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ABSTRACT

Rates of COVID deaths, hospitalizations, and cases differ markedly across U.S. states, as do rates 
of vaccination. This study uses cross-state regressions to assess impacts of vaccinations on 
COVID outcomes. A number of familiar issues arise concerning cross-sectional regressions, 
including omitted variables, behavioral responses to vaccination, and reverse causation. The 
benefits from a field context and from the broad range of observed variations suggest the value 
from dealing with these issues. Results reveal sizable negative effects of vaccination on deaths, 
hospitalizations, and cases up to early December 2021, although vaccine efficacy seems to wane 
over time. The findings for deaths apply to all-cause excess mortality as well as COVID-related 
mortality. The estimates imply that one expected life saved requires 248 additional doses, with a 
marginal cost around $55000, far below typical estimates of the value of a statistical life. Results 
since December 2021 suggest smaller effects of vaccinations on deaths and, especially, 
hospitalizations and cases, possibly because of diminished effectiveness of vaccines against new 
forms of the virus, notably the omicron variant. A further possibility is that confidence 
engendered by vaccinations motivated individuals and governments to lessen non-pharmaceutical 
interventions, such as masking and social distancing.
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Vaccination rates against COVID-19 differ markedly across U.S. states.  For example, 

based on data reported in Chetty, et al. (2022) and as shown in Table 1, the rate of “full” 

vaccination1 over a recent period of roughly three months, 2/11/22-5/8/22, averaged 64% with a 

standard deviation of 9%.  These rates varied from 51% in Alabama to 81% in Rhode Island.  If 

vaccinations are effective at reducing infections and deaths, these differences should map into 

differences in COVID-related deaths, hospitalizations, and cases. 

Table 1 shows that data on reported COVID-related deaths, hospitalizations, and cases 

also varied substantially across the states.  For example, for 2/25/22-5/22/22 (14 days after the 

period used for vaccinations), the change in cumulative deaths per person—corresponding to 

cumulations of new deaths over the period—averaged 0.0009 with a standard deviation of 

0.0004.2  The range was from 0.0002 for the District of Columbia to 0.0020 for Kentucky.  Over 

the same period, the change in cumulative hospitalizations per person averaged 0.025 with a 

standard deviation of 0.009 and a range from 0.010 for Wyoming to 0.051for Delaware.  

Cumulative cases per person averaged 0.056 with a standard deviation of 0.029 and a range from 

0.017 for Nebraska to 0.127 for Vermont. 

Table 1 shows comparable statistics for earlier periods.  For vaccinations, the data start at 

3/5/21, corresponding to the beginning of CDC information on full vaccinations.3  Each of the 

five periods considered covers roughly three months (86 days).  Note that the mean of full 

vaccination rates rose from 0.24 in 3/5/21-5/30/21 to 0.45 in 5/30/21-8/23/21, 0.55 in 

8/23/21-11/17/21, 0.61 in 11/17/21-2/11/22, and 0.64 in 2/11/22-5/8/22.  The table also shows 

national averages, which differ to a minor extent from the means of values across the states. 

1Full vaccination refers to completion of a vaccine series, usually involving two doses. 
2These and subsequent numbers are expressed at annual rates; that is, the changes over 86 days were multiplied 
by 365/86. 
3The national fraction reported as fully vaccinated on 3/5/21 was already positive, 0.086. 
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For the COVID-related outcomes, the periods in Table 1 are each 14 days subsequent to 

the periods for vaccinations.  Note that the mean of COVID deaths per person was 0.0007 in 

3/19/21-6/13/21 and 0.0006 in 6/13/21-9/6/21, then rose to 0.0018 in 9/6/21-12/1/21 and 0.0021 

in 12/1/21-2/25/22, before falling to 0.0009 in 2/25/22-5/22/22 (all measured at annual rates).  

Similar patterns apply over time for hospitalizations and cases.  Note, however, that reported 

cases are particularly subject to measurement error because they depend on the volume of 

testing, which has varied substantially over time and across states.4 

The objective of this study is to use cross-sectional regressions for the U.S. states to 

attempt to assess the effects of vaccinations on COVID-related outcomes.  The regression 

framework takes as dependent variables the outcomes over the five periods shown in Table 1.  

That is, each dependent variable is the number of deaths or hospitalizations or cases per person 

cumulated over periods of roughly three months.  The corresponding explanatory variables 

related to levels of vaccinations are averages over periods lagged 14 days compared to the 

dependent variables.5  The idea is that, at any point in time, the probabilities of infection, 

hospitalization, and death depend, with some lag, on the fraction of the population vaccinated. 

The use of cross-sectional regressions involves a tradeoff between familiar econometric 

issues versus the large amount of information contained in the cross sections.  A common 

procedure effectively discards the cross-sectional information by employing cross-sectional fixed 

effects (in the present case, state fixed effects) in the regressions.  In contrast, the perspective of 

the present study is that the econometric issues can be handled satisfactorily, and the benefits 

 
4CDC data reported in Chetty, et al. (2022) show that national nucleic acid amplification tests per 100,000 persons 
rose from zero in March 2020 to around 600 in December 2020-January 2021, fell to less than 200 in July 2021, 
rose back to around 600 in September 2021 and 900 in January 2022, fell to about 200 in April 2022, and jumped 
back to around 700 in mid-June 2022. 
5The relevant lag may differ from 14 days and would differ for deaths, hospitalizations, and cases.  However, in 
practice, the regression results are not sensitive to the use of different lags between 14 and 28 days.  These lags 
are consistent with those discussed by Bjornskov (2021, p. 320) 
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from retaining the cross-sectional information make it advisable not to follow the common fixed-

effects procedure. 

The empirical framework can be viewed as a reduced form of SIR—susceptible-infected-

recovered (and died)—models constructed by epidemiologists and, more recently, economists to 

study the evolution of contagious disease.  This work began with Kermack and McKendrick 

(1927) and has been pursued recently by, among others, Atkeson (2020); Eichenbaum, Rebelo, 

and Trabandt (2021); and Acemoglu, Chernozhukov, Werning, and Whinston (2021).  In this 

type of model, vaccination makes an individual less likely to catch the disease through contact 

with an infected person.  Vaccination also lowers the likelihood of a person’s disease becoming 

severe, thereby lowering the probability of hospitalization, conditional on infection.  Finally, 

vaccination lowers an individual’s probability of death, conditional on severe disease.  At the 

community level, by lowering the overall rate of infection, a higher vaccination rate reduces the 

chance that an individual will be infected in a random encounter.  The full equilibrium 

encompasses the direct inverse effects of vaccination on adverse outcomes along with the effects 

that work through contagion at the community level.  Overall, a higher vaccination rate in a 

community associates with a reduction in the rates of infection (cases), severe disease (proxied 

by hospitalizations), and mortality.  In the empirical analysis, the relevant community is taken to 

be a U.S. state, so that the spread of disease across state borders is neglected.  In a planned 

extension, a community will be associated with a county, so that cross-border transmission will 

be more important. 
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I.  Issues with Cross-Sectional Regressions 

As is well known, inferences from cross-sectional regressions may be difficult to draw.  

Because of these problems, detailed below, many researchers have moved increasingly away 

from these types of regressions, preferring instead to rely on randomized control trials (RCTs) or 

natural experiments.  Although RCTs are important for assessing the efficacy of vaccines, 

including those recently developed for COVID-19, it is more difficult to evaluate impacts on 

cases, hospitalizations, and deaths in the “field.”  As far as I know, there are no RCTs applicable 

to field results connecting COVID vaccinations to COVID outcomes.6  In some cases, natural 

experiments—such as regression-discontinuity designs applied to state borders—have been used 

successfully in the context of COVID-19.  For example, this approach has been applied to 

facemask mandates by Goolsbee and Syverson (2021), who consider economic impacts, and 

Hansen and Mano (2021a), who assess health outcomes.7 

There are also important advantages of cross-sectional regressions.  In particular, they 

apply to the field context and can exploit the large observed cross-sectional variations in the 

variables of interest, especially differences across U.S. states in vaccination uptake.  Because of 

these major benefits, it seems worthwhile to pursue the cross-sectional regression approach in the 

context of COVID vaccinations and outcomes. 

