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1 Introduction

Welfare losses from adverse selection (Akerlof, 1970; Rothschild and Stiglitz, 1976;

Einav, Finkelstein and Cullen, 2010), consumption externalities (Pauly, 1970; Sum-

mers, 1989; Mahoney, 2015), and affordability concerns (Wagstaff and van Doorslaer,

2000; Bundorf and Pauly, 2006) justify the growing role of governments in regulating

and supporting premium payments in private health insurance markets (Einav and

Levin, 2015). These regulations are increasingly relevant across many OECD coun-

tries (Colombo and Tapay, 2004), including the United States of America (as reviewed

in Handel and Ho, 2021; Handel and Kolstad, 2022), Germany (Atal, Fang, Karlsson

and Ziebarth, 2022), the Netherlands (Van de Ven and Schut, 2008; Roos and Schut,

2012), Switzerland (Holly, Gardiol, Domenighetti and Bisig, 1998), Israel (Brammli-

Greenberg, Glazer and Shmueli, 2018), Chile (Atal, 2019; Cuesta, Noton and Vatter,

2019), and Uruguay (Fleitas, 2020).

The strategic response of imperfectly competitive insurers to subsidy design was

already highlighted for the case of prescription drugs by Decarolis (2015a,b), and fur-

ther analyzed in Decarolis, Polyakova and Ryan (2020). For insurance covering medical

care more broadly, Finkelstein, Hendren and Shepard (2019), Jaffe and Shepard (2020),

and Shepard (2022) analyze the premium subsidy program for low-income adults that

played a key role in increasing healthcare access in Massachusetts since 2006. These

studies consistently draw attention to how individuals and insurers are responsive to

regulatory details. Therefore, understanding the ways in which subsidy design impacts

market outcomes remains critical for the delineation of future policy.

For this purpose, economic theory provides useful equilibrium comparative static

predictions that can be explored empirically. Given theoretical insights, quantifications

in a specific context require estimates of the joint distribution of preferences and costs

(Einav et al., 2010) and careful modelling of how and how much insurers’ compete.

In this article I begin by noticing that, as seen also in the Netherlands and Switzer-

land, in the marketplaces introduced under the Patient Protection and Affordable Care

Act (ACA) in the United States, individuals pay subsidized premiums that may vary

with income but not with age. Since expected claims and market-based pre-subsidy

premiums increase with age, such subsidy design is more generous toward older individ-

uals. Older age is also a strong predictor of willingness-to-pay for insurance. Therefore,

as also noted in Graetz, McKillop, Kaplan and Waters (2018), simple theory predicts

that this design might conflict with the goal of achieving higher levels of insurance cov-

erage while limiting costs. Providing more generous enrollment incentives to costlier

individuals increases average cost and puts upward pressure on equilibrium premiums.
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Without carefully considering equilibrium responses, one might conclude that a

change in subsidy design in favor of younger individuals would penalize older ones.

This is the case in Tebaldi, Torgovitsky and Yang (2023), in which demand is esti-

mated nonparametrically but supply and equilibrium adjustments are not modeled,

and differences between insurers are ignored. Considering only demand responses, low-

ering subsidies for relatively older individuals, and increasing subsidies for younger ones

would penalize the former, albeit average consumer surplus would increase. Additional

political economy and equity considerations pose further obstacles to a design under

which older individuals would experience premium increases.

Instead, as argued in Section 2, allowing premiums to re-equilibrate leads to differ-

ent conclusions. Depending on the joint distribution of preferences and costs and on

the intensity of competition between insurers, it might be possible to lower subsidies

for older individuals, increase subsidies for younger ones, while ensure that in the new

equilibrium all buyers face lower premiums while total profits also increase. The in-

tuition is simple: the changes to the subsidy design are such that the composition of

enrollees becomes younger, therefore average cost is lower and elasticity of demand is

higher. Both forces put downward pressure on premiums, and the resulting reduction

can be sufficiently large to compensate older individuals by more than the amount by

which their subsidy was lowered to begin with. This argument holds whether insurers

exercise market power, although magnitudes depend on pricing conduct.

Other theoretical implications of alternative designs depend more critically on in-

surers’ conduct. For example, market power leads to inefficiently higher markups under

“price-linked” subsidies (c.f. Jaffe and Shepard, 2020), a design also adopted under the

ACA and in Switzerland (Kreier and Zweifel, 2010). If insurers were perfectly com-

petitive, as modeled theoretically in Azevedo and Gottlieb (2017), and empirically

in Einav et al. (2010), Handel, Hendel and Whinston (2015), and Dickstein, Ho and

Mark (Forthcoming), price-linked subsidies would not generate the strategic responses

initially observed by Decarolis (2015a).

Taking stock of this discussion, the goal of the remainder of the article is to quantify

alternative subsidy designs in the context of the ACA marketplaces. For this I combine

data from the first four years of the Californian marketplace, Covered California, with

an empirical model that encompasses the ACA regulatory details. Importantly, the

model is flexible in terms of the joint distribution of preferences and costs conditional

on age, and insurers’ pricing conduct, which are key determinants of the equilibrium

effects of adjustments to subsidies by age and of the impact of price-linked subsidies.

The estimates of demand are obtained using individual-level premiums and enroll-

ment data for 3.7 million plan choices observed during the 2014-2017 period, which—

2



similarly to Finkelstein et al. (2019); Tebaldi et al. (2023)—I combine with survey

measures of uninsurance and subsidy eligibility by age, income, and geographic region.

Leveraging the richness of individual level enrollment records, I can estimate a mixed-

logit discrete choice model of insurance demand to obtain measures of preferences and

demand heterogeneity by age.1

The raw data highlights that subsidized premiums are approximately constant in

age, while older individuals are significantly more likely to enroll. This is per-se sug-

gestive of age heterogeneity in preferences. To identify demand parameters, I rely on

two aspects of ACA regulations. First, discrete variation in cost-sharing reductions

induces sharp discontinuities in the actuarial value of the so-called Silver plans at

three income thresholds (see also Hinde, 2017; Lavetti, DeLeire and Ziebarth, 2019).

Second, community rating restrictions lead to a “Waldfogel instrument” identification

strategy (c.f. Berry and Waldfogel, 1999; Waldfogel, 2003).2 Indeed, age-composition

is a strong predictor of regional variation in prices. Assuming that—conditional on age

and income—preferences are independent from market demographics, I use a control

function to correct for premium endogeneity when estimating demand.

As expected, consistently with the literature focusing on demand in health insurance

marketplaces (see also Chan and Gruber, 2010; Panhans, 2019; Saltzman, 2019), I find

that younger individuals are less willing to pay for insurance and more responsive to

premium increases. On average, those younger than 44 value a ten percentage points

increase in actuarial value less than  350 per-year. Older individuals value this more

than  400, and more than  700 when older than 55. If monthly premiums increase by

 10, enrollment of individuals younger than 44 would drop by more than 6%, while

enrollment among those older than 55 would be 3-3.7% lower. In terms of scope for

market power, I estimate an average elasticity between 1.3 and 2 for the “Silver plans”

chosen by 68% of enrollees.

To estimate expected insurance costs incorporating adverse selection, the model

employs plan-level average claims data (as in Bundorf, Levin and Mahoney, 2012) and

individual-level healthcare spending information from the Medical Expenditure Panel

1The demand model is, albeit more parametric, much richer than what proposed in Tebaldi et al. (2023),
since preferences depend not only on plan generosity and premium, but also on insurer, type of provider
network, and year of enrollment. Capturing preferences for plans offered by competing insurers is key to
analyze the pricing incentives that drive the equilibrium analyses object of this article.

2The intuition is that the ACA allows insurers to set only one baseline premium for every plan in each
geographic region. Then, pre-determined pricing schedules are used to transform baseline premiums to the
premiums faced by buyers of different age. Because this regulation links profits across heterogeneous buyers
to the same univariate decision, when setting base prices insurers must consider the composition of buyers
(see also Orsini and Tebaldi, 2017).
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Survey. Expected annual medical spending can vary across individuals and plans. Not

having access to individual claims data, the baseline model rules out moral hazard,3

while it captures selection by letting expected medical spending for an individual vary

observably with age, and unobservably with willingness-to-pay for insurance generosity.

Variation in the composition of buyers across plans inducing variation in average claims

identifies heterogeneity in costs across individuals with different willingness-to-pay.4

Cost estimates indicate adverse selection, due to the strong correlation between

preferences for coverage and expected costs. An age increase of ten years implies 38%

higher medical spending. An increase in willingness-to-pay (for ten percentage points

in actuarial value) of  500 per year implies 35% higher medical spending.

Prior to considering alternative subsidy designs I use the estimates of the model

to set up a horse race between alternative conduct assumptions. Although I fall short

of providing a formal statistical test, empirical support for alternative supply models

is desirable because, as noted above, conduct impacts the effect size of counterfactual

designs. For this exercise to be conceptually sound, it is important to highlight that

demand and cost estimates are obtained without imposing any conduct assumption.

Combining demand estimates with the details of rating regulations, subsidy design,

and risk adjustment, I can compute average cost, average revenue, marginal cost, and

marginal revenue for each plan. I find that risk-adjusted marginal revenues are, on

average, 3.5% [2.3%, 4.8%] larger than marginal costs. In comparison, average revenues

are, on average, 24.5% [22.9%, 26%] larger than average cost. Although I proceed

by calculating counterfactuals under both assumptions, this shows that—relative to

the perfect competition benchmark—oligopoly pricing appears more consistent with

observed market outcomes.

When calculating equilibrium under counterfactual subsidy designs, I obtain quan-

tifications of the theoretical insights discussed above. First, under oligopoly pricing

price-linked subsidies increase markups, premiums, and lower enrollment and con-

sumer surplus. Second, shifting subsidy generosity away from older buyers and toward

younger ones leads to equilibria in which all buyers face lower premiums, while total

profits and consumer surplus increase. Average subsidy spending is also lower, but—

3Appendix D shows that my results on the effect of subsidy design are robust to allowing for a degree of
moral hazard significantly more severe than what it is assumed in the ACA risk adjustment model (Pope et
al., 2014), or estimated in Lavetti et al. (2019).

4Appendix E introduces a new result providing sufficient conditions for identification of cost curves in
selection markets from supply-side assumptions; this adapts to selection markets results dating back to Rosse
(1970); Bresnahan (1987). As pointed out by Simon (2008), lack of access to claims is often a key obstacle to
the study of individual health insurance markets. Therefore, it is useful to know the conditions under which
one can relax such data needs while still progressing in predicting outcomes under counterfactual regulations.
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due to higher enrollment—total government outlays are larger. Although my results

suggest designs that could increase enrollment with higher profits and lower premiums

and average costs per-enrollee, ultimately the trade-off between lower uninsurance and

total government spending is a matter of political economy debate that is far beyond

the scope of this article.5

Other Related Literature: In addition to the aforementioned articles, here I

speak directly to a growing body of work analyzing the effect of different regulations

in government-sponsored health insurance markets, reviewed in Handel and Ho (2021).

For the United States, the analysis of competition and market design in Medicare Ad-

vantage and Medicare Part D is more mature, with focus on subsidies in Decarolis

(2015a); Decarolis et al. (2020); Curto, Einav, Levin and Bhattacharya (2021); Miller,

Petrin, Town and Chernew (2022). General studies on equilibria in health insurance

exchanges are pioneered by Handel et al. (2015), and theoretical implications of alter-

native policies are the focus of Mahoney and Weyl (2017); Veiga (2020).

The US health insurance market for those younger than 65 has been analyzed

primarily through the lenses of the Massachusetts healthcare reform, which served as

a blueprint for the ACA (Gruber, 2010). Graves and Gruber (2012) shows the effects

on premiums, and Hackmann, Kolstad and Kowalski (2015) the effect on enrollment

and costs. The role of mandates is considered in Chandra, Gruber and McKnight

(2011), Sommers, Shepard and Hempstead (2018), and then studied under the ACA by

Saltzman (2019). Risk adjustment is the focus of Geruso, Layton and Prinz (2019b),

McGuire, Schillo and Van Kleef (2020) (which extend the analysis to Germany and

the Netherlands), and Saltzman (2021). Panhans (2019) measures adverse selection

in Colorado. Fang and Krueger (2022) focus on the ACA impact on labor markets.

Geruso, Layton, McCormack and Shepard (2019a) study the interaction policies and

the two margins of enrollment and coverage choice. Dickstein et al. (Forthcoming)

analyze the relationship between individual marketplaces and small-group insurance.

Marone and Sabety (2022) consider the choice of whether or not to provide vertically

differentiated plans, Polyakova and Ryan (2019) measure the incidence of subsidies

across demographic groups, and Cicala, Lieber and Marone (2019) the regulations

limiting insurers’ markups. Reviews of the ACA and related literature are provided in

Blumenthal, Collins and Fowler (2020) and Handel and Kolstad (2022).

5What I want to highlight here is simply that, in a market with adverse selection, it is possible to shift
generosity of subsidies avoiding that any group of market participants is worse off. I purposely do not engage
in aggregate welfare considerations that require to put a weight on public spending in this market. For a
discussion about why regulators might want to subsidize health insurance although individuals value it less
than its costs, I refer the reader to Finkelstein et al. (2019) and references therein.
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2 Counterfactual Subsidy Designs

2.1 Heterogeneity in Subsidized Premiums

Here I argue that—holding fixed “community rating” regulations that limit insurers’

price discrimination—a subsidy design leading to the same subsidized premiums for

individuals who differ in willingness-to-pay and risk can be worse, for all buyers, than

a design such that subsidized premiums differ across types.6

To see this through a stylized model, consider a single (monopolist) insurer setting

premium p for a given (exogenous) coverage option. An individual is characterized by

the (observable) type z. As in Einav et al. (2010), a type determines preferences and

insurable cost: q(p; z) is the probability that a type z buyer purchases coverage when

facing premium p, and c(z) is the corresponding expected cost incurred by the insurer.

The mass of type z potential buyers in the population is G(z).

The government provides a subsidy s(z) to every type z who chooses to purchase

coverage. Taking the function s(·) as given, the insurer solves

max
p
Qs(p) (p−ACs(p)) ,

where quantity and average costs are

Qs(p) ≡

∫
q(p− s(z); z)dG(z);

ACs(p) ≡ (Qs(p))−1
∫
q(p− s(z); z)c(z)dG(z).

Omitting simple algebra, the insurer sets p such that

p = ACs(p) +


−Qs(p)

dQs(p)
dp

(
1−

dACs(p)

dp

)
 . (1)

The term in brackets is the price-cost markup, which depends on the elasticity of

demand, and on a selection correction determined by the slope of the average cost

curve. Adverse selection implies that dACs(p)/dp > 0. By choosing the subsidy

function s(·), the government affects equilibrium price p⋆(s), enrollment, and welfare.7

6As discussed in Section 1, and further detailed in Section 3 below, the ACA design is such that subsidized
premiums vary by income, while given income the level of premiums is invariant to age.

