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1 Introduction

Thanks to artificial intelligence (AI), digital transformation has evolved from accessing and search-

ing digital databases to producing data-driven insights via algorithms. These algorithms have the

potential to aggregate decentralized information, improve human decisions, and enhance market

efficiency. In the meantime, there are rising concerns that algorithms — often in a black box —

may rely on biased inputs, generate erroneous predictions, and mislead human decisions.1

Underlying the concerns is an implicit assumption of one-directional use: the algorithm makes

a recommendation and human users incorporate the algorithmic output in their decisions. In

reality, many algorithms, especially those powered by AI, also track how individual users use

the algorithm and ingest the usage data for algorithmic updates. For example, general search

engines rank relevant information based on the browsing history of other users, which were guided

by an earlier version of the same algorithm. E-commerce websites rank products according to

historical sales, which depends on how products were presented to previous buyers. Social-media

sites recommend what videos to watch, what news to read, and what events to follow based on the

likes and dislikes expressed by other users, who made these decisions with the help of the same

recommendation algorithm. These two-way interactions could change the quality of algorithmic

outputs over time and have profound effects on algorithm-aided human decisions. The goal of this

paper is to document the interactive nature of AI-driven algorithms and stimulate a discussion on

the potential implications of interactive algorithms.

We use Zillow’s Zestimate algorithm as an example to study interactive algorithms. As defined

on Zillow.com, “the Zestimateuse® home valuation model is Zillow’s estimate of a home’s market

value. A Zestimate incorporates public, MLS and user-submitted data into Zillow’s proprietary

formula, also taking into account home facts, location and market trends.” As of March 10, 2022,

Zillow claims that Zestimates have a nationwide median error rate of 1.9% for on-market homes

and 6.9% for off-market homes.2 Since Zestimates are available for most homes 24/7 but a typical

house-selling transaction takes months from listing to sold, we have a rare opportunity to observe

how Zestimates influence various stages of house selling and how Zillow updates Zestimates after

listing and sold prices become public information.

Based on bi-weekly snapshots of Zillow in Austin, Boston, and Pittsburgh, we find ample

1See Wall Street Journal 2019/2/13 article ”A Crucial Step for Averting AI Disasters”, available at
https://www.wsj.com/articles/a-crucial-step-for-avoiding-ai-disasters-11550069865.

2See https://www.zillow.com/z/zestimate/, last accessed on March 10, 2022.
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evidence for user-Zestimate interactions: in the listing stage, the seller’s listing price would go up

with an increase in the house’s pre-listing Zestimate. After listing, Zestimate is updated almost

immediately, for not only the listed house but also the houses that Zillow deems comparable to the

focal house. Towards the end of the sales cycle, transaction outcomes (sold or not, days to pending,

days to sold, and sold price) are significantly correlated with its pre-sold Zestimate, and Zestimate

is updated once again for the focal and comparable houses once the transaction is completed.

These user-Zestimate interactions are subject to multiple interpretations: First, some unobserv-

able factors may be available to buyers and sellers outside Zillow, but we mistakenly attribute their

influence as the impact of Zestimate. To address this concern, we exploit the fact that the Zesti-

mate algorithm incorporates some non-local (i.e., from a different neighborhood) and infrequently

shown (on focal home’s Zillow webpage) comparable houses (henceforth “comps”) that are unlikely

under the radar of the seller of the focal house (or her real estate agent). Using these non-local and

infrequently shown comps to construct an instrument variable (IV) for Zestimate, we continue to

find a significant dependence of market outcomes on Zestimate.

In particular, the IV results suggest that listing price would go up 0.66% for every 1% increase in

the house’s pre-listing Zestimate. For selling outcomes, we find that a 1% increase in the Zestimate

(updated after a property being listed) is, on average, associated with 3.9% fewer days till pending

and 0.26% higher sold price, conditional on listing price. We also include a Regression Discontinuity

Design (RDD) to focus on cases where the updated Zestimate is within a tiny range around the

listing price. Properties that had the Zestimate just above their listing prices have been sold at a

faster rate than the properties that had the Zestimate just below the listing prices. These results

suggest that, not only do buyers rely on the Zestimate to make decisions, such reliance is but also

asymmetric.

As we document the existence of user-Zestimate interaction, the next question is how it influ-

ences the housing market. Conceptually, the implications of the user-Zestimate interaction have

two sides. On the one hand, it could increase market transparency by providing additional informa-

tion about property values. The dependence of listing and transaction outcomes on Zestimate may

reflect the market’s better use of existing information, because Zestimate makes such information

more accessible and more salient to individual buyers and sellers. Our analysis shows that the

effects of Zestimate on listing price are highly heterogeneous, where sellers depend more on Zesti-

mate when alternative source of information is more difficult to obtain, such as in a non-disclosure

city or in more heterogeneous neighborhoods. This suggests that Zestimate does provide valuable
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information to market participants.

On the other hand, the interactions between Zestimate and real-time market information may

cause disturbances in any stage of the sales cycle to persist and propagate. For example, Zestimate

may contain some prediction error, and some outlier sellers or buyers may have extreme taste rela-

tive to market average. If most individual users use Zestimate with confidence, these disturbances

can persist and be spread out via user-algorithm interactions. Some data patterns seem to sup-

port this concern: for example, we find that Zestimate update is more dependent on listing price

in non-disclosure and heterogeneous neighborhoods, reinforcing the co-movement between listing

price and Zestimate. Moreover, before a focal property is listed, it only serves as a comparable

home for a handful number of properties on Zillow; but once it is listed, it could affect as many as

150 properties via the updated definition of comparable homes. In addition, both sellers and buy-

ers demonstrate asymmetric responses to Zestimate: their reliance on Zestimate is stronger when

Zestimate is close to or higher than the property value they may expect from local comparable

homes, relative to the cases where Zestimate is lower than the expectation from local comparable

homes. All together, these patterns raise the concern that a positive disturbance in the sales cycle

(as compared to a negative one) could more easily persist and be further spread out to other houses,

contributing to potential housing bubbles.

To test this possibility, we leverage a natural experiment created by COVID-19 to examine

whether Zestimate locks in the initial COVID shock from the presidential declaration of national

emergency and sets local markets onto different paths. The results suggest no such path dependence

in price or Zestimate, and thus do not support the concern of disturbance propagation.

A natural follow-up question is what forces help guard the algorithm from propagating dis-

turbances into a misleading level. Our data suggests two such forces. One is embedded in the

Zestimate algorithm: when the confidence interval of a Zestimate is sufficient large, Zillow does

not show the Zestimate to the public. The missing value of Zestimate forces the seller and poten-

tial buyers to utilize other information. The second force is user adjustment of their confidence

in Zestimates. When the Zestimates of same-community comparable houses are far from these

houses’ actual listing or sold prices, we find that users are less responsive to the Zestimate of the

focal house. This suggests that users may adjust their confidence in Zestimate according to how

Zestimate aligns with market outcomes. If market outcomes reveal more noise in the Zestimate

algorithm, the reduced consumer reaction helps to limit the spread of the disturbances throughout

the market.
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This paper makes several contributions. First, to our knowledge, we are among the first to pro-

vide explicit evidence on the two-way interactions between human users and AI-driven algorithms.

While the idea of user-algorithm interactions may seem intuitive, documenting its presence and

magnitude is often challenging. To address the challenge, we leverage the long transaction time

and granular information updates in the housing market. As detailed in Section 2, we expand a

growing literature of data-driven algorithms. Second, we identify the potential positive and nega-

tive implications of the human-algorithm interaction, and explore empirical evidence on both sides,

including the market’s self-correction mechanisms that could explain the observation that the algo-

rithm did not propagate the initial COVID disturbances. Our findings highlights the importance

of considering feedback loops when designing and evaluating algorithms.

The rest of the paper is organized as follows. Section 2 reviews the related literature. Section

3.1 describes the background of Zillow.com and the Zestimate algorithm. Section 3.2 presents our

data. Section 4 documents user-Zestimate interactions in various stages of home selling. Section

5 explores the potential implications of user-Zestimate interactions. Section 6 presents two factors

that play a role limiting disturbance propagation. A brief conclusion is offered in Section 7.

2 Literature Review

Our work contributes to the growing literature about data-driven algorithms. Most of the literature

focuses on evaluating the effect of algorithmic output on the bias and quality of human decision-

making: on the positive side, Hoffman et al. [2018] show that managers that reject an algorithm’s

recommendation based on job candidates’ job testing performance end up having worse hires on

average, suggesting that the algorithm can help to correct human bias or mistake in hiring. Similar

results have been shown in the context of bailing [Kleinberg et al., 2018], crowd lending [Fu et al.,

2021], and resume screening [Cowgill, 2018]. On the negative side, Ludwig and Mullainathan

[2021] summarize the disappointing record of AI in criminal justice, citing evidence for racial and

gender bias in algorithms [Angwin et al., 2016, Hamilton, 2019], and lack of better predictablity or

better performance than human-only decisions [Berk, 2019, Stevenson, 2018, Stevenson and Doleac,

2021]. Such concerns about algorithmic bias and prediction performance are actually shared across

many different contexts beyond criminal justice [Lambrecht and Tucker, 2020, 2019, Buolamwini

and Gebru, 2018, Chouldechova et al., 2018]. They attribute part of the challenge to human

involvement in algorithm building and algorithm use.
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There have also been concerns about echo chambers or filter bubbles that the recommendation

algorithms behind social medias may limit the information that users encounter or consume online.

The empirical evidence is mixed. For example, Wojcieszak and Mutz [2009] find that participants

of politics-related online groups, compared with participants of other online groups, were less likely

to be exposed to political information that they disagree with. In contrast, Gentzkow and Shapiro

[2011] find that “ideological segregation of online news consumption is low in absolute terms” and

that there is “no evidence that the Internet is becoming more segregated over time”; Lambrecht

et al. [2021] find that YouTube frequently steers users to popular videos that are unrelated to

the charity videos that have been previously viewed, demonstrating that firms and institutions

are unlikely to benefit from echo chambers. To push it further, we document the bi-directional

user-Zestimate interactions throughout the cycle of house selling. Similarly, this paper is related

to the literature of observational learning [Banerjee, 1992, Bikhchandani et al., 1992, Smith and

Sørensen, 2000] and information cascade [Anderson and Holt, 1997, Bikhchandani et al., 1998,

Çelen and Kariv, 2004], which study how individuals learn from the behavior of others and follow

the decisions of the preceding individuals. The algorithm outputs, Zestimate in our context, could

reflect multiple sources of information, including but not limited to the behavior of others, and we

study how such aggregated and dynamically changing information interacts with participants in

housing markets. In addition, we show that such interactions may be an important factor limiting

the potential harm of the Zestimate algorithm. These insights could apply to many algorithm-

relevant markets beyond housing sales.

