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There are these two young fish swimming along and they happen to meet an

older fish swimming the other way, who nods at them and says “Morning, boys.

How’s the water?” And the two young fish swim on for a bit, and then eventually

one of them looks over at the other and goes “What the hell is water?”

David Foster Wallace, “This Is Water”

1 Introduction

The impacts of pollution1 on human health have been the subject of intense scrutiny for at

least the past 70 years. Efforts to understand how pollution affects our lives have largely fo-

cused on easy-to-measure health outcomes, such as hospitalizations or mortality. Economists

have played an important role in this space, largely by improving the credibility of causal

inference outside of the laboratory setting.

Yet these health encounters are likely to reflect the tip of the iceberg, as many less

visible impacts of pollution also affect well-being. A burgeoning literature within economics

has begun to investigate the causal effects of pollution on numerous “non-health” endpoints,

such as worker productivity, school performance, decision making, and even crime. While a

distinction between the health and non-health harms from pollution is useful, we emphasize

that the mechanisms underlying both types of harms are physiological. In the extreme, car-

diovascular and respiratory impairment due to pollution exposure can lead to hospitalization

or death. Yet, even those experiencing no such health harms may find their productivity di-

minished or their cognitive function impaired due to reduced blood flow and cell oxygenation

caused by pollution exposure. Thus, the key distinction between the health and non-health

literatures is that the former requires death or some kind of health encounter to be observed,

while the latter focuses on subclinical effects that nonetheless impact behavior, performance

and skills.

Despite their shared etiological pathways, it is important to understand what is unique

about the non-health space relative to the health one. First, the very subtlety of the phys-

iological effects that shape non-health endpoints makes behavioral responses to limit the

harms from pollution more complicated. The absence of symptoms (or the manifestation

of symptoms that simply feel like an ‘off’ day) make introspective causal attribution diffi-

cult. As such, ex-ante avoidance behavior – preventative steps to limit pollution exposure –

will be less extensive in this setting because people are imperfectly aware of the impacts of

1Unless otherwise specified, all references to pollution are specifically about air pollution that originates
outdoors, which is the focus of this literature review. For an overview of the literature on the health and
welfare effects of air pollution from indoor sources, see (Duflo et al., 2008).
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pollution. On the other hand, changes in non-health outcomes are often visible, and while

optimizing agents may be unaware of the root causes of these changes, it is still possible to

compensate for any impacts with ex-post amelioration. Since this compensation is costly, it

has important welfare implications.2

To illustrate the point, imagine that pollution exposure reduces test scores but that

students and school administrators, being unaware of this link, fail to act to minimise student

exposure to pollution. The realization of lower test scores, however, may lead students and

the school to take remedial efforts to improve performance. The key insight here is that

remediation does not require knowing that pollution lowered test scores; it only requires

knowing that test scores are lower than acceptable. At the same time, repeated lectures

and tutoring represent economic costs of pollution that may be hard to attribute but which

matter for a comprehensive assessment of impacts.

Second, the mechanisms linking pollution to non-health outcomes are much less clear

than the well-established biophysical pathways that link pollution to particular endpoints.

Toxicological experiments that explore outcomes such as lung function or heart performance

map clearly onto observational analyses that explore outcomes such as asthma and cardio-

vascular events. For non-health outcomes, the channel is often less clear, involving more

speculative links that lean more heavily on scientific evidence from animal studies. This fea-

ture should not take away from the credibility of the findings, but the lack of an agreed-upon

physiological mechanism calls for deeper study of such pathways and testing of mechanisms

whenever possible. The more exploratory nature of such analyses raises concerns over poten-

tial data mining and “p-hacking,” such that pre-specified analysis plans are warranted when

feasible. At the same time, these explorations can help shape scientific research agendas,

moving beyond a paradigm in which biological science largely functions as an input to envi-

ronmental economics research to one that creates a virtuous cycle in which each discipline

helps illuminate and contribute to deeper insights in the other.

Third, the timing of effects for non-health outcomes is more varied than for health

outcomes. Some consequences may be nearly immediate, where an elevated exposure leads to

a physiological change, which alters a non-health outcome. These effects may be short-lived

once exposure returns to baseline or they may endure beyond the exposure period, affecting

the stock of human capital. This delayed impact could be a result of latent effects, whereby

no apparent impacts exist at the time of exposure, but they materialize at a future date, as

is proposed in the fetal origins hypothesis (Barker, 1990). Enduring effects may also arise

because of dynamic complementarities in human capital accumulation (Cunha & Heckman,

2007). A student whose learning is impaired in primary school due to pollution may struggle

to matriculate through secondary and high school because they lack the fundamental building

2See Deschênes et al. (2017) for an excellent example in the health context.
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blocks on which knowledge accumulates. Thus, the enduring effect of pollution exposure at

a young age in this case may be best represented by earnings as an adult. Moreover, these

enduring impacts may lead to general equilibrium effects that have important implications

for econometric and welfare analysis.

Finally, the dose-response relationship between pollution and non-health outcomes may

be quite different than for health outcomes. Just as subclinical impacts may arise at lower

levels of pollution than more severe endpoints, non-health effects may arise at considerably

lower pollution levels. Moreover, unlike the most severe health outcomes, which are largely

limited to more vulnerable populations, such as infants, the elderly, or those with underlying

health conditions, the non-health outcomes that result from more subtle biophysical changes

may apply to an otherwise healthy population, thereby broadening their impact.

2 Scientific Background

In this section, we provide a selective summary of the scientific evidence mapping air pollu-

tion exposure into physiological endpoints, with an eye toward mechanisms that underpin the

recent “non-health” findings in the economic literature. These include the well-known effects

on respiratory and cardiovascular functioning as well as the emerging evidence document-

ing impacts on the central nervous system, particularly the brain, and genetic expression.

Throughout this article, we focus on the impacts of short-term (as opposed to chronic) ex-

posure to pollution from outdoor sources, even if exposure to pollutants like fine particles

often takes place indoors. Much of the evidence originates in the controlled setting of the

laboratory, with supporting correlational evidence from the field.

To start with the punchline, even low levels of pollution can yield cellular and organ

system changes that the recipient experiences as an ‘off’ day. Symptoms may include fatigue,

irritability, impatience, and a lack of focus, to name a few. These, in turn, offer plausible

pathways through which air pollution can affect a range of behavioral and socioeconomic

outcomes. In Section 5, we will review the economic literature that focuses on translating

these physiological impacts into outcomes consequential for welfare analysis.

