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1 Introduction

Cartels thwart competition, even in modern economies. The US Department of Justice has prosecuted

price fixing by all three major canned tuna brands, 70 auto parts suppliers, 15 global financial institutions

trading foreign currency, over 100 real estate investors bidding in foreclosure auctions, and many others in

the last few years alone. However, as cartels raise prices and profits, they may also attract uncooperative

entrants, whose efforts to gain market share will undercut the incumbents’ agreements. Hence, entry can

serve as a fundamental safeguard against sustained collusion. In many markets, though, entry is a slow

and expensive process, so the likelihood that entry restores competitive prices depends critically on the size

of costs and the length of delays. Despite this, and despite the policy relevance, little to no work explores

the extent and effect of entry in cartelized markets. We study it in the context of the largest price fixing

case in US history, which involves generic prescription drugmakers.

Historically, most economists and policymakers thought of generic drugs as a competition success story.

When branded drugs lose patent protection, an influx of generics typically follows, capturing more than half

of the market at less than half the branded equivalent’s price (Scott-Morton (1999); Wendling et al. (2011)). In

recent years, however, prices of many generics rose substantially. According to court documents described

below, many of these increases can be traced to a single precipitating event: in 2013, Teva Pharmaceuticals,

the largest generic drugmaker, hired NP, a marketing executive with especially strong industry relationships,

and tasked her with "price increase implementation."1 Over an 18-month period, industry participants

exchanged thousands of calls and texts—alongside countless LinkedIn, Facebook, WhatsApp, and face-

to-face conversations—with contacts at rival firms to coordinate the increases (Complaint, page 322).2

Following this period, prescription drug expenditures by governments, private insurers, and individuals

rose sharply by billions of dollars.

In this paper, we measure the effect of price fixing on market entry, estimate a structural model of generic

drug competition, and use our estimates to assess counterfactual policies that would reduce regulatory costs

and delays. We exploit detailed information on the cartel’s internal operations, which were revealed when

a complaint against the drugmakers was filed in May 2019.3 The complaint presents witness testimonies,

private communications within and between rival firms, and internal documents collected in the course of

an extensive government investigation. It includes a list of the drugs for which NP fixes prices, the dates

on which those prices are fixed, and the criteria NP uses to select which prices to fix. Conveniently, it also

reports NP’s own numerical measure of the strength of executive relationships with competing drugmakers,

which is critical for predicting collusion.

Information from the complaint is crucial to our research design, which compares cartelized and

uncartelized drugs before and after collusion. Such comparisons typically raise concerns about unobservable

differences across markets and time that relate to both the likelihood of collusion and outcomes of interest.

However, due to the government’s investigation, we know how NP selects markets and observe the variables

on which the selection depends, which are both stable over time and independent of the relevant outcomes.

Also, the vast majority of the price increases were implemented within about a year of NP’s first anniversary

1We identify individuals using their initials. Their names are discoverable in court documents but irrelevant to our analysis.
2Throughout the paper, we use the word "cartel" or similar terms to characterize the behavior and economic arrangement, not

reflect the findings of the court. The case against Teva, its former employees, and several co-conspirators is ongoing at the time of
writing, so from a legal perspective, this is an "alleged cartel" with respect to their involvement. However, the facts presented in the
complaint, which we take at face value, satisfy any substantive definition of collusion. See Section 2 for details.

3See https://portal.ct.gov/AG/Press-Releases/2019-Press-Releases/DRUG-PRICE-FIXING-COMPLAINT-UNSEALED.
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of joining Teva, mitigating concerns that they were timed to coincide with unobservable environmental

changes. Moreover, observable outcomes in cartelized and uncartelized markets track extremely closely

with each other leading up to collusion (but clearly diverge sharply afterwards).

Our sample consists of drugs manufactured by Teva in the quarter just prior to NP joining the firm

(where "drugs" refers to substance-delivery-release-strength combinations).4 We measure quantity using

prescriptions, which we obtain from IQVIA and Medicaid, and we measure point-of-sale price in dollars per

prescription, which we obtain from Medicaid. Before manufacturing a drug, firms must file an Abbreviated

New Drug Application (ANDA) and have it approved by the Food and Drug Administration (FDA). ANDA

filings closely correspond to entry. We obtain the filings and their respective dates from the FDA.5 The

dataset we build covers 2008 to 2019.

We begin by documenting four key reduced form findings. To do so, we combine information from the

complaint with regulatory filings and market outcomes. First, collusion leads to abrupt price increases,

which average 40-50%. Second, the cartel induces significant entry. Following collusion, firms file 30-40%

more ANDAs. Third, regulation delays competition from newly filed ANDAs for years. On average it takes

several years to receive an approval so, for example, a firm filing an ANDA in 2013 might not enter before

2017. Fourth, entry precipitates price declines.

These facts inform our structural model, which emphasizes two main decisions that generic drugmakers

face. In the first stage, firms without regulatory approval file ANDAs if the sum of expected discounted

profits associated with entering exceeds the sunk costs.6 Entry is not immediate, since ANDA approvals

involve significant, stochastic delays. In the second stage, firms with regulatory approval set prices. Pricing

decisions depend on the history of play as well as incentive compatibility constraints: cartel members

choose prices that maximize joint profits so long as no member has deviated in the past and every member

finds it more valuable to cooperate. The model highlights how cartel formation raises prices, which in turn

increases incentives to enter. Moreover, it emphasizes that entry exerts downward pressure on price, given

that not all entrants are cartel members. However, it also underscores the point that observed entry will

not "unravel" the collusive agreement (if it did, prices would return to competitive levels, so any "market

clearing" entry would have already occurred prior to cartel formation).

Next, we take the model to the data. We estimate demand, use these estimates to recover marginal

costs, and combine these results to forecast the profits that firms would earn for any hypothetical market

structure under either collusion or competition. We use these forecasts in conjunction with the empirical

distribution of entry delays to compute the value of entry, which equals the sum of discounted expected

future profits. Firms enter if and only if the value of entry exceeds the sunk cost of doing so, so observed

entry decisions map to the parameters that determine those costs. Since two types of firms (i.e., cartel

members and nonmembers) make entry decisions, multiplicity is the rule rather than exception. Thus, we

rely only on the necessary conditions implied by Nash equilibrium, bounding the parameters of interest

using moment inequalities (Tamer, 2003; Pakes et al., 2015).

4Since Teva is by far the largest generic drugmaker, more than one-third of all drugs remain in the sample after the second
restriction. In any case, merely to preserve comparability across drugs, we make other minor restrictions. For example, we exclude
drugs that go "off patent" in the middle of the panel, since their price paths reflect very different dynamics. See Section 3 for details.

5All approval dates are reported by the agency, but only a subset of filing dates are. However, ANDA numbers are issued
approximately sequentially, so filing dates can be inferred without meaningful error. See the Online Appendix for a detailed
description of the process.

6This condition implies that cartel members do not coordinate entry decisions, even though they may cooperatively set prices. In
this sense, the cartel is semicollusive (Fershtman and Muller, 1986). See Section 2 for more detail.
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Our estimates reflect an assumption that collusive prices persist despite the government’s investigation

(and ongoing prosecution). While this restriction partly reflects the stability of drug prices around the time

the investigation is publicized, it is mainly due to the results of a formal conduct test. The test provides

a pairwise comparison between collusive and competitive pricing, following a general methodology laid

out by Backus, Conlon, and Sinkinson (2021), which we adapt to our setting. To summarize the result, we

find that the data strongly rejects competitive pricing post-2015 in favor of continued collusion. In other

words, enforcement did not undermine the existing cartel agreements. The finding is consistent with the

idea that some price fixing agreements are hard to initiate but easy to perpetuate, which is consistent with

with related statements made in the complaint, and further emphasizes the importance of entry.

With estimates of the parameters governing demand, prices, and entry in hand, we simulate counterfac-

tual outcomes under alternative policies. In particular, we consider reducing the sunk cost of entry and

reducing the delays associated with entry. The counterfactuals are logical and important alternatives to con-

sider for several reasons. First, there are slow and expensive drug-specific government approvals required

for generic production. Firms must prepare and file an ANDA with the FDA, and the approval process

can take years and cost millions of dollars. Second, these factors lie within the government’s control: the

FDA has varied fees considerably over the past decade and experimented with various expedited approval

programs. Former commissioner Scott Gottlieb has lamented both the cost and time associated with entry

(Gottlieb (2016)). Third and perhaps most important, regulatory costs and delays are basic features of many

large industries. Examples range from air travel and power generation to defense contracting and retail

banking. Hence, our broad conclusions are likely to extend beyond prescription drugs.

We estimate that sunk entry costs average $3.2 million per ANDA for the drugs in our sample.

Reassuringly, the figure is consistent with with previous statements made by FDA officials. We also

estimate that entry costs are significantly higher for ANDAs that cover multiple strengths and non-standard

delivery methods (e.g., syrups and chewables rather than "pills"). Our first set of counterfactual experiments

study the effect of reducing sunk costs by $400,000-$800,000 per ANDA—approximately one-eighth to

one-quarter of the average expense required to enter a substance-delivery-release combination. We find that

there is much more entry into cartelized markets witness much more entry and that consumer compensating

variation equals $142-374 million. Our second set of counterfactual experiments study the effect of reducing

delays by 1-2 years. We find that this has a similar effect on entry but a much greater effect on consumer

compensating variation, which equals $596 million to $1.5 billion.

Our findings show that entry can play a key role in disciplining cartels, with a first order impact on

consumer welfare. Nonetheless, the discipline it exerts may be incomplete and slow, resulting from high

costs and long delays, many of which can be attributed to regulation. To be clear, we do not in any way

mean to imply that the time and expense associated with generic drug evaluations are wasteful, only

that limiting fees and hastening approvals generates significant surplus for buyers when incumbent firms

are playing cooperatively. Relatedly, our estimates alone cannot advocate for one policy over another.

Lower fees may draw resources away from other oversight activities, while quicker approvals may require

additional staff (or, again, result in lax enforcement). Forecasting the costs associated with these changes is

far beyond the scope of the present paper, which focuses on the relationships between cartel formation,

entry, pricing, and purchases in equilibrium.

We contribute to the growing body of empirical work on cartels by incorporating equilibrium entry.

While foundational work by Stigler (1964) names both cheating and entry as threats to collusive agreements,

4



most early and influential formalizations of the cartel problem (e.g., Green and Porter (1984)) study the

former threat but rule the latter one out. Fershtman and Pakes (2000) relax this restriction by way of

simulations, numerically solving Markov perfect equilibria that permit for entry, exit, and quality differences

across firms. The authors report a strong industry relationship between collusion and subsequent entry—a

relationship they state "has largely been ignored in the literature and has important implications for the

welfare analysis of collusive behavior."7 In empirical work, authors have carefully chosen markets where

it is reasonable to assume that entry is either unlikely to occur in the near-term (Miller and Weinberg

(2017)) or that entry is determined by factors that are "outside" the model (Porter (1983), Byrne and de Roos

(2019), Igami and Sugaya (2020)).8 By contrast, we not only allow for entry but endogenize the behavior,

drawing on work by Borenstein (1989), Bresnahan and Reiss (1991), Mazzeo (2002), Seim (2006), and the

large, growing literature that followed.

This paper also improves our understanding of prescription drug pricing (see, for example, Berndt et

al., 2018). Sco (2000) shows that larger revenue markets, markets with more hospital sales, and products

that treat chronic conditions attract more entry. At the same time, Ganapati and McKibbin (2021) show that

the entry—the traditional mechanism of reducing market power—has been limited in the United States in

recent years. We expand this literature by exploring the strategic incentives faced by generic manufacturers

and their impact on consumers. Cuddy (2020) models this market as a series of simultaneous procurement

auctions in order to study the equilibrium relationship between competition and prices. She estimates large

damages from cartel behavior using a counterfactual auction model of competitive behavior. Similarly,

Clark et al. (2021) estimate large damages using a reduced form approach. We focus on the market forces

that may serve to alleviate these harms.

The paper is organized as follows. In the next section we describe the institutional setting and in section

3, the data. In section 4 we present our reduced form findings and in section 5 we outline the model. We

report estimates of the structural parameters in section 6 and present our predictions under counterfactual

policies in section 7. Section 8 is the conclusion.

2 Market setting and cartel operations

2.1 The US generic prescription drug industry

Generic drugs are a competition success story. When a branded drug loses exclusivity, generic entry drives

prices down towards marginal cost. For this reason, the market is the "most dynamic and cost-effective

in the world" (Scott-Morton and Boller (2017)). Historically, barriers to entry were relatively low. Under
7In particular, Fershtman and Pakes (2000) report, "The contrast between the entry states in the model that allows for collusion and

the entry states in the model that does not is quite striking. The [relationships between entry and the state variables] simply disappear
when collusion is not allowed" (emphasis in original). The authors emphasize the universally positive effect collusion has on entry;
however their statement contains a slight but especially interesting caveat due to work by by Asker (2010), who studies bidding rings
among stamp deals and shows how their arrangement induces overbidding, which deters entry.

8For example, Igami and Sugaya (2020) study vitamin cartels in the 1990s. In their setting, exogenous entry is an especially natural
approach, given that competition unexpectedly arose from technology change, which benefited fringe suppliers. Alternatively, Miller
and Weinberg (2017) study the effect of the Miller-Coors joint venture on the US beer market. In their setting, the emergence of
another major brewer is very unlikely, at least in the near future, given that the leading brands have accumulated brand equity over
decades of advertising, which insulates them from startup competition. Moreover, while the "craft" segment has grown over the past
three decades, their Table I shows the top two firms have nearly two-thirds of nationwide share. Entry barriers are not necessary,
however, to restrict entry. For instance, Harrington (1989) shows that sufficiently patient incumbents can credibly threaten entrants,
while Scott-Morton (1997) finds evidence of predation by turn-of-last-century British shipping cartels.
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the Hatch-Waxman Act, firms can enter by filing an ANDA that shows that the active ingredient, delivery

mechanism, strength, and dose of the generic drug are the same as the branded drug. The generic drug

must be "bioequivalent" to the branded drug. Generally, the first generic entrant will price its product

slightly lower than the branded drug, and the second generic entrant will reduce the price to approximately

50% of the branded drug price. Conditional on having a large number of entrants, prices fall to around

20% of the price of the branded counterpart.

Generic drug manufacturers compete with each other to sell the generic drugs they produce to

wholesalers, distributors, and in some cases, directly to retail pharmacy chains, mail-order and specialty

pharmacies, hospital chains, and some health plans. Due to complex "cost-plus" reimbursement rules,

higher wholesale prices may weakly benefit these market participants.9 In recent years, wholesale prices

for some generic molecules have increased substantially. The increases have been attributed to both supply

shortages and anti-competitive behavior (Cuddy, 2020).

