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Investment management firms are gradually transforming themselves from users of small

data and simple asset pricing models to users of big data and computer-generated statistical

models. Amidst this transformation, investors’ strategic focus is shifting from the choice

of pricing model to the choice of data they acquire. A key question for modern financial

firms is: How much should they be willing to pay for a stream of financial data? This paper

devises and puts to use a methodology to estimate this dollar value, based the investor’s own

characteristics, but without needing to know the characteristics of others.

From information-based theories, we know many qualitative features of firms that make

data valuable – large firms, growth stocks, firms with risky payoffs, assets that are sensitive

to news, assets that others are uninformed about. After all, data is simply a stream of

digitized information. But for an investor who is considering purchasing a data set, knowing

the representative investor’s theoretical value for the data is not very useful. An investor

with a large portfolio values data more, while an investor who invests in a restricted set of

assets values data less. An investor with lots of other data is less willing to pay for additional

data, while an investor who trades more frequently might value data more or less. All these

effects depend on the asset market equilibrium, which in turn depends on the characteristics

of every other investor. Data value also depends on which other investors buy that same

data. To make matters more complex, we also know that illiquidity or price impact of a

trade make information less valuable (Kacperczyk, Nosal, and Sundaresan, 2021), but how

this interacts with investor heterogeneity, quantitatively, is less understood.

Our simple procedure to estimate the value of any data series, to an investor with specific

characteristics, reveals enormous dispersion in how different investors value the same data.

Unlike financial assets, data assets are not equally valuable to all. The dispersion in private

valuations for data matters for our understanding of data markets because it suggest a low

price elasticity of aggregate data demand.

It is important to point out that our procedure leads to an estimate of private value to an

investor, which could be different from a transaction price that one might observe when data
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is sold. Knowing the private values of market participants allows one to trace out a demand

curve for data. Some investors would have values greater than the equilibrium price, some

less. This is like a shopper determining how much they value a sweater. Knowing that the

sweater’s market price is $50 does not make that the shopper’s value – it might be the wrong

color or size. Alternatively, the shopper might be willing to pay $100 for the sweater and

still not buy it because they find a similar sweater for less. Understanding how customers

(investors) value a product (a data set) is different from calculating a market clearing or

equilibrium price. Valuations are important because they allow us to evaluate consumer

surplus and welfare, teach us about demand elasticity, markups and market competition,

and allow one to ask if observed transactions prices are efficient.

Our measurement approach relies on sufficient statistics which are easily computable.

While our measure is based on a model, we do not need to estimate most model parameters

to arrive at a data value. In Section 1, we set up a noisy rational expectations model with

rich heterogeneity in investors, assets and data types and derive the expected utility of

data in dollar amounts. We show that a few sufficient statistics – average conditional and

unconditional returns, variances and forecast errors – are all that is needed to price a piece

or a stream of data. This is true regardless of whether the data is public, private, or known

by some. Our sufficient statistics are also a valid measure regardless of how heterogeneous

other investors’ preferences, data or investment styles are. They can be used to value data

about asset fundamentals or about sentiment. Finally, with a small adjustment, they can be

used in imperfectly competitive markets as well.

One could apply this tool to any finance-relevant data series, or any bundle of data series

– all it requires is knowledge of the relevant investor characteristics and access to a history of

market prices and data realizations. We present a small number of examples that highlight

the importance of accounting for investor heterogeneity in data valuation. In Section 3,

we compute the value of median analyst forecasts for earnings growth for investors with

different wealth levels, different investment styles and facing different market conditions.
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These exercises highlight the flexibility of our approach and its ability to accommodate

various dimensions of heterogeneity. In Section 4, we then apply our tool to assign a dollar

value to information about macroeconomic fundamentals. Specifically, we compute the value

to an investor from being able to perfectly observe real GDP growth one quarter in advance.

We again highlight the role of investor heterogeneity in arriving at this data value.

Our first exercise in Section 3 explores the role of investor wealth and risk preferences.

To do this, we consider two investors with the same relative risk aversion and different initial

wealth levels. This implies that the wealthier investor has lower absolute risk aversion and

as a result, values the same data by more. But, the extent depends on market structure,

i.e. on whether their trades have price impact or not. When markets are competitive, i.e.

a trade has no impact on the market price, data values increase sharply with wealth: an

investor with $250 million in initial wealth values data by almost 300 times compared to one

with $0.5 million. Accounting for price impact, in line with empirical estimates, dramatically

reduces the value of data for all investors, but has noticeably larger effects on the investor

with higher wealth/lower absolute risk aversion. This illustrates a general pattern we see –

there is enormous heterogeneity in willingness to pay for data, that is substantially tempered

by a modest degree of market illiquidity.

The high sensitivity of data to price impact is interesting in its own right. It suggests

that market liquidity is crucial for the value of financial data. Small changes in market

conditions can thus lead to large variation in data value and through that, in the valuation

of firms whose main asset is financial data. This suggests a new avenue of how liquidity

effects in asset markets. We typically think of market liquidity as something that affects

only the value of financial assets, not directly affecting the real value of a firm. As data

becomes a more important asset for financial firms, the prices of financial firms may become

increasingly sensitive to market liquidity.

Our second exercise considers investors with different investment styles. Specifically, we

analyze the value of analyst forecast data for investors who trade only in a single portfolio,
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such as the S&P 500 portfolio, or a portfolio consisting of only small firms, only large firms,

only growth stocks or only value stocks. Our benchmark is an investor who trades all five of

these portfolios. Because each of these types uses a piece of data differently, they value the

same piece of information differently. We find that investors in large and growth stocks (as

well as investors who trade all five portfolios) value analyst forecast data substantially more

than a value or small-firm investor.

Our third exercise quantifies how much the value of analyst forecast data depends on

what other data is in an investor’s database. We find considerable variation in data values

when we vary the other data variables used. In general, the more series we add to the

investor’s information set, the lower is the value gained by having access to analyst forecasts

and these effects are sizable. This result illustrates the importance of accounting for many

facets of investor heterogeneity. It also suggests that this dimension of heterogeneity can

induce sizable variation in data valuations, and potentially, a low price elasticity of data

demand.

Our fourth exercise considers the effect of trading horizon on the value of analyst forecast

data. Our toolkit can easily accommodate such differences with higher frequency observa-

tions on the data series and asset returns. We illustrate this by computing the value of

data to an investor who trades over a quarterly horizon (our baseline calculations are for an

annual horizon). We find that a shorter horizon makes analyst forecast data somewhat less

valuable, i.e., they turn out to be less useful in forecasting returns over shorter horizons. It is

worth highlighting that this exercise is about trading horizon, not frequency – it is possible

that an investor who trades or rebalances his portfolio more frequently ascribes a higher

value to the data compared to one who trades less often. In principle, our procedure can be

extended to this type of heterogeneity as well, but in part due to data limiations, we do not

explore it in this paper.

In Section 4, we explore how investors with different characteristics value macroeconomic

information. In contrast to the analyst forecast data, we find less variation across different
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investment styles for this type of data. The estimated dollar values are sizeable, suggest-

ing all investors in general find macroeconomic information quite useful for portfolio choice.

Alternatively, similar to analyst forecast data, we find that market illiquidity not only de-

creases value of data to all investors, but also significantly compresses data valuation across

investors with different wealth levels.

As such, these exercises not only highlight how our toolkit can be applied in practice but

also yield new insights about financial asset markets.

Why do we need to estimate the value of data? Why not look at prices for data directly?

One reason is that not all data prices are observed, either because the data is not traded,

or it is traded privately. In other words, the data is an asset, and if it is owned by a firm

but never traded, it does affect the value of the firm while its price is unknown. But even

if all prices were observed, just like assets can be mispriced, data can be mispriced. Finally,

a firm’s willingness to pay for data depends on what data it already owns. A market or

transaction price for data does not necessarily reflect how any one firm values the data.

Relationship to the literature. Data is information. Therefore, our approach to valuing

financial data draws primarily on the literature exploring information in financial markets.

A few papers have examined the value of information or skill, for a representative agent

or in an economy with one aggregate risk (Kadan and Manela, 2019; Savov, 2014; Dow,

Goldstein, and Guembel, 2017; Morris and Shin, 2002). Kacperczyk, Nosal, and Sundaresan

(2021), Kyle and Lee (2017), and Kyle (1989) add imperfect competition. What we add is a

richer asset structure, a richer information structure, but most importantly, heterogeneous

investors who value information differently. This last ingredient is essential to understand

what the aggregate data demand function looks like.

Enriching the information structure to allow for public, private or correlated signals is

also important for real-world measurement. Such rich information structures are commonly

studied in settings with quadratic payoffs (Ozdenoren and Yuan, 2008; Albagli, Hellwig,

and Tsyvinski, 2014; Amador and Weill, 2010). But they have substantially complicated
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previous asset market models to the point that most authors assume fully private (Barlevy

and Veronesi, 2000; He, 2009; Kondor, 2012) or fully common (Grossman and Stiglitz, 1980)

information.1 In addition, investors may choose between asset valuation-relevant data or

data about other investors’ order flow (Farboodi and Veldkamp, 2017). The idea that all

these types of information can be valued with one set of sufficient conditions is a new idea

that substantially broadens the empirical applicability of these tools.

The main point of the paper is that heterogeneity in investor characteristics matters.

Some version of all these characteristics exist in some noisy rational expectations model

(Kacperczyk, Nosal, and Sundaresan, 2021; Peress, 2004; Mondria, 2010), most of which

look daunting to estimate.2 This project shows that, despite all these degrees of heterogneity

among investors, data types and equilibrium effects, there is a simple procedure to compute

a value for data.

Measures of the information content of prices, like those in Bai, Philippon, and Savov

(2016) and Davila and Parlatore (2021) are used to infer how much the average investor in

an asset knows. Such measures are related, in that they arise from a similar noisy rational

expectations framework. But they answer a question about the quantity of information, not

its value. Farboodi, Matray, Veldkamp, and Venkateswaran (2019)’s “initial value” of a unit

of precision is not the value a firm would pay, is only valid for private signals about orthogonal

assets, and does not account for any particular firm’s preferences, portfolio, existing data set

or price impact. Our sufficient statistics approach is more relevant for demand estimation,

much simpler to estimate and more robust to heterogeneity.

