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1. Introduction

Statistical factor models have a long tradition in finance and economics. They can be used
to identify latent factors and test asset pricing implications of the arbitrage pricing theory (APT)
developed by Ross (1976) and Chamberlain and Rothschild (1983), or to reduce the dimensions
of large data sets to a few factors that efficiently summarize the information in the data. Tests
of the APT go back to Roll and Ross (1980), Schipper and Thompson (1981), Connor and Kora-
jczyk (1986), and Connor and Korajczyk (1988) followed by a more recent literature that has
developed extensions to the standard model (e.g. Kelly, Pruitt and Su (2019), Pelger (2019), Let-
tau and Pelger (2020a), Lettau and Pelger (2020b), Giglio and Xiu (2021), among others). Some
applications in macroeconomics include business-cycle forecasting (Stock and Watson (2002),
Stock and Watson (2006)), large macroeconomic modeling (Gagliardini and Gourieroux (2014),
Favero, Marcellino and Neglia (2005), Forni, Hallin, Lippi and Reichlin (2000)), and monetary
policy (Boivin and Ng (2006)).

Traditional factor models can be estimated in 2-dimensional panel data, i.e., the data has the
form of a matrix. In this paper, I consider models that are applicable to higher-dimensional data.
The data set used in the empirical section is 3-dimensional where the unit of observation 𝗑𝑡𝑚𝑐

is the characteristic 𝑐 of mutual fund 𝑚 at time 𝑡. Since standard factor models cannot be ap-
plied to 3-dimensional data, their estimation requires an ad hoc method to eliminate one of the
dimensions. Consider, for example, Balasubramaniam, Campbell, Ramadorai and Ranish (2021),
who analyze stock ownership in India. While their sample, consisting of stock holdings of indi-
vidual investors over ten years, is 3-dimensional, they estimate a cross-sectional 2-dimensional
factor model for a single period. Hence, any time-series information is lost and not used in their
cross-sectional factor model. In contrast, the techniques considered in this paper can be directly
applied to higher-dimensional data without the need to collapse the data into two dimensions.

Formally, higher-order data form a tensor, which extends the notions of vectors andmatrices
to higher dimensions. For example, the data set with observations 𝗑𝑡𝑚𝑐 forms a 3-dimensional
tensor. Tensors were introduced by Ricci-Curbastro and Levi-Civita (1900) and have many ap-
plications in physics and engineering. Intuitively, tensor factor models are generalizations of
singular-value matrix decompositions (SVD) and principal component analysis (PCA). The SVD
decomposes a matrix 𝗫 into the product of three matrices which are formed by the eigenvectors
of 𝗫⊺𝗫 and 𝗫𝗫⊺ (𝗨1 and 𝗨2, respectively), and the diagonal matrix 𝗛 of associated eigenvalues:
𝗫 = 𝗨1 𝗛𝗨⊺

2. A 𝐾-factor PCA model is equivalent to a truncated SVD with eigenvectors that are
associated with the 𝐾 largest eigenvalues.

The methods considered in this paper are based on tensor decompositions that share some,
but not all, properties of the SVD. The details are in Section 2, which also includes a summary
of tensor algebra. The form of the tensor decomposition is similar to that of singular value de-
compositions and principal component analysis. A tensor with 𝑛 dimensions can be expressed
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as the (tensor) product of 𝑛 matrices and an 𝑛-dimensional “core” tensor. Each of the 𝑛 ma-
trices corresponds to a dimension of the tensor and are similar to the 𝗨1 and 𝗨2 eigenvector
matrices in the SVD. The 𝑛-dimensional “core” tensor plays a similar role as the diagonal ma-
trix of eigenvalues 𝗛 in the SVD. However, since there is no equivalent notion of eigenvalues
and eigenvectors for higher-order tensors, the components of the tensor decomposition are not
related to eigenvectors and eigenvalues and are computed differently. The logic of PCA can be
applied to tensors as well so that a large dimensional tensor can be approximated by a lower
order decomposition with 𝐾1, ..., 𝐾𝑛 factors for the 𝑛 dimensions.

Since the interpretation of factor and factor loadings is often difficult, even in 2-dimensional
data, I pay particular attention to the economic meaning of the components of the tensor de-
composition. First, I show that the decomposition of an 𝑛-dimensional tensor implies 𝑛 2-
dimensional factor models, one for each of the 𝑛 dimensions. For example, the 3-dimensional
decomposition of the date/fund/characteristic data set 𝗑𝑡𝑚𝑐 implies a 2-dimensional factor
model for dates 𝑡, another 2-dimensional factor model for funds 𝑚, and a third 2-dimensional
model for characteristics 𝑐. Each of these models has the same form and interpretation as a
2-dimensional factor model. Second, I show that the elements of the “core” tensor in the high-
dimensional decomposition can be interpreted as observations of “representative” date/fund/
characteristic objects. In other words, the “core” tensor compresses the data set with (𝑇×𝑀×𝐶)
dimensions into a low-dimensional tensor with 𝐾1 “representative” time, 𝐾2 “representative”
fund, and 𝐾3 “representative” characteristic observations. This intuition allows a straightfor-
ward interpretation of the elements of the tensor decomposition even though the data is high-
dimensional.

I implement the tensor decompositions using a data set consisting of 25 characteristics of
1,342 mutual funds observed over a sample with 34 quarters totaling 1,140,700 observations.
Traditional 2-dimensional factor model can only be applied to panels with a single character-
istic, e.g., time-series of returns across assets. Tensor methods allow the estimation of factor
models of many characteristics observed for many assets over time while exploiting possible in-
teractions in all three dimensions. Characteristics are correlated across assets, for example, the
book-to-market ratios of stocks and mutual funds move together. In addition, some characteris-
tics of a single assets might be correlated, e.g., the book-to-market and earnings-to-price-ratios.
Finally, the cross-sectional correlation of assets and characteristics can vary across time. 3-
dimensional tensor models can capture all three 2-dimensional correlation patterns, including
their interactions, in a efficient and internally-consistent representation.

I compare the fit of decompositions with a wide variety of factors and settle on a benchmark
model with (𝐾1, 𝐾2, 𝐾3) = (10, 25, 9) factors. This model captures 93% of the variation in the
data and reduces the dimensionality of the data by 97%, which is equivalent to a 2-dimensional
model with three factors for a panel of size (200, 100). In other words, the dimension of the
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data tensor is reduced from (34, 1697, 25) to a model with a (10, 25, 9) dimensional core that
can be interpreted as 25 representative mutual funds with nine representative characteristics
observed over ten representative quarters.

I show that the model yields a good fit for all data points but some outliers. The model
is stable over the sample, across the vast majority of mutual funds, as well as across char-
acteristics. The model fit is worst for momentum and reversal. I find that many aspects of
the tensor model are similar to patterns found in many 2-dimensional factor models. The
first factors along the three dimensions are “level” factors with positive “long-only” loadings,
while higher-order components are “long-short” factors. Similarly, lower-order “representative”
time/fund/characteristics elements in the core tensor are related to means, and higher-order
elements represent deviations from means.

This paper is related to Bryzgalova, Lettau, Lerner and Pelger (2022) (BLLP), who propose an
estimation methodology for 2-dimensional cross-sectional panels that are observed over time.
Their procedure combines 2-dimensional factor models that are estimated for each period with
time series models of the latent factors. BLLP apply their method to infer missing values in a
time-series panel of stock characteristics. There are several differences between BLLP’s estima-
tor and the methods used in this paper. First, BLLP study 2-dimensional panel data observed
over time, while I focus on generic high-dimensional data that may or may not include a time
dimension. Second, in its current form, the estimation method in this paper requires a balanced
panel without any missing values, while BLLP’s is designed to impute missing data.

Since the increased availability of “big” data sets, there has been much research about effi-
cient algorithms to reduce data dimensionality. Because of their flexibility and efficiency, meth-
ods based on tensor decompositions have become popular for modeling high-dimensional data
in many areas of science. Examples include brain imaging (Möcks (1988)), fMRI processing (An-
dersen and Rayens (2004)), facial recognition (Vasilescu and Terzopoulos (2002)), signal pro-
cessing (De Lathauwer, De Moor and Vandewalle (2000)), machine learning (Bacciu and Mandic
(2020)), and MPEG watermarking (Abdallah, Ben Hamza and Bhattacharya (2007)), among many
others (see Kolda and Bader (2009) and Sidiropoulos, De Lathauwer, Fu, Huang, Papalexakis and
Faloutsos (2017) for recent overviews).

There are many potential applications of tensor-based methods to model high-dimensional
data in finance and economics. For example, databases, such as CRSP and COMPUSTAT, in-
clude variables observed for individual stocks and across time and are thus inherently three-
dimensional. The estimation of dynamic corporate finance models often involves data sets with
three or more dimensions, see Strebulaev and Whited (2012) for a survey. The investor-level
data used in the household finance literature that studies portfolio holdings have more than
two dimensions, see for example Odean (1998), Campbell (2006), Calvet, Campbell and Sodini
(2009). In asset pricing, tensor-based methods are used to study the joint behavior of asset-
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level characteristics and returns or asset prices across countries. Based on the results in this
paper, tensor decompositions are promising additions to the toolbox of economists for model-
ing higher-dimensional data.

The rest of the paper is organized as follows. Section 2 introduces tensors and summarizes
tensor operations that are used in the paper, followed by a description of tensor decomposi-
tions. The empirical implementation is described in section 3 and includes a comparison of
tensor models of different orders, a detailed analysis of the fit of the benchmark specification,
and develops an economic interpretation of the components of the decomposition. Section 4
concludes.

2. High-dimensional data

Traditional factor models used in finance and economics are based on 2-dimensional data
sets, i.e., the data can be represented by a matrix. A canonical example in asset pricing is the fac-
tor analysis of a panel of returns of 𝑁 assets observed over 𝑇 periods. Latent factors can be con-
structed by principal component analysis (PCA), which is based on the eigenvalue/eigenvector
decomposition of a second-moment matrix of returns, or equivalently, by the singular-value
decomposition (SVD) of the data matrix. The vast literature on factor models has suggested
many extensions to the standard model but has been limited to two-dimensional data. In this
section, I consider generalizations of factor models to situations when the data set has more
than two dimensions. There are many potential applications of higher-dimensional models. The
data set used in the empirical section below is 3-dimensional and comprised of observations of
characteristic 𝑐 of mutual fund 𝑚 in period 𝑡, and I use this example to illustrate the theoretical
results in this section.

Higher-dimensional data form tensors, which were first defined by Ricci-Curbastro and Levi-
Civita (1900) and generalize the notions of vectors and matrices to more than two dimensions.
Many tensor operations are straightforward extensions of matrix algebra but there are some
important differences and the notation is necessarily more complex. This section defines ten-
sors and summarizes tensor operations used in the rest of the paper. I will start with a brief
summary of 2-dimensional factor models, PCA, and SVD to facilitate a better understanding of
the extensions to higher dimensions.