2.2 The cartel

The cartel we study traces back to a single change in industry leadership: on April 22, 2013, NP joined

Teva Pharmaceuticals.10 This event was special for several reasons. First, in the years leading up to the

cartel’s formation, NP forged uniquely strong relationships. She worked as the Director of Global Generic

Sourcing for Amerisource Bergen (ABC), one of the three major US drug distributors. The role led to

"routine interaction with representatives from every major generic drug manufacturer" (Complaint, page

158). Second, Teva was—and still is—the world’s largest generic drugmaker. By early 2013, for example,

it produced about one out of every three generic tablets and capsules.11 Third, NP’s role as Director of

Strategic Customer Marketing involved, in her own words, "price increase implementation" (Complaint,

page 158). The significance of this move was not lost on other industry leaders. At Taro Pharmaceuticals,

another leading generic drugmaker, the Vice President of Sales and Marketing emailed the COO just days

after NP left ABC to say, "[NP] Going to Teva—Hush Hush for now" (Complaint, page 159).

The complaint states that just 8 days after joining Teva, NP began identifying target markets. The

process was highly structured. She started by assigning each generic drugmaker an individual "quality"

rating, which ranged from -3 to 3 and reflected the strength of her relationships with their sales and

marketing executives. Next, she combined these ratings into a drug-specific score, which was the most

important element in the selection process. Finally, she factored in the number of firms in the market

and other minor considerations. In an internally distributed 2014 document, she summarizes "Candidate

Identification" as "Target 2-4 total players, where quality of competitor is high" and "[where] Teva has

majority share and quality of competitors is high" (Complaint, page 217).12

9McKesson 2014 10-K, Cardinal 2014 10-K, ABC 2014 Annual Summary all explicitly state that their profits are positively affected
by manufacturer price increases (due to cost- plus arrangements).

10Note that while the complaint focuses on drugs affected by NP, it alleges other segments of the industry were not entirely immune
to coordinated behavior. These allegations do not affect our analysis. Our sample includes only drugs that Teva historically produced.
As the complaint states, Teva was uncooperative before NP joined, so these markets are presumably competitive prior to her actions.
Besides that, the complaint describes antitrust violations in the other segments that are qualitatively and comparatively unimportant.

11Most generic drugs are manufactured in a pill/capsule form, which is the delivery mechanism we study. Injectible drug markets
differ in a host of ways—manufacturing processes are very different and customers are typically hospitals rather than retail pharmacies.

12The complaint reports NP’s quality ratings and we observe market structure, so we can confirm NP used precisely these criteria.
She also mentions targeting "Exclusive items" (i.e., those where Teva is the only supplier). Our focus is collusion, so we exclude these
cases from our sample. They are rare, so this restriction is without any meaningful loss of generality.
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The complaint states that the outcome of the process was a spreadsheet titled "Immediate PI File" (where

"PI" stands for "Price Increase"). It contained a list of drugs for which NP expected to cooperatively raise

prices. NP forwarded the list to supervisors on May 24, and Teva changed prices on July 3, preceded or

followed closely by other drugmakers. The magnitudes of the increases are especially noteworthy. Many

commonly prescribed medications—drugs treating cancer, bacterial infections, arthritis pain, and high

blood pressure, to name a few—doubled or more in price. Figure I plots the increases in calendar time.

Prices in cartelized and uncartelized drugs track closely until the date NP is hired, at which point they

diverge sharply.13 By 2016, the former rise 50% relative to the latter.
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Figure I: Prices in calendar time

This figure plots log prices on the y-axis against calendar time on the x-axis. The dashed
and solid lines correspond to cartelized and uncartelized drug markets, respectively. The
vertical red line corresponds to the first quarter of 2013—the period in which NP joined
Teva. Prices are normalized to zero in that quarter.

Implementing these increases required considerable coordination, which in turn required frequent

communication. Leading up to the increases, phone records reveal thousands of calls and messages between

NP and her counterparts at firms producing the drugs for which she sought to raise price. For instance, the

day before an increase, NP exchanged 15 calls with 3 individuals.14 Interestingly, since the firms could not

13Notice that prices trend down throughout the panel. They fall 20 percentage points in the first year and then deflate at about 3
percentage points per year thereafter. The first pattern reflects two patterns in the data. The panel includes drugs that lose exclusivity
as late as 2007, so a subset experiences declines that are typical around patent expiry (and "Paragraph IV" challenges). Also, data
quality improves in the first year, and when quantities are undermeasured, prices are mechanically higher. Since our estimates rely on
relative comparisons between cartelized and uncartelized drugs, which exhibit similar patterns, we opted to include the first year’s
data in our analyses, letting it further demonstrate the comparability between the treatment and control groups. Modest deflation
thereafter may reflect many underlying factors (e.g., outsourcing production to low wage countries, which reduces marginal cost).

14Though it does not affect our analysis, it’s nonetheless interesting to note that most conspirators knew their behavior was illegal.
For instance, according to the complaint, when NP described communications with rival firms during a 2013 internal meeting, MP,
another Teva executive, "smiled, put her hands over her ears, and pretended that she could not hear what was being said" (Complaint,
page 337). In other instances, executives deliberately avoided written communications. When a senior executive at Taro asked about
the arrangement, a fellow executive replied, "No emails please. Phone call. [Redacted] let’s discuss" (Complaint, pages 49-50). In yet
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perfectly synchronize the price changes, sharp increases by one drugmaker often prompted its customers

to approach other producers, who were forced to decline the business. In some cases, drugmakers outright

declined, citing fictitious supply problems (Complaint, pages 239 and 265), while in others they quoted

inflated prices, frustrating customers. Teva’s "fluff pricing" to Schnucks, a Midwest grocery chain, was so

egregious that the customer stated they felt "so insulted" (Complaint, page 146-7).15

The complaint states that NP coordinated five main rounds of price increases between July 2013 and

January 2015. After the first round, opportunities for subsequent increases emerged for a host of reasons.

One source was leadership changes. If a sales and marketing executive with a close relationship to NP

moved from Firm A to Firm B, then the likelihood of Firm B fixing their prices increased. Zydus provides

one such example. NP originally assigned the firm a quality rating of -3, indicating she lacked relationships

with Zydus personnel. However, NP’s colleague at Teva, KG, moved to Zydus in 2014, prompting her

to change the firm’s rating to 2. Subsequent phone and text records indicate that the two communicated

extensively (Complaint, page 272-273). A second source of opportunities was supply disruptions. If a firm

whose sales and marketing executives lacked relationships with NP was forced out of a particular drug

market due to, for instance, an interruption in access to the active pharmaceutical ingredient, then the

likelihood of fixing the price of that drug increased. Notably, the price increases would have been even

more compressed were it not for NP’s maternity leave, which resulted in a "hiatus" of over six months

(Complaint, page 212).

According to the Connecticut Attorney General (AG), "suspicious price increases of certain generic

drugs" prompted the state in July 2014 to begin an investigation, which is still underway. 16 On May 10,

2019, 43 US states and territories filed a complaint, which was unsealed the following month. It alleges a

"horizontal conspiracy" to fix prices for multiple generic drugs in violation of Section 1 of the Sherman

Act. Alongside the states’ civil suits, the US Department of Justice brought criminal charges against several

firms and individuals.17

The complaint states that NP’s supervisor was "aware of the government investigations that had been

commenced" by early 2015. She "told [NP] that the government was showing up on people’s doorsteps,"

and "warned [NP] to be careful about communicating with competitors" (Complaint, page 341). Further

according to the complaint, news of the investigation ended the price increases (Complaint, page 338).

However, the news does not appear to have undermined existing agreements, which the firms may have

maintained tacitly. This is consistent with NP’s assertions that generic drug price fixing is hard to initiate but

easy to sustain (Complaint, page 160) as well as internal documents referencing cooperative arrangements

years after the government launched its investigation (Complaint, page 50). We address this issue directly

in Section 6.

It is important to note that when we reference "agreements," "coordination," and especially "collusion,"

we more precisely mean semicollusive behavior—competitive play with with respect to long-run choices but

other instances, executives used personal email accounts to transfer illegally obtained information and deleted illegal communications
when they learned of the government investigation (Complaint, page 341).

15"Fluff pricing" is NP’s term for this practice. See Complaint page 146.
16To be precise, the investigation traces back to a New York Times article titled "Rapid Price Increases for Some Generic Drugs

Catch Users by Surprise" (Rosenthal, 2014), which the supervisor of the Connecticut AG office’s unit of antitrust and fraud read and
forwarded to a staff attorney, who subsequently sought subpoenas (Pazniokas, 2019).

17These are serious offenses. For example, two executives at Heritage Pharmaceuticals who plead guilty to their role in the
conspiracy currently await sentencing and face up to 10 years in prison. At the time of writing, federal authorities have charged 7
firms and 5 individuals. Teva was charged in August 2020. Several parties have settled. For example, Taro admitted its role in the
conspiracy and paid a $205.7 million penalty in July 2020.
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cooperative play with respect to short-run ones (Fershtman and Muller, 1986). Specifically, we assume that

colluding firms set prices to maximize joint profits. Supernormal profits are an outcome of this behavior

and are necessary but not sufficient to induce entry.18 The complaint suggests that members understood

the value of sticking to the agreement. It also demonstrates that potential entrants were attracted to

supernormal equilibrium profits, not simply high prices. Finally, it is worth noting what type of conduct is

absent from the complaint and related filings. Despite thousands of pages of court documents recounting

almost countless conversations about prices, no statements suggest that cartel members coordinated entry.

In other words, it seems very unlikely that members reached agreements not to enter each others’ markets.

Consistent with that view, when entry by a cartel member into a cartelized market did occur, incumbent

producers responded by accommodating rather than retaliating.19

3 Data

3.1 Sources

The data come from several sources. The National Drug Code (NDC) Directory, which is published by the

FDA, provides a current list of all prescription pharmaceutical products manufactured for sale in the US.

Each product is identified by a unique NDC code, which identifies the substance-delivery-release-strength

combination associated with the product as well as the firm that produces it and the ANDA that authorizes

that production. The FDA updates the list daily. Using the Internet Archive, we take annual snapshots of

the directory, which are the starting point for our panel dataset.

Medicaid State Drug Utilization Data, which is published by Centers for Medicare & Medicaid Services,

is the primary source of price and quantity information. Each quarter, all states and the District of

Columbia report the number of prescriptions filled by Medicaid enrollees and the amount of corresponding

expenditure. We download national aggregate statistics, and we merge to the NDC Directory data,

described above, at the NDC-quarter level. Since NDCs are specific to drug packaging (e.g., 1000-count

bottles, 14-count blister packages, etc.), firms are associated with multiple NDCs per drug. Thus, we sum

over NDCs to form drug-firm-quarter observations.

We also acquired data from from IQVIA, a private provider whose National Prescription Audit covers

92% of US pharamcies. We first use IQVIA data to scale up the quantities reported in State Drug Utilization

Data, which covers only Medicaid, to US totals. To do so, we compute the ratio of total IQVIA prescriptions

to total Medicaid prescriptions, and we scale up by that factor. Second, we use IQVIA to carefully check

whether patterns in Medicaid are representative of industry-wide purchasing behavior. Total purchases

track extremely closely with one another over time, and their responses to cartel-induced price changes are

almost identical (see Section 10 of the Online Appendix).

The complaint, which is described in the previous section, provides information about cartel formation.

As it directly relates to dataset construction, the complaint lists the drugs for which NP fixed prices, the

18Further evidence comes from Civica Rx, a startup generic drugmaker owned by a consortium of hospitals. In a New York Times
article titled "Fed Up With Drug Companies, Hospitals Decide to Start Their Own" (Abelson and Thomas, 2018), the firm stated that
when it enters the market it expects incumbents to respond by "quickly dropping the price of the drugs in question." Further, the firm
stated that were it to exit subsequently, it expects incumbents to respond by "raising them again later."

19ANDA launches by Aurobindo, Lupin, and Actavis provide particularly clear examples. See Complaint, pages 74, 81-82, and
103-104, respectively.
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dates on which those prices were fixed, and NP’s relationships. From this information, we construct an

indicator variable for whether a cartel was ever formed in a particular drug market. Within each drug

market where a cartel is formed, we also construct an indicator for whether a particular period precedes or

follows cartel formation. Finally, we construct an indicator variable for cartel membership.

We then merge in ANDA filing and approval dates. To obtain filing dates, we "scrape" the FDA website

for all available ANDA approval letters, most of which state the date the application was filed. Although

not all ANDA approvals are published, we can infer the missing filing dates, since ANDA numbers are

issued sequentially, with a few exceptions (see Section 10 of the Online Appendix, which shows that we

measure ANDA filing dates without meaningful error). We obtain approval dates from the Orange Book,

which is published by the FDA.

Our sample covers 2008 to 2019 and consists of all drugs manufactured by Teva in the quarter prior to

NP joining the firm, subject to some exceptions. We omit drugs that lose exclusivity during the sample

period.20 We also omit a small number of drugs for which NP raised prices twice. This decision drops only

11 substance-delivery-release combinations, and avoids issues stemming from ill-defined cartel formation

dates. Last, we drop 38 injectable drugs; injectables occupy a very different segment of the industry,

require radically different production methods, have short shelf lives, are mostly manufactured by different

producers than the ones we study, and most importantly are never mentioned in the complaint.

3.2 Summary Statistics

Table I summarizes the data at the drug-year level. There are 4,992 observations spread over 416 drugs

and 12 years. The average number of prescriptions filled is 1.9 million, and the average price is $31.66.

Average expenditures are $31.1 million, or about $255 billion over the full panel. The mean number of

manufacturers in the market is 4.15, while the mean number of ANDA filings is 0.21, highlighting that entry

into mature generic drug markets is typically rare, even though these markets support several competitors

in equilibrium. Most ANDA filings can be attributed to cartel "nonmembers" (i.e., drugmakers that are not

named in the Complaint). The group accounts for about 60% of entry over the full sample and closer to

69% in the periods following NP’s joining Teva, regardless of whether we consider all drug markets or just

those where cartels are eventually formed (not shown). Cartels are formed in the markets for 113 drugs, or

27.2% of the sample.

4 Reduced form analysis

In this section, we describe the patterns in the data that motivate the structural analysis. The analysis

reveals that collusion dramatically increases drug prices; that collusion induces entry, evidenced by a sharp

increase in ANDA filings and eventual approvals; that regulatory approval involves significant delays, and

that entry reduces price in the cartelized markets.