The human-algorithm interaction we study in this paper is also related to the literature of

systemic risk in financial systems. Jackson and Pernoud [2021] categorizes systemic risk into two

types: contagion through network inter-dependencies, and multiple equilibria and self-fulfilling

feedback effects. The first refers to the cases where a change in fundamentals move through the

financial network [Rochet and Tirole, 1996, Allen and Gale, 2000], and the second refers to the cases

where a shift in beliefs moves the financial system from one equilibrium to another [Diamond and

Dybvig, 1983, Diamond and Rajan, 2011, Bebchuk and Goldstein, 2011]. Similar to the second type

of systemic risk, the phenomenon we study also involves shifts in beliefs and changing equilibria.

However, we focus more on the external factor that causes belief shift (i.e., an algorithm) and how

it interacts with players in the market, rather than multiple equilibria and feedback effects among

the players within a system. We also characterize how certain features of an algorithm, such as

real-time learning and disclosed individual error rates, influence its interactions with human players.
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Another strand of literature focuses on algorithms that guide or determine market prices. For

example, Airbnb has provided algorithm-based pricing recommendation to hosts but host accep-

tance is quite limited [Zhang et al., 2021], and Huang [2021] studies how the platform’s pricing

algorithms could mitigate pricing frictions. Brown and MacKay [2021] document the pattern of

algorithmic pricing among large retailers and discuss how algorithmic price may reshape market

competition. Assad et al. [2020] show that algorithmic pricing may have reduced competition in

German retail gasoline, while Calvano et al. [2020] find that pricing algorithms consistently learn to

charge supracompetitive prices and sustain the high prices by collusive strategies. While algorithm

usage is crucial for market outcomes, these studies focus more on the strategic interactions be-

tween users through algorithm adoption. In comparison, we focus more on the explicit interaction

between users and the Zestimate algorithm, even if every user is atomic and does not engage in

strategic interaction with each other.

This paper is also related to the literature on technology use in the housing market, which

focuses on examining the effect of emerging technology on housing market outcomes. For example,

Carrillo [2012] studies the impact of online listing and advertising, and Buchak et al. [2020] study

“iBuyers”, the online platforms that buy and sell residential properties with advanced pricing

technology. There are also a few papers studying the Zestimate algorithm. Yu [2020] shows that

Zestimate has a positive effect on sold price and people use Zestimate as a summary of information

and rely more on it when it is harder to process the information. Lu [2018, 2019] also document

the positive impact of Zestimate on sold price. In this paper, we confirm the impact of Zestimate

on a broader set of market outcomes, including listing price, selling price and selling time; more

importantly, we focus on user-Zestimate interactions and document how user decisions and the

algorithm influence each other in a complete home selling cycle. In addition, our data is better suited

to study the impact of Zestimate, as we use Zestimates that were actually shown on webpages, while

the previous literature largely relies on the “historical Zestimate” graphs that do not necessarily

show the exact Zestimates that buyers and sellers observed in the past (see more details in Section

3.2). Malik [2020] uses a theoretical model to show that the feedback loop in the use of algorithms

may create a self-fulfilling prophecy. He also establishes necessary primitives for the feedback loop

with Zestimate. Our paper complements the theoretical analysis by providing empirical evidence of

the feedback loop, characterizing how users and the Zestimate algorithm interact with each other,

and documenting evidence for the positive and negative implications of the feedback loop.
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3 Context and Data

3.1 Background

The housing market has seen a few digital disrupters in the past two decades. Before the digital age,

sellers and buyers can only access market information through an agent, where agents post listings

in the local Multiple Listing Service (MLS hereon) system. With the emergence of online real estate

companies, housing market information has become more easily accessible. These companies track

the MLS listings and make them online, so that buyers can do their own research instead of solely

relying on agents. Figures 1 reports Google trends in web search of four leading companies in this

market, namely Zillow, Realtor.com, Trulia (acquired by Zillow in 2014 but remained its website

operation), and Redfin, where Zillow has been dominating.

Figure 1: Rise of Digital Real Estate Platforms

Figure 2a shows the typical search interface on Zillow. For example, when users search for

listings in Pittsburgh PA, it returns all active for-sale listings scattered on the map (left) and listed

on the right, where users can choose the sort order (e.g., by date, by price, etc.). Once users

click on a given listing, they will be taken to the listing page (Figure 2b), where photos of the

property will be displayed on the left. On the top right of the listing page, key information of the

property is displayed, including listing price, address, number of beds, baths, and square footage.

It is worth noting that Zestimate is made saliently visible here. As users scroll down, they will see

the property’s location on the map, the description, the listing agent, detailed property facts, and

so on. Zillow makes money by promoting real estate agents, so contact information of advertising

agents will be displayed on the property listing page as well.
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(a) Zillow Search

(b) Zillow Listing

Figure 2: Zillow
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(a) Zestimate and Zestimate History

(b) Zestimate Comparable Homes Model

Figure 3: Zestimate and the Comparable Homes Model
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The listing page has a dedicated section for Zestimate. As illustrated in Figure 3a, it shows

the same Zestimate as the number shown at the top of the listing page. Zillow also offers an

estimated sales price range, which can be thought of as a confidence interval of the said Zestimate.

Besides, Zillow offers “Zestimate history”, where as users move their cursor on the plot they will

see Zestimates at given time points, as compared to the average historical Zestimate of the zipcode

and of the city. To clarify, the time series are not historical Zestimates per se, but Zestimates

back-filled by feeding historical data to the most up-to-date algorithm. Therefore, the Zestimate

at a given historical time, as shown in the “Zestimate history” graph, can be very different from

the actual Zestimate that platform users observed at the same historical time.

As shown in Figure 3a right below the Zestimate history graph, Zillow briefly explains the

three different models they use to produce Zestimate. Specifically, they are estimates based on

comparable homes, estimates based on property taxes, and estimates generated using the off-

market model (it is a model where the algorithm excludes on-market information such as listing

price, listing description and days on the market, as if the home were not for sale).

For the comparable homes model, Zillow shows the comps it uses (Figure 3b). Zillow’s algorithm

may involve hundreds of comps to build Zestimate of the focal home but usually only five to ten

most relevant comps are shown on the listing page 3. These comps shown to users (and observed by

us) are typically either active listings for sale or properties that were sold in the recent past. Only

key information is shown for each comp, including the profile photo, listing/sold price (sometime it

is Zestimate for off-market properties), bedrooms, bathrooms, and square footage. Users can click

on a given comp and navigate to the page of that comp for more information.

3.2 Data

We scrape data from Zillow.com for approximately 800K residential properties of Austin, Boston,

and Pittsburgh.4 Compared with Census statistics, our sample has a very high coverage of all

residential properties of these three cities. The vast majority of these properties are off-market in

our sample period and only a tiny share of properties were listed for sale. For each property, we

scrape information on its web page approximately once every two weeks. In each round of scraping,

we collect almost all information with the exception of property photos. Our sample starts from

3See https://www.zillow.com/tech/human-and-machines-home-valuation/
4A property is covered if its city field in the postal address is “Austin”, “Boston” or “Pittsburgh.” By this

definition, our sample does not include the properties that locate in the surrounding metropolitan areas but have a
different city name in the postal address.
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Table 1: Summary Statistics

Austin Boston Pittsburgh

N Mean S.D. N Mean S.D. N Mean S.D.
listprice ($1000) 17817 565.43 412.52 7160 887.60 640.06 14430 251.98 161.99
sold 17817 0.64 0.48 7160 0.74 0.44 14430 0.82 0.39
DaysOnMarket 11433 68.68 70.13 5278 93.79 79.78 11780 93.92 83.87
DaysToPending 16075 39.93 71.91 5740 54.15 78.30 13083 52.48 83.90
soldprice ($1000) 1552 532.62 372.32 5274 799.81 512.56 11723 239.81 404.51
ZestLag1 ($1000) 17817 511.34 412.10 7160 836.31 592.87 14430 223.99 143.23
ZestLead1 ($1000) 15834 540.48 404.52 7066 880.26 620.14 13615 248.68 153.47
age 17817 30.79 21.94 7160 93.43 43.26 14430 75.84 30.43
bathrooms 17817 2.67 1.10 7160 1.97 1.05 14430 2.16 0.94
bedrooms 17817 3.26 1.03 7160 2.97 2.00 14430 3.08 0.99
floorsize 17817 2132.43 1084.66 7160 1622.90 2262.68 14430 1672.48 727.46
condo 17817 0.11 0.31 7160 0.60 0.49 14430 0.06 0.24

March 2019 and ends in March 2021. We have a fairly balanced panel where each property is

tracked for about 60 rounds in this two-year period.

A unique feature of our data is that we observe various time-varying information about a

property, such as Zestimate and comparable homes that are used to construct Zestimate. It is

crucial for our purpose because this is the information that market participants observe and act

upon. We are able to track the status of on-market properties with outcomes such as listing price,

price change, days on the market, sold price, listing agent, etc. For all properties, we observe their

past sales history and tax records that usually go back in years or even decades. Lastly, we observe

property-specific characteristics such as address and home facts.

Our raw data of on-market properties includes 44,327 properties listed between March 25th,

2019 and March 7th, 2021. We apply the following filters to construct our main sample: (1) We

remove listings for which we do not observe key home facts including age, bedrooms, bathrooms,

and floor size. This removes 3,445 properties from the sample. (2) We remove properties with listing

price less than $10,000. To prevent extreme values from driving our results, we drop outliers whose

listing price is below 1st percentile or above 99th percentile, separately for each city. This reduces

the sample size to 39,631. (3) We delete 193 properties for which we do not observe Zestimate

right before listing. (4) Given that various later analyses require neighborhood fixed effects, we

remove 31 neighborhoods with only one listed property in the entire sample period. After all the

above-mentioned procedures, our main sample contains 39,407 listed properties, where 17,817 are

in Austin, 7,160 are in Boston, and 14,430 are in Pittsburgh.