1Exceptions include Goldstein, Ozdenoren, and Yuan (2013) and Sockin (2015).
2Heterogeneity also arises in micro models like (Bergemann, Bonatti, and Smolin, 2016), who value

information in a bilateral trade, where sellers do not know buyers’ willingness to pay, but without the
equilibrium considerations about what others know.
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1 A Framework for Valuing Data

Since data is information, we build on the standard workhorse model of information in

financial markets, the noisy rational expectations framework. To the framework, we add long-

lived assets, imperfect competition, heterogeneity of preferences, wealth effects, investment

styles, public, private or partly public signals and arbitrary correlation between assets and

between various signals. We include these features because each one affects the value of

information. Model extensions consider data about sentiment or order flow.

Our contribution is not the modeling. Our contribution lies in showing how to estimate

data valuations in such a rich and flexible model. The goal of the model is to show how,

despite all the heterogeneity, the value of data can be reduced to a few sufficient statistics

that are easy to compute. Later, we justify this rich modeling structure by showing that

heterogeneity matters for data valuations.

Assets We have N distinct risky assets in the economy indexed by j, with net supply given

by x̄. Each of these assets are claims to stream of dividends {djt}∞t=0, where the vector dt is

assumed to follow the auto-regressive process

dt+1 = µ+G(dt − µ) + yt+1.

Here, the exogenous dividend innovation shock yt+1 ∼ N (0,Σd) is assumed to be i.i.d. across

time. We use subscript t for variables that are known before the end of period t. Thus, the

dividend dt+1 and its innovation shock yt+1 both pertain to assets that are purchased in

period t; both these shocks are observed at the end of period t.

Investors and investment styles In each period t, n overlapping generations investors,

i ∈ [0, 1], are born, observe data, and make portfolio choices. The number of investors may

be finite, which implies that markets are imperfectly competitive. We will also consider

the limiting economy as n becomes infinite. In the following period t + 1, investors sell
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their assets, consume the dividends and the proceeds of their asset sale and exit the model.

Each investor i born at date t has initial endowment w̄it and utility over total, end-of-life

consumption cit+1. At date t, investors choose their portfolio of risky assets, which is a vector

qit of the number of shares held or each asset. They also choose holdings of one riskless asset

with return r, subject to budget constraint

cit+1 = r (wit − q′itθipt) + q′itθi (pt+1 + dt+1) . (1)

An investor i may also be subject to an investment style constraint, which limits the

set of risky assets they purchase. We denote this set of investable assets as Qi. Following,

Koijen and Yogo (2019), we do not model the source of the constraint. However, many

investors do describe their strategy as small-firm investing or value investing, which limits

the assets they hold. We consider sets Qi that either set the holdings of some assets to

zero, or allow the entire real line. For example, long-only portfolios would restrict Qi to the

non-negative realm of ReN . Of course, it is possible that an investor is unrestricted, in which

case Qi = ReN . The matrix θi is an mi × N matrix of zeros and ones, where mi ≡ |Qi| is

the number of investable assets for investor i. Each row of θi has a single 1 entry, with all

other entries zero. If asset j is in investor i’s style class, then that asset is investable and

there will be one row of θi with ith column entry equal to 1.

Data Each investor has access to H distinct data sources. Signals from each of these data

sources (indexed by h) provides information about dividend innovations yt+1, possibly from

a linear combination ψh of assets:

ηiht = ψhyt+1 + Γheit

Here, eit ∼ N (0, I) is iid across time, but not necessarily independent across investors or

across assets. In other words, data can have public and private signal noise. Public signal

9



noise captures the idea that many data sources are available to, observed and used by many

investors. In addition, all investors know the variance and covariance of prices, dividends

and the data they observe.

External Demand Some source of noise in prices is necessary to explain why some in-

vestors know information that others do not. We assume the economy is populated by a

unit measure of noise traders. Their demand could come from hedging motives, estimation

error, cognition errors or sentiment.3 Each noise trader buys xt+1 shares of the asset, where

xt+1 ∼ N(0,Σx) is independent of other shocks in the model and independent over time.

The noise can be arbitrarily small, as long as Σx > 0. Similar to the dividend dt+1 and its

innovation shock yt+1, the shock xt+1 is observed at the end of period t.

Equilibrium An equilibrium is a sequence of prices {pt}∞t=0 and portfolio choices {qit}∞t=0,

such that

1. At the beginning of each period t, all investors have information set I−t = {It−1, yt, dt, xt, zt},

where It−1 is the information set of the average investor at time t − 1 (averaged over

private signal realizations).

2. Investors use Bayes’ Law to combine prior information I−t with data {ηiht}, and pt to

update beliefs. The information set at the time of portfolio choice is Iit = {I−t , ηit, pt}.

3. Investors choose their risky asset investment qit to maximize E [U(cit+1)|Iit], taking

the actions of other investors as given, subject to the budget constraint (1) and the

investment style constraint qit ∈ Qi.

4. At each date t, the risky asset price vector p equates demand plus noise xt+1 to a vector

3In other words, xt+1 includes whatever is unrelated to payoffs. If it is persistent, and therefore payoff
relevant, the persistent component should be included in the payoff structure. In previous work, micro-
founded heterogeneous investor hedging demand has been shown to rationalize this trading behavior. See
Kurlat and Veldkamp (2015).
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x̄ units of supply: ∫
i

qitdi+ xt+1 = x̄ ∀t. (2)

Equilibrium Solution To solve the model and derive the value of data, we first apply

Bayes’ law to investors’ prior beliefs and data to form posterior beliefs about asset payoffs.

Getting this combination of private, public and price information is equivalent to getting

an unbiased signal sit about the dividend innovation yt+1, with private signal noise ξit and

public signal noise zt+1.

sit = yt+1 + ζitzt+1 + ξit

The term zt+1 ∼ N (0,Σz) comes from the noise in public component of the any data. It is

iid across time, with precision Σ−1z . This public signal noise zt+1 pertains to assets that are

purchased in period t and is observed at the end of period t. If investor i learned nothing

from any public sources of information at date t, then ζit = 0 and this becomes a standard

private signal. Similarly, ξit ∼ N (0, K−1it ) is the noise in the private component of the signal

(iid across individuals and time), which has the precision Kit, orthogonal to the noise of the

public component.

Next, we take a second-order approximation to the utility function. This allows us to

write the unconditional and conditional expected utility at time t as

E [U(cit+1)] = ρiE [cit+1]−
ρ2i
2
V [cit+1] , and (3)

E [U(cit+1) | Iit] = ρiE [cit+1 | Iit]−
ρ2i
2
V [cit+1 | Iit] . (4)

Here, ρi denotes the coefficient of absolute risk aversion for investor i, which can be an

arbitrary function of their endowment wit. Note that even though wit is time-varying, ρi

can be a function of this endowment since the investors are born in overlapping generations,

and only live for one period.
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Finally, for a perfectly competitive market (n → ∞), we show in Appendix A that the

exists an equilibrium price schedule that is linear in current dividend dt, future dividend

innovations yt+1 that investors learn about through data, demand shocks xt+1 and the noise

in public data zt+1.

pt = At +B(dt − µ) + Ctyt+1 +Dtxt+1 + Ftzt+1 (5)

Mapping Data Utility to Sufficient Statistics Our first result uses the law of iterated

expectations to compute unconditional expectation (3) in terms of means and variances of

the vector of asset profits Πit, defined below. Since we have substituted out the optimal

consumption, we replace the direct utility function which takes consumption as its argu-

ment, with an indirect expected utility function Ũ which takes an information set Iit as its

argument.

In order to state the main result we need to define Πit, the vector of profits from buying

each asset in investor i’s feasible investment set, at time t,

Πit := θi [pt+1 + dt+1 − rpt] . (6)

Lemma 1. In a competitive market (n→∞), investor unconditional expected utility can be

expressed as

Ũ(Iit) =
1

2
E [Πit]

′V [Πit | Iit]−1 E [Πit] +
1

2
Tr
[
V [Πit]V [Πit | Iit]−1 − I

]
+ rρiw̄it (7)

where Tr is the matrix trace and w̄it is investor i’s exogenous endowment.

Proof is in Appendix B.

Equation (7) illustrates the basis for our measurement strategy. The value of data is

this expected utility with the piece of data, minus this expected utility without that piece

of data.
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The first term is the expected profit on individual i’s portfolio. The role of more or better

data is to reduce conditional variance V [Πit | Iit]. In other words, an investor’s utility rises

with data if she can use the data to make forecasts with smaller squared forecast errors.

Smaller forecast errors are valuable because they allow the investor to buy more of assets that

will ultimately have higher returns — the first term captures utility gain through expected

profit. The second term captures the benefit of data lowering the risk of the portfolio, which

increases utility for a risk-averse investor — the second term represents utility gain through

variance reduction.

One might object that data should also enter in the expected payoff. Data will affect

the conditional beliefs about asset profits E [Πit | Iit], but not the unconditional, ex-ante,

expected profit E [Πit]. The reason data cannot affect our ex-ante expected profit is simply

that beliefs are martingales: If before seeing data, I believe that such data will make me

more optimistic about an asset’s return, then I should raise my expectation of that return

right now.

In a imperfectly competitive market, expected utility takes a similar form, but with

price-impact-adjusted variances.

Lemma 2. Unconditional expected utility, for an investor with price impact dp/dqi is

Ũ(Iit) = E [Πit]
′ V̂ −1i E [Πit] + Tr

[
(V [Πit]− V [Πit | Iit]) V̂ −1i

]
+ rρiw̄it. (8)

where V̂ −1i := Ṽ −1i

(
1− 1

2
V [Πit | Iit] Ṽ −1i

)
and Ṽi := V [Πit | Iit] + 1

ρi

dp
dqi

.

Proof is in Appendix B.

Notice that if dp/dqi = 0, then V̂i
2

= Ṽi = V [Πit | Iit] and we get the expression in

Lemma 1.

This formula explains another important features of our results. Multiplying dp/dqi is an

investor’s risk tolerance 1/ρi. Since this is absolute risk aversion and we know that absolute

risk aversion declines in wealth, one can interpret this as a proxy for investor wealth. In
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equilibrium, an investor with lower absolute risk aversion will have larger trade sizes, and

their equilibrium trades will have more price impact.

The price impact of all investors’ trades would seem to matter for the value of data. It

does. But once again, it is captured by the variances. Other investors’ price impact enters

this expression through the equilibrium price coefficient C. This, in turn, shows up in the

mean and variance of Πit. Since we measure then mean and variance of Πit directly, we do

not need to know the extent of other investors’ market power or explicitly account for it.

This effect is already incorporated in our sufficient statistics.4 As long as we can measure

these sufficient statistics, and we know investor i’s market power, we can accurately compute

the value of investor i’s data.

