show that the D-model
offers better forecasts than the G-model, at least over a few decades. But the GPT
model does not imply linear backcasts, because conditional on high productivity today,
we know there must have been a break in the not-too-distant past. Thus the model does
not predict that TFP was zero in 1831 (1/0.017=59 years from 1890). Instead it says
that there must have been a break sometime in the 19th century. Section 4 shows that
the data is consistent with this prediction.

2 Country-Level International Evidence

Bergeaud et al. (2016) provide data for 23 countries.5 The trend growths are estimated
with the recursive learning model (7) with parameter ζ = 0.05 and ζ = 0.1. As before,
all the forecasts are out-of-sample. For each country i = 1 : 23 and each year t I compute
the forecast errors as

εD,Gi,t =
Ai,t − ED,Gt−10 [Ai,t]

Āi
,

where Āi is the country sample average and the expectation are taken under models D
and G. Finally, I compute the root mean square error for each country as

RMSE
D,G
i =

√√√√ 1

T

T∑
t=1

(
εD,Gi,t

)2

.

5Australia, Austria, Belgium, Canada, Switzerland, Chile, Germany, Denmark, Spain, Finland,
France, United Kingdom, Greece, Ireland, Italy, Japan, Mexico, Netherlands, Norway, New Zealand,
Portugal, Sweden and United States. The sample covers 1890–2019. The main variables are GDP,
labor, and capital. Labor is constructed from data on total employment and working time. Capital is
constructed by the perpetual inventory method applied equipment and buildings.
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Figure 6: TFP Forecast Errors, BCL 1890-2019
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Notes: US TFP is from the updated work of Bergeaud et al. (2016).

2.1 Long-Sample, 1890-2019

I first run the model over the whole sample, 1890-2019, initializing over the first 10 years.
Figure 6 shows that the D-model out-performs the G-model for every single country in
the BCL sample.

Table 3 summarizes the average performance of models D and G. The differences are
larger than in Table 2 because many countries experience more volatile growth sequences
than the US, which makes it easier to separate the two models. Model D over-performs
model G by 30% to 60%.

2.2 Post-War Sample

I run the model separately for the post war period because several countries (e.g. Japan,
Germany) experience large shocks during the 1940s which may render the forecasts from
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Table 3: RMSE for 23 Countries, BCL Sample
Sample 1890-2019 1950-2019

Parameter ζ = 0.05 ζ = 0.1 ζ = 0.05 ζ = 0.1
Model D .130 .128 .102 .103
Model G .171 .168 .162 .145
N. Obs. 23 23 23 23

Notes: Data from Bergeaud et al. (2016).

the exponential model unstable. Figure 7(a) shows the RMSE of TFP forecasts in the
two datasets. Model D performs better than model G in all cases.

I also use the OECD MFP database as a robustness check in Figure 7(b). The data
covers 24 countries and starts in 1985 for most, and later for some. Because the time
series are much shorter it is more difficult to tell the models apart and some countries
are bunched close to the 45 degree line. Nonetheless, model G never performs better
than model D, and often performs worse. Perhaps the most interesting case is that of
Korea, which is not in the BCL sample and has experienced strong growth over the past
30 years. It turns out that Korean TFP growth is very linear.

The OECD data does not include some important Asian countries with strong growth
performance. Figure shows TFP for Thailand and Taiwan. Taiwan’s TFP growth is
remarkable. The TFP index, normalized to 1 in 2017, was only 0.2 in 1955. Such a fast
growth makes it easy to tell apart model D and model G. Model D fits very well. Model
G vastly over-predicts TFP, irrespective the smoothing parameter.

Fact 6. TFP growth is better described by model D than by model G for both developed
and developing countries.

3 Theoretical Implications

This section highlights some important features of additive growth. I leave industry and
firm dynamics for future research. To draw long-run implications from the theory we
must first revisit the exact nature of the production function.

