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1. Introduction

The U.S. headline inflation reached 7 percent during 2021, vastly exceeding the Fed’s

stated average inflation target. Similar inflation gaps were observed all around the world.

These gaps emerged primarily from the clash between the brisk recovery in aggregate

demand, supported by expansionary policies, and a weaker recovery in aggregate supply,

due to Covid-related bottlenecks. The static picture was one of overheating, which trig-

gered widespread concern that central banks were falling behind the curve. Throughout

most of 2021, major central banks were reluctant to heed the advice to tighten monetary

policy, arguing that the supply bottlenecks were only temporary, and hence unlikely to

generate lasting overheating.

In this note, we characterize the optimal monetary policy response to a temporary

supply contraction. As a benchmark, observe that in the standard New Keynesian (NK)

model, the optimal policy in response to a supply shock is to raise interest rates. This

is done to reduce aggregate demand to match the lower aggregate supply. Only once

aggregate supply recovers, it is optimal to lower the interest rate and boost aggregate

demand.

Set against this benchmark, we analyze the optimal policy with two realistic frictions.

First, we assume aggregate demand inertia: past spending decisions affect future spending.

This type of inertia can emerge from several frictions, e.g., habit formation or infrequent

spending adjustments. Second, we assume expansionary policy constraints: when the

output gap is negative, the central bank cannot instantly raise aggregate demand to its

desired level. This might be because the central bank cannot cut the interest rate suffi -

ciently (e.g., due to the zero lower bound) or because it prefers to adjust the interest rate

gradually due to frictions such as policy uncertainty or concerns with financial stability

(see, e.g., Bernanke (2004)). We capture these constraints in reduced form by requiring

the central bank to follow a standard Taylor rule once aggregate supply recovers (but we

allow the central bank to set the optimal policy while supply is temporarily low).

Our main result is that, with aggregate demand inertia and constraints on expansion-

ary policy, it is optimal for the central bank to run the economy hot during a temporary

supply contraction. When aggregate demand has inertia, overheating the economy in the

low-supply phase ensures that the economy has higher aggregate demand once aggregate

supply recovers. Having a higher aggregate demand in the high-supply phase is useful

because it alleviates the constraints on expansionary policy and accelerates the recovery.

The optimal policy balances the costs of positive output gaps during the low-supply phase

with the benefits of faster recovery and less negative output gaps in the high-supply phase.
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Our analysis does not suggest that monetary policy should remain loose throughout

the low-supply phase. Tempering our main result, we find that in the low-supply phase the

central bank frontloads the interest rate cuts and then quickly normalizes the interest rate

once the output gap reaches its desired (positive) level. This second result is also driven by

the inertia in aggregate demand. With inertia, the initial expansionary monetary policy

creates aggregate demand momentum, which keeps the output gap close to its desired

(positive) level without the need for low interest rates. Keeping the interest rates “too

low for too long”overheats the economy beyond the optimal output gap.

While our baseline model assumes fully sticky prices, our main results hold also when

prices are partially flexible and inflation responds to output gaps. When inflation is de-

termined according to the standard New-Keynesian Phillips Curve (NKPC), our analysis

is mostly unchanged. In a temporary supply contraction, the central bank (typically)

induces positive inflation gaps along with positive output gaps. Once aggregate supply

recovers, the inflationary pressure flips sign and the central bank fights disinflation and

negative output gaps. As before, the central bank runs the economy hot in the low-supply

phase, to mitigate the future negative gaps it expects in the high-supply phase.

When inflation is determined by an inertial Phillips curve (e.g., because price setters

have backward-looking expectations), the optimal policy features richer dynamics. With

inflation inertia, the central bank initially overheats the economy and gradually cools it

down while it waits for the aggregate supply recovery. As the recovery is delayed, inflation

gradually builds up and the central bank faces a more severe trade-off between inflation

and output gaps. Running the economy hot becomes increasingly costly and the central

bank optimally “undoes”some of the overheating it has initially induced.

Literature. This note applies and extends our earlier analysis in Caballero and Simsek

(2021). In that paper, we provide a microfoundation for the inertial behavior of aggregate

demand that we assume in this paper. We characterize the optimal monetary policy with

inertial aggregate demand, and show that a central bank facing a negative output gap

frontloads interest rate cuts and “overshoots”asset prices. In an appendix, we also show

that the central bank might preemptively overshoot asset prices when it expects aggregate

demand to be below potential output in the future, e.g., because of a temporary supply

shock. Here, we focus on temporary supply shocks and characterize the optimal policy in

greater detail. We also use a more standard model (a minor modification of the textbook

New-Keynesian model) and we focus on the optimal path of output, inflation, and interest

rates– rather than on the path of asset prices.

