
NBER WORKING PAPER SERIES

DESIGNING STRESS SCENARIOS

Cecilia Parlatore
Thomas Philippon

Working Paper 29901
http://www.nber.org/papers/w29901

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
April 2022

We thank our discussants Itay Goldstein, Florian Heider, Dmitry Orlov, Til Schuermann, and Jing 
Zeng, as well as Mitchel Berlin, Thomas Eisenbach, Piero Gottardi, Anna Kovner, Ben Lester, 
Igor Livshits, Tony Saunders, Chester Spatt, Pierre-Olivier Weill, and Basil Williams for their 
comments. We would also like to thank seminar participants at the NBER Summer Institute, 
AFA, EFA, SED, NYU, FRB of New York, FRB of Philadelphia, FRB of Boston, University of 
Wisconsin, Boston College, the Stress Testing Conference, EPFL/HEC Lausanne, and Cavalcade. 
Abhishek Bhardwaj, Ki Beom Lee, and Luke Min provided excellent research assistance. The 
views expressed herein are those of the authors and do not necessarily reflect the views of the 
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2022 by Cecilia Parlatore and Thomas Philippon. All rights reserved. Short sections of text, not 
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Designing Stress Scenarios
Cecilia Parlatore and Thomas Philippon
NBER Working Paper No. 29901
April 2022
JEL No. D8,G2,H12

ABSTRACT

We develop a tractable framework to study the optimal design of stress scenarios. A principal 
wants to manage the unknown risk exposures of a set of agents. She asks the agents to report their 
losses under hypothetical scenarios before mandating actions to mitigate the exposures. We show 
how to apply a Kalman filter to solve the learning problem and we characterize the scenario 
design as a function of the risk environment, the principal’s preferences, and the available 
remedial actions. We apply our results to banking stress tests. We show how the principal learns 
from estimated losses under different scenarios and across different banks. Optimal capital 
requirements are set to cover losses under an adverse scenario while targeted interventions 
depend on the covariance between residual exposure uncertainty and physical risks.

Cecilia Parlatore
Stern School of Business
New York University
44 West 4th Street
New York, NY 10012
and NBER
cps272@stern.nyu.edu

Thomas Philippon
New York University
Stern School of Business
44 West 4th Street, Suite 9-190
New York, NY  10012-1126
and NBER
tphilipp@stern.nyu.edu



1 Introduction

Stress tests are ubiquitous in risk management and financial supervision. Risk officers use stress
tests to set and monitor risk limits within their organizations, and financial regulators around the
world use stress tests to assess the health of financial institutions. For example, financial firms
use stress tests to complement their statistical risk management tools (e.g., Value at Risk); asset
managers stress test their portfolios; trading venues stress tests their counter-party exposures;
regulators mandate large scale stress tests for banks and insurance companies and use the results
to enforce capital requirements and validate dividend policies.1

Despite the growing importance of stress testing, and the amount of resources devoted to them,
there is little theoretical guidance on exactly how one should design stress scenarios. A theoretical
literature has focused on the trade-offs involved in the disclosure of supervisory information (see
Goldstein and Sapra, 2014 for a review), which range from concerns about the reputation of the
regulator (Shapiro and Skeie, 2015) to the importance of having a fiscal backstop (Faria-e-Castro
et al., 2017). These papers provide insights about disclosure and regulatory actions but they are
silent about the design of forward-looking hypothetical scenarios. In that sense, existing models
are models of asset quality reviews (and their disclosure) more than models of stress testing.

The goal of our paper is to start filling this void. Stress tests are used for risk management.
Risk management is a two-tier process involving risk discovery (learning) and risk mitigation
(intervention). Stress tests belong to the risk discovery phase but one cannot analyze the design
of a test without understanding the remedial actions that can be taken once the results are known.
We therefore model both the risk discovery stage and the risk mitigation stage.

We consider a principal and a potentially large number of agents. The agents can be traders
within a financial firm, or they can be financial firms within a financial system. The principal can
be a regulator designing supervisory tests, or a risk officer running an internal stress test. For
concreteness we will use the supervisory stress testing analogy in much of the paper. Banks are
exposed to a set of risk factors, but their exposures to these factors are unknown. By exposure
we mean the relevant elasticity that determines the loss of a position under a given scenario.
An exposure is therefore not the same as the book or market value of a position. Banks and

1Central banks in the United States, Europe, England, Brazil, Chile, Singapore, China, Australia, and New
Zealand, as well as the International Monetary Fund in Japan, have recently used stress tests to evaluate the
banking sector’s solvency and guide banking regulation.
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regulators usually agree on the nominal size of positions and on the market value, at least for
liquid portfolios. They can disagree about the value of illiquid positions, and in all cases, liquid
or not, the impact of a scenario on the loss on that position needs to be estimated. What we
call “exposure” combines the position (measured with near certainty in some cases) with its value
under stress scenarios (estimated with error).

The regulator is risk averse and worries about the financial system experiencing large losses in
some states of the world. The regulator then designs a set of hypothetical scenarios and asks the
banks to report their losses under these scenarios. The regulator uses reported losses across all
banks and scenarios to extract information about underlying exposures. Based on this information,
the regulator decides how to intervene, i.e., she can ask a set of banks to reduce their exposures to
some factors. Interventions are costly, either directly – by drawing on limited regulatory resources,
creating disruptions – or indirectly – by preventing banks from engaging in valuable activities.

Our main insight comes from writing the learning problem as a Kalman filter. The filter gives
us a mapping from prior beliefs and test results into posterior beliefs. The precision of the mapping
depends on the scenarios in the stress test. We can then formulate the regulator’s problem as an
information acquisition problem in which the regulator chooses the precision of her signals about
risk exposures. Formally, we map the primitive parameters of the model, such as the priors of the
regulator regarding the banks’ exposures, to the feasible set of posteriors beliefs. If, for instance,
the regulator is worried about a particular risk factor, we can derive the stress test that maximizes
learning about exposures to that factor.

Will the regulator focus a particular risk factor? Or will she try and learn about several factors
at the same time? We show how the answers depend on her prior beliefs about the banks’ risk
exposures and on on the information-sensitivity of her interventions. The regulator can always
mandate a broad risk reduction, such as an increase in overall capital requirements, which does not
require much information but is likely to involve unnecessary changes and disruptions. With more
accurate information the regulator can better target her interventions and reduce the associated
costs. The regulator therefore values information insofar as it enables accurate and parsimonious
interventions.

Our model sheds light on broad versus specialized learning. The regulator can increase her
learning about exposures to a risk factor by choosing a more extreme scenario for that factor, but
extreme scenarios lead to noisy answers. Whether or not the optimal scenario implies specialization
in learning depends on the sensitivity of targeted interventions to stress test information, and on
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the trade off between noise and information quality along different different dimensions of risk.
The reduction in overall information quality depends on the prior distribution of the risk exposures
through the Kalman filter.

More generally, the costs of intervention and the prior beliefs of the regulator are central in
determining the optimal scenario design. The effect of intervention costs on the optimal scenario
is not monotone. On the one hand, a higher intervention cost makes accurate interventions more
important, which pushes the regulator to acquire more information relevant to that intervention.
On the other hand, an intervention that is very costly is rarely used and there is no point to learn
about its associated risk factors.

The regulator’s priors about average exposures – holding constant her uncertainty – also have
two effects on the optimal stress scenario. A higher expected exposure increases the likelihood of
intervention, which makes accurate information more valuable. This effect pushes the regulator
to learn about factors with high expected risk exposures. On the other hand, when the regulator’s
prior mean is high, her belief about true exposure is less sensitive to new information, which
discourages learning along that dimension. This second effect dominates when the expected risk
exposure is high. Hence, the weight of a factor in the stress scenario is hump-shaped with respect
to the regulator’s prior. With uncorrelated factors, we find optimal scenarios with zero weight on
factors with high expected risk exposures.

The regulator’s prior uncertainty about risk exposures or risk factors also shapes the optimal
stress scenario design. A higher expected exposure to a particular factor increases the likelihood
of an intervention and therefore the value of information. The regulator thus wants to learn more
about uncertain exposures. On the other hand high uncertainty about a risk factor makes the
regulator’s intervention policy less sensitive to new information. In this case, the regulator puts
less weight in the stress scenario on risk factors about which she is more uncertain.

Correlated risk exposures, within or across banks, play an important role in our analysis.
When exposures are correlated, learning about one provides information about the others. The
regulator therefore stresses more the factors with correlated exposures. This is true for correlated
exposures within a bank as well as correlated exposures across banks. Correlated factors are more
systemic and our model predicts that they play an outsize role in scenario design. The regulator
may focus mostly on these factors if the correlation is high enough, but, due to the convexity of
information sets, specialization is usually incomplete and the design tends to put some weight on
all factors. Our results on the impact of priors – means, volatilities, correlations of factors and
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exposures – provide insights about the design of stress tests during crises and in normal times.
Our model allows for two types of interventions: minimum capital requirements and targeted

risk reductions that can be interpreted as limits (e.g. LTV ratios) linked to specific asset classes. It
is important to emphasize, however, that we model stress testing as a optimal learning mechanism.
Actual stress tests used for capital adequacy in banking often impose a mechanical link between
tests results and capital requirements. A particular scenario – usually called the adverse scenario
– is used to deliver “pass/fail” grades. To pass the test the banks must show that their capital
ratio does not fall below a pre-specified level under the adverse scenario. This mechanical link
conflates two conceptually separate issues – learning and intervention – and is not appropriate
for a theoretical model.2 In our baseline analysis we therefore do not assume such a mechanical
mapping. We assume instead that regulators choose optimal actions conditional on the results of
the test. This gives them complete freedom to design the most informative scenarios.

The optimal design approach in our paper allows us to shed new light on actual stress tests.
First, as a matter of implementation, we can always recast our model in terms of pass/fail
outcomes based on pre-specified rules since optimal actions are predictable functions of stress
test results. Second, and more importantly, we can quantify the welfare losses from using a
constrained approach where a plausible adverse scenario must be used to set capital requirements.
We find that the welfare losses are relatively small when the regulator retains one free scenario
for optimal learning.

Literature Review

Most of the literature on stress tests focuses on banking. Several recent papers study
specifically the trade-offs involved in disclosing stress test results. Goldstein and Leitner (2018)
focus on the Hirshleifer (1971) effect: revealing too much information destroys risk-sharing
opportunities between risk neutral investors and (effectively) risk averse bankers. These risk-
sharing arrangements also play an important role in Allen and Gale (2000). Shapiro and Skeie
(2015) study the reputation concerns of a regulator when there is a trade-off between moral
hazard and runs. Faria-e-Castro et al. (2017) study a model of optimal disclosure where the

2For instance, imagine that a bank needs the same level of ex-ante equity to satisfy a 9% capital requirement
after scenario 1 or a 7% requirement after scenario 2 (presumably because scenario 2 embodies a higher degree of
stress). As far as ex-ante capital adequacy is concerned, these two regulations are equivalent.
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government trades off Lemon market costs with bank run costs, and show that a fiscal backstop
allows government to run more informative stress tests. Schuermann (2014) analyzes the design
and governance (scenario design, models and projection, and disclosure) for more effective stress
test exercises. Schuermann (2016) particularly determines how stress testing in crisis times can
be adapted to normal times in order to insure adequate lending capacity and other key financial
services. Orlov et al. (2017) look at the optimal disclosure policy when it is jointly determined with
capital requirements, while Gick and Pausch (2014), Inostroza and Pavan (2017), and Williams
(2017) do so in the context of Bayesian persuasion. Our model’s predictions are consistent with
the results in Orlov et al. (2017) that the optimal sequential capital requirements involve a
precautionary recapitalization of banks followed by a recapitalization contingent on stress test
results. Huang (2021) studies the optimal disclosure in banking networks with potential spillovers
and contagion among banks. As argued by Goldstein and Leitner (2020), stress test design and
disclosure policy are connected. We complement this strand of papers by explicitly modeling
the stress scenario design, which allows us to study the kind of information in the optimal
stress test–the relative weight of each factor in the optimal scenario–and not only on how much
information it contains.