3.1 Finding Linearity

As explained in Barro and Sala-i-Martin (2004), balanced growth requires labour-augmenting
(Harrod-neutral) technology
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Figure 7: TFP Forecast Errors, Post War
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(b) OECD, post-1985
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Figure 8: TFP, Fast Growing Asian Countries
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Yt = F
(
Kt, A

L
t Lt
)

(10)

where ALt is labor-augmenting, or Harrod-neutral, technological progress. We need an
exact mapping between this functional form and the evidence discussed so far. This
is important even if F is Cobb-Douglas, as Fernald (2012) and Bergeaud et al. (2016)
assume. In that case we can of course renormalize our productivity measure as A

1
1−α =

AL so that (10) becomes Yt = AtK
α
t L

1−α
t , but this does not answer the question of

whether A or AL (or perhaps neither) is best described as a linear process. To be
concrete, if AL is linear then A is concave in time. If instead A is linear then AL is
convex in time. These distinctions matter for long-run growth.

Fernald (2012) provides a good framework to discuss these issues. He writes the
following production function

Yt = AFt K
α
t (QtHt)

1−α ,

where AFt Fernald’s headline TFP measure, capital services K adjusted for variable
utilization are constructed from disaggregated series on structures, equipments and IPs,
and Qt is a labor-quality index constructed from rolling Mincer wage regressions in the
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Current Population Survey. I consider 5 hypotheses:

• (i) GA: the Hicks-neutral series net of labor quality improvements, AFt , features
constant exponential growth.

• (ii) DA: AFt features constant additive growth.

• (iii) DAQ: AFQt = AFt Q
1−α
t , the Hicks-neutral TFP including educational improve-

ments is additive. Whether or not one should net out the effect of education when
measuring TFP depends on the question at hand. Solow (1957) explains that he
uses “the phrase "technical change" as a short-hand expression for any kind of shift
in the production function. Thus [..] improvements in the education of the labor
force, and all sorts of things will appear as “technical change”.” If one follows this
line of reasoning, then AF,NQt is the more relevant concept.

• (iv) DAL:
(
AFt
) 1

1−α , the Harrod-neutral series adjusted for labor quality, is additive.
If the true model is Yt = F

(
Kt, A

L
t QtHt

)
with ALt additive, then we should find

that
(
AFt
) 1

1−α is additive.

• (v) DALQ :
(
AFt
) 1

1−α Qt, the Harrod-neutral series including educational improve-
ments is additive. If the true model is Yt = F

(
Kt, A

L
t Ht

)
with ALt additive, then

we should find that
(
AFt
) 1

1−α Qt is additive.

Table 4 shows the estimates for the US from Fernald’s data, together with one estimate
from the BCL data for comparison. Column (i) documents the well-know TFP “slow-
down” which is a puzzle for the exponential growth model (the puzzle is the same for
all G models irrespective of the labor quality or Harrod-neutral adjustments, omitted
for brevity). The sample average TFP growth is 1.3% per year, but loses 2.6 basis point
each year, from around 2% in the early 1950s down to only 0.5% after 2010. Column
(ii) shows that the puzzle is much reduced, but not entirely eliminated, by the DA
specification.

Column (iii) and (iv) show that DAQ and DAL are two equally plausible way to char-
acterize additive growth. DAL assumes linear labor-augmenting productivity applied to
quality adjusted labor QtHt. DAQ folds educational improvements into Hicks-TFP
growth instead of netting them out. Column (v) shows that doing both adjustments
simultaneously (DALQ) might be excessive in the US. Column (vi) shows that the BCL
series is similar to the Hicks-neutral series based on raw labor in (iii), which is consistent
with our discussion in Section 1.
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Table 4: Trends in US TFP Growth
(i) (ii) (iii) (iv) (v) (vi)

Specification GA DA DAQ DAL DALQ BCL

100 ∗∆ [.] logAt At AtQ
1−α
t A

1
1−α
t A

1
1−α
t Qt ABCLt

(Year-1983) -0.026 -0.015 -0.002 -0.005 0.038 -0.003
t -3.3 -1.1 -0.1 -0.2 1.1 -0.3