7For an extensive discussion of equilibrium existence in a market with adverse selection, I refer the
reader to Azevedo and Gottlieb (2017) and references therein. When I simulate equilibrium under perfect
competition, I use their result directly, ensuring existence by allowing an infinitesimal fraction of buyers to
be randomly assigned across products, rather than responding to premiums. When simulating equilibrium
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Flat vs. Heterogeneous Subsidies: Let s(z) = s for all z; all individuals then

face the same premium p⋆(s)− s. Even “behind the veil of ignorance”, i.e. considering

ex-ante expected utility when z is still unknown (see e.g. Hendren, 2021), there is

no reclassification risk (c.f. Handel et al., 2015). Individuals do not face premium

uncertainty, and—denoting with V (p; z) the money-metric indirect utility for type z

when premium is p—the average consumer expected utility is simply

E [V (p⋆(s)− s; z)] =

∫
V (p⋆(s)− s; z)dG(z).

My argument here holds whether z distinguishes states-of-the-world in a static model,

or different periods of a dynamic model (as it would be if z indicates age).

Without equilibrium adjustments (as it is the case in Tebaldi et al., 2023), an

alternative subsidy design ŝ(·) that is not constant in z can create reclassification risk

by making some individuals worse-off. If p⋆(s)− s < p⋆(ŝ)− ŝ(z) for some z, for these

types V (p⋆(ŝ)− ŝ(z); z) < V (p⋆(s)−s; z). Then, depending on G and on the curvature

of V , one cannot rule out that E [V (p⋆(ŝ)− ŝ(z); z)] < E [V (p⋆(s)− s; z)].

Considering equilibrium instead, and assuming that higher values of z imply higher

costs, higher demand, and lower semi-elasticity of demand, it may be possible to find

a non-constant ŝ(z) for which p⋆(s) − s > p⋆(ŝ) − ŝ(z) for all z, and for which av-

erage per-enrollee subsidies are lower. If this is the case, for any G and any V ,

E [V (p⋆(ŝ)− ŝ(z); z)] > E [V (p⋆(s)− s; z)]. Even if individuals face subsidized pre-

miums that may vary with z, these are always lower than the amounts paid under the

constant subsidy s. In this scenario, the alternative subsidy scheme ŝ is an improvement

over s for all buyers.

To build the candidate alternative ŝ(·), one can increase by ∆ the subsidy for low-

z types, and decrease by ∆ the subsidy for high-z types. Given a cutoff value ẑ,

ŝ(z) = s + ∆ for all z ≤ ẑ; ŝ(z) = s −∆ for all z > ẑ. Relative to s, ŝ implies lower

average cost and higher semi-elasticity of demand since the share of below-ẑ types in

the enrollment pool is higher. If the difference dACs(p⋆(s))
dp − dAC ŝ(p⋆(s))

dp is negative, or at

least not too large, the equilibrium pre-subsidy premium under ŝ is lower than under

s: p⋆(ŝ) < p⋆(s). This would also hold true in a perfectly competitive market in which

p = ACs(p), since AC ŝ(p) < ACs(p) for all p.

The result is intuitive: by increasing participation of low-cost, high-elasticity types,

ŝ puts downward pressure on premiums. Importantly, if p⋆(s) − p⋆(ŝ) > ∆, one has

under imperfect competition, I follow the empirical industrial organization literature of optimal pricing by
multi-product firms (Bresnahan, 1987; Nevo, 2001). In the insurance context, this has been adopted widely
(see e.g. Bundorf et al., 2012; Starc, 2014; Decarolis et al., 2020; Saltzman, 2021; Curto et al., 2021).
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Table 1: Equilibrium and Alternative Subsidy Designs: Numerical Example

Model parameters :

z1 z2 z3 z4

az 6.25 6.5 7 7.25 G(z) = 1000 for all z
bz 0.15 0.12 0.1 0.075 q(p; z) = exp (az − bzp) / (1 + exp (az − bzp))

c(z) 60 100 120 140

Initial subsidy design s: s = 70 Alternative subsidy design ŝ: ẑ = z2, ∆ = 10, ∆ = 20

z z1 z2 z3 z4

s(z) 70 70 70 70
z z1 z2 z3 z4

s(z) 80 80 50 50

Equilibrium outcomes under subsidy design s, setting p = p⋆(s):

p⋆(s)− s 85 85 85 85 p = p⋆(s) Qs(p) ACs(p) dQs(p)
dp

/Qs(p) dACs(p)
dp

RHS of FOC
in (1) minus p

Subsidy

per-enrollee

q(p⋆(s)− s; z) 0.002 0.025 0.185 0.709 155 921 135 -0.04 0.28 0 70

Off-equilibrium outcomes under subsidy design ŝ, holding p = p⋆(s):

p⋆(s)− ŝ(z) 75 75 105 105 p = p⋆(s) Qŝ(p) AC ŝ(p) dQŝ(p)
dp

/Qŝ(p) dACŝ(p)
dp

RHS of FOC
in (1) minus p

Subsidy

per-enrollee

q(p⋆(s)− ŝ(z); z) 0.007 0.078 0.030 0.352 155 466 131 -0.06 0.45 -15 55

Equilibrium outcomes under subsidy design ŝ, setting p = p⋆(ŝ):

p⋆(ŝ)− ŝ(z) 42 42 72 72 p = p⋆(ŝ) Qŝ(p) AC ŝ(p) dQŝ(p)
dp

/Qŝ(p) dACŝ(p)
dp

RHS of FOC
in (1) minus p

Subsidy

per-enrollee

q(p⋆(ŝ)− ŝ(z); z) 0.499 0.817 0.458 0.867 122 2640 109 -0.03 0.57 0 65

Note: See example description in main text.

V (p⋆(ŝ)− ŝ(z); z) > V (p⋆(s)− s; z) for all z, and all buyers prefer ŝ to s.

Numerical Example: To see this mechanism at work through a simple exam-

ple, consider a market with primitives summarized in Table 1, there are four types

z = z1, z2, z3, z4, and the model parameters are set so that higher z implies higher

cost, higher demand, and lower semi-elasticity of demand. In the equilibrium under a

subsidy scheme s(z) = 70 for all z, the premium is p⋆(s) = 155, and all buyers pay 85.

Probability of enrollment among types z1 and z2 is lower than 0.03, while z3 and z4

enroll with probability 0.18 and 0.7, respectively. Overall enrollment is 23% of the 4000

potential buyers; average cost is 135, and the average subsidy per-enrollee is (trivially)

equal to 70.

Alternatively, consider the scheme ŝ, where the subsidy of z1 and z2 is increased by

∆ = 10, while the subsidy for z3 and z4 is lowered by ∆ = 20. The first-order effect—

holding premium fixed to p⋆(s)—is to make z1 and z2 better-off, while z3 and z4 are

worse-off, relative to the design s. However, p⋆(s) is not an equilibrium premium under

the design ŝ: average cost is lower, while semi-elasticity of demand and the derivative

of average cost are both higher. The insurer has incentives to set a premium lower than

p⋆(s), since the difference between left- and right-hand-side of (1) is -15.
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The new equilibrium is p⋆(ŝ) = 122; with total enrollment 2640 (+186% relative to

ŝ), average cost 109, and average per-enrollee subsidy equal to 65. Critically, all types

face subsidized premiums that are lower than 85. Types z1 and z2 pay 42, while z3

and z4 pay 72. Therefore, under ŝ buyers are unambiguously better relative to design

s, and government spending per-enrollee is lower. Profits are also higher, increasing

from 18420 to 34320.

The above discussion and example highlighted the possibility to improve equilibrium

outcomes in a health insurance market by tailoring subsidized premiums to observable

characteristics that predict insurance demand and insurable cost. To evaluate alter-

native designs in a specific context, one needs estimates of the joint distribution of

preferences and costs and appropriate assumptions on insurers’ conduct.

2.2 Price-linked vs. Fixed Subsidies

Another design decision is whether subsidies should be fixed by the regulator before

knowing premiums or computed ex-post as a function of equilibrium. The latter design,

labeled “price-linked” subsidy by Jaffe and Shepard (2020), is currently adopted under

the ACA, but also in Switzerland, and in Medicare Part D (Decarolis, 2015a,b).

Price-linked discounts may be desirable if the government—not knowing demand

and cost primitives—is unable to predict premiums. Adjusting subsidies to insurers’

decisions reduces the possibility for discounts to be too low or too high.

On the other hand, if insurers have market power, adjusting subsidies endogenously

can distort incentives and lead to equilibria with higher premiums and higher public

spending. The intuition is straightforward and clearly resembles the difference between

lump-sum and proportional taxes. If price increases are partly covered by subsidy

adjustments imperfectly competitive insurers act as if buyers were less price sensitive,

and thus set higher premiums. This is formalized and discussed at large in Jaffe and

Shepard (2020), who measure the distortion in the pre-ACA Massachusetts health

insurance market.

Importantly, this design poses a concern only under imperfect competition, since

average-cost pricing implies that there are no distortions from using price-linked subsi-

dies. Therefore, I use ACA data to compare the fit of alternative conduct assumptions,

and then measure the impact of price-linked subsidies in this new market.
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3 ACA Regulations and Data

3.1 Institutional Background and Regulations

As of 2013, 17 percent of US citizens younger than 65 did not have health insurance

coverage (Smith and Medalia, 2014). To address this, in 2014 the ACA instituted

health insurance marketplaces in each of the fifty states. ACA marketplaces operate

separately across states, but they all follow similar institutions and regulations as

mandated by the federal reform.8

Rating Regions: A state is divided into geographic rating regions—groups of coun-

ties or zip codes—defining the level at which decisions by buyers and insurers take place

(Dickstein, Duggan, Orsini and Tebaldi, 2015). Insurers can decide whether to offer

plans and cover individuals in any given region, as long as they can offer an adequate

network of healthcare providers. Different plans are classified into five coverage levels:

Catastrophic, Bronze, Silver, Gold, and Platinum.

Metal Tiers: The four metal tiers represent increasing generosity of insurance,

measured (and advertised) as “actuarial value”, an estimate of the share of healthcare

spending covered by the plan: 60% for Bronze, 70% for Silver, 80% for Gold, and 90% or

more for Platinum. Catastrophic plans have higher cost sharing, and generally cannot

be purchased by subsidized buyers, nor by buyers older than 30, with few exceptions.9

In some states, including California, regulators have determined that, within each

metal tier, cost-sharing characteristics are fully standardized across insurers. De-

ductible, coinsurance, and copayments are fixed. Plans still differ in terms of brand,

hospital networks, and possibly Rx formularies. Table 2 summarizes a number of plan

characteristics for each metal tier, as mandated by Covered California.

Adjusted Community Rating: One important provision of the ACA is that

insurers are not allowed to freely adjust premiums as a function of a buyer’s observable

characteristics. Characteristics that can affect annual premiums are the buyer’s age

(see also Ericson and Starc, 2015; Orsini and Tebaldi, 2017) and, in some states, tobacco

use, but even these adjustments are done in a pre-specified way. California does not

8States can choose between instituting their own marketplace, relying on the federal platform, or adopting
a state-federal partnership model.

9Source: https://www.kff.org/health-reform/issue-brief/explaining-health-care-reform-q
uestions-about-health-insurance-subsidies/; last accessed on January 26, 2022.
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Table 2: Standardized plan characteristics in 2015 Covered California

Panel (a): Characteristics by metal tier before cost-sharing reductions

Annual Annual max Primary E.R. Specialist Preferred Advertised
Tier deductible out-of-pocket visit visit visit drugs AV(∗)

Bronze  5,000  6,250  60  300  70  50 60%
Silver  2,250  6,250  45  250  65  50 70%
Gold  0  6,250  30  250  50  50 80%
Platinum  0  4,000  20  150  40  15 90%

Panel (b): Silver plan characteristics after cost-sharing reductions

Income Annual Annual max Primary E.R. Specialist Preferred Advertised
(%FPL) deductible out-of-pocket visit visit visit drugs AV(∗)

200-250% FPL  1,850  5,200  40  250  50  35 74%
150-200% FPL  550  2,250  15  75  20  15 88%
100-150% FPL  0  2,250  3  25  5  5 95%

Source: Section 6460 of title 10 of the California Code of Regulations; May 21, 2014.

allow tobacco-based premium adjustments; therefore, here I focus on age-adjustments,

which are central to my analysis.

Considering a rating region, each plan j is associated with a single “base” premium,

say bj . This is translated to age-adjusted (pre-subsidy) premium using given age ad-

justment factors, equal for all products. As shown in (2) below, when covering a buyer

i under plan j, the insurer receives a revenue Ri
j equal to the product of bj and the

corresponding age adjustment, an increasing function of Agei.
10

Insurer decision: base premium bj

Insurer revenue: Ri
j = bj ×Adjustment(Agei)

ACA subsidy: Si = max
{
0, Ri

j2S
− P (Incomei)

}
, j2S = 2nd-cheapest Silver

ACA premium: P i
j = max

{
0, Ri

j − Si
}
.

(2)

Premium Subsidies: Although Ri
j is the amount collected by the insurer, enrolled

individuals who are eligible for premium tax credits—or simply subsidies henceforth—

pay less than this amount. Eligibility and subsidy generosity are determined by the

individual household’s annual income: if this is less than four times the federal poverty

level (FPL), the individual premium for the second cheapest Silver plan in the region

is capped at a federally mandated maximum affordable amount (MAA). The resulting

subsidy applies to any plan available in the region. This subsidy design is described

10The age adjustment is equal to 1 for 21-year-old buyers, and increases smoothly to 1.4 at age 45, and
finally reaches 3 at age 64. Details for all ages are shown in Figure 2b.
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formally in (2) above. For individual i, the premium of the second cheapest Silver plan

in the region is capped at the MAA equal to P (Incomei), and the individual-specific

subsidy amount Si is calculated to match this constraint. The premiums for all plans

are lowered by Si; subsidized premiums must be positive.

Under this subsidy design, for a given income level, individuals of different age can

enroll in a Silver plan for exactly the same premium. Differences in subsidized premium

across insurers and plans are instead increasing in age, while not varying with income.

As a result, all plans with base premiums lower than the second cheapest Silver—which

generally include all Bronze plans—are cheaper for older buyers, holding income fixed.

Conversely, plans with base premiums higher than the second cheapest Silver—which

generally include all Gold and Platinum plans—are more expensive for older buyers.

