
NBER WORKING PAPER SERIES

VACCINATION RATES AND COVID OUTCOMES ACROSS U.S. STATES

Robert J. Barro

Working Paper 29884
http://www.nber.org/papers/w29884

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2022, Revised April 2022

The research reported in this working paper was supported by the National Institute on Aging of 
the National Institutes of Health under Award Number P30AG012810. The content is solely the 
responsibility of the author and does not necessarily represent the official views of the National 
Institutes of Health or the National Bureau of Economic Research. I have benefited from 
comments by Stephen Barro, David Cutler, Ed Glaeser, NielsJakob Hansen, Rui Mano, Rachel 
McCleary, Bruce Meyer, Lisa Robinson, Jesse Shapiro, Michael Strain, Stan Veuger, and Mark 
Warshawsky.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2022 by Robert J. Barro. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



Vaccination Rates and COVID Outcomes across U.S. States 
Robert J. Barro
NBER Working Paper No. 29884
March 2022, Revised April 2022
JEL No. I1

ABSTRACT

Rates of COVID deaths, hospitalizations, and cases differ markedly across U.S. states, as do rates 
of vaccination. This study uses cross-state regressions to assess impacts of vaccinations on 
COVID outcomes. A number of familiar issues arise concerning cross-sectional regressions, 
including omitted variables, behavioral responses to vaccination, and reverse causation. The 
benefits from a field context and from the broad range of observed variations suggest the value 
from dealing with these issues. Results reveal sizable negative effects of vaccination on deaths, 
hospitalizations, and cases up to early December 2021, although vaccine efficacy seems to wane 
over time. The findings for deaths apply to all-cause excess mortality as well as COVID-related 
mortality. The estimates imply that one expected life saved requires 248 additional doses, with a 
marginal cost around $55000, far below typical estimates of the value of a statistical life. Results 
since December 2021 suggest smaller effects of vaccinations on deaths and, especially, 
hospitalizations and cases, possibly because of diminished effectiveness of vaccines against new 
forms of the virus, notably the omicron variant. A further possibility is that confidence 
engendered by vaccinations may have motivated individuals and governments to lessen non-
pharmaceutical interventions, such as masking and social distancing.
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Vaccination rates against COVID-19 differ markedly across U.S. states.  For example, 

based on CDC data reported in Chetty, et al. (2022) and as shown in Table 1, the rate of “full” 

vaccination over a recent period of roughly three months, 11/17/21-2/11/22, averaged 61% with 

a standard deviation of 8%.  These rates varied from 48% in Alabama to 77% in Vermont.  If 

vaccinations are effective at reducing infections and deaths, these differences should map into 

differences in COVID-related cases, hospitalizations, and deaths. 

Table 1 shows that CDC data on reported COVID-related cases, hospitalizations, and 

deaths also varied substantially across the states.  For example, for 12/1/21-2/25/22 (14 days 

after the vaccination period), the change in cumulative cases per person—corresponding to 

cumulations of new cases over the period—averaged 0.39 with a standard deviation of 0.069.1  

The range was from 0.27 for Idaho to 0.66 for Rhode Island.  Over the same period, the change 

in cumulative hospitalizations per person averaged 0.077 with a standard deviation of 0.028 and 

a range from 0.049 for Vermont to 0.226 in the District of Columbia.  Cumulative deaths per 

person averaged 0.0021 with a standard deviation of 0.0007 and a range from 0.0007 for the 

District of Columbia to 0.0037 for Michigan. 

Table 1 shows comparable statistics for earlier periods.  For vaccinations, the data start at 

3/5/21, corresponding to the beginning of CDC information on full vaccinations.2  Each of the 

four periods shown covers roughly three months (86 days).  Note that the mean of full 

vaccination rates rose from 0.24 in 3/5/21-5/30/21 to 0.45 in 5/30/21-8/23/21, 0.55 in 

8/23/21-11/17/21, and 0.61 in 11/17/21-2/11/22.  The table also shows national averages, which 

differ to a minor extent from the means of values across the states. 

1These and subsequent numbers are expressed at annual rates; that is, the changes over 86 days were multiplied 
by 365/86. 
2The national fraction reported as fully vaccinated on 3/5/21 was already positive, 0.086. 
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For cases, hospitalizations, and deaths, the corresponding periods in Table 1 are each 14 

days subsequent to the periods for vaccinations.  Note that the mean of Covid cases per person 

rose from 0.05 in 3/19/21-6/13/21 to 0.08 in 6/13/21-9/6/21, 0.13 in 9/6/21-12/1/21, and 0.39 in 

12/1/21-2/25/22 (all measured at annual rates).  For hospitalizations per person, the mean was 

0.036 in 3/19/21-6/13/21 and then climbed to 0.048 in 6/13/21-9/6/21, 0.077 in 9/6/21-12/1/21, 

and 0.111 in 12/1/21-2/25/22.  For COVID deaths per person, the mean was 0.0007 in 

3/19/21-6/13/21 and 0.0006 in 6/13/21-9/6/21, then rose to 0.0018 in 9/6/21-12/1/21 and 0.0021 

in 12/1/21-2/25/22.  Note that, probably because of expanded testing, cases rose proportionately 

much more than hospitalizations and deaths in the most recent period.3 

The objective of this study is to use cross-sectional regressions for the U.S. states to 

attempt to assess the effects of vaccinations on COVID-related outcomes.  The regression 

framework takes as dependent variables the outcomes over the four periods shown in Table 1.  

That is, each dependent variable is the number of cases or hospitalizations or deaths per person 

cumulated over periods of roughly three months.  The corresponding explanatory variables 

related to levels of vaccinations are averages over periods lagged 14 days compared to the 

dependent variables.4  The idea is that, at any point in time, the probabilities of infection, 

hospitalization, and death depend (with some lag) on the fraction of the population vaccinated. 