2.1 Heart and Lungs

The primary site of exposure to air pollution is the respiratory tract following inhalation.

Ambient urban air pollution consists of gaseous components and particulate matter (PM).

The former includes ozone (O3), volatile organic compounds (VOCs), carbon monoxide (CO),

and sulfur and nitrogen oxides (SOx and NOx). Particulate matter, as the name suggests,

is a measure of particles in the air, whose composition varies by location and even time of
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year, with size playing an important role in harm. Particles at the finer end of the spectrum

are a paramount concern because fine PM , particles less than 2.5 microns in aerodynamic

diameter, can remain airborne for long periods, easily flow from outdoors to indoors (making

exposure challenging to avoid), and lodge deep in the respiratory tract. In fact, most human

exposure to PM of outdoor origin occurs indoors (Martins & Da Graca, 2018; Krebs et al.,

2021). The principal impact of exposure is inflammation in the lungs, which reduces the

efficiency with which the body exchanges carbon dioxide for oxygen, and thus impedes

cellular function throughout the body. Repeated exposure to particle pollution aggravates

the initial injury and promotes chronic inflammation (Viehmann et al., 2015).

Air pollution also impacts the cardiovascular system, in part due to the inflammatory

response that has its origins in the lungs but also because some particle forms can be absorbed

directly into the bloodstream (Oberdörster et al., 2004; Brook & Rajagopalan, 2007). These

changes caused by air pollution can affect blood pressure and heart rate variability as well as

blood coagulation and atherosclerosis progression (Giorgini et al., 2016; Park et al., 2005).

These, in turn, are associated with consistent increased risk for cardiovascular events, such

as myocardial infarction, stroke, and heart failure (Brook et al., 2010).

While severe respiratory and cardiovascular impacts result in health system encounters,

pollution exposure can also cause a range of subclinical symptoms (Novaes et al., 2010;

DeMeo et al., 2004), that are insufficient to prompt a healthcare visit. Nonetheless, these

physical manifestations can lead to fatigue, lack of focus, memory impairment, and other

symptoms that can have subtle impacts important for human capital accumulation and

performance (Delgado-Saborit et al., 2021).

2.2 The Brain

In recent years, mounting evidence suggests that air pollution can harm the brain (Costa

et al., 2019) through associated increases in neuro-inflammation and oxidative stress within

the central nervous system (Calderón-Garcidueñas et al., 2008; Kraft & Harry, 2011) and

impaired function of receptors that regulate neuronal cell death (Ikonomidou et al., 2001).

The primary route of exposure for these harms is inhalation, where pollutants can be translo-

cated from the lungs to the blood and from there to the brain (Forman & Finch, 2018). Fine

and ultrafine particulate matter can also enter the brain directly via the olfactory nerves

and onward to other regions of the brain such as the cerebral cortex and the cerebellum

(Oberdörster et al., 2004).

Animal studies, mostly in mice and rats, have shown that air pollution can activate

the brain’s microglia in sex-dependent ways (Allen et al., 2017), causing neuro-inflammation

and oxidative stress that can lead to a host of neurological impairments (Win-Shwe et al.,

2008, 2009, 2014; Ehsanifar et al., 2019), as well as altered motor activity (Yokota et al.,
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2009; Suzuki et al., 2010). Pollution can also affect brain chemistry by lowering levels of

serotonin (Paz & Huitrón-Reséndiz, 1996; Murphy et al., 2013), which regulates aggression

and impulsivity (Coccaro et al., 2011; Siegel & Crockett, 2013). Exposure can lead to changes

in other emotional behaviors as well (Yokota et al., 2009), including anxiety (Ehsanifar et al.,

2019) and depressive behavior (Fonken et al., 2011; Davis et al., 2013). While the timing of

exposure windows examined varies considerably, evidence indicates that impacts can arise

as fast as within 24 hours of exposure. All of these effects, however, appear to be more

pronounced in response to pre- and/or post-natal exposure, when the central nervous system

and brain are still engaged in rapid cell proliferation, migration, and differentiation (Bayer

et al., 1993; Rodier, 1995).

In short, the emerging evidence on the impacts of pollution on brain functioning sug-

gests that pollution can touch almost every aspect of life by impairing cognitive function

and altering emotional states. As we will see in Section 5, this can include domains as

wide ranging as decision making, educational outcomes, and productivity as well as criminal

behavior.

2.3 Epigenetic Programming

Early pollution exposure may also have latent effects, whereby no apparent changes in human

capital are evident during early childhood, but impacts manifest themselves later in life

(Bale et al., 2010; Almond & Currie, 2011). In some cases, it simply takes time for harms

to reveal themselves, such as less severe cognitive impairments that are difficult to discern

in young children who are generally not subject to formal cognitive evaluations until the

later stages of elementary school. At the same time, emerging evidence suggests that these

latent effects can also arise due to altered gene expression, known as epigenetics (Petronis,

2010). While genetic sequences are determined by inheritance and remain unchanged, the

epigenetic pattern is malleable and defines the expression of those genetic sequences. An

epimutation is a change in gene activity that is associated with changes to the DNA molecule

through methylation or other modifications of chromatin (Oey & Whitelaw, 2014).

To date, studies suggest that polyaromatic hydrocarbons (PAHs) and PM2.5 have

modest effects on DNA methylation, with emerging evidence for other criteria air pollutants

such as ozone and nitrogen oxides (Rider & Carlsten, 2019). Moreover, methylation is only

one of several epigenetic mechanisms that cells use to control gene expression (Phillips,

2008). Indeed, recent evidence suggests that air pollution might contribute to transmission

of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele

imprinting, histone withholding and non-coding RNAs (Shukla et al., 2019).

While the evidence on both mechanisms and physiological endpoints in this scientific

domain is still evolving, there are compelling reasons to believe that these early-life insults
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can manifest in later-life health and non-health outcomes alike. In the case of the latter,

cognitive impairments appear to be especially important through impacts on synaptic plas-

ticity, learning, and memory (Day & Sweatt, 2011). As we will see in Section 5, these can,

in turn, shape educational and labor market outcomes.

3 Conceptual Model

In this section, we model the behavior of an individual who is affected by pollution through

both short-term and long-term channels, and who pursues a mix of behaviors to minimize

its ill effects.

Imagine a representative worker who values consumption C, dislikes labor L, and values

their human capital H. Human capital is an aggregate of physical and mental attributes

used in production, but which the worker also enjoys independently of its value in producing

output. For instance, having poor lung function or chronic anxiety would reduce the worker’s

well-being even if their income were unchanged. We will refer to effects that operate through

the direct utility of human capital as “well-being” effects.