One issue in interpreting results from cross-state regressions is that vaccination take-up 

may be correlated with other variables that influence COVID outcomes.  If these other variables 

are omitted from the regressions, the estimated coefficient on the vaccination rate may proxy for 

 
6Abaluck, et al. (2022) describe a large-sample randomized control trial for mask-wearing in rural Bangladesh. 
7Herby, Jonung, and Hanke (2022) carry out a meta-analysis of 24 studies of the effects of facemask mandates on 
COVID-19 mortality.  Their overall conclusion is “lockdowns have had little to no effect on COVID-19 mortality.”  
Many of the  studies considered seem to lack convincing causal evidence—the cross-border approach of Hansen 
and Mano (2021a) and the instrumental-variable regressions of Welsch (2020) seem superior in this regard.  These 
two studies were not included in the Herby, Jonung, and Hanke (2022) analysis. 
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the influences of these other variables.  For example, if older people are more susceptible to 

COVID infection and, especially, death, they are likely to be vaccinated more frequently (and 

earlier).  In this case, the observed associations between vaccine take-up and COVID deaths, 

hospitalizations, and cases may be positive.  This issue is handled by including as explanatory 

variables a set of major socio-economic variables—specifically, the fraction of the state 

population aged 65 and over in 2020, state life expectancy at birth in 2018, the fraction of the 

state adult population with education of four years of high school or more in 2019, the fraction of 

the state population classified by the U.S. Census as black in 2020, and the urbanization rate in 

2010.  To deal with possible seasonal effects, the analysis also includes differences in average 

temperature across states at different times of the year.  Inclusion of some other variables—

population share aged 75 and over in 2020, per capita personal income in 2020, population 

density in 2020, and college education in 2019—do not materially affect the results.8 

 Another issue is that persons vaccinated may alter their behavior in ways that impact 

probabilities of COVID infection, hospitalization, and death.  For example, a vaccinated person 

may feel protected against infection and, especially, death conditional on infection and therefore 

react by engaging in more social interactions or other risky behaviors.  A general discussion of 

this issue in the context of insurance is in Ehrlich and Becker (1972).  Their ideas were applied 

to seatbelt use in Peltzman (1975), who argued that a person who used a seatbelt (perhaps 

because of a legal mandate) is likely to drive faster.  These kinds of mitigating actions may not 

arise in clinical trials (particularly if persons do not know their vaccination status) but would 

apply in the field.  Moreover, the nature and extent of these actions may vary over time as 

empirical evidence grows about the nature of the disease and the effects of vaccinations and non-

 
8Data by U.S. state on the socio-economic variables come from the U.S. Census Bureau.  The data on personal 
income are from the Bureau of Economic Analysis.  The temperature data are from usclimatedata.com. 
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pharmaceutical interventions.  People may also change their behavior in response to cumulated 

“fatigue” from past isolation.9 

In the regression analysis, the estimated effects of vaccinations on COVID outcomes 

comprise direct effects combined with any mitigation behavior.  In some contexts, these 

combined effects are the objects of interest—e.g. overall effects of vaccinations on deaths (or of 

seatbelt use on automobile fatalities).  In other contexts, there would be more interest in the 

effects of vaccinations, holding fixed the behavioral variables.10  In any event, the regression 

results apply to the combined effects in various periods. 

 The final issue concerns reverse causation.  Higher vaccination rates likely reduce 

COVID deaths, hospitalizations, and cases, and these are the effects that we seek to isolate.  

However, in addition, higher probabilities of death, hospitalization, and infection likely 

encourage people to get vaccinated (and motivate governments to mandate or subsidize 

vaccinations and to support the creation and distribution of vaccines).  The first channel, 

whereby vaccination reduces probabilities of adverse outcomes, tends to generate negative 

associations between vaccination rates and rates of death, hospitalization, and infection, whereas 

the second channel tends to generate positive associations.  If the second channel is not held 

constant, the observed associations tend to underestimate the magnitude of the (negative) effects 

from vaccination. 
 

9Agrawal, Sood, and Whaley (2022) used survey information from the Understanding America Survey to gauge the 
effects of COVID-19 vaccination on protective behaviors—mask-wearing, washing hands, avoiding crowds, and 
avoiding restaurants.  To isolate causal effects from vaccination, their main analysis used a regression-discontinuity 
design based on changing eligibility across states for vaccination during the rollout in early 2021.  Specifically, they 
compared responses of persons aged just over 65—the typical break point for vaccine eligibility in early 2021—to 
those just below 65.  They found (in their Figure 2) no statistically significant responses in the four protective 
behaviors contemporaneously with vaccination.  However, they also found (Figure 7) that substantial reductions—
decreases in frequencies by about 10 percentage points—appeared with lags of 9 or more weeks.  The lags might 
reflect growing information about the usefulness of vaccines as well as adjustments of behavior away from that 
prevailing prior to the rollout of vaccination. 
10This analysis would allow for welfare benefits derived from the mitigating actions; for example, people getting 
pleasure from greater social interactions or from driving faster while wearing seatbelts.   
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A common way to deal with reverse causation is to use instrumental variables that 

explain a substantial part of the variation in the explanatory variable, in the present context the 

vaccination rate, but do not enter directly as determinants of COVID outcomes.  That is, the 

instrument matters for outcomes only through the channel of affecting the frequency of 

vaccination.  The present analysis uses as an instrument a variant of the variable proposed by 

Welsch (2020, Section 3.2)—the Trump (Republican) share of the 2020 Presidential vote.11  

Welsch (Table 2) used the 2016 value of this variable as an instrument for facemask usage, 

measured in July 2020 in a survey conducted by The New York Times. 

Perhaps surprisingly, the Trump variable has a great deal of explanatory power for 

vaccination rates across states, even after holding constant key socio-economic variables, such as 

those mentioned before—old-age share, life expectancy, education, fraction black, and 

urbanization.  That is, the Trump variable does not matter for vaccine take-up because it proxies 

for these kinds of socio-economic factors.  Therefore, from the standpoint of having a lot of 

independent explanatory power for vaccination rates, the Trump variable is a good candidate as 

an instrument.  In effect, the 2020 Presidential voting pattern sorts people (and states) into bins 

for vaccine attitudes in a manner that is largely orthogonal to socio-economic characteristics. 

A reasonable concern is that the Trump variable would matter for COVID outcomes in 

ways that do not work entirely through vaccination status.  For example, Welsch (2020, 

Appendix Table A1) found that the Trump vote share was inversely related to facemask usage in 

the New York Times survey.  Consistent with Welsch’s findings, for the period 3/16/20-2/1/21, 

which precedes major distribution of vaccines, the presence of a facemask mandate at the state 

 
11The voting data are from Federal Election Commission (fec.gov). 
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level is significantly negatively related to the Trump vote share.12   However, a combination of 

the estimated negative effect of the Trump vote variable on facemask mandates with the Hansen 

and Mano (2021a) estimated negative effect of facemask mandates on COVID deaths yields a 

very small implied positive effect of the Trump vote on COVID deaths, compared with the 

effects estimated below that work through vaccinations.  Similarly, in the RCT of Abaluck, et al. 