20They exhibit drastic price declines that ruin comparability across units in our analysis and reflect idiosyncrasies of patent
challenges and expiration, which are unrelated to cartel formation. Paragraph IV challenges are one of many idiosyncrasies. See also
Footnote 13.
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Table I: Summary statistics

Count Mean Std. dev. Minimum Maximum
Price 4,992 31.66 40.42 2.32 628.53
Quantity (in thousands) 4,992 1,904.66 3,618.83 0.15 29,571.61
Expenditure (in millions) 4,992 31.10 110.51 0.01 4,188.54
Number of firms 4,992 4.15 1.94 1.00 12.00
Number of ANDA filings 4,992 0.21 0.54 0.00 5.00
Cartelized drug 4,992 0.27 0.44 0.00 1.00
Cartelized drug × Post cartel formation 4,992 0.14 0.34 0.00 1.00

The unit of observation is a drug-quarter. Price refers to dollars per prescription. Quantity is measured in
thousands of prescriptions. Expenditure is measured in millions of dollars. "Cartelized drug" is an indicator for
whether a cartel formed in the drug market at any point in the sample. "Cartel drug×Post cartel formation" is
the interaction of "Cartelized drug" and an indicator for periods following cartel formation (i.e., the indicator is
"on" if the cartel for a particular drug formed in April 2013 and the observation summarizes Q3 2013 or later).

4.1 Collusion raises price sharply

In Section 2, above, Figure I provides initial evidence in calendar time that collusion affects drug prices. In

this section, we begin by measuring the effect in event time. To do so, we split the sample into cartelized

and uncartelized drugs, calculate weighted average prices at the drug-year level (weighting each firm’s

product by quantity sold), and plot how prices evolve around cartel formation. Formally, we estimate

Ykt =
26

∑
τ=−21

βτxτ
kt + ak + bt + ekt. (1)

The outcome variable, Y, represents log point-of-sale price from the Medicaid data and k indexes products

in quarter t. ak and bt represent product- and time-specific fixed effects. xτ
kt is an indicator variable that

equals one if and only if k is a cartelized drug and t is τ periods from the start of collusion. βτ represents

the difference in the prices of cartelized ("treated") and uncartelized ("control") drugs relative to NP being

hired. Given the timing of the price increases and the time period covered by our data, τ can take values

between -21 and 26. We normalize β−1 = 0, so levels of the coefficients represent price differences relative

to the period immediately preceding NP’s hire.

Figure II plots estimates of βτ . Two features of the graph stand out. First, prices in cartelized and

uncartelized drug markets evolve similarly prior to collusion, evidenced by near-zero point estimates on the

left-hand side of the graph. In other words, there are no pre-event trends. Second, prices of cartelized and

noncartelized drugs diverge sharply when collusion begins. Two years after cartel formation, for example,

prices are nearly 50 percent higher in the treated group relative to the control.

Cartel-induced price increases occurred within a narrow window. Most occurred within months of NP

joining Teva, and all were completed within 18 months of that event. Moreover, as explained in Section 1,

opportunities to form cartels arose for plausibly exogenous reasons—the movement of personnel or supply

disruptions. Further, since our structural estimates rely on annual observations, one can conceptualize

almost all the price increases as occurring in a single period. In other words, the changes were abrupt.

Nonetheless, it is important to show these results are not driven by variation across groups receiving
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Figure II: The cartel increases price sharply and abruptly.

This figure plots βτ , which is obtained by estimating equation 1, on the y-axis against event
time on the x-axis. The unit of observation is a drug-year-firm. Log prices are the outcome
of interest, and the unit of observation is a product (i.e., drug-year-firm). The vertical red
line at event time -1 corresponds to the year immediately prior to cartel formation. Vertical
bars around the point estimates show 95 percent confidence intervals for those coefficients,
based upon standard errors that are clustered by drug.

treatment at different times. To do so, we follow an approach recently proposed by Sun and Abraham

(2020), which accounts for potential contamination of leading and lagging coefficients, and then we plot the

resulting estimates. Figure XIV in the Online Appendix reports the result, which very closely resembles

Figure II.

We also confirm these results are not sensitive to our definition of treatment. To do so, we define treated

drugs not as those where cartels actually formed but as those where NP had especially strong industry

relationships. We then replicate the steps used to generate Figure II. Figure XII in the Online Appendix

reports the result, which, again, very closely matches the patterns described in the prior graphs.

4.2 Collusion induces entry

Next, we turn attention to entry. Each firm must prepare and file an ANDA and obtain FDA approval of its

application before it launches a generic drug product. In this process, the first action we observe a firm take

is filing. Thus, for an initial marker of how entry responds to collusion, we begin by plotting ANDA filings

in calendar time. The filing dates for some ANDAs are not available on the FDA website, so we need to

infer them (in the Online Appendix, we describe this procedure and show in Figure XI that the missing

dates can be inferred from the available ones without any meaningful error). We then replicate Figure I,

replacing average log price per drug with the average number of ANDA filings per drug and collapsing

the data down to the year rather than quarter level, to improve legibility (since ANDA filings are relatively
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infrequent, especially in the absence of cartels).

Figure III illustrates the result. Entry exhibits similar patterns to price. Prior to NP joining Teva,

average ANDA filings for cartelized and uncartelized drugs evolved similarly, and uncartelized drugs

trend smoothly through her hiring date, but the two groups diverge sharply in 2013. In other words, cartel

formation induces substantial entry.
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Uncartelized drugs Cartelized drugs

Figure III: Entry in calendar time

This figure plots the number of ANDA filings per drug-year on the y-axis against calendar
time on the x-axis. The solid and dashed lines correspond to uncartelized and cartelized
drugs, respectively. The vertical line at 2013 corresponds to the year that NP joined Teva.
ANDA filings are normalized to zero in that year.

To quantify the divergence, we measure the effect of collusion on entry in an event study framework.

We re-estimate equation 1 and plot the coefficients in event time, as in Figure II, but we replace the

outcome variable, Y, with number of ANDA filings per drug-year (not log price at the product-quarter

level). The result is shown in Panel A of Figure IV. The average number of ANDA filings per market

evolves similarly over time for cartelized and uncartelized drugs leading up to collusion (i.e., no pre-event

trends are apparent). Then the figures diverge sharply. One year after the start of collusion, the number of

ANDAs filed in cartelized markets is already economically and statistically distinct from the number filed

in uncartelized markets. The difference grows over time, presumably reflecting the lead times for the the

application, which includes laboratory tests to demonstrate bioequivalence. Within two years of a drug

being cartelized, there in an average of 0.4 additional ANDA filings for that drug.
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Figure IV: The cartel induces significant entry.

This figure plots coefficients obtained by estimating equation 1 on the y-axis against event
time on the x-axis. The unit of observation is a drug-year. In Panel A, ANDA filings are
the outcome of interest. In Panel B, ANDA filings are replaced with ANDA launches. The
vertical red line at event time zero corresponds to the year in which Teva hired NP. Vertical
bars around the point estimates show 95 percent confidence intervals for those coefficients,
based upon standard errors that are clustered by drug.

The filing of an ANDA does not permit immediate entry. The FDA must review and approve the

ANDA, which involves delays. For example, a generic drugmaker who files an ANDA in 2014 may only

receive approval to produce the drug in 2017. As a result, we additionally consider ANDA launches, where

a "launch" is defined as the first year in which a firm sells the drug authorized by the ANDA.21 That is,

we re-estimate equation 1, replacing Y with the number of ANDA launches per drug-year. Panel B of

Figure IV reports the result. Once again, the graph does not exhibit pre-trends. Consistent with regulatory

delays, the graph also does not exhibit differences between cartelized and uncartelized markets in the years
21ANDA launches are a subset of ANDA filings because applications filed towards the very end of our sample may not receive

approvals by the time the sample ends.
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immediately following collusion. However, ANDA launches rise sharply four years after collusion begins.

Infrequently, producers re-enter markets using dormant ANDAs (i.e., approved filings that are no

longer associated with production but once were). This might be especially common in markets where

cartels have recently formed, since they drive price rises that could encourage not only de novo entry in

the form of ANDA filings but also induce inactive firms to become active once again. To evaluate this

possibility we re-estimate equation 1, replacing Y with the number of "re-entries" per drug-year. Due to the

relatively small number of these occurrences, the result is in the Online Appendix. As with the previous

findings, there are no pre-trends. Re-entry spikes in the year immediately following collusion. This pattern

is consistent with the cartel turning some unprofitable markets profitable once again, and it squares with

the fact that already-approved applications can enter without delay.

4.3 Regulatory approvals involve delays

Figure IV illustrates lags between ANDA filings and launches. These lags have important consequences if

entrants exert downward pressure on prices, driving the cartelized markets closer to pre-cartel equilibrium

conditions. To examine the delays more carefully, we plot the density of the time between ANDA filing

and regulatory approval. Figure V reports the result. Mean and median delays are about 2.5 and 2 years,

respectively.
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Figure V: Distribution of time between ANDA filing and approval.

This figure plots the density of delays, defined as the number of years between filing and
approval. The unit of observation is an ANDA.
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4.4 Entry disciplines cartel prices

So long as entrants are not brought into the collusive agreement, they have incentives to undercut cartel

members on price and steal market share. To evaluate their impact and avoid obvious endogeneity that

arises from comparing markets that do and do not experience post-collusion entry, we exploit variation in a

measure of market size. In particular, we use each drug’s total revenue in 2012—the year just prior to Teva

hiring NP. Intuitively, collusion in large markets should attract more entrants than in small ones, so the

likelihood of post-collusion entry is a function of pre-collusion market size.22

To validate our approach, we examine the relationship between market size and entry at the drug level.

That is, we narrow the sample to cartelized drugs and plot post-collusion ANDA filings (on the y-axis)

against the log of total 2012 revenue in millions of dollars (on the x-axis). Figure VI plots the result. The top

panel measures entry using the probability that a market experiences an ANDA filing, while the bottom

one measures it using the number of ANDA filings per market. Regardless of the measure, market size and

entry are closely related. Only about 8% of drugs with around $1 million in revenue attract any entry at all.

However, drugs with over $1 billion in revenue almost always attract entry, with an average of three firms

filing ANDAs following cartel formation.

22If collusion in small generic drug markets is easier to sustain than in large ones, then market size could directly affect post-collusion
price paths. However, the collusive agreements are not in jeopardy. See Section 6, which shows, e.g., that incentive compatibility
constraints are easily met and that observed prices strongly suggest cartel members cooperate through the end of our sample. We
thank Kathleen Hui for pointing this out.

16



0
.2

.4
.6

.8
1

Po
st

-c
ol

lu
si

on
 e

nt
ry

7 8 9 10 11 12 13 14
Log market size

Panel A: Probability of entry

0
1

2
3

Po
st

-c
ol

lu
si

on
 e

nt
ry

7 8 9 10 11 12 13 14
Log market size

Panel B: Number of entrants

Figure VI: Larger markets attract more entry.

This figure plots log market size on the x-axis against the number of entrants in the
post-collusion period. The unit of observation is a drug. Market size is measured in
total revenue in 2012, the year immediately prior to NP joining Teva. Data are binned
according to x-axis values, so averages within the bin are plotted (i.e., the graph represents
a "binscatter").

We then use the same approach to compare the path of log prices for drugs with above- and below-

median pre-collusion market size. The motivation for this comparison is straightforward. Assuming entry

costs do not scale exactly with market size, cartelization of large markets will be more likely to induce

entry than the cartelization of small markets. If entry reduces price, then prices will fall in large markets

but remain relatively stable in small markets.

Specifically, we separate cartelized drugs into two groups based upon whether their 2012 revenue was

above or below the median drug’s 2012 revenue, and we plot average log prices in calendar time separately

for the two groups. For the sake of comparison, we also plot average log prices of uncartelized drugs.

Figure VII reports the result. Several features of the graph are noteworthy. First, prices of "small market"
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and "large market" drugs trend similarly into 2013, when Teva hires NP. Second, prices of drugs in both

groups rise sharply upon hiring, especially relative to uncartelized drugs. In fact, by mid-2014, the log

changes are nearly identical. However, after that point, high prices of "small market" drugs persist, whereas

the prices of "large market" drugs fall consistently. By the end of the panel, below-median cartelized drug

prices are 50% higher than those in the uncartelized group, while above-median cartelized drug prices have

converged to within 10% of it. These findings strongly support the idea that entrants drive down prices.
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Figure VII: Entry disciplines cartel-induced price increases

This figure plots log prices on the y-axis against calendar time on the x-axis. The long-
dashed and short-dashed line correspond to cartelized drugs whose revenues in 2012 were
above and below the median drug in the sample. The solid line corresponds to uncartelized
drugs. The vertical red line corresponds to the first quarter of 2013—the period in which
NP joined Teva. Prices are normalized to zero in that quarter.

This result does not offer any guidance as to how low entry costs would need to be to, for example,

induce similar price changes among "small market" drugs or induce even greater price declines among

"large market" drugs. Accurately predicting how welfare-relevant outcomes would evolve under reduced

fees or shorter delays requires forecasting the equilibrium response of drugmakers and buyers. We turn to

a structural model of entry, pricing, and demand to provide those forecasts below.

5 Model

In this section, we model the market’s response to cartel formation in mature segments of the US generic

prescription drug industry. Collusion has two key effects. First, firms ordinarily choose prices competitively,

maximizing current period profits, but under collusion, cartel members might choose prices cooperatively.

Second, while entry into mature drug markets is typically very rare, cartel-induced price increases may

raise profits so much that firms that are not currently active in the market enter, even though doing so

involves potentially large costs and long delays. Entry may mitigate the harms associated with collusion.
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Each period (year) has two "stages" of play. In the first stage, drugmakers file ANDAs for markets

(drugs) they would like to enter. These filings are approved by the FDA with a delay of uncertain

duration. Applications take at least a year to be approved so no drugmaker enters a market in the year

it files an ANDA. In the second stage, conditional on the market structure, drugmakers set prices, while

consumers choose which product to consume. Firms that hold active ANDAs manufacture the drug and

earn profits, which equal the product of the per-unit profit margin, market share, and market size. That

is, π = (p−mc)s(p)A, where p denotes the price the firm charges, mc denotes the firm’s marginal cost, s

denotes market share, which is a function of price, and A denotes the market size. Marginal costs depend

on production technology, which we assume is outside the firm’s immediate control.