While most of the existing literature on stress testing, theoretical and empirical, analyzes the
disclosure of stress test results, some papers have focused on the risk modeling part of stress
testing. For example, Leitner and Williams (2018) focus on the disclosure of the regulator’s risk
modeling. They examine the trade-offs involved in disclosing the model the regulator uses to
perform the stress test to banks. Relatedly, Cambou and Filipovic (2017) focus on how scenarios
translate into losses when the regulator and the banks face model uncertainty. However, none of
these papers consider the optimal scenario design, which is the focus of our paper.

Most empirical papers on stress tests focus on the information content at the time of disclosure,
using an event study methodology to determine whether stress tests provide valuable information
to investors. Petrella and Resti (2013) assess the impact of the 2011 European stress test exercise.
For the 51 banks with publicly traded equity, they find that the publication of the detailed results
provided valuable information to market participants. Similarly, Donald et al. (2014) evaluate
the 2009 U.S. stress test conducted on 19 bank holding companies and find significant abnormal
stock returns for banks with capital shortfalls. Candelon and Sy (2015), Bird et al. (2015), and
Fernandes et al. (2015) also find significant average cumulative abnormal returns for stress tested
BHCs around many of the stress test disclosure dates. Flannery et al. (2017) find that U.S.

6



stress tests contain significant new information about assessed BHCs. Using a sample of large
banks with publicly traded equity, the authors find significant average abnormal returns around
many of the stress test disclosures dates. They also find that stress tests provide relatively more
information about riskier and more highly leveraged bank holding companies. Glasserman and
Tangirala (2016) evaluate one aspect of the relevance of scenario choices. They show that the
results of U.S. stress tests are somewhat predictable, in the sense that rankings according to
projected stress losses in 2013 and 2014 are correlated. Similarly, the rankings across scenarios in
a given year are also correlated. They argue that regulators should experiment with more diverse
scenarios, so that it is not always the same banks that project the higher losses. Acharya et al.
(2014) compare the capital shortfalls from stress tests with the capital shortfalls predicted using
the systemic risk model of Acharya et al. (2016) based on equity market data. Camara et al.
(2016) study the quality of the 2014 EBA stress tests using the actual micro data from the tests.

Finally, our paper is related to the large theoretical literature on information acquisition
following Verrecchia (1982), Kyle (1989), and especially Van Nieuwerburgh and Veldkamp (2010).
In this class of models, the cost of acquiring information pins down the set of feasible precisions and
determines whether the signals are complement or substitutes. Vives (2008) and Veldkamp (2009)
provide a comprehensive review of this literature. These papers take the information processing
constraint on the signal precisions as given. In contrast, our paper focuses on the design of the
signals that the regulator receives and endogenizes the information processing constraint.

The rest of the paper is organized as follows. Section 2 describes the environment. Section
3 describes how the regulator learns from stress test. Sections 4 and 5 characterize the optimal
intervention policy and the optimal stress scenarios, respectively. Section 7 discusses the practical
implications of our analysis and concludes.

2 Technology and Preferences

We consider the problem of a principal who wants to manage the risk exposures of a set of agents.
The model has several natural interpretations. The principal could be a chief risk officer and the
agents could be traders in her firm. The remedial actions could be hedging or downsizing the
traders’ positions. Alternatively, the principal could be a regulator and the agents could be a set
of banks. The remedial actions could be hedging, reducing new deal flows, selling non-performing
assets, or raising capital.
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To be concrete we use the regulator/banks metaphor when describing the model. The regulator
elicits information from the banks in the form of stress tests. In our model, a stress test is
a technology used by regulators to ask questions about profits and losses under hypothetical
scenarios. The banks cannot evade the questions and have to answer to the best of their abilities.
Banks in our model can only lie by omission: they do not have to volunteer information, but they
have to provide estimates of their losses under various scenarios.

2.1 Banks and Risks

There is one regulator overseeing N banks indexed by i ∈ [1, .., N ] exposed to systematic and
idiosyncratic risks. The macro-economy is described by a vector of J systematic factors. We
denote by sj the value of factor j. The macroeconomic state of the economy is

s =


s1
...

sJ

 .

The risks of bank i are captured by a vector of J exposures

xi =


xi,1
...

xi,J

 ,

where xi,j represents the exposure of bank i to factor j. We use the term “exposure” to denote
the relevant elasticity that determines losses under a given realization of the macroeconomic state.
An exposure is therefore not the same as the nominal value of a position. In many cases (e.g., a
commercial loan) the size of the position is unambiguous but the impact of a realization of the
macro state on the loss on that position needs to be estimated. What we call “exposure” combines
the position (measured with near certainty) with its value in a particular macro state (computed
with error).

The losses of bank i in state s are given by

yi (s) = s · xi + ηi =
J∑

j=1
xi,jsj + ηi, (1)

where ηi is a random idiosyncratic (i.e., bank specific) shock. Our model has only one period so
yi (s) should be interpreted as the cumulative losses in state s. We will assume that the exposures
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are normally distributed in order to apply the Kalman filter. Technically, therefore, it can happen
that x < 0 but, as usual, we choose parameters to ensure that this is a negligible possibility.

The net worth of bank i is then given by

wi (s) = w̄i − yi (s) , (2)

where w̄i is the mean level of net worth. Given Equation (1) and Equation (2), the aggregate net
worth of the banking system is

W (s) ≡
N∑

i=1
wi = W̄ − η̄ − s·X, (3)

where W̄ , X and η̄ are the sum of the corresponding variables across the N banks in the economy,
e.g., η̄ ≡ ∑N

i=1 ηi.

Interpretation Regulators specify stress scenarios in terms of traditional macroeconomic
variables such as GDP, unemployment, and house prices. In DSGE models, on the other hand,
these macro variables would themselves be functions of underlying structural shocks such as
productivity, beliefs, risk aversion, etc.3 Formally, let ϵs be the structural shocks and H the
solution matrix of the DSGE model, so that s = Hϵs. In a fully specified model, banks’ losses
would also be functions of the structural shocks: yi (ϵs) = x̃′

iϵ
s + ηi, where x̃i are structural

exposures. This equation is equivalent to (1) when H is invertible. In that case we can write
ϵs = H−1s and define xi = H ′−1x̃i, and we obtain yi (s) = x′

is + ηi.
In theory the regulator could supply the structural shocks ϵs and ask for estimated losses. In

practice regulators supply directly the macro variables s. This reflects the fundamental issue of
model ambiguity. Even if H is invertible, models for H would likely differ across banks as well as
between banks and regulators. By contrast, a handful of macro-economic variables (GDP, credit

3The typical DSGE model contains Euler equations, production functions and resource constraints that lead to
a set of equations such as

Ast = C + Bst−1 + DEtst+1 + Fϵs
t .

When we solve the model we invert the mapping to obtain a VAR representation

st = J + Qst−1 + Hϵs
t .

In our simple framework we have J = Q = 0 since we normalize the baseline scenario to 0 and we have only one
period.
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spreads, house and stock prices, etc.) are well-understood by all participants and capture much of
the macro-economic dynamics that matter for expected losses. This is why stress tests are written
in terms of s and not ϵs. In most of our applications we will assume that H is invertible and
that the regulator feels confident about estimating H−1. In that case there is no real difference
between estimating xi or x̃i and we can assume that the factors are independently distributed.

2.2 Regulator’s Preferences and Interventions

Following Acharya et al. (2016) we assume that the regulator has preferences U (W ) over the total
net worth of the banking system W . Philippon and Wang (2021) show that this specification
arises generically when there is an effective way to relocate assets and liabilities across banks,
e.g. when healthy banks can take over failed ones.4 If the regulator believes that the risks in the
system are too high, she can intervene to force the banks to increase their capital or lower their
exposures. We denote by K

(
W̄
)

the cost of requiring banks to increase their capital. Targeted
interventions include capital and collateral requirements against specific types of loans or specific
borrowers (e.g., LTV ratios in commercial real estate), as well as assets sales and divestitures. The
most granular description of interventions is at the bank×factor level. In some cases, however, a
targeted intervention would affect exposures to several factors. We will discuss in details how we
model these constraints in Section 4. For now we denote the action as a (large) vector a in some
feasible set A with the understanding that higher actions reduces exposure more: the vector xi

becomes (1NJ×1 − ai) xi where ai are the set of actions taken on bank i. Interventions are costly.
There are direct costs born by the regulators and the banks, as well as indirect costs from the
disruption of valuable activities. We let C (a) denote the cost of action a.

Let S denote the information set of the regulator at the time when she chooses her intervention
policy. The regulator’s problem is then to choose an intervention policy

(
W̄ , a

)
to maximize her

expected utility given by

E
[

U

(
W̄ − η̄ − s ·

(
N∑

i=1
(1NJ×1 − ai) xi,

))∣∣∣∣∣S
]

− C (a) − K
(
W̄
)

.

4The general case is U ([wi]1..N ), where the idiosyncratic failure of bank i matters regardless of the health of the
banking sector as a whole. As in the systemic risk literature, we assume here that only W =

∑N
i=1 wi matters. As

a result, a financial crisis only happens when the financial system as a whole is under-capitalized. See Philippon
and Wang (2021) for a proof of how transfers of assets from under- to well-capitalized banks transform the value
function U ([wi]1..N ) into U (W ).
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An important point of our analysis is the targeted interventions require more information than
non-targeted ones. We think of stress tests as a way of eliciting information to determine the best
interventions across banks and activities.

2.3 Prior beliefs and stress tests

The banks’ risk exposures to the macro factors are unknown to the regulator and the banks. The
regulator has prior beliefs over the distribution of exposures within banks and across banks. These
prior beliefs come from historical experiences and the regulator’s own risk models. We stack the
banks’ exposures in one large NJ × 1 vector as follows

x ≡


x1
...

xN

 ,

and we summarize the regulator’s prior over the vector of exposures x as

x ∼ N (x, Σx) ,

where the NJ × 1 vector of unconditional means and the NJ × NJ covariance matrix are,
respectively,

x =


x1
...

xN

 and Σx =



Σ1
x Σ1,2

x · · · Σ1,N
x

Σ1,2
x Σ2

x
. . . ...

... . . . . . . Σ(N−1),N
x

Σ1,N
x · · · Σ(N−1),N

x ΣN
x


with Σi

x = Var (xi) is the J × J covariance of exposures of bank i, and Σi,h
x = Cov (xi, xh) for

all i ̸= h is the covariance of exposures across banks. If Σi
x is diagonal the regulator expects

the exposures of bank i to the different factors to be independent of each other. If Σi,h
x = 0,

the regulator’s prior is that the risk exposures of banks i and h are independent. In almost all
empirically relevant cases the covariance matrices are not diagonal.

To learn about the banks’ risk exposures, the regulator asks the banks to estimate and
report their losses under a particular realization of the macroeconomic state. This choice of
macroeconomic state is a scenario ŝ.