Cost-Sharing Reductions: Another ACA regulation relevant during my study

period is the provision of cost-sharing reductions, available for individuals who enrolled

in a Silver plan with income lower than 2.5 times the FPL. For this group, the federal

government covers part of their out-of-pocket spending, de facto increasing the actuarial

value of Silver plans from 70% to 95% for income levels between 1-1.5 times the FPL,

88% for income levels between 1.5-2 times the FPL, and 74% for income levels between

2-2.5 times the FPL. Covered California achieved these changes in actuarial value in a

standardized way, by altering deductible and copayments as summarized in Table 2.11

Risk Adjustment: To limit concerns of cream skimming by insurers, the ACA

introduced a budget-neutral scheme of risk-adjustment transfers. Simply put, insurers

covering enrollment pools that end up being riskier than the market average receive

transfers from their competitors; these transfers, by construction, add up to zero within

the state. As described formally in Pope et al. (2014), the transfer applying to each plan

is calculated by multiplying the state-level average revenue by a plan-level risk score,

which can be positive or negative. The score is positive if the enrollees selecting the

plan are riskier than the state average, after adjusting for the factors that are already

priced in (e.g. age, geography, and metal tier), and it is negative otherwise. Saltzman

(2021) studies the implications of ACA risk adjustment for equilibrium outcomes; here

I model it and then hold it fixed throughout my analysis.12

11At the end of 2017, the Trump administration interrupted the funding of cost-sharing reductions, after
a legal dispute over the appropriation of federal funds: c.f. House v. Burwell, House v. Price.

12Risk adjustment in ACA marketplaces does not feature any payments from the government. This
is radically different from non-budget-neutral risk adjustment schemes in which the government provides
risk-based transfers to each insurer, as it is the case in other federally-sponsored markets such as Medicare
Advantage (Brown, Duggan, Kuziemko and Woolston, 2014; Geruso and Layton, 2020), or Medicare Part D
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Other Regulations: Other ACA regulations included two temporary market sta-

bilization programs, reinsurance and risk corridors, income-based tax penalties for

individuals not purchasing coverage, and a minimum medical loss ratio of 80%.13 I do

not model these explicitly, a simplification partly dictated by data limitations. Incor-

porating these policies in a tractable empirical model is left to future work.

Coverage options and premiums are set and made public before the beginning of

open enrollment, which takes place during the late months of each calendar year. Eli-

gible individuals compare and purchase plans offered in their region of residence; cov-

erage lasts for the following calendar year, as long as premium payments are honored.

Diamond, Dickstein, McQuade and Persson (2018) recently discuss the relationship

between medical spending and interruptions of premium payments.

3.2 Data Sources and Summary Statistics

3.2.1 Enrollment Files

Covered California provided me with individual-level enrollment files covering the 2014-

2017 period, in response to four Public Records Acts requests. For every purchase

event, I observe individual and household identifiers, along with age, zip code, county,

rating region, plan identifier, premium paid, and income group. Income is reported in

discrete bins, but one can use the pricing regulations in (2) to determine income with

higher precision, I use 5% FPL bins.

As in Finkelstein et al. (2019), I narrow my focus to adults aged 26-64, without

(Decarolis, 2015a; Decarolis et al., 2020).

13Federal reinsurance was mandatory between 2014-2016, collecting a fixed amount for every policy sold
by any issuer ( 63,  44, and  27 in 2014, 2015, and 2016, respectively), and compensating a share (100%,
50%, 50%) of claims between an attachment point ( 45,000,  45,000,  90,000) and a cap ( 250,000, equal
for all three years).
Risk corridors were intended to facilitate a target variable profit margin of 20% between 2014-2016. Insurers

not spending at least 77% of premiums in claims would pay into the system, and insurers spending more
than 83% would be eligible for funds. The program was not guaranteed to pay out, since dues could be
larger than revenues. For example, in 2014 insurers were due a total of  2.8 billion, while only owing  362
million; the program paid only 12 cents for every dollar owed to insurers.
An “individual mandate” tax penalty (see e.g. Saltzman, 2019) was charged to individuals choosing to

remaining uninsured, and not qualifying for exemptions. These included “affordability exemptions”. As a
result, the individual mandate was only weakly enforced, particularly in the subsidy-eligible population I
study in this article. Penalty revenues did not exceed 20% of hypothetical penalty payments (Miller, 2017),
and the mandate was lifted by the Trump administration in 2017.

Medical-loss-ratio adjusted for quality improvements is a measure of the share of an insurer’s collected
premiums spent in medical claims and quality improvements. Under the ACA, this ratio must not be less
than 0.8. Other studies (e.g. Starc, 2014) have leveraged these limits explicitly to estimate empirical models
of insurance supply. In my application, I do not impose medical-loss-ratio regulations; I estimate an average
medical-loss-ratio of 0.85, and this remains above 0.8 across all my counterfactuals.
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Table 3: Summary statistics

Individual-level data (person-year)

Enrolled
(Covered CA)

Eligible
(ACS draws)

Surveyed
(MEPS)

N = 3719273 N = 13265960 N = 20171

Age 45.8 (11.7) 44 (11.4) 43.8 (11)

Income (FPL %) 214.5 (63.9) 233.7 (75.4) 257.2 (81.1)

Annual Premium 1470 (1264) - (-) - (-)

Annual Subsidy 3967 (2643) - (-) - (-)

Medical Spending - (-) - (-) 4111 (12900)

Choose Bronze (0/1) 0.242 (0.428) - (-) - (-)

Choose Silver (0/1) 0.681 (0.466) - (-) - (-)

Choose Gold (0/1) 0.041 (0.199) - (-) - (-)

Choose Platinum (0/1) 0.035 (0.185) - (-) - (-)

Plan-level data (region-year-insurer-tier)

Market share
within region-year

(Covered CA)

Base prem.
quantity-weighted

(Covered CA)

Avg. claims
quantity-weighted

(RRF)

N = 1382 N = 1382 N = 1026

By insurer:

Anthem (76 region-years) 0.059 (0.106) 3062 (638) 3814 (750)

Blue Shield (76 region-years) 0.06 (0.098) 3218 (625) 4140 (1846)

Health Net (33 region-years) 0.048 (0.09) 2614 (306) 3260 (1240)

Kaiser (69 region-years) 0.073 (0.094) 3245 (649) 4212 (2008)

Other 9 insurers 0.026 (0.054) 2605 (603) 2315 (1755)

By metal tier:

Bronze 0.068 (0.071) 2468 (364) 2197 (902)

Silver 0.138 (0.132) 3125 (538) 3921 (1201)

Gold 0.009 (0.017) 3679 (689) 4847 (1543)

Platinum 0.007 (0.007) 4192 (759) 9063 (3526)

Note: The table summarizes data sources. In the Enrolled panel, each observation is an individual in the Covered California
enrollment sample, covering all purchases that took place during the 2014-2017 period, restricted to subsidized adults without
dependent children. The Eligible panel corresponds to the sample of individuals constructed from the American Community
Survey, consisting of subsidy-eligible adults who are either uninsured or privately insured, covering the 2013-2016 period. The
Surveyed panel corresponds to the 2014-2017 Medical Expenditure Panel Survey, restricted to individuals who are privately
insured and with income between 100-400% FPL. The panels of Market shares and Base premiums report summary statistics
from the Covered California enrollment sample. The Average claims panel summarized the 2016-2019 rate review filings matched
to the Covered California sample. Standard deviations in parentheses.

dependent children, and beneficiaries of premium subsidies. This group accounts for

78% of enrollment in Covered California during my observation period, for a total of

3.72 million individuals. Excluding dependents, who under the ACA can be as old as 25,

the coverage decisions for this group are simpler, and easier to analyze. Moreover, since

off-exchange plans are not eligible for subsidies, excluding the unsubsidized population

mitigates concerns that enrollment files may miss many individuals purchasing coverage

outside the marketplace.

The top-left panel of Table 3 summarizes the enrollment data. Average age among

subsidized adults in Covered California is 45.8 (with standard deviation 11.7), while
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Figure 1: Premiums by Age and Income

(a) Average Premium by Age
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(b) Average Premium by FPL
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Note: The figure illustrates the relationship between average revenue collected by the insurer (gray line), average subsidized
premium paid by the individual (black line), and average difference between Bronze and Silver premiums for the individual
(dashed line), as a function of age (left panel) and FPL (right panel). For revenue and premium, each observation is one
individual in the Enrollment sample, for the difference between Bronze and Silver premium, each observation is one individual
in the Eligible sample. Local polynomial with Gaussian kernel; bandwidth=2 for panel 1a, bandwidth=10 for panel 1b.

average income is 214.5 (63.9) percent of the FPL. Individuals pay, on average,  1470

( 1264) per-person, per-year, receiving subsidies that are, on average, more than 2.5

times as large. In terms of metal tier, 24% of enrolled individuals choose a Bronze plan,

while 68% choose a Silver plan. Gold and Platinum plans are selected more rarely.

Figure 1a plots how insurer revenue, subsidized premium, and the difference be-

tween Bronze and Silver premium vary across enrollees of different age. The average

amount collected by the issuers increases in age, from  3000 per-year on average at 26

to over  8000 for buyers older than 60. According to the ACA subsidy design, sub-

sidized buyers do not face these increases. Premium paid is approximately constant

in age, with very small variations around its average value due to differences in plan

selection. At the same time, the average difference between the subsidized premiums

of Bronze and Silver plans is increasing in age, from approximately  800 to  1200 per-

year; older individuals have to pay a higher amount to obtain more generous coverage.

The relationship between income and premium is illustrated in Figure 1b. Average

insurer revenues do not differ too much across individuals with different income, while

premium paid is increasing, since subsidies become lower.

The bottom-left of Table 3 summarizes market shares at the plan level (insurer-

year-region-metal-network; N=1382), there are between 3 and 7 insurers active in ev-
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ery region-year combination. Four players—Anthem, Blue Shield, Health Net, and

Kaiser—are present across a large number of markets, while the nine remaining insur-

ers are only available in a small number of regional markets, or for a limited number of

years. Market shares of Anthem, Blue Shield, Health Net, and Kaiser are, on average,

between 4.8-7.3%, but they vary widely across regions and years, reflecting differences

in premiums, set of competitors, provider network or brand attractiveness. In terms of

metal tier, a single Silver plan covers, on average, 13.8% of enrollees in a region-year

pair, about twice as large as the average share of Bronze plans. A Gold or Platinum

plan covers, on average, less than 1% of the market.

3.2.2 Rate Review Filings

I use realized claims information as reported in the annual Rate Review Filings (RRF);

these are released by the Center of Medicare & Medicaid Services, and publicly avail-

able.14 As in Bundorf et al. (2012); Saltzman (2021), while I observe enrollment at

a granular, individual-level data, my cost measures are aggregated to a coarser level,

and noisier. Enriching my analysis to incorporate individual-level claims information

would be an important extension of my work, which would be particularly relevant to

obtain more precise, externally valid measures of the effect of counterfactual policies.

In the RRF, insurers must declare average experienced claims per-member month.

For rate review taking place in 2016, the experience period is 2014; for 2017 rate

reviews, the experience period is 2015; and so on and so forth. My analysis uses

2016-2019 RRF. I link RRF to Covered California enrollment files using HIOS-14 (a

plan-insurer identifier), enrollment year, and metal tier information. The resulting

sample of plans for which I observe a measure of realized average claims consists of

1,026 unique insurer-region-year-tier-network combinations, which covers 74% of the

1382 plans I observe in the enrollment data and use in my analysis.15 In terms of

enrollment, the sample of plans for which I observe RRF information covers 76% of

the 3.7 million individuals included in my enrollment sample.

The bottom-right of Table 3 reports the summary statistics of realized average

claims, by insurer and by metal tier. Differences across insurers reflect a combination

14Source: https://www.cms.gov/CCIIO/Resources/Data-Resources/ratereview.

15Some plans change HIOS-14 code over time or leave the marketplace. When this is the case, I cannot
match enrollment to RRF. Sometimes groups of plans offered by the same insurer in the same year report
the same measure of average claims, pooling across metal tiers, or pooling across rating regions. This adds
noise to my measures of realized costs. Nevertheless, to the best of my knowledge, the RRF remains the best
publicly available data source reporting average claims in the California marketplace, as it provides richer
heterogeneity than other, state-level sources (e.g. medical-loss-ratio filings as used in Saltzman, 2021).
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of plan selection, risk composition of enrollment pools, regional heterogeneity, and

differences in firms’ cost functions. Costs vary widely across metal tiers. A Bronze plan

records, on average, claims amounting to  2197 per-enrollee, per-year (with standard

deviation  902). This compares to Silver plans, with average claims for  3921 ( 1201)

per-enrollee-year, and Gold plans, with average claims for  4847 ( 1543). Platinum

plans register much higher claims, with an average of  9063 per-enrollee per-year.

3.2.3 Survey Data

American Community Survey: I construct measures of potential buyers by

age, income, rating region, and enrollment year using the American Community Survey

(ACS) public use file, downloaded from IPUMS (Ruggles et al., 2015). The procedure

is similar to the one adopted by Finkelstein et al. (2019); Tebaldi et al. (2023).16

As shown in Table 3, eligible buyers are, on average, two years younger and higher

income (+20% FPL) relative to marketplace enrollees. Figure 2a shows more details

of the relationship between age and the share of potential buyers choosing to purchase

marketplace coverage, measured after combining enrollment files with the ACS. The

monotone relationship between age and enrollment is evident: the average enrollment

probability among under-40 individuals is between 0.22-0.25, this then increases with

age until 0.38 for individuals aged between 60-64. Relating this pattern to the fact

that average premium paid does not increase in age (Figure 1a) suggests that older

individuals are more willing to pay for marketplace coverage. This is supported further

by the extent to which the share of individuals choosing a Bronze plan is approximately

constant in age, despite the increasing difference in premium relative to other tiers.

16For every year between 2013-2016, I use the corresponding 5-year ACS sample to measure potential
marketplace enrollees for the following enrollment year. Each individual is a potential buyer in the market-
place if they report being either uninsured or privately insured. For every buyer, I observe age, household
income, a person weight, and the public use micro data (PUMA) area of residence. Using a PUMA-to-county
crosswalk, I assign individuals to the Covered California rating regions.An adjustment to this procedure is
needed to account for the fact that the PUMA identifiers can be split across multiple counties, and so in
some cases also multiple ACA rating regions. I allocate individuals to each rating region it overlaps using
the population of the zip codes in the PUMA as weights. Finally, I merge enrollees and potential buyers
for every year, rating region, age, and income cell (in 5% FPL bins). Using person weights, this leaves
me with 13,265,960 (synthetic) potential buyers for the 2014-2017 enrollment years, which I then match to
the enrollment file.For example, if in the 2013 ACS there are three individuals who are either uninsured or
privately insurer, live in Region 5, are aged 50, and have income between 150-155% FPL, and the sum of
their person weights is 20, the dataset of potential buyers contains 20 individuals in 2014, Region 5, age
50, and FPL cell 150-155. If there are five enrollees in the same year-region-demographic combination, I
measure a total marketplace share conditional on these observables equal to 0.25.
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Figure 2: Enrollment, MEPS Expenditure, and Rating Adjustments by Age

(a) Enrollment by Age
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(b) Expenditure and Rating Adjustments by Age
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Note: The solid (dashed) black line in the left panel illustrates the relationship between age and the probability of choosing
a marketplace (Bronze) plan, measured in the Eligible sample. Local polynomial with Gaussian kernel; bandwidth=2. The
solid black line in the right panel illustrates the relationship between age and annual medical expenditure in the Medical
Expenditure Panel Survey; Gaussian kernel with bandwidth=2. The dashed gray line in the right panel indicates for every age
the corresponding ACA age rating adjustment—Adjustment(Agei) in (2)—measured on the right vertical axis.