By calculating per-period profits under collusion and competition, drugmakers can assess their incentives

to cooperate, and by calculating the sum of discounted expected future profits, they can evaluate whether

the value of entering exceeds the sunk cost of doing so. In summary, because entry depends on pricing,

which in turn depends on demand, we work backwards from the consumer’s decision when we describe

the model below.

5.1 Demand

Although patients are the final consumers of prescription medications, they are typically not the ones to

decide which generic drugmaker’s product to purchase. Those decisions are made by intermediaries, which

include wholesalers (e.g., Cardinal Health), group purchasing organizations (e.g., MMCAP, a cooperative

formed to source drugs for state-owned facilities), and large retail chains (e.g., CVS).23 These buyers hold

procurement auctions for each drug, scoring the offers made by the drugmakers along several dimensions

besides price. For example, Cardinal Health states that it values high fill rates, short lead times, frequent

product availability reports, infrequent recalls, accurate invoicing, on-time deliveries, carefully marked

pallets, and backhaul utilization (Cardinal Health, 2020).24

We index buyers by i, drugs by d, and drugmakers by f . Following Miller (2014) and Miller and Sheu

(2020), if i contracts with f , then it receives a payoff equal to the gross value of the product, denoted

vid f , less the disutility of the price paid, which equals αd pi f d. Alternatively, if i chooses not to buy from

any drugmaker, then it forgoes downstream sales of the drug and receives a payoff normalized to zero.25

Buyers’ decisions maximize their payoffs.

Gross value is given by

vid f = λd + ξd f + ζd f + (1− σ)εid f . (2)

Here, λd is a drug-specific dummy variable. Firm specific shocks are denoted by ξd f , while εid f denotes an

i.i.d. product-buyer shock. We assume ε is distributed Type 1 extreme value. We nest the "inside" goods

separately from the no-purchase option, allow the gross value of the goods within the nests to be correlated

with one another, and assume ζd f is distributed such that [ζd f + (1− σ)εid f ] is also drawn from a Type 1

extreme value distribution. Both errors are known to the buyers but not drugmakers.

23Some buyers have combined their sourcing operations, typically by forming joint ventures. For instance, McKesson and Walmart
formed ClarusONE. See also Footnote 26.

24Backhaul utilization refers to using Cardinal’s dedicated fleet of tractor-trailers to move product. It requires that the product can
easily be transported to certain shipping lanes, so it is specific to the buyer, seller, and drug.

25In our setting, the outside good represents, in part, buyer-drug specific stockouts, which are very common throughout this period.
See, e.g., the Food and Drug Administration’s 2020 report for a summary, available at https://www.fda.gov/media/150409/download.
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To make the problem tractable (and because we do not observe buyer-specific purchases and contract-

specific prices), we assume that each drugmaker charges one price to all buyers and that buyers are

sufficiently small that sd f t is continuous and twice continuously differentiable in its arguments. The

probability that i purchases f is then given by

sid f =
eλd+αd pd f +ξd f

Λσ(1 + Λ)1−σ
, (3)

where Λ = ∑ f ′∈Fd
eλd+αd pd f ′+ξd f ′ . Analogously, the probability that i chooses the outside option is given by

sid f =
eλd+αd pd f +ξd f

1 + Λ1−σ
. (4)

Summing over buyers and adding time subscripts, t, yields market shares, denoted sd f t.2627

5.2 Pricing

Firms’ profits are given by

πd f t = (pdt −mcd f t) sd f t Adt. (5)

In the absence of collusion, firms choose prices competitively. That is, they maximize πd f t in the current

period, setting the first-order condition of the right-hand side of equation 5 equal to zero. Assuming

consumers dislike price, αd is negative, and markups are strictly positive. Let pB
d f t denote the resulting

competitive price, and πB
d f t denotes the profits (where "B" stands for "Bertrand-Nash").

In the presence of collusion, cartel members—firms named as defendants in the complaint—coordinate

decisions to internalize business-stealing effects, and prices are "fixed" in the sense that cartel members

set them cooperatively. Nonmembers can undercut the members’ prices but never unravel the collusive

agreement, as described below, and the cartel responds in equilibrium by reducing their price.28 We define

pC,M
d f t as the price charged by cartel members under collusion, and we define pC,N

d f t as the nonmembers’ best

response to that price. ("C" stands for "collusive," and "M" and "N" stand for member and nonmember,

respectively.) Analogously, when these prices are chosen, we define the profits earned by cartel members

and nonmembers as πC,M
d f t and πC,N

d f t , respectively.

We assume that that until the cartel is formed, firms play pB
d f t, but upon cartel formation, prices depend

on the dynamic incentives of the members. To be specific, we assume cartel members play a trigger strategy

26Some buyers are large. For instance, in its 2013 annual report, Teva reports that its largest buyer accounts for 17% of its sales.
In practice, Teva might offer it a lower price. Our model cannot capture these nuances. Further, buyers have consolidated over the
sample. However, large GPOs procure a secondary supply of most generic drugs via another auction, which limits their power. To
summarize, we recognize that drug demand is complicated and our assumptions ignore potentially interesting features of the industry,
but we think the model provides a close enough approximation to produce useful predictions about prices, quantities, profits, and
entry, which are described in Sections 6 and 7.

27These assumptions let us recast the seller’s problem as price setting in the face of "nested logit"-type demand rather than bidding
in a very large number of scoring auctions with independent private values. See Einav (2003) for a more thorough description of how
these models relate.

28So long as ICCs are satisfied, the members’ and nonmembers’ pricing problems are isomorphic to ones found in competitive
markets with multi-product firms. That is, when all firms are cartel members, the cartel behaves like a multi-product monopolist.
When only some firms are cartel members, the cartel behaves like a multi-product firm in oligopoly, where all members’ products are
in the firm’s portfolio, while nonmembers each behave like single product firms.
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and that prices set at t are public information by t + 1: if any member deviates from pC,M
d f t , then all members

revert to pB
d f t forever after. Consistent with this timing and strategy, private communications published in

the complaint suggest the cartel did not tolerate any non-cooperation. For example, in 2013, one member,

Glenmark, temporarily undercut another member, Teva, apparently due to a misunderstanding. The

response was immediate. A confused Teva employee sent an email whose only contents were "???" to

NP. Exactly five minutes later, NP replied, "I know...made the call already." The next day NP spoke to her

counterpart at Glenmark, and later that same day Glenmark withdrew the lower price, which required

rescinding an offer to a major distributor (complaint, page 134).

The cartel’s agreement is unenforceable in court and physical coercion is impractical, so cooperation

requires pC,M
d f t maximize the sum of discounted expected future cash flows for all members at every point

in the future. In other words, retaliation must be costly enough that collusive prices are compatible with

each firm’s individual incentives. Given the extreme slack in the constraints at or near the parameters

we will estimate, and in the interests of simplifying the notation considerably, the remainder of this

section implicitly assumes that collusion continues once it is initiated. Further discussion of the Incentive

Compatibility Constraints (ICCs) is postponed until the next section.29

5.3 Entry

When cartels form, prices rise, which induces entry if sunk costs are low enough. Indeed, as Section 4

shows, collusion in generic drug markets leads to a sharp rise in ANDA filings followed by a much later

rise in the number of manufacturers producing the drug. We model this behavior explicitly. Since ANDAs

apply to all strengths within a substance-delivery-release, our analysis of entry occurs at that level. When a

cartel forms, firms without FDA approval face a one-time decision to start the application process, which

involves a delay. For tractability, we assume that other market structure changes are determined outside the

model. Since entry into generic drug markets is otherwise rare and exit is usually precipitated by supply

disruptions outside the firm’s control, this assumption greatly reduces the computational burden but is

unlikely to have a material impact on our conclusions.

Since each drug (i.e., substance-delivery-release-strength) maps into one substance-delivery-release

combination, we require additional notation. We index each substance-delivery-release by j and denote the

set of d in j by J . We also define td as the year the cartel forms in d. Since all cartels in j form in the same

year, td ≡ tj for all d in j.

Any firm that has not filed an ANDA in tj has the opportunity to do so. If f opts to file an ANDA,

then it enters all d in J with the same delay. Since cartel members are bound by the collusive agreement,

they set different prices than nonmembers when they enter, so their value of entering differs from

that of nonmembers. The value of a cartel member filing an ANDA in j is given by VEM
j (χM , χN) =

∑d∈J VEM
d (χM , χN), where VEM

d represents the value it receives from entering all d in j, where the

subscript d is understood to incorporate information about Md and Nd, and where χk represents the

29As we show later in the paper, even if entry is much more abundant than what we observe in the data, ICCs are always satisfied
by a wide margin for drugs named in the complaint. This depends on several factors, including the speed at which prices become
public information and the frequency with which drugmakers can "rebid" for contracts. However, we caution readers that ICCs should
always be checked, especially under counterfactual policies that reduce their slack, such as ones that promote entry. For an especially
clear illustration, see Igami and Sugaya (2020), who show how ICCs that were once satisfied can be violated due to changes in market
conditions.
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number of entrants of type k. VEN(χM , χN) is defined analogously. If f opts not to file an ANDA, it

receives payoffs normalized to zero.

The value of entry equals the sum of discounted expected future profits. We assume that when firms

are deciding whether to file an ANDA, they know the distributions of entry delays as well as demand

and marginal cost shocks, but they do not know the future realized values of those variables. Under this

information structure,

VEM
d (χM , χN) =

∞

∑
t=1

δtFD(t)
χM−1

∑
eM=0

χN

∑
eN=0

[
ρ(χM − 1, eM , t; FD)ρ(χN , eN , t; FD)

∫
ξ

∫
ω

πC,M
d, f ,td+t(Md,td+t + em + 1, Nd,td+t + en, ξd,td+t, ωd,td+t)dFξ dFω

]
. (6)

Here, δt is the discount factor, which is set to 0.9 throughout our analysis. D, the delay, equals the number

of periods between td and the time the manufacturer begins producing the drug. FD is its cumulative mass

function—it equals the probability that the potential entrant is active t periods after it decides to enter.

For example, if td is the year 2013 and FD(3) = 0.5, then there is a 50% chance that the potential entrant

is earning profits in d in 2016. Md is a vector whose scalar elements represent the number of incumbent

cartel members that are active in future periods, and Nd is an analogous vector counting the numbers of

incumbent nonmembers.30 Fξ and Fω represent the cumulative density functions governing demand and

marginal cost shocks respectively.

ρ(χM − 1, eM , t; FD) is the probability that eM other cartel member entrants are active t periods after the

cartel is formed, while ρ(χN , eN , t; FD) is an analogous probability for nonmember entrants. Both are a

binomial expansions given by

ρ(a, b, t; FD) =
a!

(a− b)! b!
FD(t)b[1− FD(t)]a−b. (7)

The final term represents the expected profits earned by the potential entrant, assuming it is active at

td + t. VEN
d (χM , χN) is given by an expression analogous to the one that appears on the right-hand side of

equation 6.

If f is a member of the cartel, then it files an ANDA in j if and only if VEM
j − E [θjM|IjM] ≥ 0, where

θjM denotes the true sunk cost of entry, E denotes the firm’s expectation operator, and IjM denotes its

information set. Similarly, if f is a nonmember, then it enters if and only if VEN
j − E [θjN |IjN] ≥ 0. Sunk

costs include regulatory and non-regulatory costs, and we assume they are common knowledge. Entry

decisions form a simultaneous move Nash equilibrium.

30For instance, the tth element of Md—call it Mdt—represents the number of incumbent cartel members that hold active ANDAs at
time td and are active at time td + t.
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6 Estimation and estimates

6.1 Demand

To estimate the demand system, we rely on the market share inversion proposed by Berry (1994) and

estimate

ln(sd f t)− ln(sd0t) = λd + λt + ᾱpd f t + σln(sd f t|dgt) + ξd f t, (8)

where sd f t|dgt denotes f ’s share of the inside good, which equals sd f t/(1 − sd0t).The left-hand side of

equation 8 is a straightforward transformation of the data, and the right-hand side is linear in parameters

to be estimated—λd, λt, σ, and ᾱ—and an error term. The initial specification restricts αd = ᾱ, although we

partially relax this restriction below.

Since firms likely know ξ when they set p, prices are endogenously determined in equation 8, so naively

regressing left-hand side values on the right-hand side variables produces biased results. We identify ᾱ

using price variation induced by the cartel, which we documented in Section 4. Our price instrument

equals the product of a dummy for cartelized drug markets and a dummy for years greater than the year

each drug market was cartelized. The intuition behind the identification strategy is transparent. Around

cartel formation, the consumption of cartelized drugs declines compared to uncartelized drugs, while the

prices of cartelized drugs rise compared to uncartelized drugs. The decline in drug consumption relative to

the rise in drug prices reflects sensitivity to price, which maps to the parameter ᾱ. Given the origin of the

cartel, the selection of drugs, and the timing, it is reasonable to assume that values of the instrument are

uncorrelated with drug-firm-year specific demand shocks.31 Note that in nested logit models, an additional

right-hand side term—sd f t|dgt—is also endogenously determined. Our instrument counts the number of

products in the market, so σ is identified from share changes following entry and exit.32

Table II reports the demand estimates. Column 1 corresponds exactly to equation 8. We find that

preferences are correlated within the "nest" of inside goods, with σ = 0.57. As expected, we also find buyers

dislike price, with ᾱ = −0.11. Standard errors are clustered at the drug level, and both coefficients are

significant at the 1% level.

In Column 2, we assess the importance of accounting for "authorized generic" products. Authorized

generics are generic versions of drugs that are manufactured by the patent owner, which are often

introduced around the point at which it loses exclusivity. Throughout our analysis, we do not distinguish

these products from "ordinary" generics. To ensure this distinction is empirically unimportant, we append

equation 8 to include dummy for authorized generics. Reassuringly, estimates of σ and α are entirely

unchanged, and the coefficient on the authorized generic dummy is small and not significant.

We observe that two drug classes experience larger-than-expected price changes at the onset of collusion

(as shown in Figure XIII in the Online Appendix). We also observe that they witness more subsequent

entry than one would predict on the basis of market size alone. Both patterns are potentially consistent

31To avoid taking a stand on whether the years in which the cartels are formed are "treated" or "control" periods, we omit
observations for which t = td. Also, to focus on periods proximate to cartel formation, we restrict attention to t such that |t− td|≤ 5.
These restrictions have a negligible effect on our conclusions.