Our note is related to a New-Keynesian literature that investigates the limits of the
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“divine coincidence”of monetary policy: the idea that central banks do not face a trade-

offbetween stabilizing inflation and output. In the textbook model, the divine coincidence

applies not only for aggregate demand shocks but also for standard supply shocks (such

as oil shocks). A large literature circumvents the divine coincidence by introducing “cost-

push shocks”that affect the wedge between the second-best output (which features real

rigidities but no nominal rigidities) and the first-best output (which features no rigidity).

With these shocks, the central bank can still replicate the second-best output by stabilizing

inflation, but this is no longer desirable from a welfare perspective. As highlighted by

Blanchard and Galí (2007), while cost-push shocks help break the divine coincidence,

they are not directly related to supply shocks. Blanchard and Galí (2007) focus on supply

shocks in an environment with real wage rigidities. In this context, a contractionary supply

shock reduces the second-best output more than the first-best output, creating cost-push-

like effects. The central bank faces a trade-off between allowing for some inflation and

stabilizing the “excessive” decline in output. We also focus on supply shocks but our

mechanism is different. In our model, there is an intertemporal breakdown of the “divine

coincidence”: a positive output gap during the low-supply phase shrinks the negative

output gap that is expected to emerge once aggregate supply recovers.

Motivated by the Covid-19 episode, Guerrieri et al. (2021) build a model with a cross-

sectional breakdown of the divine coincidence. They study a multisector economy with

downward wage rigidity subject to a reallocation shock. The contracting sectors expe-

rience high unemployment but no wage or price decline, due to the downward rigidity,

while the expanding sectors experience positive output gaps with high inflation. Guer-

rieri et al. (2021) show that, under some conditions, the central bank may want to run

the economy hot in order to accelerate the reallocation process. We propose a different

and complementary rationale for overheating. Our mechanism suggests more overheating

when the supply shock is temporary, whereas the mechanism in Guerrieri et al. (2021)

would suggest more overheating (under appropriate conditions) when the reallocation

shock is permanent.1

A central feature of our model is aggregate demand inertia. This type of inertia

emerges from various sources, such as infrequent adjustment of spending decisions or

habit formation. An extensive literature documents the infrequent adjustment of durables

consumption and investment (see Bertola and Caballero (1990) for an early survey). There

is also a literature that emphasizes infrequent re-optimization for broader consumption

1See Aoki (2001); Benigno (2004); Woodford (2005); Rubbo (2020); Fornaro and Romei (2022) for
other analyses of how sectoral heterogeneity affects optimal monetary policy. The common theme in this
literature is that monetary policy is also concerned with relative prices.
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categories– due to behavioral or informational frictions– and uses this feature to explain

the inertial behavior of aggregate consumption (e.g., Caballero (1995); Reis (2006)) as

well as asset pricing puzzles (e.g., Lynch (1996); Marshall and Parekh (1999); Gabaix and

Laibson (2001)). Habit formation also introduces inertia into aggregate spending (see

Woodford (2005) for an exposition). Fuhrer (2000); Amato and Laubach (2004) embed

habit formation into standard business cycle models used for monetary policy analysis.

We contribute to this line of work by analyzing the optimal monetary policy response to

a temporary supply shock when there is demand inertia.

The rest of this note is organized as follows. Section 2 introduces our baseline model,

with fully fixed prices. Section 3 characterizes the optimal monetary policy in this envi-

ronment and establishes our main results. Section 4 extends our baseline model to add

partially flexible prices and inflation. This section corroborates the monetary policy im-

plications of the simpler model and establishes additional results when the inflation block

of the model also features inertia. Section 5 provides final remarks. The online appendix

contains the omitted proofs and results as well as the extensions of the baseline model.

2. A simple model with aggregate demand inertia

In this section, we describe our model’s environment. It features a temporary supply

shock, inertial aggregate demand, and constraints on expansionary policy in the high-

supply state– that we capture with a standard Taylor rule. We also characterize the

equilibrium in a benchmark case with no reason for overheating the economy during the

low-supply phase.

For our baseline model, we assume that goods’prices are fixed. In this inflationless

context, overheating simply means a positive output gap. We introduce a Phillips curve

in Section 4, where we confirm that our main results hold in that richer environment.