Table 1 reports the summary statistics of the key variables of listed properties, separately
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for Austin, Boston, and Pittsburgh. Residential properties are on average the most expensive in

Boston and least expensive in Pittsburgh. We observe that listings in Pittsburgh have the highest

probability of sales (82%), while only 64% of Austin listings were sold. Days on market are defined

as the days from listing date to closing date. It is approximately the same for Boston and Pittsburgh

properties (94 days on average) but it is considerably shorter for Austin homes (69 days). A similar

pattern holds for days to pending, which is the days from listing date to the date when the property

enters the pending stage. Due to construction, it is shorter than days on market and is plausibly

a better measure of time on market, given that the time between pending and final closing is

mainly for home inspection, appraisal, repair, loan approval, etc, which do not necessarily reflect

the popularity of the property. Because Austin is a non-disclosure city where home sales price are

not required to be made public, we only observe sales price for 1,552 out of 11,433 sales. However,

we have almost perfect coverage of sales price for Boston and Pittsburgh (5,274 out of 5,278 and

11,723 our of 11,780, respectively). Zestimate before the round of listing, ZestLag1, is lower than

listing price on average, for all three cities. Zestimate after the listing round, ZestLead1, is greater

than ZestLag1 but lower than listing price on average. Note that for some properties Zestimate will

disappear after the listing round and we will leverage the time-varying coverage in later analyses.

Finally, we summarize the key housing characteristics, namely age, bathrooms, bedrooms, floor

size (in square footage), and whether the property is a condo or a house5. The statistics suggest

that Austin homes are on average younger and bigger than properties in Boston and Pittsburgh.

The majority of Boston properties in our sample are condos while Austin and Pittsburgh homes

are predominately single family houses, multi-family houses, or townhouses.

4 Characterization of Zestimate’s Role in the Housing Market

To fix ideas, let us consider the following process by which the housing market unfolds for a typical

transaction. Figure 4 illustrates the sequence of events: (1) The property is off-market and has a

Zestimate. (2) Then at some point, the seller decides to sell the home by consulting the Zestimate

and decides on a listing price. (3) Immediately after the home is listed, Zestimate will get updated

based on the listing price, as well as the updated home facts provided in the listing. (4) The demand

side comes in and makes buying decisions after seeing the listing price and the updated Zestimate

(as well as touring the home and placing a bid). (5) Lastly, Zestimate updates once again after the

5We categorize all apartments and condos as condos, and group all single family houses, townhouses, and multi-
family houses as houses.
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transaction is done and transaction outcomes are observed by Zillow.

Figure 4: Sequence of Events

Given this, we first study whether sellers use Zestimate to price their homes. Note that the

Zestimate that can affect listing price is the Zestimate prior to the listing. Then, we study how Zes-

timate updates based on listing price. After that, we aim to understand if home buyers are affected

by Zestimate which is already updated on listing price. Lastly, we study how Zestimate continues

to update with information on market outcomes of the property. Our goal is to characterize how

sellers, buyers, and Zestimate interact with each other throughout the process.

4.1 Seller Response to Zestimate

In this section, we aim to understand the causal effect of Zestimate on the seller’s pricing decision.

We specify the logged listing price as a linear function of the logged Zestimate in the round before

listing. We also control for relevant covariates that may affect the listing price. Specifically, we

estimate the following regression equation:

ln(ListingPrice)i = βln(ZestLag1)i +XiΘ + εi, (1)

where ZestLag1 is the Zestimate in the round prior to listing. We use Xi to denote the set of

relevant property characteristics including # of bedrooms, # of bathrooms, square footage, age of

the property, whether the property is condo or not.6 We also include in Xi two measures of local

comparable homes value, namely the average recent sales price of comps in the same neighborhood

and the average recent sales price of comps within one mile of the focal property. These variables

are controlled for in the regression because they could be a direct input for the seller’s pricing

6In the regression, we control for the logarithm of square footage because it is a skewed measure. Age is also
skewed, but a tiny fraction of properties have 0 age (i.e., new construction), so we use log(Age+1) instead.
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decision if the seller or the seller’s agent finds it from the MLS or other non-Zillow sources. We

further control for neighborhood-month fixed effects to account for unobserved market conditions.

A remaining identification challenge is that ZestLag1 may still capture some non-Zillow information

that the seller observes but we do not, and thus an OLS regression of Equation 1 will lead to a biased

estimate of β. To identify the causal effect, we instrument ZestLag1 with the average Zestimate of

non-local and infrequently shown comparable homes of the focal property. Specifically, the comps

used for IV construction need to satisfy two conditions: (1) “non-local” — they are not from the

neighborhood of the focal property; (2) “infrequently shown” — they are only shown on Zillow as

comps of the focal property for no more than two times out of the six snapshots we scrape. We

now explain the validity of this instrument.

Listing agents usually prepare a comparative market analysis report to help sellers price their

homes, by aggregating past sales information from their local MLS. This report typically consists of

three to five recently sold properties that are similar in key aspects, such as location and size. While

we do not find a one-size-fits-all rule in terms of the location of the comparable homes agents select,

there seems to be a consensus that comparable homes should be ideally in the same neighborhood

or school district, and they should be as close to the focal property as possible (for example, within

a mile).7

For a given focal property, Zillow usually shows five to ten comps on the listing page at a given

time. This list of comps can change over time, possibly because Zillow gives new listings and newly

sold properties more weight as comps. In Figure 5, we plot the distribution of the number of

unique comps shown on Zillow for a focal property in the six rounds before listing. For an average

property, about twenty comps are used and shown by Zillow in the approximately 3-month period

before listing.

In addition, the comps vary in their distance to the focal property and the frequency they

were shown on the focal property’s listing page. We find that Zillow uses both local and non-local

comps, where we define local as the same neighborhood as the focal property. In fact, we find that

a vast majority of properties in our sample do have non-local comps, although local comps are more

common. The variation in distance and localness of comps suggest that Zillow’s comps algorithm

may take a more “global” perspective than that of an average agent, to the extent that agents are

7See https://www.realtor.com/advice/sell/comparative-market-analysis-explained/,
https://www.zillow.com/home-buying-guide/comparative-market-analysis/,
https://www.rocketmortgage.com/learn/comparative-market-analysis,
https://www.investopedia.com/terms/c/comparative-market-analysis.asp.
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more likely to restrict comps to be within the same neighborhood as the focal property.

Furthermore, we observe that some comps tend to stay as comps of the focal property over

time while others only appear briefly. In Figure 6, we provide a breakdown of comps by their

frequency of appearance in our data. For example, 16% represents comps that only appear once

in the 6-round period and 83% represents comps that were observed five times out of six. We see

that there are many comps that only appear once or twice, for both local and non-local comps.

Figure 5: The Number of Unique Comparable Homes

Figure 6: Localness and Frequency of Comparable Homes

Given these patterns, we use the average Zestimate of non-local and infrequent comps as an

instrument, under the assumption that they are outside of the direct information set of the seller
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or the seller’s agent when pricing the home. We believe that the instrument satisfies the exclusion

restriction for the following reasons: First, Zillow’s algorithm takes a more global perspective at

comps whereas seller and their agents usually focus on local comps. To the extent that location is

one of the most important factors in selecting comps, homes in a different neighborhood or zip code

are not likely to be considered by humans as valid comps. Machine learning algorithms, however,

may not have clear-cut restrictions like humans do. Secondly, we need to restrict the comps to be

the ones infrequently shown on Zillow, because sellers and their agents may consult Zillow before

making pricing decisions, which leads to a direct correlation between non-local comps and focal

property’s price. If the seller observes that a non-local home is listed as a comp repeatedly, she

is likely to visit the comp’s Zillow page to get more detail and use that information to guide her

pricing. Therefore, we use infrequently-shown non-local homes under the assumption that sellers

have very limited exposure to these comps.8

We find a positive effect of Zestimate on listing price. The regression results are reported in

Table 2. In Column (1), we report the IV result of Equation 1 that shows an estimated elasticity

of 0.66, meaning that a one percent increase in lagged Zestimate leads to a 0.66% increase in

listing price, everything else held the same. The positive coefficients of logRecentSoldPriceComp1m

(logged average recent sales price of comps within one mile) and logRecentSoldPriceLComp (logged

average recent sales price of comps in the same neighborhood) suggest that local comps matter but

they do not affect the listing price as strongly as the property’s own Zestimate does. In addition,

we observe that listing price is positively correlated with features such as bedrooms, bathrooms,

and floor size, and negatively correlated with age and the condo dummy.

In Table 2 Column (2) - (4), we report IV results on subsamples by city. The effect of Zestimate

on listing price is positive and strong across cities. The effect size varies and is the largest in Austin

and smallest in Pittsburgh. We then split the sample into houses and condos (Columns 5 and 6),

where we find that the effect is present for both housing types. We also report OLS estimation

results of Equation 1 in Appendix Table A1, using the same samples for the IV regressions. Across

all specifications except the one on condos, we find that OLS estimates are smaller than their IV

counterparts, suggesting a downward bias from unobservables. In appendix Table A2, we report the

8An alternative way to define the IV is to use the distance between comps and the focal property. We believe
localness is a more reasonable choice because (1) agents typically select comps based on neighborhoods or zipcodes
instead of exact distance, (2) the same cutoff of distance could mean very different degrees of comparability in different
cities, and this is likely one reason why there is no commonly agreed-upon guideline in terms of using distance to
define comps. Nonetheless, we use a 3-mile cutoff as an alternative way to define non-local comps in a robustness
check, where we observe qualitatively similar results.
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Table 2: Zestimate’s Effect on Listing Price

(1) (2) (3) (4) (5) (6)
D.V.: logged(Listing Price) All Austin Boston Pittsburgh Houses Condos

logZestLag1 0.659*** 0.878*** 0.639*** 0.545*** 0.649*** 0.525***
(0.018) (0.026) (0.047) (0.028) (0.021) (0.043)

logRecentSoldPriceComp1m 0.046*** 0.028 0.058*** 0.083*** 0.038** 0.119***
(0.014) (0.018) (0.022) (0.026) (0.017) (0.024)

logRecentSoldPriceLComp 0.042*** -0.019 0.048* 0.052* 0.041** 0.048*
(0.015) (0.021) (0.028) (0.027) (0.018) (0.025)

bedrooms 0.015*** 0.006** 0.019*** 0.018*** 0.018*** 0.016***
(0.002) (0.003) (0.003) (0.003) (0.002) (0.006)

bathrooms 0.055*** 0.012*** 0.040*** 0.093*** 0.059*** 0.046***
(0.003) (0.003) (0.004) (0.005) (0.003) (0.007)

logFloorsize 0.087*** 0.090*** 0.130*** 0.062*** 0.077*** 0.173***
(0.007) (0.011) (0.016) (0.011) (0.008) (0.018)

log(Age+1) -0.016*** -0.031*** -0.006 -0.018*** -0.019*** -0.008**
(0.002) (0.003) (0.004) (0.006) (0.003) (0.004)

condo -0.061*** -0.077*** -0.004 -0.043***
(0.007) (0.009) (0.009) (0.016)

Observations 24,622 9,000 4,583 11,039 20,519 3,418
R-squared 0.691 0.778 0.821 0.605 0.605 0.822
nbhd-by-month FE YES YES YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

first stage results for the IV regressions, which confirm a strong correlation between the instrument

and the endogeneous variable for all specifications.