32To be precise, the instrument equals Mdt + Ndt, which is equivalent to Mdt + Ndt − M̄d − N̄d in the presence of drug specific
dummy variables, which all demand specifications include. Though the parameters are jointly determined, one can build intuition
around identification by considering entry, which increases the instrument’s value and shifts shares. If the entrant steals a relatively
large share from other drugs instead of the outside option, this implies σ is relatively large. Exit provides analogous underlying
variation.
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Table II: Demand estimates

(1) (2) (3) (4)
VARIABLES IV IV IV IV

Log of inside share 0.56*** 0.56*** 0.73** 0.73**
(0.16) (0.16) (0.31) (0.30)

Price -0.11*** -0.11*** -0.21** -0.21**
(0.031) (0.031) (0.10) (0.10)

Price X β-blocker 0.16* 0.16*
(0.089) (0.088)

Price X Anticonvulsant 0.20** 0.20**
(0.094) (0.094)

Indicator for authorized generic -0.043 -0.067
(0.17) (0.31)

Observations 19,299 19,299 19,299 19,299
Drug FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Number of drugs 415 415 415 415

?, ??, and ??? denote significance at the 10%, 5%, and 1% levels, respectively.
The unit of observation is a drug-year-firm. Standard errors are clustered at the drug
level.

with less elastic buyers. Thus, to accurately represent demand and correctly forecast entry incentives, we

allow αd to vary based on whether the drug is an β-blocker, anticonvulsant, or other generic. That is, we

replace ᾱ on the right-hand side of equation 8 with α0 + α11{β-blocker} + α21{antiepileptic}, where 1{·}
denotes an indicator variable.33

Column 3 reports the result. We find that α1 = 0.16 and α2 = 0.19, consistent with less elastic buyers in

the separately named drug classes. As expected, we find a higher baseline price coefficient (in absolute

value terms), with α0 = −0.21. We also estimate a stronger correlation of products within the nest of inside

goods. All estimates are significant at the 5% level except α1, which is significant at the 10% level. Column

4—included mostly for completeness—shows that column 3’s results are equally as insensitive as column

1’s to distinguishing between authorized and ordinary generics. Since accounting for heterogeneity in price

sensitivity is important, while separating out authorized generics is not, we rely on estimates from column

3 for the remainder of the paper.

These estimates imply markups that very closely align with figures reported by Teva in their financial

statements, as shown below. However, these comparisons depend in part on costs and conduct, so we

discuss these issues first.

6.2 Marginal costs

As in the prior subsection, we parameterize marginal cost such that its log value is linear in drug and time

dummy variables and a disturbance, which is i.i.d. over d, f , and t. Under this parameterization, we can

recover the relevant parameters using only data from competitive markets. Estimation has three steps. First,

33Allowing α to vary more flexibly may be desirable, but generates noisy estimates.
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we restrict attention to drug-year observations such that either (a) NP never cartelizes d or (b) NP cartelizes

d at td but we consider only t < td. Second, we compute

m̂cd f t = pd f t − (
∂sd f t

∂pd f t
)−1sd f t,

which is a function of estimated demand parameters and data. Third, we estimate

ln(m̂cd f t) = γd + γt + ωd f t.

We find that the average marginal cost of a drug in our sample is $10.45. We also observe heterogeneity

across drugs and over time. For a sense of dispersion as well as how the "treatment" and "control" groups of

drugs compare to one another, we separate cartelized and uncartelized drugs, compute average predicted

log marginal cost (i.e., γ̂d + γ̂t), and plot the resulting densities in Figure VIII.

From Figure VIII we can observe that most of the support lies between 1 and 4.5. Accounting for the

fact that ω enters the marginal cost function nonlinearly, marginal cost range between $3 and $90. In spite

of this degree of dispersion, the mean, variance, and shape of the distributions are similar for cartelized

and uncartelized drugs, further supporting the idea that the two groups are comparable to one another.
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Figure VIII: Distribution of average predicted log marginal cost.

This figure plots the density of predicted log marginal cost, γ̂d + γ̂t. All drug-year
observations are included; however, to avoid taking a stand on conduct before formal
testing, we estimate the parameters on the subset of observation where (a) NP never
cartelizes d or (b) NP cartelizes d at td but we consider only t < td.

If we already knew exactly which drug-year observations reflect collusive prices, then we could also draw
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inference about the marginal cost parameters from markets where cartel members set prices cooperative.34

However, even though we know precisely which drug markets NP cartelizes and when she does so, we

cannot assume consistent conduct through our entire sample period. We investigate how and whether the

cartel sustained cooperation immediately below.

6.3 Incentives to collude, conduct testing, markups, and damages

Incentive compatibility constraints. As we noted in Section 5, the collusive agreements are unenforceable

in court or by means of coercion, so all members of the cartel must find it in their self-interest to set

prices cooperatively. Cartel members will always find cheating a myopically profitable option, so sustained

collusion exists only through the grim threat of returning to competition and the fact that collusive profits

exceed competitive ones. To be precise, ICCs are satisfied if and only if the present value of expected

deviation profits—which are accrued until cheating is discovered—plus the present value of expected

Bertrand-Nash profits do not exceed the present value of expected perpetual collusive profits.35

With period length set to one year (to mirror the aggregation of our data), ICCs typically hold, often

by a wide margin. Except for very low probability events (e.g., extreme demand shocks),36 the value of

deviation never exceeds the value of cooperation by more than 20%. Slack in the constraints depends

on many factors, but in this setting, the relative willingness to substitute across drugmakers’ products,

the stable evolution of demand and cost determinants, and the small number of firms make the largest

contributions.

In generic drug markets, though, deviation profits would never accrue for a full year. Cartel members

would discover cheating quickly and could retaliate nearly as fast. Recall, for instance, the example from

Section 5 where Glenmark inadvertently undercut Teva: Teva learned of Glenmark’s deviation almost

immediately, and Glenmark revised its pricing the very next day.37 This is important, since the value

of deviating is sensitive to the time during which deviation profits accrue.38 In our setting, the timing

assumption is innocuous: a period length as long as a month ensures the value of cooperation exceeds the

value of deviating by around an order of magnitude.

Conduct testing. We next assess whether the government investigation affected firm conduct. Based on the

data, we reject the notion that the investigation affected behavior and instead conclude that firms continue

to collude, perhaps tacitly, after 2015. Our conclusion, though perhaps initially surprising, is sensible: if

ICCs are satisfied, demand and costs are stable, and accurate information about cartel members’ behavior
34To do so, we would compute m̂cdt = pdt −∆−1

dt sdt, where mcdt, pdt, and sdt denote vectors of marginal costs, prices, and market
shares, and where ∆dt is a matrix determined by ownership and substitution patterns. Rows in mc, p, and s correspond to firms,
arbitrarily ordered, while rows and columns in ∆ correspond to different firms, ordered in the same way. The (i, j) element of ∆dt
equals ∂sdit/∂pdjt if i = j or if both i and j are cartel members, and it equals zero otherwise.

35If we put aside the prospect of entry to ease exposition, slightly abuse notation, and assume cheating is discovered the next
period, we can quickly formalize the ICC. Assuming f ∈M cooperates and all other cartel members cooperate, if f cooperates, then
it earns VCoop.

d f t , which equals ∑∞
t=0 δt ∫

ξ ′ω′ πC,M
d f t (ξ ′ , ω′)dFξ ′dFω′ . However, if f deviates, then it earns VDev.

d f t , which equals the sum of∫
ξ ′ω′ πDev.

d f t (ξ ′ , ω′) and ∑∞
t=1 δt ∫

ξ ′ω′ πN
d f t(ξ

′ , ω′)dFξ ′dFω′ where πDev.
d f t (·) is the "deviation" profit, which results from f best responding to

cooperation among the other members. Collusion requires VDev.
d f t < VCoop.

d f t .
36Very large draws of ξ can create enough asymmetry in current period profits to "break" the ICC of the member receiving the draw.
37See also the case of Par, Teva, and the market for labetalol hydrochloride tablets (Complaint, 227-278).
38To illustrate, suppose that "deviation" profits are twice as large as Bertrand-Nash profits and that collusive profits are 1.1 times as

large. If deviation profits accrue for one year, then ICCs are exactly met, but if the deviation profits accrue for a month, the the value of
cooperating is an order of magnitude larger than the value of deviating.
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is rapidly available, then collusion should be easy to maintain even if it is hard to initiate. As one Teva

executive states, "Price increases tend to stick and markets settle quickly when suppliers increase within a

short time frame," (Complaint, page 160).

Our assessment relies on an intuitive test of conduct proposed by Backus et al. (2021) which adapts

the non-nesting framework proposed by Rivers and Vuong (2002) to exclusion restrictions suggested by

Berry and Haile (2014). The test is based on the idea that if conduct is correctly specified, then variables

that determine markups but do not influence marginal costs will be uncorrelated with predicted marginal

cost disturbances implied by that model. The test provides pairwise comparisons, and it does not require

that either model of conduct is exactly correct. Informally, the test requires the econometrician to (a)

calculate markups implied by each model of conduct, (b) subtract implied markups from observed prices to

arrive at implied marginal costs, (c) compute marginal cost residuals, (d) calculate the correlation between

the resulting residuals and variables that enter markups but not marginal costs, and (e) compare the

correlations. Weaker correlations correspond to greater consistency of the conduct assumption and the

data.

To illustrate how their test operates, consider a slightly simpler setting. For the sake of an example,

suppose there are only two periods, and suppose drug markets fall into one of two groups. In group X,

firms compete in both periods, while in group Y, firms compete in period 1 but fix prices in period 2. Next,

construct an indicator variable that takes a value of one in group Y in period 2 and zero otherwise. The

indicator variable is a valid instrument in the sense that it is strongly correlated with markups but does not

directly affect marginal cost shocks, since price fixing does not impact production costs. Finally, compare

the relative performance of two models of conduct. In the first model (A1), we correctly specify conduct.

In an alternative model (A2), we incorrectly specify that firms compete in all periods and markets. By

estimating the first model, one recovers true marginal cost shocks (up to estimation error). Since these

disturbances are i.i.d. across markets and time, they are uncorrelated with the indicator variable. That is, the

correlation between marginal cost shocks and the instrument is very low in A1. In estimating the second

model, one recovers markups that are too low in group Y in period 2, which translate into marginal costs

that are too high, which in turn translate into marginal costs shocks that are on average positive. In other

words, when the indicator variable is turned on, marginal cost shocks are especially large. The instrument

and marginal cost shocks are positively correlated in A2. Therefore, by comparison, the test favors A1.

We conduct two tests, which are summarized by Table III. Both tests assume that firms set Bertrand-

Nash prices prior to the date that the cartel is alleged to have formed. In the first test (Test 1), we assess

whether the prices of drugs named in the Complaint are consistent with competition or collusion between

td and 2015. In the second test (Test 2), we assess whether those same prices are consistent with competition

or collusion between 2016 and the end of the sample. That is, the first test evaluates conduct from the start

of collusion until the government’s investigation became public, whereas the second examines conduct

after that point. Each amounts to a pairwise comparison of two models, which we have arbitrarily named

A1 and A2.

One concern with our modeling approach is that cartel members may fold non-members into the cartel

post-entry. If unmodelled, this behavior would affect our profit calculations and, therefore, the measure of

sunk costs. We note that a single entrant should never expect to earn more from joining the cartel than

they could earn bidding against the cartel. (Otherwise, the cartel should kick them out.) However, this

need not be the case for larger groups of entrants. Using our framework, we can also evaluate the claim
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Table III: Behavioral assumptions for conduct tests

Test 1.

Markets: Drugs named in the Complaint Other drugs in the sample

Model: A1 A2 A1 A2

2008—(td-1) Own-profit max. Own-profit max. Own-profit max. Own-profit max.

td—2015 Collusion Own-profit max. Own-profit max. Own-profit max.

2016—2018 – – – –

Test 2.

Markets: Drugs named in the Complaint Other drugs in the sample

Model: A1 A2 A1 A2

2008—(td-1) Own-profit max. Own-profit max. Own-profit max. Own-profit max.

td—2015 – – – –

2016—2018 Collusion Own-profit max. Own-profit max. Own-profit max.

"Own-profit maximization" refers to Bertrand-Nash pricing, meaning that p = pB. "Collusion" corresponds
to cartel members setting price equal to pB and nonmembers setting it equal to pC,N .

that cartel nonmembers best respond to the members prices (rather than going along with the collusive

agreements upon their formation).39 To do so, we introduce a third model, A3, in which all firms set prices

cooperatively, not just cartel members. We then replicate Tests 1 and 2, replacing A2 with A3. In both sets of

pairwise comparisons, the data strongly favor A1 over A3, consistent with the hypothesis that nonmembers

are not "folded into" the cartels. The corresponding test statistics are -3.78 and -4.34, respectively, and we

can reject the hypothesis. The appendix provides details.

Adapted to our setting, the steps proposed by Backus et al. (2021) to make pairwise comparisons

between A1 and A2 are as follows:

1. Compute markups under models A1 and A2. Denote the markups mkA1
d f t and mkA2

d f t, respectively.

Then compute mcA1
d f t = pd f t −mkA1

d f t and mcA2
d f t = pd f t −mkA2

d f t.

2. Estimate ln(mcΩ
d f t) = γΩ

d + γΩ
t + ωΩ

d f t for Ω ∈ {A1, A2} to recover residuals ω̂A1
d f t and ω̂A2

d f t.

3. Estimate mkA1
d f t −mkA2

d f t = g(zdt) + ζd f t. g(.) and z are context specific and described below.

4. Compute Q̃(mkΩ) =
(

R−1 ∑ f ,t ω̂Ω
d f t ĝ(z f t)

)2
for Ω ∈ {A1, A2}, where R is the number of products.

5. Denote the standard error of the difference between Q̃(mkA1) and Q̃(mkA2) as σ̂/R;
estimate σ̂/R by repeating the previous steps on bootstrapped samples.

6. Compute the test statistic, which equals σ̂−1
√

R(Q̃(mkA1)− Q̃(mkA2)) and is distributed N (0, 1).

In Step 2, we specify that the log of marginal costs is linear in drug- and year-specific dummy variables, and

we maintain that specification throughout the rest of the paper. Following BCS, z includes these dummies

39We thank Rob Porter for suggesting this exercise.
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as well as an instrument for markups. The instrument is an indicator variable that takes a value of one if

and only if the observation is associated with a cartelized drug and with a year that is greater than or equal

to the year in which the Complaint alleges that drug was cartelized. The predicted difference in marginal

costs, g(·), is linear in drug-specific dummy variables, year-specific dummy variables, and the instrument.