Definition 1. (Scenario) A scenario ŝ = (ŝ1, . . . , ŝJ)′ is a realization of the vector of states s.
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A scenario ŝ is a row-vector of size J that represents an aggregate state of the economy. We
entertain two interpretations of the size of the state space, J . The simplest way is to think of
J as exogenously given. There might be a limited number of macroeconomic variables (GDP,
unemployment, house prices) that everyone agrees need to be included in the test. The other way
to think about J is as a large number capturing the set of all possible risk factors and in any
given tests many have zero loadings. A non-zero weight is then a statement about whether that
risk factor is included in the particular stress test. Our model can then shed light on which risk
factors should be used.

Given our normalization of the baseline state to s = 0, a scenario close to 0 is a scenario
close to the baseline of the economy. A scenario ŝ in which element ŝj is large, represents a large
deviation from the baseline along the dimension of factor j. The larger |ŝj|, the more extreme the
scenario along dimension j. When designing a stress test, the regulator specifies a set of scenarios
for which the banks need to report their losses.

Definition 2. (Stress test) A stress test is a collection of M scenarios {ŝm}M
m=1 presented by

the regulator, and a collection of estimated losses {ŷm
i }m=1..M

i=1..N reported by the banks.

For each scenario m, each bank i estimates and reports its net losses ŷm
i given the input

parameters in scenario ŝm.

2.4 Stress test results

Banks use imperfect models to predict their losses under the stress test scenarios. Bank i estimates
its losses under scenario ŝm as

ŷi (ŝm, M) = ŝm · xi + ϵ̂i,m (∥ŝm∥ , M) , (4)

where the error term ϵ̂i (∥ŝ∥ , M) captures measurement error and model uncertainty and is
increasing in the norm of the scenario ∥ŝ∥ and in the number of scenarios M . The results of
the stress test for one bank are summarized in the M × 1 vector

ŷi

(
Ŝ
)

= Ŝ xi + ε̂i,

where ŷi

(
Ŝ
)

represents the results of the test for bank i, the M ×J matrix Ŝ gathers the scenarios
in the stress test, and the errors in bank i’s reported losses are gathered in the M × 1 vector ε̂i,
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Regulator chooses
stress scenarios

Regulator chooses
interventions to reduce
banks’ risk exposures

Banks report
stress test results

Scenario Design Stress Testing Intervention

Ŝ ŷ
(
Ŝ
)

W̄ ⋆, a⋆ (ŷ)

Figure 1: Timeline

i.e.,

ŷi

(
Ŝ
)

=


ŷi (ŝ1, M)

...
ŷi

(
ŝM , M

)
 , Ŝ ≡


(ŝ1)′

...(
ŝM
)′

 , and ε̂i =


ϵ̂i,1

(∥∥∥ŝ1
∥∥∥ , M

)
...

ϵ̂i,M

(∥∥∥ŝM
∥∥∥ , M

)
.

Banks build their internal risk models using historical data therefore the mistakes are likely to
be correlated across scenarios. The variance-covariance matrix of the errors made by bank i in
computing its stress test results is given by

Σi
ε̂ ≡ Var [ε̂i] .

Differences in Σi
ϵ̂ across banks reflect differences in information (priors), in the amount or quality

of data available to each bank, or in the bank’s information processing capacity. We assume
that xi and ε̂i are independent, but we allow banks to make correlated mistakes. The error term
in the estimated losses captures various kinds of measurement error and model uncertainty. To
guarantee an interior solution, we assume that Var (ϵ̂i (∥ŝ∥ , M)) is continuous at ∥ŝ∥ = 0 and
limŝj→∞

(ŝj)2

Var(ϵ̂i(∥ŝ∥,M)) = 0 for all m and for all j.

2.5 Timing

To summarize, there are three stages in our model: the scenario design stage, the stress testing
stage, and the intervention stage. First, the regulator chooses stress scenarios taking into account
that the scenario choices will affect the information in the stress test results submitted by the
banks. Then, the regulator elicits information from the banks in the form on stress tests. The
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banks’ stress test results consist of projected losses for each bank under each scenario chosen by
the regulator. Finally, the regulator chooses her targeted interventions and capital requirements
after observing the stress test results. Figure (1) shows the timeline of the model.

3 Learning

The information set of the regulator depends on the regulator’s prior beliefs and on the information
she acquires from the stress tests. Neither the banks nor the regulator know the true exposures,
but banks have imperfect (noisy) models to project their losses in a given state. We model stress
tests as a mechanism for the regulator to elicit this information, which the regulator can then use
to design its optimal intervention policy.

3.1 A Kalman Filter

A key insight of our paper is that stress test results can be interpreted as signals about the banks’
risk exposures by defining the error terms and the signals appropriately. Let us briefly summarize
all the sources of risks and information in our model:

1. For each bank i, ŷi

(
Ŝ
)

is an M × 1 vector that summarizes the estimated losses in the
various scenarios. This is the key source of information for the regulator.

2. For each bank i, the M × M matrix Σi
ε̂ ≡ Var [ε̂i] contains the size and correlations of

estimation errors across the M scenarios. Element m of the M × 1 vector of errors ε̂i is
given by ϵ̂i,m (∥ŝm∥ , M).

3. For all banks and risk factors, the NJ × NJ covariance matrix Σx contains the priors of
the regulators regarding exposures within and across banks. The covariance matrix Σx is
predetermined and unaffected by the scenarios.

For N banks, we stack the reported losses and error terms in the NM × 1 vectors

ŷ ≡


[
ŷ1
(
Ŝ
)]

...[
ŷN

(
Ŝ
)]
 and ε̂ =


[ε̂1]

...
[ε̂N ]

 .
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The state-space representation of the stress test is then

ŷ = Ŝx + ε̂, (5)

where Ŝ ≡
(
IN ⊗ Ŝ

)
simply repeats Ŝ on its diagonal, and ε̂ ∼ N (0, Σε̂). Remember that the

regulator observes ŷ and wants to learn about x. Expressing the stress test as in equation (5)
allows us to apply the Kalman filter and to obtain a full characterization of the posterior beliefs
of the regulator.

Proposition 1. (Posterior beliefs) After observing the results ŷ of the stress test, the posterior
beliefs of the regulator regarding the banks’ risk exposures are

x| ŷ ∼ N
(
x̂, Σ̂x

)
,

where the posterior mean x̂, the Kalman gain K, and the residual covariance matrix Σ̂x are given
by

x̂ =
(
INJ − KŜ

)
x̄ + Kŷ , (6)

K = ΣxŜ′
(
ŜΣxŜ′ + Σε̂

)−1
, (7)

Σ̂x = Σx − KŜΣx . (8)

The proof of Proposition 1 is a direct application of the Kalman filter. The Kalman gain K is
an NJ × MN matrix. A few special cases can give some intuition. With one bank (N = 1), then
Kj,m is a measure of the amount of information about the exposure to risk factor j contained in
the results from scenario m. With one scenario (J = 1) and uncorrelated exposures among banks,
Kj,m also measures the reduction in uncertainty about bank j’s exposure to the risk factor.

The posterior covariance matrix Σ̂x plays a critical role in our analysis. The true exposures
are distributed around x̂ with covariance Σ̂x. Thus, Σ̂x measures the residual uncertainty that
persists after observing the results of the stress test. The goal of the stress test is to reduce this
residual uncertainty as much as possible, along dimensions that depend on the objective function
and on the priors of the regulator.

In the standard state-space representation in Equation (5), the stress test scenarios determine
the structure of the signals observed by the regulator by controlling the weight of each exposure
in the reported losses. The scenarios also determine the precision of the banks’ reported losses in

15



Equation (4). Increasing |sj| in a scenario makes the results more informative about exposures to
factor j, but extreme scenarios reduce the precision of the banks’ estimates and the noise might
spill over to the measurement of other exposures. On the other hand, the regulator can improve
her learning by taking into account the fact that true exposures are correlated across positions
and across banks.

When designing the scenarios, the regulator must anticipate how she will interpret and use the
results of the test. The extent to which learning takes place is captured ex ante by the distribution
of the posterior mean, given by

x̂ ∼ N (x, Σx̂) , (9)

where the expected variance of the posterior mean, Σx̂, is given by

Σx̂ ≡ Σx − Σ̂x = KŜΣx.

The matrix Σx̂ represents the expected amount of learning from the stress test. If the stress test
is pure noise, K = 0, the regulator learns nothing, Σx̂ = 0, and Σ̂x = Σx. If the test is fully
informative, then Σ̂x = 0 and the regulator learns exactly all the exposures, i.e., Σx̂ = Σx. One
goal of the regulator is to maximize Σx̂ = KŜΣx = K

(
IN ⊗ Ŝ

)
Σx – or equivalently to minimize

the residual uncertainty Σ̂x – so as to be able to design an accurate policy intervention. When
choosing what to learn, the regulator takes into account that the Kalman gain K is itself a function
of the scenarios, given by equation (7).

Remark 1. (Learning and interventions) A goal of the regulator is to maximize the amount
of learning Σx̂ = K

(
IN ⊗ Ŝ

)
Σx to intervene more accurately.

3.2 Example

Consider the case of one bank (N = 1), one scenario (M = 1), and two risk factors (J = 2). To
simplify the notation, we omit the argument M and the bank-specific subscript i, and we denote
σ2

1 ≡ Σx,11, ρσ1σ2 ≡ Σx,12 and σ2
ϵ (ŝ) ≡ Var [ϵ̂ (∥ŝ∥ , 1)]. The stress test result under scenario ŝ is

ŷ = ŝ1x1 + ŝ2x2 + ϵ̂.

The Kalman gain in this case is a 2 × 1 vector K =
 k1

k2

 where

k1 = σ2
1 ŝ1 + ρσ1σ2ŝ2

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂

and k2 = σ2
2 ŝ2 + ρσ1σ2ŝ1

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂

.
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The posterior mean is then

x̂ =
 x̂1

x̂2

 = x + K (ŷ − ŝ′x)

and the learning matrix is

Σx̂ =
 k1ŝ1 k1ŝ2

k2ŝ1 k2ŝ2

  σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

The chosen scenario ŝ affects the Kalman gain in two ways: directly via the correlation between
the results of the stress test and the unknown risk exposures; and indirectly, through the amount
of noise in the stress test result, σ2

ϵ̂ (ŝ). Using the above formula we see that the top left term of
the learning matrix is

Σx̂ (1, 1)
σ2

1
= (σ1ŝ1 + ρσ2ŝ2)2

(σ1ŝ1 + ρσ2ŝ2)2 + (1 − ρ2) (σ2ŝ2)2 + σ2
ϵ̂

. (10)

The upper bound Σx̂(1,1)
σ2

1
= 1 corresponds to learning everything about exposure x1. When x1 and

x2 are correlated we can learn about x1 by increasing ŝ2, but the potential to learn is bounded by
this correlation. Holding constant σϵ̂, if we let ŝ2 → ∞ the limit is Σx̂(1,1)

σ2
1

→ ρ2.
Equation (10) shows the relevance of the endogenous noise term. If σϵ̂ is exogenous, then

learning is trivially maximized by sending ŝ1 → ∞. In reality extreme scenarios are more difficult
to estimate and σϵ̂ is increasing in the size of the deviation of the stress scenario from the baseline.
We obtain an interior solution for the regulator’s scenario choice problem as long as σϵ̂ is convex
enough in ∥ŝ∥. To make this idea more precise consider the case where σ2 is small, and, therefore,
the planner only wishes to learn about x1. Normalizing σ1 = 1 and defining σ2

ϵ̂ = z (s2) we see that
the planner solves max s2

s2+z(s2) and the FOC is s2z′ = z. The class of noise models z = αs2
1 +βeθs2

1

is then particularly useful because the uni-dimensional learning solution is simply θŝ2
1 = 1, which

does not depend on σ1, α, β. This motivates our functional form

σ2
ϵ̂ = α ∥ŝ∥2 + βeθ∥ŝ∥2

in our application. In this case, when ρ = 0, the first learning coefficient is

Σx̂ (1, 1)
σ2

1
= σ2

1 ŝ2
1

(α + σ2
1) ŝ2

1 + (α + σ2
2) ŝ2

2 + βeθ(ŝ2
1+ŝ2

2)
. (11)
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Lemma 1. When ρ = 0, Σx̂ (1, 1) is increasing in ŝ2
1 when βeθ(ŝ2

1+ŝ2
2) (θŝ2

1 − 1) < (α + σ2
2) ŝ2

2 and
decreasing afterwards.