(2022), the significantly negative effect of facemask usage on COVID infection corresponds to a 

minor likely impact of facemask usage on COVID deaths, probably around two-to-three lives 

saved out of a total sample of 300,000.  Therefore, from a quantitative standpoint, the Trump 

variable may be a satisfactory instrument for vaccination rates even though this variable has 

influences on COVID outcomes that work through facemask mandates and usage or other forms 

of non-pharmaceutical interventions. 

 

II.  Data and Empirical Setup 

 Data on COVID-related deaths, hospitalizations, and cases, measured relative to state 

population, are reported by the CDC and provided by Opportunity Insights, Economic Tracker 

(see Chetty, et al. [2022]).13  The data used in this study are for the 50 U.S. states plus the 

District of Columbia.   

The three measures of COVID outcomes enter as dependent variables in the regressions 

and are examined over the five periods noted before.  The starting date, March 19, 2021, is 14 

days after the beginning of data on vaccination rates (fully vaccinated persons relative to state 

 
12The facemask mandate is measured from information given in Raifman, et al. (2022)  as the fraction of days 
between March 16, 2020 and February 1, 2021 in which a statewide facemask mandate was in effect. 
13Data sources indicated by Chetty, et al. (2022) are The New York Times, The Johns Hopkins Coronavirus Resource 
Center, and U.S. Department of Health & Human Services. 
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population), also coming from the CDC and Opportunity Insights.14  The first three periods, 

shown in Table 1, are 3/9/21-6/13/21, 6/13/21-9/6/21, and 9/6/21-12/1/21.  These periods are of 

equal length (86 days) and extend to the rough date of onset of the omicron variant in the United 

States.  The two most recent periods, 12/1/21-2/25/22 and 2/25/22-5/22/22, are the same length 

as the first three.  For each period, COVID-related deaths or hospitalizations or cases are the 

changes in the cumulative per capita numbers, expressed at annual rates. 

 

III.  Regression Results 

A.  COVID-related deaths 

Regression results in Table 2 are for COVID-related deaths per capita, observed over the 

five periods of 86 days:  Period I (3/19/21-6/13/21), Period II (6/13/21-9/6/21), Period III 

(9/6/21-12/1/21), Period IV (12/1/21-2/25/22), and Period V (2/25/22-5/22/22).15  The first two 

columns are for seemingly-unrelated regressions, which use a least-squares procedure but 

compute standard errors of estimated coefficients when allowing for different error-term 

variances in each period and for correlation of the error terms across periods.  The first column 

has on the right-hand side the average of the full vaccination rate over periods lagged 14 days 

 
14The data reported by Opportunity Insights have occasional large jumps in cumulative COVID deaths and 
vaccinations.  (The death, hospitalization, and case data are reported as 7-day moving averages of daily data, 
whereas the vaccination data are reported daily.)  My interpretation, consistent with feedback obtained from the 
CDC, is that the jumps do not represent real changes but rather reflect shifts in procedures or assessments of data 
already processed, with past data not subsequently revised.  This view accords with the observation that some of 
the jumps are negative.  As one example of a jump, the reported cumulative COVID deaths per 100,000 persons in 
Oklahoma shifts from 125 on 4/6/21 to 169 on 4/13/21.  In the most egregious case, for the full vaccination rate in 
West Virginia, the variable jumps from .415 to .489 on 12/2/21, from .492 to .690 on 12/8/21, from .690 to .710 on 
12/10/21, and from .716 to .548 on 12/23/21.  The data on deaths and vaccinations were modified to smooth out 
these jumps by making proportional adjustments at dates that precede the jumps.  (A few of these adjustments 
were also made for cases, but these adjustments did not seem to be necessary over the sample period for 
hospitalizations.)  The main inferences from the results, for example from Table 2, do not change when the original 
data are used.  However, the overall fit of the regressions is much poorer with the original data. 
15Results are broadly similar when the data are broken down into periods of 43 days each. 
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relative to the dependent variable.16  Note that, whereas the dependent variable is the change in 

cumulative deaths per person over the periods shown, the independent variable is the cumulative 

level of full vaccinations per person (with a 14-day lag compared to the dependent variable). 

To allow for a possible waning effectiveness of the vaccine, the specification in column 2 

of Table 2 includes two measures of vaccination rates—one for full vaccinations that occurred 

roughly within the last six months and the other covering full vaccinations from six or more 

months in the past.  In this specification, booster shots, for which CDC information starts on 

10/20/21,17 are viewed as effectively converting an old full vaccination into a recent one.  That 

is, when combined with the remaining efficacy of a full vaccination from six months ago, a 

booster is modeled as generating efficacy equal to that of a recent full vaccination.  The inclusion 

of booster shots applies only to the three most recent periods in Table 2; that is, no boosters 

existed and none of the full vaccinations were “old” up to roughly September 2021.   

The regressions include on the right-hand sides the socio-economic variables mentioned 

before—old-age fraction, life expectancy, high school education, fraction black, and 

urbanization.  Also included is the historical average maximum temperature over the relevant 

period (computed from monthly data for the largest city in each state).  In the estimation, 

separate coefficients are estimated for each period for each independent variable, including the 

constant term, which absorbs variations over time in aggregate COVID outcomes. 

In column 1, the estimated coefficients on the (roughly) contemporaneous vaccination 

rate are negative and significant at the 1% level for Periods II and III (6/13/21-9/6/21 and 

9/6/21-12/1/21), negative and significant at the 5% level for Period IV (12/1/21-2/25/22), and 

roughly zero for the other two periods.  To assess the magnitudes of the estimated responses, 

 
16The results are similar with a lag of 28 days. 
17The national fraction of reported booster shots on 10/21/21 was already positive, 0.034. 
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consider period III, for which the estimated coefficient is the largest in magnitude, -0.0092.  

Over this interval, the mean of the vaccination-rate variable is 0.548 with a standard deviation of 

0.079.  Therefore, a one-standard-deviation increase in the vaccination rate, a rise by 14.4%, is 

estimated to lower the death rate by 0.00073, compared to the mean death rate of 0.00175.  That 

is, the death rate falls by 41.7%.  The implied elasticity of response is the ratio of -41.7 to 14.4, 

which equals -2.9.  The estimated elasticity is similar for Period II (-3.2) but smaller in 

magnitude for Period IV (-0.7).18 

When the two measures of vaccination rates are included in column 2, the results for 

period III (9/6/21-12/1/21) suggest that recent vaccinations are roughly twice as effective against 

deaths as older vaccinations; point estimates of coefficients are -.0100 and -.0058, respectively.  

Each of these estimated coefficients is statistically significant at least at the 5% level, and the 

two estimated coefficients differ from each other with a p-value of 0.22.  Period IV 

(12/1/21-2/25/22) shows no indication of a waning influence of vaccinations, and Period V 

(2/25/22-5/22/22) provides essentially no information. 

The small size of the estimated coefficient for Period I (3/19/21-6/13/21) may reflect 

reverse causation from COVID deaths to vaccination propensity.  This effect is likely to be 

powerful during the early stages of vaccination rollout, when the places most adversely impacted 

are likely to have large rollouts of vaccinations. 