Table IV reports the results. In both tests, Q̃(mkA2) far exceeds Q̃(mkA1), yielding test statistics that

are less than -10. To interpret these findings, recall that smaller values of Q̃ indicate better fit between

the conduct assumption and observed behavior and that the test statistic is distributed standard normal.

Thus, for drugs listed in the complaint, the data strongly reject competition in favor of collusion from the

formation of the cartel through the end of the panel.

Table IV: Results of conduct tests

Q̃(mkA1) Q̃(mkA2) Test
× 100 × 100 statistic p-value

Test 1. (Collusion pre-investigation?) .68064 1.9315 -9.65 < .0001

Test 2. (Collusion post-investigation?) .49900 1.7637 -10.84 < .0001

This table reports the results of the testing procedure proposed by Backus et al. (2021). The test
statistic is distributed standard normal. The standard error of the difference between Q̃(mkA1)
and Q̃(mkA2) is obtained via bootstrapping. See Table III for the definitions of A1 and A2
under Tests 1 and 2.

Evaluating markups. The preceding estimates imply sensible price-cost margins that closely match figures

reported by Teva in their financial statements. To obtain values implied by our model, we set the first

order condition of the profit function with respect to price equal to zero, solve for pd f t−mcd f t, divide the

resulting markups by prices, and average over drugs manufactured by Teva, weighting by revenue. To

obtain analogous figures from Teva’s annual reports, we extract segment-specific income statements and

compute the ratio of operating profits to total revenue for their generic division.40 Our model assumes

competitive pricing and implies that profit margins average 19.7%, while Teva’s financial statements imply

20.0% in the two years prior to NP joining Teva. In the two years after NP joins Teva, our model assumes

NP has cartelized many drug markets and implies that profit margins average 39.6%, while Teva’s financial

statements imply 38.6%. In other words, forecasts from the model not only match profit rates in levels but

also changes around cartel formation.41

Assessing damages. Using our model and demand estimates, we can compute damages to consumers. For

each product in a cartelized drug market, we compute equilibrium prices under competition and collusion,

and we multiply the difference by the number of observed prescriptions. The median price differences are

$9.21, $8.70, and $9.45 per prescription for 2013, 2014, and 2015, respectively. Mean price differences are

40Operating margin is the right choice, given how Teva reports its income. Operating profit reduces total revenue by cost of
goods sold and selling/marketing expenses, which are mostly variable, but not general/administrative expenses, (e.g., executive
compensation, headquarters operations, etc.), which are mostly fixed/sunk.

41Although careful demand estimation contributed to this result, we believe that such a close correspondence between the model’s
predictions and the financial statement analysis is, at least in part, coincidental. The goal of this exercise was to see if the model was
in the neighborhood of the annual reports—not whether it was a close match.
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slightly higher at $11.72, $13.92, and $12.68, respectively. Damages total $978 million, $1.9 billion, and $2.5

billion, respectively. That is, damages total $5.4 billion over the three year period, which averages out to

$13.7 million per drug per year.

Our figures are very similar to those reported in two other recent studies. Cuddy (2020) finds that

collusion induced nationwide damages of $7.9779 billion per year, or $49.5 million for each substance-

delivery-release combination she studies.42 Even though our data and models differ, we arrive at a nearly

identical figure—at their peak, the cartels cause damages of $45.9 million per substance-delivery-release

combination. Clark et al. (2021) study six substance-delivery-release combinations that were affected by

price fixing, estimating damages using a carefully constructed difference-in-difference research design.

Again, we reach similar estimates.43 Since the source of our quantity data is the same as theirs, we predict

nearly identical damages for the substance-delivery-release combinations for which we overlap.

6.4 Sunk costs

Setup. The necessary conditions of a simultaneous move Nash equilibrium imply that firms enter if and

only if the value of doing so, conditional on the decisions of rival firms, exceeds the sunk costs. These

restrictions imply the following bounds on sunk costs. For each cartel member that enters and does not

enter j, respectively, we have

∑
d∈J

VEM
d (χM , χN) ≥ E [θjM|IjM] (9)

and

∑
d∈J

VEM
d (χM + 1, χN) < E [θjM|IjM]. (10)

For each nonmember that enters and does not enter j, respectively, we have

∑
d∈J

VEN
d (χM , χN) ≥ E [θjN |IjN] (11)

and

∑
d∈J

VEN
d (χM , χN + 1) < E [θjN |IjN]. (12)

Here, M and N denote the set of cartel members and nonmembers, respectively, and f , f ′, f ′′, and f ′′′

are understood to be firms that did not have approved ANDAs covering j (or else they would not be

contemplating entry in the first place). Inequalities 9-12 are the basis for estimation.

We allow sunk costs to vary with two important observable determinants. First, we allow them to

depend on the number of strengths associated with the substance-delivery-release combination.44 When

42To arrive at the $7.9779 billion figure, we multiply $1.3755 billion (from her Table 8) by 5.8 (from her Section 6.4), which the author
states will scale her sample to nationwide consumption.

43Whereas they estimate 44.2% and 13.5% price increases for nystatin and theophylline, respectively, our structural model predicts
41.4% and 20.8% changes. To arrive at these figures, we divide the estimated damages per defined daily dose by pre-collusion prices,
both of which are reported by the authors in their Table 7. Specifically, we define $0.21 by $1.561 and $0.155 by $0.350.

44Production requires know-how that some firms may lack. The counterfactual policies we consider attract additional entrants, so
we require that at least that many potential entrants possess this know-how. The requirement is easily met in our setting, which
studies relatively "simple" drugs like orally administered solids (i.e., tablets and capsules), but it could bind other segments of the
market.
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preparing an ANDA for filing, firms must demonstrate "bioequivalence" to the innovator drug at each

strength level. The process is costly, as it involves measuring the time it takes for a given amount of the

substance to reach the bloodstream in healthy volunteers. Separately, once approval is granted, most

delivery methods require firms to design distinct packaging and install (or repurpose) separate equipment

for each strength. Second, we allow sunk costs to vary with delivery method. Compared to tablets

and capsules, which are by far the most common dosage forms among orally administered medications,

irregular delivery methods such as syrups, solutions, and chewables involve specialized equipment and

more complicated packaging. Moreover, these methods are much more susceptible to bacteria growth,

which necessitates sterile packing conditions. We also allow sunk costs to depend on a symmetric i.i.d.

disturbance that is unobserved by the econometrician but known by the firms when they decide whether to

enter. We assume it is independent of the substance-delivery-release combination characteristics (i.e., the

number of strengths and the delivery method).

Formally, we parameterize sunk costs such that

θjk = θ0 + θ1rj + θ2`j + ηj, (13)

where k ∈ {M, N}, r denotes the number of additional strengths associated with the substance-delivery-

release combination, ` is an indicator variable that equals one for drugs with an irregular delivery method.

ηj represents the disturbance term known to the firms when they contemplate entry. This term permits

the sunk costs of entering the one market (e.g., warfarin tablets) to differ from the sunk costs of entering

another (e.g., cefdinir capsules) in ways that influence behavior. However, it also introduces a selection

problem. Entry is especially common in markets with low ηj but uncommon in markets with high ηj.

To illustrate the problem that arises in estimation, suppose we naively construct exactly one instance of

inequality 9 or 11 for each substance-delivery-release combination and entrant, substitute measured objects

for true values, pool the instances together, and calculate their mean. The resulting inequality includes a

weighted average of ηj, where the weights are determined by the number of entrants, which are negatively

correlated with ηj. Since the weighted average is negative but unobserved to the econometrician, the

observed portion of the inequality produces a biased bound.

If the predictions of the model and the actions of the firms differ beyond the flexibility provided for in

equation 13, the differences are rationalized by mean-zero expectation errors. To be specific, their presence

reconciles a small number of cases where entry by a nonmember implies that a member should enter but

does not (and vice versa). Since these disturbances rationalize differences in the realized payoffs of cartel

members relative to nonmembers, we can ascribe them to either group without loss of generality. We pin

them to cartel nonmembers. Formally, we define θjk = E [θjk|Ijk] + νjN , where k ∈ {M, N}.45

Finally, we assume that expected profits and the distribution of delays are measured without error. To

be precise, we assume that

∫
ξ ′

∫
ω′

π̂k
d,t(M, N, ξ , ω)dF̂ξ dF̂ω =

∫
ξ ′

∫
ω′

πk
d,t(M, N, ξ , ω)dFξ dFω , (14)

45For readers familiar with notation introduced by Pakes et al. (2015), our ν correspond to their "ν1,·-type errors," while our η
correspond to their "ν2,·-type errors."
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with k ∈ {M, N}, and F̂D = FD. Here, F̂D, F̂ξ , and F̂ω denote the empirical distributions of delays, demand

shocks, and marginal cost shocks, and π̂k
d,t(M, N, ξ , ω) denotes πk

d,t(M, N, ξ, ω) evaluated at our estimates

of λd, λt, αd, σ, γd, and γt rather than the true parameters.46 The first restriction is commonly employed

in the literature, since it greatly reduces the computational burden of calculating the bounds, and a

reasonable approximation to reality in our setting as well. It is supported by, for example, the fact that

our quasi-experimental variation produces demand parameters that imply sensible profit margins, which

are consistent with the audited financial statements (in both levels and in changes around the variation

we exploit). The second restriction is equally reasonable. We observe the filing, approval, and entry dates

of ANDAs submitted to the FDA over more than a decade, so our empirical distribution reflects several

thousand applications, and our information closely resembles that which is available to the managers of

the drugmakers.

Moments. The solution to the selection problem introduced by the structural errors lies in the fact

that although η’s conditional expectation varies with observed entry, its unconditional expectation is

nonetheless mean zero (Ishii, 2005; Ho, 2009; Pakes et al., 2015). To see this conceptually, suppose for

the sake of example that at least one cartel member enters each substance-delivery-release combination.

Further, suppose that we construct precisely one instance of inequality 9 for each substance-delivery-release

combination, substitute measured objects for true values, ignore the error terms, pool the instances together,

and calculate their mean. This process collects one ηj from each j, yielding an unselected set of disturbances

whose expected value is zero.47

First, we estimate lower bounds on the parameters of interest, which reflect firms that opt not to enter

upon cartel formation. The first set of moments is given by

1
J ∑

j

1
µj

∑
d∈J

1
2 ∑

k∈{M,N}
hi

j

[
V̂E

k
d(χM + 1{k = M}, χN + 1{k = N})− θ0 − θ1rj − θ2`j

]
< 0. (15)

Moments are indexed by i and formed by weighting observations using hi
j, described immediately below.

J denotes the number of unique substance-delivery-release combinations, and µj denotes the size of set

J (i.e., the number of strengths associated with substance-delivery-release combination j). V̂E
M
d (·) equals

VEM
d (·) evaluated at our estimates of π(·), Fξ , Fω , and FD rather than the true values, and V̂E

N
d (·) is defined

analogously for nonmembers. In the appendix, we prove inequality 15 produces consistent bounds.

The weights applied in inequality 15 depend on substance-delivery-release characteristics. One moment

i is formed by setting elements of hi
j equal to one (i.e., a constant). Two moments are formed by setting

hi
j equal to 1{`j = 0} and 1{`j = 1}. Three more moments are formed by setting hi

j equal to 1{rj = 0},

46Notice that we require π̂k
dt for t in the future. In practice, we assume that the values of Mdt, Ndt, λt, and γt in 2020 and beyond

are fixed at their 2019 values. This is a reasonable approximation. Mdt is unlikely to change beyond that point, since re-entry is very
infrequent four years or more after cartel formation. The same is true of Ndt, since exit is rare throughout the panel. Also, λt and γt
do not exhibit meaningful trends in the final three years of the sample.

47This approach exploits the "ordered choice" nature of the problem. That is, since profits are declining in the number of competitors,
if one observes X number of firms enter a market, then one can infer that the profits for X exceed the sunk costs of entry but the
profits for X + 1 do not. This logic yields an upper and lower bound, demonstrated by Ishii (2005). We differ from her approach by
having two types of entrants—cartel members and nonmembers—and permitting expectational error to reconcile differences in the
sunk costs implied by their decisions. See Section III.C of Wollmann (2018) for a general discussion of ways to relax this assumption.
To name one, the econometrician could specify the shape of the structural error and take the "probability inequality" approach,
proposed by Tamer (2003), though this approach is computationally infeasible in our setting.
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1{rj = 1}, and 1{rj > 1}. Importantly, hi
j ≥ 0 for all j, hi

j > 0 for at least one j in each i, and the variables

used to construct hi are all independent of η.

Second, we estimate upper bounds on the parameters of interest. This estimation strategy here is

complicated by the fact that not every substance-delivery-release combination experiences entry. This

feature of the data precludes us from constructing moments with exactly one ηj per j. By extension, if

we form evenly weighted averages of ηj for the j in which we do observe entry, then we reintroduce the

selection problem, since missing disturbances are on average unfavorable to entry. To solve this problem,

we rely on an idea proposed by Pakes et al. (2015) and based on Powell (1986), which exploits the symmetry

of ηj.

To illustrate using round numbers, suppose there are 100 markets of which 70 experience entry. Further,

suppose that we employ an estimation strategy that is analogous to the one used to recover lower bounds

on the sunk cost parameters (i.e., each substance-delivery-release combination contributes exactly one

instance of the sunk cost disturbance term whenever possible). Then, the resulting moment includes a term

that subtracts the average of 70 realizations of η for which we observe entry. Though η is unconditionally

mean zero, our moment collects 70 realizations of η that are favorable to entry, so their values are negatively

selected. This is the essence of the problem.

From the standpoint of obtaining consistent bounds, the worst case corresponds to our moment

including the 70 smallest η (i.e., the negative selection is as bad as possible). Since we cannot rule this case

out, we must work under the assumption that it is true. The solution involves subtracting out 30 values

that are at least as small as the 30 smallest realizations of η, leaving us with the 40 most central draws of η

plus some weakly positive differences.48 Since the mean of a set of draws symmetrically distributed about

zero converges in probability to zero, the term in our moment that includes the structural error converges

in probability to a weakly positive value.

To obtain 30 values that are at least as small as the 30 smallest realizations of η, we draw in information

from firms that did not enter. Ignoring expectational errors, which will average out in a way that does not

affect the consistency of our bounds, the observable components of inequalities associated with decisions not

to enter provide upper bounds on the draws of η. For instance, the most negative observable component is

at least as small as the smallest η (since one more firm would have chosen to enter if it were greater greater

than or equal to η). By extension of that logic, the 30 most negative observable components are at least as

small as the 30 smallest realizations of η.