The agent lives for two periods: an initial “current period” during which their human

capital is exogenously given, followed by a “long term” period comprising the remainder of

their working life, during which their human capital will be affected by other factors. They

discount their utility in this second period by a factor β:

U = U1(C1, L1, H1) + βU2(C2, L2, H2)

The worker decides how many labor hours to supply and how much to consume in each

of two periods, subject to their budget constraint. In the first period, there is some level of

ambient environmental pollution P .3 The worker has access to an “avoidance technology”

f(·) that allows them to pay to reduce the fraction of pollution that reaches them in the first

period. Investing in air purifiers, limiting outdoor exercise, and wearing masks are a few

examples of this kind of technology. Pollution exposure, D, is then a function of ambient

environmental pollution P and avoidance spending A:

D = P [1 − f(A)]

Pollution exposure D has two effects on the worker. In the short-run, it reduces labor

productivity F (H1, D).

3The assumption of zero pollution in the second period is for simplicity; one can interpret P as the
deviation of pollution from an omitted baseline level.

6



Y1 = L1F (H1, D)

Exposure also diminishes human capital in the second period. Second-period human

capital H2 is then determined as a function of the residual human capital H ′ from the first

period and the worker’s use of a “remediation” input M , which repairs some of the damage

caused by pollution in the first period. Medical care is the most easily observed remediation

input, but remediation can also include non-medical interventions to improve both physical

and mental functioning, such as exercise to improve overall health, or remedial instruction

to compensate for reduced mental acuity.

H2 = h(H ′,M) = H(H1, D,M), H ′ = H ′(H1, D)

The enduring effect of pollution reduces H2 in the second period given any fixed level

of remediation. This lowers labor productivity and utility from human capital in the second

period:

Y2 = L2G(H2)

There are two important conceptual distinctions: first, avoidance must take place at

the time of exposure, while remediation cannot take place until after sufficient time has

passed for pollution to impact human capital. Second, avoidance has both an effect on

current output in the first period that operates by improving the productivity of a unit

of human capital F , and an effect on output in the second period that operates through

changes in the level of human capital H2. In contrast, remediation impacts output only in

the second period, and solely through changes in the level of human capital H2, not the

marginal product of a unit of human capital. In short, avoidance reduces both short-run

and enduring effects; remediation reduces only the enduring effects of pollution.

Combining the model features described above, we can write the maximized lifetime

utility of the agent as:4

V ≡ max
C1,L1,A,M,C2,L2

U1 (C1, H1, L1) + βU2 (C2, H2, L2)

+ λ

[
L1F (H1, D) +

L2G(H2)

χ
− (C1 + A) − C2 +M

χ

]
+ µ [H(H1, D,M) −H2] (1)

4Throughout the following discussion, we will treat λ and µ as fixed in order to discuss the impacts
of small variations in pollution, which do not substantially change the marginal value of wealth or human
capital.
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Here χ is the interest rate at which consumption can be transferred between periods.

Our primary focus in this model is on avoidance and remediation behavior. Intuitively,

optimal avoidance involves setting the marginal cost of avoidance equal to its marginal bene-

fits. These benefits include contemporaneous productivity increases as well as improvements

in future human capital that provide direct utility and increase future productivity. Optimal

remediation involves setting the marginal cost of remediation equal to the marginal benefits

it provides through the restoration of human capital and its resulting impacts on utility and

output.

As noted earlier, our understanding of the relationship between human pollution expo-

sure and non-health outcomes is still emerging. As such, a more realistic model of optimizing

behavior would include agents who understood some but not all of the causal impacts of pol-

lution. More formally, suppose that there are two components of human capital H, which

we then write as H2 = Z(Φ2,Ψ2). The component Φ represents aspects of human capital

that are widely understood to be impacted by pollution, such as breathing difficulties, while

the component Ψ represents other aspects of human capital which are not commonly viewed

as being impacted by pollution, such as impulse control, test performance, or dementia.

The optimality condition for avoidance is:

∂V

∂A
: λ

[
L1

∂F

∂D
(−Pf ′(A)) +

L2

χ

∂G

∂H

(
∂H

∂Φ

∂Φ

∂A
+
∂H

∂Ψ

∂Ψ

∂A

)
− 1

]
+ µ

(
∂Z

∂Φ2

∂Φ2

∂A
+

∂Z

∂Ψ2

∂Ψ2

∂A

)
= 0 (2)

The first term represents the marginal effects on utility from increasing consumption

(through an increase in productivity, plus higher output due to higher human capital next

period, minus the cost paid), while the second represents the utility value gained through

all channels by increasing later human capital.

Consider a situation in which workers incorrectly believe that ∂Ψ
∂A

= 0 when in fact
∂Ψ
∂A

> 0: in other words, they incorrectly believe that avoiding pollution has no benefits

for this aspect of human capital. We can see that setting the term ∂Ψ
∂A

in this expression

to 0 would reduce the positive (benefit) terms without altering the utility cost of spending

money on avoidance. The result is that the agent would choose a lower-than-optimal level

of A, AN < A∗, resulting in larger short-run effects of pollution than are optimal. We

refer to agents who optimize while ignoring the Ψ terms in this first-order condition “partial

information avoiders.”

If the agent observes their health status H ′ coming into the second period and adjusts

optimally, they will solve:

∂V

∂M
: λ

L2

(
∂G
∂H

(
∂H
∂Φ

∂Φ
∂M

+ ∂H
∂Ψ

∂Ψ
∂M

)
H′(AN )

)
− 1

χ

+ µ

(
∂H

∂Φ

∂Φ

∂M
+
∂H

∂Ψ

∂Ψ

∂M

)
H′(AN )

= 0 (3)

Here the subscript H ′(AN) indicates that these partial derivatives of the human capital evo-
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lution function depend on the sub-optimal human capital H ′(AN) < H ′(A∗) with which a

partial information avoider enters the second period. Under the reasonable assumption that

remediation has higher marginal benefits for those with lower human capital, this increases

remediation relative to its counterfactual level under optimal avoidance: informational con-

straints lead to an increase in remediation to repair damages. Note that agents do not need

to be able to accurately observe first-period pollution in order to make a choice that is

optimal given their residual human capital H ′.

As demonstrated above, making an optimal choice of avoidance requires observing the

level of pollution P and understanding both the effectiveness of avoidance f(·) and the human

capital evolution function H ′(H1, ·). In contrast, when choosing remediation it is sufficient

to observe residual human capital H ′ and understand the effectiveness of the remediation

input. In short, incomplete information about the harms from pollution will generally lead

to suboptimal avoidance followed by higher levels of remediation.