The empirical framework can be viewed as a reduced form of SIR—susceptible-infected-

recovered (and died)—models constructed by epidemiologists and, more recently, economists to 

study the evolution of contagious disease.  This work began with Kermack and McKendrick 

 
3 CDC data reported in Chetty, et al. (2022) show that national nucleic acid amplification tests per 100,000 persons 
rose from zero in March 2020 to around 600 in December 2020-January 2021, fell to less than 200 in July 2021, 
rose back to around 600 in September 2021 and 900 in January 2022, then fell to about 200 in April 2022. 
4The relevant lag may differ from 14 days and would differ for cases, hospitalizations, and deaths.  However, in 
practice, the regression results are not sensitive to the use of different lags between 14 and 28 days.  These lags 
are consistent with those discussed by Bjornskov (2021, p. 320) 
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(1927) and has been pursued recently by, among others, Atkeson (2020); Eichenbaum, Rebelo, 

and Trabandt (2021); and Acemoglu, Chernozhukov, Werning, and Whinston (2021).  In this 

type of model, vaccination makes an individual less likely to catch the disease through contact 

with an infected person.  Vaccination also lowers the likelihood of a person’s disease becoming 

severe, thereby lowering the probability of hospitalization, conditional on infection.  Finally, 

vaccination lowers an individual’s probability of death, conditional on severe disease.  At the 

community level, by lowering the overall rate of infection, a higher vaccination rate reduces the 

chance that an individual will be infected in a random encounter.  The full equilibrium 

encompasses the direct inverse effects of vaccination on adverse outcomes along with the effects 

that work through contagion at the community level.  Overall, a higher vaccination rate in a 

community associates with a reduction in the rates of infection (cases), severe disease (proxied 

by hospitalizations), and mortality.  In the empirical analysis, the relevant community is taken to 

be a U.S. state, so that the spread of disease across state borders is neglected.  In a planned 

extension, a community will be associated with a county, so that cross-border transmission will 

be more important. 

As is familiar from the extensive work by epidemiologists on contagious disease, the 

high-frequency behavior of infections, hospitalizations, and deaths features waves of rising and 

falling outcomes.  The idea in the regression analysis is to consider periods of sufficient length, 

such as three months, so that these short-run dynamics tend to average out.  The estimated 

coefficients may then give estimates of the effects of vaccination rates in a community (state) on 

the average probabilities of infection, hospitalization, and death. 
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I.  Issues with Cross-Sectional Regressions 

As is well known, inferences from cross-sectional regressions may be difficult to draw.  

Because of these problems, detailed below, many researchers have moved increasingly away 

from these types of regressions, preferring instead to rely on randomized control trials (RCTs) or 

natural experiments.  Although RCTs are important for assessing the efficacy of vaccines, 

including those recently developed for COVID-19, it is more difficult to evaluate impacts on 

cases, hospitalizations, and deaths in the “field.”  As far as I know, there are no RCTs applicable 

to field results connecting COVID vaccinations to COVID outcomes.5  In some cases, natural 

experiments—such as regression-discontinuity designs applied to state borders—have been used 

successfully in the context of COVID-19.  For example, this approach has been applied to 

facemask mandates by Goolsbee and Syverson (2021), who consider economic impacts, and 

Hansen and Mano (2021a), who assess health outcomes.6 

There are also important advantages of cross-sectional regressions.  In particular, they 

apply to the field context and can exploit the large observed cross-sectional variations in the 

variables of interest, especially differences across U.S. states in vaccination uptake.  Because of 

these major benefits, it seems worthwhile to pursue the cross-sectional regression approach in the 

context of COVID vaccinations and outcomes. 

I consider now three major issues in interpreting the results from cross-state regressions.  

The first concern is that vaccination take-up may be correlated with other variables that influence 

COVID outcomes.  If these other variables are omitted from the regressions, the estimated 

 
5Abaluck, et al. (2022) describe a large-sample randomized trial for mask-wearing in rural Bangladesh. 
6Herby, Jonung, and Hanke (2022) carry out a meta-analysis of 24 studies of the effects of facemask mandates on 
COVID-19 mortality.  Their overall conclusion is “lockdowns have had little to no effect on COVID-19 mortality.”  
Many of the  studies considered seem to lack convincing causal evidence—the cross-border approach of Hansen 
and Mano (2021a) and the instrumental-variable regressions of Welsch (2020) seem superior in this regard.  These 
two studies were not included in the Herby, Jonung, and Hanke (2022) analysis. 
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coefficient on the vaccination rate may proxy for the influences of these other variables.  For 

example, if older people are more susceptible to COVID infection and, especially, death, they are 

likely to be vaccinated more frequently (and earlier).  In this case, the observed correlation 

between vaccine take-up and COVID cases, hospitalizations, and deaths may be positive.  This 

issue is handled by including as explanatory variables a set of major socio-economic variables—

specifically, the fraction of the state population aged 65 and over in 2020, state life expectancy at 

birth in 2018, the fraction of the state adult population with education of four years of high 

school or more in 2019, the fraction of the state population classified by the U.S. Census as black 

in 2020, and the urbanization rate in 2010.  To deal with possible seasonal effects, the analysis 

also includes differences in average temperature across states at different times of the year.  

Inclusion of some other variables—population share aged 75 and over in 2020, per capita 

personal income in 2020, and college education in 2019—do not materially affect the results.7 

 The second issue is that persons vaccinated may alter their behavior in ways that impact 

probabilities of COVID infection, hospitalization, and death.  For example, a vaccinated person 

may feel protected and react accordingly by engaging in more social interactions or other risky 

behaviors.  An analogous mechanism for seatbelt use, analyzed in research that began with 

Peltzman (1975), is that a person who uses a seatbelt (perhaps because of a legal mandate) may 

drive faster.  These kinds of mitigating actions may not arise in clinical trials (particularly if 

persons do not know their vaccination status) but would apply in the field.  Moreover, the nature 

and extent of these actions may vary over time as empirical evidence grows about the nature of 

the disease and the effects of vaccinations and non-pharmaceutical interventions.  People may 

also change their behavior in response to cumulated “fatigue” from past isolation. 

 
7Data by U.S. state on the socio-economic variables come from the U.S. Census Bureau.  The data on personal 
income are from the Bureau of Economic Analysis.  The temperature data are from usclimatedata.com. 



6 
 

In the regression analysis, the estimated effects of vaccinations on COVID outcomes 

comprise direct effects combined with any mitigation behavior.  In some contexts, these 

combined effects are the objects of interest—e.g. overall effects of vaccinations on deaths (or of 

seatbelt use on automobile fatalities).  In other contexts, there would be more interest in the 

effects of vaccinations, holding fixed the behavioral variables.8  In any event, the present 

regression results apply to the combined effects in various periods. 

 The third issue concerns reverse causation.  Higher vaccination rates likely reduce 

COVID infections, hospitalizations, and deaths, and these are the effects that we seek to isolate.  

However, in addition, higher probabilities of infection, hospitalization, and death likely 

encourage people to get vaccinated (and motivate governments to mandate or subsidize 

vaccinations and to support the creation and distribution of vaccines).  The first channel, 

whereby vaccination reduces probabilities of adverse outcomes, tends to generate a negative 

association between vaccination rates and rates of infection, hospitalization, and death, whereas 

the second channel tends to generate a positive association.  If the second channel is not held 

constant, the observed association between vaccination rates and rates of infection, 

hospitalization, or death tends to underestimate the magnitude of the (negative) effect from 

vaccination. 