As before, data value is the difference between expected utility with and without the

data. When we make this calculation, we are calculating the value of an investor taking as

given the best responses of all other investors. Of course, if the investor is large, it is possible

that knowledge of this data choice will change the behavior of other investors – we abstract

from this possibility, by positing a surprising, one-time deviation.

The two key assumptions behind both the competitive and market power results are

that price can be approximated as a linear function of innovations as in equation (5), and

that individual i maximizes risk-adjusted return. In other words, this calculation is accurate

as long as investors use linear factor models and maximize risk-adjusted return, even with

potentially heterogeneous prices of risk.

Private, Public and Correlated Information At first pass, this result is unsurprising.

This type of expected utility expression shows up in many noisy rational expectations models,

dating back to Grossman and Stiglitz (1980). But what is perhaps surprising is that the

exprssion for utility does not depend on a number of potentially complicating factors and

heterogeneity.

4Market power does change the interpretation of C as a measure of price informativeness. But how one
interprets the price coefficient C, in this case, does not affects its use in assessing data value.
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In particular, the expression for data value is the same for public and private information

– regardless of who else knows the data, it is valuable only for its ability to change the

conditional forecast errors. This might seem to contradict what we know about information

value, e.g. (Glode, Green, and Lowery, 2012). The reconciliation comes from the fact that

the publicity of the data does matter for the conditional variance. Private information, which

is less likely to be impounded into price, is typically more valuable compared to information

that the market already knows (and is therefore uncorrelated with pt+1 + dt+1). Public

information about pt+1 + dt+1 is already impounded in rpt.

In short, knowing the forecast errors fully captures the way in which knowledge mat-

ters: conditional variances, or in other words, the properties of forecast errors, are sufficient

statistics. This is an incredibly helpful property because it relieves the econometrician of

having to figure out who knows what.

Similarly, the risk preferences and investment styles of all market participants matter

for the value of data. However, the expected profit E [Πit] captures the way in which risk

preferences and investment mandates matter.

Mapping Utility to a Dollar Value The dollar value of data is the amount of risk-free

return an investor would require to be indifferent between having the data, or not having

the data but getting the additional riskless wealth. Our utility function takes the form of

risk aversion times expected wealth, minus a risk-adjustment. Thus, dividing the difference

in utility by the coefficient of absolute risk aversion delivers a certainty equivalent amount:

$Value of Datai =
1

ρi

(
Ũ(Iit ∪ data)− Ũ(Iit)

)
(9)

Of course, that leaves open the question of what an investor’s absolute risk aversion is.

One way to impute such a value is to assume the investor has constant relative risk aversion

(CRRA), with a risk aversion coefficient of σ. Then, we can compute the level of absolute

risk aversion that corresponds to relative risk aversion of σ. We will use σ = 2, a conservative
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estimate. We equate a standard power utility function (CRRA) to a standard exponential

utility function (CARA), and then solve for the absolute risk aversion ρ that equates the

two functions at relative risk aversion of σ = 2 and a wealth level of c.

Thus, absolute risk aversion is the value of ρ that equates

c1−σ

1− σ
= − exp−ρc .

For a relative risk aversion σ = 2, the absolute risk aversion is

ρ =
1

c
ln(c).

For example, the imputed coefficient of absolute risk aversion for an investor with wealth

level c = $500, 000 will be ρ = 2.6× 10−5, while the imputed coefficient for an investor with

wealth level c = $250 million takes the value ρ = 7.7× 10−8.

An alternative approach to estimating ρ could be to use the market price of risk. Using

the formulas for the equilibrium price coefficients, one could map the value of ρ to an equity

premium and choose the value that matches a preferred estimate of the equity premium. We

do not follow that approach for two main reasons. First, this would give us an estimate of the

market’s risk aversion and therefore, on how an average investor in the market values data.

We are interested in how an individual investor, with particular characteristics should value

data and in understanding how investor heterogeneity matters for data valuation. Second, it

requires estimating most of the structural parameters of the model. As such, the estimates

becomes much more sensitive to the exact model structure and choices of how to estimate

each object, and counteracts the advantage of our simple sufficient statistics approach.

Data About Order Flow or Sentiment Many new data sources teach us about how

others investors feel about an asset. For example, analyzing a twitter feed is unlikely to turn

up new dividend information. But it might well correlate with the current price because it
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detects sentiment. Sentiment is something unrelated to the fundamental asset value, that

affects current demand. In our model, the variable that moves current price in a way that

is orthogonal to value is xt+1. So, we interpret sentiment as something that shows up in x,

thus sentiment data are time-t signals about price noise xt+1.

Put differently, our base model is set up to value data which are signals about future

cash flows of a firm. But this tool can also be used to value data series about sentiment,

order flow, or aspects of demand that are orthgonal to future cash flows but may affect the

current price. In fact, Appendix D shows that such data can be valued using Equation (7)

and Equation (9), just as if this were cash flow data.

Of course, many structural aspects of this model with sentiment data change. If we were

to estimate the underlying parameters from order flow data, many adjustments would be

necessary. But the essence of Farboodi and Veldkamp (2020) is to show that such data can be

used to remove the noise from the price signal and thus better forecast earnings. Doing this is

functionally equivalent to trading against dumb money, a common practice for sophisticated

traders with access to retail order flow. The fact that such trading activity can be formally

represented as if sentiment/order flow data were being used in a linear combination with

current prices to forecast cash flows, means that estimating cashflows conditional on prices

and sentiment data yields a valid estimate of data value.

2 Data and Estimation Procedure

In this section, we describe our estimation procedure in detail and the data series used.

Excess Returns To build a tighter connection with the asset pricing literature, we re-

formulate our data value expression in terms of returns. Excess return on assets in the

investment set is defined as:

Rit := θi [(pt+1 + dt+1)� pt − r] = Πit � θipt, (10)
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where � represents the Hadamard (element-by-element) division of two matrices. The binary

θi matrix pre-multiplying returns selects out only the subset of returns that are for assets

the investor can hold, given their investment style constraint. This ensures that investors do

not get expected utility from assets they cannot hold, and drops out (θi = I) for investors

with no constraints.

The investor unconditional expected utility in Lemma 1 and Lemma 2 are expressed in

terms of Πit. In Appendix C, we derive expressions for ex-ante expected utility expressions in

Lemma 1 and Lemma 2 in terms of moments of returns.5 In the case of perfect competition

(n→∞), expected utility is

Ũ(Iit) ≈
1

2

{
E [Rit]

′ E
[
V [Rit | Iit]−1

]
E [Rit]

}
+

1

2
Tr
[
V [Rit]V [Rit | Iit]−1 − I

]
+ rwitρi.

(11)

If investors have price impact, expected utility is

Ũ(Iit) ≈ E [Rit]
′ ˆ̂V −1it E [Rit] + Tr

[
(V [Rit]− V [Rit | Iit]) ˆ̂V −1it

]
+ rρiw̄it, (12)

where ˆ̂Vit := ˜̃Vit

(
I − 1

2
V [Rit | Iit] ˜̃V −1it

)−1
and ˜̃Vit :=

(
V [Rit | Iit] + 1

ρi

dp
dqi
� θiptp′tθ′i

)
.

Estimation Procedure The first step is to construct a time series of the return vector

Rt by computing returns for each asset type, Rjt. The estimates for unconditional expected

return E [Rt] and variance V [Rt] are obtained from the corresponding time series moments,

i.e., Ê [Rt] = 1
T

∑T
t=1Rt and V̂ [Rt] = 1

T−1
∑T

t=1

(
Rt − Ê [Rt]

)2
.

Our strategy requires a historical time series of the data-set they are interested in valuing.

The next step is to project Rt on the available time series of the data along with any other

data that the investor already has access to. In our empirical implementation, we will use

standard controls (such as the S&P 500 dividend-price ratio) as a proxy for such existing

5This requires an assumption about the ex-ante variability of pt. The key patterns in data valuation
described in the following sections hold even when we work directly with profits using the expressions in
Lemma 1 and Lemma 2.
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data. The procedure is a ordinary least squares regression of returns Rt on all the variables,

already owned and new, in the data set. The estimated variance of the residuals is then our

estimate for V [Rt | Iit].

Using these objects, we can compute E [U(cit+1)]. We then repeat this procedure exclud-

ing the data series of interest, i.e., with only the already-owned data. The difference between

these two expected utilities is the utility gain from having access to that data source.

Formally, given data, denoted Xt, and existing data, denoted Zt, we can estimate the

data added precision V [Rt | Xt, Zt]
−1 and V [Rt | Zt]−1 by estimating the following two re-

gressions:

Rt = β1Xt + β2Zt + εXZt (13)

Rt = γ2Zt + εZt (14)

From these two vector regressions, an estimate for V [Rt | Iit] would be Ĉov(εXZt ). For a

data set with observations 1, . . . , T , this estimate is 1
T−|X|−|Z|

∑T
t=1 ε

XZ
t εXZ ′t . Similarly, the

estimate for V [Rt] would be Ĉov(εZt ). With a finite sample, the approximate variance-

covariance matrix of residuals is 1
T−|Z|

∑T
t=1 ε

Z
t ε

Z ′
t , where |X| and |Z| are the number of data

series that comprise Xt and Zt, including the constant in Zt. For most of the calculations

that follow, |X| = |Z| = 2. Substituting in the mean return and the estimated variance-

covariance matrices in Equation (7) yields the estimated value of data, in utils.

One might question how a Bayesian theory corresponds to a procedure that uses OLS.

When variables are normal and relationships are linear, Bayesian estimates are the efficient,

unbiased estimates. Since OLS estimates are the unique efficient, unbiased linear estimates,

they must coincide with the Bayesian ones, in the specific case of normal variables in a linear

relationship. Thus, in this case, OLS estimators are Bayesian weights on information. In

cases where variables are not normal or the expected relationship between the data and Rt

is not linear, there are a few possible solutions: 1) Transform the data to make it normal or
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linear; 2) use OLS or non-linear least squares as an approximation to the Bayesian forecast,

or 3) perform a full-fledged Bayesian estimation.

Data Sources for Asset Prices and Cashflows All data are for the U.S. equity market,

over the period 1985–2015. Stock prices come from CRSP (Center for Research in Security

Prices). All accounting variables are from Compustat. For our annual calculations, we

measure prices at the end of the calendar year and dividends per share paid throughout the

calendar year. In line with common practice, we exclude firms in the finance industry (SIC

code 6).