We use two alternative measures of the IV to provide robustness. First, we use the average

sales price, instead of average Zestimate, of those non-local and infrequent comps that were sold

recently. Table A3 reports the regression results that are qualitatively similar to the main results

reported in Table 2. Secondly, we use distance to define non-local properties as an alternative

measure. Specifically, we use the average Zestimate of infrequently shown comps that are at least

3 miles away from the focal property. As Table A4 shows, the estimated effect of Zestimate on

listing price is qualitatively similar to the results in Table 2.

4.2 Zestimate Update after Listing

Zestimate is an algorithmic estimate that is dynamically changing over time based on real-time

information that Zillow has access to. We observe that usually the biggest update in Zestimate for

a given property takes place immediately after the property goes on the market. This is the time

when seller’s agent provides a major update on the property in the local MLS.
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Figure 7 plots the average of Zestimate-listing-price ratio for six rounds before the listing and

six rounds after, where we benchmark all listed properties against their own listing round (denoted

by 0). As shown in this graph, for all three cities, Zestimate is lower than listing price in both

the rounds before listing and the rounds after. In addition, we find a clear discontinuity in the

time series — it appears that immediately after listing price is posted, Zestimate is updated. In

particular, the updated Zestimate increases significantly as indicated by the rising Zestimate-price

ratio. Lastly, we find that the confidence interval of Zestimate shrinks after listing, suggesting that

the updated Zestimate tends to follow listing price more closely than does the lagged Zestimate. In

addition, there seems to be a mild increase in Zestimate-price ratio in Round 0, the listing round,

and this is an artifact of how the sample is collected. Specifically, it takes approximately two weeks

for our scraping algorithm to complete one round of queries. For the round where a given property

goes on market, its Zestimate query of that round may be scraped before or after the specific listing

date. Therefore, Round 0 contains both cases and should be considered as a mixture of Round -1

and Round 1.

Figure 7: Zestimate Update After Listing

An alternative explanation for the patterns in Figure 7 is that Zillow and the seller may observe

new market conditions simultaneously and the Zestimate update simply reflects Zillow’s indepen-

dent observation of these market changes. Intuitively, if we were able to observe Zestimate on

the daily basis, we could use the timing of Zestimate update to address this problem, assuming

that the aforementioned market conditions change somewhat continuously. Given that our data

crawling is bi-weekly, we instead focus on a subsample that consists of (a) the crawling was done
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Table 3: Zestimate Update on Listing price

D.V.: log(ZestLead1) (1)

loglistprice 0.574***
(0.011)

loglistprice×After 0.025***
(0.007)

After -0.294***
(0.094)

bedrooms -0.005
(0.003)

bathrooms 0.016***
(0.004)

logFloorsize 0.255***
(0.011)

log(Age+1) -0.017***
(0.004)

condo -0.027**
(0.011)

Observations 5,367
R-squared 0.937
Neighborhood FE YES
Year-month FE YES

Notes: Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

one day after the property was listed and (b) the crawling was done one day before the property

was listed. We then compare how the correlation between the updated Zestimate and listing price

differs between these two cases. If the unobserved factor affects the updated Zestimate and listing

price simultaneously, there should be little difference between correlations in (a) and (b). However,

if Zestimate is updated based on listing price, then we should expect a stronger correlation in (a)

than in (b). As shown in Table 3, Zestimate has a larger correlation with price for cases in (a) than

for cases in (b), as evidenced by the positive coefficient estimate of loglistprice times After.

Why does Zestimate so closely follow the listing price? One obvious reason is that listing

price contains valuable private information about the property, which makes listing price possibly

the strongest signal of the property value that Zillow can leverage for an on-market property.

As we discuss in Section 5, the tight co-movement of Zestimate and listing price may give rise to

disturbance propagation. For example, a random noise in Zestimate before listing may affect listing

price, which is later on propagated to the updated Zestimate, causing the final sales outcomes to

deviate from what they should be. Section 6 will further discuss the factors that may limit the

scope of disturbance propagation and help the market to self correct.
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4.3 Zestimate and Other Market Outcomes

We now evaluate the relationship between Zestimate and other market outcomes besides listing

price. Specifically, we focus on the dummy variable of whether property is sold or not, logged days

from listing to pending, logged days from listing to closing9, and logged sold price (where sold price

is observable). Note that once the property is listed, Zestimate gets updated based on listing price,

so we use the udpated Zestimate (ZestLead1) in these analyses to represent the Zestimate that is

observed by the demand side post listing. We estimate the following regression equation:

Yi = β1ln(ZestLead1)i + β2ln(listprice)i +XiΘ + εi, (2)

where ZestLead1 is the Zestimate in the round after listing and listprice is the listing price of the

property. We use Xi to denote the set of relevant property characteristics including # of bedrooms,

# of bathrooms, square footage, age of the property, whether the property is condo or not. We also

include in Xi two measures of local comps value, namely the average recent sales price of comps

in the same neighborhood and the average recent sales price of comps within one mile of the focal

property. These variables are controlled for because they may capture the part of property value

that is observable to market participants but unobservable to us, for example community attributes

common among local comparable homes. We further control for neighborhood-month fixed effects.

Given that our primary focus is on the causal effect of ZestLead1 on market outcomes, we

choose to instrument ZestLead1 while taking listprice in the regression as given.10 We use the same

instrument as in Section 4.2, i.e., average Zestimate of infrequent non-local comparable homes prior

to the listing of the focal home.

Table 4 reports the IV regression results. Estimates in Column (1) suggest that the sales

probability is positively affected by Zestimate but the effect is weak. Column (2) shows that days

to pending is negatively affected by Zestimate. In particular, a 1% increase in Zestimate leads to

a 3.9% decline in days till pending. A similar but smaller effect is observed for days to closing

(Column 3), where a 1% increase in Zestimate means a 1.9% shorter days on market. Lastly, we

observe a positive effect of Zestimate on the sold price (Column 4), suggesting that a 1% increase

9A tiny fraction of active properties have zero days to pending or zero days to closing, so we define logged days
to pending as log(days to pending+1) and logged days to closing as log(days to closing+1).

10If our purpose was to understand the causal effects of both listprice and ZestLead1, then we would need two
separate instruments. When we take listing price as given, the coefficient of ZestLead1 identifies how the market
responds to a random change in ZestLead1 conditional on whatever information that is already embodied in the
listing price.
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Table 4: Zestimate and Other Market Outcomes

(1) (2) (3) (4)
sold log(DaysToPending+1) log(DaysOnMarket+1) logsoldprice

logZestLead1 0.227 -3.904*** -1.893*** 0.260***
(0.152) (0.624) (0.334) (0.076)

loglistprice -0.269** 3.824*** 1.819*** 0.756***
(0.121) (0.502) (0.265) (0.060)

logRecentSoldPriceComp1m 0.001 0.063 -0.011 -0.008
(0.024) (0.091) (0.049) (0.011)

logRecentSoldPriceLComp 0.051* -0.026 0.045 0.005
(0.028) (0.107) (0.059) (0.013)

bedrooms -0.010*** -0.019* 0.004 0.003**
(0.003) (0.012) (0.006) (0.001)

bathrooms -0.002 0.046*** 0.023** 0.000
(0.004) (0.017) (0.009) (0.002)

logFloorsize -0.021* 0.315*** 0.214*** -0.034***
(0.013) (0.047) (0.028) (0.006)

log(Age+1) 0.001 -0.022 -0.002 -0.001
(0.004) (0.017) (0.010) (0.002)

condo -0.078*** 0.175*** 0.101*** -0.001
(0.012) (0.044) (0.024) (0.005)

Observations 22,772 20,149 16,711 11,982
R-squared 0.004 -0.038 -0.041 0.904
nbhd-by-month FE YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

in Zestimate translates to 0.26% higher sold price. Furthermore, the correlation between listing

price and market outcomes are intuitive: listing price is negatively correlated with sales probability

and positively correlated with days till pending, days on market, and sold price. Overall, these

empirical patterns suggest that a higher Zestimate is a strong cause of shorter time on market and

a higher sold price.

We now turn to a Regression Discontinuity Design (RDD) to provide further evidence for the

causal effect of ZestLead1 on market outcomes. Consider an example from the perspective of home

buyers, where hypothetically two houses are identical except for ZestLead1. In particular, ZestLead1

is slightly lower than listing price in one case and slightly above in the other. If this crossover is

random at the margin, then any differences in market outcomes can be interpreted by home buyers

perceive these ZestLead1 as different quality signals. In particular, Zillow may give buyers more

confidence for the just-above cases than the just below cases.

To mimic this hypothetical ideal in econometrics, we focus on cases where ZestLead1 is within

a tiny range around listing price. We find that the distribution of ZestLead1 around listing price is
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not uniform, with more cases where ZestLead1 is equal or greater than listing price than below it.