IS curve with inertial aggregate demand. Consider a discrete time model and let yt =

log Yt denote log output, which is determined by aggregate demand. Suppose the log-

linearized IS curve is given by

yt = ηyt−1 + (1− η) (− (it − ρ) + Et [yt+1]) , (1)

where ρ is the households’discount rate and it is the interest rate at time t (the nominal

and real interest rates are the same since prices are fixed). When η = 0, this reduces to

the standard IS curve of the benchmark New Keynesian model. We assume η > 0, which
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captures inertia in spending decisions. This kind of inertia in the IS curve is broadly

found in, e.g., models with consumption habits (see, e.g., Woodford (2005)), or in models

with sluggish consumption adjustment (see, e.g., Caballero and Simsek (2021)).2 Our IS

curve is parsimonious and abstracts from many other factors that might affect aggregate

demand (see the concluding section for how fiscal policy would affect our analysis).

Temporary supply shocks. There are two states st ∈ {L,H} with potential outputs y∗L <
y∗H . The economy starts in state L and transitions to state H with probability λ in each

period. Once the economy is in state H, it stays there (i.e., H is an absorbing state).

Taylor-rule constraint on expansionary policy. After the economy switches to the high-

supply state, the central bank sets the interest rate according to a standard Taylor rule:

it = ρ+ φ (yt − y∗H) if st = H. (2)

Here, ρ is the long-run “rstar” for this economy and φ > 0 is a non-negative coeffi cient

that captures the strength of the interest rate reaction to the output gap. As we will

see, this Taylor rule is not fully optimal in our context: it implements a zero output gap

in the long-run but not necessarily in the short run. We view this rule as a stand-in for

unmodeled constraints on expansionary policy, such as restrictions on interest rate cuts or

frictions that induce the central bank to adjust the interest rate gradually. In Appendix

B, we show that our main result applies to a scenario in which the central bank sets the

interest rate optimally also in the high-supply phase but subject to a zero lower bound

(ZLB) constraint.

Central bank’s problem in the low-supply phase. In the low-supply state, the central bank

sets the policy interest rate to minimize the present discounted value of quadratic out-

put gaps, Et

[∑∞
h=0 β

h

(
yt+h−y∗st+h

)2
2

]
. We assume the central bank sets the interest rate

without commitment. We can then formulate the policy problem recursively as

VL (yt−1) = max
it,yt
−(yt − y∗L)2

2
+ βEt

[
Vst+1 (yt)

]
(3)

yt = ηyt−1 + (1− η)
(
− (it − ρ) + Et

[
Yst+1 (yt)

])
.

Here, Ys (y−1) and Vs (y−1) denote the output and the central bank’s value, respectively,

2Large-scale New-Keynesian models, e.g., the Fed’s FRB/US model, assume inertia because it helps
match the observed gradual response of spending to a variety of exogenous shocks (see Brayton et al.
(2014)).
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when the current state is s ∈ {H,L} and the most recent output is y−1. The central
bank takes its future decisions as given and sets the current interest rate and output to

minimize quadratic gaps, subject to the inertial IS curve.

Benchmark without constraints on expansionary policy. Let us start with a

“first-best”benchmark case in which the central bank faces no constraints on expansionary

policy. Specifically, suppose the central bank minimizes output gaps also in the high-

supply state s = H by solving an analogue of problem (3). In this benchmark, the central

bank can achieve zero output gaps in every period and state, yt = y∗st , since there is always

a feasible interest rate that ensures a zero output gap. Let us solve for these interest rates.

Consider the high-supply state H. Using yt = yt+1 = y∗H , the IS curve (1) implies

it,H = ρ− η

1− η (y∗H − yt−1) .

If aggregate demand has recently been weak, yt−1 < y∗H , the interest rate needs to be cut

below its steady-state level to ensure the economy operates at its potential. In particular,

for the first period in which the economy transitions to the high-supply state, we obtain

itran,H = ρ− η

1− η (y∗H − y∗L) . (4)

The central bank needs to cut the rate by a greater amount after the transition when

aggregate demand has more inertia (higher η), and when the temporary supply shock is

more severe (larger y∗H − y∗L).
Next consider the temporary supply shock state L. Using yt = y∗L and E [yt+1] =

λy∗H + (1− λ) y∗L, the IS curve (1) implies

it,L = ρ+ λ (y∗H − y∗L)− η

1− η (y∗L − yt−1) . (5)

When recent output is equal to potential, yt−1 = y∗L, the interest rate in state L is above

its steady-state level, ρ. Since supply is temporarily low but is expected to recover (and

this expectation raises current demand), the central bank raises the interest rate to ensure

that current demand is in line with the reduced supply. When yt−1 6= y∗L, the interest rate

also accounts for the inertia in aggregate demand.