The overall effect of an increase in ŝ2
1 on the amount of learning about x1 depends on the trade

off between the salience of the stress on factor 1 and the increase in noise associated with more
extreme scenarios. When the departure from the baseline is small the direct effect dominates and
stressing factor 1 leads to more learning about factor 1. When the scenario is more extreme the
second effect dominates. Note that the presence of the second factor expands the range where
Σx̂ (1, 1) is increasing in ŝ2

1. When ŝ2
2 = 0 the range is simply

[
0, θ−1/2

]
. When ŝ2

2 > 0 it expands
beyond θ−1/2 because of the baseline noise from factor 2 in the denominator of Equation (11).

The effect of the scenario choice on learning is more complex when the risk exposures are
correlated because the planner can learn about x1 by increasing ŝ2 instead of ŝ1. In addition, in
some risk settings the planner might care a lot about the covariance term

Σx̂ (1, 2)
σ1σ2

=
ρ
(
(σ1ŝ1 + σ2ŝ2)2

)
+ (1 − ρ)2 σ1σ2ŝ1ŝ2

(σ1ŝ1 + σ2ŝ2)2 − 2 (1 − ρ) σ1σ2ŝ1ŝ2 + σ2
ϵ̂

.

When ρ = 0 we get Σx̂(1,2)
σ1σ2

= σ1σ2ŝ1ŝ2
σ2

1 ŝ2
11+σ2

2 ŝ2
2+σ2

ϵ̂
, when ρ = 1 we get Σx̂(1,2)

σ1σ2
= (σ1ŝ1+σ2ŝ2)2

(σ1ŝ1+σ2ŝ2)2+σ2
ϵ̂

, and we
can show that ∂Σx̂(1,2)

∂ρ
> 0 so learning about the posterior mean is easier when the exposures are

correlated.

3.3 Scenario choice as information precision choice

Every set of stress scenarios Ŝ has a unique posterior covariance matrix associated with it.
Choosing a set of scenarios Ŝ is therefore equivalent to choosing a posterior covariance matrix
Σ̂x ∈ Σ (or alternatively, choosing how much to learn Σx̂), where the set Σ is given by Equations
(7) and (8) for all possible scenario choices. The shape of the feasibility set Σ is determined by
the regulator’s priors Σx and the errors in banks’ models, Σε̂.

Proposition 2. (Scenario choice and information) Choosing stress scenarios Ŝ is equivalent
to choosing a residual covariance matrix Σ̂x ∈ Σ.

The Kalman filter maps scenarios M to the elements in the posterior covariance matrix Σx̂,
which is ultimately what the regulator cares about. More specifically, the Kalman filter implies
JN(JN−1)

2 equations mapping the J × M elements in the scenario matrix Ŝ to the elements of Σx̂.

18



Using Proposition 2 we can write the regulator’s scenario choice problem as an information
precision choice problem, where the feasible set from which the regulator chooses is determined
by the Kalman filter. This set plays the role of a capacity constraints in models of information
acquisition. Figures (2) shows the feasible set of posterior variances

{
Σ̂x,11, Σ̂x,22

}
in a model with

one representative bank and two risk factors, and for different values of prior correlations among
risk exposures.

Remark 2. When the number of banks is higher than the number of scenarios (N > M), the design
problem boils down to choosing residual variances about the risk exposures of any M banks since
it is equivalent for the regulator to choose the stress scenarios or to choose J × M elements of the
residual covariance matrix.

Perfect learning is not feasible, as can be seen in Figures 2 where the budget does not include
a variance of zero. As discussed above, choosing a more extreme scenario has two effects on the
amount of information that the regulator can acquire. On the one hand, a higher value of ŝi

increases the weight the bank’s stress test results put on the bank’s exposure to factor i. On the
other hand, more extreme scenarios increase the noise Σε̂ in the stress tests result.

Prior correlation among risk exposures makes it easier to learn and reduces the posterior
variances. Moreover, the regulator cannot learn about the bank’s exposure to factor 1 without
learning about the bank’s exposure to factor 2. Hence, as it can be seen from panels a, b, c and d
in Figure 2, the boundary of set of feasible posterior precisions, Σ, becomes more convex. When
the correlation is high, the boundary of the feasible set slopes up in the tails. This is in line with
the discussion in the example: when s1 is already large, it becomes more efficient to learn about
x1 by increasing s2 instead of s1.

4 Taking Action

The regulator values information from the stress test because it allows her to intervene more
accurately. In return, the design of optimal scenarios depends on the actions that the regulator
expects to take. Regulators typically have two ways of intervening in the banking sector. They
can mandate a broad increase in capital, or they can restrict specific activities, for instance by
imposing loan-to-value ratios or collateral requirements.
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(d) Prior correlation in exposures Σx,12 = 0.8

Figure 2: Feasible set of residual variances,
(
Σ̂x,11, Σ̂x,22

)
when there are two factors and one

representative bank for different values of the regulator’s prior correlation among the bank’s risk
exposures to factors 1 and 2.

Note: Figures 1 illustrates the set of feasible posterior variances, Σ for different values of prior correlations
among risk exposures when σ2

ϵ̂ = α ∥ŝ∥2 + βeθ∥ŝ∥2 . The parameters used are M = 1, N = 1, J = 2, γ = 0.5,
ϕ0 = [1, 1]′, ϕ1 = [0.1, 0.1]′, x̄ = [1, 1]′, Σx = IJ , α = 0.01, β = 0.02, θ = 1, and E

[
ϵ2] = 1 .
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4.1 General Case

The most granular description of intervention is at the bank×exposure level. If the regulator
takes action ai = {ai,j}j=1..J on bank i, the exposure of bank i to factor j becomes (1 − ai,j) xi,j.
Aggregate banking wealth is then given by

W
(
s, x; a, W̄

)
= W̄ − η̄ −

N∑
i=1

J∑
j=1

(1 − ai,j) xi,jsj, (12)

where W̄ is the capital required by the regulator. The regulator takes action after observing the
results of the test, therefore her expected utility in the intervention stage is a function of her
information set

V (S ) = max
W̄ ,a∈A

E
[
U
(
W
(
s, x; a, W̄

))
| S

]
− C (a) − K

(
W̄
)

,

where S denotes the information set after the stress test is conducted.
In an interior solution, the first order conditions equate the marginal cost of an intervention

to its expected marginal benefit. For capital requirements we obtain

K′
(
W̄
)

= E [U ′ (W ) | S ] . (13)

Since capital is useful in all states of the world the optimality condition simply states that the
marginal cost of banking capital be equal to the expected marginal utility of banking net worth.
Similarly, the optimal targeted intervention on the exposure of bank i to factor j is

∂C (a)
∂ai,j

= E [xi,jsjU
′ (W ) | S ] . (14)

The expected marginal benefit of reducing the risk exposure to factor j in bank i depends on the
covariance between the marginal social utility U ′ (W ) and the contribution of factor j to bank i’s
losses, xi,jsj. Risk reduction is more valuable when the planner expects high losses in states of
the world where U ′ is also large.

4.2 Pseudo Mean-Variance Preferences

In our application we assume the following utility function:

U (W ) =


W if D = 0,

W − γ
2 (W − W )2 if D = 1,

(15)
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where D is a dummy variable for (potential) economy-wide financial distress and W is a satiated
level of capital. We assume that W is high enough that W < W when D = 1 and, with a slight
abuse, we say that these preferences are linear quadratic. The utility function implies that the
regulator’s absolute risk aversion is higher in bad states of the world – as it would be under CRRA
preferences for example – while retaining the tractability of mean-variance analysis.

We now need to discuss the physical distribution of the states s. Risk management focuses on
downside risk, and the relevant states are the ones where D = 1. We normalize the unconditional
expectation of s to zero E [s] = 0, and we define the probability of (potential) distress as

p ≡ Pr (D = 1) .

Conditional on D = 1 we assume that s| D = 1 ∈ [0, ∞), E [ s| D = 1] = s̃ > 0 and that
Var [ s| D = 1] = Σ̃s. We can then write the expected utility of the regulator as

E [U (W )] = E [W ] − pγ

2 Ẽ
[
(W − W )2

]
, (16)

where Ẽ is the expectation conditional on the economy being in distress, i.e., Ẽ [.] ≡ E [. | D = 1].
Since E [s] = E [η̄] = 0, we see from (12) that E [W ] = W̄ and obtain the following Lemma.

Lemma 2. With linear quadratic preferences the planner’s intervention problem is

max
W̄ ,a∈A

W̄ − K
(
W̄
)

− pγ

2 Ẽ


W +

N∑
i=1

J∑
j=1

(1 − ai,j) xi,jsj − W̄

2

| S

− C (a) .

4.3 Standard Capital Requirement

Under linear-quadratic preferences the first order condition for optimal capital is K′
(
W̄ ⋆

)
=

1 + pγ
(
W − W̄ ⋆ +∑N

i=1
∑J

j=1 (1 − ai,j) x̂i,jẼ [sj]
)
. Capital requirements are increasing in risk

aversion γ, in probability of distress p, and in estimated risk exposures x̂. Capital requirements
do not depend directly on the variance-covariance matrices of states or exposures, but, in general,
the requirements are mitigated by targeted interventions. Suppose, for example, that a stress test
uncovers excessive exposures to commercial real estate lending. Without targeted interventions
the regulator would have to increase overall requirements. With targeted interventions, on the
other hand, the regulator might instead mandate lower LTV ratios for that specific class of loans.
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To understand the connection between our optimal capital requirement and actual stress tests
it is useful to consider a model without targeted interventions since it is the way actual stress tests
are framed: they are conducted “all else equal”, i.e., assuming no actions from the regulator. Let
us then assume a = 0. We obtain the following proposition.

Proposition 3. (Standard capital requirements) Standard capital requirements (assuming
a = 0) are a function of expected losses under the (physical) adverse scenario:

W̄ ⋆ +
K′
(
W̄ ⋆

)
− 1

pγ
= W +

N∑
i=1

E [yi | D = 1, S ] , (17)

where expected losses, from equation (1), satisfy

E [yi | D = 1, S ] = s̃ · x̂i,

with s̃ = E [s | D = 1] and x̂i = E [xi | S ].

The net marginal cost of bank equity K′
(
W̄ ⋆

)
− 1 is compared to the adjusted risk of distress

pγ.5 Net of this cost, capital requirements are set to cover losses in the adverse scenario. It is
important to understand the similarities and the differences between our Proposition 3 and what
regulators do in practice. Exactly as in actual stress tests, our model says that the requirements
should be set to cover losses under an adverse scenario. The adverse scenario in our model is the
(physical) expectation of the state conditional on potential distress, s̃ = Ẽ [s].