Given this, We limit the RDD sample to the observations where ZestLead1 is above listing price

up to 0.1% or below listing price no more than 1%. This means that for a home listed at $400,000,

ZestLead1 is at most $400 above or $4000 below. We verify that the just-above and just-below

listings are balanced on a number of observables including listing price, lagged Zestimate, and home

facts. The balance check result is reported in Appendix Table A5.

Table 5: Zestimate and Other Market Outcomes — RDD

(1) (2) (3) (4)
sold log(DaysToPending+1) log(DaysOnMarket+1) logsoldprice

Just above -0.004 -0.174*** -0.086** 0.003
(0.021) (0.067) (0.034) (0.019)

bedrooms -0.017 -0.017 -0.003 -0.005
(0.011) (0.036) (0.019) (0.011)

bathrooms -0.024 -0.058 0.002 0.120***
(0.014) (0.051) (0.026) (0.015)

logFloorsize 0.050 0.323*** 0.154** 0.350***
(0.037) (0.123) (0.063) (0.039)

log(Age+1) -0.021 0.009 0.011 -0.002
(0.014) (0.046) (0.024) (0.019)

Observations 1,873 1,764 1,476 816
R-squared 0.080 0.054 0.116 0.850
city FE YES YES YES YES
Year-month FE YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5 shows results by regressing market outcomes on the “Just above” dummy, controlling

for various home facts. Given the sample size, we are no longer able to control for granular fixed

effects at the neighborhood-month level. Instead, we allow for two separate fixed effects at the

city level and year-month level. In Column (1), we observe no statistically significant effect on the

probability of sale. In Column (2) and (3), We do find that the just-above cases can be sold at

a faster rate than just-below cases. In particular, the just-above cases need 17.4% less time to go

to pending and 8.6% less time to get closed. Lastly, as Column (4) suggests, we do not observe a

strong difference in sold price. Note that the sample is reduced considerably when the dependent

variable is sold price because (1) not all listings end up being sold, and (2) Austin properties need

to be removed from the sample because Austin is a non-disclosure city and most properties choose

to not disclose their sold price. Overall, we find evidence that the demand side responds to just-

above cases more favorably than just-below cases. These findings imply that the demand side may

22



have incomplete information and therefore need to leverage Zestimate as an information source in

addition to other signals in the market.

We can think of two explanations for the asymmetry. First, when Zestimate is above listing

price, little other information is available to justify why and how much the Zestimate is higher than

listing price, so buyers count more on the Zestimate as a guidance. In contrast, when the Zestimate

is below listing price, the seller has strong incentives to explain why he/she chooses to set a high

listing price, which helps to divert buyer attention from Zestimate. Alternatively, most buyers may

have some investment motive in house shopping, which could generate an upward confirmation

bias. In particular, when the Zestimate is higher than listing price, it paints a rosy picture about

the property, minimizing the buyer’s incentive to investigate further about the true property value;

but when the Zestimate is below listing price, buyers are compelled to do more homework to justify

their buying behavior.

4.4 Zestimate Update on Market Outcomes

Lastly, we provide evidence that Zestimate updates again once the market clears for the focal

property. Figure 8 plots the average Zestimate-sold-price ratio in the six rounds before and six

rounds after closing. We see that Zestimate converges to the sold price as the property goes

towards closing. In addition, Zestimate’s deviation from the sold price shrinks after the home is

sold, as reflected by the smaller confidence interval. We take this as evidence that Zestimate tends

to update based on the sold price.

Figure 8: Zestimate Updates on Sold Price
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In summary, we document a clear, sequential pattern of interactions between Zestimate and

user-driven market outcomes. Specifically, the initial Zestimate affects the listing price, which

Zestimate uses as an input to update its next version; then the demand side takes into account the

updated Zestimate when making the purchase decision, generating a sold price that feeds another

round of Zestimate update.

5 Marketwide Implications

As we present evidence on the interactions between Zestimate and human users in the previous

section, we now move to discuss and analyze the potential implications that such user-Zestimate

interactions may bring to the long-run efficiency of the housing market. Since Zestimate is a salient

aggregation of public information, the benefit of Zestimate to home sellers and buyers depends on

the availability and efficiency of alternative sources of information. That is, when it is more costly

for sellers and buyers to acquire the information by other means, we expect them to demonstrate

a greater dependence on Zestimate.

Such dependence could have mixed effects on the overall market efficiency: on the one hand,

it may bring attention to important but otherwise obscure information, so that sellers and buyers

can overcome the existing information frictions and make a more informed decision. This could

help housing price to converge to the true property value. On the other hand, if Zestimate incor-

porates noise but some sellers or buyers use it with ultimate confidence, they may be misled by the

Zestimate. Their twisted decisions feed into the next update of the Zestimate algorithm, which in

turn affects the comps, the comps of comps, etc. In theory, these chain reactions could propagate

any disturbance in any stage of the sales process, which has a potential to stimulate bubbles and

hamper the long-run efficiency of the housing market.

It is challenging to quantify these positive and negative implications, partly because alternative

information is hard to observe, partly because the implications are dynamic by definition but many

other factors may affect the dynamics simultaneously. Given this challenge, we look for clues that

may point to the presence of these implications and try to identify factors that may affect the size

of the implications, even if we cannot pin down their absolute magnitudes.
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5.1 Value Added of Zestimate

We rely on three variables to proxy the costs of finding alternative sources of information. The first

is regulatory difference in sales price disclosure. In the US, a dozen states do not require sellers

to disclose the historical sold price of residential properties. Sellers in these states can choose to

disclose their sales price but they are not required to and in fact many choose not to. In these

non-disclosure states, Zillow does not have access to all sales prices, nor does the general public.

Typically, one must go through a licensed realtor to get information on non-disclosed sales price.

The common reason given by the supporters of the non-disclosure law is to protect home owner’s

privacy, under the assumption that people do not like others to know how much they paid or

how much they sold their home for. Our data includes one non-disclosure city, Austin, and two

disclosure cities, Boston and Pittsburgh.

To examine how the effect of Zestimate on listing price varies by city, we estimate Equation 1 by

including a interaction term between the dummy for Austin properties and logZestLag1. Estimates

reported in Column (1) of Table 6 suggest that sellers seem to depend more on Zestimate in

Austin than in two other cities. Specifically, the elasticity is 14.7% (0.095 above 0.646) higher

in Austin than the other cities. Zestimate in Austin is plausibly less accurate than in Boston

and Pittsburgh because Zillow has less and lower-quality information on sales price. However, the

higher dependence of listing price on Zestimate implies that it is even more difficult for Austin

sellers to do their own research with scarce data available to them, and therefore they need to rely

on Zestimate more than sellers in other cities do.

One may argue that Austin may differ from Boston and Pittsburgh in many dimensions, so

the above results are not necessarily driven by the difference in sales price disclosure. To address

this concern, our second measure of information cost exploits within-city variations. In particular,

sellers often form belief of property values by looking at nearby houses, and this process is more

difficult if the neighborhood is more heterogeneous in housing characteristics. Empirically, for

each city, we split neighborhoods into low, medium, and high-heterogeneity, where neighborhood

heterogeneity is measured by the within-neighborhood variation in Zestimate, beds, baths, floor

size, and house age. We restrict the sample to Boston and Pittsburgh only, so that neighborhood

heterogeneity is not driven by disclosure law as is the case in Column (1). Table 6 Column (2)

shows that listing price of high-heterogeneity neighborhoods has a higher dependence on Zestimate

than that of low- and medium-heterogeneity neighborhoods. This is consistent with the hypothesis
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Table 6: Zestimate’s Effect on Listing Price: Heterogeneous Effects

(1) (2) (3)
D.V.: log(List Price) Austin vs. other cities Nbhd. heterogeneity ZestLag1

confidence interval

logZestLag1 0.646*** 0.532*** 0.577***
(0.018) (0.026) (0.025)

logZestLag1×Austin 0.095***
(0.013)

logZestLag1×heteroHi 0.070***
(0.016)

logZestLag1×heteroLo 0.014
(0.019)

logZestLag1×CI Hi 0.022***
(0.006)

logRecentSoldPriceComp1m 0.045*** 0.071*** 0.053***
(0.014) (0.018) (0.019)

logRecentSoldPriceLComp 0.039*** 0.063*** 0.062***
(0.015) (0.020) (0.020)

bedrooms 0.017*** 0.019*** 0.018***
(0.002) (0.002) (0.002)

bathrooms 0.054*** 0.074*** 0.073***
(0.003) (0.003) (0.003)

logFloorsize 0.082*** 0.083*** 0.087***
(0.007) (0.009) (0.009)

log(Age+1) -0.014*** -0.009** -0.010***
(0.003) (0.004) (0.004)

condo -0.054*** -0.022** -0.028***
(0.007) (0.009) (0.009)

CI Hi -0.287***
(0.082)

Observations 24,622 15,622 15,224
R-squared 0.692 0.672 0.676
nbhd-by-month FE YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

that information acquisition is more difficult for sellers in more heterogeneous neighorhoods, which

warrants a higher dependence on Zestimate.

The third measure of information cost is the confidence internal (CI) of Zestimate, which by

definition, reflects how confident Zillow is when it uses public information to create Zestimate. In

particular, for each ZestLag1, we observe the associated Zestimate CI in percentage terms. For

example, a 5% upper bound and a 5% lower bound around the Zestimate together indicate a

Zestimate CI of 10. This measure is positive for all properties by construction, and it is skewed

with a mean of 19.07, a median of 16, and a standard deviation of 12.43. Based on the median,

we group properties into high-CI and low-CI and use the dummy “CI Hi” as the corresponding
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indicator. Evidence shown in Column (3) of Table 6 reports a higher effect of Zestimate on listing

price for properties with higher CI.

In summary, we identify strong heterogeneous effects of Zestimate on listing price, which indicate

that sellers depend more on Zestimate when the underlying information is more costly to collect

from alternative sources. These findings suggest that Zestimate may improve market efficiency by

making harder-to-find information more salient and available to housing market participants.

5.2 Possible disturbance propagation

While Zestimate may improve market transparency, the way it closely tracks real-time market infor-

mation such as listing and sold prices is also concerning because it may cause market disturbances

to persist and propagate.