 
18For the other explanatory variables, the fraction over age 65 is positive and at least marginally significant in each 
period, and high school education is negative and at least marginally significant in each period.  Life expectancy is 
significantly negative in three periods, fraction black is significantly negative in two periods, and urbanization rate 
is significantly positive in two periods.  The temperature variable is significantly negative in the December-to-
February period (Period IV), thereby suggesting that colder places have more COVID deaths during the winter.  
However, the temperature variable is not statistically significant when considered for an earlier winter period, 
12/23/20-3/19/21, which precedes the advent of full vaccinations. 
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Another way to interpret the estimated effects of vaccinations on COVID deaths comes 

from the literature on the value of a statistical life.19  The point estimates for Period III from 

Table 2 imply that the coefficient -0.0100 applies to full vaccination rates over the first six 

months and the coefficient -0.0058 applies over the next six months.  If vaccinations are 

ineffective after 12 months, a quantity V of full vaccinations would be expected to reduce deaths 

by V∙(.5∙.0100 + .5∙.0058) = .0079∙V.  Therefore, to expect to save one life, one needs 1/.0079 = 

127 full vaccinations, which correspond to 254 shots for a two-dose regime.  (This analysis could 

also be applied to booster shots.) 

The marginal cost of COVID-19 vaccinations has several components.  First, the 

Department of Health and Human Services (2021, Table 18) estimates that the direct cost of each 

dose is $20 and the cost per dose from vaccine administration averages $20.  The time required 

per dose for persons receiving shots is estimated to average 2 hours, with an hourly value of time 

of $20.55, implying a cost per dose of $41.  The Occupational Safety and Health Administration 

(2021, p. 61480) estimates that the average worker time lost due to adverse reactions to the shots 

is 0.36 days for 2 doses, corresponding, if a work day consists of 8 hours, to 2.9 hours for 2 

doses.  With an hourly value of time of $20.55, the implied average cost for 2 doses due to 

adverse reactions is $60.  Combining the various terms, the overall marginal cost for a two-dose 

regime is $222.   

The value $222 implies that it costs about $56000 at the margin to expect to save one life 

through added two-dose vaccinations.  Usual estimates of the value of a statistical life for the 

average person in the United States are much larger than $56000; for example, Robinson, 

Sullivan, and Shogren (2021) assume values as high as $10 million.  Therefore, the present 

 
19The early literature is surveyed in Viscusi and Aldy (2003).  Recent applications to the COVID pandemic include 
Viscusi (2020); Hammitt (2020); Robinson, Eber, and Hammitt (2020); and Robinson, Sullivan, and Shogren (2021). 
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empirical results indicate that vaccinations against COVID-19 were a great bargain in late 2021.  

The results are less powerful with the smaller magnitudes of coefficients estimated for other 

periods.  For example, with the coefficients estimated for 12/1/21-2/25/22 in Table 2, it requires 

426 full vaccinations or 852 shots or about $189,000 to expect to save one life.  Even this higher 

magnitude suggests that vaccinations were a great deal.20 

The instrumental estimation treats the vaccination rates as endogenous.  The instrument 

list includes the 2020 Republican vote share for President, along with the other explanatory 

variables mentioned before.  That is, the Trump vote share is the one excluded instrument.21  

Table 3 shows first-stage regressions, with the vaccination-rate variable over the various periods 

as the dependent variable.  The remarkable aspect of these results is the strong explanatory 

power of the Republican vote share in the 2020 election (Trump vote), especially for the four 

most recent periods.  The important point is that a higher Trump vote share strongly associates 

with a lower vaccination rate even when the other explanatory variables are held fixed.  An 

increase by 0.12 in this vote share (which has a mean of 0.49 and a standard deviation of 0.12) 

associates in Period V, 2/11/22-5/8/22, with a decline by 0.073 in the vaccination rate (which has 

a mean in this period of 0.64).  The results are similar for the three preceding periods but are 

weaker for Period I, 3/5/21-5/3/21. 

 
20The benefits from vaccination could be expanded to include reduced morbidity.  Possibly the results below on 
hospitalizations and cases could be used to gauge the effects on morbidity. 
21When two vaccination variables are included, an additional instrument is required.  The results in column 4 of 
Table 2 include on the instrument list the difference between the vaccination variable for the current period and 
that for the period roughly 6 months earlier.  The idea is that the main endogeneity for vaccinations in the cross 
section involves the level of vaccination, not the timing.  Hansen and Mano’s (2021b) county-level analysis used as 
an instrument the state-level vaccine allocation interacted with the county density of pharmacies.  Brownstein, et 
al. (2022) used a related variable based on the density of pharmacies that participated in vaccine distribution.  
Possibly variables along these lines could be used to form instruments for the state-level analysis. 

 



14 
 

The results from instrumental estimation are in columns 3 and 4 of Table 2.  For 

Periods II and III, where the estimated effects from vaccinations on COVID deaths were 

strongest, the estimated coefficients from instrumental estimation are still highly significant.  For 

Period I, 3/19/21-6/13/21, the extent of the change in the point estimate of the coefficient is 

much larger under instrumental estimation, and this estimated value is now in the ballpark of 

those found for Periods II and III.  However, the standard error of the coefficient estimate blows 

up, likely because the excluded instrument—the Trump vote variable—is only marginally 

significant for explaining the vaccination rate in this period (Table 3).  That is, the instrument is 

weak. 

For Period IV, 12/1/21-2/25/22, the instrumental estimate in column 3 of Table 2, which 

includes only one vaccine variable, is close to that found before.  In column 4, the results do not 

clearly distinguish the effect from recent vaccinations (including boosters) to that from older 

vaccinations.  In any event, the main inference is that vaccinations had less effect overall against 

COVID deaths, compared to that in periods that preceded the rise of the omicron variant in early 

December 2021.  For Period V, 2/25/22-5/22/22, the instrumental estimates differ insignificantly 

from zero. 

 

B.  All-Cause Excess Mortality 

A number of measurement issues arise for the CDC data on COVID-related deaths.  One 

concern is that the dates entered refer to report dates, rather than the timing of deaths.  However, 

this issue may not be of major consequence for data averaged over periods of substantial length, 

such as the roughly three months used for each period in the regressions. 
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A likely more serious issue involves the classification of causes of death between COVID 

and alternatives.  Specifically, this assignment may be sensitive to the degree of testing for 

COVID—as mentioned before (n. 4), this testing has varied substantially over time.  A high level 

of testing has a direct positive impact on the number of reported cases, but an increased tendency 

to test hospitalized patients for COVID may also raise the numbers of hospitalizations and deaths 

assigned to COVID. 

A possible way to deal with this measurement problem is to use excess all-cause 

mortality, rather than deaths specifically ascribed to COVID-19, to construct the dependent 

variable.  One downside of this procedure is that it introduces a lot of noise into the dependent 

variable by including in deaths the large numbers unrelated to COVID and, therefore, unlikely to 

be related to vaccination against COVID.  As discussed in the Appendix, estimates of excess all-

cause mortality are provided by state on a weekly basis by the CDC.  However, the CDC 

indicates that there is a lag of more than eight weeks for the all-cause mortality data to be nearly 

complete. 

Death rates constructed from excess all-cause mortality are highly correlated with those 

based on COVID-related mortality for Periods II and III of Table 2 but less strongly correlated 

for Periods I and IV.  The correlations between the two alternative concepts of the dependent 

variable are 0.32 for Period I, 0.89 for Period II, 0.88 for Period III, and 0.50 for Period IV.  

(This comparison was not conducted for Period V because of the lag in reporting of data on all-

cause excess mortality.) 

The estimated regression coefficients based on all-cause excess mortality, shown in 

Table A1, are broadly similar to those shown for COVID deaths in Table 2.  Most importantly, 

the estimated effects of vaccinations on mortality still appear weaker in Periods I and IV, 
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compared to those in Periods II and III.  In addition, for all-cause excess mortality, there is no 

indication of a negative effect from vaccines on mortality in Period IV.  Overall, the main 

differences in the results are that the regression fits are poorer and the standard errors of 

coefficient estimates are higher when all-cause excess mortality is used instead of COVID-

related mortality.   