Constant 1.311 2.107 2.758 4.131 5.740 2.498
t 7.9 7.2 8.5 6.7 7.9 9.9
N 72 72 72 72 72 72
R2 0.133 0.017 0.000 0.000 0.017 0.001

Notes: US, 1947-2019. At refers to Fernald’s measures of TFP, adjusted for labor quality Q, and
normalized to 1 in 1947. In column (iii) the labor quality adjustment is added back to the TFP
measure. All dependent variables scaled by 100. In (i) the dependent variable is the growth rate of
TFP. In (ii-vi) the dependent variable is the first difference of TFP. Data from Fernald (2012) in (i-v)
and Bergeaud et al. (2016) in (vi). The independent variable is year minus sample mean (1983) so
that the constant can be readily interpreted as the sample average growth in percent for (i) and in
percentage points of the 1947 value in the other columns.

The data therefore suggests that models (iii) and (iv) provide reasonable descrip-
tions of additive TFP growth. An important point is that both predict increasing im-
provements in labor productivity, but with slightly different interpretations. In model
DAQ the combination of educational and non educational improvements generates Hicks-
neutral additive growth. In model DAL, ALt is linear, which by itself generates linear
labor productivity, but it applies to an increasingly qualified quantity of labor.

There is no clear statistical reason to prefer the Hicks-additive model (iii) to model
(iv), but model (iii) has two practical advantages. It is applicable to the BCL series and
it requires the forecast of only one factor (At) instead of two (ALt and Qt).

Fact 7. US private Hicks-TFP At – including educational improvements and normalized
to 1 in 1947 – increases by about 2.76 percentage points each year.

After twenty years, TFP is 1.55, after forty years it is 2.1, and so on. This model
accounts well for the evolution of TFP in the US since 1947. There is no slowdown in
TFP increments. The point estimates of -0.002 is rather precisely estimated at 0.

3.2 Theoretical Properties

Let us now turn to the theoretical dynamics of the Hicks-additive model. I use continuous
time to simplify the notations. Output is Yt = AtK

α
t H

1−α
t , TFP grows according to
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dAt
dt

= b, and capital accumulates as

dKt

dt
= It − δKt.

Hours grow at the constant population growth rate gn: dHt
dt

= gnHt.

Solow-Swan Dynamics Let us start with a textbook model with a fixed saving rate
s: It = sYt. Define ALt = A

1
1−α
t and the scaled capital stock as

κt ≡
Kt

ALt Ht

to obtain the usual differential equation

κ̇t = sκαt −

(
δ + gn +

ȦLt
ALt

)
κt (11)

with ȦLt
ALt

= 1
1−α

Ȧt
At
. The exponential growth model predicts that Ȧt

At
is constant. The

additive growth model predicts that Ȧt
At

= b
At

declines over time. Since limt→∞At = ∞
we have the following proposition.

Proposition 2. The long-run balanced growth path is characterized by κ∞ =
(

s
δ+gn

) 1
1−α .

The capital labor ratio grows as kt = κ∞A
1

1−α
t and labor productivity (or GDP per capita)

as λt = κα∞A
1

1−α
t . The increments of kt and λt increase to infinity, limt→∞

dλt
dt

=∞, but
their growth rates converge to zero limt→∞

d log λt
dt

= 0.

Let me now discuss a few implications and extensions of the model.