These interest rate expressions hint that constraints on expansionary policy has the

potential to cause problems (especially) during the transition from state L to state H.

We next turn to our main case.
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3. Overheating with inertia and constrained expan-

sionary policy

In this section, we establish our main result that the optimal policy overheats the economy

during the temporary supply shock state. The central bank achieves this by frontloading

monetary policy (i.e., cutting rates early and normalizing rates quickly), which generates

aggregate demand momentum. The reason for optimally overheating the economy during

the supply-shock phase is to increase the starting level of aggregate demand once supply

constraints dissipate and the expansionary policy constraints become binding.

We start by characterizing the equilibrium in the high-supply state s = H.

Lemma 1. Suppose the economy has switched to the high-supply state, s = H, with past

output yt−1. Then, the output gap converges to zero at a constant rate:

YH (yt−1)− y∗H = γH (yt−1 − y∗H) , (6)

where γH ∈ (0, 1) is the smallest root of the polynomial P (x) = x2 − x
(

1
1−η + φ

)
+ η

1−η .

Current output is increasing in past output, dYH(yt−1)
yt−1

= γH > 0. We also have dγH
dη

>

0, dγH
dφ

< 0: more inertia or less reactive expansionary policy (greater η or smaller φ)

makes output more sensitive to past output (greater γH).

The central bank’s value function is given by

VH (yt−1) = −θH
(yt−1 − y∗H)2

2
, where θH =

γ2H
1− βγ2H

. (7)

Over the range, yt−1 < y∗H , the value function is increasing in past output
dVH(yt−1)

yt−1
> 0.

The first part of the lemma shows that output eventually reaches its potential level,

y∗H . However, the convergence is not immediate and output is influenced by demand.

Importantly, output is increasing in past output, and more so if aggregate demand has

more inertia or the expansionary policy is more constrained (less reactive to output gaps).

The last part shows that, as expected, the value function depends on the initial output

gap and on the convergence rate.

For intuition, consider the relevant case with yt−1 < y∗H . The recent decline in output

along with inertia keeps current demand low, and the Taylor rule cannot immediately bring

demand back to potential. A greater past output increases current demand, accelerates

the recovery, and increases the central bank’s value. Naturally, these effects are stronger
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when aggregate demand has more inertia and the policy is more constrained.3

Next consider the equilibrium in the low-supply state s = L. Using (7), we can rewrite

problem (3) as

VL (yt−1) = max
yt
−(yt − y∗L)2

2
+ β

(
(1− λ)VL (yt)− λθH

(yt − y∗H)2

2

)
. (8)

We dropped the IS curve, which determines the interest rate the central bank needs to

set to implement the optimal output level. Note that the value function does not depend

on past output: VL (yt−1) ≡ VL is constant. The optimality condition is:

yL − y∗L = βλθH (y∗H − yL) . (9)

This leads to our main result.

Proposition 1. Suppose the economy is in the temporary supply shock state, s = L, with

past output yt−1. The central bank implements the constant output level yL ∈ (y∗L, y
∗
H) that

solves (9). The central bank chooses a level of output that induces positive output gaps

in the current low-supply state (current overheating), yL > y∗L, and negative output gaps

after transition to the high-supply state (future demand shortages), YH (yL) < y∗H .

The central bank targets the optimal output by setting the interest rate

it,L = ρ+ λ (YH (yL)− yL)− η

1− η (yL − yt−1) . (10)

Starting with y−1 < yL, we have i0,L < it,L ≡ iL for t ≥ 1, where iL = ρ+λ (YH (yL)− yL).

The central bank initially sets a low interest rate and then normalizes the interest rate and

keeps it at a constant level until the transition to the high-supply state.