The tensor models used in this paper can be interpreted as extensions of the SVD of a ma-
trix. Similar to SVD and PCA, the goal is to summarize the variation in the data efficiently
by expressing the data tensor in terms of lower dimensional tensors and/or matrices. In this
sense, SVD/PCA and tensor decompositions can be thought of as dimension reduction methods.
As with any latent factor method, it is important to pay attention to the economic meaning
of the model. It turns out that the different components of tensor decompositions have clear
economic interpretations, as will explain below.
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2.1. 2-dimensional data: SVD, PCA, and factor models

This section briefly summarizes the singular value decomposition (SVD), factor models, and
principal component analysis (PCA) for 2-dimensional data represented in matrix form. Let 𝗫
be a (𝑇 ×𝑁) data matrix with 𝑇𝑁 observations 𝗑𝑡𝑛. The singular value decomposition (SVD) of
𝗫 is given by

𝗫 = 𝗨1 𝗛𝗨⊺
2 (1)

=
min(𝑇,𝑁)

∑
𝑖=1

ℎ𝑖 𝘂1,𝑖 𝘂⊺
2,𝑖, (2)

where 𝗨1 is a (𝑇 × 𝑇) matrix with the eigenvectors 𝘂1,𝑡 of 𝗫𝗫⊺ as columns, 𝗨2 is a (𝑁 × 𝑁)
matrix with the eigenvectors 𝘂2,𝑡 of 𝗫⊺ 𝗫 as columns. 𝗛 is a diagonal (𝑇 × 𝑁) matrix with
diagonal elements ℎ𝑖 that are the square roots of non-zero eigenvalues of 𝗫𝗫⊺. The eigenvalues
are in descending order, and the eigenvectors in 𝗨1 and 𝗨2 are ordered accordingly.

The SVD of 𝗫 implies a factor representation

𝗫 = 𝗙𝑁 𝗕⊺
𝑁, (3)

where 𝗙𝑁 = 𝗨1 𝗛 and 𝗕𝑁 = 𝗨2 are of dimensions (𝑇×𝑁) and (𝑁×𝑁), respectively. The columns
of 𝗙𝑁 are factors and the columns of 𝗕𝑁 are factor loadings. Factor models (3) are not unique
and can be rotated by any nonsingular (𝑁×𝑁) matrix 𝗦, i.e., 𝗫 = 𝗙𝑁 𝗦𝗦−1 𝗕⊺

𝑁.
Note that is also possible to compute the SVD of 𝗫⊺ instead of 𝗫. The representations are

equivalent, but the roles of 𝗨1 and 𝗨2 reversed so that factors of the SVD of 𝗫 become factor
loadings in the SVD of 𝗫⊺, and vice versa.

Suppose we want to approximate the 𝑇𝑁 elements of 𝗫 by a matrix �̂�𝐾 that can be written
in terms of lower dimensional matrices such that

𝗫 = �̂�𝐾 +𝗘𝐾, (4)

where �̂�𝐾 = 𝗨1,𝐾 𝗛𝐾 𝗨⊺
2,𝐾, (5)

and 𝗛𝐾, 𝗨1,𝐾, 𝗨2,𝐾 are (𝐾×𝐾), (𝑇×𝐾), (𝑁×𝐾) matrices. The error 𝗘𝐾 has the same dimension
as the data matrix, (𝑇×𝑁) matrix.

The optimal �̂�𝐾 minimizes the mean-squared-error (MSE)

MSE(�̂�𝐾) =
1

𝑇𝑁 ‖𝗘𝐾‖2,

where ‖𝗘‖ = √∑𝑡,𝑛 𝑒2𝑡𝑛 is the Frobenius matrix norm. Eckart and Young (1936) showed that the
solution is given by the truncated SVD, i.e. setting 𝗛𝐾 to the first 𝐾 rows and columns of 𝗛 and
𝗨1,𝐾, 𝗨2,𝐾 to first 𝐾 columns of 𝗨1, 𝗨2. The truncated SVD (4) is equivalent to the 𝐾-factor model

𝗫 = 𝗙𝐾 𝗕⊺
𝐾 +𝗘𝐾, (6)

where 𝗙𝐾 = 𝗨1,𝐾 𝗛𝐾 and 𝗕⊺
𝐾 = 𝗨2,𝐾 are (𝑇 × 𝐾) and (𝑁 × 𝐾) matrices, respectively. Thus, the
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truncated SVD is equal to the first 𝐾 principal components of 𝗫⊺𝗫. I will refer to this model as
SVD-PCA in the remainder of the paper.

The truncated SVD (5) has an alternative representation that will be useful in understanding
the tensor decompositions described below. The matrix product 𝗨1,𝐾 𝗛𝐾 𝗨⊺

2,𝐾 is the weighted
sum of the outer products of the column vectors of 𝗨1,𝐾 and the row vectors of 𝗨⊺

2,𝐾. This can
be seen by writing (5) as

�̂�𝐾 =
𝐾

∑
𝑡=1

𝐾

∑
𝑛=1

ℎ𝑡𝑛 𝘂1𝑡 𝘂⊺
2𝑛 (7)

=
𝐾

∑
𝑘=1

ℎ𝑘𝑘 𝘂1𝑘 𝘂⊺
2𝑘. (8)

The last line follows from the fact that𝗛 is a diagonal matrix. In other words, �̂�𝐾 is the weighted
sum of𝐾matrices with dimensions (𝑇×𝑁) that are the outer vector product of the eigenvectors
𝘂1𝑘 and 𝘂⊺

2𝑘 of 𝗫𝗫⊺ and 𝗫⊺𝗫, respectively. Weights are given by eigenvalues. The advantage of
the representation (8) is that it shows the contribution of each of the 𝐾 factors in the fit of the
model. Since the eigenvectors are normalized, the 𝐾 outer vector products 𝘂1𝑘 𝘂⊺

2𝑘 are of the
same magnitude, so the weight of the contribution of each factor 𝑘 is approximately equal to
the 𝑘-th eigenvalue.

2.2. From matrices to tensors

As mentioned above, tensors extend the notions of vectors and matrices into higher dimen-
sions. This section presents a brief introduction to tensor algebra and is limited to operations
used in the rest of the paper. See Kolda and Bader (2009) for a concise summary and Kroonen-
berg (2007) for a more comprehensive treatment of tensor algebra and decompositions.

Throughout the paper, I will use the following notation:

scalar: 𝗑 ∈ ℝ

vector: 𝘅 ∈ ℝ𝐼

matrix: 𝗫 ∈ ℝ𝐼1 ×ℝ𝐼2

𝑛-th order tensor: 𝓧 ∈ ℝ𝐼1 ×ℝ𝐼2 × ... × ℝ𝐼𝑛 .

Hence, a first-order tensor is a vector, a second-order tensor is a matrix, and a third-order tensor
is a cuboid. Each of the 𝑛 dimensions of a tensor is called a mode. A tensor 𝓧 is diagonal if
𝗑𝑖1,...,𝑖𝑛 ≠ 0 only if 𝑖1 = ... = 𝑖𝑛 and 0 otherwise.

The data set that will be used later has three dimensions: the characteristic 𝑐 of mutual fund
𝑚 at date 𝑡, 𝗑𝑡𝑚𝑐. To simplify the notation, I will therefore focus on tensors of order 3 but all
results can be easily generalized to higher dimension. Let 𝓧 ∈ ℝ𝑇×ℝ𝑀×ℝ𝐶 be a 3-dimensional
(𝑇 ×𝑀×𝐶) tensor 𝓧 with elements 𝗑𝑡𝑚𝑐. Panel A of Figure 1 shows a third-order tensor with
dimensions 𝑇 = 5, 𝑀 = 4, 𝐶 = 3.
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A 3-dimensional tensor can be represented by 1-dimensional fibers and 2-dimensional slices.
Fibers are vectors and correspond to rows and columns of a matrix, while slices are matrices.
A fiber is defined by fixing every index but one, so that 𝓧 has fibers along each mode, denoted
by 𝘅(•𝑚𝑐), 𝘅(𝑡•𝑐), and 𝘅(𝑡𝑚•), respectively, and are shown in Panels B, C, and D of Figure 1. Slices
are created by fixing all but two indices and are written as 𝗫(𝑡••), 𝗫(•𝑚•), 𝗫(••𝑐), see Panels E, F,
and G.

Tensors can be written as matrices by unfolding and stacking two-dimensional slices along
a mode 𝑛. The resulting matrix is denoted 𝗫(𝑛). 𝗫(𝑛) is defined so that the number of rows
equals the mode-𝑛 order of 𝓧. The number of columns of 𝗫(𝑛) is equal to the product of the
dimensions along all other modes. Figure 2 shows the unfolding of a (5×4×3) tensor 𝓧 along
each mode. The resulting matrix of unfolding 𝓧 along mode-1, 𝗫(1) has 5 rows and 4 ⋅ 3 = 12
columns, see Panel B in Figure 2. Unfolding along modes 2 and 3 yields matrices 𝗫(2) and 𝗫(3)

with dimensions (4 × 15) and (3 × 20), respectively, and are shown in Panels C and D.
The inner product of two tensors of equal dimensions is the sum of the products of the

individual tensor elements:

⟨𝓧,𝓨⟩ = ∑
𝑡,𝑚,𝑐

𝗑𝑡𝑚𝑐 𝗒𝑡𝑚𝑐

and the norm of 𝓧 is ‖𝓧‖ = ⟨𝓧,𝓧⟩1/2.
The outer product ∘ of two vectors 𝗮 ∈ ℝ𝑇, 𝗯 ∈ ℝ𝑀 is defined as

𝗫 = 𝗮 ∘ 𝗯 = 𝗮𝗯⊺ ∈ ℝ𝑇 ×ℝ𝑀,

so that 𝗫 is a (𝑇×𝑀) matrix. The outer product of three vectors 𝗮 ∈ ℝ𝑇, 𝗯 ∈ ℝ𝑀, 𝗰 ∈ ℝ𝐶 yields
a (𝑇×𝑀×𝐶) tensor

𝓧 = 𝗮 ∘ 𝗯 ∘ 𝗰 ∈ ℝ𝑇 ×ℝ𝑀 ×ℝ𝐶. (9)

Panel A of Figure 3 shows an example for 𝑇 = 5,𝑀 = 4,𝐶 = 3. An 𝑛-th order tensor is rank-1 if
it can be written as an outer product of 𝑛 vectors. More generally, a tensor is rank-𝑟 if it can be
written as a sum of 𝑟 rank-one tensors. See Kolda and Bader (2009) for a more comprehensive
discussion of tensor ranks.

Finally, tensors can be multiplied by vectors and matrices of appropriate dimensions. Since
tensors have arbitrary dimensions, the mode that is multiplied by the matrix has to be specified.
This is not necessary for matrix multiplications since matrices have only two dimensions. The
product of a tensor 𝓧 and a matrix 𝗔𝑛 is called 𝑛-mode multiplication, where 𝑛 specifies the
mode that is multiplied by 𝗔𝑛. For example, the 1-mode product of the (𝑇 ×𝑀×𝐶) tensor 𝓧
and the (𝑆 ×𝑇) matrix 𝗔1 is equal to a (𝑆 ×𝑀×𝐶) tensor 𝓨 given by

𝓨 = 𝓧 ×1 𝗔1.

The 𝑛-mode product tensor is constructed by multiplying each mode-𝑛 fiber by each row vector
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of 𝗔1. In general, the 𝑛-mode is written as 𝓧 ×𝑛 𝗔𝑛. The number of columns of 𝗔𝑛 must equal
the 𝑛-mode dimension of 𝓧 while the 𝑛-mode dimension of 𝓧×𝑛 𝗔𝑛 is equal to the number of
rows of 𝗔𝑛.

The 𝑛-mode product of a third-order tensor and a vector yields a matrix. For example, if 𝗮1

is a (𝑇× 1) vector,

𝗬 = 𝓧 ×1 𝗮1

is a (𝑀×𝐶) matrix. More generally, the 𝑛-mode product of a 𝑝-th order tensor and a vector is
a tensor of order 𝑝− 1 in which the 𝑛-th mode is removed.