Medical Expenditure Panel Survey: The last dataset employed in my analysis

consists of the 2014-2017 public use files of the Medical Expenditure Panel Survey

(MEPS; https://meps.ahrq.gov/), measuring medical spending for a representative

sample of the US population. I focus on individuals who are privately insured, with

age and household income in the same range as the observations in the enrollment

data. The resulting sample of 20171 individuals is summarized in Table 3. Average

annual medical spending is equal to  4111, with standard deviation  12900. In the next

section this data is used to estimate a parameter describing the relationship between

age and total medical spending conditional on being insured, controlling for differences

across years and MEPS geographic areas.

Figure 2b plots the relationship between average annual medical spending as a

function of age. The graph also shows—measured on the right axis—the ACA age

adjustments to pre-subsidy premium. The ratio of a plan revenue from a 64-year-old

to revenue from a 26-year-old is 3, while in the MEPS the ratio of medical spending

between the two age groups is higher than 3.5. Average medical spending is slightly

higher than  2000 at 26, approximately  4000 at 47 and higher than  7500 after 60.
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4 Empirical Model

4.1 Demand

A potential buyer i is defined by a pair (zi, θi), where zi is a vector of observed char-

acteristics (age, income, and rating region: zi = (zAge
i , zInci , zReg

i )), while θi is a scalar

unobservable which may affect preferences for insurance and expected costs. If the

base premium for plan j in region m and year t is bjmt, with bmt = {b1mt, ..., bJmt},

the premium paid by i when choosing j is pijmt = Pj(bmt, zi); the function P captures

age adjustments and subsidies, as defined by the regulations in (2).

The random indirect utility of i when purchasing j in region m, year t, is defined

by uijmt = −αt (zi) pijmt + δjmt(zi, θi) + εijmt, where

δjmt(zi, θi) ≡ βt (zi, θi)AV
D
ij + µt(zi)xjmt + γt(ξjmt; zi);

for j = 0, corresponding to not purchasing marketplace coverage, pi0mt = δi0mt =

0. This is a normalization; the premium for each plan can be interpreted as net of

the expected tax penalty. The error terms εijmt are drawn iid from the type one

extreme value distribution. The premium coefficient αt (zi) varies across years, and

across observable characteristics zi. The same applies to the coefficient on actuarial

value AV D
ij (as observed by individuals upon selecting plans, reflecting cost-sharing

reductions), but this coefficient can also vary along the unobservable dimension θi. The

vector xjmt collects a constant term, and indicators for insurers, and HMO provider

networks, with coefficients collected in µt(zi) varying across zi and t.

Importantly, the scalar-valued term ξjmt represents unobservable characteristics

specific to a jmt triplet (e.g. quality and breadth of provider networks, drug formularies,

or brand preferences), which affect utility through the function γt. Being known to

insurers, these characteristics can affect pricing decisions, and must be accounted for

to avoid endogeneity concerns when estimating demand.

Following McFadden (1973), the probability of purchasing j in region m, year t, for

individuals with characteristics (zi, θi) = (z, θ) is

qjmt(z, θ) =
e−αt(zi)Pj(bmt,zi)+δjmt(z,θ)

1 +
J∑

k=1

e−αt(zi)Pk(bmt,zi)+δkmt(z,θ)

. (3)
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Given the distribution Gmt of (z, θ) in region m, year t, total enrollment in plan j is

Qjmt =

∫
qjmt(z, θ)dGmt(z, θ). (4)

The difference between the demand model in (4) and standard discrete choice models

with heterogeneous consumers (e.g. Nevo, 2001) lies in how rating regulations and

subsidies determine enrollment responses to insurers’ pricing decisions.

Taking the partial derivative of enrollment of plan j with respect to the base pre-

mium of plan k one obtains

∂Qjmt

∂bkmt
=

∫
∂qjmt(z, θ)

∂bkmt
dGmt(z, θ)

=
J∑

ℓ=1

∫
∂Pℓ(bmt, z)

∂bkmt
(αt(z)qjmt(z, θ)qℓmt(z, θ)) dGmt(z, θ). (5)

Equation (5) highlights how changes in base premiums do not affect enrollment directly,

since the effect on premiums paid by consumers is mediated by the term ∂Pℓ(bmt,z)
∂bkmt

.

This captures the change in premium of plan ℓ charged to buyers with characteristics

z in response to an infinitesimal change in the base premium of plan k. Under the

ACA, the regulations in (2) imply that, if k is the second cheapest Silver plan in the

region, ∂Pk(bmt,z)
∂bkmt

= 0, while, for all ℓ 6= k, ∂Pℓ(bmt,z)
∂bkmt

< 0. For other plans, ∂Pk(bmt,z)
∂bkmt

=

Adjustment(zAge
i ), while for all ℓ 6= k, ∂Pℓ(bmt,z)

∂bkmt
= 0.

4.2 Cost

The insurer expected claims from covering an individual i with characteristics (zi, θi)

under plan j, in region m, year t are equal to

κjmt(zi, θi) = AV S
j Ljmt(zi, θi), where Ljmt(zi, θi) = eφjmt+η(zi,θi). (6)

Claims are the product of the actuarial value of a plan (for some plans AV S
j 6= AV D

ij due

to cost-sharing reductions) and the expected total health expenditure of the individual,

Ljmt(zi, θi), which may vary with individual and plan characteristics. Differences in

claims across individuals define the main feature of a selection market: buyers with dif-

ferent preferences have different risk and expected insurable costs. Differences in claims

across insurers, regions, and years, reflect differences in provider networks, negotiated

prices, and insurers’ strategies to manage their members’ access to healthcare.

Importantly, the cost model specified in (6) does not allow expected medical spend-

ing to vary with coverage generosity, ruling out “moral hazard” (c.f. Einav and Finkel-
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stein, 2018). In Section D I relax this assumption, estimating cost functions and

reproducing my main results for a range of moral hazard parameters.

At the plan level, expected average cost is equal to

ACjmt =
1

Qjmt

∫
κjmt(z, θ)qjmt(z, θ)dGmt(z, θ), (7)

and I assume that the observed average claims are equal to νACjmt, where the shock

ν ≥ 0 is iid across jmt, and such that E [ln(ν)|G(z, θ),x, ξ,b] = 0.

4.3 Identification

4.3.1 Parametric and Functional Form Assumptions

The parametric assumptions on αt(z) and δjmt(z, θ) are detailed in Appendix A; all

parameters are allowed to vary flexibly by year, and across seven six-years-wide age

bins: A1 = {26, ..., 31} , A2 = {32, ..., 37} , ..., A6 = {56, ..., 61} , A7 = {62, 63, 64}.

The result is a set of 644 parameters. The definitions of βt(z, θ) and G(θ|z) imply that

the coefficient on actuarial value is log-normally distributed with year-age-bin-specific

parameters. Unobserved heterogeneity and observed demographics are independent:

Gmt(z, θ) = Gmt(z)G(θ), where Gmt(z) is observed.

On the cost side,

η(z, θ) = ηAgezAge + ηWTPβt (z, θ)

αt (z)
, and φjmt = φ1t + φ2m + φ3Insurerjmt. (8)

This allows individual medical spending to vary with age, and—to model adverse

selection—with the willingness-to-pay for generosity of coverage. The remaining cost

parameters are a combination of a constant, year, region, and insurer indicators.

4.3.2 Control Function and Actuarial Value Discontinuities

Identification of demand relies on regional variation in premiums conditional on age-

bin and year, on discontinuous variation in actuarial value of Silver plans across buyers

with different income, and on variation in the set of insurers and plans across markets.

To obtain instruments for premium, the ACA marketplaces are a setting in which

the presence of rating restrictions across demographic groups leads to an intuitive

Waldfogel IV (c.f. Berry and Waldfogel, 1999; Waldfogel, 2003). Insurers set base

premiums responding to the distribution of demographic characteristics in a rating

region, Gmt(z), since this affects the shape of Qjmt and ACjmt as shown in (4) and

(7). Identification assumes that, conditional on a buyer’s age and income, preference
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Figure 3: Demand Identification: Control Function and Actuarial Value Discontinuities

(a) Share of under-35 and base premiums
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(b) Cost-sharing reductions and AV discontinuities
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Note: The figure illustrates the variation underlying identification of premium and actuarial value coefficients. The left panel
shows the histogram of the share of potential buyers younger than 35 for each jmt combination in the data. The figure also

plots the linear relationship between bjmt (measured on the right vertical axis) and the instrument,

∫
1

[
zAge ≤ 35

]
dGmt(z),

with confidence intervals. See also Table A2. The right panel is a binned scatter plot of the share of enrollees selecting a Silver
plan as a function of income (as % of FPL). The linear relationship between the two variables is allowed to vary discontinuously
at the three cutoff values corresponding to the discontinuity in actuarial value of Silver plans due to cost-sharing reductions
(c.f. Section 3).

do not depend on the distribution of demographics in the same geographic area, yet

this affects base premiums, which should be higher in relatively older regions, and

vice-versa (see also Orsini and Tebaldi, 2017; Polyakova and Ryan, 2019). Formally,

E
[
ξjmt

∣∣Gmt, z,x
]
= 0, while E [bjmtGmt|z,x] 6= 0,

implying E [Pj(bmt, z)Gmt|z,x] 6= 0.

To obtain a control function one can use the residual ξ̂jmt of a regression of base

premium projected on product characteristics and share of potential buyers in the

region-year who are aged under-35 (the excluded IV):

bjmt = λ35
∫

1
[
zAge ≤ 35

]
dGmt(z) + λTier + λYear + λInsurer + ξjmt. (9)

Regression results and F-statistics are reported in Appendix Table A2, the variation

in the instrument and the corresponding variation in bjmt are illustrated in Figure 3.
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The first stage OLS estimate of the effect of age-composition of potential buyers on

base premium is λ̂
35

= −5208, with robust standard error 896. This implies that a 0.1

increase in the share of potential buyers aged under-35 corresponds to a  521 reduction

in base premium.

To identify the effect of actuarial value on indirect utility, as governed by βt(z, θ),

the ACA marketplaces feature discontinuities in AV D
ij across the cost-sharing reduction

thresholds (see Table 2). This institutional feature, which has also been used in Lavetti

et al. (2019) to identify demand and cost responses to coverage generosity, implies that

at three income thresholds Silver plans become suddenly less attractive, and that the

choice to enroll in the marketplace is either costlier or it leads to lower coverage.

The three discontinuities correspond to zInci = 150, 200, 250; the actuarial value of

Silver plans drops from 95 to 88, then from 88 to 74, and finally from 74 to 70. As

shown in Figure 3, the strongest effect is observed at zInci = 200, when Silver plans

become suddenly worse than Gold and Platinum plans. The 16% drop in actuarial

value induces a 9.8% reduction in the probability of choosing a Silver plan.

4.3.3 Cost Identification

To identify cost parameters the structure of the data in my application is similar to the

one in Bundorf et al. (2012): I observe (and estimate) demand at the individual level,

while realized costs are measured at the plan level. To capture selection, my model

allows costs to vary within plan across individuals who differ in age and unobservable

willingness-to-pay for coverage βt(z,θ)
αt(z)

.

The MEPS data allows me to calibrate the parameter ηAge, which governs the

age evolution of average annual medical spending when insured. For this purpose I

minimize

1

NMEPS

∑

ℓ∈MEPS

∥∥∥Yℓ − eη
AgeAgeℓ+Yearℓ+Regionℓ

∥∥∥ , (10)

where Yℓ is the annual medical spending of individual ℓ observed in the survey, and

Regionℓ is a MEPS macro area. The parameter ηAge is very robust across specifications

and estimated precisely; see Appendix Table A6.

Identification of cost heterogeneity across buyers with different preferences relies in-

stead on the correlation between plan-average medical spending (total claims adjusted

for actuarial value, ACjmt/AV
S
j ) and composition of enrollment in terms of βt(z,θ)

αt(z)
. As-

suming that E [ln(ν)|G(z, θ),x, ξ,b] = 0, variation in participating plans, and variation

in demographics of potential buyers across region-years, lead to variation in the com-
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position of buyers that can be used to identify ηWTP. Equation (8) restricts the way

in which insurer, year, and region affect medical spending. Given these restrictions,

after controlling for insurer, year, and regional effects, the residual correlation between

ACjmt/AV
S
j and the density of βt(z,θ)

αt(z)
within a given jmt combination identifies ηWTP.

Intuitively, if claims are higher for plans covering a larger share of individuals with

high βt(z,θ)
αt(z)

, ηWTP > 0, and vice versa.

This discussion was somewhat informal and presented in the context of my spe-

cific application. Importantly, however, even without using average claims data there

are sufficient conditions under which costs functions are identified from supply-side

assumptions. Showing this, Appendix E provides a new, formal result which extends

the well-known inversion of first order conditions which dates back to Rosse (1970);

Bresnahan (1987) to a market with (adverse or advantageous) selection.

4.4 Estimation Results

Estimation follows the steps detailed in Appendix B.

4.4.1 Demand Estimates

The full set of demand parameters is reported in Appendix Tables A3 and A4. Ap-

pendix Table A5 shows the impact of the control function on demand estimates. Omit-

ting ξ̂jmt would lead to estimates of premium coefficients between one and two percent

lower, and to estimates of willingness-to-pay between four and ten percent lower.

Table 4 illustrates how demand for ACA-sponsored insurance varies with buyer’s

age. For each of the seven age bins used for estimation, the table summarizes the

distribution of willingness-to-pay for actuarial value. The table also reports extensive

margin semi-elasticity of demand—measured as the percentage drop in the probabil-

ity of purchasing marketplace coverage if all annual premiums increase by  120—and

average own-price elasticity of demand for Silver plans, equal to the percentage drop

in the share of buyers selecting a Silver plan if the plan’s premium increases by 1%.

The extent to which “older buyers demand more” is consistent with intuition and with

patterns in the raw data.

Average willingness-to-pay for a 10% increase in actuarial value increases steadily

with age, from  263 among those aged between 26-31, to  343 between 38-43,  526

between 50-55, reaching the average value of  892 among those aged between 62-64.