3.1 Welfare implications

For small changes in the level of pollution around the correctly anticipated level P , an

envelope condition dictates that changes in the choice variables have no first-order impact

on welfare. Here we sketch out the full set of channels by which pollution affects welfare,

including changes in the choice variables (consumption, labor, avoidance, and remediation).

First-Period Observables: Output, Consumption, Leisure. The full effects of pollution

in the first period can be expressed as follows:

dU1

dP
=
∂U1

∂C1

·


(
L1

∂F

∂D
[1− f(A)] + F (H1, D)

dL1

dP
+ L1

∂F

∂D
(−Pf ′(A))

dA

dP

)
︸ ︷︷ ︸

dY1
dP

−
dA

dP
−
dS

dP


︸ ︷︷ ︸

dC1
dP

+

∂U1

∂L1

dL1

dP
(4)

Here S is savings from Period 1, a variable left implicit in the budget constraint pre-

viously. The direct effect, dY1/dP , depends on how avoidance and labor supply react and is

distinct from the effect on consumption, dC1/dP . The effect of changing labor supply (terms

involving dL1/dP ) may contribute to output declines but also provide utility from leisure.

Second-Period Observables: Now Including Human Capital. All the variables in Equa-

tion 4 are theoretically observable in Period 1, but human capital effects do not materialize

until some time after exposure. Pollution’s enduring effects are reflected in second period

welfare:
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dU2

dP
= β


∂U2

∂C2

L1
∂F

∂H2

(
∂H2

∂P
+
∂H2

∂A

dA

dP

)
+G(H2)

dL2

dP︸ ︷︷ ︸
dI2
dP

−
dM

dP
+ χ

dS

dP


︸ ︷︷ ︸

dC2
dP

+
∂U2

∂L2

dL2

dP
+
∂U2

∂H2

dH2

dP

)
(5)

These enduring effects of pollution are in some ways analogous to the short-term effects,

but with two key differences. The effects on productivity are mediated through changes

in human capital rather than exposure. There are also direct utility effects of the human

capital loss caused by pollution, if remediation and avoidance are incomplete.

To recap, this simple model of consumption and production with pollution generates

a few key insights:

1. Avoidance has direct effects on productivity that do not operate through its enduring

effect on human capital. HEPA filters in an office do not just prevent future lung

damage; they also increase today’s output from workers who may not have any diag-

nosable health problems. Considering either impact alone understates the benefits of

avoidance.

2. Agents who are unaware of some of pollution’s impacts will in general pursue less

avoidance than is optimal, but will partly offset this with higher remediation later

on. This suggests a role for public policies around providing information to improve

avoidance behaviors.

3. The long-run effects of pollution on human capital, which may constitute the bulk

of the impacts for some pollutants, cannot be assessed until long after the date of

exposure. For other pollutants, the direct productivity effects may be substantial

relative to long-run human capital harms.

4. The impact of pollution on consumption may differ significantly from its impact on

income, due to both consumption smoothing and changes in avoidance and remedia-

tion. Utility depends on consumption, not income; thus an assessment of harms which

studies only output effects does not fully capture harms from lost consumption.
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4 Empirical Methodology

In this section, we describe several important methodological issues inherent in identifying

the causal effects of air pollution on non-health outcomes. Many of the empirical concerns are

similar to analyses on the health effects from pollution, so we eschew a complete assessment

of all concerns; see Graff Zivin & Neidell (2013) for a review. Instead, we focus on a brief

recap of similar issues, provide more elaboration on issues particular to non-health outcomes,

and delve deeper into recent advances since Graff Zivin & Neidell (2013).

4.1 Defining pollution treatment: the role of avoidance and miti-

gation

We begin with a framing of pollution treatment to define the distinction between pollution

concentrations (or levels) and pollution exposure, as the two are often muddied in empiri-

cal work. Pollution concentrations are the ambient levels of pollution in the environment,

whereas pollution exposure is an individual’s exposure to pollution after any efforts to avoid

it. Accordingly, studies may estimate either concentration-response or exposure-response

functions depending on which treatment they observe. Importantly, any efforts to limit

exposure to pollution (or mitigate any experienced harms) occur after pollution concen-

trations have been realized, thus representing ex-post behaviors. The consequence of this

distinction is twofold. First, the welfare analysis outlined above (and elsewhere – see e.g.

Cropper & Freeman (1991)) defines treatment as pollution concentration and thus rests on

the concentration-response function. Second, despite the challenge in measuring avoidance

(and mitigating) behavior, failing to include it as a control variable does not present an

econometric challenge for obtaining causal effects of the concentration-response function be-

cause it is an ex-post behavior. Even if one could observe these behaviors and were interested

in estimating an exposure-response function, including them in a regression model would re-

flect “bad controls” that may induce spurious correlation between the treatment and the

outcome (Rosenbaum, 1984; Angrist & Pischke, 2010). Avoidance and mitigation behaviors

must be measured for a welfare analysis – something lacking in current research – but they

do not need to be included to estimate the concentration-response function properly.

4.2 Endogeneity of pollution concentrations

Given the focus on the concentration-response function, a major concern with identification

is the endogeneity of ambient pollution levels. The issues that arise are, for the most part,

similar to those that the researcher encounters when studying health outcomes. Graff Zivin

& Neidell (2013) review these sources of endogeneity in detail, and we highlight two of
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them here. First, individuals choose residential locations based on the attributes of that

area, which leads to a nonrandom assignment of pollution concentrations. Preferences over

residential neighborhoods depend on factors such as employment opportunities, commuting

costs, and local amenities in the area. These amenities are often bundled such that environ-

mental quality is correlated with other attributes in a location, although the specific contents

of a particular bundle vary by location. Different preferences, income levels, and susceptibil-

ity to pollution can lead to varying ambient pollution levels. The former two factors can lead

to omitted-variable bias in cross-sectional studies, while the third can lead to simultaneity

bias.

The second source of endogeneity is environmental confounding. Many of the factors

that drive variation in pollution levels may also affect outcomes. For example, temperature

can affect pollution formation but it also has a direct impact on health, labor supply, and

productivity that translate into economic costs (Dell et al., 2014; Graf Zivin & Neidell,

2014; Addoum et al., 2020; Aguilar-Gomez et al., 2021). Fortunately, weather variables are

readily observable; thoroughly and flexibly controlling for them is central for addressing

environmental confounding.