The 1-mode product of a (2 × 2 × 3) tensor with a (5 × 2) matrix is illustrated in Panel A
of Figure 3. Each mode-1 fiber of 𝓧 is a vector of length 2 and is multiplied by each of the
row vectors of 𝗔1, so that 𝓧 with mode-1 dimension 𝑇 is transformed into the product tensor
𝓨 with mode-1 dimension 𝑆. All other dimensions are the same. Panel C shows an example
of a mode-2 product. Note that 𝗔2 is a (2 × 4) matrix but is displayed as a (4 × 2) matrix. It
is standard practice to rotate tensors, matrices, and vectors in illustrations so that the mode
dimensions match.1

Vector and matrix products can be written in 𝑛-mode tensor notation. Let 𝗫,𝗔1, and 𝗔2 be
(𝑇 ×𝑁), (𝑆 × 𝑇), and (𝑈 ×𝑁) matrices, respectively. Then 𝗔1 𝗫 = 𝗫×1 𝗔1 is a (𝑆 ×𝑁) matrix
and 𝗫𝗔⊺

2 = 𝗫 ×2 𝗔2 is a (𝑇 × 𝑈) matrix. If 𝗮1 and 𝗮2 are (𝑇 × 1) and (𝑁 × 1) vectors, then
𝗮⊺
1 𝗫 = 𝗫×1 𝗮⊺

1 is a (1 ×𝑁) vector and 𝗫𝗮2 = 𝗫×2 𝗮⊺
2 is a (𝑇× 1) vector.

It is instructive to express the 𝐾-factor SVD-PCA model (6) in tensor notation. Using 𝑛-mode
multiplication, we can write

𝗙𝐾 𝗕⊺
𝐾 = 𝗙𝐾 ×2 𝗕𝐾 (10)

= 𝗛𝐾 ×1 𝗨1𝐾 ×2 𝗨2𝐾 (11)

=
𝐾

∑
𝑘=1

ℎ𝑘𝑘 𝘂1𝑘 ∘ 𝘂2𝑘. (12)

2.3. The Tucker decomposition of a tensor

This section introduces tensor representations used in the empirical estimation below. The
goal is to reduce the dimensionality of the 𝑇×𝑀×𝐶 data tensor, 𝓧, while capturing most of
its variation. Hence the objective is similar to the dimension reduction of the 𝐾-factor model
for 2-dimensional data. Let 𝓧 be an approximation of 𝓧 that can be expressed in terms of low
dimensional matrices and tensors to be specified below. The approximation error and corre-

1There is no “transpose” operator for tensors and it may be helpful to think about tensor multiplications without
the notion of a matrix transpose.
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sponding mean-squared error are 𝓔 and MSE(𝓧):

𝓧 = 𝓧 + 𝓔, (13)

MSE(𝓧) = 1
𝑇𝑀𝐶 ‖𝓔‖2. (14)

Most dimension reduction models for tensors are based on the Tucker decomposition (Tucker
(1966)). For the 3-dimensional (𝑇×𝑀×𝐶) tensor 𝓧, the Tucker decomposition with (𝐾1, 𝐾2, 𝐾3)
components, denoted Tucker(𝐾1, 𝐾2, 𝐾3), is given by

𝓧(𝐾1, 𝐾2, 𝐾3) = 𝓖 ×1 𝗩1 ×2 𝗩2 ×3 𝗩3 (15)

=
𝐾1

∑
𝑡=1

𝐾2

∑
𝑚=1

𝐾3

∑
𝑐=1

𝑔𝑡𝑚𝑐 𝘃1𝑡 ∘ 𝘃2𝑚 ∘ 𝘃3𝑐, (16)

where 𝓖 is a (𝐾1×𝐾2×𝐾3) tensor with elements𝑔𝑡𝑚𝑐 and𝗩1, 𝗩2, 𝗩3 are (𝑇×𝐾1), (𝑀×𝐾2), (𝐶×𝐾3)
matrices, respectively. 𝓖 is called the core tensor and can thought of as a “compressed” version
of 𝓧. The 𝗩𝑖 matrices with columns 𝘃𝑖𝑗 expand the core tensor to the dimension of 𝓧 and
are sometimes called “factor” matrices. To avoid confusion with the definition of “factors” and
“factor loading” in the 2-dimensional factor model (3), I will instead refer to the 𝗩𝑖 as Tucker

component matrices. The optimal Tucker model minimizes the MSE (14) among all 𝓧(𝐾1, 𝐾2, 𝐾3)
that can be written as (15).

The mechanism of the Tucker decomposition (15) is illustrated in Figure 4, which shows
the decomposition of a (6 × 5 × 4) tensor 𝓧 by a Tucker model with (𝐾1, 𝐾2, 𝐾3) = (3, 2, 2)
components. The core tensor 𝓖 compresses 𝓧 to a lower dimension of (3×2×2). The Tucker
component matrices 𝗩1, 𝗩2, and 𝗩3 expand the core tensor to the full dimension of 𝓧 and have
the matching dimensions of (6 × 3), (5 × 2), and (4 × 2). With slight abuse of notation, the
dimensions of the tensors and matrices can be expressed as

(3 × 2× 2) ×1 (6 × 3) ×2 (5 × 2) ×3 (4 × 2) = (6 × 5× 4).

The Tucker representation can be understood as an extension of the 2-dimensional 𝐾-factor
SVD-PCA model. Comparing (15) to (11) shows that the core tensor 𝓖 corresponds to the eigen-
value matrix 𝗛 and the 𝗩𝑖 matrices correspond to the matrices of eigenvectors 𝗨1𝐾 and 𝗨2𝐾.
However, 𝓖 and 𝗩𝑖 are not based on eigenvalues and eigenvectors and must be computed dif-
ferently. I will discuss their construction below.

The Tucker representation retains some, but not all, properties of 2-dimensional SVD-PCA
factor models. One important difference is that the core tensor 𝓖 is not necessarily diagonal,
in contrast to the eigenvalue matrix 𝗛. On the other hand, neither model is unique and can be
rotated. Let 𝗦𝑖 be nonsingular (𝐾𝑖 ×𝐾𝑖) matrices for 𝑖 = 1, 2, 3. Then (15) also be written as

𝓧(𝐾1, 𝐾2, 𝐾3) = (𝓖 ×1 𝗦1 ×2 𝗦2 ×3 𝗦3) ×1 (𝗩1 𝗦−1
1 ) ×2 (𝗩2 𝗦−1

2 )(𝗩3 𝗦−1
3 ). (17)

Typically, (15) is normalized so that the 𝗩𝑖 matrices are orthonormal, similar to the eigenvector
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matrices in the SVD-PCA model.
The core tensor 𝓖 has 𝐾1𝐾2𝐾3 elements and the component matrices 𝗩1, 𝗩2, and 𝗩3 have

𝑇𝐾1,𝑀𝐾2, and 𝐶𝐾3 elements, respectively. The orthonormal normalization adds 𝐾2
1 +𝐾2

2 +𝐾2
3

restrictions. Thus, the Tucker decomposition (15) has𝑇𝐾1+𝑀𝐾2+𝐶𝐾3+𝐾1𝐾2𝐾3−(𝐾2
1+𝐾2

2+𝐾2
3)

free parameters. Consider the special case where 𝑇=𝑀=𝐶=𝑁, 𝐾1=𝐾2=𝐾3=𝐾. Furthermore,
assume that the ratio of number of Tucker components 𝐾 to 𝑁 is a constant, 𝑄 = 𝐾/𝑁. I will
compare the number of elements of the data tensor, 𝑁3, to the 3𝑁𝐾 + 𝐾3 − 3𝐾2 parameters
of the Tucker representation. The data-compression ratio 𝜅 is defined as the number of free
parameters divided by the numbers of data points. For the 3-dimensional Tucker model 𝜅3𝑑 is
equal to 3𝐾/𝑁2+(𝐾/𝑁)3−3𝐾2/𝑁3 = 𝑄3+3𝑄(1−𝑄)/𝑁 and converges to𝑄3 as𝑁 ⟶ ∞. Hence,
the 3-dimensional Tucker model compresses the data’s total size by a ratio of order 𝓞((𝐾/𝑁)3).
If𝑄 = 𝐾/𝑁 is 10%, i.e., there is one Tucker component for every ten data dimensions, 𝜅3𝑑 = 0.01
so that the Tucker model compresses the data by approximately 99.9%. The 2-dimensional 𝐾-
factor SVD-PCA model has 2𝑁𝐾 − 𝐾2 free parameters so that the compression ratio is 𝜅2𝑑 =
2𝑄(1 − 𝑄). For 𝑄 = 0.1, 𝜅2𝑑 = 0.18, which is an order of magnitude higher than 𝜅3𝑑 of the
Tucker model. Hence higher-order tensor decompositions achieve more efficient dimensionality
reduction than 2-dimensional factor models.

2.4. The CP decomposition

An alternative but related tensor decomposition was developed independently of the Tucker
model. It was first proposed by Hitchcock (1927) but is known as CANDECOMP (“canonical
decomposition”, Carroll and Chang (1970)) or PARAFAC (“parallel factors”, Harshman (1970)),
usually abbreviated as CP decomposition. It can be written as a special case of the Tucker model
(15) when the numbers of components in each mode are equal, i.e., 𝐾1 = 𝐾2 = 𝐾3 = 𝐾, and the
core tensor 𝓖 is diagonal. The CP model with 𝐾 components, CP(𝐾), is defined as

𝓧(𝐾) =
𝐾

∑
𝑘=1

𝑔𝑘 𝘄1𝑘 ∘𝘄2𝑘 ∘ 𝘄3𝑘 (18)

= 𝓖CP ×1 𝗪1 ×2 𝗪2 ×3 𝗪3, (19)

where 𝓖CP is a diagonal (𝐾 × 𝐾×𝐾) tensor with diagonal elements 𝑔𝑘 and 𝗪1,𝗪2, and 𝗪3 are
(𝑇×𝐾), (𝑀×𝐾), and (𝐶×𝐾)matrices with the normalized vectors𝘄1𝑘,𝘄2𝑘, and𝘄3𝑘 as columns.
The CP decomposition is illustrated in Figure 5. Recall that an 𝑛-dimensional tensor that can
be written as an outer product of 𝑛 vectors is a rank-one tensor, see (9). The CP decomposition
is therefore an approximation of 𝓧 by the sum of 𝐾 rank-one tensors.

The CP model is perhaps the most direct extension of the 𝐾-factor SVD-PCA model since (18)
has the same form as (12) and, as the eigenvalue matrix 𝗛, 𝓖CP is diagonal. 𝑔𝑘 and 𝘄𝑖𝑟, however,
are not related to eigenvalues and eigenvectors. The CP decomposition is unique under mild
conditions but is not guaranteed to exist for all 𝐾, see Kolda and Bader (2009).
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2.5. Tucker decomposition: Intuition

It is possible to develop further insight into the Tucker model by relating it to 2-dimensional
factor models. I will show next that the Tucker decomposition implies 2-dimensional represen-
tations that have the same form as 2-dimensional factor models. One such 2-dimensional model
can be derived for each mode 𝑛, so that the 3-dimensional model implies one 2-dimensional rep-
resentation along the 𝑇 dimension, one for the 𝑀 dimension, and one for the 𝐶 dimension. In
the empirical implementation, I focus on the properties of mutual fund characteristics, so the
following example illustrates how the Tucker model can be written as a 2-dimensional factor
model along the third 𝐶 mode. Figure 6 illustrates the steps of the derivation for the example
in Figure 4.