This average increase is accompanied by a larger variance: the standard deviation at

26-31 (32-37) is  210 ( 232), while at 56-61 (62-64) it is more than twice as large, equal

to  516 ( 616).
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Table 4: Summary of Demand Estimates by Age Group

Age Age Age Age Age Age Age

26-31 32-37 38-43 44-49 50-55 56-61 62-64

Mean WTP
for 10% AV increase

262.9 305.3 343.4 399.7 526.2 722.6 892.2
(10.1) (15.9) (15.9) (14.1) (13.4) (15.6) (20.3)

St. Dev. of WTP
for 10% AV increase

209.7 232.3 260.3 296.1 387.8 515.7 616.1
(5.9) (8.4) (7.6) (6.9) (7.4) (8.8) (11.3)

% Change in Enrollment if

+ 120/year in all Premium

−6.916 −6.527 −6.078 −5.79 −4.671 −3.69 −3.104
(0.191) (0.201) (0.188) (0.158) (0.114) (0.087) (0.078)

% Change in Silver Enrollment

if +1% in all Silver Premiums

−2.048 −2.047 −1.8 −1.942 −1.774 −1.546 −1.364
(0.077) (0.073) (0.067) (0.052) (0.051) (0.031) (0.025)

Control Function:
Year-Specific Cubic Polynomial

of First-Stage Residuals

Yes Yes Yes Yes Yes Yes Yes

Year-Specific Parameters Yes Yes Yes Yes Yes Yes Yes

Insurer-Year Fixed-Effects Yes Yes Yes Yes Yes Yes Yes

N. Individuals 2588265 2265465 2003948 1944898 2013681 2039277 889550

Note: The table summarizes the estimates of preferences for insurance and sensitivity to premiums conditioning on different
age groups. The reported parameters are functions of the demand parameters in Appendix Tables A3 and A4. Standard errors
in parentheses, obtained as the empirical standard deviation across 100 independent random draws of the demand parameters

using the estimated variance-covariance matrix. The WTP for a 10% AV increase is equal to the ratio
βt(z,θ)
αt(z)

, this varies across

individuals both unobservably with θ, and observably with age, year, and income.

Increasing all annual premiums by  120 (third row of Table 4) is equivalent to

lowering subsidies by  10 per-person, per-month, while holding fixed insurers’ decisions.

I find that this would lower participation of buyers younger than 31 by 7%, compared to

6.5% among those aged between 32-37, and 6% among those aged between 38-43. The

extensive margin response to a change in all premiums is much smaller for older buyers.

Conditional on age being between 56-61, if all premiums increase by  120 enrollment

drops by 3.7%. For the oldest age bin, 62-64, I estimate that average extensive margin

semi-elasticity is equal to 3.1%.

Appendix Figure A1 shows the entire distribution of willingness-to-pay and exten-

sive margin response to premium across individuals. These estimates of how mar-

ketplace demand responds to subsidies complement (and align with) the estimates of

closely related parameters obtained in other studies.17

The fourth row of Table 4 shows the estimates of the elasticity of Silver enrollment to

Silver premiums. This is calculated as the percent change in enrollment in Silver plans

17Using discontinuities in subsidies in the pre-ACA Massachusetts marketplace, Finkelstein et al. (2019)
find enrollment dropping about 25% for every  40 increase in monthly premium. Applying a nested logit
demand model to data from California and Washington, Saltzman (2019) estimates that a  100 increase in
all premiums would induce 3.3-3.7% reduction in marketplace enrollment. In Tebaldi et al. (2023) we adopt
a nonparametric approach and estimate that, if all 2014 monthly premiums increased by  10, the probability
of enrollment in Covered California would have been 0.018-0.067 lower.
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if the premium of all Silver plans (which varies by age-income-region-year) increases by

1%. The elasticity of under-50 individuals is between 1.8-2%, while for older individuals

this is between 1.4-1.8%.

4.4.2 Cost Estimates

The full set of cost estimates is reported in Appendix Table A7. Table 5 summarizes

the key parameters governing heterogeneity in medical spending across buyers who

differ in age and willingness-to-pay for actuarial value, and the differences in average

costs across age groups for Bronze and Silver plans.

The estimate of ηAge derived from the MEPS is equal to 0.038 (Appendix Table

A6). This indicates that, on average, one year of age corresponds to approximately 3.8%

higher expected medical spending. While age is observed, and partially accounted for

by the regulatory age rating adjustments, willingness-to-pay for actuarial value varies

unobservably conditional on age.

The parameter ηWTP shows that this unobservable dimension of preferences for

insurance is positively correlated with medical spending. Table 5 shows that the point

estimate of ηWTP is equal to 0.07, statistically significant at any conventional level.

This implies that a  100 increase in βt(z,θ)
αt(z)

corresponds to approximately 7% higher

expected medical spending. Given the range of βt(z,θ)
αt(z)

shown in Appendix Figure A1a

and Table 4, even conditioning on age, income, and year, willigness-to-pay for actuarial

value can vary by more than  700, corresponding to 50% higher expected cost.

The estimates of η(z, θ) are the distinguishing feature of a selection market: average

and marginal cost curves for a given plan jmt are not constant, varying as a function

of base premiums. Holding base premiums fixed at the observed levels, the bottom

of Table 5 summarizes the value of expected average claims for Bronze and Silver

plans, conditioning on the seven age bins used for demand estimation. These estimates

depend on η(z, θ), but also on φ, which collects year, region, and insurer-specific cost

parameters (c.f. equation (8)).

For Bronze plans, expected average claims are equal to  1148 per-person, per-year

when the enrollee is aged between 26-31,  1507 when between 32-37, almost  2000

when between 38-43, and progressively increasing to more than  7000 for the oldest

group, aged between 62-64. Silver plans have higher average claims, reflecting both

higher actuarial value (AV S
j = 70%, instead of 60%) but also a different risk selection:

enrollees of Silver plans have higher βt(z,θ)
αt(z)

. As a result, the average claims of Silver

plans when enrolling someone aged between 26-31 are  1435, 25% higher than the

estimate for Bronze plans, and 7.2% higher than the difference that would be explained
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Table 5: Summary of Cost Estimates

Parameters of

η(z, θ) = ηAgezAge + ηWTP β
t
(z,θ)

αt(z)

Estimator,

N. Obs.
Data
Source

Region

FE
Year
FE

Insurer
FE

Age ηAge
0.0379 NLLSQ,

N=20171
2014-17
MEPS

Y Y N
(0.0021)

WTP for 10% AV
increase ( 100/year) ηWTP

0.0699 NLLSQ,

N=1026
2016-19
RRF

Y Y Y
(0.0152)

Insurer Expected Average Cost at Observed Premiums

Age Age Age Age Age Age Age

26-31 32-37 38-43 44-49 50-55 56-61 62-64

Bronze
Enrollees

1148 1507 1969 2613 3744 5523 7294
(217) (266) (320) (387) (441) (436) (416)

Silver
Enrollees

1435 1922 2504 3355 4919 7491 10274
(223) (241) (326) (371) (345) (247) (329)

Note: The top panel shows the estimates of the two parameters of the function η(z, θ), governing the heterogeneity in
expected medical spending across individuals. The full set of non-linear least squares estimates is reported in Appendix Table
A7. The bottom panel shows the estimated average cost across Bronze and Silver enrollees, conditional on different age groups.
Standard errors in parentheses, obtained as the empirical standard deviation of cost estimates obtained across 100 independent
random draws of demand parameters (using the estimated variance-covariance matrix).

by the increased actuarial value, holding risk selection fixed. This would be  1339,

computed as $1148× 0.7
0.6 .

The relative difference between Silver and Bronze expected average claims is in-

creasing with age, reflecting the larger premium differences following the ACA rating

regulations. When selecting a Silver plan, someone older than 50 must have unob-

servably higher βt(z,θ)
αt(z)

relative to someone younger making the same choice. Among

enrollees who are 56 or older, average claims for those selecting a Silver plan are be-

tween  7500- 10300, 35-40% higher than the claims for those selecting a Bronze plan.

The relevance of heterogeneity and adverse selection in this application is high-

lighted in Figure 4: higher willingness-to-pay corresponds to higher expected cost.

This relationship is steeper for older individuals. Among those under 35, an increase

in willingness-to-pay from approximately zero to  1000 corresponds to a cost increase

from  1000 to slightly more than  2000. When considering individuals aged 35-64, the

same difference in preferences corresponds to a cost increase from  2000 to  6000. Even

conditioning on a specific value of cost, there is significant heterogeneity in preferences,

and vice versa. The joint distribution summarized in Figure 4 is the key primitive one

needs to study market design in a health insurance marketplace.
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Figure 4: Empirical Relationship Between Preferences and Expected Cost

(a) Age 26-35
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(b) Age 36-64
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Note: The figure illustrates the joint distribution of willingness-to-pay for coverage and expected cost obtained after combining
demand and cost estimates. The graph is generated by randomly drawing 10,000 individuals from G(z, θ). For each draw, I

compute willingness-to-pay for a 10% increase in actuarial value (
βt(z,θ)
αt(z)

), and expected cost if the individual enrolls in a Silver

plan, offered by Anthem (κjmt(z, θ), where j is Anthem’s Silver plan in mt). The figure then consists of a scatter plot of these
quantities, overlaying this with a local polynomial smoothing of the two quantities. The left panel is conditional on zAge ≤ 35,
the right panel is conditional on zAge > 35.

5 Equilibrium and Market Conduct

Before considering counterfactual policy design, it is necessary to model expected prof-

its incorporating ACA regulations, and to seek empirical support for alternative as-

sumptions about insurers’ conduct.

5.1 Rating Regulations, Risk Adjustment, and Profits

Each insurer f offers the plans in the set J (f) in region m, year t. The expected profit

of insurer f in mt is a function of the base premiums bfmt = {bjmt}j∈J (f). Expected

total revenues for each product j ∈ J (f) are equal to

Rjmt(bfmt,b−fmt) =

∫
Adjustment(zAge)bjmtqjmt(z, θ)dGmt(z, θ);

where qjmt(z, θ) depends on (bfmt,b−fmt), including age adjustments and subsidies,

as shown in (3). Expected total costs are instead equal to

TCjmt(bfmt,b−fmt) =

∫
κjmt(z, θ)qjmt(z, θ)dGmt(z, θ).
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To model risk adjustment I follow the ACA formula (see e.g. Pope et al., 2014;

Saltzman, 2021), as described in details in Appendix C. For every plan j ∈ J (f), the

risk adjustment transfer is

RAjmt(bfmt,b−fmt) = Qjmt

∑
k Rkmt∑
kQkmt︸ ︷︷ ︸

average premium
in region-year

(
Relative Riskjmt − Relative Adjustmentjmt

)
.

In words, the per-enrollee risk adjustment transfer to plan j in region-year mt is the

product of average premium in the region and a difference between a relative risk

measure and a relative premium measure.

The risk adjustment formula is constructed to ensure that transfers sum to zero.

Plans receive positive transfers if they cover costlier-than-average individuals, after

controlling for actuarial value differences and premium adjustments. The other plans

face negative transfers, which are larger when enrollees are, on average, less risky, after

controlling for actuarial value and premium adjustments.

Expected profits for insurer f in region-year mt combine the above definitions and

account for multi-plan insurers: omitting the dependence on (bfmt,b−fmt) to simply

the notation,

Πfmt =
∑

j∈J (f)

Rjmt − TCjmt +RAjmt.

Different subsidy designs imply different R, TC, and RA functions, by altering the re-

lationship between (bfmt,b−fmt) and the composition and risk selection of individuals

choosing different plans.

5.2 Evidence on Insurers’ Conduct

I consider two alternative models of insurer conduct: multi-product Nash pricing (as in

Bundorf et al., 2012; Starc, 2014; Decarolis et al., 2020; Saltzman, 2021; Curto et al.,

2021), and perfect competition à la Azevedo and Gottlieb (2017), in which every plan

breaks even in expectation as adopted recently by Dickstein et al. (Forthcoming).18

Although I compute counterfactuals under both assumptions, I am in the position to

investigate whether the data supports one over the other.

Formally, multi-product Nash pricing requires that, for every insurer f , the follow-

18Future work could consider even more complex models of imperfect competition between insurers,
allowing for strategies to be dynamic, or firms uncertainty about demand and cost functions (see e.g. Saltzman
and Lucarelli, 2021).
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Figure 5: Multi-Product Nash Pricing vs. Perfect Competition

(a) Marginal Revenue vs. Marginal Cost

0

2500

5000

7500

10000

12500

15000

E
s
ti
m

a
te

d
 M

a
rg

in
a
l 
C

o
s
t 
U

s
in

g
 C

la
im

s

0 2500 5000 7500 10000 12500 15000
Estimated Marginal Cost Without Using Claims (= Marginal Revenue)

(b) Average Revenue vs. Average Cost
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Note: The left panel shows the comparison between per-enrollee risk-adjusted marginal costs estimated assuming multi-
product Nash-in-Prices without using claims (these are equal to marginal revenue), and per-enrollee risk-adjusted marginal
costs estimated using observed claims. The right panel shows the comparison between per-enrollee risk-adjusted average costs
estimated assuming perfect competition without using claims (these are equal to average revenue), and per-enrollee risk-adjusted
average costs estimated using observed claims. Markers are weighted by plan enrollment, each observation is a jmt combination.

ing FOC are satisfied for every j ∈ J (f), every m, and every t:

∂Πf

∂bjmt
=

∑

k∈J (f)

∂Rkmt

∂bjmt
−
∂TCkmt

∂bjmt
+
∂RAkmt

∂bjmt
= 0. (11)

Perfect competition requires that, for every jmt,

ΠAG
jmt = RAG

jmt − TCAG
jmt +RAAG

jmt = 0. (12)

In this expression, the superscript AG indicates that the demand function qjmt(z, θ)

is modified to let an infinitesimal fraction of “behavioral” buyers choose a given plan

independently from changes in premiums or other characteristics.19

Figure 5 compares estimated and model-predicted marginal and average costs under

alternative conduct assumptions. This is not a formal test, but it shows that observed

data and estimated primitives are more consistent with multi-product Nash pricing

than average-cost pricing. A formalization of this procedure, in which—rather than

imposing supply assumptions during estimation—the researcher compares alternative

19I assume that a fraction of individuals equal to 0.001 chooses iid uniformly across the J plans. This
ensures equilibrium existence (c.f. Azevedo and Gottlieb, 2017). Profits in this case are “almost” zero, rather
than zero, as it will be the case in Tables 6 and 7.
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models of conduct before running counterfactuals, represents an important venue for

future work. For the case of markets without adverse selection, statistical tests to

discriminate between models of conduct are known since Bresnahan (1987).

The comparison between the two models relies, albeit somewhat implicitly, on the

possibility to identify cost curves in a selection market imposing supply-side assump-

tions, rather than observing costs directly. While here I discuss my findings informally,

a new, formal and self-contained identification result is provided in Appendix E.

In Figure 5a, the horizontal axis corresponds to the per-enrollee marginal revenue

for every jmt combination in the data. Nash pricing predicts that this would be

equal to per-enrollee risk-adjusted marginal cost, following equation (11). The vertical

axis corresponds to the estimate of this quantity for every jmt. It is important to

recall that (11) has not been used as a moment or constraint for the estimation of

demand and cost. The resulting scatter plot is concentrated around the 45-degree line.

The enrollment-weighted average difference between per-enrollee marginal revenue and

per-enrollee risk-adjusted marginal cost is  293.46 (95%-C.I.: [217.09, 369.84]). The

enrollment-weighted average ratio
∂Πf

∂bjmt
/Rjmt is 0.035 (95%-C.I.: [0.023, 0.048]).