The main difference is that, in our model, the regulator uses expected exposures from the
Kalman filter, x̂i = E [xi | S ]. In general, therefore E [yi | D = 1, S ] ̸= ŷi (s̃) = s̃ ·xi + ϵ̂i (∥s̃∥): the
optimal forecast of losses under the adverse scenario differ from the losses the bank would report
under the adverse scenario for several reasons. The first is noise in the bank’s report ϵ̂i,: if this
noise is zero then E [yi | D = 1, S ] = ŷi (s̃) = s̃ ·xi would be exact. As argued before, however, the
bank itself must estimate its exposures. Given this unavoidable measurement error the regulator
uses two other sources of information to form an optimal forecast E [xi | S ]: reported losses from
other scenarios (ŝ ̸= s̃) and from other banks (j ̸= i).

5Without any cost of raising bank equity, it would trivially be optimal to set requirements at the satiated at
the level W that brings the marginal utility of net worth back to 1 in all states of the world. As explained earlier,
the formula above assumes an interior solution where W < W when D = 1, which is the empirically realistic case.
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4.4 Optimal Interventions and the Distress Uncertainty Matrix

To set capital requirements, the regulator essentially asks: what is the expected stress, and what is
the average exposure? Targeted interventions, on the other hand require more information. Under
linear quadratic preferences the first order condition for optimal action is ∂C(a)

∂ai,j
= x̂i,jE [sj] +

pγẼ [xi,jsj (W − W ) | S ]. Given our normalization of the unconditional mean E [sj] = 0, we
obtain

∂C (a)
∂ai,j

= pγx̂i,j s̃jẼ [W − W | S ] + pγ
N∑

h=1

J∑
l=1

(1 − ah,l)Cov [xi,jsj, xh,lsl | S , D = 1]

For the remainder of the paper we assume the following functional forms.

Assumption LQ. The cost of bank capital is linear and the cost of targeted actions is a
quadratic form

K
(
W̄
)

= (1 + κ) W̄ ,

C (a) = 1
2a′Φa.

We assume that the cost of bank equity is linear for simplicity but also because it shows that our
results do not hinge on large or very convex costs of equity. For the quadratic form we often
write the special case C (a) = 1

2
∑N

i=1 ϕ0
i ∥ai∥2 +∑J

j=1 ϕ1
j

(∑N
i=1 aij

)2
. This cost function captures

increasing marginal costs at the bank level ∥ai∥2 as well as congestion effects (e.g., fire sales) at
the aggregate level,

(∑N
i=1 aij

)2
. Under LQ the optimal capital in Equation (17) is6

W̄ ⋆ = W − κ

pγ
+

N∑
i=1

J∑
j=1

(1 − ai,j) x̂i,j s̃j, (18)

and the planner’s objective function in Lemma 2 simplifies to

min
a∈A

κW̄ ⋆ (a) + pγ

2 Ẽ


 κ

pγ
+

N∑
i=1

J∑
j=1

(1 − ai,j) (xi,jsj − x̂i,j s̃j)
2
+ C (a) .

Under these assumptions we can show that optimal interventions depend on a specific covariance
matrix.

6In vector notations W̄ ⋆ = W − κ
pγ + (1N ⊗ s̃)′ (x̂ ◦ (1NJ − a⋆))
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Proposition 4. (Optimal interventions) In the linear quadratic model, optimal interventions
depend on the Distress Uncertainty Matrix

Ṽ ≡ COV [(1N ⊗ s) ◦ x | S , D = 1] .

Optimal targeted actions are given by

a⋆ =
(
Φ + pγṼ

)−1 (
κ (1N ⊗ s̃) ◦ x̂ + pγṼ1NJ

)
, (19)

and optimal capital requirements are given by Equation (18).

The optimal targeted intervention policy of the regulator depends on the combined covariance
matrix Ṽ of the NJ vector (1N ⊗ s) ◦ x = (xi,jsj)j−1:J

i=1:N = [s1x1,1, .., sJx1,J , s1x2,1.., sJxN,J ]. The
covariance is conditional on the stress test results – ex-post mean x̂ and residual variance Σ̂x –
and on the physical distribution of stresses – s̃ and Σ̃s.7 We have assumed that the error term
ε in stress results is independent of future realization of physical stress s.8 Since s and x̂ are
independent we can write the covariance matrix as9

Ṽ =
(
1N×N ⊗ Σ̃s

)
◦ (x̂x̂′) +

(
1N×N ⊗

(
Σ̃s + s̃s̃′

))
◦ Σ̂x.

Ṽ therefore combines uncertainty about the macro state under distress Σ̃s with residual uncertainty
about banks’ exposures Σ̂x. For example the matrix is large when estimated exposures x̂x̂′ are
high in states where conditional risk Σ̃s is also high.

Equation (19) says that the regulator intervenes more against high and uncertain exposures
to bad and uncertain states. Her interventions are limited by the cost of targeted interventions
and the uncertainty itself. High residual uncertainty limits the responsiveness of the targeted
interventions to the expected exposures x̂. The regulator cares about information quality to

7The residual uncertainty is known in advance since the evolution of the covariance matrix is deterministic, but
the posterior mean depends on the random realization the test itself, since x̂ = x̄ + K (ŷ − ŝ′x̄).

8While this is an obvious assumption to make at this point, we note that it is not without loss of generality
if we consider endogenous financial crises. Suppose, for example, that banks are too optimistic about mortgage
risk: ε is negative and their perceived exposures are lower than their true exposures. This might lead to excessive
lending, real estate price appreciation, and this might increase the probability of a future decrease in real estate
prices. This would violate the assumption of correlation between ε and s̃.

9The matrix notations are somewhat complicated but in the one dimensional case the formula is simply the
variance of a product of independent variables: Ṽ (xs) = Ṽ (x) Ṽ (s) + Ṽ (x)

(
Ẽ [s]

)2 + Ṽ (s)
(
Ẽ [x]

)2.
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improve the accuracy of both capital requirements and targeted interventions. More accurate
interventions translate into higher variation in ex post net exposure (1NJ×1 − a⋆) since the
regulator intervenes more when it is needed, and less when exposures are low.

5 Designing the Optimal Scenario

Once we account for optimal actions the interim utility of the regulator V (S ) depends on the
scenarios chosen and on the stress test results ŷ. In the design stage, the regulator chooses the
stress scenarios Ŝ to maximize the expected value of her information. The scenario design problem
is therefore

Ŝ∗ = arg max
Ŝ

E
[
V (S ) |Ŝ

]
. (20)

We could incorporate a cost of creating additional scenarios for the regulator: choosing M scenarios
for the stress test could have a cost C (M). In that case the objective function would simply be
Eŷ

[
V (S ) |Ŝ

]
− C (M) and the regulator would also choose the number of scenarios to include

in the stress test. The relevant cost function depends on institutional details (e.g., stress testing
insurance portfolios) and we leave this for future applied work.

5.1 Scenario Design for Standard Capital Requirements

In the case of standard capital requirements we obtain a particularly simple result.

Proposition 5. Scenario Design for Standard Capital Requirements. Under LQ the
planner designs standard capital stress scenarios (a = 0) to minimize the Distress Uncertainty
Matrix

min
Σ̂x∈Σ

11×NJE
[
Ṽ
]

1NJ×1, (21)

where Σ is the set of feasible residual uncertainty implied by the Kalman filter.

The key simplification comes from the FOC for capital: W̄ ⋆ = W− κ
pγ

+∑N
i=1 E [yi | D = 1, S ].

This FOC is linear in y, and therefore, the expected capital cost κE
[
W̄ ⋆

]
is independent of Σ̂x.

As a result the regulator only cares about minimizing uncertainty. The program is equivalent to
minΣ̂x∈Σ 11×NJ

(
1N×N ⊗

(
Σ̃s + s̃s̃′

))
◦ Σ̂x1NJ×1. The value of learning about factor j depends on

the unit cost of exposure
(
Σ̃s + s̃s̃′

)
and on residual exposure uncertainty Σ̂x.
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Corollary 1. Optimal scenarios for standard capital requirements depends only on the physical
distribution of risk factors – s̃ and Σ̃s – on prior uncertainty Σx, and on stress test noise Σε̂.

5.2 General Scenario Design

Given that ŷ is normally distributed and that macro factors are independent from risk exposures,
we can integrate the indirect value function E

[
V (S ) |Ŝ

]
and express it as function of the

covariance matrices Σ̂x and Σ̃s. To see this, note that the regulator’s objective depends on the
result of the stress test ŷ only through x̂. Moreover, the optimal targeted interventions only
depend on x̂ and on the posterior variance. The regulator then solves

min
Σ̂x∈Σ

E
[
κW̄ ⋆ + 1

2
(
(1NJ×1 − a⋆)′ pγṼ (1NJ×1 − a⋆) + a∗′Φa⋆

)]
. (22)

It is useful to compare (22) with (21). If we force a⋆ = 0 in (22) we obtain (21) since, when
a⋆ = 0, E

[
W̄ ⋆

]
is independent of Σ̂x. Three changes occur when a⋆ is optimally chosen. First

E
[
W̄ ⋆

]
now depends on Σ̂x via a⋆. Second, a⋆ mitigates the cost of uncertainty, as seen in the

middle term by limiting the ex-post exposures to the macro factors. Finally, the cost of action
appears as a∗′Φa⋆. If we replace the optimal actions and optimal capital requirements we obtain
the following proposition.

Proposition 6. (Regulator’s problem) Under LQ the stress scenario design problem is
equivalent to

min
Σ̂x∈Σ

Ex̂
[
κW̄ ⋆ + Φa⋆

]
, (23)

where a⋆ is given by (19), W̄ ⋆ by (18), and Σ is the set of feasible residual uncertainty implied by
the Kalman filter.

The simplicity of Equation (23) comes from the linear cost of capital and the quadratic
costs and benefits of targeted actions. Consider for simplicity the one dimensional
case, NJ = 1. Then we have W̄ ⋆ = W − κ

pγ
+ κx̂s̃ (1 − a∗) and the program

is minE
[
κW̄ ⋆ + 1

2

(
pγṼ (1 − a∗)2 + ϕ (a∗)2

)]
. The optimal action a∗ = pγṼ+κx̂s̃

ϕ+pγṼ implies
pγṼ (1 − a∗)2 + ϕ (a∗)2 = ϕa∗ − (1 − a∗) κx̂s̃ and therefore the program is equivalent to
minE [κx̂s̃ (1 − a∗) + ϕa∗]

The regulator anticipates that she will intervene optimally after observing the results of the
stress test and she chooses a posterior covariance matrix Σ̂x to maximize the accuracy of her
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actions weighted by the relevant costs. The set Σ restricts the amount of information about
different exposures the regulator can choose. To highlight the intuition behind the regulator’s
scenario choice, consider the case with one bank and one scenario. The benefit of learning more
about exposure j, i.e. of decreasing Σ̂j

x, is given by

E
[
(1NJ×1 − a⋆′)

(
κ (1N×1 ⊗ s̃) ◦ ∂x̂

∂Σ̂j
x

)
+ (Φ − κ (1N×1 ⊗ s̃) ◦ x̂) da⋆′

dΣ̂j
x

]
. (24)

The value of learning depends on how valuable it is to intervene and on how responsive
interventions are to the new information. The first term in Equation (24) represents the impact
of information on the posterior expected risk exposure. The more precise this information, the
more sensitive x̂ is to the new information in the stress test. Note that

∂W̄ ⋆

∂x̂
= (1NJ×1 − a⋆′) (1N×1 ⊗ s̃) .