The key is to write the tensors of the Tucker representation as matrices in a specific way.
First, unfold the (𝑇 × 𝑀 × 𝐶) tensor 𝓧 along the third mode yielding a (𝐶 × 𝑇𝑀) matrix 𝗫(3).
Next, multiply the core tensor 𝓖 by 𝗩1 and 𝗩2 along modes 1 and 2 creating a tensor 𝓢(12) =
𝓖 ×1 𝗩1 ×2 𝗩2 with dimension (𝑇 × 𝑀 × 𝐾3). This step is shown in Panel A of Figure 6. Next,
write 𝓢(12) as a (𝐾3 ×𝑇𝑀) matrix 𝗦(12) by unfolding it along mode-3. Finally, the 2-dimensional
model can be written in factor form as

𝗫⊺
(3) = 𝗦⊺

(12) 𝗩⊺
3 +𝗘3 = �̂�⊺

(3) +𝗘3. (20)

The data matrix 𝗫⊺
(3) has 𝑇𝑀 rows and 𝐶 columns, the “factor” matrix 𝗦⊺

(12) has 𝑇𝑀 rows and
𝐾3 columns and the “loadings” matrix 𝗩⊺

3 has 𝐾3 rows and 𝐶 columns.
This last step is illustrated in Panel B. The dimensions of the data matrix 𝓧 are 𝑇 = 6,𝑀 = 5,

and 𝐶 = 4 and those of the core tensor 𝓖 are (𝐾1, 𝐾2, 𝐾3) = (3, 2, 2). Since 𝗩1 and 𝗩2 are of
dimensions (6×3) and (5×2), respectively, 𝓢12×1𝗩1×2𝗩2 has dimensions (6×5×2). Unfolding
𝓢(12) along mode-3 yields 𝗦(1,2), which is (2×30). Unfolding the original (6×5×4) data tensor
𝓧 along mode-3 yields a (4×30) matrix 𝗫(3). Since 𝗩1 is (4×2), we obtain the factor model (20)
with 30 rows and two factors by transposing 𝗫(3), 𝗦(12), and 𝗩1. This process can be repeated
for modes 1 and 2. The factor model for mode-1 (𝑇) has 20 rows and three factors and that of
mode-2 (𝑀) has 24 rows and two factors

Thus, the Tucker matrices 𝗩𝑖 can be interpreted as factor loading matrices of the implied
2-dimensional factor models. In turn, the columns of the matrix 𝗦⊺

(𝑗𝑘) are equivalent to factors.
It is important to stress that (20) is derived from the Tucker representation (15). One could also
directly estimate a 2-dimensional SVD-PCA factor model for 𝗫⊺

(3) with 𝐾3 factors. However, the
separately estimated model would generally not be consistent with each other.

The core tensor can also be interpreted as a compressed, or “representative”, version of the
data matrix. This is easiest to see if one of the dimensions is a time index. For the data set
used in the next section, the three modes are time, mutual fund, and characteristic, which I
will use again as an example. The modes of the core tensor have the same modes as the data
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tensor, so each element 𝑔𝑡𝑚𝑐 of 𝓖 can be interpreted be interpreted as an observation of a
“representative” element with time, mutual fund, and characteristic dimensions. The elements
of 𝓖 are constructed from the data tensor to summarize the information in 𝓧 in a more compact
form with dimensions (𝐾1, 𝐾2, 𝐾3) instead of (𝑇,𝑀,𝐶). Multiplying 𝓖 with 𝗩1 along the first
mode yields a tensor 𝓢(1) with dimensions (𝑇,𝐾2, 𝐾3). Each of the 𝐾1 × 𝐾2 vertical mode-1
fibers of 𝓢(1) is a (𝑇×1) vector can be written as 𝘀(𝑡𝑘2𝑘3). 𝘀(𝑡𝑘2𝑘3) represents a time series of the
“representative” core mutual fund 𝑘2 and “representative” core characteristic 𝑘3.

This interpretation of the Tucker representation can be pushed further. If 𝓢(1) is multiplied
by 𝗩3 along mode 3, the resulting tensor 𝓢(13) has dimension (𝑇 × 𝐾2 × 𝐶). Each fiber of this
tensor, 𝘀(𝑡𝑘2𝑐) is a time series of characteristic 𝑐 of the “representative” core mutual fund 𝑘2.

Figure 7 illustrates the construction of the “representative” mutual funds and “represen-
tative” characteristics 𝘀(𝑡𝑘2𝑘3) in Panel A and the representative mutual fund 𝘀(𝑡𝑘2𝑐) in Panel B.
The data tensor 𝓧 consists of 𝑇 = 6 periods, 𝑀 = 5 mutual funds, and 𝐶 = 3 characteristics.
The core tensor 𝓖 is compressed to 𝐾1 = 3 periods, 𝐾2 = 2 funds, and 𝐾3 = 2 characteristics.
Multiplying 𝓖 by the (6 × 3) Tucker matrix 𝗩1 expands the core from four to six periods while
keeping the number of representative mutual funds and characteristics unchanged, see Panel
A. Therefore, the resulting tensor 𝓢(1) consists of 6 periods, 2 representative funds (in mode-2),
and 2 representative characteristics (in mode-3), so that each vertical fiber of 𝓢(1) represents a
time series of the 2 × 2 = 4 combinations of the representative fund and characteristic. The
figure shows the 6 time series observations of the first (𝑘2 = 1) representative fund and first
(𝑘3 = 1) representative characteristics, 𝘀(𝑡11), and the second (𝑘2 = 2) representative fund and
first (𝑘3 = 1) representative characteristics, 𝘀(𝑡21), in darker shades. Panel B shows the expan-
sion of the core tensor along the mode-1 (time) and mode-3 (characteristics) dimensions by
multiplying the core tensor by 𝗩1 and 𝗩3. The resulting tensor 𝓢(13) consists of 6 periods and
all four characteristics in modes 1 and 3 with the two representative mutual funds in mode-2.
The darker shades indicate the time-series observations of the first and second representative
funds for characteristics 𝑐, 𝘀(𝑡1𝑐) and 𝘀(𝑡2𝑐). I will return to this interpretation of the Tucker
model in more detail in the empirical section.

2.6. Computation

In contrast to the SVD-PCA matrix representation, there are no closed-form solutions for
the Tucker and CP tensor decompositions (15) and (19) that minimize the MSE (14) for given
(𝐾1, 𝐾2, 𝐾3) or 𝐾. Kolda and Bader (2009) and Kroonenberg (2007), chapter 10, discuss several
numerical solutions methods. I will use the most popular algorithm of alternating least squares

(ALS). As shown in Kolda and Bader (2009) and Kroonenberg (2007), it is possible to solve for the
Tucker matrix 𝗩𝑖 when all other 𝗩𝑗, 𝑗 ≠ 𝑖 are known. Therefore, the Tucker model can be solved
recursively by choosing some starting values for 𝗩𝑗, 𝑗 > 1, solving for 𝗩1, and iteratively solving
for 𝗩𝑖 until convergence. Once the 𝗩𝑖 are solved for, the core tensor 𝓖 can be constructed. A
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similar procedure can be used for computing the CP model. The literature has developed many
refinements to this algorithm to improve the rate and speed of convergence even if the data
tensor is “large”.

One important property of the Tucker and CP decompositions is that they cannot be com-
puted sequentially. Consider two CP models with 𝐾 and 𝐾′ > 𝐾 components. The first 𝐾
components of the CP(𝐾′) are different from the 𝐾 components of CP(𝐾), so that CP(𝐾) and
CP(𝐾′) have to be estimated separately. This is also true for Tucker decompositions with dif-
ferent numbers of components (𝐾1, 𝐾2, 𝐾3). In contrast, the first 𝐾 factors of a 2-dimensional
SVD-PCA factor model with 𝐾′ > 𝐾 factors are the same as those of a 𝐾-factor model since they
are based on eigenvalues and eigenvectors.

Tucker models are generally easier to estimate than CP models. One reason is that, in con-
trast to Tucker decompositions, a CP(𝐾) representation might not exist for some 𝐾, leading to
possible numerical difficulties. Tucker models are less restrictive and more flexible. This flex-
ibility comes at a cost, however, since a Tucker model is not unique while CP models, if they
exist, are unique. An advantage of Tucker models is that they allow for different numbers of
components for each mode, while the CP representation restricts the number of components
to be the same across models. If the number of dimensions varies substantially across modes,
Tucker models might be a better choice. The data set used in the next section has 34 quarterly
(mode-1) and 25 characteristics (mode-3) observations, but the second mode consists of 1,697
individual mutual funds. I will discuss the tradeoffs of the estimation of Tucker and CP models
in this data set in more detail below.

2.7. Summary

The models described in this section can be summarized as follows:

SVD-PCA:

• 2-dimensional data matrix 𝗫
• 𝐾-factor representation:

�̂�𝐾 = 𝗙𝐾 𝗕⊺
𝐾

= 𝗛𝐾 ×1 𝗨1𝐾 ×2 𝗨2𝐾

=
𝐾

∑
𝑘=1

ℎ𝑘𝑘 𝘂1,𝑘 𝘂⊺
2,𝑘

• 𝗛𝐾 diagonal with eigenvalues, columns of 𝗨1𝐾 are eigenvectors of 𝗫⊺𝗫, columns of 𝗨2𝐾

are eigenvectors of 𝗫𝗫⊺

• Not unique, sequential, closed-form solution

Tucker:

• 3-dimensional data tensor 𝓧
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• Tucker(𝐾1, 𝐾2, 𝐾3) representation:

𝓧(𝐾1, 𝐾2, 𝐾3) = 𝓖 ×1 𝗩1 ×2 𝗩2 ×3 𝗩3

=
𝐾1

∑
𝑡=1

𝐾2

∑
𝑚=1

𝐾3

∑
𝑐=1

𝑔𝑡𝑚𝑐 𝘃1𝑡 ∘ 𝘃2𝑚 ∘ 𝘃3𝑐

• Core tensor 𝓖 is not diagonal, 𝗩𝑖 are component matrices, not linked to eigenvalues and
eigenvectors

• Not unique, not sequential, no closed-form solution, generally exists, usually easy to esti-
mate

CP:

• 3-dimensional data tensor 𝓧
• CP(𝐾) representation:

𝓧(𝐾) = 𝓖CP ×1 𝗪1 ×2 𝗪2 ×3 𝗪3

=
𝐾

∑
𝑘=1

𝑔𝑘 𝘄1𝑘 ∘𝘄2𝑘 ∘ 𝘄3𝑘

• Core tensor 𝓖CP is diagonal, 𝗩𝑖 are component matrices, not linked to eigenvalues and
eigenvectors

• Unique, not sequential, no closed-form solution, might not exist, sometimes difficult to
estimate

3. Mutual fund characteristics over time

Next, I estimate Tucker and CP models using a data set on mutual fund characteristics. The
data is taken from Lettau, Ludvigson and Manoel (2021) and I refer to that paper for a detailed
description and construction of the data. Lettau, Ludvigson and Manoel (2021) construct 25
characteristics of mutual funds and ETFs based on portfolio holdings. Characteristics on the
mutual fund level are computed as weighted averages of the characteristics of the stocks in
their portfolios and are scaled from 1 (low) to 5 (high). The data set includes seven price ratios,
five growth rates of fundamentals, three value/growth Morningstar indices, momentum, rever-
sal, size, operating profitability, investment, a quality index2, and four liquidity measures, see
Table 1. To obtain a balanced panel with no missing data, I select all 1,342 mutual funds and
ETFs that are in the sample for all quarters between 2010Q3 and 2018Q4. 3 The final sample
consists of 𝑇=34 quarters, 𝑀=1,342 mutual funds and ETFs, and 𝐶=25 characteristics with
a total of 1,140,700 observations.