Instrumental variables (IV) and natural experiments have been used to overcome both

sources of endogeneity mentioned above. The same instruments used in the health literature

are largely valid for the non-health effects since the concerns listed above do not differ

significantly. Recent examples include (Deryugina & Hsiang, 2014), who instrument for

air pollution using changes in local wind direction to estimate the life-years lost due to

pollution exposure, and Schlenker & Walker (2016), who exploit idiosyncratic variation in

daily airplane taxi time to measure the health effects of CO.

A critical caveat to any instrumental variables approach is under-identification. Re-

searchers often possess one instrument, but there are multiple endogenous pollution variables.

Further, the pollution variables are often highly correlated since they come from the same

emission sources, making it difficult to attribute impacts to a specific pollutant. Estimat-

ing separate IV equations for each pollution variable does not provide unbiased estimates. 5

There are two solutions. One is to focus on the reduced-form relationship between the instru-

ment and the outcome. This is often a relevant policy parameter because the instrument is

potentially manipulable by policy. The second solution expands the number of instruments

by exploiting different dimensions of an instrument. Wind speed, direction, and interac-

tions with topography can yield a fuller set of instruments, as can the multiple dimensions

of wind inversions, including speed, duration, and strength. For instance, (Knittel et al.,

2016) simultaneously estimate the effects of both CO and PM10 using changes in traffic by

exploiting the fact that different weather conditions result in different pollution levels by

5The same is true if one uses an IV approach for one pollutant while controlling for the others.
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pollutant.

4.3 Challenges to measurement

Measurement error is a perennial concern when evaluating air pollution impacts. Ideally,

air pollution monitors providing readings at high frequency would be available at the study

sites (e.g., where work is being performed or tests being taken); in practice, the pollution

level assigned to an individual observation is often an inverse-distance weighted average

from several monitors, which may each be several kilometers away. Hence, the measure of

pollution available to the researcher likely contains noise relative to the true level of pollution

at the study sites, which biases estimated impacts toward zero if the noise is random.

Recent advances that combine satellite measures with ground-based monitors using

spatial mapping techniques, such as machine learning, produce high-quality reanalysis data

at finer spatial scales across the entire globe. These data can yield significant improvements

over the use of either fixed monitoring stations or satellite data alone (van Donkelaar et al.,

2016) 6. Such data can be used at different temporal frequencies and geographical scopes

depending on the users’ interests. In general, the finer the temporal scale, the coarser the

spatial scale and vice versa, with reliable measures for daily global measures (GMAO, 2019)

available at a 50 km × 62.5 km grid and global annual surface PM2.5 concentrations (Hammer

et al., 2020), (van Donkelaar et al., 2016) available at resolutions as fine as a 1km x 1km grid

cell. These trade-offs will likely become less stark as machine learning improves and longer

data streams are available to train the models.

Measuring the dependent variable can also be challenging in this setting. In contrast

with mortality and severe morbidity, many non-health outcomes are difficult to observe

using typical survey data. Researchers often obtain data from proprietary sources; the

digital revolution is making more of those available. Unfortunately, much of this data comes

from non-representative samples – a single firm or a handful of schools – raising concerns

about generalizability. Moreover, such data are often obtained through DUAs and cannot

be shared with other researchers to ensure reproducibility. While we are still in the early

days of this literature, extending findings across settings is critical for welfare analysis and

policy-making going forward.

6Using satellite data by itself is problematic because satellites measures particles and the chemical com-
position of the entire column of air from ground to orbit (rather than surface measures) and provide poor
measures on cloudy days. For a more comprehensive discussion of the tradeoffs between satellite and ground-
based measures, see Fowlie et al. (2019)
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4.4 Multiple hypothesis testing

As discussed above, the literature on the non-health impacts of pollution is increasingly ex-

ploratory. A myriad of data from administrative and digital trace records allows researchers

to expand the set of outcomes studied. This expansion, in turn, has the disadvantage of

fostering a search for affected variables less grounded in theory. Researchers face behind-

the-scenes decisions about their econometric specifications and need to be forthcoming, par-

ticularly when using proprietary data. We have two suggestions for best practices.

First, results should include adjustments for multiple hypothesis testing. Resampling

methods, first proposed by (Westfall & Young, 1993), have become popular because they re-

quire fewer assumptions about the data-generating process, utilize data-based distributional

characteristics and can scale up reasonably well to high-dimensional settings (Westfall &

Troendle, 2008). The procedure proposed in Westfall-Young adjusts p-values and standard

errors to account for multiple hypothesis testing and is readily available in standard software

packages.

Second, we encourage the use of pre-specified analysis plans (PSAPs) when possible

to limit data mining (Christensen & Miguel, 2018; Burlig, 2018). Although PSAPs can be

limiting in certain studies (Miguel et al., 2014), the costs are likely much lower in this setting.

The independent variables are often quite similar across studies (e.g. criteria pollutants),

so that the only differences across studies are the dependent variable, changes in context,

and the temporal and spatial structure of the data. Econometric specifications may only

need minimal modifications to accommodate these changes. Furthermore, PSAPs can allow

sufficient flexibility to explore alternative functional forms, variations in the timing of effects

and multiple robustness checks. Deviations from the PSAP are possible and sometimes

desirable, but there are significant gains in transparency when researchers explain how they

deviated from the plan and why.

5 Empirical Review

Here we provide a review of the empirical literature on the non-health impacts of acute

exposure to air pollution. While not comprehensive, it is designed to touch upon the three

core, and inter-related domains of influence: labor markets, cognitive performance, and deci-

sion making, along with a discussion of latent effects within those categories. As previously

discussed, we primarily focus on non-health outcomes with a physiological basis rather than

those driven by behavioral responses to a health shock, though this distinction is sometimes

unclear. We also limit our focus to studies with quasi-experimental research designs, such as

the use of fixed effects and instrumental variables, to isolate the causal effects of pollution.

Since these designs are well-established in the broader literature, we do not describe methods

14



in detail; instead, a set of relevant overarching identification issues are described in Section

4.