To examine this possibility, we first document how post-listing Zestimate tracks listing price in

places where Zillow has less or lower-quality information. Similar to analyses in Section 4.2, we test

these implications using variations in non-disclosure, neighborhood heterogeneity, and Zestimate’s

confidence interval. For example, we regress the updated Zestimate on lagged Zestimate and its

interaction with Austin, plus the listing price and its interaction with Austin. The aim of this

analysis is to evaluate how the correlation between lead Zestimate and listing price and lagged

Zestimate vary across different scenarios.

Results in Table 7 Column (1) suggest that the updated Zestimate follows both the listing price

and the lagged Zestimate, but the correlation with listing price is much greater (0.717 vs. 0.254).

Column (2) reports evidence that in Austin, the updated Zestimate is less correlated with lagged

Zestimate and more correlated with listing price, compared to other cities. We get similar results

for heterogeneous neighborhoods (Column 3).

These results suggest that in places where there is less public information or less comparability

across nearby houses, Zestimates may depend more on listing price. Note that our earlier results

show that these are the same markets where sellers rely more on the lagged Zestimate. Therefore,

these findings suggest a stronger co-movement between Zestimate and listing price in these places.

That being said, when we test the heterogeneity across Zestimate confidence interval (Column 4),

we do find an opposite pattern — the updated Zestimate is less correlated with listing price and

more correlated with lagged Zestimate if the focal property has a greater confidence interval in its

Zestimate. This suggests that the feedback between Zestimate and listing price does not always

reinforce each other in both directions.
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Table 7: Zestimate Closely Tracks Listing Price

(1) (2) (3) (4)
D.V.: log(ZestLead1) All Austin vs. Nbhd. ZestLag1

other cities heterogeneity confidence interval

loglistprice 0.717*** 0.711*** 0.713*** 0.757***
(0.003) (0.003) (0.007) (0.006)

logZestLag1 0.254*** 0.263*** 0.276*** 0.216***
(0.003) (0.003) (0.007) (0.006)

loglistprice×Austin 0.025***
(0.006)

logZestLag1×Austin -0.035***
(0.006)

loglistprice×heteroHi 0.020**
(0.009)

loglistprice×heteroLo -0.032***
(0.009)

logZestLag1×heteroHi -0.036***
(0.009)

logZestLag1×heteroLo -0.004
(0.009)

loglistprice×CI Hi -0.070***
(0.007)

logZestLag1×CI Hi 0.073***
(0.007)

bedrooms 0.000 0.000 0.001 0.000
(0.001) (0.001) (0.001) (0.001)

bathrooms 0.002* 0.002** 0.003*** 0.003**
(0.001) (0.001) (0.001) (0.001)

logFloorsize 0.016*** 0.016*** 0.017*** 0.016***
(0.002) (0.002) (0.003) (0.003)

logAge -0.001 -0.001 -0.000 -0.000
(0.001) (0.001) (0.001) (0.001)

condo -0.011*** -0.011*** -0.008** -0.008**
(0.002) (0.002) (0.003) (0.003)

CI Hi -0.027
(0.030)

Observations 35,502 35,502 20,032 19,747
R-squared 0.983 0.983 0.984 0.984
nbhd-by-month FE YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Moving beyond the listing stage, Figure 9 plots the ratio of Zestimate to sold price in six rounds

before and six rounds after the listing round (i.e., Round 0). We observe two interesting patterns

here: First, Zestimates before listing (i.e., Round -6 to Round -1) tend to underpredict the sold

price as the Zestimate-sold-price ratio is predominately below 1 for all cities and all rounds. This is

reasonable because Zestimate before listing is based on incomplete information. For example, there
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may be a recent renovation with the property that was not captured by lagged Zestimate. Second,

in the six rounds post listing (Rounds 1 to 6), the Zestimate-sold-price ratio is significantly above 1

for almost all cities and almost all rounds, suggesting that when Zestimate follows the listing price

too closely, it may generate erroneous predictions of the market value of the property.

Figure 9: Zestimate-Sold Price Ratio Before and After Listing

Intuitively, disturbance propagation is not problematic if the market is able to self correct. For

example, market can self correct if disturbances eventually cancel out each other — for example,

if Zestimate introduces positive errors to some properties and negative errors to others, then the

market as a whole can still converge to the efficiency benchmark, provided that market participants

respond to positive and negative noises similarly.

We show evidence that sellers in fact have asymmetric responses to Zestimate. In Figure 10,

we divide all properties into three groups based on their values. For each value group, we plot the

linear fit of logged listing price on logged ZestLag1, separately for three cases: Zest Medium, Zest

Low, and Zest High. We use local comparable homes (i.e. comparable homes within one mile) to

construct seller’s expected fair market value of their own property, so when the lagged Zestimate

is significantly below (< 80%) that perceived fair market value, we categorize that case as “Zest

Low”. It is “Zest High” if the lagged Zestimate is significantly greater than (> 120%) the perceived

fair market value. Everything in between is categorized as “Zest Medium”. As shown in Figure 10,

seller’s reliance on lagged Zestimate is the strongest when it is closer to their expected value of the

property. The dependence is weaker when Zestimate is higher and weakest when Zestimate is lower.

This suggests that sellers find Zestimate most believable when it aligns with their expectation; when
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Figure 10: Asymmetry in Seller Response to ZestLag1

it does not, they put less trust in it when it is below their own valuation than when it is above.

Similarly, buyers also exhibit asymmetric responses to ZestLead1. In Figure 11, we plot the

linear fit of logged sold price on logged ZestLead1, separately for Zest Medium, Zest Low, and Zest

High. Here we define “Zest Low” (“Zest High”) if a property’s ZestLead1 is significantly lower

(higher) than the listing price. We observe that, across all property-value types, there is a smaller

correlation between ZestLead1 and logged sold price when ZestLead1 is significantly below the

listing price than when it is not. Therefore, both sellers and buyers are more likely to agree with

Zestimate when it is close to or higher than their evaluation benchmark (i.e., local comps for sellers

and the listing price for buyers).

These asymmetries are concerning, because noises reinforced more in the positive direction may

contribute to a housing market bubble. On top of that, the way that Zillow defines comparable

homes could compound the effect. Figure 12a counts the number of properties who have the focal

property as a comparable home, in the six rounds before and six rounds after the listing round. It

shows that the focal property can only affect a limited number of properties when it is off market,

but once listed, the focal property can affect as many as 150 properties. Therefore, any error in

the focal property’s value can be amplified by this large comparable homes network. In particular,

Figure 12b shows that the homes affected after listing are on average within one mile from the

focal property, suggesting that the noise is more likely to affect local properties although distant

properties may also be affected indirectly (through the comps of comps, for example).
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Figure 11: Asymmetry in Buyer Response to ZestLead1

(a) (b)

Figure 12: Homes Affected by the Focal Property, Before and After Listing

5.3 Does Zestimate Propagate the Initial Covid-19 Shock?

So far, empirical patterns point to a mixture of potential implications of Zestimate: on the one

hand, users rely more on Zestimate when it is more costly to access the same information from

alternative sources, implying potential efficiency gains from the improved transparency because

of Zestimate; on the other hand, Zestimate update also tracks listing price more closely when

information from alternative sources is more costly, implying a feedback loop that could propagate

disturbances in any stage of the sales process.

To causally tease out the net effect of these two forces, an ideal setting is to have a replica of

housing markets where Zestimate is only available in a random subset of the markets. In reality,

we do not have such experimental or quasi-experimental settings, because: (1) Zillow’s launch in
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2006 was nationwide and there was no staggered entry to leverage; (2) Zestimate availability at

the property level does vary within the same geographical market, but such a study may require

matching of properties which is apparently subject to critique in that properties are unique in nature

and matching on observables cannot cleanly construct counterfactuals. Besides, matching-based

analysis may suffer from spillover bias given that matched properties are inherently competitors.

Given the lack of clean lab settings, we turn to the natural experiment created by COVID-19.

The assumption is that COVID-19 created a shock to the local housing market in the initial weeks

since the presidential declaration of national emergency11. If we focus on the properties that had

already been active on the market at the time of the declaration, their listing price was preset. For

them, the sudden direct shock from the declaration is from other market participants, likely on the

demand side. From their final sales price, we can measure the size of the shock to the local market.

If Zestimate plays an important role in disturbance propagation, we should observe markets subject

to a positive shock at the declaration to go up further afterwards, and markets subject to a negative

shock at the declaration to go down further afterwards. If, however, the market self corrects, such

path dependence may not be present in the data.

To construct a measure of the neighborhood-level COVID shock, We first identify the properties

that were listed between January 1, 2020 and March 13, 2020 and went into pending after March 13,

2020 but before May 1, 2020. We take these properties as the ones that were caught in surprise by

COVID. For each of these “surprise” properties, we construct their sold price to listing price ratio

(henceforth sold-to-listing ratio), under the assumption that this ratio reflects the initial COVID-19

shock to the demand side. However, cross-sectionally, this ratio could also reflect many fundamental

differences across neighborhoods even without COVID-19, and thus we need to normalize it by the

historical sold-to-listing ratio within the same neighborhood. To do so, for each neighborhood, we

identify all properties sold in 2019 and construct their sold-to-listing ratio. Then we collapse these

two sold-to-listing ratios — one for the surprise properties and one for those sold in 2019 — to

the neighborhood level by taking the median across properties. The difference between these two

ratios tells us the direction and size of the initial COVID shock.

Accordingly, we sort all neighborhoods into three terciles (positive shock, minimal shock, and

negative shock), depending on whether the median sold-to-listing ratio of the surprise properties is

considerably higher than, similar to, or considerably lower than the neighborhood’s median ratio in

11See https://www.federalregister.gov/documents/2020/03/18/2020-05794/declaring-a-national-emergen

cy-concerning-the-novel-coronavirus-disease-covid-19-outbreak
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2019. More specifically, an average positive-shock neighborhood has seen its median sold-to-listing

ratio of the surprise properties go up 0.055 from its 2019 median12, while an average negative shock

neighborhood saw its median sold-to-listing ratio of the surprise properties go down 0.112 from its

2019 median.13 In comparison, the shock is the minimal-shock neighborhoods is bounded between

-0.035 and +0.016.