Long Term Growth Note that for large t we have dλt
dt
≈ 1

1−ακ
α
∞ (A0 + bt)

α
1−α b. This

shows that labor productivity, and thus living standards, grow as an increasing pace when
we assume Hicks-linear growth. If we instead assume (counter-factually as discussed
above) Harrod-linear growth, ȦLt = b, then increments in living standards would not
go to infinity but instead converge to a finite limit: dλt

dt
→ κα∞b. Models DAA (iii) and

DALQ (v) therefore make different predictions about long run growth. The good news
is that the available evidence seems to support model DAQ. One caveat, however, is that
model DAQ is linear because we include educational achievements into TFP growth. If
the educational achievements of the 20th century as documented by Goldin and Katz
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(2008) cannot be repeated, growth could fall to that implied by the DALQ model.
Similarly, Hsieh et al. (2019) show that human capital misallocations have decreased
over the past 60 years. They argue that “a substantial pool of innately talented women
and black men in 1960 were not pursuing their comparative advantage,” and that the
improved allocation of talent can explain 20 to 40 percent of labor productivity growth.
If this improvement cannot be repeated our estimate of long run b could be biased
upward.

Convergence Transitional dynamics are essentially the same as in the standard model,
so results on conditional convergence, discussed for instance in Barro and Sala-i-Martin
(2004) are unchanged. Unconditional convergence depends on how b’s vary across coun-
tries and over time. Permanent differences in b predict infinitely increasing inequality
even though growth rates converge to zero in all countries. Changes in b over time pre-
dict time-varying catch. For instance, if a country manages to permanently increase its
b, its catch up would be initially quick but then slower.

Neoclassical Production Function The results in Proposition 2 generalize beyond
the Cobb-Douglas case. Define ALt as the Harrod growth in a neoclassical production
function Yt = F

(
Kt, A

L
t Ht

)
. The dynamic equation becomes

κ̇t = sf (κt)−

(
δ + gn +

ȦLt
ALt

)
κt

where f (κ) ≡ F (κ, 1). As before the limit solves sf (κ∞) = (δ + gn)κ∞. Define

α∞ ≡ lim
κ→κ∞

α (κ)

where α (κ) ≡ KFK
F

estimated at the point κ = K
ALH

. Thus α∞ is simply the capital
elasticity (or capital share) estimated at κ∞. This model is consistent with the evidence
on additive Hicks productivity growth if and only if ALt ≈ A

1
1−α∞ where A is additive.

Ramsey Model and Interest Rates Let me finally discuss the case where savings
are endogenous. I again assume a textbook model where infinitely-lived households
have CRRA preferences and fixed labor supply. The equilibrium is pinned down by
capital accumulation and the households’ Euler equation (and the usual transversality
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condition, omitted here):

κ̇t = f (κt)− ĉt −

(
δ + gn +

ȦLt
ALt

)
κt,

˙̂ct
ĉt

= σ (f ′ (κt)− δ − ρ)− ȦLt
ALt

,

where ĉt = Ct
HtALt

is normalized consumption per capita, σ is the EIS and ρ the rate of

time preference. As before, we have limt→∞
ȦLt
ALt

= 0 so the long-term balanced growth
path is given by

f ′ (κ∞) = δ + ρ

and
ĉ∞ = f (κ∞)− (δ + gn)κ∞

All per capital variables grow with ALt . For instance, long run per capita consumption
is ct = ĉ∞A

L
t . What is interesting, however, is the behavior of interest rates. The model

features decreasing growth rates, so if we assume CRRA preferences, the model predicts
that interest rates fall over time and eventually converge to ρ.

3.3 Endogenous Growth

The additive model can be cast as a semi-endogenous growth model. I follow Jones
(2021a) and ignore capital accumulation as it is not crucial here. I assume first that
population is constant at N . People are employed in production L or in research R and
the labor resource constraint is R+L = N , and as in Jones (2021a) I assume R = κN for
some constant κ. Output is given by Y = AL so output per capita is y = Y

N
= (1− κ)A.

The simplest semi-endogenous growth equation is then

dA

dt
= Γ (R) = Γ (κN) . (12)

This model delivers additive TFP growth given κ and N . If we replaced Y = AL with
a neoclassical production function we would find that labor productivity is convex as
before. For a given function Γ we can endogenize κ by equating private returns to
innovation with the labor market wage, as in standard endogenous growth models.