5.1 Labor

Productivity Effects The myriad physiological impacts of pollution discussed ear-

lier can alter task performance in a number of ways. These impacts are perhaps most intuitive

in the context of physically demanding work. Graff Zivin & Neidell (2012) examine daily

fluctuations in the daily exposure of piece-rate agricultural workers to ozone, and find that a

10 ppb increase in ozone decreases earnings by 5.5%, despite ozone levels being below regula-

tory limits. As the authors note, the rapid onset and recovery from ozone exposure indicates

that the observed productivity impacts are primarily due to short-term performance effects

rather than declining health. Chang et al. (2016) study the effect of particulate pollution

(measured as a six-day average) on the productivity of piece-rate pear packers in a Northern

California factory. They find that an increase in PM2.5 of 10 µg/m3 reduces productivity by

approximately 6%, also at pollution levels well below current federal standards. Adhvaryu

et al. (2019) study the effects of PM2.5, measured at the hourly level at multiple locations

in an Indian garment factory, on garment production. Their estimates imply a roughly 0.3%

decline in productivity for every 10 µg/m3 increase in PM2.5, with larger effects for more

complex tasks and older workers. In contrast to the above studies, He et al. (2019), who

study the effects of PM2.5 variation on piece-rate manufacturing worker output in two towns

in China, fail to find a statistically significant effect of PM2.5 during a worker’s shift, even

at baseline levels approximately 8× current EPA standards. It is noteworthy, however, that

they find small negative effects of prolonged exposure, with a persistent 10µg/m3 increase

in PM2.5 reducing daily output by roughly 1%.

Sports are highly monitored and physically demanding activities that have provided

fertile ground for researchers to study the impacts of pollution. In the sports world, Lichter

et al. (2017) find that higher PM2.5 reduces the performance of professional soccer players

in Germany, Guo & Fu (2019) find that marathon runners in China run slower on days

with higher pollution as measured by the Air Quality Index (AQI)7 and Mullins (2018) finds

that ozone impairs the performance of intercollegiate athletes in the United States. These

studies reveal pollution effects on physically fit populations, sometimes at relatively low

concentrations.

All the aforementioned studies focused on physically-demanding occupations, but pol-

lution may also affect workers’ ability to perform more cognitive tasks. Chang et al. (2019)

7The AQI is an overall index of air quality, constructed by taking the maximum of re-scaled measures
of six “criterion pollutants”: SO2, NO2, CO, O3, PM10 and PM2.5. It should be noted that the Chinese
and American formulas for AQI differ slightly.
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examine the performance of call center workers in Shanghai and Nantong, China. They

find that a 10-unit increase in the air pollution index (AQI)8 decreases the number of daily

calls by 0.35%, an effect that appears to occur through longer employee breaks. Archsmith

et al. (2018) study the effect of air pollution on Major League Baseball umpires, workers

for whom sustained mental focus is key to job performance. They find that CO and PM2.5

have negative effects on the accuracy of calls: a 1 ppm increase in CO reduces the fraction

of accurate calls by 2%, and a 10 µg/m3 increase in PM2.5 reduces it by 0.4%. Kahn & Li

(2020) examine the effect of PM2.5 on the performance of trial judges during court cases in

China. They find that a 1% increase in PM2.5 leads to a 0.182% increase in case duration

(an inverse measure of productivity), with effects stronger for older judges and for more

complex cases. They also find that air quality alerts lower the effects of pollution, a finding

consistent with avoidance behavior.

Labor Supply In addition to impacts on worker productivity conditional on work-

ing, evidence also points to sizeable labor supply responses to pollution when looking at

populations broader than the employees of a particular firm. Aragón et al. (2017) find

effects of PM2.5 pollution on labor supply of households in Lima, Peru, particularly for

households with susceptible members: a 10 µg/m3 increase in PM2.5 reduces labor by 1.9

hours per week. Hanna & Oliva (2015) find that for their preferred model specification a 10

ppm decrease in SO2 (due to the closure of a refinery in Mexico City) caused an increase of

1.3 hours worked per week. Holub et al. (2021) study the impact of PM10 on sick days in

Spain, using increases in PM10 caused by “Calima” dust clouds from the Sahara. They find

that an increase of 10 µg/m3 raises the number of workers taking at least one sick day by

0.03 percentage points.

Effects at Broad Scales While the previous studies find effects at particular firms

or locations, an important question centers on how well the results generalize to broader

scales. Using output and pollution data at the regional and national scale, Dechezleprêtre

et al. (2019) examine economy-wide harms of pollution; they conclude that a 10 µg/m3

increase in PM2.5 reduces output by 8%. There is some indication of increasing marginal

effects. Fu et al. (2018) investigate the effect of PM2.5 on productivity for all large Chinese

firms. Their estimates suggest that a 10 µg/m3 increase in annual pollution causes an 8.2%

drop in output per worker. These studies suggest the combined productivity and labor

supply effects have large effects at national and even regional scale.

8In this sample, the maximum is almost always PM10, which therefore determines the AQI.
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Labor Overview Taken together, the labor literature finds that air pollution reduces

worker productivity and, in some cases, labor supply. However, productivity estimates vary

considerably. There are several possible explanations for this divergence, which include, but

are not limited to, differences in occupations, setting, pollutant of interest, and study design.

More work is needed to reconcile these differences, but the ubiquity of harmful effects across

pollution levels, demographics, and sectors underscores the wide reach of these impacts. The

sizable macroeconomic impacts further highlight the perniciousness of these harms. Despite

the measurement challenges, future work should focus on the consequences for high-skill

and more creative occupations, for which the value marginal product of labor is particularly

high. The role that pollution may play in sleep disruption and its knock on effects for labor

productivity is another area ripe for future exploration (Gibson & Shrader, 2018). A better

understanding of who bears the costs of these effects would also shed light on the incentives

for private and public efforts to invest in both emissions control and exposure avoidance

technologies.

5.2 Cognitive Performance

Consistent with the scientific literature on both respiratory and central nervous system ef-

fects, a growing body of evidence suggests that exposure to air pollution reduces performance

on a variety of academic and cognitive tests. Ebenstein et al. (2016) examine the effects of

fine particulate matter and carbon monoxide on nationwide student test performance in Is-

rael. They find that a 1 s.d. increase in PM2.5 reduces scores on high-stakes tests by 1.7%

of a standard deviation, with larger effects for males. Bedi et al. (2021) investigate which

types of mental processes are affected by PM2.5 at the University São Paulo in Brazil. They

find 3% lower scores per 10 µg/m3) on a grammatical reasoning test, but no effect on other

tests. Roth (2021) quantifies the effects of indoor PM10 on London-area university students

taking high-stakes exams. He finds that a 10 µg/m3 increase in PM10 reduces test scores

by approximately 3% of a standard deviation. Intriguingly, statistically significant effects

are found only among males, consistent with the larger effect sizes found in Ebenstein et al.