The equity valuation measure, i.e., the empirical counterpart for the price pjt in the model,

is market capitalization over total assets for the calendar year. Our cash-flow variable, djt,

is proxied using total dividends paid over assets.

We make a couple of adjustments to the raw data. The first is to deal with inflation,

which can create predictability in nominal dividends and prices. We adjust all cash-flow

variables with a GDP deflator, deflating all nominal values to 2010 USD values. The second

pertains to exiting firms. Our preferred solution is to only consider periods during which a

firm has non-missing information. Next, we winsorize the deflated values for assets, market

capitalization and total dividends at 0.01% level.

Henceforth, we refer to the market capitalization at the end of year for stock j divided by

the assets in that year for stock j as the price pjt, and the total dividends normalized by assets

in that year as djt. We calculate the excess returns as Rjt = (pjt+1 + djt+1 − pjt) /pjt − rft ,

where we use the yield on Treasury bills (constant maturity rate, hereafter CMT) with one

year maturity as the risk-free rate.

Forming Asset Portfolios The procedure described above can be used for any number

and type of assets, including individual stocks. However, for expositional purposes, and

to show more clearly the patterns in data value, we group assets into a small number of

commonly-used portfolios, rather than work with a large number of individual stocks/assets.
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This leaves us with a more manageable number of data values to compute and compare.

Our first two portfolios are based on size. We group firms into Large and Small, based on

whether their market capitalization is above or below the median value for all firms in our

sample, in a given year. Next, we construct Growth and Value portfolios, using the book-to-

market ratio (defined as the difference between total assets and long-term debt, divided by

the firm’s market capitalization). Firms above the median value of book-to-market in a year

are assigned to the Value portfolio, while those below the median are part of the Growth

portfolio. In addition to these four portfolios – Small, Large, Growth and Value – we also

include a market index (specifically, the S&P500) as a portfolio. We use value-weighted

averages for excess returns for each portfolio as the return measure, where we weigh each

firm’s return by its market capitalization.

Measuring Price Impact In order to use our formulae for data value, we need a estimate

for price impact. In practice, an investor who wants to use our data valuation framework,

(s)he should use the price impact applicable to his/her context. For our purposes here,

we will use an average estimate from the literature. Our starting point is the estimate

from Hasbrouck (1991), who finds that a $20,000 trade moved prices by 0.3% on average.

Using a reference price per share of one, a 0.3% price increase corresponds to a price that is

0.003 units higher. Therefore, we explore imperfectly competitive markets where dpj/dqj =

0.003/20000 = 1.5 × 10−7. While this might seem like a small number, we will see that it

has substantial impact on data valuations.6

Data Timing As discussed above, our return measure for year t for an asset j is the

cum-dividend excess return on that asset over the year t – using prices at the end of year t

and at the end of year t − 1, along with dividends paid out over year t. We are interested

6Data limitations force us to make the following simplifying assumptions: (i) price impact is the same for
all portfolios we analyze (ii) trading in one asset portfolio can only move the prices of that portfolio. Thus,
the matrix dp/dq for Equation (12) is λI, where λ = 1.5 × 10−7 is the price impact magnitude as listed in
the text, and I is the identity matrix.
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in understanding the value of data available to an investor before year t, in predicting the

value of this return measure for year t.

The value of any control variable in Zt used for the purpose of this calculation is obtained

for year t − 1, since these values will be in the investor’s information set while predicting

the profits for year t. Similarly, the data signal in Xt that we are valuing needs to be in

the information set of the investor before year t. To predict profits over year t, we use the

data signals which are produced before year t starts, which give information about growth

in earnings of firms between year t− 1 and year t.

Our toolkit can used to value any finance-relevant data stream or bundle of data streams.

In the rest of the paper, we show how it can be used to value two different data streams.

The first, discussed in the following section, values earnings forecast data put out by stock

analysts. We discuss how the value varies with investor heterogeneity along various dimen-

sions and market conditions. The second, in Section 4, estimates the value of a hypothetical

data source that allows investors to perfectly forecast GDP. Before turning to that analysis,

we describe the two data sources of interest in more detail.

The Financial Data Stream We Value: I/B/E/S Forecasts The data series of inter-

est in our first exercise is earnings forecasts provided by the Institutional Brokers’ Estimate

System (I/B/E/S). We use earnings forecasts for 5,506 unique firms from 1985–2015, with

1,018 firm observations per year on average.7

We use annual earnings forecasts from I/B/E/S. In our baseline model, investors have a

horizon of a year and use the latest available one-year-ahead earnings forecast at each date.

Later, we explore how different trading horizons affect the data value.

The Macro Data Stream We Value: Ex-post GDP Growth For realized GDP

growth, we use the second release estimates of quarterly GDP growth from BEA, as reported

7We use the Summary Statistics series from I/B/E/S, accessed through WRDS, https://wrds-www.

wharton.upenn.edu/pages/get-data/ibes-thomson-reuters/ibes-academic/summary-history/

summary-statistics/.
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by the Federal Reserve Bank of Philadelphia8.

3 Valuing Financial Data

In this section, we first estimate the utility gain that investors would assign to I/B/E/S

forecasts, given what they already know, and then convert this into a dollar amount. The

latter is the monetary value of I/B/E/S data, or equivalently investors’ willingness to pay for

this data. In most cases, these private valuations look nothing like a price that any investor

actually pays for an I/B/E/S subscription. Some valuations are orders of magnitude higher,

others much lower. Recall that these are not predicted transactions prices. They are private

valuations that trace out a demand curve. The qualitative patterns are mostly intuitive,

which suggests that our measurement strategy/toolkit is a sensible one.

When we value a stream of data, we need to take a stand on what else an investor

already knows, i.e. the publicly available information. Obviously, as econometricians, we

do not observe information sets directly, so in our implementation, cannot control for this

perfectly. Of course, this is not a problem for a practitioner or investor who wishes to use our

toolkit to value a stream of data (e.g. one that she is considering buying), since she would

know exactly what other data she already has access to. For the purposes of illustrating the

use of the tool, we endow our hypothetical investor with some commonly-used and publicly-

available data series. Specifically, we assume that they already observe the dividend yield

(D/P ratio) for S&P5009.

In additional results, we also consider and investor who also has access to one or more of

the following pieces of data: the yield on a 1-year Treasury bill (constant maturity rate)10,

the consumption-wealth ratio (CAY) from Lettau and Ludvigson (2001) and a sentiment

index from Baker and Wurgler (2006).

8https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/routput
9Obtained from NASDAQ Quandl https://data.nasdaq.com/data/MULTPL/SP500_DIV_YIELD_

MONTH-sp-500-dividend-yield-by-month
10Obtained from FRED series DGS1
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We use annual earnings forecasts from I/B/E/S as the first data stream that we value.

In our baseline model, investors have a horizon of a year and use the latest available one-

year-ahead earnings forecast at each date. Later, we explore how different trading horizons

affect the data value.

For each firm, we use the median consensus analyst forecast for earnings per share (here-

after EPS). We discard all forecast values which have been calculated during or after the

calendar year for which the forecast is being made. For example, any forecast we use for

earnings in 2015 has to be issued before the year 2015 starts. We then drop all but the latest

consensus forecasts for each firm-year observation, which gives us a single consensus forecast

for EPS over the next year. Using this forecast, we calculate a forecasted growth rate: the

forecasted EPS for the coming year, divided by the realized value of EPS from the last year.

Our goal is to explore data valuation patterns, to gain intuition for how large this amount

is and what makes it vary. Therefore, in order to keep the analysis manageable, we collapse

the large number of assets into a few portfolios. Specifically, we analyze five portfolios:

Small, Large, Growth, and Value firms, as well as the S&P500 index. We find that most

of the value of the I/B/E/S data comes from signals about growth firms and those in the

S&P500 index.

Therefore, the data value numbers we report in this section for two annual signals, one

about earnings of all firms in the Growth portfolio and one about the earnings of all firms

in the S&P500 index. Specifically, these are the portfolio value-weighted average values

of median forecasted growth rates for earnings per share – for the Growth and S&P500

portfolios. Note that we are valuing a forecast of a payoff of a particular portfolio of assets. 11

11We could have performed this calculation under many alternative assumptions. For example, one could
value growth firms’ data from the perspective of an investor who invests only in growth firms. In that
case, one would regress the growth firm asset payoffs on the relevant data and use means variances and
forecast errors of growth asset payoffs. We did not take that approach because if we vary the investment
set and the data together, we would not know whether data was more/less valuable because of the data or
the investment restriction. But, it is certainly another dimension of investor heterogeneity that might be
interesting to explore.
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3.1 Wealth and Risk Tolerances

One obvious dimension along which investors differ is the size of their portfolios. We consider

investors with two wealth levels— $500, 000, and $250 million, each with the same relative

risk aversion of σ = 2. In terms of the wealth level, the former group is similar in magnitude

to the wealth level of the mean US household (Badarinza, Campbell, and Ramadorai, 2016),

while the latter investor group has comparable wealth level to the size of the mean US hedge

fund (Yin, 2016). The resulting difference in absolute risk aversion give rise to different

willingness to pay for the same data.

To value data for a particular investor, we need to know what else they already know

and what they can invest in. The investor whose value we are calculating already knows

the previous year’s S&P500 dividend/price ratio. They can invest in any combination of the

following five portfolios: S&P500, Small, Large, Growth, and Value. However, we make no

assumption about what any other investors know or trade.

Table 1 reports the dollar value of the I/B/E/S forecasts for two investors with different

wealth levels, with and without price impact. The results illustrate show that wealthier

investors attach a higher dollar value to the same data. In our setting, this occurs through

the dependence of the curvature parameter ρ on wealth. Under our calibration, an investor

with $250 million in wealth operating in a competitive setting would be willing pay almost

300 times more for this data compared to one with half a million dollars of wealth.

Next, as one would expect, price impact attenuates the value of data. This effect is

quite significant, even for the relatively modest levels of price impact in our calibration and

increases with wealth. This is especially true for wealthier investors: taking price impact

into account cuts the value of the I/B/E/S data for an investor with $250 million in wealth

by almost 80%. To see why, recall that in Lemma 2, price impact (dp/dq) gets scaled by

1/ρi. Since wealthier investors are assumed to have a lower degree of absolute risk aversion

(a lower ρi), price impact has a disproportionate effect on their payoffs and data valuations.