For comparison, Figure 5b repeats the same procedure to explore the discrepancy

between average revenue and risk-adjusted average cost. Perfect competition predicts

that the two quantities would be equal, and the distribution should be close to the

45-degree line. As shown in the figure, relatively to Figure 5a this seems not to

be the case. For a large number of jmt combinations estimated risk-adjusted aver-

age cost is significantly lower than average revenue, providing evidence against per-

fect competition. The enrollment-weighted average difference between Rjmt/Qjmt and

(TCjmt +RAjmt) /Qjmt is  1331.12 (95%-C.I.: [1236.73, 1425.50]). The enrollment-

weighted average ratio Πjmt/Rjmt is 0.245 (95%-C.I.: [0.229, 0.260]), corresponding to

a departure from the model assumption 14 times as large as under Nash pricing.

One additional piece of evidence in support of modeling insurers as not perfectly

competitive is provided by the estimated medical-loss ratio (MLR). Despite not impos-

ing a constraint in estimation, I calculate average MLR at the observed base premiums

to be approximately equal to 0.85 (Table 7). This is above the minimum value of 0.8

mandated by the ACA, while still lower than the perfect competition value of one.
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6 Subsidy Design and Equilibrium Outcomes

6.1 Price-Linked Subsidies vs. Vouchers

I begin by comparing equilibrium under ACA subsidies and equilibrium under fixed

vouchers: subsidies that do not adjust endogenously with base premiums. Jaffe and

Shepard (2020) call the ACA design a “price-linked subsidy”: the market sponsor

determines the maximum premium individuals should pay, and adjusts subsidies to

insurers’ decisions accordingly. One alternative is to use an “equivalent” voucher: the

subsidy received by every individual is fixed to the (price-linked, endogenous) amount

received under the ACA. This varies then by age, income, region, and year, but it is

not adjusted in equilibrium.

The transition from a price-linked subsidy to a fixed, equivalent voucher increases

the own-premium semi-elasticity for the second cheapest Silver plan in the region-year.

Under the ACA design, when this plan increases its base premium buyers do not face

premium increases, the only effect is to lower other plans’ premiums. Under Nash

pricing, switching to an equivalent voucher implies that the second cheapest Silver

plan has incentives to charge lower premiums, and this effect should be larger in less-

competitive, more-concentrated markets.

Jaffe and Shepard (2020) discuss this mechanism formally for the case of single-

plan insurers, in which the subsidy-setting plan is the cheapest; this was the case in

the pre-ACA Massachusetts marketplace. As anticipated in their appendix, the main

difference in the ACA context is that insurers offer multiple plans, and that subsidies

are determined to target the second cheapest Silver, rather than the cheapest Bronze.

Table 6 shows how market outcomes vary when adopting ACA price-linked subsidies

or equivalent vouchers. The left panel shows results obtained assuming multi-product

Nash pricing, the right panel assumes perfect competition. In the latter case, out-

comes do not vary across the two subsidy designs (equilibrium premiums depend only

on enrollees expected costs): price-linked subsidies are non-distortionary in perfectly

competitive markets. Under Nash pricing, adopting equivalent vouchers affect equilib-

rium outcomes, since it implies a lower second cheapest Silver base premium.

The price distortion due to linking subsidies to insurers’ decisions is larger markets

that are more concentrated. In small regions (2-3 insurers), second cheapest base

premiums drop by 13.2%, from  3646 to  3164; in larger regions, with more than four

participating insurers, the drop is smaller, from  2769 to  2623 (-5.3%). Cheaper Silver

plans lead to a lower share of buyers choosing a (high deductible) Bronze plan.

Accounting for adjustments to all premiums, and consequent changes in plan selec-
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Table 6: From ACA Price-Linked Subsidies to Equivalent Vouchers

Multi-Product Nash pricing Perfect Competition

2-3 insurers
27 region-years

4-7 insurers
49 region-years

2-3 insurers
27 region-years

4-7 insurers
49 region-years

ACA
subsidy

Equivalent
voucher

ACA
subsidy

Equivalent
voucher

ACA
subsidy

Equivalent
voucher

ACA
subsidy

Equivalent
voucher

Share enrolled 0.315 0.324 0.266 0.273 0.274 0.274 0.268 0.268

2nd cheapest Silver bj 3646 3164 2769 2623 2716 2715 2177 2175

Share in Bronze plans 0.171 0.166 0.154 0.142 0.181 0.181 0.153 0.153

Medical-loss ratio 0.862 0.831 0.842 0.820 0.998 0.998 0.998 0.998

∆CSi relative to ACA - 28 - 24 - 0 - 1

Average subsidy 5070 4694 3388 3345 3428 3419 2339 2313

Note: Simulated market outcomes under alternative subsidy designs and different region-year markets. The left panel
corresponds to multi-plan Nash pricing, where equilibrium is simulated in every region-year by finding the vector of base
premiums bmt that minimizes the distance between the left- and right-hand side of Equation (11). The right panel corresponds
to perfect competition à la Azevedo and Gottlieb (2017), where equilibrium is simulated in every region-year by finding the
vector of base premiums bmt that minimizes the distance between the left- and right-hand side of Equation (12). The ACA
subsidy corresponds to the regulations described in (2) in Section 3. The Equivalent Voucher corresponds to setting subsidies
equal to the level of the ACA subsidy, and then computing equilibrium removing price-linked adjustments of subsidies to the
second cheapest Silver plan in a region-year pair. Share enrolled and second cheapest Silver base premium are computed as
averages across region-years, weighted by number of eligible individuals. The share in Bronze plans, medical-loss ratio, and
average subsidy are computed as averages across region-years, weighted by enrollment. ∆CSi indicates the average, per-person
annual consumer surplus, which is reported in differences from the equilibrium under ACA price-linked subsidies.

tion and composition of enrollment pools, the Nash-pricing equilibrium under equiv-

alent vouchers implies slightly higher marketplace enrollment, increasing from 0.315

(0.266) to 0.324 (0.273) in small (large) regions. The corresponding increase in annual

per-person consumer surplus relative to the ACA design is between  24- 28. In re-

gions with less than four insurers average subsidies drop from  5070 to  4694; in larger

regions from  3388 to  3345. Insurer profitability is also higher, as medical-loss ratio

drops from 0.862 (0.842) to 0.831 (0.820) in small (large) regions.

Despite differences in the specific policy and market structure, the comparisons

between equilibrium under ACA price-linked subsidies and vouchers are similar to the

results in Jaffe and Shepard (2020). They argue that fixing vouchers to a specific

level requires regulators to have prior knowledge of insurers’ costs yet show that—

for reasonable levels of uncertainty about costs—vouchers perform better than price-

linked subsidies. My results imply that, under the ACA, adopting a system of vouchers

calibrated to the early years of the marketplaces would lead to sizable gains in terms

of lower premiums and government spending.
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6.2 More Subsidies for the Young Invincibles

The second counterfactual subsidy design amounts to providing additional enrollment

incentives to the so-called “young invincibles”; in what follows this group consists

of individuals aged between 26-35 (see e.g. Levine and Mulligan, 2017). Since these

buyers are, at the same time, cheaper to cover and more price sensitive, lowering their

(subsidized) premiums ignites a series of adjustments to a new equilibrium. Insurers

lower base premiums, due to the average cost reduction and—under Nash pricing—

increase in elasticity. Lower premiums lead to higher enrollment and higher consumer

surplus. Importantly, since premiums across demographic groups are linked by rating

regulations (which are hold fixed), the gains from higher subsidies to young individuals

can be as large as to allow lowering subsidies for older individuals, while still keeping

all buyers better off, increasing profits, and reducing per-buyer government spending.

There are many alternative ways to measure the benefit of higher subsidies to

the young invincibles, and here I consider two. First, one can maintain a price-linked

design, and lower the MAA (c.f. Section 3, Equation (2)) for young individuals. Second,

using (equivalent) vouchers, one can increase vouchers for the “young”, while lowering

vouchers for the “old”. For each alternative, the first-order, “off-equilibrium” effect of

changing policy while holding base premiums fixed will be different than the equilibrium

effect, which accounts for endogenous pricing behavior.

Panel (a) of Table 7 summarizes how marketplace outcomes respond to changing

the ACA price-linked design by lowering the MAA for young invincibles by 30%. In

equilibrium, the effect is to increase enrollment in all demographic groups, as well as

annual per-person consumer surplus, while average cost and average subsidies are lower.

Despite slight differences in magnitude, the results are qualitatively similar under al-

ternative models of insurer conduct. Without accounting for endogenous adjustments,

premiums for older buyers are not affected by the different design. Therefore, off-

equilibrium only the young invincibles are better off. In the new equilibrium, older

buyers also benefit from the alternative subsidy design, as they face lower premiums

and enroll more.

Using vouchers, the way in which alternative subsidy designs impact equilibrium

outcomes follows more closely the mechanism discussed in Section 2. This is illustrated

in panel (b) of Table 7, where ACA-equivalent vouchers are modified by raising annual

under-35 vouchers by  600, while lowering over-35 vouchers by  100. Holding base

premiums fixed, young invincibles would be better off, while older buyers worse off

(the enrollment share for this group drops by 0.01 as they face higher premiums). In

equilibrium, however, the reduction in base premiums following the larger enrollment
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Table 7: Counterfactual Subsidy Design: Shifting Generosity Toward “Young Invincibles”

Panel (a): Lowering MAA for under-35 by 30%

Multi-product Nash Perfect Competition

ACA MAA Counterfactual MAA ACA MAA Counterfactual MAA
Equilibrium Off-equilibrium Equilibrium Equilibrium Off-equilibrium Equilibrium

Share enrolled:

26-35 0.243 0.308 0.313 0.242 0.299 0.300

36-64 0.295 0.295 0.302 0.284 0.284 0.285

Premium paid:

26-35 1655 1322 1296 1768 1432 1435

36-64 1704 1704 1643 1902 1902 1911

Average cost ( /year) 4534 4301 4322 4423 4216 4225

Average revenue ( /year) 5348 5210 5124 4433 4329 4229

Medical-loss ratio 0.849 0.827 0.859 0.998 0.974 0.999

Per-person CS ( /year) 731 774 792 708 745 748

Average subsidy ( /year) 3828 3807 3813 2594 2620 2511

Total profits ( million) 3098 3748 3371 35 450 17

Panel (b): Increasing under-35 voucher by  600/year while lowering over-35 voucher by  100/year

Multi-product Nash Perfect Competition

ACA-voucher Counterfactual voucher ACA-voucher Counterfactual voucher
Equilibrium Off-equilibrium Equilibrium Equilibrium Off-equilibrium Equilibrium

Share enrolled:

26-35 0.250 0.331 0.348 0.242 0.327 0.350

36-64 0.304 0.294 0.312 0.284 0.275 0.298

Premium paid:

26-35 1630 1154 1086 1767 1232 1131

36-64 1675 1751 1633 1901 1989 1805

Average cost ( /year) 4410 4144 4139 4422 4129 4112

Average revenue ( /year) 5359 5180 5067 4431 4268 4114

Medical-loss ratio 0.820 0.797 0.814 0.998 0.967 0.999

Per-person CS ( /year) 756 794 840 708 747 808

Average subsidy ( /year) 3698 3656 3642 2573 2577 2573

Total profits ( million) 3718 4379 4144 31 564 9

Note: Simulated market outcomes under alternative subsidy designs; for details on equilibrium computation, see note to
Table 6. Panel (a) shows the effect of lowering the maximum affordable amount for individuals under-35 by 30%, holding fixed
the other regulations as set under the ACA. Panel (b) compares the ACA-equivalent voucher to an alternative design in which
vouchers for individuals under-35 are  600 higher, while vouchers for individuals over-35 are  100 lower. The Off-equilibrium
columns show how outcomes vary when the subsidy design is changed, but base premiums are held fixed to the level of the
ACA MAA Equilibrium, and ACA-voucher Equilibrium, respectively. Total profits sum up profits across all insurers and year.
Enrollment shares and annual per-person CS are computed as averages across region-years, weighted by number of eligible
buyers. Other outcomes are enrollment-weighted averages.

share of under-35 individuals implies that all buyers are better off.

Considering Nash pricing, under-35 enrollment increases from 0.25 to 0.348, and

over-35 enrollment from 0.304 to 0.312; despite receiving smaller vouchers, subsidized

premiums of over-35 buyers are  42 lower. The younger composition of enrollees trans-

lates in average costs that, in equilibrium, are 6% lower than under the ACA-equivalent
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Figure 6: ∆Consumer Surplus by Age: + 600 Under-35 Voucher, - 100 Over-35 Voucher
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(b) Equilibrium
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Note: Average annual change in per-person consumer surplus when replacing ACA-equivalent vouchers with vouchers that
are  600 higher for the under-35, and  100 lower for the under-35. The left panel holds base premiums fixed to the equilibrium
under ACA-equivalent vouchers, the right panel corresponds to the new equilibrium. The solid lines correspond to perfect
competition à la Azevedo and Gottlieb (2017), the dashed lines correspond to Nash pricing.

voucher. Per-person consumer surplus increases by  84 per-year, while average per-

enrollee subsidies are  53 lower. Profits are also higher since the increase in enrollment

dominates the reduction in markups. The result by which the alternative vouchers rep-

resent an improvement for all buyers while not increasing average subsidies is robust

to assuming perfect competition.

Figure 6 illustrates the relationship between age and changes in annual, per-person

consumer surplus resulting from changing vouchers as in panel (b) of Table 7. The dash

line corresponds to Nash pricing, while the solid line corresponds to the equilibrium

simulations under perfect competition. In the left panel, base premiums are held fixed

to the ACA-voucher equilibrium: under-35 experience a net gain, while over-35 are

worse off. However, as shown in Figure 6b, at the new equilibrium the change in

consumer surplus of over-35 switches sign: this group is now better relative to the

ACA-voucher equilibrium, by an annual amount varying between  10-100.20

20Due to the way in which rating adjustments amplify premium changes for older buyers, mid-aged
individuals—while still better off—benefit the least from the alternative design. However, once established
that everyone would gain, other alternatives in which vouchers are adjusted more granularly by age could
smooth changes in consumer surplus across groups, while still ensuring lower premiums and lower average
subsidies. Ultimately, design decisions depend on welfare weights, which here are not needed to argue that
a design would improve upon the status-quo in terms of enrollment, profits, and consumer surplus.
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7 Conclusion

Expanding coverage while limiting public costs is one of the main goals of government-

sponsored health insurance. If individuals who value insurance less and are more

responsive to premiums are also less risky, a subsidy design in which premiums are

equal for all individuals can be be worse than a design in which premiums vary across

types. Adjusting subsidies to observables that predict preferences and cost can lead to

equilibria in which all enrollees pay lower premiums, coverage and profits are higher,

and average subsidies are lower.

After discussing this point, the article measured the potential gains from intro-

ducing age adjustments to ACA subsidies using data from the California marketplace

regulated under the recent healthcare reform. The data supports oligopoly pricing

over imperfect competition. Following the significant differences in preferences and

cost across age groups, equilibrium simulations suggest that shifting subsidy generos-

ity toward young uninsured would lower costs and premiums, increasing profits and

consumer welfare. Whether this policy is desirable is a matter of political economy

beyond the scope of my investigation.