(2016). Zhang et al. (2018) use data from cognitive ability tests in a nationally representative

longitudinal sample in China to evaluate the impact of pollution across a broader population

at all ages. They find that API on the day of the test has a statistically significant effect

for verbal tests only, with a 10-unit increase in API reducing scores by 0.4% s.d. Longer

lags of pollution have much larger effects on both verbal and math scores, with a 10-unit

increase in average API over three years reducing verbal scores by 8.2% of a s.d. even after

controlling for contemporaneous pollution. The authors find larger effects among men (par-

ticularly older men) and on verbal scores. In a related study, that focuses on brain-training

games, La Nauze & Severnini (2021) find that exposure to PM2.5 significantly impairs adult
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cognitive function, with the largest effects found for those of prime working age.

Several additional papers provide evidence consistent with significant adverse effects

of air pollution on test scores, but without detailed enough pollution data to isolate the

pollutant or estimate a dose-response relationship. Graff Zivin et al. (2020) study the impact

of agricultural fires in China on National College Entrance Exam scores, finding that a one

s.d. increase in net upwind fires (which primarily emit PM) reduces exam scores by 1.42%

of a s.d.9, with effects concentrated in high-ability students. Persico et al. (2021) find that

openings of Toxic Release Inventory (TRI) sites in Florida decreases standardized test scores

by 2.4% of a s.d. and increases school absences by 0.4 p.p. for households living within a

mile of the sites.

Overall, existing research on the effects of pollution on short-run test performance leads

to two tentative conclusions about heterogeneous impacts. First, effects may be larger for

men (Ebenstein et al., 2016; Roth, 2021; Zhang et al., 2018); second, effects may be larger

for verbal than for nonverbal tests (Bedi et al., 2021; Zhang et al., 2018). Establishing which

groups of people and which mental processes are most affected by pollution may lead to

insights into the pathophysiological mechanisms involved, as noted by Zhang et al. (2018).

More empirical research is also needed to understand the accumulation of these effects vis-a-

vis dynamic complementarities in learning (Cunha & Heckman, 2007), and the intermittent

feedback that enables compensatory behavior (Graff Zivin et al., 2018).

5.3 Decision Making

Pollution can influence the decision-making process through at least three channels: (i) al-

tering perceived payoffs, (ii) altering risk perceptions, or (iii) altering risk preferences Bondy

et al. (2020). The most direct pieces of evidence on this come from the financial sector.

Huang et al. (2020) examine whether pollution negatively affects trading performance. Us-

ing account-level equity-transaction data from a large Chinese brokerage house, they find

pollution exacerbates three common behavioral biases among investors: a) the tendency to

sell assets that have increased in value while keeping assets that have dropped in value;

b) excessive trading; and c) the purchase of attention-grabbing stocks. Their back-of-the-

envelope calculation suggests that the reduced performance due to air pollution accounts for

roughly 6.8% of the average under-performance of individual investors in their sample. Dong

et al. (2021) explore the effect of acute pollution exposure of investment analysts in China.

They find that higher AQI during corporate site visits leads to more pessimistic projections

of earnings forecasts. Meyer & Pagel (2017) find related results for individual investors in

Germany, who are less likely to sit down, log in, and trade in their brokerage accounts when

9Reliable data on pollutant levels are not available in this setting.
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exposed to pollution.

Sager (2019) provides additional evidence by exploring the effect of air pollution on

the number of traffic accidents in the U.K. between 2009 and 2014. Their findings suggest

a 0.3–0.6% increase in accidents per day for each additional 1 µg/m3 of PM2.5. While some

of these accidents may be due to the effects of diminished reaction time, as the authors,

speculate, they are also consistent with impaired judgment, although the precise mechanisms

driving this change in decision making remain unclear. In a completely different setting,

Künn et al. (2019) find that higher levels of air pollution reduce the strategic decision making

of chess players, with a 10 µg/m3 increase in the indoor concentration of PM2.5 increasing a

player’s probability of making an erroneous move by 18.8%.

Decision making can also be affected through neuro-inflammation and reduced sero-

tonin production, which can lead to aggressive behavior. Herrnstadt et al. (2021) exploit

detailed location data on over two million serious crimes reported to the Chicago police

department over twelve years. Their estimates suggest that a 1 s.d. increase in PM10 con-

centrations causes a 2.9% increase in violent crime, but has no impact on the commission

of property crime. Burkhardt et al. (2019) examine the impact of short-term exposure to

PM2.5 and O3 on crime and aggression by county in the U.S. They find that a 10% in-

crease in same-day exposure to PM2.5 and O3 is associated with increases in violent crimes

of 0.14% and 0.3%, respectively, costing the country roughly $1.4 billion in crime costs per

year. Bondy et al. (2020) find that pollution affects not only violent crimes but also those

that are economically motivated. They employ daily administrative data for London in

2004–2005, and find that a ten-point increase in the AQI increases the crime rate by 1.2%,

while experiencing an AQI of above 35 (near the high end of the “Good” range) leads to

3.7% more crimes. Importantly, all of these effects on crime manifest at pollution levels that

are well below current regulatory standards, consistent with the findings of pollution effects

on physical Chang et al. (2016); Graff Zivin & Neidell (2012) and cognitive (Archsmith et al.,

2018; Bishop et al., 2018) performance domains.

Despite the compelling evidence on pollution and decision making, much remains uncer-

tain in this space, particularly with regards to the specific mechanisms driving many of these

effects. A great deal of the life of homo economicus is driven by time and risk preferences and

much more work is needed to understand these impacts. Cognizant of multiple hypothesis

testing concerns, future research should borrow from the behavioral economics toolkit to

utilize controlled experiments to assess the degree to which decision making ‘anomalies’ may

be driven by ambient air pollution. Since many important decisions are made over extended

periods of time, a deeper understanding of the temporal signature of the dose-response func-

tion and how that interacts within the ecology of multiple decisions is also an area rich for

future exploration both inside and outside of economics.
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5.4 Human Capital Effects of Early Exposure

In keeping with the fetal origins hypothesis, there is also evidence that pollution during

gestation impacts non-health outcomes later in life.

Sanders (2012) examines the impact of prenatal exposure to total suspended particles

(TSP, particles 100 µm or smaller) on the long-term educational outcomes of students in

Texas, measured as performance on a high-stakes standardized test. He finds that a 1 s.d.

increase in TSP in the year of birth reduces test scores by 2% of a s.d.. Bharadwaj et al.