To formalize the approach, we require additional notation. Let L be the set of j with at least one entrant,

let JL be the size of that set, and let wi be a positive valued function of rj and `j. Also, define

VE+
j =

1
2 ∑

d∈J
∑

k∈{M,N}

[
V̂E

k
d(χM , χN + 1{k = N})

]
, (16)

which represents the average of the cartel members’ and nonmembers’ entry values in j. Finally, for each

moment i, order j by their values of wi
jVE+

j , and let ΨwVE denote the set of j that correspond to the J−JL

48To be precise, due to the presence of ν errors, the 30 draws are on average the 30 smallest, and the remaining ones are on average
the 40 most central.

33



smallest values. The second set of moments is then given by

1
J ∑

j∈L

1
µj

∑
d∈J

∑
k∈{M,N}

wi
j

[ 1{χk ≥ 1}V̂E
k
d(χM + 1, χN)

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0} − θ0 − θ1rj − θ2`j

]

− 1
J ∑

j∈ΨwVE

1
µj

∑
d∈J

∑
k∈{M,N}

wi
j

[ V̂E
k
d(χM+1{k=M}, χN+1{k=N})

2
− θ0 − θ1rj − θ2`j

]
< 0. (17)

In the Online Appendix, we prove inequality 17 produces consistent bounds.

Our moments provide one-sided restrictions on the parameters of interest, the most informative of

which are the greatest lower bound and the least upper bound. Since our inference procedure is based on

maxima and minima, respectively, rather than averages, we cannot rely on the central limit theorem. To

obtain 95% confidence intervals around the true parameters, we follow Andrews and Soares (2010).49 They

propose inverting an Anderson-Rubin type test at each candidate vector [φ0 φ1 φ2] (Chernozhukov et al.,

2007). That is, for each candidate, we calculate each moment and its standard deviation. We then divide the

first by the second and sum the resulting values to arrive at a test statistic. Then, we draw 2,000 bootstrap

samples and compute analogous statistics to obtain a critical value (for our desired confidence level, i.e.,

95%). Finally, we comprehensively search over a 3-dimensional grid and include in our confidence interval

each candidate whose test statistic is less than or equal to the relevant critical value.

Results. Table V reports sunk cost estimates. The final column provides 95% confidence intervals, all of

which exclude zero. We find that the coefficient on the constant term, θ0, is bounded between $260,000 and

$1.88 million. Reflecting the fact that sunk costs scale with the number of strengths per substance-delivery-

release combinations, we find that φ1 is bounded between $0.92 million and $2.02 million. Consistent with

irregular delivery methods involving substantially higher sunk costs, we find that φ2 is between $950,000

and $6.925 million. Calculated at the midpoint of each identified set, entry costs range between $1.07

million and $12.83 million, depending on the characteristics of the substance-delivery-release combination.

The average across drugs, weighting each equally, is $3.175 million.

Our entry cost estimates align with statements made by agency officials and medical researchers. For

instance, FDA Commissioner Gottlieb states, "Filing a generic application requires an average of about

$5 million and can cost as much as $15 million"—very close to the mean estimate reported in row 5 of

Table V.50 Similarly, our estimates fall squarely within the bounds reported by Scott-Morton (1999), who

surveyed FDA officials around 1999 and found that sunk costs range from $382,000 to $31 million (in 2019

dollars, i.e., $250,000 to $20 million in the original text). Even more to the point, Baker-Smith et al. (2008)

ran six bioequivalence studies between 1997 and 2004 and documented their per-study expenditures.51

Baker-Smith et al. (2008) spent between $807,000 to $1.25 million per study (in 2019 constant dollars), which

49Tests based on inequalities depend on the degree to which the moments are binding. One consequence is that including
uninformative moments (i.e., ones that are satisfied for a very wide range of parameters) typically widens confidence intervals.
The main innovation of Andrews and Soares (2010) is a procedure for, loosely speaking, deciding which moments are sufficiently
uninformative to be discarded. The authors have found moment selection incredibly important in other settings. We deemphasize it
here only because it does not have a big effect on our results.

50See, e.g., Gottlieb (2016) and November 20, 2014 testimony before the Senate Subcommittee on Primary Health and Aging.
51Putting aside one-time production setup costs, pharmacological studies are the principal reason that entry costs depend on the

number of strengths per substance-delivery-release combination, so they are an especially good benchmark for our estimates of the
coefficient on r.
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Table V: Sunk cost estimates

95% confid.
Variable Parameter interval

Constant φ0 [0.26,1.88]

Number of additional strengths [r] φ1 [0.92,2.02]

Indicator for irregular delivery [`] φ2 [0.95,6.925]

Observations 220

Moments 10

Minimum sunk cost of entry 1.07

Average sunk cost of entry 3.175

Maximum sunk cost of entry 12.83

Sunk cost estimates are reported in millions of dollars. The bounds reported
in the rightmost column are intervals in which the true parameters lie
95% of the time. To calculate the minimum, mean, and maximum sunk
costs across the substance-delivery-release combinations, we set φ0, φ1,
and φ2 equal to their respective midpoints.

aligns with our estimates, which bound per-strength entry costs between about $1-2 million.

7 Policy analysis

In this section, we use the model estimates to perform policy counterfactual experiments. The preceding

results indicate that entrants discipline collusive prices, but entry is limited and slow. Thus, we ask two

questions. First, how much would American consumers pay to reduce the sunk costs of entry, and second,

how much would they pay to accelerate entry?

These are policy relevant questions, since much of the time and expense associated with entry is

within the federal government’s control. In terms of expenses, the FDA collects fees from drugmakers

directly under the Generic Drug User Fee Act. In 2022, fees totaled $225,712 per ANDA.52 On top of direct

transfers to the agency, firms must hire skilled staff to ensure compliance or outsource compliance to highly

compensated third-party consultants. Some delays result from a lengthy approval process coupled with

backlogged reviews, while others simply reflect the time-consuming process of preparing an application,

which includes the clinical work that establishes bioequivalence to a reference drug. Notably, the FDA

has varied fees considerably over the past decade and repeatedly experimented with expedited review

programs, proving that fast approval is feasible (presumably without compromising the integrity of the

process).53

We first simulate the effect of reducing entry costs by $400,000 and $800,000 per ANDA. This saves

52Drugmakers pay the FDA a base rate of $1.5 million per year and $200,000 per factory per year. If they wish to keep certain
aspects of their operations confidential, especially as they relate to the production of active pharmaceutical ingredients (i.e., the
"substance" of the drug), then drugmakers pay an additional $75,000 for the creation of a Drug Master File.

53For example, the agency established a "Priority" review program, which is designed to be completed within 6 months of
submission.
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potential entrants approximately one-eighth to one-quarter of the sunk cost of entering an average drug.

Since the decision to enter depends on a comparison between discounted expected future profits and

the sunk costs of entry, reducing the latter unambiguously makes entry more attractive. How many

more entrants it attracts and the impact of those entrants on consumer welfare, however, are empirical

questions. To answer them, we recompute equilibrium at the estimated parameters, using the midpoints of

the identified sets to determine sunk costs.54

Columns 1-2 of Table VI report the result of this policy change. When entry costs are reduced by

$400,000, an average of 42 out of 113 drug markets experience additional entry, and consumer compensating

variation totals $143 million. When costs are reduced by twice that amount, an average of 59 out of 113

drug markets experience additional entry, and consumer compensating variation totals $374 million.

Table VI: Counterfactual policy comparisons

Sunk costs reduced by: Delays shortened by:

$400,000 $800,000 1 year 2 years

Mean sunk cost (millions of dollars) 3.91 3.51 4.31 4.31

Mean delay (years) 5.63 5.63 4.63 3.63

Drugs with additional entry (count) 42 59 41 64

Additional entrants (count) 50 115 45 95

Forgone agency revenue (millions of dollars) 60.8 121.6

Consumer comp. variation (millions of dollars) 142.73 374.21 596.48 1520.02

Columns correspond to distinct counterfactual policy experiments. Columns 1-2 correspond to reducing the sunk
entry costs; columns 3-4 report the result of shortening entry delays.

We then simulate the effect of shortening delays by one to two years. This policy change can benefit

consumers two ways. First, quicker entry means fewer periods of cartel members charging monopoly prices.

Nonmembers undercut the cartel in an effort to steal share, and members best-respond to the nonmembers

prices by lowering their prices as well. Second, shorter delays means entrants can recoup their investment

faster, making entry more attractive.

Columns 3-4 of Table VI report the result. When entry delays are reduced from an average of 5.63 to

4.63 years, there is additional entry in an average of 41 markets, and consumer compensating variation

reaches $596 million. When entry delays are reduced by two years instead of one, there is entry in an

average of 95 additional markets, and consumer compensating variation totals $1.52 billion.55 Again, the

54Multiple equilibria are possible, so we require an equilibrium selection rule. In the data, entrants are more frequent cartel
nonmembers than members. Thus, in two-thirds of our simulations, we let nonmembers decide if they would like to enter, and then
we let members decide. In the remaining one-third of our simulations, we reverse the order. The resulting average ratio of members to
nonmembers roughly corresponds to the data.

55The consumer compensating variation associated with shorter regulatory delays may seem especially large. Yet it is easy to arrive
at similar figures using back-of-the-envelope calculations. Recall that an average of 1.9 million prescriptions are sold per drug per year
at an average price of about $30 (see Table I). Also, recall that the cartel raises price by about 50% (see Figures I and II). Entry reduces
the price increase by about half in half of the cartelized drug markets (see VII). In other words, observed entry generates a "flow" of
surplus to consumers of approximately $7.125 million per year per cartelized drug (15*1.9*.5*.5), or $805 million in total. To a first
approximation, shortening delays by a year provides one more year of this surplus. This occurs, on average, about 5 years out, so it’s
worth about $475 million in present value terms. Yet hastening entry increases the value of entry. In doing so, shorter delays attract
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consumer welfare gains exceed reduced government fees by an order of magnitude. Put differently, the

taxpayer would gladly finance the additional resources (e.g., additional staff) needed to expedite reviews

and reduce industry fees.56

8 Conclusion

Stigler (1964) cites entry as one of two fundamental threats to collusive agreements. Yet, little to no prior

work studies the extent and effect of entry in cartelized markets. In this paper, we investigate the issue in

the context of the largest price fixing case in US history. An entrant who “breaks” the cartel—leading to

Bertrand competition—will earn no more than they would entering the uncartelized industry. Therefore, to

profitably enter, the entrant must successfully bid or price against the cartel. The latter will likely lead to a

slow decline in prices.

Our reduced form results show that the cartel raises prices dramatically, but also attracts new potential

entrants. The new entrants are concentrated in more profitable markets, implying that entry barriers

limit the effect of entry. This is especially problematic because tacit collusion continues even after an

antitrust investigation. Moreover, regulatory delays last several years, so even in markets where entrants do

eventually undercut the collusive agreement, monopoly-like prices persist for long periods.

Turning to our structural estimates, we show that entry is not only slow but expensive. Our estimates

suggest that the sunk cost of entry ranges between $1.1 million and $12.8 million per substance-delivery-

release combination. While some of these costs cannot be avoided, policymakers can impact some of the

entry costs and regulatory delays. We show that a reduction in either has a large impact on consumer

surplus because we see entry in many more cartelized markets where prices remain high post-investigation.

A reduction in time-to-market of a year and a 35% reduction in sunk costs have approximately the same

impact. This provides guidance to policymakers considering optimal regulation of this important industry.
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9 [For Online Publication] Appendix: Proofs

THEOREM I.

Moments indexed by i and given by

1
J ∑

j

1
µj

∑
d∈J

1
2 ∑

k∈{M,N}
hi

j

[
V̂E

k
d(χM + 1{k = M}, χN + 1{k = N})− θ0 − θ1rj − θ2`j

]
< 0 (18)

produce consistent upper bounds.

PROOF.

For each moment indexed by i, we have

1
J ∑

j

1
µj

∑
d∈J

1
2 ∑

k∈{M,N}
hi

j

[
V̂E

k
d(χM + 1{k = M}, χN + 1{k = N})− θ0 − θ1rj − θ2`j

]
=

1
J ∑

j

1
µj

∑
d∈J

1
2 ∑

k∈{M,N}
hi

j

[
VEk

d(χM + 1{k = M}, χN + 1{k = N})− θ0 − θ1rj − θ2`j

]
=

1
J ∑

j

1
µj

∑
d∈J

1
2 ∑

k∈{M,N}
hi

j

[
VEk

d(χM + 1{k = M}, χN + 1{k = N})− θjk + ηj

]
=

1
J ∑

j

1
µj

∑
d∈J

1
2 ∑

k∈{M,N}
hi

j

[
VEk

d(χM + 1{k = M}, χN + 1{k = N})− E (θjk|Ijk)− νjN + ηj

]
<

1
J ∑

j

[
hi

jηj

]
− 1

J ∑
j

[
hi

jνjN

] p−→E[hiη]−E[hiνjN] = E[hi]E[η]−E[hi]E[νjN] = 0. (19)

The first equality results from replacing V̂E
k
d(·) with VEk

d(·). V̂E
k
d(·) is a function of π̂k

d,t(·), F̂ξ , F̂ω , and F̂D, and

VEk
d(·) is a function of πk

d,t(·), Fξ , Fω , and FD. Since πk
d,t(M, N, ξdt , ωdt), Fξ , Fω , and FD are measured without error,

and since the value entry depends on only those objects, entry values are measured without error. The second

equality results from replacing θ0 + θ1rj + θ2`j with θjk − ηj, which follows directly from equation 13. The third

equality results from replacing θjk with E [θjk|Ijk] + νjN , which follows directly from the definition of an expectational

error. The inequality follows from the necessary conditions of a simultaneous move Nash equilibrium, which require

VEk
d(χM + 1{k = M}, χN + 1{k = N})− E (θjk|Ijk) < 0. (If this were condition were false, then another firm would have

expected to profitably enter.) The next step follows from the law of large numbers. Since hi depends on r and `, η is

independent of r and `, ν is independent of r and `, the fourth inequality holds. To arrive at the final inequality, notice

that η and ν are both unconditionally mean zero (i.e., E[η] = 0 and E[ν] = 0). �
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THEOREM II.

Moments indexed by i and given by

1
J ∑

j∈L

1
µj

∑
d∈J

∑
k∈{M,N}

wi
j

[ 1{χk ≥ 1}V̂E
k
d(χM + 1, χN)

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0}
− θ0 − θ1rj − θ2`j

]

− 1
J ∑

j∈ΨwVE

1
µj

∑
d∈J

∑
k∈{M,N}

wi
j

[ V̂E
k
d(χM+1{k=M}, χN+1{k=N})

2
− θ0 − θ1rj − θ2`j

]
≥ 0 (20)

produce consistent lower bounds.