 

C.  COVID-related hospitalizations 

Table 4 has regression results with COVID-related reported hospitalizations per capita as 

the dependent variable.  This setting parallels that in Table 2 for COVID deaths.  Results on 

hospitalizations in Table 4 for Periods II and III (6/13/21-9/6/21 and 9/6/21-12/1/21) roughly 

parallel those for COVID deaths.  To evaluate the magnitudes of the estimated responses for 

hospitalizations, consider Period III, for which the estimated coefficient on the vaccination rate 

in column 1 is -0.28.  As noted before, the mean of the vaccination rate over this period is 0.548 

with a standard deviation of 0.079, so that a one-standard-deviation increase in the vaccination 

rate, a rise by 14.4%, is estimated to lower the hospitalization rate by 0.022, compared to the 

mean of 0.077.  That is, the hospitalization rate falls by 28.6%.  The implied elasticity of 

response is the ratio of -28.6 to 14.4, which equals -2.0 (compared to -2.9 for deaths). 

Results in Table 4 for Period I, 3/19/21-6/13/21, are also parallel to those for deaths in the 

sense that the vaccination rate does not have statistically significant effects on hospitalizations.  

These results may again reflect reverse causation in this period—the point estimate of the 

coefficient on the vaccination rate is negative and larger in magnitude in the instrumental 

estimation, but the standard error blows up. 
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The hardest results to interpret for COVID hospitalizations are for Periods IV and V, 

12/1/21-2/25/22 and 2/25/22-5/22/22, which cover the rise of the omicron variant.  There is no 

indication in these periods that vaccinations reduce COVID-related hospitalizations and some 

indications of positive effects.  Positive effects might arise if vaccinations induce reductions in 

protective practices such as social distancing and masking. 

 

D.  COVID-related cases 

Table 5 has regression results with COVID-related reported cases per capita as the 

dependent variable.  This setting parallels that in Tables 2 and 4 for COVID deaths and 

hospitalizations, respectively.  The results for cases in Table 5 for Periods II and III 

(6/13/21-9/6/21 and 9/6/21-12/1/21) roughly parallel those for deaths and hospitalizations.  To 

evaluate the magnitudes of the estimated responses for cases, consider Period III, for which the 

estimated coefficient on the vaccination rate in column 1 is -0.41.  As noted before, the mean of 

the vaccination rate over this period is 0.548 with a standard deviation of 0.079, so that a one-

standard-deviation increase in the vaccination rate, a rise by 14.4%, is estimated to lower the 

case rate by 0.032, compared to the mean of 0.134.  That is, the case rate falls by 23.9%.  The 

implied elasticity of response is the ratio of -23.9 to 14.4, which equals -1.7 (compared to -2.0 

for hospitalizations and -2.9 for deaths). 

Results in Table 5 for Period I, 3/19/21-6/13/21, also parallel those for deaths and 

hospitalizations in the sense that the vaccination rate does not have a statistically significant 

effect on cases.  These results may again reflect reverse causation—the point estimate of the 

coefficient on the vaccination rate is negative and much larger in magnitude in the instrumental 

estimation, but the standard error blows up. 
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The hardest results to interpret are again for Periods IV and V, 12/1/21-2/25/22 and 

2/25/22-5/22/22, which cover the rise of the omicron variant.  As with hospitalizations, there is 

no indication in these periods that vaccinations reduce COVID cases.  Moreover, there is a 

stronger indication of positive coefficients.  As noted before, this pattern might reflect negative 

influences of vaccination on protective actions such as social distancing and masking. 

 

 E.  Effects of Prior Infection on COVID Outcomes 

A common view is that COVID infection provides natural immunity against future 

mortality, partly by reducing infection risk and partly by lowering mortality probability 

conditional on infection.  One way to assess this possibility is to add measures of lagged COVID 

cases per capita to the regressions for COVID deaths per capita in Table 2.  This analysis is 

challenging because, as noted before, case numbers are subject to substantial measurement error.  

Moreover, there is a lack of instruments to use to isolate exogenous variations in cases.  The 

present analysis uses 6-month lags of case rates as explanatory variables and also includes these 

variables on the instrument lists. 

Table 6 has results when 6-month lags of COVID cases per capita are added to the 

regressions for COVID deaths per capita from columns 2 and 4 of Table 2.  These regressions 

also include, as before, recent and older vaccination rates.  Column 1 of Table 6 has estimates for 

seemingly-unrelated regressions, and column 2 has instrumental estimates when the instruments 

are those used in Table 2, along with the lagged values of the case rates.   

For periods II and III, the estimated coefficients on the lagged case rate in Table 6 are 

significantly negative, with larger magnitudes under instrumental estimation.  As an example, the 

results for period III imply elasticities of response of COVID death rates to prior COVID cases at 



19 
 

the sample means of -1.2 for the SUR estimation and -1.6 under instrumental estimation.   The 

estimated coefficients on the vaccination rates are larger in magnitude than those found in 

Table 2, when the lagged case rate was omitted.  There is also less indication than before of an 

attenuation of vaccine efficacy for older vintages.   

For other periods, the coefficients on the lagged case rate are significantly negative for 

period II and negative but not statistically significant for period IV.  For Period V, there is no 

indication of a negative effect from previous infection on current mortality.  This result goes 

along with the lack of effect from vaccination. 

 

F.  Summing Up 

Regression results reveal clear negative effects from vaccination on COVID-related 

deaths up to the rise of the omicron variant in early December 2021.  There is some evidence that 

the impact of vaccinations attenuates over time, but vintages over six months old retain some 

efficacy.  The influence of vaccination on deaths weakens by early 2022 and disappears in the 

period from February to May 2022.  This pattern likely reflects reduced effectiveness of 

vaccination against new variants of the virus.  Hospitalizations show a similar overall pattern, 

though the evidence for weakening effects appears earlier than for deaths.   This pattern appears 

in a stronger form for cases, and there is some indication in recent periods of coefficients with 

the “wrong” sign; that is, higher vaccination associating with more cases.  This pattern can arise 

if vaccinations motivate individuals to engage in more risky behavior, such as increased social 

interaction.  There is also some indication up to December 2021 of a negative effect on mortality 

from prior infection.  As with vaccination, there is no evidence in the period from February to 

May 2022 that prior infection reduces mortality. 
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IV.  Observational Studies of COVID Vaccinations 

A number of observational studies exist that can be compared with the present regression 

findings.  First are the regular CDC reports on COVID outcomes in relation to vaccination 

status.22  On October 17, 2021, data from 31 jurisdictions indicated that COVID cases per capita 

for unvaccinated persons were 4.3 times those for fully vaccinated and 15.4 times for those with 

a booster shot.  The respective ratios fell to 2.2 and 3.4 on January 2, 2022, 3.2 and 1.5 on April 

24, 2022, and 3.5 and 1.7 on May 15, 2022.  The higher case rates for those boosted compared to 

those only fully vaccinated in April-May 2022 suggest a selection issue related to those who 

chose to become boosted.  In any event, case rates for vaccinated had become closer to those for 

unvaccinated, when compared to the outcomes from October 2021. 

For COVID deaths, covering 30 jurisdictions, the ratio on October 17, 2021 for 

unvaccinated versus fully vaccinated was 14.3, whereas that for unvaccinated versus boosted was 

30.6.  The respective ratios fell to 6.7 and 23.5 on January 2, 2022 and to 5.6 and 6.6 on April 

24, 2022.  Thus, compared to October 2021, death rates for unvaccinated became closer to those 

for vaccinated, but a substantial gap remained in April 2022, with boosted still doing better than 

fully vaccinated. 