To better understand the sources of data value, Table 1 also reports the expected return
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Table 1: Risk Tolerance. Annual data between 1985–2015. The dependent variables in (13)
and (14) is the vector of returns, in excess of a 1-year treasury (CMT), for five portfolios –
{Small, Large, Growth, Value, S&P500}. All specifications include a constant and a control
variable (the S&P500 D/P ratio). Data variables being valued are the I/B/E/S median
forecasts for annual value-weighted earnings for Growth and S&P500 portfolios, normalized
by assets and growth over last year’s realized earnings for each ticker. The case with price
impact assumes Kyle’s Lambda λ = dp

dq
= 1.5×10−7. Dollar values are reported in thousands

of 2010 USD.

Perfect Competition With Price Impact

Panel A: Investor with $500,000 Wealth.
Utility Gain 0.0919 0.0363
Expected Profit 0.0365 0.0084
Variance Reduction 0.0554 0.0279

Dollar Value (in $000) 3.50 1.38
Time Periods 31 31

Panel B: Investor with $250m Wealth.
Utility Gain 0.0919 0.0196
Expected Profit 0.0365 0.0029
Variance Reduction 0.0554 0.0167

Dollar Value (in $000) 1188.50 253.62
Time Periods 31 31

and the variance reduction on the investor’s portfolio. The expected profit is the ex-ante

expected return on the optimal, diversified portfolio of the five assets the investor can hold.

The variance reduction is the difference between the raw variance of this return and the

conditional variance, which is the average squared residual of the predicted return, after

conditioning on the data. This is a measure of how much one learns from data. Notice that

price impact lowers both components of data value and has a more pronounced effect when

wealth is higher (or equivalently, absolute risk aversion is lower).

3.2 Liquidity Affects Data Value

A consistent theme throughout our results is the importance of price impact. For expositional

purposes, we have treated price impact as a single, time-invariant number. In reality, it
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fluctuates with market liquidity. Our estimates suggest that such fluctuations will have a

dramatic impact of the value of data, especially for large investors.

Now consider a financial firm whose business model revolves around the use or sale of

data. That firm’s market value is based largely on the value of their data. Changes in market

liquidity will thus affect the real value of this firm’s data assets through this channel.

As firms’ data stocks grow larger, the magnitude of liquidity shocks to data values should

grow. The reason is that price impact enters additively with conditional variance. This

additive form comes from first order condition for the optimal portfolio choice of investor i:

qit = (ρiV [pt+1 + dt+1|Iit] + dp/dqi)
−1 (E [pt+1 + dt+1|Iit]− rpt). If the conditional variance

V[pt+1 + dt+1|Iit] is large (high uncertainty), then small changes in price impact dp/dqi have

little effect. Those changes are swamped by the variance term and the inverse of this large

number is small. However, if conditional variance is small, meaning that asset payoff forecasts

are precise, then that first term, the inverse of a potentially small number, may be large. In

this case, the effects of price impact can be substantial. Over time, if firms have more data

and thus smaller forecast errors, their data valuations become more and more susceptible to

changes in the price impact of a trade.

The high and growing sensitivity of data value to market liquidity suggests a new channel

through which market liquidity matters. Since the value of a financial firm depends on its

ability to trade profitably, the value of data is an input into the valuation of a financial

firm. As financial firms become more data-centric, the firm’s value becomes more sensitive

to the value of its data. At the same time, growing data abundance makes the value of

data more sensitive to market liquidity. These two margins of increasing sensitivity amplify

each other. This suggests that changes in market liquidity may affect the real value and

the equity value of financial firms through a new channel, through the value of their data.

In a world in which data is becoming increasingly abundant, this new liquidity-data effect

could grow much stronger. These findings suggest that, because of the rising abundance and

importance of data for financial firms, market liquidity may become more important than
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ever before.

3.3 Investment Styles

Another dimension along which investors differ is their investment style. To understand

the implications of this type of heterogeneity for data valuation, we value exactly the same

data as before, the median earnings growth forecasts from I/B/E/S, from the perspective

of investors who only trade in individual portfolios. We will refer to these investors by the

portfolios they trade. For example, the Small investor is one who only buys and sells the

portfolio of small stocks that we constructed. Same for the Large, Growth, Value and S&P

investors. They each use the earnings forecast data to determine how much to trade in their

respective portfolios. We compare these data values to the value of the investor who trades

in all five portfolios, which corresponds to the case analyzed in Table 1.

Table 2 shows that among the investors who invest in a single portfolio, I/B/E/S forecast

data is most valuable for investors in Growth, Large or the S&P500 portfolios. While the

investor wealth and price impact raise and lower the dollar value of the data, respectively,

this pattern of growth and large or S&P500 investors valuing earnings forecast data by

more emerges consistently. This is because the I/B/E/S data lacks relevance for the Small

portfolio. More precisely, it does little to reduce return forecast errors and in that sense,

provide little guidance to an investor about when to buy and sell the Small portfolio. So,

despite the high unconditional expected returns of the Small portfolio, the value of this

particular data stream for such investors is quite low. The relevance of the I/B/E/S forecasts

is low for the Value portfolio as well. The Large and Growth portfolios on the other hand

have medium expected returns, but their returns are predicated to a larger degree by the

analyst forecast data. We can see that in the difference between V [R] with and without

data, in rows 3 and 4. Therefore, this data is most valuable to those who invest in growth

and large-firm equities.

As we saw in the previous set of results, price impact reduces the value of data, but
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Table 2: Investment Styles. Annual data between 1985–2015. Dependent variables in (13)
and (14) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large,
Growth, Value, S&P500}. All specifications include a constant and the S&P500 D/P ratio
as a control. Data variables being valued are the I/B/E/S median forecasts for annual value-
weighted earnings growth for Growth and S&P500 portfolios, normalized by assets (growth
is computed over last year’s realized earnings for each portfolio). Panel B (estimates with
price impact) assumes Kyle’s Lambda λ = dp

dq
= 1.5 × 10−7. Dollar values are reported in

thousands of 2010 USD.

Portfolio Type

Small Large Growth Value S&P500 All

Panel A: Perfect Competition
E [R] 0.2058 0.0802 0.1047 0.0273 0.0350 –
V [R] 0.1333 0.0223 0.0255 0.0269 0.0144 –
V [R] (controls) 0.1371 0.0231 0.0263 0.0270 0.0145 –
V [R] (controls+data) 0.1375 0.0215 0.0241 0.0264 0.0133 –
Utility Gain 0.0000 0.0438 0.0653 0.0127 0.0498 0.0919
Dollar Value (in $000) for:
Investor with $500,000 Wealth 0.00 1.67 2.49 0.49 1.90 3.50
Investor with $250m Wealth 0.00 566.41 844.09 164.71 643.62 1188.50

Time Periods 31 31 31 31 31 31

Panel B: With Price Impact
Investor with $500,000 Wealth:
Utility Gain 0.0000 0.0433 0.0650 0.0107 0.0480 0.0363
Dollar Value (in $000) 0.00 1.65 2.48 0.41 1.83 1.38

Investor with $250m Wealth:
Utility Gain 0.0000 0.0019 0.0044 0.0001 0.0012 0.0196
Dollar Value (in $000) 0.00 23.93 57.00 1.45 15.98 253.62

Time Periods 31 31 31 31 31 31

also reduces the dispersion in valuations. The investors who value data most are the same

investors who would liek to trade aggressively on the data, but are prevented from doing so

when price impact is large.

3.4 Previously Purchased Data

A third dimension along which investors differ enormously is in the data they already own.

While large, institutional investors have access to enormous libraries of data, households may
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Table 3: Previously Purchased Data. Annual data between 1985–2015. Dependent
variables in (13) and (14) are excess returns (over CMT-1yr) for five portfolios – {Small,
Large, Growth, Value, S&P500}. All specifications include a constant. Data variables being
valued are the I/B/E/S median forecasts for annual value-weighted earnings for Growth and
S&P500 portfolios, normalized by assets and growth over last year’s realized earnings for
each ticker. Values in each column represent the additional value of I/B/E/S data on top
of the control variable(s) listed in the header. Higher value for data indicates I/B/E/S data
adds more value over the control variable. Dollar values are reported in thousands of 2010
USD.

No
Controls

Real
CMT-1yr

BW
Sentiment

cay S&P500
D/P ratio

All
Controls

Utility Gain 0.163 0.147 0.145 0.104 0.092 0.073
Expected Profit 0.065 0.066 0.060 0.045 0.037 0.046
Variance Reduction 0.098 0.080 0.086 0.059 0.055 0.027

Time Periods 31 31 31 31 31 31
Dollar Value (in $000) for:

Investor with $500,000 Wealth 6.21 5.60 5.54 3.96 3.50 2.80
Investor with $250m Wealth 2106.62 1900.07 1880.90 1343.14 1188.50 949.75

know only a few summary statistics about each asset. We illustrate both how to incorporate

differences in existing data sets and their quantitative importance through a simple exercise.

So far, we have valued the I/B/E/S data assuming that investors already have access to

S&P500 dividend/price ratio. In this set of results, we ask: How valuable would the same

I/B/E/S forecasts be if, instead of the S&P500 dividend/price ratio, the investor had some

other variable in his or her existing data set? Of course, that does not nearly capture the

extent of the difference between the knowledge of investors. But even these minor differences

in which macro variable the investor already knows can significantly change the value of a

new data stream.

In Table 3, the first column reports the value of the I/B/E/S forecasts to the two classes

of investors we consider —an investor with a wealth level of $500,000, and an investor with

$250m wealth—who have no other sources of information. The next four columns report the

value of data when investors already have access to a single prior data series: Real CMT-1y,

BW Sentiment, CAY, and S&P500 D/P ratio, respectively. In the last column, the investor

already has access to all five of these data series.
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Unsurprisingly, access to prior data decreases the value of I/B/E/S data for investors.

The I/B/E/S forecasts are more than twice as valuable to the investor who knows nothing,

relative to the investor who already knows all five series. This is just an illustration of the

diminishing marginal returns to data. However, Table 3 shows that value of the I/B/E/S

data is relatively insensitive to knowledge of Real CMT-1y and BW Sentiment data. This

insensitivity means that I/B/E/S contains information that is not highly correlated with the

information in either series. On the other hand, data about CAY and S&P500 D/P ratio are

closer substitutes for the I/B/E/S data and attenuate the value of the latter more visibly.

Among the alternative pieces of data that the investors can use, S&P500 D/P ratio is by

far the most informative one. The additional I/B/E/S data has the lowest value to investors

who already have access to S&P500 D/P ratio. Furthermore, for investors who have S&P500

D/P ratio prior data, access to the rest of the macroeconomic data series does not attenuate

the value of the I/B/E/S data much more.