PROOF.

For each moment i, order j by their value of wi
jηj, let Lwη denote the set of j that correspond to the smallest J values,

and let Ψwη correspond to the smallest J−JL values. For each moment indexed by i, we have

1
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j∈L

1
µj

∑
d∈J
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k∈{M,N}
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j
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1
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j

[ 1{χk ≥ 1}VEk
d(χM + 1, χN)

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0}
− θjk + ηj − νjN

]
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1
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2
−E(θjk|Ijk) + ηj − νjN

]
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j∈L

1
µj

∑
d∈J

∑
k∈{M,N}
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j

[
ηj − νjN

]
− 1

J ∑
j∈Ψwη

1
µj

∑
d∈J

∑
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j

[
ηj − νjN

]
. (21)

The first inequality follows from the construction of set ΨwVE. The first equality results from replacing V̂E
k
d(·) with

VEk
d(·). V̂E

k
d(·) is a function of π̂k

d,t(·), F̂ξ , F̂ω , and F̂D, and VEk
d(·) is a function of πk

d,t(·), Fξ , Fω , and FD. Since
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πk
d,t(M, N, ξdt , ωdt), Fξ , Fω , and FD are measured without error, and since the value entry depends on only those objects,

entry values are measured without error. The second equality results from replacing θ0 + θ1rj + θ2`j with θjk − ηj, which

follows directly from equation 13. The third equality results from replacing θjk with E [θjk|Ijk] + νjN , which follows

directly from the definition of an expectational error. The second inequality follows from the necessary conditions of a

simultaneous move Nash equilibrium. That is, for k ∈ {M, N}, these conditions require VEk
d(χM , χN)− E (θjk|Ijk) ≥ 0

as well as VEk
d(χM + 1{k = M}, χN + 1{k = N})− E (θjk|Ijk) < 0.

Assume that JL/J
p−→q by the law of large numbers. We then have

1
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j∈L

1
µj

∑
d∈J

∑
k∈{M,N}

wi
j

[
ηj − νjN

]
− 1

J ∑
j∈Ψwη

1
µj

∑
d∈J

∑
k∈{M,N}

wi
j

[
ηj − νjN

]

=
1
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j∈L
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jηj

]
− 1

J ∑
j∈Ψwη

[
wi

jηj

]
−
(

1
J ∑

j∈L

[
wi

jνjN

]
− 1

J ∑
j∈Ψwη

[
wi

jνjN

])

≥ 1
J ∑

j∈Lwη

[
wi

jηj

]
− 1

J ∑
j∈Ψwη

[
wi

jηj

]
−
(

1
J ∑

j∈L

[
wi

jνjN

]
− 1

J ∑
j∈Ψwη

[
wi

jνjN

])
p−→E[η|η<F−1(q), wi=1]−E[η|η<F−1(1− q), wi=1]− (E[ν|η<F−1(q), wi=1]−E[ν|η<F−1(1− q), wi=1])

= E[η|η<F−1(q)]−E[η|η<F−1(1− q)]− (E[ν]−E[ν]) = 0. (22)

The first equality follows from the fact that wi and ηj, and νjN do not depend on d or k. The first inequality follows from

the construction of Lwη . The third step follows from the law of large numbers. The second equality follows from the fact

that η and ν are independent of r and `, on which wi depends. Thus, for example, E[η|η<F−1(q), wi=1] = E[η|η<F−1(q)].

To arrive at the final step, notice that E[η|η<F−1(q)] and E[η|η<F−1(1− q)] are values that are equidistant from zero,

so their difference is zero. Also, notice that ν is independent of η and is unconditionally mean zero. �
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10 [For Online Publication] Supplementary tables and figures

This section presents the following figures and tables.

• Figure IX assesses the suitability of Medicaid utilization data for demand estimation by way of
comparisons to data we purchased from IQVIA, the "gold standard" for measuring prescription drug
quantities.

– Our sample reports the number of dispensed prescriptions nationally at the drug-month-year
level, subject to two limitations.

– First, it covers the first quarter of 2011 through the fourth quarter of 2017, inclusive. In other
words, we do not span the period studied in the body of the main text (i.e., 2008-2019 inclusive).
We were limited by cost as well as historical availability, so we focused on acquiring data around
cartel formation.

– Second, the data aggregates tablet and capsule purchases. In a small number of cases, substances
are delivered in both forms, so we are forced to drop those drugs. The data does not distinguish
between immediate and extended release versions of theophylline and etodolac. Again, we drop
those drugs. Observing these distinctions would require more granular data, which was much
more expensive, and since the omissions reflect random features of the sample, they will not
affect the comparisons we derive them.

– In terms of model predictions, the most influential feature of the quantity data is the mean
change around cartel formation in cartelized markets relative to uncartelized ones. As a result,
we plot log quantity in event time separately for two sources.

– Panel A reflects IQVIA’s National Prescription Audit, while Panel B reflects Medicaid utilization.
Despite how differently the underlying observations are collected, the sources present very
similar graphs. We observe (a) a very slightly positive pre-event trend one to three years prior to
cartel formation, (b) no appreciable pre-event trend just prior to cartel formation, and (c) a clear
decline in quantity thereafter, (d) culminating in a statistically significant decrease of 12-15%.

• Figure X addresses re-entry. In the body of the main text, we find that cartel formation attracts new
entrants (i.e., ANDA filings). However, re-entry is also possible. Firms with dormant ANDAs—ones
that were once associated with positive production but no longer are—might re-enter the market when
cartels form. To study this possibility, we plot re-entry in event time for cartelized and uncartelized
drugs. We find that cartel formation induces economically and statistically significant entry, and that
re-entry occurs very soon after collusion begins. The stark contrast of this figure and the one that
reports ANDA launches highlights the effect of approval delays.

• Figure XI shows that while there is no comprehensive correspondence between ANDA numbers and
filing dates, the latter can be inferred without meaningful error.

– To obtain filing dates, we downloaded all available approval letters from the FDA website and
parsed out filing dates from the PDFs. Since 2000, the agency has issued three "waves" of ANDA
numbers. Within each wave, numbers are assigned in chronological order. Specifically, the
agency issued numbers in the 70,000s from 2000 to 2008, in the 90,000s from 2008 to 2010, and in
the 200,000s thereafter.

– In Panel A, we plot filing dates on the x-axis against ANDA numbers on the y-axis. The graph
reflects 8,185 ANDAs for which we were able to obtain filing dates from parsed PDFs. The three
waves are clearly visible. Putting aside a small number of very early ANDAs, which are filed
years before our sample starts, there are only two obvious parsing errors.

– Panel A shows that the sample period corresponds to the second and third wave of ANDA
numbers. Thus, in Panels B and C, we isolate the waves separately. Panel B depicts ANDA
numbers in the 90,000s, while Panel C depicts them in the 200,000s. In each panel, we plot
ANDA numbers on the x-axis and filing dates on the y-axis. Both graphs illustrate the linearity
of this relationship.
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– Given the aforementioned linearity, we regress ANDA numbers on filing dates within each
wave and then predict filing dates for the remaining ANDA numbers. To assess overall fit, we
compute the difference between actual and predicted dates measured in months and plot the
density in Panel D. Substantially all of the parsed dates fall within 3 months of the predicted
dates. Especially given that we aggregate ANDAs to the annual level, we conclude that ANDAs
filing dates are measured accurately.

• Figure XIV evaluates the robustness of our result to an alternative event study specification. Sun and
Abraham (2020) point out that when multiple cohorts are combined with heterogeneous treatment
effects, leading and lagging coefficients are contaminated by effects from different periods. They
propose estimating treatment effects that are cohort specific and then averaging these estimates using
the cohort shares of the sample as weights. We take their approach and plot the resulting estimates in
event time, which results in a figure that is nearly identical to Figure II.

• Table XIII reports price sensitivity by drug class. We plot 1/α̂d on the x-axis against the drug class
name on the y-axis. The graph shows that buyers in two classes in particular—other antiepileptics
and β-blockers—are especially inelastic.

• Tables IX and IX assesses whether nonmembers are "folded into" the cartel.

– In the body of the main text, we follow BCS to test conduct. In particular, we make pairwise
comparisons between Model A1, which follows the assumptions we lay out in Section 5, and
Model A2, where firms set Bertrand-Nash prices for all drugs in all years. We then introduce a
third model, A3, which assumes that nonmembers also abide by collusive agreements, and make
pairwise comparisons between A1 and A3. The details of the A1/A3 tests are provided here.

– Models A1 and A3 are identical except for one difference. In A1, cartel members cooperate
with one another, and nonmembers best respond. In A3, nonmembers join the cartel upon
its formation. (This contradicts statements in the Complaint, but is nonetheless interesting to
empirically evaluate.) Tests 3 and 4, summarized by Table VIII, replicate Tests 1 and 2 in the
body of the main text, but replace A2 with A3. That is, in Test 3, we assess whether the data
favors A1 over A3 or vice versa between td and 2015, and in Test 4, we make the same assessment
between 2015 and the end of the sample.

– Table IX reports the relevant results, which show that the data strongly reject the model where
nonmembers abide by the collusive agreement in favor of the model where nonmembers best respond. Tests
3 and 4 yield test statistics of -3.78 and -4.34, which equate to very small p-values (<0.0001).
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Figure IX: The quantity responses reported in IQVIA and Medicare are very similar.

This figure plots coefficients obtained by estimating equation 1 on the y-axis against event
time on the x-axis. Log prescriptions are the outcome of interest, and the unit of observation
is a drug-year. The vertical red line at event time -1 corresponds to the year just prior
to cartel formation. Vertical bars around the point estimates show 95 percent confidence
intervals, based upon standard errors that are clustered by drug. Notice that while the
quantity decline in the Medicare data following cartel formation lags the one evidenced by
IQVIA data, the delayed response does not have a meaningful effect on our results; when
we estimate demand, we omit observations from the year in which each cartel is formed.
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Figure X: The cartel induces significant re-entry.

This figure plots coefficients obtained by estimating equation 1 on the y-axis against event time on
the x-axis. The unit of observation is a drug-year, and the outcome of interest is a ANDA re-entry.
Re-entering ANDAs are those where the ANDA was associated with some output, then went at least
one year without being associated with output, and then re-entered (i.e., was once again associated
with output). The vertical red line at event time zero corresponds to the year in which Teva hired NP.
Vertical bars around the point estimates show 95 percent confidence intervals for those coefficients,
based upon standard errors that are clustered by drug.
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Figure XI: Filing dates are inferred without meaningful error.

Panel A plots parsed ANDA filing dates on the x-axis and ANDA numbers on the y-axis. Panels
B and C plot ANDA numbers on the x-axis and parsed filing dates on the y-axis for the relevant
"waves" of ANDAs. Panel D plots the difference between the actual and predicted filing months.
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Figure XII: Cartels are formed where NP has strong relationships.

This figure plots βτ , which is obtained by estimating equation 1, on the y-axis against event time
on the x-axis. Unlike prior graphs, xτ

kt is an indicator variable that equals one if and only if k is a
drug for which NP’s average quality score meets or exceeds 2 (i.e., the sales and marketing executives
of the other firms selling the drug have strong relationships with NP). The unit of observation is a
drug-year-firm. Log prices are the outcome of interest, and the unit of observation is a product (i.e.,
drug-year-firm). The vertical red line at event time -1 corresponds to the year immediately prior to
cartel formation. Vertical bars around the point estimates show 95 percent confidence intervals for
those coefficients, based upon standard errors that are clustered by drug.
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Figure XIII: Patients consuming antiepileptics and β-blockers are inelastic.

This figure plots inverse price coefficients (i.e., 1/α) on the x-axis against corresponding drug classes
on the y-axis. Buyers of two classes of drugs—other antiepileptics and β-blockers—are especially
inelastic, so we incorporate this heterogeneity in the demand system. See Section 6 for more details.
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Figure XIV: Prices in event time using the approach of Sun and Abraham (2020)

This figure replicates Figure II but follows Sun and Abraham (2020), who propose weight-
ing cohort-specific estimates in event study research designs. That is, observations are
aggregated by relative quarter, using sample shares of each cohort as weights.
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Table VII: Summary of cartelized and uncartelized markets from 2008 to 2012

Cartelized Uncartelized Total
Price 27.36 33.86 32.10

(27.31) (35.51) (33.60)

Quantity (in thousands) 867.9 1572.7 1381.3
(1382.3) (2851.5) (2557.0)

Expenditure (in millions) 16.06 26.96 24.00
(29.47) (52.85) (47.88)

Number of firms 3.732 4.362 4.191
(1.625) (2.216) (2.091)

Number of ANDA filings 0.179 0.288 0.258
(0.467) (0.639) (0.599)

The unit of observation is a drug-quarter. Price refers to dollars per pre-
scription. Quantity equals Medicare market share multiplied by market
size measured in prescriptions. Expenditures equal the product of price and
quantity. Variable means and standard deviations are reported, with the
latter in parentheses.
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Table VIII: Behavioral assumptions for supplementary conduct tests

Test 3.

Markets: Drugs named in the Complaint Other drugs in the sample

Model: A1 A3 A1 A3

2008—(td-1) Own-profit max. Own-profit max. Own-profit max. Own-profit max.

td—2015 Collusion All cooperate Own-profit max. Own-profit max.

2016—2018 – – – –

Test 4.

Markets: Drugs named in the Complaint Other drugs in the sample

Model: A1 A3 A1 A3

2008—(td-1) Own-profit max. Own-profit max. Own-profit max. Own-profit max.

td—2015 – – – –

2016—2018 Collusion All cooperate Own-profit max. Own-profit max.

"Collusion" corresponds to cartel members setting price equal to pB and nonmembers setting it equal
to pC,N . "All join cartel" corresponds to all firms cooperating, meaning nonmembers abide by collusive
agreement, which results in monopoly prices.

Table IX: Result of pairwise comparisons of A1 and A3

Q̃(mkA1) Q̃(mkA3) Test
× 100 × 100 statistic p-value

Test 3. (Collusion pre-investigation?) .01384 .01707 -3.78 < .0001

Test 4. (Collusion post-investigation?) .01180 .01545 -4.34 < .0001

This table reports the result of the testing procedure proposed by Backus et al. (2021). The test
statistic is distributed standard normal. The standard error of the difference between Q̃(mkA1)
and Q̃(mkA3) is obtained via bootstrapping. See Table VIII for the definitions of A1 and A3
under Tests 1 and 3.
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