Overall, the CDC reports on outcomes in relation to vaccination status seem consistent 

with the present regression findings, which indicate weaker effects of vaccinations on COVID 

deaths and, especially, cases since early December 2021.  It is worth keeping in mind that the 

CDC analysis is subject to issues analogous to those that apply to the cross-state regressions.  For 

example, if less healthy people are more likely to die from COVID, for given vaccination status, 

and more likely to be vaccinated, then the association between vaccination and death would tend 

to understate the beneficial effects from vaccination.  Similar effects arise if older people are 
 

22See cdc.gov/covid-data-tracker/#rates-by-vaccine-status. 
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more likely to die for given vaccination status and more likely to be vaccinated, although the 

CDC indicates that its statistics adjust for age.  However, the CDC analysis does not adjust for 

other socio-economic variables or for vintage of vaccination. 

Another group of large-scale observational studies assesses the efficacy of the Pfizer-

Biontech vaccine in Israel.  As a recent example of this research, Arbel, et al. (2022) studied the 

effects on COVID-19 mortality in a 40-day period in early 2022 from a second booster shot of 

the Pfizer-Biontech vaccine.  The sample consisted of the 563,000 members of a large healthcare 

organization who had previously received a first booster shot, were aged 60 and above, and who 

satisfied some other criteria.  The rate of uptake of second booster shots in this sample was 58%.  

The regression analysis held fixed age and gender and other socio-economic characteristics, as 

well as an array of existing health conditions.  The main finding (Arbel, et al. [2022, Table 3]) 

was that the second booster shot significantly lowered COVID-related mortality, particularly 

among the oldest group.  However, as with the regression results in the first two columns of 

Table 2 in the present study, the analysis did not take account of the endogeneity of vaccine 

uptake (aside from the relationships with the observable variables that were included in the 

regressions). 

 

V.  Speculative Thoughts and Research Plans 

 The results in Tables 2 and 4-6 reveal substantial negative effects of vaccinations on 

COVID deaths, hospitalizations, and cases up to roughly the emergence of the omicron variant of 

the virus in early December 2021.  Results on deaths (Table 2) suggest that the power of 

vaccines wanes over time but still remains effective even after about six months.  This waning 

influence is offset by the introduction of booster shots.  In comparison to the findings from 
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earlier periods, the results since early December 2021 indicate that vaccinations have a weaker 

effect in reducing COVID deaths and may no longer reduce COVID hospitalizations and cases. 

 There are a number of possible explanations for the apparent reduction in the 

effectiveness of vaccinations in the cross-state analysis for the period since early December 2021 

(Tables 2, 4, and 5).  One is waning efficacy of vaccinations over time, though the regression 

analysis attempted to take account of this channel by considering the vintages of vaccinations 

and allowing for the introduction of booster shots.  Another factor is diminishing effectiveness of 

existing vaccines against new forms of the virus, notably the omicron variant.  A further 

possibility is that confidence engendered by vaccinations may have motivated individuals and 

governments to lessen non-pharmaceutical interventions, such as masking and social distancing.  

These responses may have been reinforced by “COVID fatigue,” which raised the perceived 

benefits from social interactions compared to the costs attached to health risks.  Of course, this 

response need not be irrational; that is, the benefits from heightened social interactions may, in 

fact, more than offset the costs from increases in deaths, hospitalizations, and cases. 

More narrowly, in terms of research plans, the first idea is to carry out the analysis at the 

county level.  This change will sharply raise the available number of cross-sectional 

observations.  However, the county-level data introduce new concerns about measurement error 

and about the connection between location of vaccination and location of outcome.  There are 

also likely to be important spillover effects of disease transmission from one county to others. 

 Second, a key issue in the estimation involves the instrumental variables employed.  Even 

if the Trump 2020 vote is viewed as an appropriate instrument, there are difficulties in extending 

the analysis to allow for more than one endogenous variable on the right-hand side of the 

regressions.  This issue arises, for example, in attempting to distinguish the impact of recent from 
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older vaccinations and in isolating effects from the lagged case rate.  Relatedly, this analysis 

involves the role of booster shots.  At this stage, it is unclear what additional instruments will be 

useful.  Possibilities include the measures of pre-existing locations of retail pharmacies used by 

Hansen and Mano (2021b) and Brownstein, et al. (2022). 
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Table 1  Means and Standard Deviations of Variables 

 

Variable Mean s.d. Natl Avg 
COVID cumulative deaths per capita (change per year) 
   3/19/21-6/13/21 
   6/13/21-9/6/21 
   9/6/21-12/1/21 
  12/1/21-2/25/22 
  2/25/22-5/22/22 

 
.00067 
.00058 
.00175 
.00207 
.00086 

 
.00031 
.00043 
.00092 
.00066 
.00044 

 
.00077 
.00061 
.00168 
.00202 
.00082 

COVID cumulative excess mortality per capita (change per year) 
   3/20/21-6/12/21 (week-ending dates) 
   6/12/21-9/4/21 
   9/4/21-12/4/21 
  12/4/21-2/26/22 

 
.00072 
.00172 
.00295 
.00202 

 
.00052 
.00108 
.00123 
.00106 

 
.00075 
.00173 
.00263 
.00212 

COVID cumulative hospitalizations per capita (change per year) 
  3/19/21-6/13/21 
  6/13/21-9/6/21 
  9/6/21-12/1/21 
 12/1/21-2/25/22 
  2/25/22-5/22/22 

 
.0360 
.0480 
.0773 
.1107 
.0248 

 
.0169 
.0297 
.0284 
.0338 
.0092 

 
.0398 
.0536 
.0727 
.1115 
.0247 

COVID cumulative cases per capita (change per year) 
   3/19/21-6/13/21 
   6/13/21-9/6/21 
   9/6/21-12/1/21 
  12/1/21-2/25/22 
  2/25/22-5/22/22 

 
.049 
.077 
.134 
.389 
.056 

 
.022 
.044 
.057 
.069 
.029 

 
.049 
.082 
.110 
.387 
.054 

“Full” vaccinations per capita 
   3/5/21-5/30/21 (data start 3/5/21) 
   5/30/21-8/23/21 
   8/23/21-11/17/21 
  11/17/21-2/11/22 
   2/11/22-5/8/22 

 
.237 
.450 
.548 
.607 
.641 

 
.031 
.071 
.079 
.083 
.089 

 
.228 
.448 
.553 
.614 
.650 

Booster vaccinations per capita 
   8/23/21-11/17/21 (data start 10/20/21) 
  11/17/21-2/11/22 
   2/11/22-5/8/22 

 
.025 
.199 
.290 

 
.008 
.053 
.075 

 
.024 
.196 
.290 

Fraction over age 25 with completed high school, 2019 .901 .027 .886 
Population fraction 65 and older, 2020 .173 .020 .169 
Life expectancy at birth, 2018 78.8 1.8 79.3 
Population fraction black, 2020 .110 .101 .124 
Urbanization rate, 2010 .741 .149 .809 
Fraction of votes Republican, 2020 Presidential election .492 .120 .469 
Population fraction 75 and older, 2020 .068 .010 .067 
Fraction over age 25 with completed college, 2019 .327 .065 .331 
Per capita  personal income ($1000s), 2020 57.7 9.4 59.6 
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Maximum temperature, December 1-February 25 25.2 12.7 51.0 
Maximum temperature, September 6-December 1 66.2 8.9 69.7 
Maximum temperature, June 13-September 6 84.7 6.5 85.0 
Maximum temperature, March 19-June 13 69.6 8.1 71.6 
Maximum temperature, February 25-May 22 63.0 9.3 66.0 

 

 

 