In constructing the sample, we remove condos from the data because condos are often investment

properties which may be affected by COVID in ways different than laid out above. We also drop

the last three months of the data (namely Jan, Feb, Mar 2021) out of concern of data censoring —

some properties that were listed close to the end of the sample period may have missing values of

market outcomes by the end, and these properties are likely to be low-quality listings which gives

rise to censoring bias. The data between January 1, 2020 to April 30, 2020 is isolated to construct

the dummies of positive, minimal, and negative shock. This interim period is excluded from the

regression sample, as we aim to identify how neighborhoods respond to the shock by comparing

their market outcomes strictly before (i.e., before January 1, 2020) and strictly after (i.e., after

April 30, 2020). We adopt the following Difference-in-Differences specification:

Yit = λ1Positivei × Postt + λ2Negativei × Postt + δi + ηt + εit, (3)

where Yit is the outcome variable for neighborhood i at month t, including logged ZestLag1, logged

listing price, sales probability, logged days to pending, logged days on market14, and logged sold

price. We use the dummy variable Postt to denote months after the declaration, and Positive and

Negative stand for neighborhoods subject to Positive and Negative COVID shocks, respectively.

We control for neighborhood and month fixed effects with δi and ηt. Standard errors are clustered

at the neighborhood level. Constructed this way, the baseline group is the neighborhoods with

Minimal COVID shock. If disturbance propagation exists and drives path dependence, we expect

λ1 to be positive and λ2 to be negative. To test the assumption of parallel trends, we plot the time

series of logged ZestLag1, logged listing price, sales probability, logged days to pending, logged

days on market, and logged sold price in Appendix Figure A1, which shows parallel trends across

the three shock groups for all outcome variables.

Table 8 reports the regression results. For all price- or value-related variables, we do not

12The full range is from 0.017 to 0.216, all going up.
13The full range is from 0.036 to 0.372, all going down.
14Logged days to pending is defined as log(1+days to pending) and logged days to market is defined as log(1+days

to market), because a small sample of the data (< 1%) has zero days to pending or zero days to market.
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Table 8: COVID Shock

(1) (2) (3) (4) (5) (6)
logZestLag1 loglistprice sold log(DaysToPending log(DaysOnMarket logsoldprice

+1) +1)

Positive × Post 0.010 -0.021 -0.037 0.071 0.084 -0.028
(0.036) (0.028) (0.026) (0.101) (0.058) (0.039)

Negative × Post 0.045 -0.026 -0.022 0.315*** 0.180*** -0.013
(0.040) (0.025) (0.034) (0.119) (0.061) (0.037)

Observations 1,435 1,435 1,435 1,428 1,391 1,234
R-squared 0.918 0.919 0.419 0.408 0.420 0.887
neighborhood FE YES YES YES YES YES YES
month FE YES YES YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

find any significant coefficient estimates for variables of interest. For timing of sales (logged days

to pending and logged days on market), properties that locate in the neighborhoods subject to

Negative COVID shock need a longer time to sell after the shock, although probability of sales and

sold price do not change significantly. In combination, these results do not suggest a strong path

dependence set forth by the initial COVID shock, especially not in terms of price or property value.

This pattern is confirmed in the raw data of Zestimate. In Figure 13, we plot the trends of

Zestimate aggregated across all properties (i.e., on market and off market) in Positive, Minimal,

and Negative COVID shock neighborhoods. Specifically, we compute the median Zestimate across

properties of a given neighborhood in a given round, and then take the average across neighborhoods

of the same COVID shock group in that month. No evidence suggests that Zestimate after COVID

goes up the most for Positive-shock neighborhoods and goes down the most for Negative-shock

neighborhoods, relative to Minimal-shock neighborhoods. Above all, evidence tends to support the

null of no path dependence on the initial COVID shock, suggesting that the risk of disturbance

propagation in the Zestimate algorithm, if it exists, does not manifest itself in the form of price

divergence based on the initial COVID shock.

6 Mechanisms that Limit Disturbance Propagation

Since no strong evidence supports disturbance propagation in light of the initial COVID shock, a

natural question is what factors help to prevent the market from propagating the shock via the

Zestimate algorithm. In this section, we describe two such factors.

First, we find evidence that Zillow is more likely to remove Zestimate when Zestimate is more
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Figure 13: Zestimate by Covid Shock

at odds with the listing price, which may mitigate disturbance propagation. In Figure 14, for each

city, we plot the share of properties with non-missing Zesitmates in the six rounds before and six

rounds after the listing round, separately by three cases — Zest Low, Zest Medium, and Zest High.

For each property, we compute the average Zestimate in the six rounds before listing and compare

it with the listing price. If this measure is considerably lower than listing price, this property is

considered to be “Zest Low”. “Zest Medium” and “Zest High” are defined similarly. We observe

that across cities, Zestimate in general becomes less available for “Zest Low” and “Zest High” than

“Zest Medium”, suggesting that Zillow is more likely to make Zestimate disappear when they find

it in less agreement with the listing price. In particular, we find that Zestimate is much more likely

to disappear when Zestimate is lower than listing price than the other two cases in Austin, which

can help limit disturbance propagation given the sellers’ asymmetric response to Zestimate. We

also note that Zestimate removal is more frequent when Zestimate is higher than the listing price

in Pittsburgh than when it is lower than the listing price, but the difference and magnitude is not

as significant as that in Austin.

Next, we provide evidence that sellers are less affected by Zestimate when Zestimate is at odds

with the information they observe. We assume that sellers closely monitor the recent sales of homes

in their local neighborhoods prior to deciding on the listing price. If the sold prices of sellers’ local

comparable homes are rather different from these homes’ Zestimates, then the seller may consider

Zestimate to be less accurate and thus depend less on Zestimate. For each listing, we compute the

absolute percentage deviation of the average Zestimate of local comparable homes in the 6 rounds
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Figure 14: Zestimate Availability

before the focal property’s listing from the average sold price of these comparable homes during

the same time period. This percentage deviation is highly skewed, with a median of 5.3%, a mean

of 11.8%, and standard deviation of 56.1%. Given this, we transform this variable into deciles and

estimate Equation 1 by including this decile variable and its interaction with logZestLag1. Our

hypothesis is that in cases with a higher deviation of Zestimate from the sold price of local comps,

the seller is less likely to use Zestimate in pricing her own home.

Results are reported in Table 9, where we use dec comps Zest soldP diff to denote the above-

mentioned Zestimate-sold price disagreement. For the estimation, We use the same variable, i.e.,

the average Zestimate of infrequent, non-local comparable homes to instrument for the endogeneous

logZestLag1 and its interaction with the disagreement variable to instrument for the interaction

term. We estimate a statistically significant coefficient estimate of the interaction term at -0.002.

This indicates that when the disagreement increases by 1 decile, the effect of Zestimate on listing

price decreases by 0.002. Therefore, evidence supports the hypothesis that sellers are less affected

by Zestimate when Zestimate is in less agreement with other sources of information.

Lastly, we adopt a similar approach to evaluate if buyers are less affected by Zestimate when they

find that the lagged Zestimate is more different from the listing price. Specifically, for each property,

we construct the absolute percentage deviation of lagged Zestimate from the listing price. We then

transform this variable into deciles given that it is highly skewed and name the transformed variable

as dec ZestLag listprice diff . We then estimate Equation 2 by allowing for the interaction term

between dec ZestLag listprice diff and LogZestLead1. The objective is to test if the demand
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Table 9: Smaller Effect of Zestimate on Listing Price When Zestimate Disagrees with Sold Price
of Local Comps

D.V.: log(List Price) (1)

logZestLag1 0.668***
(0.019)

dec comps Zest soldP diff×logZestLag1 -0.002**
(0.001)

dec comps Zest soldP diff 0.024**
(0.011)

logRecentSoldPriceComp1m 0.047***
(0.014)

logRecentSoldPriceLComp 0.046***
(0.015)

bedrooms 0.016***
(0.002)

bathrooms 0.054***
(0.003)

logFloorsize 0.086***
(0.007)

log(Age+1) -0.016***
(0.002)

condo -0.060***
(0.007)

Observations 24,620
R-squared 0.691
nbhd-by-month FE YES

Notes: Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

side reacts to the updated Zestimate differently when the historical Zestimate of the property (i.e.,

lagged Zestimate) is far from the listing price. Similar to what we did with the supply side above,

we continue to use the IV approach so that the coefficient estimates can be interpreted as causal

effects.

Regression outputs in Table 10 suggest that buyers are less affected by Zestimate when they

find the lagged Zestimate was further away from the listing price. Specifically, we find that the

updated Zestimate after listing affects the the sales probability, days to pending, days on market,

and the sold price to a lesser extent.

In summary, we find that Zillow actively manages the prediction accuracy of Zestimate by

pruning cases where Zestimate disagrees greatly with other types of information. At the same

time, both supply and demand sides seem to use various sources of information in their decision

making and they rely less on Zestimate if Zestimate is found off.
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Table 10: Smaller Effect of Zestimate on Market Outcomes When Lagged Zestimate Disagrees with
Listing Price

(1) (2) (3) (4)
sold log(DaysToPending log(DaysOnMarket logsoldprice

+1) +1)

logZestLead1 0.167 -3.595*** -1.813*** 0.227***
(0.155) (0.632) (0.343) (0.078)

dec ZestLag listprice diff×logZestLead1 -0.004*** 0.018*** 0.006** -0.001*
(0.001) (0.006) (0.003) (0.001)

loglistprice -0.183 3.407*** 1.700*** 0.795***
(0.122) (0.503) (0.269) (0.061)

dec ZestLag listprice diff 0.043** -0.195*** -0.072* 0.010
(0.019) (0.071) (0.039) (0.008)

logRecentSoldPriceComp1m -0.001 0.074 -0.007 -0.009
(0.024) (0.090) (0.049) (0.011)

logRecentSoldPriceLComp 0.048* -0.020 0.047 0.004
(0.028) (0.106) (0.059) (0.013)

bedrooms -0.010*** -0.022* 0.003 0.003**
(0.003) (0.012) (0.006) (0.001)

bathrooms -0.002 0.043** 0.022** 0.001
(0.004) (0.017) (0.009) (0.002)

logFloorsize -0.018 0.304*** 0.209*** -0.031***
(0.013) (0.048) (0.028) (0.006)

log(Age+1) 0.003 -0.030* -0.005 -0.000
(0.004) (0.017) (0.009) (0.002)

condo -0.081*** 0.186*** 0.104*** -0.003
(0.012) (0.043) (0.024) (0.005)