(2017) employ data on date of birth of children in Santiago, Chile to assign pollution levels

during gestation. They focus on CO and PM10
10 and find that a 1 ppm increase in CO

over the course of the pregnancy reduces math scores on a fourth-grade standardized test

by 0.06 s.d. and language scores by 0.076 s.d. Results for PM10 and CO separately show

statistically significant negative effects on language scores but not math scores (at the 5%

level), consistent with the short-run effects literature reviewed in Section 5.2.

Isen et al. (2017) examine the effects of early life TSP exposure on both earnings and

labor force participation at age 30 in the U.S. They find that a 10 µg/m3 increase in TSP

in the year of birth caused a 1.4% decline in income and a 2.8% decline in the number of

quarters employed.

Voorheis (2017) brings much of this non-health literature together by linking the Amer-

ican Community Survey to Social Security and income tax data. He finds that a 10 µg/m3

increase in TSP in-utero lowers yearly earnings by $246 and the probability of college atten-

dance by 1.8%. Both in-utero exposure and exposure during adolescence reduce high school

completion and raise the likelihood of incarceration, though with heterogeneous effect sizes

by race and parental income.

We conclude by noting that new evidence suggests that the effects of early life pollution

exposure may persist beyond the generation exposed to it. Colmer & Voorheis (2020) links

cohorts of respondents in the Census to evaluate the impact of TSP on the educational

attainment of the children of people exposed to lower TSP. Their estimates imply that a

10 µg/m3 increase in TSP is associated with a reduction in college attendance of 3.8 p.p.

As effects appear to be the same for adopted and biological children, the authors theorize

that differences in parental resources and investments account for most of the effects. The

remarkably long reach of acute pollution exposure has important implications for welfare

and thus the returns to any policies that might limit that exposure.

10The high correlation between these two pollutants means that which one is the causal agent is not clear.
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6 Conclusions

A blossoming literature has begun to link air pollution to a wide range of ‘non-health’ out-

comes. While the physiological causes of these harms are the same as those driving the

better-known health impacts from pollution, their impacts are subtle, sometimes impercep-

tible, and in some cases may arise from impacts on brain functioning and genetic expression.

Moreover, these impacts are generally not limited to vulnerable populations and manifest

at quite modest levels of pollution, suggesting that even small individual impacts from air

pollution exposure may have substantial economy-wide implications. However, further work

is needed along several dimensions.

First, causal research designs to bridge the gap between laboratory and epidemiological

evidence are essential. Evidence from the laboratory reveals impairments on a wide range

of subclinical outcomes, but with unclear implications for human well-being outside of the

laboratory. Moreover, evidence from animal behaviors requires additional translation to the

human experience. How might decreased lung functioning or increased blood pressure impact

cognitive performance or decision making? What does impaired spatial memory or increased

impulsivity in a rodent imply about labor productivity or forward-looking behavior in hu-

mans? How quickly after exposure might these economic impacts manifest and how long

might they endure? In domains like cognition where dynamic complementarities are likely to

effect outcomes over the long run (Cunha & Heckman, 2007), the creation of suitable surro-

gate indices that predict the value of the long-term outcome given the short-term outcomes

(Athey et al., 2019) represents a particularly fruitful area for future research. Moreover, this

paper has focused on the impacts of acute exposure, in part because it is more amenable to

econometric techniques that rely upon quasi-experimental shocks. A causal understanding

of the long-run effects of exposure on health and non-health endpoints alike remains elusive

and is an area that requires far more scrutiny.11

Second, we need a much better understanding of the behavioral responses to pollu-

tion. This includes the role of avoidance behavior in limiting exposure (long understood

though often poorly measured), as well as the role played by compensatory investments that

ameliorate harms after exposure. Responding optimally to pollution requires weighing costs

and benefits which themselves depend on a wide range of socioeconomic factors, including

mobility, school quality, and the availability of resources required to avert and compensate.12

As we have argued throughout this paper, ex-post behaviors are especially important in non-

11The work by Bishop et al. (2018), who use a 10-year panel of Medicaid beneficiaries to estimate the
impacts of PM2.5 exposure on dementia, is a notable exception to the usual focus on acute exposure.

12Since exposure to poor environmental quality tends to correlate with low income, this tends to magnify
the impacts on the poor, who have fewer financial resources to dedicate to avoidance and compensatory
actions. While environmental justice has gained prominence within the field (see Banzhaf et al. (2019) for a
good review) this aspect of the problem is largely missing from the debate.
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health domains where individuals may find the relationship between pollution and outcomes

opaque, but the outcomes themselves relatively visible. Since many compensatory invest-

ments require the consumption of non-market goods (e.g. bringing work home to complete

for the next day) and services that are not readily recorded in data sets (e.g. school tutors

or upskilling services), they are difficult to measure.

Third, more work is needed on the design of optimal environmental policies. People

employ costly behavioral responses to cope with pollution, which necessarily implies that the

full welfare costs of pollution are larger than those tied to health and non-health outcomes

alone. The relevance of behavioral responses also raises the prospect of new regulatory ap-

proaches. If ex-post compensation is inefficient due to incomplete information, informational

interventions can reduce costs. Investments that lower the costs or improve the effective-

ness of avoidance and compensation technologies can yield similar dividends. Whether these

objectives are best achieved through informational campaigns, behavioral nudges, tax incen-

tives, or direct public investment is an open question, but it is clear that efforts to improve

behavioral responses may also serve as an important part of the regulatory armamentarium.

Lastly, the empirical evidence that we have reviewed in this paper is relatively new,

spans many domains, and yields a wide range of results. Replication is critical here. Only a

handful of studies produce estimates at a national level, and more could be done to estimate

these relationships in other contexts. This will, in turn, help to generalize them beyond

the narrow settings that have thus far been necessary to pin down empirical identification.

Interdisciplinary collaborations are essential for unpacking the mechanisms driving these

empirical relationships and disseminating the findings to a wider audience. Additionally,

the broad etiologic basis which gives rise to so many potential impacts requires a more

disciplined approach to hypothesis testing to avoid the ‘file drawer’ problem in which non-

results are buried on hard drives while significant ones, and sometimes only surprising ones,

are published in journals.

Some level of pollution is part of the ether in which all human activity takes place.

The recognition that even low levels of pollution can affect human capital accumulation and

functioning and that humans generate a great deal of that pollution underscores the epibiotic

relationship between humans and the environment. As David Foster Wallace noted in the

quote which began this article, the ubiquity of our environment can easily blind us to its

impacts upon us. It appears that virtually no aspect of human life is unaffected by the

quality of our air. While the science and economics on these impacts will continue to evolve,

it should be clear that, to a significant degree, we are what we breathe.
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