Notes to Table 1 

COVID-related deaths, hospitalization, and cases are differences in cumulative values per person 
for dates shown (corresponding to cumulations of new deaths, hospitalizations, and cases), 
expressed at annual rates.  Data for cumulative deaths and cases per person are from Chetty, et 
al. (2022).  Values for deaths and cases are adjusted in accordance with n. 11.  (Data for 
cumulative hospitalizations are given in the downloadable file provided in Chetty, et al. (2022).  
Adjustments in the hospitalization numbers do not seem to be necessary.)  The changes in 
cumulative values were divided by state population in 2020.  Full and booster vaccinations are 
averages per person over periods shown.  The averages apply to dates at the start, end, and 
middle of each period, with the middle value getting double weight.  Vaccination data are 
adjusted in accordance with n. 11.  Maximum temperature is average high temperature in degrees 
Fahrenheit over dates shown.  Underlying values are monthly for largest city in each state.  
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Table 2  Regressions for COVID Deaths per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/19/21-6/13/21     
   vaccination rate -.0009 

(.0014) 
-.0010 
(.0014) 

-.0057 
(.0086) 

-.0057 
(.0086) 

Period II: 6/13/21-9/6/21     
   vaccination rate -.0041*** 

(.0008) 
-.0041*** 

(.0008) 
-.0041*** 

(.0012) 
-.0041*** 

(.0012) 
Period III: 9/6/21-12/1/21     
   vaccination rate -.0092*** 

(.0016) 
-.0100*** 

(.0017) 
-.0093*** 

(.0021) 
-.0096*** 

(.0021) 
   vaccination rate, older 
  

-- -.0058* 
(.0032) 

-- -.0063 
(.0047) 

   joint p-value  0.000  0.000 
   p-value for equal coeffs  0.22  0.44 
Period IV: 12/1/21-2/25/22     
   vaccination rate -.0023** 

(.0010) 
-.0023** 
(.0012) 

-.0025* 
(.0014) 

-.0031** 
(.0015) 

   vaccination rate, older 
      

-- -.0024 
(.0015) 

-- -.0016 
(.0017) 

   joint p-value  0.08  0.13 
   p-value for equal coeffs  0.99  0.39 
Period V: 2/25/22-5/22/22     
   vaccination rate .0000 

(.0007) 
.0003 

(.0007) 
.0008 

(.0010) 
.0011 

(.0010) 
   vaccination rate, older 
      

-- -.0011 
(.0012) 

-- -.0006 
(.0014) 

   joint p-value  0.53  0.30 
   p-value for equal coeffs  0.26  0.18 
R-squared .28 .65 

.65 .65 .61 
.28 .65 

.66 .65 .62 
.16 .65 

.65 .65 .60 
.16 .65 

.66 .65 .61 
s.e. .0003 .0003 

.0006 .0004 
.0003 

.0003 .0003 

.0006 .0004 
.0003 

.0003 .0003 

.0006 .0004 
.0003 

.0003 .0003 

.0006 .0004 
.0003 
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Notes to Table 2 

 

Sample is 50 U.S. states plus District of Columbia.  Sample dates shown in the left-most column 
refer to the dependent variable.  This variable is the change in cumulative reported COVID-
related deaths per capita over each period (values expressed per year).  Vaccination rate in 
columns 1 and 3 is the fraction of the population fully vaccinated against COVID-19 (not 
counting booster shots).  This variable is lagged 14 days from the dependent variable and is 
entered as an average over each period, as described in Table 1.  In columns 2 and 4, vaccination 
rate is the fraction of the population fully vaccinated over roughly the last 6 months plus the 
fraction fully vaccinated earlier who have received booster shots.  In these columns, “vaccination 
rate, older” is the fraction fully vaccinated roughly 6 or more months in the past less the fraction 
who have received booster shots.  Other explanatory variables, shown in Table 1, are fraction of 
population aged 65 and over in 2020, life expectancy at birth in 2018, fraction of population aged 
25 and over who completed high school or more in 2019, fraction of population black in 2020, 
urbanization rate in 2010, and average maximum temperature over periods corresponding to the 
dependent variable.  Coefficients on these variables, constant terms, and the vaccination rates 
differ across periods.  Standard errors of coefficient estimates are in parentheses.  SUR 
(seemingly-unrelated regression) allows for a different error variance in each period and for 
correlation of the error terms across periods.  s.e. is the standard error of each regression.  In 
columns 1 and 3, instrumental estimation (three-stage least-squares) uses as the excluded 
instrument the fraction of the population voting in 2020 that voted Republican (as shown in 
Table 1).  In columns 2 and 4, the instrument list also includes the difference in the vaccination 
variable for the current period from that in the period roughly 6 months earlier. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 3  First-Stage Regressions for Vaccination Rates 

 

 (1) (2) (3) (4) (5) 
Periods for 
vaccination rates 

3/5/21-
5/3/21 

5/3/21-
8/23/21 

8/23/21-
11/17/21 

11/17/21-
2/11/22 

2/11/22-
5/8/22 

Constant .02 
(.29) 

.10 
(.36) 

.22 
(.37) 

.17 
(.40) 

.20 
(.42) 

Over-65 .24 
(.19) 

.75*** 
(.23) 

.81*** 
(.24) 

.71*** 
(.26) 

.65** 
(.26) 

Life expectancy .0020 
(.0036) 

.0043 
(.0046) 

.0072 
(.0047) 

.0098** 
(.0051) 

.0105** 
(.0053) 

High School Education .12 
(.17) 

.18 
(.20) 

-.08 
(.21) 

-.14 
(.22) 

-.17 
(.23) 

Black -.131*** 
(.050) 

-.247*** 
(.062) 

-.213*** 
(.063) 

-.203*** 
(.068) 

-.211*** 
(.072) 

Urban -.046 
(.036) 

-.037 
(.045) 

-.025 
(.045) 

-.041 
(.049) 

-.039 
(.051) 

Average Maximum 
Temperature 

.0001 
(.0005) 

.0001 
(.0004) 

-.0001 
(.0002) 

.0000 
(.0002) 

.0001 
(.0003) 

Trump vote -.095** 
(.044) 

-.475*** 
(.054) 

-.531*** 
(.055) 

-.561*** 
(.059) 

-.606*** 
(.063) 

R-squared .42 .82 .84 .84 .84 
s.e. .026 .033 .034 .036 .038 

 

Notes:  Sample is 50 U.S. states plus District of Columbia.  Dependent variables, over the 
periods shown in the top row, are the averages of full vaccination rates, as used in Table 2.  
Over-65 is the fraction of the population in 2020 that was aged 65 or more.  Life expectancy at 
birth is for 2018.  High School Education is fraction of the population in 2019 aged 25 or more 
that had completed four years of high school or more.  Black is the fraction of the population in 
2020 classified as black.  Urban is the fraction of the population urbanized in 2010.  Trump vote 
is the fraction of votes for President in 2020 that went Republican.  Estimation is by seemingly-
unrelated regression, which allows for a different error variance in each period and for 
correlation of the error terms across periods.  Standard errors of estimated coefficients are in 
parentheses.  s.e. is the standard error of each regression. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 4  Regressions for COVID Hospitalizations per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/19/21-6/13/21     
   vaccination rate -.001 

(.058) 
.049 

(.061) 
-.085 
(.380) 

-.085 
(.380) 

Period II: 6/13/21-9/6/21     
   vaccination rate -.270*** 

(.053) 
-.281*** 

(.053) 
-.257*** 

(.073) 
-.257*** 

(.073) 
Period III: 9/6/21-12/1/21     
   vaccination rate -.280*** 

(.047) 
-.317*** 

(.046) 
-.245*** 

(.068) 
-.272*** 

(.065) 
   vaccination rate, older 
     

-- -.098 
(.083) 

-- .108 
(.145) 