Observations 22,772 20,149 16,711 11,982
R-squared 0.009 -0.017 -0.028 0.905
nbhd-by-month FE YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

7 Conclusion

Using bi-weekly snapshots of Zillow in three US cities, we find a strong co-movement between Zes-

timate and the residential housing market. In particular, Zestimate leads the market by affecting

the decision making of both sellers and buyers; it also follows the market by tracking listing price

and other market outcomes closely. These two-way interactions have mixed implications for mar-

ket efficiency: on the one hand, Zestimate may enhance efficiency because its 24/7 presence can

empower market participants with useful, easy-to-get information, especially in the places that are

costly to access alternative sources of information. On the other hand, the Zestimate algorithm

has the potential to ingest market disturbance at any stage of the sales cycle, and propagate it over

time and across properties.
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Although our study on the initial COVID shock does not reveal strong evidence in support of

disturbance propagation, the COVID shock is only one of many disturbances that may occur in the

sales cycle. We cannot rule out the possibility that an opposite market shock may have happened

later on and cancel out the initial COVID shock. In that case, Zestimate could propagate both,

but it is not detectable in our research design. It is also possible that Zestimate has little effect

propagating big shocks like COVID, because the propagation may trigger the guard rails embedded

in the algorithm or raise enough doubt in user confidence in Zestimate. When the shock is small

or gradual, these limiting factors may not be as effective. More future research is definitely needed

to better understand the risk of user-algorithm interactions.

Our research is subject to a number of other caveats. Due to technical constraint, we can only

track Zillow in three US cities for two years. Whether our findings are representative of the whole

US remains to be seen. In addition, we do not have any insider information as to how Zillow

constructs or evolves its Zestimate algorithm. Our understanding of the algorithm is based on

public information of Zillow as well as our inference from the scraped data. Furthermore, because

we do not observe the private information that drives a seller’s decision to go on the market, we take

whether a property is on the market as exogenously given, and focus on market outcomes since the

start of listing. This implies we ignore the potential impact of Zestimate on the selection of going

on the market. Finally, while user-algorithm interaction is common on many e-commerce websites,

it is conceivable that users treat residential properties differently, because housing sales involve a

large amount of money and many information frictions are unique to the housing market. We hope

our findings in the housing market would encourage future research of interactive algorithms in

other markets.
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Figure A1: Paralell Trends — Covid Shock
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B Tables

Table A1: Zestimate’s Effect on Listing Price — OLS results

(1) (2) (3) (4) (5) (6)
D.V.: log(List Price) All Austin Boston Pittsburgh Houses Condos

logZestLag1 0.501*** 0.704*** 0.520*** 0.397*** 0.469*** 0.524***
(0.008) (0.013) (0.017) (0.014) (0.010) (0.018)

logRecentSoldPriceComp1m 0.087*** 0.048*** 0.084*** 0.137*** 0.083*** 0.120***
(0.013) (0.018) (0.019) (0.025) (0.016) (0.022)

logRecentSoldPriceLComp 0.104*** 0.044** 0.098*** 0.101*** 0.114*** 0.049**
(0.014) (0.019) (0.021) (0.025) (0.017) (0.023)

bedrooms 0.016*** 0.007*** 0.018*** 0.020*** 0.019*** 0.016***
(0.002) (0.003) (0.003) (0.003) (0.002) (0.006)

bathrooms 0.062*** 0.019*** 0.044*** 0.102*** 0.068*** 0.046***
(0.002) (0.003) (0.004) (0.004) (0.003) (0.007)

logFloorsize 0.114*** 0.132*** 0.157*** 0.083*** 0.105*** 0.174***
(0.006) (0.009) (0.012) (0.010) (0.007) (0.015)

log(Age+1) -0.018*** -0.031*** -0.006* -0.026*** -0.022*** -0.008**
(0.002) (0.003) (0.004) (0.006) (0.003) (0.004)

condo -0.065*** -0.099*** -0.003 -0.044***
(0.006) (0.008) (0.009) (0.016)

Observations 24,622 9,000 4,583 11,039 20,519 3,418
R-squared 0.923 0.928 0.881 0.818 0.917 0.951
nbhd-by-month FE YES YES YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A2: Zestimate’s Effect on Listing Price — IV First Stage

(1) (2) (3) (4) (5) (6)
D.V.: log(ZestLag1) All Austin Boston Pittsburgh Houses Condos

log(IV) 0.336*** 0.300*** 0.204*** 0.422*** 0.349*** 0.249***
(0.004) (0.006) (0.008) (0.008) (0.005) (0.011)

logRecentSoldPriceComp1m 0.097*** 0.066*** 0.080*** 0.152*** 0.109*** 0.098***
(0.009) (0.014) (0.017) (0.016) (0.011) (0.023)

logRecentSoldPriceLComp 0.338*** 0.271*** 0.414*** 0.264*** 0.325*** 0.304***
(0.010) (0.014) (0.017) (0.016) (0.011) (0.022)

bedrooms 0.000 0.002 -0.009*** 0.009*** 0.002* 0.018***
(0.001) (0.002) (0.002) (0.002) (0.001) (0.006)

bathrooms 0.030*** 0.026*** 0.021*** 0.034*** 0.030*** 0.031***
(0.002) (0.002) (0.004) (0.003) (0.002) (0.007)

logFloorsize 0.110*** 0.170*** 0.189*** 0.072*** 0.096*** 0.210***
(0.004) (0.007) (0.010) (0.007) (0.005) (0.014)

log(Age+1) -0.013*** -0.003 -0.004 -0.037*** -0.016*** -0.004
(0.002) (0.002) (0.003) (0.004) (0.002) (0.004)

condo -0.009* -0.089*** 0.016** 0.000
(0.005) (0.006) (0.008) (0.010)

Observations 24,622 9,000 4,583 11,039 20,519 3,418
R-squared 0.961 0.950 0.904 0.923 0.961 0.953
nbhd-by-month FE YES YES YES YES YES YES
F-stat (IV=0) 6109.92 2516.07 616.63 3159.28 5158.19 537.04

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A3: Zestimate’s Effect on Listing Price — Alt. IV (1)

(1) (2) (3) (4) (5) (6)
D.V.: log(List Price) All Austin Boston Pittsburgh Houses Condos

logZestLag1 0.631*** 0.875*** 0.653*** 0.566*** 0.625*** 0.531***
(0.025) (0.047) (0.060) (0.032) (0.029) (0.057)

logRecentSoldPriceComp1m 0.054*** 0.050* 0.053** 0.073*** 0.046** 0.116***
(0.016) (0.027) (0.023) (0.027) (0.020) (0.027)

logRecentSoldPriceLComp 0.047** -0.040 0.045 0.045* 0.043* 0.045
(0.018) (0.033) (0.032) (0.027) (0.022) (0.028)

bedrooms 0.017*** 0.010** 0.019*** 0.018*** 0.020*** 0.016**
(0.002) (0.004) (0.003) (0.004) (0.002) (0.007)

bathrooms 0.061*** 0.014*** 0.039*** 0.090*** 0.067*** 0.051***
(0.003) (0.005) (0.005) (0.005) (0.004) (0.008)

logFloorsize 0.083*** 0.074*** 0.127*** 0.061*** 0.069*** 0.167***
(0.008) (0.015) (0.018) (0.011) (0.009) (0.021)

log(Age+1) -0.013*** -0.030*** -0.006 -0.017*** -0.014*** -0.007*
(0.003) (0.004) (0.004) (0.006) (0.004) (0.004)

condo -0.052*** -0.086*** -0.006 -0.040**
(0.008) (0.014) (0.009) (0.016)

Observations 19,391 4,170 4,439 10,782 15,748 3,021
R-squared 0.682 0.784 0.821 0.603 0.592 0.820
nbhd-by-month FE YES YES YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A4: Zestimate’s Effect on Listing Price — Alt. IV (2)

(1) (2) (3) (4) (5) (6)
D.V.: log(List Price) All Austin Boston Pittsburgh Houses Condos

logZestLag1 0.705*** 0.808*** 0.761*** 0.630*** 0.703*** 0.623***
(0.027) (0.032) (0.087) (0.046) (0.030) (0.063)

logRecentSoldPriceComp1m 0.056*** 0.033 0.058* 0.082*** 0.058*** 0.147***
(0.016) (0.020) (0.030) (0.029) (0.018) (0.035)

logRecentSoldPriceLComp 0.031 0.038 -0.035 0.036 0.024 -0.037
(0.021) (0.025) (0.052) (0.036) (0.023) (0.042)

bedrooms 0.016*** -0.000 0.027*** 0.018*** 0.015*** 0.018**
(0.002) (0.003) (0.003) (0.004) (0.002) (0.008)

bathrooms 0.041*** 0.011*** 0.024*** 0.068*** 0.045*** 0.032***
(0.003) (0.004) (0.006) (0.005) (0.003) (0.009)

logFloorsize 0.067*** 0.106*** 0.091*** 0.039*** 0.062*** 0.105***
(0.008) (0.014) (0.021) (0.013) (0.009) (0.024)

log(Age+1) -0.013*** -0.019*** -0.009* -0.012* -0.012*** -0.015***
(0.003) (0.003) (0.005) (0.006) (0.003) (0.005)

condo -0.066*** -0.067*** -0.031*** -0.053***
(0.007) (0.010) (0.012) (0.016)

Observations 17,657 6,699 2,472 8,486 15,331 1,673
R-squared 0.716 0.810 0.811 0.647 0.651 0.816
nbhd-by-month FE YES YES YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table A5: RDD Balance Check

(1) (2) (3) (4) (5) (6)
loglistprice logZestLag1 bedrooms bathrooms logFloorsize log(Age+1)

above -0.002 -0.006 -0.011 0.001 -0.019 0.048
(0.017) (0.017) (0.055) (0.047) (0.019) (0.038)

Observations 1,873 1,873 1,873 1,873 1,873 1,873
R-squared 0.677 0.672 0.182 0.115 0.172 0.401
city FE YES YES YES YES YES YES
year-month FE YES YES YES YES YES YES

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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