2The quality index combines the return-to-equity, debt-to-equity, and earnings variability.
3Choosing an earlier starting date drastically reduces the number of funds without missing values.
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Table 2 shows some properties of the mutual funds in the sample. I first take means across
all funds and then compute descriptive statistics of the distribution of fund means. The median
fund has a total net asset value (TNA) of $575 mil. with an inter-quartile range of just under
$200 mil. to $1.70. The mean TNA of $2.34 bil. is larger than the 75%th percentile indicating
that the TNA distribution is heavily right-skewed, as is the distribution of the number of stocks
in mutual fund portfolios. The median fund holds 84 stocks with an interquartile range of 54
to 165 with a mean of 190. The market beta of most mutual funds is between 0.92 and 1.06.
As is well known in the literature, mutual funds underperform broad stock market indices, and
alphas of the majority are negative.

The data are arranged in a 3-dimensional tensor 𝓧. The first mode represents the time index
𝑡, the second mode represents mutual funds 𝑚, and the third mode are characteristics 𝑐, so
that the data tensor 𝓧 has dimension (𝑇×𝑀×𝐶) = (34 × 1342× 25).

Any factor model depends on the correlation structure of the data. In 2-dimensional data,
the correlation matrix is also 2-dimensional and can be easily understood. Computing correla-
tions in higher-dimensional data is more complicated. Suppose we are particularly interested
in correlations across characteristics (mode-3). One possibility is to unfold the three-dimension
data tensor along the characteristic dimension into a (25×45628) matrix and compute the cor-
relation matrix of the transpose. However, there might be important interactions across time
and/or mutual funds, which would not be captured by this correlation matrix. Alternatively, one
can compute correlation matrices holding either the time or fund index fixed. In other words,
for each date 𝑡, we can calculate the cross-sectional correlation of characteristics across funds,
and for each fund 𝑚, we can compute the time series correlations of characteristics.

Figure 8 shows a heatmap of the means of the two correlations measures. The upper right
triangle plots the mean of time series correlations across mutual funds, and the lower trian-
gle shows the mean cross-sectional correlations across dates. Comparing the two correlation
measures shows that the overalls patterns are similar, but cross-sectional correlations in the
lower-left triangle are on average larger in absolute value than time series correlations in the
upper-right triangle. Not surprisingly, price-ratio characteristics are positively correlated, as are
characteristics related to the growth of fundamentals, but the two blocks are negatively corre-
lated. Since the Morningstar variables ms, mult, and gr are based on price-ratios and growth
rates, their correlation pattern is to a large degree mechanical. Investment, momentum, and
reversal are negatively related to price ratios but positively related to growth rates, and size is
positively correlated with higher liquidity.

Recall that Figure 8 is based on the means of the correlation distribution and therefore
cannot capture more complex relationships in the 3-dimensional data set. The goal of higher-
dimensional factor models is to capture important patterns in the joint distribution of the data
that go beyond linear correlations. However, some features of factor models are directly related
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to the correlations shown in Figure 8.

3.1. Estimation of Tucker and CP models

I start with the estimation of Tucker models for a wide range of combinations of (𝐾1, 𝐾2, 𝐾3).
Each model is estimated using the alternate least square method described in Section 2.6. The
starting values of each mode-𝑖 Tucker component matrix are set to the 2-dimensional SVD de-
compositions computed from the unfolded tensor along mode 𝑖. Typically, the alternating-least-
squares algorithm converges after 10 to 50 iterations depending on the number of components.
The procedure is robust to other starting values, albeit at the cost of slower convergence.

For each combination of (𝐾1, 𝐾2, 𝐾3), I compute the Tucker decomposition (6) and the asso-
ciated mean-squared error MSE(𝐾1, 𝐾2, 𝐾3). The MSE can be compared to the total variance of
the data tensor Var(𝓧) = 0.54. Since the mean of the errors of the Tucker approximation 𝓔 is
close to zero, 1−MSE(𝐾1, 𝐾2, 𝐾3)/Var(𝓧) ≈ 1−Var(𝓔(𝐾1, 𝐾2, 𝐾3))/Var(𝓧) can be interpreted
as an “𝑅2” of the model.

The results are shown in the first three panels of Figure 9. Each plot shows the MSE as a func-
tion of the number of components along one mode while keeping the numbers of the other two
components fixed. Panel A plots the MSE(𝐾1, 𝐾2, 𝐾3) as a function of 𝐾1 for four different com-
binations of (𝐾2, 𝐾3)∶ MSE(𝐾1, 1, 1) in red, MSE(𝐾1, 10, 5) in blue, MSE(𝐾1, 20, 5) in orange, and
MSE(𝐾1, 40, 15) in black. The “minimal” Tucker model with a single component in each mode
collapses the 34 quarters, 1,342 mutual funds, and 25 characteristics into a single “representa-
tive” mutual fund with a single “representative” characteristic observed at one “representative”
quarter. The MSE of the minimal Tucker(1, 1, 1) model represented by the left-most point on
the red line in Panel A is 0.32, corresponding to an 𝑅2 of 40%. Note that increasing 𝐾1 while
keeping 𝐾2 = 𝐾3 = 1 does not reduce the MSE further.

However, the MSE is reduced significantly when 𝐾2 and 𝐾3 are larger than one. The blue line
sets 𝐾1 = 10 and 𝐾3 = 5. The MSE is 0.08 for a single 𝐾1 component, which is equivalent to
an 𝑅2 of 84% and thus twice as high as the 𝑅2 of the minimal Tucker(1, 1, 1) model. Changing
𝐾1 from one to five decreases the MSE to 0.07 but increasing 𝐾1 further has a negligible effect
on the MSE. The Tucker(1, 10, 5) model has 13,503 degrees-of-freedom, thus reducing the data
dimensionality of 1,140,700 by 99%. The dimension reduction is equivalent to approximating a
2-dimensional panel of 100 variables and 200 time series observations with a factor model with
two principal components.

Panel A also shows the MSE for (𝐾1, 20, 10) and (𝐾1, 40, 20). The MSE is close to 0.07 when
𝐾1 = 1 for both cases and decreases for 𝐾1 values up to 10 before levelling off around 0.04
for (10, 20, 10) and 0.03 for (10, 40, 15). The corresponding 𝑅2’s are 92% and 96%. These two
specifications have 28,830 and 56,470 degrees of freedom, respectively, compressing the data
dimensions by 98% and 95%. These values compare to the dimension reduction of a 3-factor
SVD-PCA model for a panel of size (200, 100).
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Panel B has the same format but shows the MSE as a function of the number of mode-2
components, 𝐾2. Recall that the second mode of the data tensor 𝓧 corresponds to the 1,342
mutual funds in the sample. Hence, I consider a broader range of values of 𝐾2 from 1 to 100.
Based on the results in Panel A, I fix the number of mode-1 components at 10 and plot the MSE
for three values of 𝐾3, 5, 10, 15. The MSE for all three specification models with 𝐾2 = 1 is 0.32
and only slightly below the MSE of the minimal (1, 1, 1) model. Increasing 𝐾2 drastically lowers
the MSE but the effect flattens out for 𝐾2 ≳ 20. The MSE for for the (10, 40, 10) and (10, 40, 15)
models are 0.03 and 0.02, respectively, corresponding to 𝑅2’s of 94% and 95%. The dimension
reduction ratio is close 95% for both specifications

Finally, Panel C plots the MSE as a function of 𝐾3 for three combinations of 𝐾1 and 𝐾2:
(10, 10,𝐾3), (10, 40,𝐾3), and (20, 40,𝐾3). The MSE declines steeply for 𝐾3 ≤ 3 and declines
at a lower rate for larger 𝐾3. The MSE of the (10, 40,𝐾3) and (20, 40,𝐾3) models are almost
identical and lower than the MSE of the (10, 10,𝐾3) model. Note that models with a single
mode-1 component yield a reasonably good fit (see Panel A, Tucker(1, 10, 5), Tucker(1, 20, 10),
Tucker(1, 40, 15)), while the fit of models with a single mode-2 or mode-3 components have a
poor fit. This difference is due to the particular structure of the estimated core tensor of the
Tucker model, as I will show in the next section.

These results suggest that Tucker models with 𝐾1 ≈ 10,𝐾2 ≈ 30, and 𝐾3 ≈ 10 components
offer the best fit (𝑅2 over 95%) vs. parsimony (over 94% dimension reduction) trade-off. I choose
the model with (𝐾1, 𝐾2, 𝐾3) = (10, 25, 9) components as the benchmark specification for the rest
of the paper. The MSE of this model is 0.03, and the 𝑅2 is 93% while compressing the 1,140,700
observations by 97% to a model with 35,559 degrees of freedom. The dimension of the data
tensor is reduced from (34, 1697, 25) to a Tucker model with a (10, 25, 9) dimensional core,
which can be interpreted as 25 representative mutual funds with 9 representative characteristics
observed over 10 representative periods.

Before analyzing the fit and properties of this model in more detail, I estimate CP(𝐾) models
of the form (18). Recall that in CP(𝐾)models, the number of components is the same along each
mode, in contrast to the Tucker models, which allows for different numbers of components for
each mode. This restriction may not be an issue if the dimensions of the data along each mode
are similar; however, this might not be true if the mode dimensions vary substantially, as is
the case in the mutual fund sample. The time and characteristic dimensions of the sample are
relatively small, 34 and 25, respectively, while the mutual fund dimension is 1,342. Hence, it
would not be surprising if Tucker models with more components along the mode-2 mutual fund
dimension than along the mode-1 and 3 time and characteristic dimensions would be preferable
to CP models with equal mode-dimensions. Recall that the benchmark Tucker model has 25
mutual fund components but only 10 and 9 date and characteristic dimensions, respectively.

With this caveat in mind, I will proceed with the estimation of CP models and compare their
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fit to the fit of Tucker models. Panel D of Figure 9 plots the MSE for 𝐾 = 1, ..., 20. The iterative
ALS estimation becomes less robust for 𝐾 > 15 and sometimes does not converge. The MSE
shown in the figure is the mean across iterations that did converge. However, I will not consider
𝐾 > 15 in the rest of the paper. The pattern of the MSE is similar to that for Tucker (10, 10,𝐾3)
model shown in Panel C (blue line). The MSE drops from 0.33 for 𝐾 = 1 to 0.04 for 𝐾 = 15 and
to 0.03 for 𝐾 ≳ 18. I choose the CP(12) model as benchmark specification because it combines
a good fit with a parsimonious number of mode-1 and mode-3 components. This specification
has 16,812 degrees of freedom, thus compressing the data by 99%.