There are two important issues. The first issue is that Γ changes over time following
the discovery of a GPT. Equation (12) holds within a GPT period but not across GPTs.
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A corollary of that issue is that we need to take a stand on the persistence of a GPT
shock. Should we assume that a GPT permanently increases the (potential) growth of
the economy? Or should we assume that the impact on b depreciates over time? One
could speculate that the slowdown of the late 1970s in Figure 5 reflect the waning impact
of the initial electricity revolution and the pickup in the late 1980s the impact of IT.
Section 4 makes some progress on these questions but this is an important issue for
future research.

The second issue is that population growth can overturn the additive growth pre-
diction of equation (12). If Rt = κNt grows over time then equation (12) says that dA

dt

will not be constant. This problem is the same in most growth models (Jones, 2021a)
and not specific to the additive model. One can restore additive growth by assuming
strongly decreasing returns to idea production.6 Define knowledge as K with dK

dt
= γR.

If A = log (K), then dA = dK
K = gn is constant. Why would this be the case? Jones

(2021b) provides a possible micro-foundation based on combinatorial growth. Suppose
ideas are drawn randomly and only the best idea matters. If the number of draws grows
exponentially (e.g. because of growth in the number of researchers) and if we draw from
an exponential distribution, then Jones (2021b) shows that the maximum draw grows
linearly over time.

4 Growth during 1600-1914

In the neoclassical growth model, labor productivity is proportional to A
1

1−α
t . If hours

worked per capita are stationary and if the capital share is constant then we can use series
on GDP per capita to construct proxies for TFP. I make these heroic assumptions and
use as my proxy for TFP (yt)

1−α where yt is GDP per capita and α = 1/3. I perform the
analysis from 1600 to 1914 using GDP per capita estimates from the Maddison Project
(Bolt and van Zanden, 2020).

4.1 Evidence

Just as the US provides the best proxy for the technological frontier in the 20th and
21st centuries, the UK provides the best proxy before 1914. I therefore focus on the
series for pseudo-TFP in the UK. The Maddison series for UK GDP per capita has one

6The insights in this paragraph are from Chad Jones. The potential mistakes are mine.

24



observation in the year 1000 and then offers annual values from 1252 onward but growth
is virtually null until the 1600’s.

Panel (a) of Figure 9 shows the series for TFP in the UK together with the forecasts
from model D and G. TFP is normalized to 1 in 1890 so that the values are consistent
with those in the BCL sample analyzed earlier. Because growth is rather slow in the
1600’s and 1700’s the RMSEs of the two models make rather similar forecasts. Panel
(b) of Figure 9 shows the RMSEs for all the countries in the Maddison Sample over the
period 1600-1914 (only a few countries have data going back to 1600, many start in the
19th century). The RMSEs of the two models are rather similar in many cases because
linear and exponential forecasts are not too different when growth is slow. Australia and
New Zealand provide interesting counter examples as they experience rapid growth and
the G model performs very poorly.

Figure 10 shows UK TFP together with estimated breaks of the linear model. I
emphasize that these breaks are estimated using the full sample. They are not real time
estimates of changes in trend growth as in Figure 9. Given available data, statistical
agents in 1830 would not have understood the break until 1850 as we see in Figure 9.
The breaks in 10 are simply useful to us today as we seek to organize the historical
evidence.

Panel (b) zooms in on the two main sub-period, 1650-1830 and 1830-1914. Growth
is zero until 1650 and the level of TFP is 0.4. Starting in 1650 it increases by 14 basis
points each year until 1830 where it reaches approximately 0.7. In 1830 the increment
increases to 58 basis point and grows linearly until WW1.