A common way to deal with reverse causation is to use instrumental variables that 

explain a substantial part of the variation in the explanatory variable, in the present context the 

vaccination rate, but do not enter directly as determinants of outcomes, in the present case the 

rates of COVID cases, hospitalizations, and deaths.  That is, the instrument matters for outcomes 

 
8This analysis would allow for welfare benefits derived from the mitigating actions; for example, people getting 
pleasure from greater social interactions or from driving faster while wearing seatbelts.   
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only through the channel of affecting the frequency of vaccination.  The present analysis uses as 

an instrument a variant of the variable proposed by Welsch (2020, Section 3.2)—the Trump 

(Republican) share of the 2020 Presidential vote.9  Welsch (Table 2) used the 2016 value of this 

variable as an instrument for facemask usage, measured in July 2020 in a survey conducted by 

The New York Times. 

Perhaps surprisingly, the Trump variable has a great deal of explanatory power for 

vaccination rates across states, even after holding constant key socio-economic variables, such as 

those mentioned before—old-age share, life expectancy, education, fraction black, and 

urbanization.  That is, the Trump variable does not matter for vaccine take-up because it proxies 

for these kinds of socio-economic factors.  Therefore, from the standpoint of having a lot of 

independent explanatory power for vaccination rates, the Trump variable is a good candidate as 

an instrument.  In effect, the 2020 Presidential voting pattern sorts people (and states) into bins 

for vaccine attitudes in a manner that is largely orthogonal to socio-economic characteristics. 

A reasonable concern is that the Trump variable would matter for COVID outcomes in 

ways that do not work entirely through vaccination status.  For example, Welsch (2020, 

Appendix Table A1) found that the Trump vote share was inversely related to facemask usage in 

the New York Times survey.  Consistent with Welsch’s findings, for the period 3/16/20-2/1/21, 

which precedes major distribution of vaccines, the presence of a facemask mandate at the state 

level is significantly negatively related to the Trump vote share.10   However, a combination of 

the estimated negative effect of the Trump vote variable on facemask mandates with the Hansen 

and Mano (2021a) estimated negative effect of facemask mandates on COVID deaths yields a 

 
9The voting data are from Federal Election Commission (fec.gov). 
10The facemask mandate is measured from information given in Raifman, et al. (2022)  as the fraction of days 
between March 16, 2020 and February 1, 2021 in which a statewide facemask mandate was in effect. 
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very small implied positive effect of the Trump vote on COVID deaths, compared with the 

effects estimated below that work through vaccinations.  Therefore, from a quantitative 

standpoint, the Trump variable may be a satisfactory instrument for vaccination rates even 

though this variable has influences on COVID outcomes that work through facemask mandates 

and usage (or other forms of non-pharmaceutical interventions). 

 

II.  Data and Empirical Setup 

 Data on COVID-related deaths, hospitalizations, and cases, measured relative to 

population, are reported by the CDC and provided by Opportunity Insights, Economic Tracker 

(see Chetty, et al. [2022]).  The data used in this study are for the 50 U.S. states plus the District 

of Columbia.   

The three measures of COVID outcomes enter as dependent variables in the regressions 

and are examined over the four periods noted before.  The starting date, March 19, 2021, is 14 

days after the beginning of data on vaccination rates (fully vaccinated persons relative to state 

population), also coming from the CDC and Opportunity Insights.11  The first three periods, 

shown in Table 1, are 3/9/21-6/13/21, 6/13/21-9/6/21, and 9/6/21-12/1/21.  These periods are of 

equal length (86 days) and extend to the rough date of onset of the omicron variant in the United 

 
11The CDC data reported by Opportunity Insights have occasional large jumps in cumulative COVID deaths and 
vaccinations.  (The death, hospitalization, and case data are reported by the CDC as 7-day moving averages of daily 
data, whereas the vaccination data are reported daily.)  My interpretation, consistent with feedback obtained from 
the CDC, is that the jumps do not represent real changes but rather reflect shifts in procedures or assessments of 
data already processed, with past data not subsequently revised.  This view accords with the observation that 
some of the jumps are negative.  As one example of a jump, the reported cumulative COVID deaths per 100,000 
persons in Oklahoma shifts from 125 on 4/6/21 to 169 on 4/13/21.  In the most egregious case, for the full 
vaccination rate in West Virginia, the variable jumps from .415 to .489 on 12/2/21, from .492 to .690 on 12/8/21, 
from .690 to .710 on 12/10/21, and from .716 to .548 on 12/23/21.  The data on deaths and vaccinations were 
modified to smooth out these jumps (by making proportional adjustments at dates that precede the jumps).  These 
kinds of adjustments did not seem to be necessary over the sample period for hospitalizations and cases.  The 
main inferences from the results, notably from Table 2, do not change when the original data are used.  However, 
the overall fit of the regressions is much poorer with the original data. 
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States.  The most recent period, 12/1/21-2/25/22, is the same length as the previous three.  For 

each period, COVID-related deaths or hospitalizations or cases are the changes in the cumulative 

per capita numbers, expressed at annual rates. 

 

III.  Regression Results 

A.  COVID-related deaths 

Regression results in Table 2 are for COVID-related deaths per capita, observed over the 

four periods of 86 days:  Period I (3/19/21-6/13/21), Period II (6/13/21-9/6/21), Period III 

(9/6/21-12/1/21), and Period IV (12/1/21-2/25/22).12  The first two columns are for seemingly-

unrelated regressions, which use a least-squares procedure but compute standard errors of 

estimated coefficients when allowing for correlation of the error terms across the periods.  The 

first column has on the right-hand side the average of the full vaccination rate over periods 

lagged 14 days relative to the dependent variable.13  Note that, whereas the dependent variable is 

the change in cumulative deaths per person over the periods shown, the independent variable is 

the cumulative level of full vaccinations per person (with a 14-day lag compared to the 

dependent variable). 

To allow for a possible waning effectiveness of the vaccine, the specification in column 2 

of Table 2 includes two measures of vaccination rates—one for full vaccinations that occurred 

roughly within the last six months and the other covering full vaccinations from six or more 

months in the past.  In this specification, booster shots, for which CDC information starts on 

10/20/21,14 are viewed as converting an old full vaccination into a recent one.  That is, when 

 
12Results are broadly similar when the data are broken down into eight periods of 43 days between 3/19/21 and 
2/25/22. 
13The results are similar with a lag of 28 days. 
14The national fraction of reported booster shots on 10/21/21 was already positive, 0.034. 
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combined with the remaining efficacy of a full vaccination from six months ago, a booster is 

modeled as generating effectiveness equal to that of a recent full vaccination.  The inclusion of 

booster shots applies only to the two most recent periods in Table 2; that is, no boosters existed 

and none of the full vaccinations were “old” up to roughly September 2021.   

Aside from the vaccination variables, the regressions also include on the right-hand sides 

the socio-economic variables mentioned before—old-age fraction, life expectancy, high school 

education, fraction black, and urbanization.  Also included is the historical average maximum 

temperature over the relevant period (computed from monthly data for the largest city in each 

state).  In the estimation, separate coefficients are estimated for each period for each independent 

variable, including the constant term.  In this specification, the constant terms absorb variations 

over time in aggregate COVID outcomes. 