Therefore, the first term in Equation (24) represents the reduction in the cost of the capital
requirements when information in the stress tests is more precise along dimension j. The second
term in Equation (24) captures the benefit of changing the targeted interventions when Σ̂j

x is
lower. The effect of Σ̂j

x on a⋆ deserves further attention. Since a⋆
(
x̂, Ṽ

)
we have

da⋆

dΣ̂j
x

= ∂a⋆

∂Ṽ
dṼ
dΣ̂j

x
+ ∂a⋆

∂x̂
dx̂

dΣ̂j
x

(25)

The first term in Equation (25) captures the change in the targeted intervention when the residual
uncertainty faced by the regulator changes. The second term measures the value of intervening
more accurately and it depends on the sensitivity of the targeted intervention to the ex-post
expected exposures ∂a⋆

∂x̂ , and on how the new information from the stress test changes this posterior
mean, which is determined by dx̂

dΣ̂j
x
. Suppose that the regulator’s prior beliefs were very precise.

In this case, only extreme realizations of ŷ would move the regulator’s priors and the sensitivity
of the intervention policy to new information would be low, i.e., dx̂

dΣ̂j
x

would be small. In this case,
increasing the precision of the stress test along dimension j would not improve the accuracy of
the intervention much and the value of learning along dimension j would be low. Similarly, if the
intervention policy was not very responsive to information, reducing the residual uncertainty of
the regulator along dimension j would not have a large effect on the intervention policy and the
value of information would be low.
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Figure 3: Optimal scenario, information choice and expected interventions as a function the
intervention cost to reduce the exposure to factor 2, ϕ2.

Note: The parameters used are M = 1, N = 1, J = 2, γ = 1.1, ϕ0 = [1, 1]′, ϕ1 = [0.1, 0.1]′, x̄ = [1, 1]′, Σx = IJ ,
α = 5, β = 7, θ = 2, E [s] = [0, 0]′, Ẽ [s] = [1, 1]′, Σs = IJ , Ẽ [s] = IJ , κ = 2, W = 100, p = 0.1, E [η] = 0,

E
[
η2] = 1, and E [ϵϵ′] = IN .
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6 Comparative Statics

The weights of the different risk factors in the optimal scenario chosen by the regulator depend on
how much her targeted interventions will respond to the new information in the stress tests. This,
in turn, depends on the intervention costs and the prior beliefs of the regulator. In this section,
we provide comparative statics to illustrate the determinants of the optimal stress scenarios.
Most examples below use two factors and one bank and, unless explicitly stated otherwise, we
assume that the variance of the variance or the error term in the stress test results is of the form
σ2

ϵ̂ = α ∥ŝ∥2 + βeθ∥ŝ∥2 and that the regulator’s priors about exposures are uncorrelated across
factors.10

6.1 Intervention costs

The first important point is that intervention costs have a non monotone impact on scenario
design. When intervention costs are low, the regulator can intervene preemptively to reduce
exposures. Inaccurate interventions are not too costly and the regulator cares little about learning
about that factor. When the intervention costs are intermediate, interventions are sensitive to
the information produced by the stress tests and the regulator values learning to avoid wasteful
interventions. Finally, when the intervention costs are high, the ex-post interventions are small
irrespective of stress test results and learning is less valuable for the regulator.

The first two panels in Figure 3 illustrates the optimal scenario design and the implied posterior
precisions as we vary ϕ2, the cost of reducing the bank’s exposure to factor 2. The first panel
shows that the stress on factor 2 increases and then decreases with ϕ2. When ϕ2 increases from
a low value the regulator finds it optimal to learn more about factor 2 at the cost of learning
less about factor 1 in order to minimize her total intervention costs. As ϕ2 increases, however,
the informational sensitivity of a⋆

2 decreases. This leads to a decrease in the weight of factor 2
and an increase in the weight of factor 1 in the stress test. In the limit as ϕ2 goes to infinity
the regulator only learns about factor 2 to properly set capital requirements, not to perform a
targeted intervention. In the absence of capital requirements, the regulator would choose not to

10If the regulator’s prior expectation is that exposures are correlated, it may still be beneficial for her to stress
factor j even if doing so does not improve the accuracy of her intervention along dimension j. In this case,
stressing factor j would only be valuable to learn about the exposures to other factors and improve the accuracy
of the targeted interventions along these other dimensions.
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learn about the exposure to factor 2 at all for large enough values of ϕ2.11

Figures 3c and 3d show the expected intervention policy as a function of the intervention cost
for factor 2, respectively. The expected intervention is decreasing and convex in the intervention
cost. When the intervention cost ϕ2 is small, the expected intervention decreases quickly for two
reasons. First, the regulator intervenes less because interventions are costly. Second, more precise
information about the bank’s risk exposures allows the regulator to intervene more accurately.
As the cost of targeted interventions increases, the regulator optimally compensates by increasing
capital requirements.

6.2 Prior Exposures

Prior mean of exposures imply relatively similar comparative to those of intervention costs, as
it can be seen from Panels (a) and (b) in Figure 4. The optimal scenario is non monotonic
because there are two opposing forces. Targeted intervetions increase with expected exposure
which increases the value of learning about high exposures. On the other hand, a tight prior
reduces the value of information. When the prior mean exposure to factor 1 is high, the regulator’s
posterior mean is anchored around this value and the posterior mean is likely to be large regardless
of the information produced by the tests. New information is not very valuable and the weight
of factor 1 decreases. When the prior is high enough, the regulator finds it optimal not to stress
that factor at all.

Figures 4c and 4d respectively show optimal capital requirements and targeted interventions
as a function of the prior mean exposure to factor 1. As expected, targeted interventions increase
with the prior mean. The effect on capital requirements is non monotonic, however, because there
are two opposing forces. The direct effect of high exposure is to increase capital requirements.
The indirect effect comes from the increase in targeted interventions which reduce the ex-post
expected exposure.

6.3 Uncertainty

Two dimensions of uncertainty shape the regulator’s choice of stress scenarios: uncertainty about
risk exposures and uncertainty about risk factors. The regulator intervenes more along dimensions

11In previous versions of this paper, we showed this result formally.
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Figure 4: Optimal scenario, information choice and expected interventions as a function of the
prior mean x̄1.

Note: The parameters used are M = 1, N = 1, J = 2, γ = 0.2, ϕ0 = [1, 1]′, ϕ1 = [0.1, 0.1]′, x̄ = [1, 1]′, Σx = IJ ,
α = 5, β = 7, θ = 2, E [s] = [0, 0]′, Ẽ [s] = [1, 1]′, Σs = IJ , Ẽ [s] = IJ , κ = 0.1, W = 100, p = 0.1, E [η] = 0,

E
[
η2] = 1, and E [ϵϵ′] = IN . .
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Figure 5: Optimal scenario and information choice as a function of the regulator’s prior uncertainty
of the exposure to factor 2, Σx,22.

Note: Figure 5 illustrates the regulator’s optimal choice of scenario and the implied posterior variance as a
function of the regulator’s prior variance of the exposure to factor 2, Σx,22. The parameters used are N = 1,

J = 2, γ = 0.5, ϕ = [1, 1]′, x̄ = [1, 1]′, Σx = IJ , α (M) =
√

M , β (M) =
√

M , M = 1, θ = 1.1, E
[
s2

k

]
= 1,

E
[
ϵ2

1,0
]

= 1 and E
[
ϵ2

1,1
]

= 1.

about which she is more uncertain. When the regulator is more uncertain about exposures to
risk factor j, her targeted intervention along dimension j is more responsive to the information
contained in the stress test results and information is more valuable.

Figure 5 shows the effect of prior uncertainty regarding exposures to factor 2, Σx,22, on the
optimal stress on factors 1 and 2. When Σx,22 is high the regulator stresses factor 2 to improve the
efficiency of her expected interventions. The consequences of uncertainty about the risk factors
themselves are similar, as shown in Figure B.1 in the Appendix.

6.4 Correlated risks

Let us now consider the role of correlations among risk exposures, within and across banks. We
saw earlier in Figure (2) that correlations affect the shape of Σ, the feasible set of posterior
precisions. When correlations are low, stressing one risk factor convey little information about the
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Figure 6: One bank, Three Risk Factors. Optimal scenario and information as a function of Σx,12,
the prior correlation among exposures 1 and 2.

Note: The parameters used are M = 1, N = 1, J = 3, γ = 1, ϕ0 = [1, 1]′, ϕ1 = [0.1, 0.1]′, x̄ = [1, 1]′, Σx = IJ ,
α = 5, β = 7, θ = 2, E [s] = [0, 0]′, Ẽ [s] = [1, 1]′, Σs = IJ , Ẽ [s] = IJ , κ = 2, W = 100, p = 0.1, E [η] = 0,

E
[
η2] = 1, and E [ϵϵ′] = IN .

banks other risk exposures. Correlation between risk exposures attenuates the trade-off as signals
about one exposure contain some information about the others.

Panel (a) in Figure 6 plots the optimal stresses among 3 factors as a function of prior correlation
among the first two exposures. Panel (b) shows that the amount of information that the regulator
can learn increase with the prior correlation.

Risk exposures are also likely to be correlated among banks. Figure 7 shows the optimal
stresses as a function of the prior correlation between exposures to factor 1 among two banks.
When the exposures to factor 1 are correlated across banks, reported losses from one bank contain
information about that bank’s exposures but also about the other bank’s exposure to the correlated
factor. Learning about factor 1 becomes more valuable. When the correlation is strong the
regulator barely learns about the other factor. The posterior variance of risk exposures to factor
2 tends towards the prior variance.
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Figure 7: Two factors, Two banks. Optimal scenario and information choice as a function of the
prior correlation between the bank’s risk exposures to factor 1, Σ11

x,12.

Note: Figure 7 illustrates the regulator’s optimal choice of scenario and the implied posterior variance as a
function of prior correlation in risk exposures. The parameters used are N = 2, J = 2, γ = 0.5, ϕ = [1, 1]′,
x̄ = 1NJ×1, Σx = INJ , α (M) =

√
M , β (M) =

√
M , M = 1, θ = 3, E

[
s2

k

]
= 1, E

[
ϵ2

j,0
]

= E
[
ϵ2

j,1
]

= 1 and
E [ϵ1,0ϵ2,0] = E [ϵ1,1ϵ2,1] = 1.

6.5 Multiple Scenarios and Constrained Tests

The qualitative patterns described above do not change when we add more scenarios because the
number of scenarios only affects the set of feasible precisions Σ and not the value of information.
Considering multiple scenarios is important, however, because it allows us to connect our model to
actual stress tests where one scenario is used to set minimal capital requirements under physically
plausible adverse circumstances.