3.2. The fit of Tucker and CP benchmark models

In this section, I will analyze the fit of the two benchmark models, Tucker(10, 25, 9) and
CP(12), in more detail. Table 3 shows descriptive statistics of the distributions of the errors.
The mean and median error of the Tucker(10, 25, 9) and CP(12) models are both close to zero.
The standard deviation of the Tucker model is 0.19 and lower than the standard deviation of
the CP model of 0.22. Neither error distribution exhibits significant skewness, but both have
fat tails as indicated by excess kurtosis of over 3. The percentiles reported in Panel B confirm
the presence of some extreme outliers. The inter-quartile range of the errors of the Tucker(10,
25, 9) is (-0.101, 0.099) and 90% and 99% of the errors are in the intervals (-0.302, 0.303) and
(-0.612, 0.629), respectively. The high kurtosis of the error distribution is primarily driven by
the presence of outliers. The minimum and maximum errors are -2.299 and 2.102, respectively.
Errors of the CP(12) model are more spread out than those of the Tucker model but the overall
shape of the error distribution is similar. The outliers can be seen in Panel A of Figure 10, which
shows the errors sorted from most negative to most positive. The errors of the Tucker model
are in black, and the CP errors are in orange. The figure shows that errors are small for the
majority of observations suggesting that the Tucker and CP models yield an overall good fit.
However, the plot also shows the outliers at both ends of the distribution.

Since the data is three-dimensional, it is difficult to visualize the patterns of model fit. It
is helpful to “collapse” one or two dimensions and analyze the resulting two or three dimen-
sions. I start by collapsing two dimensions and studying the model errors along the remaining
dimension. I will also compute some results when only one of the dimensions is collapsed.
The remaining three panels of Figure 10 show mean-squared-errors when errors are aggregated
along each of the modes, time, mutual funds, and characteristics. Panel B shows the MSE for
each quarter in the sample. The blue line is for the Tucker(10, 25, 9) model, and the orange
line is for the CP(12) model. The plot shows that there is little MSE variation across quarters,
especially for the Tucker model, indicating that the model yield a good fit over the whole sample.
The MSE of the CP model is somewhat larger at the start and end of the sample period than in
the middle. Panel C shows the MSE aggregated across the 1,342 mutual funds, sorted from the
fund with the smallest MSE to the fund with the largest MSE. The MSE of the Tucker model is
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below 0.05 (0.1) for 80% (95%) of all funds. The corresponding numbers are slightly lower for
the CP model, 71% and 90%, respectively. However, there are a few outlier mutual funds with
much larger MSE. Three funds have a Tucker MSE higher than 0.2, and the CP model has 13 such
mutual funds. I conclude that the Tucker(10, 25, 9) in particular yields a good fit for all but very
few mutual funds.

Finally, mean-squared-errors aggregated on the characteristic level are plotted in Panel C.
There are several interesting patterns. For all but two characteristics (the adjusted book-to-
market ratio, adjbm, and the Pastor-Stambaugh liquidity measure, psliq), the MSE of the Tucker
model is lower than those of the CP model, but the patterns across characteristics are similar.
The characteristics with the lowest MSE are size (me) and volume (dvol) for both models. The
Tucker errors of 17 out of 25 characteristics are between 0.01 and 0.04, while the MSE of 15
characteristics is between 0.02 and 0.05 in the CP model. In both models, two characteristics
have significantly higher MSE than the rest, momentum (mom) and reversals (rev). I will return
to the fit across characteristics below after discussing the properties of the components of the
Tucker and CP models.

Next, I analyze model errors when they are collapsed across funds, i.e., I compute the MSE
across all mutual funds for each quarter/characteristics pair. The resulting two-dimensional
34-by-25 matrices for the Tucker (Panel A) and CP (Panel B) models are shown as heatmaps in
Figure 11. Lighter (darker) shaded of blue indicates low (high) MSE. The heatmaps reveal several
interesting patterns. First, they facilitate a better comparison of the fit of Tucker and CP mod-
els. The overall lighter shades in Panel A compared to those in Panel B confirms that the Tucker
model has a better overall fit than the CP model, particularly in the first three quarters of the
sample. This difference is especially pronounced for characteristics related to growth rates and
value/growth. Second, the heatmaps show that momentum and reversals are associated with
the highest MSE across the entire sample. Third, even though Panel B in Figure 10 showed little
evidence of time variation in the model fits when errors were collapsed by fund and characteris-
tic, the two-dimensional heatmaps show that there is significant time variation when errors are
aggregated only across mutual funds. For example, the MSE of momentum and reversals varies
considerably across quarters. The momentum MSE in 2013Q1 is 0.27 and almost twice as high
as in 2015Q2 (0.14). The range of MSE is even larger for reversals, 0.15 in 2014Q1 to 0.32 in
2010Q4, and in particular for PS liquidity, 0.11 in 2012Q4 to 0.38 in 2017Q1. On the other hand,
the MSE is stable across the sample for most characteristics, including size, the book-to-market
ratio, and the dividend-price ratio.

Finally, I plot the time series of individual mutual fund/characteristics pairs to illustrate the
fit of the models in more detail. I consider characteristics related to the non-market factors of
the 5-factor Fama-French model, the book-to-market ratio (bm), profitability (op), investment
(inv), as well as momentum (mom). For each of these characteristics, I choose three represen-
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tative mutual funds that illustrate the fit of the Tucker and CP models. I always include the
“worst-case” mutual funds with the worst fit. Figure 12 shows a row for each of the four char-
acteristics with three plots for individual funds. Each panel plots the data in orange, the fitted
values of the Tucker model in black, and the CP model in blue. The “worst-case” funds are in
the third column. The legends include the ticker of the fund that is plotted as well as the MSE
of the Tucker and CP models.

The first row shows plots of the book-to-market ratio. The left panel shows an example in
which both models yield a good fit. The BM ratio of the fund increases over the sample from
about 2.4 to 3.4 (orange line). BM ratios of individual stocks are persistent, so it is not surprising
the BM ratio of fund portfolios are persistent as well. The MSE of CP is slightly lower than that
of the Tucker model for this fund, but both capture the overall pattern of the observed data but
the fitted time series are smoother than the time series of the observed data. The middle panel
shows an example in which the fit of the CP model is poor, but the Tucker model yields a good
fit. The BM ratio of this fund is around 3 from 2011 to the end of 2013 but drops to around
1.75 for the rest of the sample. The Tucker model captures this sudden change reasonably well
but smoothes the drop considerably. The fitted BM ratio of the CP model does not capture the
drop in the data resulting in a large MSE. The right panel shows the “worst-case” funds with
the highest BM MSE. The fit of the Tucker model is reasonably good over the first half of the
sample but cannot capture the sudden rise in 2014 and under-fits the BM ratio for the rest of
the sample. In contrast, the fitted values of the CP model approximate the data poorly.

The second row shows three examples of profitability. In the left panel, the Tuckermodel has
a better fit, while the center panel shows an example where the CP yields a significantly better
fit than the Tucker model. The worst-case mutual fund with the poorest fit is shown in the right
panel. For this fund, profitability equals the maximum value of five throughout the sample.
Since the observed data are at a boundary, this is a challenging scenario for factor-type models.
The fitted values for both models are around four, leaving a level gap over the entire sample.
The MSE of the Tucker model is 0.91 and is the fourth-highest among all fund/characteristic
combinations, so this plot shows one of the worst-case fits of the Tucker model in the entire
sample.

The third and fourth rows show plots for investment and momentum. The left panels show
examples when both models fit the observed data well, while the center panels show cases
when the Tucker model yields a better fit than the CP model. The Tucker model also produces
reasonable fits for the worst-case funds displayed in the panels on the right but the CP performs
particularly poorly. The CP fit for momentum in the bottom right panel is the fifth-worst in the
entire sample.

In summary, the Tucker model with (10, 25, 9) components yields a good approximation
to the observed mutual fund data. It captures 93% of the variation in the data while reducing
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the full dimension of the data by 97%. The model is stable across the sample and fits well
for most mutual funds but there are some outlier funds with poor fits. It also produces good
approximation across characteristics with momentum and reversals having the largest MSE. The
CPmodel with 12 components is more parsimonious than the Tucker(10, 25, 9) model but comes
at the cost of an overall somewhat worse fit. Next, I will analyze the properties of the estimated
models and develop an intuition of the various components of each model. I will focus on the
Tucker model since it fits better than the CP and its components have more direct economic
interpretations.

3.3. Properties of the core tensor and component matrices of the Tucker model

Recall that the Tucker decomposition (15) of a 3-dimensional tensor consists of a core tensor
𝓖 and one component matrices for each of the three modes, 𝗩1, 𝗩2, 𝗩3. For the Tucker(10, 25,
9) model estimated for a data tensor with dimensions (34 × 1342 × 25), 𝓖 is a (10 × 25 × 9)-
dimensional tensor, 𝗩1 is (10× 34), 𝗩2 is (25× 1342), and 𝗩3 is (9× 25). This section focuses
on the properties of these variables. Panel A of Figure 13 plots the 25 largest elements by the
absolute value of the core tensor 𝓖 on a log-scale and Table 4 lists the largest 15 elements with
their indices. The first core element with index (1, 1, 1) is the largest element with a value of 1.46.
The next two largest values are 0.18 and 0.14 for the elements with indices (1, 2, 3) and (1, 3,
3), respectively, followed by five elements with values between 0.02 and 0.04. Recall the Tucker
decomposition is a generalization of the SVD decomposition for matrices. In many economic
and finance-related applications, the first eigenvalue is often significantly larger than the other
eigenvalues. Even though the core tensor is not related to eigenvalues, the spectrum of the
core elements is similar to typical eigenvalue spectrums. Furthermore, the five largest and 13
of the 15 largest core elements have a mode-1 index of one. In other words, the core tensor is
dominated by elements from the first time index, suggesting that the first time dimension plays
a particularly important role. This explains the earlier result that Tucker models with a single
mode-1 time component have a surprisingly good fit, see Figure 9.

The remaining panels of Figure 13 show the largest ten values of the 2-dimensional cores
that are implied by the 3-dimensional Tucker model. The plots correspond to the eigenvalue
spectrums of standard 2-dimensional SVD-PCA models. The plot of the core values for the 2-
dimensional factor model for dates is shown in panel B, while panels C and D show the core
values of the implied models for mutual funds and characteristics, respectively. The core values
have the familiar patterns of eigenvalue spectra in 2-dimensional factormodels. The largest core
value is dominant, especially so for the spectrum of the implied model for mutual funds in Panel
B, followed by some smaller but significant values, before trailing off towards zero.

Next, I analyze the structures of the Tucker component matrices 𝗩1, 𝗩2, 𝗩3. Recall that the
componentmatrices in the higher-dimensional Tucker decomposition are similar to thematrices
of eigenvectors in the SVD matrix decomposition (1) and can be interpreted accordingly. The 𝗩𝑖
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matrices are also related to the factor and loading matrices of the 2-dimensional factor model
(3). I have also shown in (20) that the 3-dimensional Tucker decomposition implies three 2-
dimensional factor representations in which 𝗩1, 𝗩2, 𝗩3 are loading matrices for appropriately
defined factors.

Panel A of Figure 14 shows the heatmap of the (10 × 34)-dimensional matrix 𝗩1. Rows
correspond to the 34 time series observations, and columns correspond to the ten mode-1 com-
ponents of the Tucker model. The first row represents the first quarter in the sample, 2010Q3,
and the last quarter, 2018Q4, is in the bottom row. All elements of the first column of the
heatmap are between 1.32 and 2.41, suggesting that the first component has the interpretation
of a mean, or “level”, factor. This is similar to the first eigenvector with only positive (or all
negative) elements, as is often the case in finance applications. All other columns have posi-
tive and negative elements and have the same interpretation as higher-order eigenvectors as
“long”/“short” factors. For example, the values of the second component are negative over the
first part of the sample and positive in the latter part and thus a “slope” component. In contrast,
the third component represents “curvature”.