3.5 Trading Horizon

Finally, investors differ in their trading horizons. Our data valuation tool can be applied to

various trading horizons. However, for the data we are exploring, this dimension of investor

heterogeneity seems to matter less than the others.

Our calculations so far have assumed that investors trade over an annual horizon. Next,

we measure the value of the same data – the median I/B/E/S forecast – for an investor

who trades the same portfolio but with a quarterly horizon. This does not change the data

value formula; it does change how we implement it. The procedure is to compute residuals

from (13) and (14) where Rt is quarterly return, the prior information Zt is a constant and

quarterly dividend-price ratios, and where Xt is the median forecast of the earnings growth

for Growth and S&P500 portfolios over the year.12 The resulting regression residuals (εXZt

and εZt ) are then used to construct the variance matrices and substitute these variances,

12We also re-did the estimation using forecasts of quarterly earnings growth. It produced similar, but
somewhat smaller, data value estimates.
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Table 4: Trading Horizon. Data between 1985–2015. Dependent variables in (13) and
(14) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large,
Growth, Value, S&P500}. All specifications include a constant and the S&P500 D/P ratio.
Data variables (Xt in (13)) are the I/B/E/S median forecasts, in growth rates, for annual
value-weighted earnings for Growth and S&P500 portfolios, normalized by assets. Numbers
reported in each column represent the additional value of annual I/B/E/S data (9) on top
of the control variable (S&P500 D/P ratio) for an investor trading at the trading horizon
listed in the table header. Dollar values are reported in annualized thousands of 2010 USD,
and utility gain numbers are annualized.

Annual Quarterly

Utility Gain (ann.) 0.092 0.067
Dollar Value (in $000, ann.) for Investor with $500,000 Wealth 3.50 2.54
Dollar Value (in $000, ann.) for Investor with $250m Wealth 1188.50 862.46
Time Periods 31 124

along with expected quarterly returns, into the expected utility formula (7). We convert

expected utility to data value as before, using (9).

The expected asset payoff and its variance will typically be smaller for shorter horizons.

This just reflects the fact that there is less asset appreciation and smaller changes over a

shorter period of time. The utility of an equally precise forecast is smaller because that

information will be used only for a lower potential payoff. Therefore, in order to facilitate

comparison with our baseline annual horizon numbers, we annualize our estimated quarterly

horizon data values by multiplying them by four.

Table 4 reports the value of the I/B/E/S forecasts for both annual and quarterly investors.

The first column is the same values reported in Table 1. The second column shows that

investors who trade more frequently, on a quarterly basis, would be less willing to pay for

data each year. The reason for the lower quarterly valuation is that quarterly returns are

considerably more noisy. Earnings data is not very useful for quarterly portfolio adjustment.

Trading on this data only creates more noise.

The effect of trading horizon surely depends on the data source. For example, high-

frequency data is useful for high-frequency traders, but will likely be worthless after a year.
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Table 5: Macroeconomic Information. Quarterly data between 1985–2015. Dependent
variables in (13) and (14) are returns, in excess of a 1-year treasury (CMT), for five portfolios
– {Small, Large, Growth, Value, S&P500}. All specifications include a constant and controls
(the S&P500 D/P ratio, the realized real GDP growth in the previous quarter and the
median forecasted growth rate in real GDP from the Survey of Professional Forecasters).
Data variables (Xt in (13)) are the second release estimates of real quarterly GDP numbers
as reported by by the BEA, expressed as growth rates over the previous quarter. Numbers
reported in each column represent the additional value of ex-post real GDP growth data (9)
on top of the control variables for an investor trading at the quarterly horizon. The case with
price impact assumes Kyle’s Lambda λ = dp

dq
= 1

4
× 1.5× 10−7. Dollar values are reported in

annualized thousands of 2010 USD, and utility gain numbers are annualized.

Portfolio Type

Small Large Growth Value SP500 All

Panel A: Perfect Competition
Utility Gain (ann.) 0.1058 0.1073 0.0770 0.0975 0.0480 0.1369
Dollar Value (in $000, ann.) for:
Investor with $500,000 Wealth 4.03 4.09 2.93 3.71 1.83 5.22
Investor with $250m Wealth 1367.65 1387.57 995.22 1260.04 620.80 1769.76

Panel B: With Price Impact
Investor with $500,000 Wealth:
Utility Gain (ann.) 0.1057 0.1067 0.0769 0.0714 0.0468 0.0936
Dollar Value (in $000, ann.) 4.03 4.06 2.93 2.72 1.78 3.57

Investor with $250m Wealth:
Utility Gain (ann.) 0.0156 0.0069 0.0130 0.0005 0.0015 0.0703
Dollar Value (in $000, ann.) 201.35 89.62 167.54 6.90 19.14 909.20

Time Periods 123 123 123 123 123 123

The more important take-away is that trading horizon can matter for how an investor values

their data. By adjusting the input data and the interpretation of the results, our data

valuation tool can be used to value data used by investors who trade at various frequencies.

4 Valuing Macroeconomic Information

How do different investors value information about macroeconomic variables (e.g. GDP)?

We now use our framework to provide an answer to this question. In Table 5, we compute

the value of a hypothetical data source which allows investors to perfectly forecast GDP.
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Formally, we use the realized (i.e. ex-post) real GDP growth as our data series of interest13

and calculate its value to investors with different trading styles, defined in Section 3.3. We

control for the S&P500 dividend-price ratio, as before, as well as two additional controls—the

realized real GDP growth rate in the previous quarter and the median forecasted growth rate

in real GDP for the current quarter by the Survey of Professional Forecasters (SPF)14. Adding

these two additional control variables allows us to find the value of the new information in

ex-post GDP growth.

The last column of Table 5 shows that a fund with assets of $250 million, trading all five

portfolios under perfect competition, would be willing to pay $1.77 million for the ability

to perfectly forecast quarterly GDP growth in advance. The other columns show values

for more restricted trading styles. They are all sizable, albeit with some variation. There

are some interesting cross-sectional differences relative to the value of earnings forecasts

analyzed in Table 2. For example, better information about GDP is quite valuable for

investors trading only the Small portfolio. This is because, unless the earnings forecasts,

GDP growth turns out to be a valuable predictor of returns on the Small portfolio, i.e. this

data has high relevance for such an investor. In fact, macroeconomic information of this

form shows relatively high data relevance for all five assets – unlike the earnings forecasts

data, which showed high relevance mostly for Large and Growth portfolios.

The bottom panel shows the value of data with price impact.15 As with the earnings

forecast data, price impact significantly attenuates the value of macroeconomic information

as well and the effects are more pronounced for wealthier, less risk-averse investors. The value

of a perfect GDP forecast for the aforementioned $250 million fund trading all five portfolios

is cut almost in half once price impact is taken into account. The drop in valuations is even

more significant for some of the individual portfolios, again underscoring the importance of

market liquidity for the value of data.

13We use the second release revised estimates of realized real GDP growth for this calculation.
14https://www.philadelphiafed.org/surveys-and-data/rgdp
15These calculations use Kyle’s λ = 0.375× 10−7.
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5 Conclusion

Data is one of the most valuable assets in the modern economy. Yet the tools we have to

quantify that value are scant. We offer a tool that an investor or financial firm can use to

value its existing data, or a potential stream of data that it is considering to acquire. Along

with information about the distribution of investor characteristics, researchers can use this

tool to trade out the demand curve for data.

We uncover important investor wealth and trading style effects, the importance of an

investor’s existing data, and the role of trading horizon. Jointly, these effects point toward

enormous heterogeneity, spanning multiple orders of magnitude, in the value different in-

vestors assign to the same data. The dispersion in valuations suggests that marginal changes

in the price of data will have little effect on demand. With such dispersed valuations, few

data customers would be on the margin. This low price elasticity of demand is significant

because it points to one reason why data markets might not evolve to be very competitive.

We further uncover a new channel through which market liquidity matters for the real

value of data, which is an important new class of assets. As firms accumulate more data

and data technologies improve, more and more of the value of a financial firm will depends

on the value of the data it possess. The sensitivity of the value of data to price impact of a

trade could introduce a new source of financial fragility, brought on by data accumulation,

and exacerbated by data technologies that improve financial forecasting.

The advantage of our measurement tool is its simplicity. While our measure of the value of

data is derived from a structural model, computing it does not require estimating structural

parameters. Instead, the relevant sufficient statistics are simple means and variances of

linear regression residuals. No matter whether the data is public, private, or known only

to a fraction of investors, these methods are valid. Even if the data is about sentiments or

order flows, as long as it is measured along with the market prices in the observable data

set, our data value measure offers a meaningful assessment of its value to an investor.
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Appendix

A Model Solution

Portfolio Choice Since we have a linear Gaussian system, we conjecture an equilibrium price

which is linear in the aggregate shocks,

pt = At +B(dt − µ) + Ctyt+1 +Dtxt+1 + Ftzt+1 (15)

Assuming price of the form given in Equation (15), the investor derives an unbiased signal ηpt of

yt+1 from the price as,

ηpt ≡ C−1t (pt −At −B(dt − µ)) = yt+1 + C−1t Dtxt+1 + C−1t Ftzt+1

This price signal has the conditional variance,

V (ηpt | Iit) ≡ Σpt = C−1t DtΣxD
′
tC
−1′
t + C−1t FtΣzF

′
tC
−1′
t

Note that the variance of this price signal is a fixed quantity (since the coefficients are artifacts

of the model, known ex ante to all investors). Given the information set Iit, the investors update

their beliefs of the dividend innovation yt+1 as per Bayesian updating to get,

E [yt+1 | Iit] ≡ µit = Σit

(
Σ−1d × 0 + Σ−1pt ηpt + (ζ2itΣz +K−1it )−1sit

)
= Σit

(
Σ−1pt ηpt +

(
ζ2itΣz +K−1it

)−1
sit

)
V [yt+1 | Iit] ≡ Σit =

{
Σ−1d + Σ−1pt + (ζ2itΣz +K−1it )−1

}−1
Further, we can express the gross payout at the end of period t+ 1 as,

pt+1 + dt+1 = At+1 +B(dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 + dt+1

= At+1 + µ+ (B + I) (dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2

= At+1 + µ+ (B + I) [G(dt − µ) + yt+1] + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2

Hence, the conditional moments of the gross payout can be expressed as,

E [pt+1 + dt+1 | Iit] = At+1 + µ+ (B + I)G(dt − µ) + (B + I)µit

V [pt+1 + dt+1 | Iit] = (B + I)Σit(B + I)′ + Ct+1ΣdC
′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

We first note that the shocks yt+2, xt+2 and zt+2 do not contribute towards the conditional expec-

tation, but are driving the conditional variance of the gross payout. On the other hand, investors
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form imprecise estimate for the end-of-period shock yt+1, resulting in a contribution in both the

conditional moments.