The break in 1830 is exactly as expected, but the break in 1650 happens before the
first industrial revolution. There are several explanations for the fact that growth in the
UK started earlier than the 18th century. The first key point to keep in mind is that I do
not have a measure of hours worked. The pseudo-TFP series are based on income per-
capita. Voth (2001) has shown that a rising labor input was an important contributor
to growth after 1770. It is plausible that changes in hours per capita also contributed
to growth during the previous century. Mokyr and Voth (2010) point out that “the rise
of cottage industries in the countryside after 1650, the famed “proto-industrialization”
phenomenon, would do exactly that. There is also reasonable evidence to believe that
labor participation rates were rising in the century before the Industrial Revolution.”
Moreover, England, unlike France, had no food crises between 1650 and 1725. Finally,
the increase in GPP per capita in the 1600’s is consistent with recent work by Bouscasse
et al. (2021).
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Figure 9: Pseudo-TFP, 1600-1914

(a) UK TFP Forecasts
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Figure 10: UK Pseudo-TFP & Industrial Revolutions
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4.2 Rejoinder

The trend growth of the technology frontier changes enormously over time. These
changes are not well predicted by the exponential model, but they do create convex-
ity in the TFP series and they highlight the role of technological revolutions. These
facts motivate a hybrid model of TFP growth. Within a historical GPT period, growth
is linear

At − At−1 = bt,

but there is a small probability p of a regime change

bt+1 =

bt , 1− p

Atξt+1 , p

I normalize the new regime by the level of TFP at the time of the regime change so that
the specification nests models D and G:

E [At+1 − At] = (1− p) bt + pξ̄At.

Model D corresponds to p = 0, model G to p = 1. The historical data suggests p ∼ 0.5%

to 1% per annum which explains the success of model D. With the normalization by At
we have ξ1650 = 0.35%, ξ1830 = 0.82%, and ξ1930 = 3.26%. The structural change of the
1930s appears truly amazing in that respect.

5 Conclusion

TFP growth is not exponential. New ideas add to our stock of knowledge; they do
not multiply it. TFP has been growing linearly over the past 90 years in the US and
the additive model beats the exponential model for every single country, developed or
catching up, where TFP data is available. The TFP frontier appears to grow linearly
within broad historical periods: 1650 to 1830, 1830 to 1930, and 1930 until today.
Additive TFP growth predicts increasing growth of labor productivity and GDP per
capita thanks to capital accumulation. This prediction also appears to be empirically
accurate.

The evidence of additive growth speaks to the appropriate functional form for the
innovation technology in models of endogenous growth. These models predict long term
growth but do not predict that it is exponential. Models of quality ladders (Aghion
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and Howitt, 1992) assume an exponential ladder where the size of the next increment
is proportional to the current level of quality. If we assume a linear ladder instead we
obtain linear growth. The same is true with models of expanding varieties.

The additive growth model explains the observed TFP slowdown as a simple side
effect of model misspecification. We should not have expected growth rates to be con-
stant in the first place. The additive model does not necessarily solve the research
productivity puzzle of Bloom et al. (2017) since this puzzle is not about the stochastic
process for TFP but rather about the specification of the production function for ideas.
Models where ideas are non-rival often imply a tight connection between growth and the
quantity of research. These models predict accelerating growth – whether of the linear
kind or not – from an increasing number of researchers.

Additive growth has implications for industry dynamics and structural transforma-
tion as in Baumol (1967), and for firms dynamics as in Luttmer (2007) and Gabaix
(2011). Philippon (2022) provides some early evidence on these issues. Additive growth
may also have important implications for investment and for the valuation of long term
assets, such as stocks or pensions. The model predicts falling growth rates and falling
interest rates so valuation and investment dynamics will depend on preferences.
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Appendix

A Three Measures of Post-War US TFP

Figure 11: US TFP Levels

1.
00

1.
50

2.
00

2.
50

3.
00

1950 1960 1970 1980 1990 2000 2010 2020
Year

Bergeaud-Cette-Lecat Fernald Fernald, NQ

TFP Level, Postwar US

Notes: TFP levels, Abcl, Aft , and Ant . Data from Fernald (2012) and Bergeaud et al. (2016).
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