The component matrix for the second mode, 𝗩2, in Panel B has 1,342 rows and 25 rows and
is more difficult to visualize. To make the heatmap readable, I plot only the first ten columns
and sort each column from high to low. Hence, each of the 1,342 rows plots different mutual
funds. The first component has again only positive values and represents a “level” factor. All
higher-order components are “long/short” factors.

Lastly, the (25× 9) component matrix of the third mode representing characteristics is dis-
played in Panel C. As before, the first component has the interpretation of a “level” factor. The
values of the second component for the characteristics related to price-multiples are positive,
while values of growth-related characteristics as well as investment are negative. It is apparent
that the second component is related to average correlations across characteristics, which were
discussed above and are shown in Figure 8. Blue blocks have positive values in the second com-
ponent and blocks in red have negative values. Since the heatmap in Figure 8 is based on average
correlations across funds or dates, the second characteristic component can be interpreted as
picking up the mean correlations. The interpretations of higher-order components in Panel C
is less obvious. For example, the third component is composed of relatively few characteristics
with large weights (in absolute value), bm, sp, adjbm, bidask, turn have positive weights, and dp,

me, op, dvol have negative weights. Some characteristics are significant for many components,
e.g. bm, dp, turn, while others are represented in few components, e.g. psliq, ms.

3.4. Representative funds/characteristics

As shown in Section 2.5, the elements of the Tucker core tensor can be interpreted as
(10, 25, 9) “representative” time/fund/characteristic observations. I follow the example given
in that section and compute the time series of the (25× 9) representative fund/characteristics
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by multiplying the core tensor 𝓖 by the mode-1 component matrix 𝗩1 to obtain 𝓢(1). Each fiber
(𝑘2, 𝑘3) of 𝓢(1) represents a time series of the 𝑘2-th representative mutual fund with represen-
tative characteristic 𝑘3.

Figure 15 plots the time series of eight representative fund/characteristic combinations. The
first column shows the first four “diagonal” combinations, and the second column shows the
first four “off-diagonal” combinations. The plots show that the diagonal and off-diagonal combi-
nations have different properties. The diagonal elements are “level” factors with positive values
over the entire sample, while the off-diagonal combinations flip signs and are thus “long/short”
factors. Furthermore, the magnitudes of the representative fund/characteristics decrease by
row. The first representative fund/characteristic ranges from 2.47 to 2.54, while the second,
third, and fourth diagonal combinations range from 0.26 to 0.35, 0.22 to 0.26, and 0.04 to
0.09, respectively. Hence the first diagonal representative fund/characteristic combination is
the dominant level-factor followed by the second, third, etc.

Following the exposition in Section 2.5, I multiply 𝓢(1) by 𝗩3 along mode-3 to obtain 𝓢(13)

with dimension (34, 25, 25). Each fiber 𝘀(𝑡𝑘2𝑐), 𝑘2 = 1, ..., 25 of 𝓢(1) corresponds to a time series
of characteristic 𝑐 of the 𝑘2-th representative mutual fund. Figure 16 shows time series plots
of 𝘀(𝑡𝑘2𝑐) for 𝑐 = 𝑏𝑚,𝑜𝑝, 𝑖𝑛𝑣,𝑚𝑜𝑚. The panels in the left column plot the first three represen-
tative mutual funds, i.e., 𝑘2 = 1,2, 3, while the right column plots the first representative fund
(𝑘2 = 1) along with the mean of the data tensor across all mutual funds in each 𝑡 and given
characteristic 𝑐. To highlight their comovement, I standardize the series shown in the right
column.

Panel A shows the plot for the book-to-market ratio. Since the level of the first fund differs
from the levels of the other representative funds, I use a different 𝑦-scale for the first fund. The
book-to-market ratio of the first fund ranges from 3.5 to 3.75, while bm of the second and third
fund are much low and ranges between 0.55 and 0.75. Moreover, the first representative mutual
fund is closely linked to the cross-sectional mean of the book-to-market ratio of all funds in the
sample, as shown in Panel B. The lower frequency variations of the first representative mutual
fund and the time series of bm-means across funds are almost identical. In other words, the
book-to-market ratio of first representative funds can be interpreted as a mean book-to-market
factor. The higher-order representative mutual funds capture different aspects of the joint time
series and cross-sectional bm distribution that are unrelated to the mean but important for the
overall fit of the model.

The corresponding plots for profitability, investment, and momentum confirm this interpre-
tation of the representative mutual funds. The levels of the first funds are larger than those of
the other funds, and the first representative funds are linked to the cross-sectional means. This
is also true for the other 21 characteristics that are not plotted.

The contributions of representative quarters/funds/characteristics to the overall fit of the
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model can also be illustrated by considering an individual mutual fund for a given characteristic.
Figure 17 shows the fit for momentum of the fund shown in the left plot of Panel D in Figure 12.4

Panel A shows the cumulative contributions of the mode-1 components in the overall fit of the
momentum time series of this fund. I compute the cumulative contributions as follows. Recall
that the Tucker model can be written in terms of the weighted sum of the outer products of
the columns of 𝗩1, 𝗩2, 𝗩3, see (16). To compute the cumulative fit of the mode-1 contributions,
I calculate the sum over all 25 mode-2 and nine mode-3 components but truncate the mode-1
sum at 𝐾1 = 1,2, ..., 𝐾1:

𝓧(𝐾1, 25, 9) =
𝐾1

∑
𝑡=1

25

∑
𝑚=1

9

∑
𝑐=1

𝑔𝑡𝑚𝑐 𝘃1𝑡 ∘ 𝘃2𝑚 ∘ 𝘃3𝑐. (21)

Panel A shows the fitted time series for 𝐾1 = 1,5, 10 as well the observed momentum time
series (dashed orange). The time series with only a single mode-1 component (displayed in light
blue) is essentially constant over the sample and captures the average momentum of the fund
of 2.9. The model with five mode-1 components (in dark blue) features a modest variation over
the sample that mimics the low-frequency movement of observed momentum. Including all ten
mode-1 components yields a fitted time series that matches the low and high frequencies of the
data closely.

The time series of the mode-2 and mode-3 components, 𝓧(10,𝐾2, 9) and 𝓧(10, 25,𝐾3), re-
spectively, are shown in panels B and C are similar. The fitted time series with single mode-2
and mode-3 components displays little variation over the sample and yields a poor fit. The
specifications with five components capture the low and high-frequency movements of the data
significantly better. Adding additional components improves the fit further, especially in the
peaks and troughs.

4. Conclusion

In this paper, I explore tensor-based methods to model high-dimensional data. The Tucker
and CP tensor decompositions extend the singular value decomposition and principal compo-
nents analysis for matrices to more than two dimensions. I show that the decomposition of an
𝑛-dimensional tensor implies 𝑛 2-dimensional factor models and can therefore be interpreted
accordingly. The core tensor of the Tucker model forms a compressed version of the data tensor
with elements akin to representative observations along each of the data dimensions.

I estimate tensor decompositions using a 3-dimensional data set of characteristics of mu-
tual funds across time. I find that the over 90% of the variation in the data can be captured
by low-order tensor representations that compress the data by over 95%. The components of

4The fund is the “Energy Select Sector SPDR” (wficn 500490, ticker XLE) and is chosen for illustration only.
However, the results shown in Figure 17 are representative of most funds in the sample.
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the estimated tensor models share many features that are typically found in applications of
2-dimensional factor models. The first factors of the tensor representation are “long-only” and
are related to means, while other factors are “long/short” and capture deviations from means.

The elements of the core tensor of the Tucker decomposition form a compressed version of
the data tensor and are “representative” date/mutual fund/characteristic combinations. I show
that some date/mutual fund/characteristic combinations capture means while others capture
deviations from means. For example, the time-series of the first “representative” mutual fund
for a given characteristic is highly correlated with the time-series of cross-sectional means of
the characteristic. Higher-order “representative” funds add components beyond cross-sectional
means and improve the fit of the model.
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5. Tables and figures

Table 1: Mutual fund characteristics

Category Characteristics

Multiples Book-to-market (bm), earnings-to-price (ep), projected ep (epproj)
cash flow-to-price (cfp), sales-to-price (sp), dividend-to-price (dp),
industry-adjusted book-to-market (adjbm)

Growth rates Earnings (e_g), long-term earnings (e_lt_g), book value (b_g), cash flow (cf_g),
sales (s_g)

Morningstar Value/growth (ms), multiples (mult), growth rates (gr)

Momentum/reversal Cumulative return 𝑡 − 7 to 𝑡 − 2 (mom), cumulative return 𝑡 − 12 to 𝑡 − 7 (rev)

Liquidity Bid-ask spread (bidask), Pastor-Stambaugh (psliq), turnover (turn), volume (dvol)

Other Market cap (me), operating profitability (op), investment (inv), quality (qual)



Table 2: Sample statistics

Mean Std. Dev. 25% pct. 50% pct. 75% pct.

TNA ($ mil.) 2263.99 8001.44 195.00 587.40 1722.85

No. of stocks 192.20 342.92 56.29 87.05 164.36

Market 𝛽 1.01 0.23 0.95 1.00 1.06

Return (% p.a.) 10.19 4.10 7.95 10.12 12.24

4-factor 𝛼 (% p.a.) -0.18 0.89 -0.53 -0.16 0.19

Notes: The tables reports summary statistics of the sample. I report statistics of the distribution of means by mutual
fund. The sample period is 2010Q3 to 2018Q4.



Table 3: Distributions of errors

Tucker(10, 25, 9) CP(12)

Panel A: Moments
Mean 0.000 0.000
Median 0.000 0.001
Std. Dev. 0.184 0.209
Skew 0.052 −0.023
Kurt. 3.243 3.263

Panel B: Percentiles
min. −1.782 −1.907
0.005 −0.590 −0.677
0.05 −0.292 −0.332
0.25 −0.098 −0.111
0.75 0.097 0.112
0.95 0.293 0.329
0.995 0.609 0.671
max. 1.888 2.102

Notes: The tables reports statistics of the distributions of errors of the Tucker(10, 25, 9) and CP(12) models. The sam-
ple period is 2010Q3 to 2018Q4.



Table 4: Tucker core - 15 largest elements by absolute value

𝑘1 𝑘2 𝑘3 Core 𝗒𝑘1,𝑘1,𝑘1

1 1 1 1.46
1 2 2 0.18
1 3 3 0.14
1 4 4 0.04
1 6 6 0.02
2 8 2 0.02
1 5 6 0.02
1 7 8 0.02
1 4 5 0.02
1 6 7 0.01
1 11 5 0.01
1 7 7 0.01
1 10 9 0.01
1 9 7 0.01
3 1 4 0.01

Notes: The table lists the 20 largest elements of the core tensor of the Tucker(10, 25, 9) model as well as the corre-
sponding (𝑘1, 𝑘2, 𝑘3) indices. The sample period is 2010Q3 to 2018Q4.