In column 1, the estimated coefficients on the (roughly) contemporaneous vaccination 

rate are all negative, significant at the 1% level for Periods II and III (6/13/21-9/6/21 and 9/6/21-

12/1/21), and significant at the 5% level for Period IV (12/1/21-2/25/22).  To assess the 

magnitudes of the estimated responses, consider period III, for which the estimated coefficient is 

the largest in magnitude, -0.0091.  Over this interval, the mean of the vaccination rate variable is 

0.548 with a standard deviation of 0.078.  Therefore, a one-standard-deviation increase in the 

vaccination rate, which is a rise by 14.2%, is estimated to lower the death rate by 0.00071, 

compared to the mean death rate of 0.00175.  That is, the death rate falls by 40.6%.  The implied 

elasticity of response is the ratio of -40.6 to 14.2, which equals -2.9.  The estimated elasticities 

are smaller in magnitude for the other periods, corresponding to the smaller sizes of the 

estimated coefficients in Table 2, column 1.15 

 
15For the other explanatory variables, the fraction over age 65 is significantly positive in each period, and high 
school education is negative and at least marginally significant in each period.  Life expectancy and fraction black 
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When the two measures of vaccination rates are included in column 2, the results for 

period III (9/6/21-12/1/21) suggest that recent vaccinations are roughly twice as effective against 

deaths as older vaccinations; point estimates of coefficients are -.0097 and -.0064, respectively.  

Each of these estimated coefficients is statistically significant at least at the 5% level.  However, 

the two estimated coefficients differ from each other only with the high p-value of 0.31.  For 

Period IV (12/1/21-2/25/22), there is essentially no information about a possible waning 

influence of vaccinations. 

The small size of the estimated coefficient for Period I (3/19/21-6/13/21) may reflect 

reverse causation from COVID deaths to vaccination propensity.  This effect is likely to be 

powerful during the early stages of vaccination rollout, when the places most adversely impacted 

are especially likely to have large rollouts of vaccinations.  This channel could also be operating 

in Period IV (12/1/21-2/25/22), which involves substantial uptake of booster shots. 

Another way to interpret the estimated effects of vaccinations on COVID deaths comes 

from the literature on the value of a statistical life (surveyed in Viscusi and Aldy [2003]).  The 

point estimates for Period II from Table 2 imply that the coefficient -0.0097 applies to full 

vaccination rates over the first six months and the coefficient -0.0064 applies over the next six 

months.  If vaccinations are ineffective after 12 months, a quantity V of full vaccinations would 

be expected to reduce deaths by V∙(.5∙.0097 + .5∙.0064) = .00805∙V.  Therefore, to expect to save 

one life, one needs 1/.000805 = 124 full vaccinations, which correspond to 248 shots for a two-

dose regime.  (This analysis could also be applied to booster shots.) 

 
are each significantly negative in two periods, and urbanization rate is significantly positive in two periods.  The 
temperature variable is significantly negative in two periods, with a particularly strong effect in the most recent 
period, 12/1/21-2/25/22.  This last result suggests a tendency for colder places to have more COVID deaths during 
the winter.  However, the temperature variable is not statistically significant when considered for an earlier winter 
period, 12/23/20-3/19/21, which precedes the advent of full vaccinations. 
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The marginal cost of COVID-19 vaccinations has several components.  First, the 

Department of Health and Human Services (2021, Table 18) estimates that the direct cost of each 

dose is $20 and the cost per dose from vaccine administration averages $20.  The time required 

per dose for persons receiving shots is estimated to average 2 hours, with an hourly value of time 

of $20.55, implying a cost per dose of $41.  The Occupational Safety and Health Administration 

(2021, p. 61480) estimates that the average worker time lost due to adverse reactions to the shots 

is 0.36 days for 2 doses, corresponding, if a work day consists of 8 hours, to 2.9 hours for 2 

doses.  With an hourly value of time of $20.88, the implied average cost for 2 doses due to 

adverse reactions is $60.  Combining the various terms, the overall marginal cost for a two-dose 

regime is $222.   

The value $222 implies that it costs about $55000 at the margin to expect to save one life 

through added two-dose vaccinations.  Since usual estimates of the value of a statistical life for 

the United States are much larger than $55000 (see Viscusi and Aldy [2003]), this result 

indicates that vaccinations against COVID-19 have been a great bargain.  The results are less 

powerful with the smaller magnitudes of coefficients estimated for other periods.  For example, 

with the coefficients estimated for 12/1/21-2/25/22 in Table 2, it requires 455 full vaccinations or 

910 shots or about $200,000 to expect to save one life.  Even this higher magnitude suggests that 

vaccinations are a great deal.16 

The instrumental estimation treats the vaccination rates as endogenous.  The instrument 

list includes the 2020 Republican vote share for President, along with the other explanatory 

variables mentioned before.  That is, the Trump vote share is the one excluded instrument.17  

 
16The benefits from vaccination could be expanded to include reduced morbidity.  Possibly the results below on 
hospitalizations and cases could be used to gauge the effects on morbidity. 
17When two vaccination variables are included, an additional instrument is required.  The results in column 4 of 
Table 2 include the 6-month lag of the full vaccination rate on the instrument list.  Hansen and Mano’s (2021b) 
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Table 3 shows first-stage regressions, with the vaccination rate over the various periods as the 

dependent variable.  The remarkable aspect of these results is the strong explanatory power of 

the Republican vote share in the 2020 election (Trump vote), especially for the three most recent 

periods.  The important point is that a higher Trump vote share strongly associates with a lower 

vaccination rate even when the other explanatory variables are held fixed.  An increase by 0.12 

in this vote share (which has a mean of 0.49 and a standard deviation of 0.12) associates in 

Period IV, 11/17/21-2/11/22, with a decline by 0.065 in the vaccination rate (which has a mean 

in this period of 0.61).  The results are similar for the two preceding periods but are much weaker 

for Period I, 3/5/21-5/3/21.  In this case a rise by 0.12 in the Trump vote share associates with a 

fall in the vaccination rate by only 0.011, compared to the mean of 0.24. 

The results from instrumental estimation are in columns 3 and 4 of Table 2.  For 

Periods II and III, where the estimated effects from vaccinations on COVID deaths were 

strongest, the estimated coefficients from instrumental estimation are still highly significant and 

now slightly larger in size.  These changes go in the direction expected—if there is positive 

reverse causation from COVID deaths to vaccinations—but the magnitudes of change are minor. 