Period IV: 12/1/21-2/25/22     
   vaccination rate .008 

(.052) 
-.063 
(.053) 

.081 
(.082) 

-.011 
(.085) 

   vaccination rate, older 
     

-- .133** 
(.065) 

-- .237** 
(.095) 

Period V: 2/25/22-5/22/22     
   vaccination rate .023 

(.019) 
.011 

(.019) 
.056* 
(.029) 

.042 
(.028) 

   vaccination rate, older 
     

-- .086** 
(.029) 

-- .132*** 
(.041) 

R-squared .49 .70 
.63 .54 .21 

.49 .70 
.67 .60 .30 

.46 .70 
.63 .52 .21 

.46 .70 
.65 .59 .30 

s.e. .013 .017 
.019 .025 

.009 

.013 .017 

.018 .023 
.008 

.013 .017 

.019 .025 
.009 

.013 .017 

.018 .024 
.008 

 

Notes:  See notes to Table 2.  The only difference is that the dependent variable is based on 
COVID-related reported hospitalizations per capita. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 5  Regressions for COVID Cases per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/19/21-6/13/21     
   vaccination rate -.017 

(.090) 
.026 

(.092) 
-.684 
(.711) 

-.684 
(.711) 

Period II: 6/13/21-9/6/21     
   vaccination rate -.471*** 

(.082) 
-.470*** 

(.082) 
-.509*** 

(.117) 
-.509*** 

(.117) 
Period III: 9/6/21-12/1/21     
   vaccination rate -.406*** 

(.089) 
-.514*** 

(.086) 
-.328*** 

(.121) 
-.388*** 

(.114) 
   vaccination rate, older 
     

-- .058 
(.155) 

-- .460* 
(.254) 

Period IV: 12/1/21-2/25/22     
   vaccination rate .284* 

(.165) 
.138 

(.181) 
.272 

(.220) 
.200 

(.242) 
   vaccination rate, older 
     

-- .529** 
(.223) 

-- .394 
(.273) 

Period V: 2/25/22-5/22/22     
   vaccination rate .211*** 

(.044) 
.196*** 
(.045) 

.286*** 
(.062) 

.272*** 
(.063) 

   vaccination rate, older 
     

-- .278*** 
(.070) 

-- .356*** 
(.092) 

R-squared .43 .66 
.71 .14 .63 

.43 .66 
.76 .16 .64 

-.16 .66 
.71 .17 .64 

-.16 .66 
.74 .19 .65 

s.e. .018 .028 
.033 .068 

.019 

.018 .028 

.030 .069 
.019 

.025 .028 

.033 .067 
.019 

.025 .028 

.032 .067 
.019 

 

Notes:  See notes to Table 2.  The only difference is that the dependent variable is based on 
COVID-related reported cases per capita. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 6  Regressions for COVID Deaths per Capita, Including Lagged Cases 

 (1) (2) 
Estimation method SUR Instruments 
Period I: 3/19/21-6/13/21   
   vaccination rate -.0009 

(.0014) 
-.0044 
(.0076) 

   lagged case rate .0012 
(.0019) 

.0005 
(.0021) 

Period II: 6/13/21-9/6/21   
   vaccination rate -.0049*** 

(.0009) 
-.0057*** 

(.0014) 
   lagged case rate -.0037** 

(.0018) 
-.0043** 
(.0020) 

Period III: 9/6/21-12/1/21   
   vaccination rate -.0132*** 

(.0019) 
-.0166*** 

(.0030) 
   vaccination rate, older 
  

-.0082*** 
(.0030) 

-.0156*** 
(.0056) 

   lagged case rate -.0123*** 
(.0038) 

-.0170*** 
(.0051) 

Period IV: 12/1/21-2/25/22   
   vaccination rate -.0034** 

(.0014) 
-.0056** 
(.0025) 

   vaccination rate, older 
      

-.0040** 
(.0018) 

-.0052* 
(.0030) 

   lagged case rate -.0037 
(.0030) 

-.0064 
(.0044) 

Period V: 2/25/22-5/22/22   
   vaccination rate .0002 

(.0010) 
.0028 

(.0019) 
   vaccination rate, older 
      

-.0012 
(.0013) 

.0012 
(.0022) 

   lagged case rate -.0001 
(.0018) 

.0034 
(.0028) 

R-squared .28 .68 
.71 .66 .62 

.22 .67 
.67 .66 .57 

s.e. .0003 .0003 
.0005 .0004 

.0003 

.0003 .0003 

.0006 .0004 
.0003 

Note:  These results extend columns 2 and 4 of Table 2 to include the lagged cumulative number 
of COVID cases per capita.  The lagged case rates are for 12/23/20 for period I, 3/19/21 for 
period II, 6/13/21 for period III, 9/6/21 for period IV, and 12/1/21 for period V.  These lagged 
values are included on the instrument lists in column 2. 

***Significant at 1%, **significant at 5%, *significant at 10%.  
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Appendix 

 

 The analysis for COVID-related deaths per capita was redone with deaths calculated from 

all-cause excess mortality rather than COVID-related mortality.  The underlying information for 

calculating excess mortality is given by the CDC in Provisional COVID-19 Death Counts by 

Week Ending Date and State, updated June 28, 2022, available at data.cdc.gov.  Data are from 

columns K (total deaths) and L (percent of expected deaths).  The number of expected deaths is 

calculated by the CDC from the observed average number of deaths for the corresponding weeks 

in 2017-2019.  The computed all-cause excess mortality rate equals total deaths divided by state 

population multiplied by (percent of expected deaths – 100)/(percent of expected deaths).  State 

population is taken to be the value for 2020 from the U.S. Census Bureau.  This measure of the 

all-cause excess mortality rate is used to calculate the dependent variables in Table A1.  The 

CDC indicates that there is a substantial lag in computing nearly complete data for total deaths—

"data are generally at least 75% complete within 8 weeks of when the death occurred.”  

Therefore, these data are used only for regressions in Table A1 that go through late February 

2022.  
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Table A1  Regressions for All-Cause Excess Mortality per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/20/21-6/12/21     
   vaccination rate -.0024 

(.0018) 
-.0012 
(.0021) 

.0012 
(.0125) 

.0012 
(.0125) 

Period II: 6/12/21-9/4/21     
   vaccination rate -.0082*** 

(.0019) 
-.0078*** 

(.0020) 
-.0057* 
(.0031) 

-.0057* 
(.0031) 

Period III: 9/4/21-12/4/21     
   vaccination rate -.0089*** 

(.0018) 
-.0094*** 

(.0018) 
-.0052* 
(.0031) 

-.0062* 
(.0032) 

   vaccination rate, older 
  

-- -.0052 
(.0039) 

-- -.0005 
(.0041) 

   joint p-value  0.000  0.012 
   p-value for equal coeffs  0.29  0.027 
Period IV: 12/4/21-2/26/22     
   vaccination rate -.0002 

(.0023) 
.0001 

(.0026) 
.0026 

(.0030) 
.0023 

(.0034) 
   vaccination rate, older 
      

-- -.0006 
(.0032) 

-- .0031 
(.0038) 

   joint p-value  0.98  0.68 
   p-value for equal coeffs  0.84  0.82 
R-squared .36 .60 

.60 .36 
.36 .60 
.61 .36 

.37 .59 

.59 .34 
.37 .59 
.56 .34 

s.e. .0004 .0007 
.0008 .0009 

.0004 .0007 

.0008 .0009 
.0004 .0007 
.0008 .0009 

.0004 .0007 

.0009 .0009 
 

 

Note:  The specification is the same as in Table 2 except that the death rate is measured by all-
cause excess mortality per capita and Period V is excluded. 