Consider, then, a model with two risk factors and two scenarios. We analyze and compare
two regulatory problems. The first problem (panel a in Figure 8) is the unconstrained scenario
design studied earlier where the regulator freely chooses both scenarios to optimize her learning.
The second problem (panel b in Figure 8) captures an important feature of actual stress tests. In
practice one scenario is almost always used to set capital requirements under a plausible adverse
scenario. In the second problem, we therefore force one scenario to be the adverse scenario ŝ1 = s̃,
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Figure 8: Scenario Design With One Scenario Used for Capital Requirements

Note: We assume σ2
ϵ = α2 + β2||s||1+θ. The parameters used are M = 2, N = 1, J = 2, γ = 3, ϕ0 = [1, 1]′,

ϕ1 = [0, 0]′, x̄ = [1, 1]′, Σx = IJ , α = 1.3, β = 1, θ = 2, E [s] = [0, 0]′, Ẽ [s] = [0.2, 0.2]′, Σs = IJ , Ẽ [s] = IJ ,
κ = 0.1, W = 100, p = 0.1, E [η] = 0, E

[
η2] = 1, Σx,12 = 0.3,and E [ϵϵ′] = IN .

and we let the regulator optimize over the second scenario.
Panel (a) shows the unconstrained design. We keep one intervention cost at its baseline value

ϕ1 = 1 and we vary ϕ2. When ϕ2 = 1 the solution is essentially symmetric: ŝ∗,m
j = s for m = 1, 2

and j = 1, 2. The planner wants to learn equally about all risk exposures and stresses equally all
the factors. As ϕ2 increases, the planner specializes her learning to focus on factor 2. She is less
worried about factor 1 because she can use a targeted intervention at a relatively low cost in that
dimension.

In Panel (b), the planner is constrained to set ŝ∗,1
j = s̃j. This has several implications. First,

the stress value is constrained to be “plausible”, which here means ∥s∥ = ∥s̃∥. This reflects the
fact that the plausible scenario does not optimize the signal to noise ratio but rather must deliver
a plausible capital requirement. Second, specialization happens somewhat more slowly.

Figure 9 shows the welfare costs of fixing one scenario to be “plausible”. Welfare decreases
with intervention costs, as expected. What is more interesting is the welfare cost of using up
one scenario to set capital requirements. The punchline of Figure 9 is that the welfare losses are
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Figure 9: Welfare under Constrained and Unconstrained Scenario Designs

Note: The parameters used are M = 2, N = 1, J = 2, γ = 1.3, ϕ0 = [1, 1]′, ϕ1 = [0, 0]′, x̄ = [1, 1]′, Σx = IJ ,
α = 1.3, β = 1, θ = 2, E [s] = [0, 0]′, Ẽ [s] = [0.2, 0.2]′, Σs = IJ , Ẽ [s] = IJ , κ = 0.1, W = 100, p = 0.1, E [η] = 0,

E
[
η2] = 1, Σx,12 = 0.3, and E [ϵϵ′] = IN .

moderate as long as the interventions costs are not very high. This suggests that, in practice, a
stress test design where only one scenario is used for exploring and extracting information is not
far from the optimum.

Figures 10 and 11 perform the same analysis in an economy where the optimal scenarios are
asymmetric. One scenario is used to explore factor 1 and the other to explore factor 2. In that
case the constrained design is rather different from the unconstrained one. The welfare losses are
still moderate compared to the losses stemming from higher intervention costs.

7 Discussion and Conclusion

Despite the growing importance of stress testing for financial regulation and risk management,
economists still lack a theory of the design of stress scenarios. We model stress testing as
a learning mechanism and show how to map the scenario choice problem into an information
acquisition problem. In this framework, we derive optimal scenarios and characterize how their
design depends on the cost of interventions, the prior beliefs of the regulator, the precision of
regulatory information, the uncertainty about the risk factors, and the presence of systemic risk
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Figure 10: Optimal scenario choices as a function of the intervention cost to reduce the exposure to
factor 2 and the expected exposure to factor 1, ϕ2. Panel a shows the case in which both scenarios
are chosen freely and panel b shows the case in which one scenario is fixed to the expected macro
state in distress.

Note: We assume σ2
ϵ = α2 + β2||s||1+θ. The parameters used are M = 2, N = 1, J = 2, γ = 1.3, ϕ0 = [1, 1]′,

ϕ1 = [0, 0]′, x̄ = [1, 1]′, Σx = IJ , α = 1.3, β = 1, θ = 1.2, E [s] = [0, 0]′, Ẽ [s] = [0.3, 0.3]′, Σs = IJ , Ẽ [s] = IJ ,
κ = 0.1, W = 100, p = 0.1, E [η] = 0, E

[
η2] = 1, and E [ϵϵ′] = IN .

factors.
Our approach is consistent with the general principles of current policies implement in various

jurisdiction, but it has the advantage that our optimal scenarios are not arbitrary. For example, the
current policy on stress scenario design in the U.S. allows for the stress scenarios to “follow either
a recession approach, a probabilistic approach, or an approach based on historical experiences.”12

These concepts are somewhat vague and have generated much discussion among banks and
regulators. Some commentators argue that scenarios should be predictable while others advocate
a flexible design to accommodate emerging risks and changing exposures. Our learning approach
shows how to incorporate this goals in the design of the stress scenarios.

12See 12 CFR Part 252 Appendix A.

38



1 2 3 4 5 6 7 8

-10.305

-10.3

-10.295

-10.29

-10.285

-10.28

-10.275

Figure 11: Welfare under Constrained and Unconstrained Scenario Designs

Note: The parameters used are M = 2, N = 1, J = 2, γ = 1.3, ϕ0 = [1, 1]′, ϕ1 = [0, 0]′, x̄ = [1, 1]′, Σx = IJ ,
α = 1.3, β = 1, θ = 21., E [s] = [0, 0]′, Ẽ [s] = [0.3, 0.3]′, Σs = IJ , Ẽ [s] = IJ , κ = 0.1, W = 100, p = 0.1, E [η] = 0,

E
[
η2] = 1, and E [ϵϵ′] = IN .

Our comparative static exercises above shed light on the optimal stress scenario design in the
presence of systemic factor, in times of distress, over time, and its relation to capital requirements.

Correlated Exposures and Systemic Factors Stress tests are widely used as a risk
management tool. Regulatory stress testing in particular focuses on assessing the resilience of
the financial system as a whole. In this context, risk factors that lead to correlated losses among
banks are of particular interest. Our analysis on correlated exposures among banks suggests that
the optimal stress scenario would put relatively more weight on these factors. Moreover, if the
correlation of the banks’ exposures to some factor is high enough, the optimal stress scenario may
put weight only on these systemic factors.

Scenario design in times of uncertainty Uncertainty about the evolution of macroeconomic
variables and the regulator’s attitude towards this uncertainty are crucial in determining the
optimal stress scenario. From our analysis above, it follows that the optimal stress test design
calls for stressing more uncertain factors more. Moreover, our model implies that an across the
board increase in uncertainty or in the regulator’s risk aversion can lead to the optimal stress
scenario putting more weight on fewer factors. This implies a positive correlation between the
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severity of the stress scenarios and the uncertainty in the economy.

Evolution of stress scenarios Changes in the information set of the regulator will lead to
different scenario choices. The more the regulator knows about the banks’ exposures to a particular
factor, the less she will choose to stress that factor in the optimal stress scenario. Since the
regulator learns more about the exposures to factors that are stressed more in the optimal scenario,
sequences of stress tests may optimally put weight on different factors each period. These changes
resemble experimentation but they are not driven by changes in the regulator’s objective nor by
changes in the expected evolution of risk factors. Instead they may simply reflect the evolution of
the regulator’s information about banks’ losses.
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Appendix
The Appendix contains some auxiliary calculation for formulas in the text. It needs to be completed.

A Proofs
A.1 Learning from stress tests
Proof of Lemma 1

When N = 1, M = 1, and J = 2, the Kalman gain is given by

K =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

] [
ŝ1
ŝ2

]([
ŝ1 ŝ2

]([ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])[
ŝ1
ŝ2

]
+ σ2

ε̂ (ŝ)
)−1

,

which implies

k1 = σ2
1 ŝ1 + ρσ1σ2ŝ2

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂ (ŝ)

, and

k2 = σ2
2 ŝ2 + ρσ1σ2ŝ1

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂ (ŝ)

.

Moreover,

Σx̂ (j, j) = kj ŝj

(
σ2

j + ŝh

ŝj
ρσ1σ2

)
,

where

kj ŝj =
σ2

j ŝ2
j + ρσ1σ2ŝ2ŝ1

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂ (ŝ)

= 1 − ρσ1σ2ŝ1ŝ2 + σ2
hŝ2

h + σ2
ϵ̂

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂ (ŝ)

.

Note that
∂kj

∂σ2
ϵ̂ (ŝ)

= − kj

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂ (v)

≤ 0

and
∂Σx̂ (j, j)

∂σ2
ϵ̂ (ŝ)

= − Σx̂ (j, j)
σ2

1 ŝ2
1 + 2ρσ1σ2ŝ1ŝ2 + σ2

2 ŝ2
2 + σ2

ϵ̂ (ŝ)
≤ 0

Since
ϵ̂ (ŝ) = αϵ0 + β

(
∥ŝ∥

1
2 + ∥ŝ∥1+θ

)
ϵ1,

we have
σ2

ϵ̂ (ŝ) = α2 + β2
((

ŝ2
1 + ŝ2

2

) 1
2 +

(
ŝ2

1 + ŝ2
2

)1+θ
)

,

44



which is increasing in |sj | for j = 1, 2. Therefore, more extreme scenarios decrease the amount of learning.
The effect of an increase in noise on the amount of learning is negligible close to the baseline, i.e.,

lim
|ŝj |→0

∂Σx̂ (j, j)
∂σ2

ϵ̂ (ŝ)
∂σ2

ϵ̂ (ŝ)
∂ |ŝj |

= −
Σx̂ (j, j) β2

((
ŝ2

1 + ŝ2
2
)− 1

2 + (1 + θ)
(
ŝ2

1 + ŝ2
2
)θ 2

)
|ŝj |

σ2
1 ŝ2

1 + 2ρσ1σ2ŝ1ŝ2 + σ2
2 ŝ2

2 + σ2
ϵ̂ (ŝ)

= 0 ∀j = 1, 2. (A.1)

Moreover, the direct effect of a more extreme scenario on the amount of learning is given by

∂Σx̂ (j, j)
∂ |ŝj |

= ∂ (kj ŝj)
∂ |ŝj |

σ2
j + ∂kj

∂ |ŝj |
ŝhρσ1σ2 ∀j, h = 1, 2, j ̸= h.

When ρ = 0,we have

∂Σx̂ (j, j)
∂ |ŝj |

= ∂ (kj ŝj)
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σ2
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hŝ2
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ϵ̂(
σ2

1 ŝ2
1 + σ2

2 ŝ2
2 + σ2

ϵ̂ (ŝ)
)2 σ4

j 2 |ŝj | ≥ 0.

Then, using Equation A.1 we have that

Σx̂ (j, j) =
σ2

j ŝ2
j
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1 ŝ2
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2 ŝ2

2 + α2 + β2 (ŝ2
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ŝj→0

dΣx̂ (j, j)
dŝ2

j

> 0 and lim
ŝj→∞

dΣx̂ (j, j)
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j

= −θσ2
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When ρ > 0, using Equation (??) and the definition of σ2
ϵ̂ (ŝ), we have that

k1ŝ1 = σ2
1 ŝ2

1 + ρσ1σ2ŝ2ŝ1
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Proof of Proposition 2

The Kalman filter in Equations (7) and (8) imposes restrictions on the set of posterior variances
that can be attained. More specifically, the Kalman filter maps the J × M elements in the
stress scenarios Ŝ to the the NJ(NJ+1)

2 elements of the posterior precision Σ̂x from the set Σ.
Moreover, the regulator’s choice will always be on the frontier of the feasibility set, given by Σ ≡{

K
(
Ŝω

)
Ŝ′

ωΣx for all ω ∈ [0, 1]N×J with
∑N×J

h=1 ωh

}
, where

Ŝω ≡ arg max
Ŝ

ω′K
(
Ŝ
)

Ŝ′Σxω.