For Period I, 3/19/21-6/13/21, the extent of the change in the point estimate of the 

coefficient is much larger under instrumental estimation, and this estimated value is now in the 

ballpark of those found for other periods.  However, the standard error of the coefficient estimate 

blows up, likely because the excluded instrument—the Trump vote variable—is only marginally 

significant for explaining the vaccination rate in this period (see Table 3).  That is, the instrument 

is weak. 

 
county-level analysis used as an instrument the state-level vaccine allocation interacted with the county density of 
pharmacies. Possibly a variable along these lines could be used for the state-level analysis. 
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For Period IV, 12/1/21-2/25/22, the instrumental estimate in column 3 of Table 2, which 

includes only one vaccine variable, is close to that found before.  In column 4, the results do not 

clearly distinguish the effect from recent vaccinations (including boosters) to that from older 

vaccinations.  In any event, the main inference is that vaccinations had less effect overall against 

COVID deaths, compared to that in periods that preceded the rise of the omicron variant in early 

December 2021. 

A number of measurement issues arise for the CDC data on COVID-related deaths.  One 

concern is that the dates entered refer to reports from states to the CDC rather than necessarily to 

the timing of deaths.  However, this issue may not be of major consequence for data averaged 

over periods of substantial length, such as the roughly three months used in the regressions. 

A likely more serious issue involves the classification of causes of death between COVID 

and alternatives.  Specifically, this assignment may be sensitive to the degree of testing for 

COVID—as noted before (n. 3), this testing has varied substantially over time and experienced a 

sharp rise in January 2022 but subsequently receded.  A high level of testing has a direct positive 

impact on the number of reported cases, but an increased tendency to test hospitalized patients 

for COVID may also raise the numbers of hospitalizations and deaths assigned to COVID. 

A way to deal with this measurement problem is to use excess all-cause mortality, rather 

than deaths ascribed to COVID-19, to construct the dependent variable.  The downside of this 

procedure is that it introduces a lot of noise into the dependent variable by including in deaths 

the large numbers unrelated to COVID and, therefore, unlikely to be related to vaccination 

against COVID.  As discussed in the Appendix, data on excess all-cause mortality are provided 

by state on a weekly basis by the CDC.   
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Death rates constructed from excess all-cause mortality are highly correlated with those 

based on COVID-related mortality, especially for the three most recent periods considered in 

Table 2.  The correlations between the two alternative concepts of the dependent variable are 

0.74 for Period IV, 0.87 for Period III, 0.90 for Period II, and 0.40 for Period I.  The estimated 

regression coefficients are broadly similar to those shown in Table 2 (see Table A1 in the 

Appendix).  Most importantly, the estimated effects of vaccinations on mortality still appear 

much weaker in the most recent period and the earliest period, compared to those in the middle 

two periods.  The main differences in the results are that the regression fits are poorer and the 

standard errors of coefficient estimates are higher when all-cause excess mortality is used instead 

of COVID-related mortality.   

 

B. COVID-related hospitalizations 

Table 4 has regression results with COVID-related hospitalizations per capita as the 

dependent variable.  This setting parallels that in Table 2 for COVID deaths.  Results on 

hospitalizations in Table 4 for Periods II and III (6/13/21-9/6/21 and 9/6/21-12/1/21) roughly 

parallel those for COVID deaths.  To evaluate the magnitudes of the estimated responses for 

hospitalizations, consider Period III, for which the estimated coefficient on the vaccination rate 

in column 1 is -0.29.  Over this interval, the mean of the vaccination rate is 0.548 with a standard 

deviation of 0.078, so that a one-standard-deviation increase in the vaccination rate, which is a 

rise by 14.2%, is estimated to lower the hospitalization rate by 0.023, compared to the mean of 

0.077.  That is, the hospitalization rate falls by 29.9%.  The implied elasticity of response is the 

ratio of -29.9 to 14.2, which equals -2.1 (compared to -2.9 for deaths). 
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Results in Table 4 for Period I, 3/19/21-6/13/21, are also parallel to those for deaths in the 

sense that the vaccination rate does not have a statistically significant effect on hospitalizations.  

These results may again reflect reverse causation in this period—the point estimate of the 

coefficient on the vaccination rate is negative and larger in magnitude in the instrumental 

estimation, but the standard error blows up. 

The hardest results to interpret for COVID hospitalizations are for Period IV, 12/1/21-

2/25/22, which covers the rise of the omicron variant.  There is no indication in this period that 

vaccinations reduce COVID-related hospitalizations. 

 

C.  COVID-related cases 

Table 5 has regression results with COVID-related cases per capita as the dependent 

variable.  This setting parallels that in Tables 2 and 4 for COVID deaths and hospitalizations, 

respectively.  The results for cases in Table 5 for Periods II and III (6/13/21-9/6/21 and 9/6/21-

12/1/21) roughly parallel those for deaths and hospitalizations.  To evaluate the magnitudes of 

the estimated responses for cases, consider Period III, for which the estimated coefficient on the 

vaccination rate in column 1 is -0.42.  As noted before, the mean of the vaccination rate over this 

period is 0.548 with a standard deviation of 0.078, so that a one-standard-deviation increase in 

the vaccination rate, a rise by 14.2%, is estimated to lower the case rate by 0.033, compared to 

the mean of 0.134.  That is, the case rate falls by 24.6%.  The implied elasticity of response is the 

ratio of -24.6 to 14.2, which equals -1.7 (compared to -2.1 for hospitalizations and -2.9 for 

deaths). 

Results in Table 5 for Period I, 3/19/21-6/13/21, also parallel those for deaths and 

hospitalizations in the sense that the vaccination rate does not have a statistically significant 
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effect on cases.  These results may again reflect reverse causation—the point estimate of the 

coefficient on the vaccination rate is negative and much larger in magnitude in the instrumental 

estimation, but the standard error blows up. 

The hardest results to interpret are again for Period IV, 12/1/21-2/25/22, which covers the 

rise of the omicron variant.  As with hospitalizations, there is no indication in this period that 

vaccinations reduce COVID cases. 

 

IV.  Observational Studies of COVID Vaccinations 

A number of observational studies exist that can be compared with the present regression 

findings.  First are the regular CDC reports on COVID outcomes in relation to vaccination 

status.18  On October 30 2021, data from 29 jurisdictions indicate that COVID cases per capita 

for unvaccinated persons were 4.3 times those for fully vaccinated and 12.7 times for those with 

a booster shot.  These ratios fell to 2.0 and 3.7, respectively, on January 1, 2022, and 3.1 and 3.0, 

respectively, on February 19, 2022.  That is, case rates for unvaccinated became much closer to 

those for fully vaccinated and boosted, and the distinction between fully vaccinated and boosted 

no longer appeared.  For COVID deaths, covering 26 jurisdictions, the ratios were 12.0 and 36.6, 

respectively, on October 30 2021 and fell to 6.2 and 24.1, respectively, on January 1, 2022.  For 

February 19 2022, the ratio for fully vaccinated or more was 2.8 but separate data for boosters 

were not provided.  In any event, death rates for unvaccinated became much closer to those for 

vaccinated. 