In the perfect competition equilibrium (as per Lemma 1), investor i selects the optimal portfolio

qit given by the first order condition

qit =
1

ρi
V [pt+1 + dt+1 | Iit]−1 {E [pt+1 + dt+1 | Iit]− rpt} .

Hence, the optimal portfolio is given as,

qit =
1

ρi

{
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

}−1×At+1 + µ+ (B + I)G(dt − µ)− rpt︸ ︷︷ ︸
?

+ (B + I)µit︸ ︷︷ ︸
†

 (16)

Market Clearing We now impose market clearing,
∫
i qitdi = x̄ + xt+1. First, note that the

terms marked by ? in Equation (16) are constants for the integration. Hence, we define the factor

multiplying these terms – the risk tolerance weighted average precision of the gross payout,

Ωt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

We next simplify the remaining term marked by † in the integration in Equation (16) as,∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)µitdi

=

∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)Σit

(
Σ−1pt ηpt +

(
ζ2itΣz +K−1it

)−1
sit

)
di

=

{∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)Σitdi

}
Σ−1pt ηpt

+

∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)Σit

(
ζ2itΣz +K−1it

)−1
(yt+1 + ζitzt+1 + ξit)di

= ΓtΣ
−1
pt ηpt + Φtyt+1 + Ψtzt+1
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Here, we used the fact that ξit is distributed independently of all other variables with mean zero,

and defined the additional covariance terms Γt, Φt and Ψt (with Ωt duplicated for reference) as,

Ωt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

Γt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σit︸ ︷︷ ︸ di

Φt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1it

)−1︸ ︷︷ ︸ di
Ψt ≡

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1it

)−1
ζit︸︷︷︸ di

As noted before, Ωt is the risk tolerance weighted average precision of the gross payout. The terms

highlighted with ︸︷︷︸ indicate the additional terms in each subsequent covariance term. First, Γt

is the covariance of the gross payout precision with the posterior variance of the dividend shock

yt+1. Similarly, Φt is the covariance of the gross payout precision with the posterior variance of the

dividend shock yt+1 and the signal precision
(
ζ2itΣz +K−1it

)−1
. Lastly, Ψt is the covariance of the

gross payout precision with the posterior variance of the dividend shock yt+1, the signal precision

and the exposure to the public signal ζit.

We can now subsitute the covariance terms Ωt, Γt, Φt, Ψt and the price signal ηpt = C−1t (pt −
At −B(dt − µ)) in the market clearing equation to get,

x̄+ xt+1 = ΓtΣ
−1
pt C

−1
t (pt −At −B (dt − µ)) + Φtyt+1 + Ψtzt+1

+ Ωt [At+1 + µ+ (B + I)G(dt − µ)− rpt]

=⇒
(
ΓtΣ

−1
pt C

−1
t − rΩt

)
pt = ΓtΣ

−1
pt C

−1
t At + ΓtΣ

−1
pt C

−1
t B (dt − µ)

− ΩtAt+1 − Ωtµ− Ωt(B + I)G(dt − µ)

− Φtyt+1 −Ψtzt+1 + x̄+ xt+1

Let Mt = ΓtΣ
−1
pt C

−1
t − rΩt. Using the linear conjecture for the price pt, we match coefficients as

follows:

• At to all the constant terms: At = M−1t
[
ΓtΣ

−1
pt C

−1
t At − ΩtAt+1 − Ωtµ+ x̄

]
• B to all terms with dt − µ: B = M−1t

[
ΓtΣ

−1
pt C

−1
t B − Ωt(B + I)G

]
• Ct to all terms with yt+1: Ct = −M−1t Φt

• Dt to all terms with xt+1: Dt = M−1t

• Ft to all terms with zt+1: Ft = −M−1t Ψt
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Solving this yields, 

At = 1
r

{
At+1 + µ− Ω−1t x̄

}
B = (r −G)−1G

Ct = −M−1t Φt

Dt = M−1t

Ft = −M−1t Ψt

(17)

Special Cases We consider some special cases, where our expressions should reduce to more

familiar forms.

1. Kit = K: In case all investors share the same precision of the private component of signal,

none of the expressions change substantially.

Σit =
{

Σd + Σ−1pt +
(
ζ2itΣz +K−1

)−1}−1
, µit = Σit

(
Σ−1pt ηpt +

(
ζ2itΣz +K−1

)−1
sit

)
Ωt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

Γt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σitdi

Φt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1

)−1
di

Ψt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1

)−1
ζitdi

2. ζit = 0: In case none of the investors read the public signal, some of our expressions change

to indicate that the public signal noise is no longer relevant to the problem.

Σit =
{

Σd + Σ−1pt +Kit

}−1
, µit = Σit

(
Σ−1pt ηpt +Kitsit

)
Ωt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1

)−1
di

Γt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1

)−1
(B + I)Σitdi

Φt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1

)−1
(B + I)ΣitKitdi

Ψt = 0

3. ζit = 1: In case all investors read the public signal, some of our expressions change to indicate

that the investors do not fully disentangle the public signal noise from the dividend innovation
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(since the private signal is essentially an unbiased signal for yt+1 + zt+1 in this case).

Σit =
{

Σd + Σ−1pt +
(
Σz +K−1it

)−1}−1
, µit = Σit

(
Σ−1pt ηpt +

(
Σz +K−1it

)−1
sit

)
Ωt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

Γt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σitdi

Φt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
Σz +K−1it

)−1
di

Ψt = Φt

For the remaining exposition, we consider the special case where all investors have the same

exposure to the public signal ζit = ζ and the same precision of the orthogonal private component

of the signal Kit = K. The only source of individual level variation in the model solution remains

in the risk tolerance and the signal realization. Hence, the covariance expressions simplify to

reflect this, only aggregating across individuals using the average risk tolerance (since the signal

realizations don’t affect the covariances).

Σit = Σt =
{

Σd + Σ−1pt +
(
ζ2Σz +K−1

)−1}−1
, µit = Σt

(
Σ−1pt ηpt +

(
ζ2Σz +K−1

)−1
sit

)
Ωt = ρ̄−1

(
(B + I)Σt(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
Γt = ρ̄−1

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σt

Φt = ρ̄−1
(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σt

(
ζ2Σz +K−1

)−1
Ψt = Φtζ

Here, we use the average risk tolerance ρ̄ =
(∫
i ρ
−1di

)−1
, which is simply the harmonic mean of the

risk tolerance across individuals.

B Proofs for Lemmas 1 and 2

In order to prove Lemma 1, we first state and prove an interim utility result.

Lemma 3. In a perfectly competitive market (n → ∞), investor expected utility at date t, condi-

tional on all date-t data is

E [U(cit+1) | Iit] = rwitρi +
1

2
E [Πit | Iit]′V [Πit | Iit]−1 E [Πit | Iit] (18)
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Proof of Lemma 3.

From Equation (1) and Equation (10), end-of-period consumption for an investor can be rep-

resented as

cit+1 = r(wit − q′itθipt) + q′itθi(pt+1 + dt+1) = rwit + q′itΠit.

The ex ante utility of the investor is,

E
[
U(cit+1) | I−t

]
= E

[
E [U(cit+1) | Iit] | I−t

]
That is, we calculate the ex ante utility from the interim utility using the law of iterated expecta-

tions. From Equation (4), the interim utility is given as

E [U(cit+1) | Iit] = ρiE
[
rwit + q′itΠit | Iit

]
− ρ2i

2
V
[
rwit + q′itΠit | Iit

]
.

The first order condition for optimal portfolio choice implies qit = ρ−1i V [Πit | Iit]−1 E [Πit | Iit].
Here, we used the fact that the only variable term in Πit is pt+1 + dt+1 at the interim stage. The

first term of the interim utility is,

ρiE [cit+1 | Iit] = rwitρi + E [Πit | Iit]′V [Πit | Iit]−1 E [Πit | Iit] . (19)

The second term of the interim utility can be written as

ρ2i
2
V [cit+1 | Iit] =

1

2
E [Πit | Iit]′ V (Πit | Iit)−1 E [Πit | Iit] . (20)

Taking the difference of the first term and the second term yields the result in Lemma 3

E [U(cit+1) | Iit] = rwitρi +
1

2
E [Πit | Iit]′ V (Πit | Iit)−1 E [Πit | Iit] . (21)

Proof of Lemma 1. Expand the expression for profit Πit as,

Πit = θi [pt+1 + dt+1 − rpt]

= θi [At+1 +B(dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 + (dt+1 − µ) + µ− rpt]

= θi [At+1 + µ+ (B + I) [G(dt − µ) + yt+1] + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 − rpt]

= θi [At+1 + µ+ (B + I)G(dt − µ) + (B + I)yt+1 + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 − rpt]
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The interim variance of the profit is given as,

V [Πit | Iit] = θi
[
(B + I)Σt(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

]
θ′i (22)

Here, we use the posterior variance of the dividend innovation Σt = V [yt+1 | Iit]. Further, it is

clear from Equation (22) that the interim variance of consumption V [Πit | Iit] is a known quantity

– it is only a function of ζit and Kit (in our case, ζ and K), and not a function of information

revealed at the interim stage pt or sit. That is, it is a function only of the model primitives and

the information set I0.
Next, in the expression for the conditional expected utility from Lemma 3, we decompose the

conditional expected profit (4) into an expected E [Πit] and a surprise component E [Πit | Iit] −
E [Πit],

E [U(cit+1)] = E [E [U(cit+1 | Iit)]]

=
1

2
E
[{

E [Πit]
′ +
(
E [Πit | Iit]′ − E [Πit]

′)}V [Πit | Iit]−1 {E [Πit] + (E [Πit | Iit]− E [Πit])}
]

+ rwitρi

=
1

2
E [Πit]

′V [Πit | Iit]−1 E [Πit] + E
[
E [Πit]

′V [Πit | Iit]−1 (E [Πit | Iit]− E [Πit])
]

︸ ︷︷ ︸
=0

+
1

2
E
[
(E [Πit | Iit]− E [Πit])

′V [Πit | Iit]−1 (E [Πit | Iit]− E [Πit])
]

+ rwitρi (23)