Figure 1: Tensor fibers and slices

A: Tensor 𝓧∶ (5 × 4× 3)

B: Mode-1 fibers 𝘅(•𝑚𝑐) C: Mode-2 fibers 𝘅(𝑡•𝑐) D: Mode-3 fibers 𝘅(𝑡𝑚•)

E: Horizontal slices 𝗫(𝑖••) F: Lateral slices 𝗫(•𝑗•) G: Frontal slices 𝗫(••𝑘)



Figure 2: Tensor as matrices

A: Tensor 𝓧∶ (5 × 4× 3)

B: 𝗫(1)∶ (5 × 12)

C: 𝗫(2)∶ (4 × 15)

D: 𝗫(3)∶ (3 × 20)



Figure 3: Tensor multiplication

A: Outer product 𝓧 = 𝗮 ∘ 𝗯 ∘ 𝗰

=𝗮∶ (5 × 1)

𝗯∶ (4 × 1)

𝗰∶ (3 × 1)

𝓧∶ (5 × 4× 3)

B: 1-mode product

𝓧∶ (2 × 4× 3)

𝓧 ×1 𝗔1∶ (5 × 4× 3)𝗔1∶ (5 × 2)

C: 2-mode product

𝓧∶ (2 × 4× 3)

𝗔2∶ (2 × 4)

𝓧 ×2 𝗔2∶ (2 × 2× 3)



Figure 4: Tucker decomposition 𝓧 = 𝓖 ×1 𝗩1 ×2 𝗩2 ×3 𝗩3

≈

𝓧∶ (6 × 5× 4)

𝗩1∶ (6 × 3)

𝗩2∶ (5 × 2)

𝗩3∶ (4 × 2)

𝓖∶ (3 × 2× 2)



Figure 5: CP(𝐾) decomposition

=

+

⋮

+

𝓧∶ 6 × 5× 4

𝗮1 ∘ 𝗯1 ∘ 𝗰1
𝗮𝑟∶ (6 × 1)

𝗯𝑟∶ (5 × 1)

𝗰𝑟∶ 4(×1)

𝗮2 ∘ 𝗯2 ∘ 𝗰2

𝗮𝐾 ∘ 𝗯𝐾 ∘ 𝗰𝐾



Figure 6: Tucker model as 2-dimensional factor model

A: 𝓖 ×1 𝗩1 ×2 𝗩2 → 𝓢12

𝓖 ×1 𝗩1 ×2 𝗩2

(3 × 2× 2) ×2 (6 × 3) ×3 (5 × 2)

=

𝓢12∶ (6 × 5× 2)

B: �̂�⊺
(3) = 𝗦⊺

(12) 𝗩⊺
3

⋮

𝗦⊺
(12)∶ (30 × 2)

𝗩⊺
3∶ (2 × 4)

⋮

�̂�⊺
(1)∶ (30 × 4)



Figure 7: Tucker model: Intuition

A: “Representative” modes-(2,3) (𝑀,𝐶)

𝗩1∶ (6 × 3)

𝓖∶ (3 × 2× 2)

=

𝓢(1) = 𝓖 ×1 𝗩1∶ (6 × 2× 2)

𝘀(𝑡11) 𝘀(𝑡21)

B: “Representative” mode-2 (𝑀)

𝗩1∶ (6 × 3)

𝓖∶ (3 × 2× 2)

𝗩3∶ (4 × 2)

=

𝓢(13) = 𝓖 ×1 𝗩1 ×3 𝗩3∶ (6 × 2× 4)

𝘀(𝑡1𝑐) 𝘀(𝑡2𝑐)



Figure 8: Cross-correlations of characteristics
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Notes: The figure shows the heatmap of pairwise correlations of mutual fund characteristics. I compute times-series
characteristic correlations for all mutual fund pairs as well as cross-sectional correlations for all date pairs. The upper
triangle shows the means across fund correlations and the lower triange shows the mean across date correlations. The
sample period is 2010Q3 to 2018Q4.



Figure 9: MSE of Tucker and CP models

A: MSE of Tucker(𝐾1, 𝐾2, 𝐾3)∶ 𝐾1
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B: MSE of Tucker(𝐾1, 𝐾2, 𝐾3)∶ 𝐾2
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C: MSE of Tucker(𝐾1, 𝐾2, 𝐾3)∶ 𝐾3
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D: MSE of CP(𝐾)
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Notes: The figure plots mean-squared errors of Tucker(𝐾1, 𝐾2, 𝐾3) models in Panels A, B, and C, CP(𝐾) models in Panel D.
The sample period is 2010Q3 to 2018Q4.



Figure 10: Errors of Tucker(10, 25, 9) and CP(12) models

A: Ordered errors
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Notes: Panel A plots the sorted errors of the Tucker(10, 25, 9) and CP(12) models. Panels B, C, and D shows the means
of MSE by dates, mutual funds, and characteristics, respectively. The sample period is 2010Q3 to 2018Q4.



Figure 11: Errors by data/characteristic

A: Tucker(10, 25, 9)
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B: CP(15)
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Notes: The figure shows the heatmap of means across mutual funds of the MSE for each date and characteristic combi-
nation. The sample period is 2010Q3 to 2018Q4.



Figure 12: Fit of bm, op, inv, and mom - Examples
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Notes: The figures shows time series plots of the observed data and fitted values of the Tucker(10, 25, 9) and CP(12)
models of the book-to-market ratio (Panel A), operating profitability (Panel B), investment (Panel C), and momentum
(Panel D) of individual mutual funds. The legends include the wficn of the plotted fund and the MSE of the Tucker(9, 25,
10) and CP(12) models. The sample period is 2010Q3 to 2018Q4.



Figure 13: Tucker(10, 25, 9) core tensor
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Notes: Panel A plots the 25 largest elements by the absolute value of the core tensor 𝓖 of the Tucker(10, 25, 9) model
on a log-scale. Panels B, C, and D plot the spectrums of the core values of the 2-dimensional representations for dates,
mutual funds, and characteristics. The sample period is 2010Q3 to 2018Q4.



Figure 14: Component matrices of Tucker(10, 25, 9) models
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Notes: The figure shows heatmaps of the Tucker component matrices 𝗩𝑖 of the Tucker(10, 25, 9) model. Positive values
are shown in blue and negative values in red. Panel A shows the (34×10) component matrices 𝗩1, Each row corresponds
to a quarter starting in 201Q3 at the top to 2018Q4 at the bottom. The columns correspond to the 𝐾1 = 10 mode-1
components. The second component matrix 𝗩2 has 1,342 rows and 25 columns. Panel B shows the heatmap of the first
10 columns of 𝗩2. In order to visualize 1,342 rows, I sort each column of 𝗩2, so that the first row of each column plots
the funds with the largest values at the top and the funds with the smallest values at the bottom. Panel C shows the
heatmap of the (25 × 9)-dimensional matrix 𝗩3. The sample period is 2010Q3 to 2018Q4.



Figure 15: Representative funds/characteristics of Tucker(10, 25, 9) model
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Notes: The figures shows time-series plots of the mode-1 fibers of the (34, 25, 9)-dimensional tensor 𝓢(1) = 𝓖×1𝗩1. The
(𝑘2, 𝑘3) panels plot the 34 time series observations of the 𝑘2-th mode-2 and 𝑘3-th mode-3 fibers. The sample period is
2010Q3 to 2018Q4.



Figure 16: Characteristics of representative funds in Tucker(10, 25, 9) model
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G: Repr. funds 1 to 3 - mom
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Notes: The figures shows time-series plots of the fibers of the (34, 25, 25)-dimensional tensor 𝓢(13) = 𝓖 ×1 𝗩1 ×3 𝗩3
for book-to-market ratio (row 1), operating profitability (row 2), investment (row 3), and momentum (row 4). The left
columns shows the first three fibers where the first fiber is plotted on the left scale and the second and third fibers on
the right scale. The right columns shows the standardized plots of the first fiber and the time series of cross-sectional
means across characteristics. The sample period is 2010Q3 to 2018Q4.



Figure 17: Contributions of components in Tucker(10, 25, 9) model

A: Mode-1 – 𝓧(𝐾1, 25, 9)
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B: Mode-2 – 𝓧(10,𝐾2, 9)
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C: Mode-3 – 𝓧(10, 25,𝐾3)
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Notes: This figure shows cumulative components for momentum of a single mutual fund (wficn 500490) for the
Tucker(10, 25, 9) model. The top panel plots the fitted time-series of Tucker(𝐾1, 25, 9) models defined in (21), i.e., fix-
ing 𝐾2 = 25 and 𝐾3 = 9 and varying the number of mode-1 components 𝐾1 = 1,5, 10. The observed data is plotted in
orange. Panels B and C show the plots for Tucker(10,𝐾2, 9),𝐾2 = 1,5, 25 and Tucker(10, 25,𝐾3),𝐾3 = 1,5, 9 models,
respectively. The sample period is 2010Q3 to 2018Q4.



Table A-1: Summary of tensor notation and operations

Operation 2-dimensional matrix 3-dimensional tensor 𝑛-dimensional tensor

𝗫 = [𝗑𝑖𝑗] 𝓧 = [𝗑𝑖𝑗𝑘] 𝓧 = [𝗑𝑖1,...,𝑖𝑛 ]

norm ‖𝗫‖ = √∑𝑖𝑗 𝗑2
𝑖𝑗 ‖𝓧‖ = √∑𝑖𝑗𝑘 𝗑2

𝑖𝑗𝑘 ‖𝓧‖ = √∑𝑖1,...,𝑖𝑁 𝗑2
𝑖1,...,𝑖𝑛

matricization 𝗫(1)∶ 𝑇 ×𝑀×𝐶→ 𝑇×𝑀𝐶 𝗫(𝑝)∶ (𝐼1 ×⋯× 𝐼𝑛)→ 𝐼𝑝 × (∏𝑖≠𝑝 𝐼𝑖)
𝗫(2)∶ 𝑇 ×𝑀×𝐶→ 𝑀×𝑇𝐶
𝗫(3)∶ 𝑇 ×𝑀×𝐶→ 𝐶×𝑇𝑀

inner product ⟨𝗫,𝗬⟩ = ∑𝑖𝑗 𝗑𝑖𝑗 𝗒𝑖𝑗 ⟨𝓧,𝓨⟩ = ∑𝑖,𝑗,𝑘 𝗑𝑖𝑗𝑘 𝗒𝑖𝑗𝑘 ⟨𝓧,𝓨⟩ = ∑𝑖1,...,𝑖𝑛 𝗑𝑖1,...,𝑖𝑛 𝗒𝑖1,...,𝑖𝑛

outer product 𝗑𝗒⊺ 𝗑 ∘ 𝗒 ∘ 𝗓 𝗑1 ∘⋯ ∘ 𝗑𝑛

matrix multiplication 𝗔1 𝗫 𝓧 ×1 𝗔1 𝓧 ×1 𝗔1 ×2 ⋯×𝑛 𝗔𝑛

𝗫𝗔⊺
2 𝓧 ×2 𝗔2

vector multiplication 𝗮⊺
1 𝗫 𝗫×1 𝗮⊺

1 𝓧 ×1 𝗮⊺
1 ×2 ⋯×𝑛 𝗮⊺

𝑛

𝗫𝗮2 𝗫×2 𝗮⊺
2

decompositions 𝗨1𝐾 𝗛𝐾 𝗨⊺
2𝐾 𝓖 ×1 𝗩1 ×2 𝗩2 ×3 𝗩3 𝓖 ×1 𝗩1 ×2 ⋯×𝑛 𝗩𝑛

∑𝐾
𝑘=1 ℎ𝑘 𝘂1𝑘 𝘂⊺

2𝑘 ∑𝐾
𝑘=1 𝑔𝑘 𝘄1𝑘 ∘𝘄2𝑘 ∘ 𝘄3𝑘 ∑𝐾

𝑘=1 𝑔𝑘 𝘄1𝑘 ∘⋯ ∘ 𝘄𝑛𝑘
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