Overall, the CDC reports on outcomes in relation to vaccination status seem consistent 

with the present regression findings, which indicate weaker effects of vaccinations on COVID 

 
18See cdc.gov/covid-data-tracker/#rates-by-vaccine-status. 
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deaths and, especially, cases since early December 2021.  It is worth keeping in mind that the 

CDC analysis is subject to issues analogous to those that apply to the cross-state regressions.  For 

example, if less healthy people are more likely to die from COVID, for given vaccination status, 

and more likely to be vaccinated, then the association between vaccination and death would tend 

to understate the beneficial effects from vaccination.  Similar effects arise if older people are 

more likely to die for given vaccination status and more likely to be vaccinated, although the 

CDC indicates that its statistics adjust for age.  However, the CDC analysis did not adjust for 

other socio-economic variables or for vintage of vaccination. 

Another group of large-scale observational studies assesses the efficacy of the Pfizer-

Biontech vaccine in Israel.  As a recent example of this research, Arbel, et al. (2022) studied the 

effects on COVID-19 mortality in a 40-day period in early 2022 from a second booster shot of 

the Pfizer-Biontech vaccine.  The sample consisted of the 563,000 members of a large healthcare 

organization who had previously received a first booster shot, were aged 60 and above, and who 

satisfied some other criteria.  The rate of uptake of second booster shots in this sample was 58%.  

The regression analysis held fixed age and gender and other socio-economic characteristics, as 

well as an array of existing health conditions.  The main finding (Arbel, et al. [2022, Table 3]) 

was that the second booster shot significantly lowered COVID-related mortality, particularly 

among the oldest group.  However, as with the regression results in the first two columns of 

Table 2 in the present study, the analysis did not take account of the endogeneity of vaccine 

uptake (aside from the relationships with the observable variables that were included in the 

regressions). 
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V.  Speculative Thoughts and Research Plans 

 The results in Tables 2, 4, and 5 reveal substantial negative effects of vaccinations on 

COVID deaths, hospitalizations, and cases up to roughly the emergence of the omicron variant of 

the virus in early December 2021.  Results on deaths (Table 2) suggest that the power of 

vaccines wanes over time but still remains effective even after about six months.  This waning 

influence is offset by the introduction of booster shots.  In comparison to the findings from 

earlier periods, the results since early December 2021 indicate that vaccinations have a weaker 

effect in reducing COVID deaths and may no longer reduce COVID hospitalizations and cases. 

The cross-state regression results accord in a sense with the aggregate U.S. data, which 

did not directly enter into the regressions.  That is, since early December 2021, COVID deaths 

and hospitalizations and, particularly, cases surged in an upward wave, followed by a downward 

wave.  The overall rise in adverse outcomes over the roughly 3-month period after December 1, 

2021 occurred despite the continuing rise in “full” vaccination rates and the spread of booster 

shots (see Table 1).  One caveat in interpreting the aggregate data is that the rise in reported 

cases should be discounted because of the sharp increase in testing in late 2021 and early 2022.  

Another consideration is that the rises in aggregate deaths, hospitalizations, and cases in winter 

2021-2022 may to some extent reflect seasonal factors (which enter through the temperature 

variable in the cross-state regressions). 

 There are a number of possible explanations for the apparent reduction in the 

effectiveness of vaccinations in the cross-state analysis for the period since early December 2021 

(Tables 2, 4, and 5).  One is waning efficacy of vaccinations over time, though the regression 

analysis attempted to take account of this channel by considering the vintages of vaccinations 

and allowing for the introduction of booster shots.  Another factor is diminishing effectiveness of 
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existing vaccines against new forms of the virus, notably the omicron variant.  A further 

possibility is that confidence engendered by vaccinations (despite the increases in overall deaths 

and hospitalizations and, particularly, cases) may have motivated individuals and governments to 

lessen non-pharmaceutical interventions, such as masking and social distancing.  These 

responses may have been reinforced by “COVID fatigue,” which raised the perceived benefits 

from social interactions compared to the costs attached to health risks.  Of course, this response 

need not be irrational; that is, the benefits from heightened social interactions may, in fact, more 

than offset the costs from the increases in deaths, hospitalizations, and cases. 

More narrowly, in terms of research plans, the first idea is to carry out the analysis at the 

county level.  This change will sharply raise the available number of cross-sectional 

observations.  However, the county-level data introduce new concerns about measurement error 

and about the connection between location of vaccination and location of outcome.  There are 

also likely to be important spillover effects from one county to others. 

 Second, a key issue in the estimation involves the instrumental variables employed.  Even 

if the Trump 2020 vote is viewed as an appropriate instrument, there are difficulties in extending 

the analysis to allow for more than one endogenous variable on the right-hand side of the 

regressions.  This issue arises, for example, in attempting to distinguish the impact of recent from 

older vaccinations.  Relatedly, this analysis involves the role of booster shots.  At this stage, it is 

unclear what additional instruments are available. 
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Table 1  Means and Standard Deviations of Variables 

 

Variable Mean Std. 
Dev. 

Natl 
Avg 

COVID cumulative deaths per capita (change per year) 
   12/1/21-2/25/22 
   9/6/21-12/1/21 
   6/13/21-9/6/21 
   3/19/21-6/13/21 

 
.00207 
.00175 
.00058 
.00068 

 
.00066 
.00090 
.00043 
.00031 

 
.00203 
.00168 
.00061 
.00077 

COVID cumulative hospitalizations per capita (change per year) 
   12/1/21-2/25/22 
   9/6/21-12/1/21 
   6/13/21-9/6/21 
   3/19/21-6/13/21 

 
.1107 
.0773 
.0480 
.0360 

 
.0338 
.0284 
.0297 
.0169 

 
.1115 
.0727 
.0536 
.0398 

COVID cumulative cases per capita (change per year) 
   12/1/21-2/25/22 
   9/6/21-12/1/21 
   6/13/21-9/6/21 
   3/19/21-6/13/21 

 
.389 
.134 
.077 
.049 

 
.069 
.057 
.044 
.022 

 
.387 
.110 
.082 
.049 

“Full” vaccinations per capita 
   11/17/21-2/11/22 
   8/23/21-11/17/21 
   5/30/21-8/23/21 
   3/5/21-5/30/21 (data start 3/5/21) 

 
.606 
.548 
.450 
.237 

 
.083 
.078 
.071 
.031 

 
.614 
.553 
.448 
.228 

Booster vaccinations per capita 
   11/17/21-2/11/22 
   8/23/21-11/17/21 (data start 10/20/21) 