We are interested in the second term of the ex ante expected utility in Equation (23). We will

use the fact that the mean of a random variable with the central chi-square distribution is the trace

of the covariance matrix of the underlying normal variable,

E [U(cit+1)] =
1

2
E [Πit]

′V [Πit | Iit]−1 E [Πit] +
1

2
Tr [V [Υit]] + rwitρi (24)

where, Υit = (E [Πit | Iit]− E [Πit])
′V [Πit | Iit]−

1
2 (25)

We can express V [Υit] as,

V [Υit] = V
[
{E [Πit | Iit]− E [Πit]}′V [Πit | Iit]−

1
2

]
= V [E [Πit | Iit]− E [Πit]]V [Πit | Iit]−1

Hence, the term of interest is the prior variance of the ex ante stochastic quantity E [Πit | Iit], since

the prior expectation of this quantity E [Πit] is a known variable ex ante. Hence, we can use the

law of total variance, which says that the prior variance of the posterior expectation E [Πit | Iit] is
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equal to the prior variance minus the posterior variance for Πit,

V [Υit] = {V [Πit]− E [V [Πit | Iit]]}V [Πit | Iit]−1

= V [Πit]V [Πit | Iit]−1 − I

Hence, we can express the ex ante expected utility as,

E [U(cit+1)] =
1

2
E [Πit]

′V [Πit | Iit]−1 E [Πit] +
1

2
Tr
[
V [Πit]V [Πit | Iit]−1 − I

]
+ rwitρi

Proof of Lemma 2. Differentiating expected interim utility, when price pt depends on investor i’s

demand yields a first order condition,

qit =

[
ρiV [pt+1 + dt+1 | Iit] +

dp

dqi

]−1
{E [pt+1 + dt+1 | Iit]− rpt}

=

(
ρiV [Πit | Iit] +

dp

dqi

)−1
E [Πit | Iit] . (26)

The term dp/dqi, often referred to as “Kyle’s lambda” is the measure of how much effect investor

i’s demand has on the market price of an asset.

Interim utility still takes the form

E [U(cit+1) | Iit] = ρiE
[
rwit + q′itΠit | Iit

]
− ρ2i

2
V
[
rwit + q′itΠit | Iit

]
.

However, substituting in the new expression for qit from Equation (26), the first term of the interim

utility is now

ρiE [cit+1 | Iit] = rwitρi + E [Πt | Iit]′
(
V [Πit | Iit] +

1

ρi

dp

dqi

)−1
E [Πt | Iit]

The second term of the interim utility can be written as

ρ2i
2
V [cit+1 | Iit] =

ρ2i
2
q′itV [Πit | Iit] qit

=
1

2
E [Πit | Iit]′

(
V [Πit | Iit] +

1

ρi

dp

dqi

)−1
V [Πit | Iit]

(
V [Πit | Iit] +

1

ρi

dp

dqi

)−1
E [Πit | Iit]

Let Ṽi := V [Πit | Iit] + 1
ρi

dp
dqi

. Note that all terms in Ṽi are known ex ante to investor i. Taking the

46



difference of the first term and the second term yields interim expected utility

E [U(cit+1) | Iit] = rwitρi + E [Πit | Iit]′ Ṽ −1i

(
I − 1

2
V [Πit | Iit] Ṽ −1i

)
E [Πit | Iit] (27)

To compute ex-ante utility, we follow the same steps as in the proof for Lemma 1. The solu-

tion is also similar, except that we replace V [Πit | Iit] with V̂i := Ṽi

(
I − 1

2V [Πit | Iit] Ṽ −1i

)−1
in

Equation (24) and in Equation (25). Similar to Ṽi, all terms in V̂i are known to investor i ex ante.

In this case,

V [Υit] = V
[
{E [Πit | Iit]− E [Πit]}′ V̂

− 1
2

i

]
= V [E [Πit | Iit]− E [Πit]] V̂

−1
i

Applying the law of total variance,

V [Υit] = (V [Πit]− V [Πit | Iit]) V̂ −1i .

Substituting V̂i for 1
2V [Πit | Iit] in Equation (24) and using the new expression for V [Υit] yields

Ũ(Iit) = E [Πit]
′ V̂ −1i E [Πit] + Tr

[
(V [Πit]− V [Πit | Iit]) V̂ −1i

]
+ rρiw̄it. (28)

C Unconditional Utility in terms of Excess Returns

In this Appendix, we impose a key approximation which allows us to express the unconditional

utility of the investor in terms of moments of excess, as defined in Equation (10), as opposed to

profits. Recall from Equation (10)

Rit = Πit � θipt. (29)

Noting that pt is known at the interim stage (in the information set Iit), we start by writing the

expressions for the conditional moments of Rit

E [Rit | Iit] = E [Πit | Iit]� θipt, and (30)

V [Rit | Iit] = V [Πit | Iit]� θiptp′tθ′i. (31)

We assume that the ex-ante variation in θipt is small relative to the other terms in the expected

utility expression. Formally, this amounts to assuming that θipt is a constant from an ex-ante per-

spective. This allows us to use the law of iterated expectations and express the ex ante expectation
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of excess return Rit as

E [Rit]j = E [E [Rit | Iit]]j = E [E [Πit | Iit]� θipt]j = E
[
E [Πit | Iit]j / (θipt)j

]
≈

E [Πit]j
(θipt)j

. (32)

Or equivalently,

E [Rit] = E [Πit]� (θipt)
◦(−1), (33)

where � is the Hadamard (element-wise) product of two matrices and W ◦(−1) represents the

Hadamard (element-wise) inverse of a matrix W . Further, we use the law of total variance to

express the unconditional variance of Rit as

V [Rit] = V [E [Rit | Iit]] + E [V [Rit | Iit]]

= V [E [Πit | Iit]� θipt] + E
[
V [Πit | Iit]� θiptp′tθ′i

]
≈ V [E [Πit | Iit]]� θiptp′tθ′i + E [V [Πit | Iit]]� θiptp′tθ′i
= V [Πit]� θiptp′tθ′i (34)

Perfectly Competitive Markets We can now use Equations (31), (33) and (34) to express

the unconditional expected utility from Lemma 1 in terms of Rit. We get the expression for the ex

ante expected utility in terms of excess returns as

Ũ(Iit) =
1

2

{
E [Πit]

′ E
[
V [Πit | Iit]−1

]
E [Πit]

}
+

1

2
Tr
[
V [Πit]V [Πit | Iit]−1 − I

]
+ rwitρi

≈ 1

2

{
E [Rit]

′ E
[
V [Rit | Iit]−1

]
E [Rit]

}
+

1

2
Tr
[
V [Rit]V [Rit | Iit]−1 − I

]
+ rwitρi (35)

Imperfectly Competitive Markets Using Equation (31), we can express the modified vari-

ance Ṽi as

Ṽi = V [Rit | Iit]� θiptp′tθ′i +
1

ρi

dp

dqi

=

(
V [Rit | Iit] +

1

ρi

dp

dqi
� θiptp′tθ′i

)
� θiptp′tθ′i

= ˜̃Vit � θiptp′tθ′i, (36)

where
˜̃Vit :=

(
V [Rit | Iit] +

1

ρi

dp

dqi
� θiptp′tθ′i

)
. (37)

Similarly, we restate V̂i as

V̂i = ˜̃Vit

(
I − 1

2
V [Rit | Iit] ˜̃V −1it

)−1
� θiptp′tθ′i = ˆ̂Vit � θiptp′tθ′i, (38)
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where

ˆ̂Vit := ˜̃Vit

(
I − 1

2
V [Rit | Iit] ˜̃V −1it

)−1
. (39)

We can now use Equations (31), (33), (34), (37) and (39) to express the unconditional expected

utility from Lemma 2 in terms of Rit. We get the expression for the ex ante expected utility in

terms of excess returns as

Ũ(Iit) ≈ E [Rit]
′ ˆ̂V −1it E [Rit] + Tr

[
(V [Rit]− V [Rit | Iit]) ˆ̂V −1it

]
+ rρiw̄it. (40)

D Valuing Order Flow Data

Consider an extension of the model where investors can observe data on sentiment shocks from H

different data sources. Investors have the same preference and choose their risky asset investment

qit to maximize E [U(cit+1)|Iit], taking the asset price and the actions of other investors as given,

subject to the budget constraint (1). A given piece of data m from data source h is now a signal

about xt+1: ηmxiht = ψxhxt+1 + Γxhe
x
it, with exit

iid∼ N (0, I).

Information on sentiment shocks allows an investor i to extract a more precise signal about

dividends from prices spit = yt+1 + C−1t Dt (xt+1 − E [xt+1 | sxit]). While investors probably do not

think about using order flow data to learn about fundamentals, they often trade against uniformed

order flow (sentiment). This is mathematically equivalent to using sentiment to extract clearer

fundamental information from price and then trading on that fundamental information.

The solution of this model is a straightforward n-asset extension of the model with order flow

information in Farboodi and Veldkamp (2017). Given an N × 1 unbiased signal syit about the

dividend innovations yt+1 with precision matrix kyit and an N × 1 unbiased signal sxit about the

sentiment shocks yt+1 with precision matrix kxit, investors apply Bayes’ law. They combine their

prior, information in the sentiment-adjusted market price, and information on dividend innovation

obtained from the data to form a posterior view about the (t + 1)-period dividend dt+1. The

posterior precision is V [dt+1 | Iit]−1 = Σ−10 + C−1t Dt

(
Σx + (kxit)

−1)−1D′tC−1′t + kyit.

At each date t, the risky asset price equates demand with noise trades plus one unit of supply,

as described by Equation (2). The equilibrium price is still a linear combination of past dividends

dt, the t-period dividend innovation yt+1, and the sentiment shock xt+1, as in Equation (2).

Ex-ante utility is still given by Equation (3). The precision variables kyit and kxit enter through

the posterior variance V [dt+1 | Iit] and V [Πt | Iit]. In the second term, kyit and kxit enter only

through V [dt+1 | Iit]. Thus, V [dt+1 | Iit] is a sufficient statistic for expected utility. The fact

that the uncertainty about dividends is a sufficient statistic, and the formulation of Bayes’ law for

posterior precision (the inverse of uncertainty), implies that kyit and kxit affect utility in the same

way, except that kxit is multiplied by C−1t DtD
′
tC
−1′
t . This ratio of price coefficients represents the

squared signal-to-noise ratio in prices, where C is the price coefficient on the signal (future dividend)

and D is the coefficient on noise (sentiment). The bottom line is that the value of sentiment data
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is exactly the same as the value of fundamental data, after adjusting for the signal-to-noise ratio

in prices. That signal-to-noise adjustment is exactly what an OLS procedure does.
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