To implement alternative subsidy schemes and to consider other market design

and regulatory questions—e.g. the role of a public option, different risk adjustment

models, or quality regulations—future work could extend the model to account for

dynamic or behavioral aspects, and for the key role played by healthcare providers.

Access to richer data, including measures of health risk and healthcare utilization at

the individual level, would facilitate the calculation of optimal policy parameters by

researchers and policymakers.
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Appendix
Estimating Equilibrium in Health Insurance Exchanges:

Price Competition and Subsidy Design under the ACA

Contents

Appendix A describes the parametric assumptions in the demand model.

Appendix B describes the estimation steps.

Appendix C describes the details of the risk adjustment formula.

Appendix D shows robustness to moral hazard.

Appendix E presents conditions for identifying costs from equilibrium assumptions.

Appendix F collects additional tables and figures.

Table A2 shows the first-stage estimates from equation (9).

Table A3 contains the estimates of demand parameters for 2014-2015. These are

obtained by maximum simulated likelihood as described in Appendix B.

Table A4 contains the estimates of demand parameters for 2015-2016. These are

obtained by maximum simulated likelihood as described in Appendix B.

Table A5 shows the impact of the control function on the estimates of premium

coefficients and willingness-to-pay for actuarial value.

Table A6 contains the non-linear least squares estimates of ηAge obtained from the

MEPS.

Table A7 contains the non-linear least squares estimates of ηWTP and φ.

Figure A1 plots the estimated distribution of willingness-to-pay for actuarial value

and extensive margin semi-elasticity.

Figure A2 shows the impact of moral hazard on the estimated value of ηWTP.
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A Demand Model: Parametric Assumptions

The premium coefficient αt(z) is allowed to vary across year, and across seven 6-years-

wide age bins, and linearly with income. The coefficient on actuarial value βt(z, θ) is

log-normally distributed with year-age-bin-specific parameters.

Letting A1 = {26, ..., 31} , A2 = {32, ..., 37} , ..., A6 = {56, ..., 61} , A7 = {62, 63, 64},

αt(z) =





α0,1
t + α1,1

t zInc if zAge ∈ A1

α0,2
t + α1,2

t zInc if zAge ∈ A2

...

α0,7
t + α1,7

t zInc if zAge ∈ A7

;

all parameters are year-specific.

The coefficient on actuarial value is log-normally distributed with year-age-bin-

specific parameters:

βt(z, θ) =





eβ
1
t+σ1

t θ, if zAge ∈ A1

...

eβ
7
t+σ7

t θ, if zAge ∈ A7

, where θ ∼ G(θ) = N (0, 1);

N indicates the standard normal distribution, θ and z are independent:

Gmt(z, θ) = Gmt(z)G(θ).

The term µt(z)xjmt is equal to

µt(z)xjmt =





µ0,1t + µ1,1t zInc + µ2,1t zAge + µ3,1t HMOjmt + µ
4,1
t Insurerjmt if zAge ∈ A1

...

µ0,7t + µ1,7t zInc + µ2,7t zAge + µ3,7t HMOjmt + µ
4,7
t Insurerjmt if zAge ∈ A7

;

this allows the value of marketplace coverage to vary piecewise linearly by year, age,

and income, and the value of each product to vary—with year-age-bin parameters—

with the type of provider network and insurer brand. Lastly, I let γt to be a cubic
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function of ξjmt, specific to every year and every age bin:

γt(ξjmt; z) =





γ1,1t ξjmt + γ2,1t ξ2jmt + γ3,1t ξ3jmt if zAge ∈ A1

...

γ1,7t ξjmt + γ2,7t ξ2jmt + γ3,7t ξ3jmt if zAge ∈ A7

.

B Estimation Steps

Estimation proceeds in steps.

First, I obtain ξ̂jmt as the residual of the OLS regression:

bjmt = λ35
∫

1
[
zAge ≤ 35

]
dGmt(z) + λTier + λYear + λInsurer + ξjmt.

The results are shown in Table A2.

Second, I obtain η̂Age the non-linear least squares regression of annual medical

spending in the MEPS on age, geographic area, and year: this step finds the parameters

that minimize

1

NMEPS

∑

ℓ∈MEPS

∥∥∥Yℓ − eη
AgeAgeℓ+Yearℓ+Regionℓ

∥∥∥ .

The results are shown in Table A6.

Then, taking ξ̂jmt and η̂
Age as given, I estimate the demand parameters by simulated

maximum likelihood on a subsample of 400,000 individuals. This is due to the very large

sample size and the interest of keeping computation time within reason; the parameter

estimates are robust to considering larger subsamples, at the cost of a (much) longer

wait. For every year 2014-2017, and every age bin An, with n = 1, ..., 7, I draw 3,000

individuals and find the demand parameters that solve

max
αn

t ,β
n
t ,σ

n
t ,µ

n
t ,γ

n
t

∑

i∈Nn
t

ln

(
1

1000

1000∑

s=1

e−αt(zi)pij(i)mt+δj(i)mt(zi,θ
s
i )

1 +
∑J

k=1 e
−αt(zi)pikmt+δkmt(zi,θ

s
i )

)
,

where Nn
t is the set of sampled individuals in age bin An, year t, j(i) is the choice

of individual i, and θsi is the s-th draw from N (0, 1) specific to individual i. The

estimates are reported in Table A3 and Table A4. Standard errors are calculated

using the variance-covariance matrix obtained as the inverse of the negative Hessian of

the simulated log-likelihood function at convergence. The Hessian is calculated using

numerical differentiation, the gradient is analytical.

Lastly, I minimize the distance between observed and model-predicted expected av-
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erage claims for each jmt combination as a function of demand estimates and remaining

unknown cost parameters:

min
ηWTP ,φ

1

NJ

∑

jmt

∥∥∥∥∥ln
(
ACjmtQ̂jmt

AV S
j

)
− φjmt − ln

(
∑

i

1

1000

1000∑

s=1

eη(zi,θ
s
i )q̂jmt(zi, θ

s
i )

)∥∥∥∥∥ ;

where NJ is the number of plans for which I observe average claims as reported in the

RRF, θsi is the s-th draw from N (0, 1) specific to individual i, and Q̂jmt, q̂jmt(zi, θ
s
i ) are

calculated using the demand estimates. Nonlinear minimization is only required with

respect to ηWTP: φ enters the moment linearly, and can therefore be obtained through

a simple orthogonal projection for any value of ηWTP. The estimates are reported in

Table A7, standard errors are bootstrapped, repeating the minimization step using 100

independent draws of demand parameters.

C Risk Adjustment Formula

I apply the ACA risk adjustment formula described in Pope et al. (2014).

Following Section 5, risk adjustment for each plan j is calculated as

RAjmt(bfmt,b−fmt) = Qjmt

∑
k Rkmt∑
kQkmt︸ ︷︷ ︸

average premium
in region-year

(
Relative Riskjmt − Relative Adjustmentjmt

)
;

where

Relative Riskjmt ≡
IDFjAV

S
j Q

−1
jmt

∫
Lmt(z, θ)qjmt(z, θ)dGmt(z, θ)

(
∑

ℓQℓmt)
−1 ∑

k IDFkAV
S
k

∫
Lmt(z, θ)qkmt(z, θ)dGmt(z, θ)

, and

Relative Adjustmentjmt ≡
IDFjAV

S
j Q

−1
jmt

∫
Adj(zAge)qjmt(z, θ)dGmt(z, θ)

(
∑

ℓQℓmt)
−1 ∑

k IDFkAV
S
k

∫
Adj(zAge)qkmt(z, θ)dGmt(z, θ)

.

The relative risk measure is the ratio of a product-specific average expected cost to

the region-year average, where it is important to notice that Lmt(z, θ) 6= Ljmt(z, θ).

In particular, I set Lmt(z, θ) = Ljmt(z, θ)e
−φ3Insurerjmt : risk adjustment payments

depend on differences in risk selection, and on differences across regions and years, but

not on differences in insurer-specific cost functions.

The induced demand factors IDFj vary across metal tiers, as indicated in Pope et

al. (2014): this is equal to 1 for Bronze, 1.03 for Silver, 1.08 for Gold, and 1.15 for
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Platinum. The relative adjustment measure is calculated in a similar way, but rather

than average expected cost it considers average premium adjustments; Adj(zAge) =

Adjustment(zAge).

The risk adjustment model is applied at the region-year levelmt, rather than the en-

tire state-year. This ensures the computational tractability of equilibrium simulations

at the region-year level, in which each insurer faces a multi-product pricing problem.

Linking risk adjustment payments across regions would require each insurer to consider

more than seventy products at the same time, which would not be feasible.

An alternative approach can be found in Saltzman (2021), who simplifies the model

by considering fixed regional adjustments to premiums. For my analysis, it is important

to consider separate pricing problems across regions, since regional composition and

number of competing insurers are relevant determinants of equilibrium, and of the

effect of different subsidy designs.

D Robustness to Moral Hazard

The cost estimates in Table 5 and the simulation results in Section 6 maintained the

assumption of no moral hazard (see e.g. Einav and Finkelstein, 2018). This assumption

is dictated by the lack of data to identify correlation between willingness-to-pay and

spending separately from the causal effect of coverage generosity on spending. In the

model of Section 4, allowing spending to increase with actuarial value impacts the

estimates of ηWTP and other cost parameters. Therefore, although the results above

rely primarily on the fact that young uninsured individuals are generally healthy, the

quantifications in Section 6 could be sensitive to different assumptions on moral hazard.

To address this, I re-estimate cost parameters and simulate policy counterfactuals

under varying degrees of moral hazard. For reference, the ACA risk adjustment model

(Pope et al., 2014) assumes that medical spending increases, on average, by 3% when

the individual is covered under a Silver plan (without cost-sharing reductions) relative

to the spending under a Bronze plan; by 8% when covered under a Gold plan, and

by 15% when covered under a Platinum plan. These moral hazard parameters are

consistent with the findings of Lavetti et al. (2019), who estimate that when cost-

sharing reductions increase actuarial value from 70% to 87% (94%) total spending is

13% (19%) higher.

Formally, I let the expected claims associated with individual i enrolled in plan j,

in region m, year t be equal to κMH
jmt(zi, θi) = AV S

j L
MH
jmt(zi, θi), with medical spending
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Table A1: Alternative Assumptions on Moral Hazard and Effect of Age Adjustments to
Vouchers

Multi-product Nash Perfect Competition

Change relative to ACA-voucher equilibrium Change relative to ACA-voucher equilibrium
+ 600 under-35 voucher, - 100 over-35 voucher + 600 under-35 voucher, - 100 over-35 voucher

Assumption
on moral
hazard:

26-35
enrollment

36-64
enrollment

26-35
premium

36-64
premium

Average
CS

Average
subsidy

26-35
enrollment

36-64
enrollment

26-35
premium

36-64
premium

Average
CS

Average
subsidy

ζ = 0 0.098 0.008 −544 −42 84 −56 0.108 0.013 −636 −96 100 0

ζ = 1 0.095 0.006 −524 −30 78 −31 0.107 0.013 −628 −90 98 −8

ζ = 2 0.095 0.004 −481 −3 73 −35 0.106 0.012 −621 −88 98 −14

ζ = 4 0.088 0.004 −487 −7 69 −52 0.106 0.012 −617 −83 97 −32

Note: The table shows how the results of panel (b) in Table 7 vary when allowing medical spending to respond to coverage
generosity (moral hazard). For each value of ζ, cost parameters are estimated replacing Ljmt from Equation (6) with LMH

jmt from

Equation (13), and equilibrium simulations are obtained with the new cost parameters. For each outcome, the results in the
table correspond to the difference between the ACA-voucher equilibrium column and the counterfactual voucher equilibrium
column in Table 7.

augmented for moral hazard defined as

LMH
jmt(zi, θi) =

(
1 + ζ × χij

)
Ljmt(zi, θi), (13)

where χij = 0 if AV D
ij < 70%, χij = 0.03 if AV D

ij ∈ [70%, 75%], χij = 0.08 if AV D
ij ∈

(75%, 80%], and χij = 0.15 if AV D
ij > 80%. Ljmt(zi, θi) is defined in Equation (6). If

ζ = 0, the model is identical to the one in Sections 4 and 6. Varying ζ, one can explore

the sensitivity of my findings to the presence of moral hazard. When ζ = 1, the model

sets moral hazard to the level assumed by the ACA risk adjustment formula.

Appendix Figure A2 shows the estimates of ηWTP varying ζ. From the baseline

level of ηWTP = 0.07 obtained when ζ = 0, setting ζ = 1 reduces this estimate by

3.7% (ηWTP = 0.067). The estimates of ηWTP remain above 0.06 as long as the level of

moral hazard is lower than four times the level assumed by the ACA risk adjustment

formula. To obtain ηWTP = 0, which would indicate the absence of adverse selection,

one would need to set ζ = 13, which seems quite unrealistic.

Table A1 explores the robustness of the results in Table 7 to alternative values of

ζ. Considering the change in outcomes relative to the ACA-voucher equilibrium, the

gains from increasing vouchers for young invincibles while lowering vouchers for older

buyers remain present when assuming ζ = 1, 2, or 4. Under perfect competition, the

magnitude of the effects is almost invariant to ζ. Under Nash pricing, magnitudes are

smaller when assuming larger degrees of moral hazard. However, even when setting

ζ = 4 the counterfactual vouchers make all buyers better off while reducing average

subsidies.
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E Identifying Cost from Pricing Assumptions

In this appendix I provide conditions for nonparametric identification of the distribu-

tion of willingness to pay and of cost conditional on willingness to pay, assuming that

observables consists of choices, prices, and products’ characteristics.

For this I use a model that is not tailored to my specific application, omitting subsi-

dies and other regulations. This allows me to focus on, and highlight, the novel aspect

of the identification argument, which is to use equilibrium assumptions and variation in

the preferences of marginal buyers to identify cross-buyer cost heterogeneity. I provide

a positive result for the case of single-plan insurers (or plan-level pricing decisions),

an important simplification that leaves open questions for future work. In fact, multi-

product pricing decisions introduce several complications, with the need of additional

conditions, a different constructive proof, or specific functional form assumptions.

E.1 Model and observables

I start by adopting the model of demand used in Berry and Haile (2014) (BH), and

then model supply allowing costs to vary with buyers’ willingness to pay, and assuming

that a Nash-in-prices equilibrium realizes in each market.

Demand (adapted from BH). Each consumer i in market r chooses a plan (or

product) from a set J = {0, 1, ..., J}. A market consists of a continuum of consumers

in the same choice environment (e.g. geographic region). Formally a market r for

the J products is a tuple χr = (xr, pr, ξr), collecting characteristics of the products

or of the market itself. Observed exogenous characteristics are represented by xr =

(x1r, ..., xJr), where each xjr ∈ R
K . The vector ξr = (ξ1r, ..., ξJr), with ξjr ∈ R,

represents unobservables at the level of the product-market. Finally, pr = (p1r, ..., pJr),

with each pjr ∈ R, represents (endogenous) prices.