 
.198 
.025 

 
.053 
.008 

 
.196 
.024 

Fraction over age 25 with completed high school, 2019 .901 .027 .886 
Population fraction 65 and older, 2020 .173 .020 .169 
Life expectancy at birth, 2018 78.8 1.8 79.3 
Population fraction black, 2020 .110 .101 .124 
Urbanization rate, 2010 .741 .149 .809 
Fraction of votes Republican, 2020 Presidential election .492 .120 .469 
Population fraction 75 and older, 2020 .068 .010 .067 
Fraction over age 25 with completed college, 2019 .327 .065 .331 
Per capita  personal income ($1000s), 2020 57.7 9.4 59.6 
Maximum temperature, December 1-February 25 25.2 12.7 51.0 
Maximum temperature, September 6-December 1 66.2 8.9 69.7 
Maximum temperature, June 13-September 6 84.7 6.5 85.0 
Maximum temperature, March 19-June 13 69.6 8.1 71.6 
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Notes to Table 1 

 

COVID-related deaths, hospitalization, and cases are differences in cumulative values per person 
for dates shown (corresponding to cumulations of new deaths, hospitalizations, and cases), 
expressed at annual rates.  Data for cumulative deaths and cases per person are from Chetty, et 
al. (2022).  Values for deaths are adjusted in accordance with n. 11.  (Adjustments for cases do 
not appear to be necessary over this period.)  Data for cumulative hospitalizations are given in 
the downloadable file provided in Chetty, et al. (2022).  (Adjustments in the hospitalization 
numbers do not seem to be necessary.)  The changes in these cumulative values were divided by 
state population in 2020.  Full and booster vaccinations are averages per person over periods 
shown.  The averages apply to dates at the start, end, and middle of each period, with the middle 
value getting double weight.  Vaccination data are adjusted in accordance with n. 11.  Maximum 
temperature is average high temperature in degrees Fahrenheit over dates shown.  Underlying 
values are monthly for largest city in each state.  
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Table 2  Regressions for COVID Deaths per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/19/21-6/13/21     
   vaccination rate -.0007 

(.0015) 
-.0006 
(.0015) 

-.0052 
(.0095) 

-.0052 
(.0095) 

Period II: 6/13/21-9/6/21     
   vaccination rate -.0041*** 

(.0008) 
-.0041*** 

(.0008) 
-.0042*** 

(.0012) 
-.0042*** 

(.0012) 
Period III: 9/6/21-12/1/21     
   vaccination rate -.0091*** 

(.0016) 
-.0097*** 

(.0017) 
-.0098*** 

(.0021) 
-.0101*** 

(.0022) 
   vaccination rate, older 
  

-- -.0064** 
(.0031) 

-- -.0064** 
(.0033) 

   p-value for equal coeffs  0.31  0.30 
Period IV: 12/1/21-2/25/22     
   vaccination rate -.0022** 

(.0011) 
-.0021* 
(.0012) 

-.0024* 
(.0015) 

-.0047 
(.0053) 

   vaccination rate, older 
      

-- -.0023 
(.0015) 

-- .0017 
(.0065) 

   p-value for equal coeffs  0.93  0.58 
R-squared .31 .64 

.66 .64 
.31 .64 
.67 .64 

.19 .64 

.66 .64 
.19 .64 
.67 .54 

s.e. .0003 .0003 
.0006 .0004 

.0003 .0003 

.0006 .0004 
.0003 .0003 
.0006 .0004 

.0003 .0003 

.0006 .0005 
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Notes to Table 2 

 

Sample is 50 U.S. states plus District of Columbia.  Sample dates shown in the left-most column 
refer to the dependent variable.  This variable is the change in cumulative reported COVID-
related deaths per capita over each period (values expressed per year).  Vaccination rate in 
columns 1 and 3 is the fraction of the population fully vaccinated against COVID-19 (not 
counting booster shots).  This variable is lagged 14 days from the dependent variable and is 
entered as an average over each period, as described in Table 1.  In columns 2 and 4, vaccination 
rate is the fraction of the population fully vaccinated over roughly the last 6 months plus the 
fraction fully vaccinated earlier who have received booster shots.  In these columns, “vaccination 
rate, older” is the fraction fully vaccinated roughly 6 or more months in the past less the fraction 
who have received booster shots.  Other explanatory variables, shown in Table 1, are fraction of 
population aged 65 and over in 2020, life expectancy at birth in 2018, fraction of population aged 
25 and over who completed high school or more in 2019, fraction of population black in 2020, 
urbanization rate in 2010, and average maximum temperature over periods corresponding to the 
dependent variable.  Coefficients on these variables, constant terms, and the vaccination rates 
differ across periods.  Standard errors of coefficient estimates are in parentheses.  SUR 
(seemingly-unrelated regression) allows for correlation of the error terms across periods.  s.e. is 
the standard error of each regression.  In columns 1 and 3, instrumental estimation (three-stage 
least-squares) uses as the excluded instrument the fraction of the population voting in 2020 that 
voted Republican (as shown in Table 1).  In columns 2 and 4, the instrument list also includes the 
fraction of the population fully vaccinated roughly 6 or more months in the past. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 3  First-Stage Regressions for Vaccination Rates 

 

 (1) (2) (3) (4) 
Periods for 
vaccination rates 

3/5/21-
5/3/21 

5/3/21-
8/23/21 

8/23/21-
11/17/21 

11/17/21-
2/11/22 

Constant .00 
(.29) 

.06 
(.37) 

.17 
(.38) 

.12 
(.41) 

Over-65 .26 
(.19) 

.79*** 
(.23) 

.85*** 
(.25) 

.77*** 
(.27) 

Life expectancy .0022 
(.0036) 

.0051 
(.0046) 

.0081* 
(.0048) 

.0108** 
(.0052) 

High School Education .11 
(.17) 

.14 
(.20) 

-.12 
(.21) 

-.19 
(.24) 

Black -.134*** 
(.050) 

-.255*** 
(.062) 

-.223*** 
(.065) 

-.214*** 
(.070) 

Urban -.047 
(.035) 

-.041 
(.045) 

-.029 
(.047) 

-.046 
(.060) 

Average Maximum 
Temperature 

.0001 
(.0005) 

.0002 
(.0004) 

-.0001 
(.0003) 

.0000 
(.0003) 

Trump vote -.090** 
(.044) 

-.464*** 
(.055) 

-.515*** 
(.057) 

-.543*** 
(.061) 

R-squared .43 .81 .83 .83 
s.e. .026 .034 .035 .037 

 