The first part characterizes the optimal output in the low-supply state. For intuition,

observe that the left side of (9) captures the marginal cost of overheating and the right

side of (9) captures the marginal benefit from overheating. When output is at its potential

level, yL = y∗L, the marginal cost of overheating is zero but the marginal benefit is strictly

positive. Therefore, the central bank optimally induces some overheating. Overheating in

the current period mitigates the demand shortage and accelerates the recovery in future

periods after the transition to high supply. Observe also that the marginal benefit from

overheating declines as yL rises toward y∗H and it becomes zero when yL = y∗H . Therefore,

3In the limit without inertia or with unconstrained policy, output immediately converges to its poten-
tial and is not influenced by past output, limη→0 γH = limφ→∞ γH = 0.
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there is a unique interior optimum yL ∈ (y∗L, y
∗
H). The central bank stops short of over-

heating to the point that the economy would have no (negative) output gaps after the

transition to the high-supply state.

The second part of Proposition 1 shows that the central bank does not keep the interest

rate low throughout the low-supply phase. Rather, the central bank frontloads the interest

rate cuts and then quickly normalizes the interest rate once the output gap reaches its

target level (yL). This feature is also driven by the inertia in aggregate demand. Recall

the IS curve (1)

yt = ηyt−1 + (1− η) (− (it − ρ) + Et [yt+1]) .

With inertia (η > 0), a greater past output yt−1 supports a greater current output yt
for any given interest rate it (and expected output Et [yt+1]). Therefore, once the central

bank raises the output to its target level, it does not need to keep the interest rate low to

keep the output at this level. The initial expansionary monetary policy creates aggregate

demand momentum. This demand momentum keeps the output gap close to its desired

(positive) level without the need for low interest rates. Keeping the interest rates “too

low for too long”would overheat the economy beyond the optimal output gap.

Numerical illustration. Figure 1 illustrates the equilibrium in a numerical example.

In this simulation, the economy starts in the temporary low-supply state with the most

recent output equal to potential output in the low-supply state, y−1 = y∗L. The economy

transitions to the high-supply state in period seven.

The (black) dotted lines plot the equilibrium in the first-best benchmark case, where

the planner does not face any constraints on expansionary monetary policy. In this bench-

mark, the policy keeps output at its potential level both before and after the transition

to the high-supply state. Before the transition, the policy sets a relatively high interest

rate (see (5)). After the transition, the policy aggressively cuts the interest rate (for one

period) to raise aggregate demand to match the higher aggregate supply level (see (4)).

The (blue) solid lines plot the equilibrium characterized in Proposition 1, where the

planner faces the Taylor-rule constraint on expansionary policy. Unlike in the first-best

benchmark, the policy induces overheating in the low-supply state. The policy achieves

this by cutting the rate aggressively in the first period while the economy is in the low-

supply state. Once the policy brings output in the low-supply state to the optimal level of

overheating, yL > y∗L, it raises the interest rate to keep output constant until the economy

transitions to the high-supply state. After the transition, the policy cuts the interest rate

once again to raise aggregate demand toward the higher aggregate supply level. Due to
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Figure 1: A simulation of the equilibrium starting in the low-supply state, s0 = L, with the
most recent output equal to potential output in the low-supply state, y−1 = y∗L. The solid
lines correspond to the equilibrium with optimal policy. The dotted lines correspond to a
first-best benchmark case in which the policy is not subject to the Taylor-rule constraint.
The dashed lines correspond to another benchmark in which the policy is myopic and
minimizes the output gap in the current period.

the constraints on expansionary policy, the recovery in the high-supply state takes several

periods to complete.

Why does the optimal policy cut the interest rates in the low-supply state and induce

overheating? As Figure 1 illustrates, the central bank anticipates that the transition to

the high-supply state will start with low aggregate demand. Because aggregate demand

has inertia, the central bank recognizes that a greater aggregate demand in the low-supply

state will accelerate the recovery after the economy transitions to the high-supply state.

Therefore, the central bank optimally frontloads interest rate cuts and raises output in

the low-supply state above its potential. The optimal policy induces some overheating

in the low-supply state, but it also reduces the output gaps and accelerates the recovery
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once the economy switches to the high-supply state.

To further illustrate the dynamic aspects of the optimal policy, Figure 1 plots another

benchmark in which the central bank is myopic and focuses on closing current gaps (red

dashed lines). Formally, the central bank solves Problem (3) with the period-by-period

objective function −(yt−y∗L)
2

2
. In this myopic benchmark, the central bank keeps output in

the low-supply state equal to its potential. Consequently, the economy transitions to the

high-supply state with a lower aggregate demand than when the central bank implements

the optimal (dynamic) policy. Since the expansionary policy in the high-supply state is

constrained and aggregate demand is partly backward looking, the recovery takes longer.