Consumer preferences are represented with a random utility model quasilinear in

prices (Section 4.2 in BH). Consumer i in market r derives (indirect) utility uijr =

vijr−pjr when purchasing j, with the usual normalization vi0r = 0, for all i, all r. Given

prices, the choice of each buyer is then determined by the vector vir = (vi1r, ..., v
i
Jr).

For each buyer in market r, vir is drawn i.i.d. from a continuous density fr(v). This

satisfies the following:

D1. BH Demand structure: There is a partition of xjr into (x
(1)
jr , x

(2)
jr ), where x

(1)
jr ∈ R,

such that given indexes δr = (δ1r, ..., δJr), with δjr = x
(1)
jr + ξjr, fr(v) = f(v|δr, x

(2)
r ).

Therefore, assuming that argmaxj∈J u
i
jr is unique with probability one in all markets,
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choice probabilities (market shares) are defined by

sjr = σj(χr) =

∫

Dj(pr)
f(v|δr, x

(2)
r ) dv, j = 0, 1, ..., J, (14)

Dj(pr) = {v : vj − vk ≥ pj − pk, for all k 6= j} . (15)

Observables. Let zr = (z1r, ..., zJr), zjr ∈ R
L, denote a vector of cost shifters

excluded from the demand model. The econometrician observes (pjr, sjr, xjr, zjr) for

all r and all j = 1, 2, ..., J .

Supply. Let wjr = (ξjr, xjr, zjr) ∈ R
K+L+1 collect characteristics (observable and

unobservable) and cost shifters of product j in r. When purchasing j, a buyer i with

valuations vi = v in market r increases the total expected cost for the insurer by

ψj(v, wjr), ψj : R
J × R

K+L+1 → R.

The function ψj(·, wjr) is continuous and bounded for all j, and describes how the

expected cost of covering the buyer varies with her vector of valuations after condi-

tioning on wjr.

At the prices pr the seller of j realizes profits in market r equal to

Πjr(χr) = pjr · σj(χr)−

∫

Dj(pr)
ψj(v, wjr) · f(v|δr, x

(2)
r ) dv. (16)

I assume that in each market prices are set in a complete information Nash equilibrium

in pure-strategies. To formalize this, the set of marginal buyers of product j can be

described by

∂Dj(pr) = {v : vj − vk = pjr − pkr for some k 6= j} (17)

= lim
ε↓0

{
Dj(pr) ∩

(
R
J \ Dj(pjr + ε, p−jr)

)}
. (18)

Then, following Uryas’ev (1994); Weyl and Veiga (2014), quasilinearity of indirect

utility with respect to price implies that, in equilibrium, in every market r:

S1. Equilibrium: For all j = 1, ..., J , mrjr = mcjr, where

mrjr = σj(χr)− pjr ·

∫

∂Dj(pr)
f(v|δr, x

(2)
r ) dv, (19)

mcjr = −

∫

∂Dj(pr)
ψj(v, wjr) · f(v|δr, x

(2)
r ) dv. (20)

From S1, marginal revenues are equal to marginal costs, which must be true in a

Nash-in-prices equilibrium. The integrals in mrjr and mcjr are well defined because
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f(·|δr, x
(2)
r ) and ψj(·, wjr) are both continuous and bounded functions of v.

E.2 Conditions for identification

Identification is defined as in Roehrig (1988); Matzkin (2008): if the unobservables

differ (almost surely), then the distribution of observables differ (almost surely), where

probabilities and expectations are defined with respect to the distribution of (χr, sr, zr)

across markets.

My result is obtained combining conditions for identification of demand provided

in BH — yielding to identification of ξr and then of f(v|δr, x
(2)
r ) — with a constructive

proof to identify ψj which I adapted from Somaini (2011, 2015).21 To simplify notation

without loss of generality, as in BH I condition on x
(2)
r — which unlike x

(1)
r can affect

the distribution of preferences quite arbitrarily — and suppress it.

Beside the demand and supply assumptions D1 and S1, I will use the following

conditions:

C1. BH Exogeneity of cost shifters : For all j = 1, ..., J , E[ξjr|zr, xr] = E[ξjr] = 0.

C2. BH Completeness : For all functions B(sr, pr) with finite expectations, if

E[B(sr, pr)|zr, xr] = 0 with probability one, then B(sr, pr) = 0 with probability one.

C3. Large support : For every j, supp vr|δr, wjr ⊂ supp pr|δr, wjr ⊂ P , with P

bounded.

Condition C1 is a standard exclusion restriction, requiring mean independence be-

tween demand instruments and the structural erros ξjr. Condition C2 is a completeness

assumption, requiring instruments to move market shares and prices sufficiently to dis-

tinguish between different functions of these variables through the exogenous variation

in these instruments. C3 is a large support assumption, requiring cost shifters excluded

from ψj to move prices in a set that covers the support of (conditional) valuations. This

is a stronger requirement than the large support assumption sufficient to identify the

distributions f(v|δr), which would only require supp vr|δr ⊂ supp pr|δr. The stronger

condition in C3 allows to prove that cost functions ψj are also identified.

One then has:

Theorem 1 Under D1, S1, C1, C2, C3, ξr, f(v|δr), and ψj are identified.

21This highlights the parallelism between auctions with interdependent costs and selection markets. In
the former case (expected) marginal costs depend on the competitors’ signals, varying with differences of
bids between competitors. In a selection market (expected) marginal costs depend on the preferences of
buyers choosing the plan, varying with differences of prices between competitors.
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Proof of Theorem 1. Condition C3 implies supp vr|δr ⊂ supp pr|δr, and demand

is identified:

Lemma 1 (Berry and Haile, 2014) Under D1, C1, C2, ξr is identified, and f(v|δr) is

also identified if, additionally, supp vr|δr ⊂ supp pr|δr.

Proof. Follows from Theorem 1 and Section 4.2 in BH.�

Similarly to Somaini (2011, 2015), the rest of the proof amounts to approximating for

every j, every wjr, and every v̂ ∈ supp vr|δr, wjr, the integral of cost conditional on

Dj(v̂):

Ψj(v̂;wjr, δr) =

∫

Dj(v̂)
ψj(v, wjr) · f(v|δr) dv. (21)

The mixed-partial J-1 derivative with respect to v̂−j yields then identification of the

unknown cost function ψj , since

dJ−1Ψj(v̂;wjr, δr)

dv̂−j
= ψj(v̂, wjr) · f(v̂|δr) (22)

and f(v̂|δr) is identified by Lemma 1. This exploits the fact that price enters linearly

in buyers’ indirect utility, hence the set Dj(v̂) is described by a set of inequalities which

defines a cone in R
J with vertex v̂. The boundary of this cone is the set ∂Dj(v̂) defined

in (17); see also Figure 1 in BH.

To approximate Ψj(v̂;wjr, δr), fix j, wjr, and v̂ ∈ supp vr|δr, wjr. Consider then

a parametric curve η : R+ → R, with η(ℓ) = v̂j + ℓ, and with this define the function

Ψ̂j(ℓ) = Ψj((η(ℓ), v̂−j);wjr, δr). Differentiating Ψ̂j(ℓ) (and using again Uryas’ev, 1994;

Weyl and Veiga, 2014) yields

dΨ̂j(ℓ)

dℓ
= −

∫

∂Dj((η(ℓ),v̂−j))
ψj(v, wjr) · f(v|δr) dv. (23)

The function φj(ℓ) ≡
dΨ̂j(ℓ)

dℓ is bounded and continuous, and hence Riemann integrable

over [0, T ], where by C3 the upper bound T can be chosen to be such that Ψ̂j(T ) = 0.

Therefore,

Ψj(v̂;wjr, δr) = Ψ̂j(0) = −

∫ T

0
φj(ℓ) dℓ. (24)

The integral in (24) can be approximated with arbitrary precision. For this, one can

choose a sequence {ℓn}Nn=0 for which 0 = ℓ1 < ℓ2, ..., < ℓN−1 < ℓN = T , and using C3

build a corresponding sequence {χn
r }

N
n=0 ∈ supp χr|δr, wjr, such that pnr = (η(ℓn), v̂−j).
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Then, as maxn{ℓ
n − ℓn−1} becomes arbitrarily small

N−1∑

n=0

φj(ℓ
n)(ℓn+1 − ℓn) ≈

∫ T

0
φj(ℓ) dℓ, (25)

where all the elements in the Riemann sum are identified since by S1 each φj(ℓ
n) can

be replaced by

mrnjr = σj(χ
n
r )− pnjr ·

∫

∂Dj(pnr )
f(v|δnr ) dv, (26)

which is identified by Lemma 1.�
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F Additional Tables and Figures

Table A2: First Stage OLS Regression

bjmt bjmt bjmt bjmt

(1) (2) (3) (4)
∫

1
[
zAge ≤ 35

]
dGmt(z) -7896.8 -8176.2 -6830.3 -5207.9

(1500.1) (1075.8) (1031.7) (896.1)
Bronze - - -

Silver 802.0 784.9 752.9
(42.12) (40.25) (36.86)

Gold 1521.5 1504.4 1472.4
(51.25) (47.59) (42.96)

Platinum 2203.2 2186.0 2154.0
(63.45) (58.47) (52.12)

Anthem - -

Blue Shield 114.8 29.14
(64.75) (55.16)

CCHP 184.3 152.8
(76.62) (58.56)

Contra Costa -408.9 -55.47
(160.5) (155.3)

Health Net 22.81 -14.88
(80.96) (74.54)

Kaiser -343.7 -358.5
(49.55) (46.38)

L.A. Care -1074.5 -1108.5
(82.11) (91.31)

Molina -1118.6 -1195.7
(64.72) (74.43)

Oscar -274.6 -629.9
(186.7) (161.7)

Sharp -492.7 -516.3
(84.69) (85.38)

United 227.4 245.5
(119.3) (123.3)

Valley -306.3 -309.0
(56.44) (89.62)

Western -119.3 -95.83
(79.35) (77.05)

2014 -

2015 139.3
(43.43)

2016 335.1
(46.35)

2017 899.4
(54.05)

Constant 6105.8 5032.3 4766.0 3972.4
(448.1) (319.2) (307.1) (269.6)

F-statistic: 27.71 57.76 43.83 33.78

.

Note: The Table shows the OLS estimates from Equation (9), also see Appendix B. Robust standard error in parentheses.
Each observation is a jmt combination (N=1382). The F-statistic corresponds to the rest of the null hypothesis in which the
share of potential buyers younger than 35 has no effect on bjmt.
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Table A5: Impact of Control Function on Demand Estimates

Coefficient on premium ( 000/year) WTP for 10% AV increase ( /year)

αt (zi) βt (zi, θi) /αt (zi)

Specification Mean P10 Median P90 Mean P10 Median P90

Baseline,
with Control Function

1.23 0.927 1.184 1.604 448.5 250.5 375.6 768.8
(0.017) (0.03) (0.024) (0.058) (5.3) (8.8) (13) (22.1)

No Control Function 1.219 0.909 1.166 1.602 429 237.8 341.1 761.7
(0.017) (0.028) (0.027) (0.054) (5.8) (8.4) (13.2) (22.6)

Note: The table shows the mean, median, and 10-th and 90-th percentiles of the estimated distribution of αt(zi) and
βt(zi,θi)
αt(zi)

.

The top panel shows the baseline results, which include the control function (third-degree polynomial in the residuals ξ̂jmt from

column (4) in Table A2), and the estimates obtained omitting ξ̂jmt. Standard errors in parentheses, obtained as the empirical
standard deviation across 100 independent random draws of the demand parameters using the estimated variance-covariance
matrix.

Table A6: MEPS Annual Expenditure: Non-linear Least Squares

(1) (2) (3)

ηAge 0.0381 0.0379 0.0379
(0.00214) (0.00213) (0.00213)

Constant 6.561 6.738 6.687
(0.114) (0.122) (0.127)

Northeast - -

Midwest -0.0973 -0.106
(0.0624) (0.0624)

South -0.198 -0.202
(0.0569) (0.0567)

West -0.293 -0.298
(0.0656) (0.0656)

2014 -

2015 0.0662
(0.0578)

2016 0.0583
(0.0584)

2017 0.0969
(0.0580)

Note: Non-linear least squares parameter estimates from Equation (10). Standard errors in parentheses.
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Table A7: Other Cost Parameters: Non-linear Least Squares

ηWTP ( 100/year for +10% AV) 0.0699
(0.0152)

Constant 5.561
(0.233)

φm: φ3:

Region 1 (see note) - Anthem 0.402
(0.019)

Napa, Sonoma, Solano, Marin 0.151 Blue Shield 0.373
(0.018) (0.021)

Sacramento, Placer, El Dorado, Yolo 0.387 CCHP −0.181
(0.013) (0.034)

San Francisco 0.215 Health Net 0.48
(0.014) (0.024)

Contra Costa 0.137 Kaiser 0.359
(0.011) (0.038)

Alameda 0.202 L.A. Care 0.018
(0.019) (0.022)

Santa Clara 0.113 Molina −0.196
(0.017) (0.029)

San Mateo 0.177 Western 0.34
(0.018) (0.032)

Santa Cruz, Monterey, San Benito 0.237 Other -
(0.237)

San Joaquin, Stanislaus, Merced, Mariposa, Tulare 0.171
(0.015)

Madera, Fresno, Kings 0.199 φt:
(0.015)

San Luis Obispo, Santa Barbara, Ventura −0.036 2014 -
(0.026)

Mono, Inyo, Imperial −0.064 2015 0.157
(0.026) (0.054)

Kern 0.06 2016 0.17
(0.027) (0.068)

Los Angeles 1 (see note) 0.057 2017 0.286
(0.025) (0.085)

Los Angeles 2 (see note) 0.161
(0.023)

San Bernardino, Riverside −0.096
(0.03)

Orange 0.02
(0.016)

San Diego 0.14
(0.02)

Note: Non-linear least squares cost parameters of Equation (6). See Appendix B for details.
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Figure A1: Demand Heterogeneity

(a) WTP for 10% AV increase
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(b) Extensive Margin Premium Responses
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Note: Histograms of the estimated distribution of annual willingness-to-pay for a 10% increase in actuarial value,
βt (zi, θi) /αt (zi), and % change in probability of purchasing coverage if all annual premiums increase by 120. The fig-
ure pools across all individuals in 2014-2017 Covered California, divided between under- and over-35.
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Figure A2: Estimated ηWTP varying assumptions on moral hazard

No moral
hazard
(baseline)
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Note: The figure shows the estimated value of the adverse selection parameter ηWTP for different values of the moral hazard
parameter ζ (see Section D). The main results in the paper are obtained assuming ζ = 0 (no moral hazard). The ACA risk
adjustment model corresponds to ζ = 1. ζ = 4 (with results shown Table A1) corresponds to “400% ACA risk adjustment
moral hazard”.
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