Notes:  Sample is 50 U.S. states plus District of Columbia.  Dependent variables, over the 
periods shown in the top row, are the averages of full vaccination rates, as used in Table 2.  
Over-65 is the fraction of the population in 2020 that was aged 65 or more.  Life expectancy at 
birth is for 2018.  High School Education is fraction of the population in 2019 aged 25 or more 
that had completed four years of high school or more.  Black is the fraction of the population in 
2020 classified as black.  Urban is the fraction of the population urbanized in 2010.  Trump vote 
is the fraction of votes for President in 2020 that went Republican.  Estimation is by seemingly-
unrelated regression, which allows for correlation of the error terms across periods.  Standard 
errors of estimated coefficients are in parentheses.  s.e. is the standard error of each regression. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 4  Regressions for COVID Hospitalizations per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/19/21-6/13/21     
   vaccination rate -.005 

(.059) 
.053 

(.062) 
-.094 
(.420) 

-.094 
(.420) 

Period II: 6/13/21-9/6/21     
   vaccination rate -.283*** 

(.054) 
-.289*** 

(.053) 
-.266*** 

(.075) 
-.266*** 

(.075) 
Period III: 9/6/21-12/1/21     
   vaccination rate -.292*** 

(.046) 
-.331*** 

(.046) 
-.255*** 

(.069) 
-.267** 
(.069) 

   vaccination rate, older 
     

-- -.092 
(.087) 

-- -.077 
(.101) 

Period IV: 12/1/21-2/25/22     
   vaccination rate -.001 

(.053) 
-.078 
(.054) 

.084 
(.086) 

.378 
(.509) 

   vaccination rate, older 
     

-- .141** 
(.069) 

-- -.433 
(.624) 

R-squared .49 .71 
.65 .54 

.49 .71 

.69 .61 
.46 .70 
.65 .51 

.46 .70 
.68 -.62 

s.e. .013 .017 
.018 .025 

.013 .017 

.017 .023 
.013 .017 
.018 .025 

.013 .017 

.018 .047 
 

Notes:  See notes to Table 2.  The only difference is that the dependent variable is based on 
COVID-related reported hospitalizations per capita. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Table 5  Regressions for COVID Cases per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/19/21-6/13/21     
   vaccination rate -.037 

(.094) 
.024 

(.096) 
-.736 
(.813) 

-.736 
(.813) 

Period II: 6/13/21-9/6/21     
   vaccination rate -.477*** 

(.085) 
-.469*** 

(.085) 
-.528*** 

(.122) 
-.528*** 

(.122) 
Period III: 9/6/21-12/1/21     
   vaccination rate -.419*** 

(.090) 
-.512*** 

(.087) 
-.339*** 

(.126) 
-.370** 
(.121) 

   vaccination rate, older 
     

-- .032 
(.163) 

-- .136 
(.177) 

Period IV: 12/1/21-2/25/22     
   vaccination rate .296* 

(.169) 
.151 

(.184) 
.291 

(.231) 
.002 

(.765) 
   vaccination rate, older 
     

-- .558** 
(.228) 

-- .800 
(.938) 

R-squared .43 .65 
.71 .15 

.44 .65 

.76 .16 
-.24 .66 
.71 .17 

-.24 .66 
.75 .13 

s.e. .018 .028 
.033 .069 

.018 .028 

.030 .069 
.026 .028 
.033 .068 

.026 .028 

.031 .071 
 

Notes:  See notes to Table 2.  The only difference is that the dependent variable is based on 
COVID-related reported cases per capita. 

 

***Significant at 1%, **significant at 5%, *significant at 10%. 
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Appendix 

 The analysis for COVID-related deaths per capita was redone with deaths calculated from 

all-cause excess mortality rather than COVID-related mortality.  The underlying data for 

calculating excess mortality are given by the CDC in data.cdc.gov, columns K and L of the table 

“COVID-19 Death Counts by Week Ending Dates and State” (updated as of 4/13/22).  

Column K gives the total number of deaths for each week and column L gives the ratio of total 

deaths to the average number across the same week in 2017-2019.  This procedure implicitly 

takes the earlier average level of deaths as a measure of normal deaths, so that excess deaths are 

the difference between actual deaths and normal deaths.  This concept was adjusted by allowing 

for state population growth. 

The value in column L allows for calculation of the all-cause excess mortality rate 

(unadjusted for population growth), δt = (Dt - 𝐷𝐷𝑡𝑡∗)/𝐷𝐷𝑡𝑡∗, where Dt is a state’s total number of deaths 

for week t (during parts of 2021 and 2022) and 𝐷𝐷𝑡𝑡∗ is the state’s average number of total deaths 

for the corresponding week in 2017-2019.  All-cause excess mortality per capita can then be 

expressed as 𝐷𝐷𝑡𝑡
𝑁𝑁𝑡𝑡
∙ �𝛿𝛿𝑡𝑡−𝑛𝑛𝑡𝑡

1+𝛿𝛿𝑡𝑡
�, where Dt is from column K, Nt is state population (taken to be the value 

for 2020), and nt is the state’s cumulative rate of population growth from 2017-2019 to the 

current week (approximated by 3 times the state’s annual population growth rate from 2017 to 

2019).  State population levels for 2017-2019 are from U.S. Bureau of the Census.  This measure 

of all-cause excess mortality per capita is used as the dependent variable in Table A1.  
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Table A1  Regressions for All-Cause Excess Mortality per Capita 

 

 (1) (2) (3) (4) 
Estimation method SUR SUR Instruments Instruments 
Period I: 3/19/21-6/13/21     
   vaccination rate .0002 

(.0016) 
-.0006 
(.0015) 

.0032 
(.0112) 

.0032 
(.0112) 

Period II: 6/13/21-9/6/21     
   vaccination rate -.0077*** 

(.0019) 
-.0041*** 

(.0008) 
-.0059** 
(.0030) 

-.0059** 
(.0030) 

Period III: 9/6/21-12/1/21     
   vaccination rate -.0080*** 

(.0017) 
-.0088*** 

(.0017) 
-.0048* 
(.0027) 

-.0051* 
(.0028) 

   vaccination rate, older 
  

-- -.0036 
(.0035) 

-- -.0005 
(.0041) 

   p-value for equal coeffs  0.15  0.33 
Period IV: 12/1/21-2/25/22     
   vaccination rate -.0004 

(.0018) 
.0019 

(.0019) 
-.0004 
(.0024) 

.0025 
(.0074) 

   vaccination rate, older 
      

-- -.0043* 
(.0023) 

-- -.0054 
(.0090) 

   p-value for equal coeffs  0.011  0.62 
R-squared .45 .62 

.65 .48 
.45 .62 
.67 .52 

.46 .62 

.64 .48 
.46 .62 
.65 .52 

s.e. .0004 .0007 
.0007 .0007 

.0004 .0007 

.0007 .0007 
.0004 .0007 
.0007 .0007 

.0004 .0007 

.0007 .0007 
 

 

Note:  The specification is the same as in Table 2 except that the death rate is measured by all-
cause excess mortality per capita.   