Given our assumptions on ϵ̂i (ŝ, M), Ŝω is unique. Hence, since the objective function of the regulator
depends on Ŝ only through the posterior variance, the regulator’s scenario choice problem can be cast in
term of choosing Σ̂x .

When M < N,as long as all risk dimensions are spanned, choosing the J × M elements in Ŝ
is equivalent to choosing J × M elements of the posterior precision Σ̂x. Without loss of generality,
one can focus on the posterior variances of the risk exposures of M banks from the set ΣM ≡{

K
(
Ŝω

)
Ŝ′

ωΣx for all ω ∈ [0, 1]N×J with
∑M

m=1
∑J

j=1 ω(j−1)J+m

}
.

A.2 Taking action
Proof of Lemma 2

Under linear quadratic preferences, the first order condition that characterizes the optimal capital
requirement is

K ′
(
W̄ ⋆

)
= 1 + pγ

(
W − W̄ ⋆ + Ẽ [s] ·

(
N∑

i=1
(1 − ai) ◦ x̂i

))
.

Proof of Lemma 4

Under linear quadratic preferences, the first order condition that characterizes the regulator’s optimal
targeted intervention policy is

∂C (a⋆)
∂ai,j

= x̂i,jE [sj ] − pγẼ [xi,jsj (W − W) | S ]

= x̂i,jE [sj ]E
[
U ′ (W ) | S

]
− pγẼ [(xi,jsj − x̂i,jE [sj ]) (W − W) | S ]

= x̂i,jE [sj ]K′
(
W̄
)

− pγx̂i,j

(
Ẽ [sj ] − E [sj ]

)
Ẽ [(W − W) | S ]

+ pγẼ
[(

xi,jsj − x̂i,jẼ [sj ]
) N∑

h=1

J∑
l=1

(1 − ah,l) xh,lsl | S

]

= x̂i,jE [sj ]K′
(
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)

− pγx̂i,j

(
Ẽ [sj ] − E [sj ]

)
Ẽ [(W − W) | S ] + pγC̃ov
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J∑
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)
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)

− pγx̂i,j

(
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)
Ẽ [(W − W) | S ] + pγ

N∑
h=1

J∑
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(1 − ah,l) C̃ov (xi,jsj , xh,lsl) .
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Using the FOC for W̄ we have

W̄ ⋆ − W = − κ

pγ
+

N∑
i=1

J∑
j=1

(1 − ai,j) x̂i,jẼ [sj ]

which implies

Ẽ [(W − W) | S ] = Ẽ
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i=1

J∑
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
= Ẽ

− κ

pγ
+

N∑
i=1

J∑
j=1

(1 − ai,j) x̂i,jẼ [sj ] −
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J∑
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(1 − ai,j) xi,jsj | S


= − κ

pγ
.

Moreover, using that
E [s] = 0 and s| D = 1 ∼ N

(
s̃, Σ̃s

)
,

the first-order conditions for the targeted actions become

∂C (a⋆)
∂ai,j

= κγx̂i,jẼ [sj ] + pγ
N∑

h=1

J∑
l=1

(1 − ah,l) C̃ov (xi,jsj , xh,lsl) ∀i, j. (A.2)

Proof of Proposition 3

Rewriting the system in Equations (A.2) in vector form for a⋆, gives

a⋆ =
(
Φ + pγṼ

)−1 (
κ (1N×1 ⊗ s̃) ◦ x̂ + pγṼ1NJ×1

)
,

where

Ṽ = C̃ov [(1N×1 ⊗ s) ◦ x | S ] =
((

1N×N ⊗ Σ̃s
)

◦ Σ̂x
)

+
(
1N×N ⊗ Σ̃s

)
◦
(
x̂x̂′)+

(
1N×N ⊗ s̃s̃′) ◦ Σ̂x,

which proves the result.

A.3 Optimal scenario choice
The objective function of the regulator is given by

Ex̂ [O] = Ex̂
[
Es,η,x

[
U
(
W
(
a⋆, W̄ ⋆

))
|S
]

− C (a⋆) − K
(
W̄ ⋆

)]
= Ex̂

[
Es,η,x

[
W
(
a⋆, W̄ ⋆

)
|S
]

− pγ

2 Ẽs,η,x

[(
W
(
a⋆, W̄ ⋆

)
− W

)2
|S
]

− C (a⋆) − (1 + κ) W̄ ⋆
]

.
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Proof of Proposition 5

The optimal capital requirement in the absence of targeted actions is

W̄ ⋆ = W − κ

pγ
+
(
1N×1 ⊗ Ẽ [s]

)′
x̂.

The total wealth of the regulator is then

W = W − η̄ − κ

pγ
−
(

(1N×1 ⊗ s)′ x −
(
1N×1 ⊗ Ẽ [s]

)′
x̂
)

,

which implies
E
[
W
(
a⋆, W̄ ⋆

)
|S
]

= W̄ ⋆

and
Ẽ
[(

W
(
a⋆, W̄ ⋆

)
− W

)2
|S
]

= Var [η̄] + 11×NJ Ṽ1NJ×1,

where Ṽ ≡ C̃ov
[
(1N×1 ⊗ s)′ x |S

]
. Then, the objective function of the regulator becomes

E [O] = E
[
E
[
W
(
a⋆, W̄ ⋆

)
|S
]

− pγ

2 Ẽ
[(

W
(
a⋆, W̄ ⋆

)
− W

)2
|S
]

− (1 + κ) W̄ ⋆
]

= −pγ

2 Var [η̄] − κ

(
W − κ

pγ
+
(
1N×1 ⊗ Ẽ [s]

)′
x̄
)

− pγ

2 11×NJE
[
Ṽ
]

1NJ×1.

Note that the only term that the regulator can affect by choosing a stress scenario, or alternatively a
posterior covariance matrix, is Ṽ. Therefore, the regulator’s objective in the design problem is to minimize
her residual uncertainty E

[
Ṽ
]
.

Proof of Corollary ??

The proof follows by noticing that the residual uncertainty of the regulator can be written as

E
[
Ṽ
]

≡ E
[
C̃ov

[
(1N×1 ⊗ s)′ x |S

]]
=
(
1N×N ⊗ Σ̃s

)
◦ E

[
E
[
xx′ | S

]]
+
(
1N×N ⊗

(
Σ̃s + s̃s̃′

))
◦ Σ̂x,

=
(
1N×N ⊗ Σ̃s

)
◦
(
Σx + x̄x̄′)+

(
1N×N ⊗ s̃s̃′) ◦ Σ̂x

which is separable in x̄x̄′ and Σ̂x because

E
[
xx′] = Σx + x̄x̄′.

Proof of Proposition 6

When utility is mean-variance, targeted intervention costs are quadratic and capital requirement costs
are linear, the optimal capital requirement is given by

W̄ ⋆ = W − κ

pγ
+
(
1N×1 ⊗ Ẽ [s]

)′
(x̂ ◦ (1NJ×1 − a⋆)) ,
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which implies that the wealth of the financial system is given by

W = W − η̄ − κ

pγ
−
(

(1N×1 ⊗ s)′ (x ◦ (1NJ×1 − a⋆)) −
(
1N×1 ⊗ Ẽ [s]

)′
(x̂ ◦ (1NJ×1 − a⋆))

)
,

which implies
E
[
W
(
a⋆, W̄ ⋆

)
|S
]

= W̄ ⋆

and
Ẽ
[(

W
(
a⋆, W̄ ⋆

)
− W

)2
|S
]

= Var [η̄] + C̃ov
[
(1N×1 ⊗ s)′ (x ◦ (1NJ×1 − a⋆)) |S

]
,

where
C̃ov

[
(1N×1 ⊗ s)′ (x ◦ (1NJ×1 − a⋆)) |S

]
= (1NJ×1 − a⋆)′ Ṽ (1NJ×1 − a⋆)

and
Ṽ = C̃ov [(1N×1 ⊗ s) ◦ x |S ]

Using these expressions, we have that the regulator maximizes the expected value of

O = E
[
W
(
a⋆, W̄ ⋆

)
|S
]

− pγ

2 Ẽ
[(

W
(
a⋆, W̄ ⋆

)
− W

)2
|S
]

− 1
2a∗′Φa⋆ − (1 + κ) W̄ ⋆

= −pγ

2 Var [η̄] − κW̄ ⋆ − 1
2
(
pγ (1NJ×1 − a⋆)′ Ṽ (1NJ×1 − a⋆) + a∗′Φa⋆

)
.

In an interior solution for a⋆, we can use the FOC for a⋆ and write pγ (1NJ×1 − a⋆)′ Ṽ (1NJ×1 − a⋆) +
a∗′Φa⋆

= 11×NJpγṼ (1NJ×1 − 2a⋆) + a∗′
(
Φ + pγṼ

)
a⋆

= 11×NJpγṼ (1NJ×1 − 2a⋆) + a∗′
(
κ
(
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)
◦ x̂ + pγṼ1NJ×1

)
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(
κ
(
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)
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)
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)
◦ x̂.

= 11×NJΦa⋆ − κ
(
1N×1 ⊗ Ẽ [s]

)′
(x̂ ◦ (1NJ×1 − a⋆))

Then, using the optimal capital requirement we have

O = −pγ

2 Var [η̄] +
(
1N×1 ⊗ Ẽ [s]

)′
(x̂ ◦ (1NJ×1 − a⋆)) − κW̄ ⋆

− 1
211×NJΦa⋆ + 1

2κ
(
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(
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)
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2
(
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(
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)
− pγ
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2

(
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2
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pγ

)
− pγ
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Therefore,
Ex̂ [O] = −κ

2

(
W − κ

pγ

)
− pγ

2 Var [η̄] − κ

2Ex̂
[
W̄ ⋆

]
− 1

211×NJΦEx̂ [a⋆]

and the objective of the regulator can be written as

min
s

κEx̂
[
W̄ ⋆

]
+ 11×NJΦEx̂ [a⋆] .

B Additional comparative statics
B.1 Uncertainty about risk factors
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(a) Optimal scenario choice
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Figure B.1: Optimal scenario and information choice as a function of the uncertainty about risk
factor 2, E [s2

2].

Note: Figure B.1 illustrates the regulator’s optimal choice of scenario and the implied posterior variance as a
function of the uncertainty about risk factor 2, E

[
s2

2
]
. The parameters used are N = 1, J = 2, γ = 0.3, ϕ = [1, 1]′,

x̄ = [1, 1]′, Σx = IJ , α (M) =
√

M , β (M) =
√

M , M = 1, θ = 1, E
[
s2

1
]

= 1, E
[
ϵ2

1,0
]

= 1 and E
[
ϵ2

1,1
]

= 1.

If one risk factor has a very low variance and will stay close to the the baseline, then it is less valuable
to learn about the exposures to it and to intervene to reduce them. In this case, the factor’s weight on
the expected losses will be small and uncertainty about the exposure to it is less costly. However, if the
variance of a risk factor is large it has the potential to be an important driver of bank losses depending
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on the risk exposures to it. In this case, the regulator has more incentives to learn and intervene along
the dimension of this factor to curve its potential impact on losses. Therefore, the regulator will stress
a risk factor more in the optimal scenario the highest the uncertainty about it. Figures B.1 show the
optimal scenario choice as a function of the uncertainty about risk factor 2, E

[
s2

2
]
.
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