The myopic policy does not induce overheating in the low-supply state, but it leads to

more negative output gaps and a slower recovery once the economy switches to the high-

supply state.

4. Overheating with inflation

In this section we extend our setup to allow for partially flexible prices and an inflation

rate that is responsive to overheating. We start with the textbook case in which inflation

is determined by a New-Keynesian Phillips Curve (NKPC) without inflation inertia. In

this case, our substantive conclusion remains the same: the central bank overheats the

economy in the temporary supply shock state to fight the negative output gaps and the

disinflation that it expects to emerge after the supply recovers. We then assume that

the inflation block of the model also features inertia. This case leads to richer dynamics

within the temporary supply shock state: With inflation inertia, the central bank initially

overheats the economy, as before, but gradually cools it down as the supply contraction

continues.

We first modify the baseline setup in Section 2 to incorporate inflation. Let Pt denote

the nominal price level and πt = log (Pt/Pt−1) denote (log) inflation. With inflation, the

IS curve (1) becomes

yt = ηyt−1 + (1− η) (− (rt − ρ) + Et [yt+1]) (11)

where rt = it − Et [πt+1] .

Here, rt denotes the real interest rate. We also modify the Taylor rule in the high-supply
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state to allow the central bank to react to the inflation gap as well as the output gap,

it = ρ+ φy (yt − y∗H) + φππt if st = H. (12)

We normalize the inflation target to zero so that the inflation gap (the deviation of the

inflation from the target) is the same as inflation. Finally, we adjust the central bank’s

objective function to incorporate the costs of inflation:

Et

 ∞∑
h=0

βh


(
yt+h − y∗st+h

)2
2

+ ψt+h
π2t+h

2


 . (13)

Here, ψt denotes the relative welfare weight for the inflation gaps in period t. For the

analysis with the NKPC in Section 4.1, we simply assume constant welfare weights, ψt ≡ ψ

for each t. For the analysis with an inertial Phillips curve in Section 4.1, we specify state-

dependent welfare weights (as we describe subsequently) to simplify the analysis.

We next describe the inflation block and characterize the optimal policy. We consider

two specifications that differ on whether the Phillips curve features inertia or not.

4.1. Overheating with the New-Keynesian Phillips curve

First, suppose inflation is determined by the standard NKPC (see Galí (2015) for a deriva-

tion):

πt = κ
(
yt − y∗st

)
+ βEt [πt+1] . (14)

Inflation depends on the current output gap, yt−y∗st, as well as the expectations for future
inflation. The coeffi cient κ captures the extent of price flexibility. The equation does not

feature inertia because inflation expectations are rational and forward-looking.

Consider the first-best benchmark without constraints on expansionary policy. As

before, the central bank achieves zero output gaps throughout. In view of Eq. (14), this

implies zero inflation throughout. In this benchmark, the divine coincidence applies and

introducing inflation does not change the analysis.

Next, suppose the central bank is constrained to follow the Taylor rule (12) in the high-

supply state. The analysis closely parallels the baseline analysis in Section 3. Therefore,

we relegate the formal results to Appendix A.2.1 and discuss the intuition.

In the high-supply state, s = H, the equilibrium is characterized by the IS curve (11),

the NKPC (14), and the Taylor rule (12). Under appropriate parametric restrictions, the
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Taylor rule ensures that the output and inflation gaps eventually converge to zero (see

Lemma 2 in the appendix). However, the convergence is not immediate. Starting with

yt−1 < y∗H , the economy experiences a period of negative output gaps and disinflation. As

before, increasing yt−1 mitigates these gaps and increases the value function.

In the low-supply state, s = L, the central bank solves a modified version of prob-

lem (8). Proposition 3 in the appendix characterizes the solution and shows that our

main result extends to this setup. The central bank chooses a level of output that in-

duces positive output gaps in the low-supply state (current overheating), yt,L ≡ yL > y∗L,

and negative output gaps and disinflation after transition to the high-supply state (future

demand shortages), YH (yL) < y∗H ,ΠH (yL) < 0.

Figure 2 illustrates this result in a numerical example. As before, the economy starts in

the low-supply state and with past output y−1 = y∗L. The dotted lines show the first-best

case with unconstrained policy. The solid lines show the equilibrium with constrained

optimal policy. The central bank cuts the interest rate (both nominal and real) aggres-

sively in the temporary supply shock state to bring output above its potential level and

inflation above its target level. Similar to before, the central bank anticipates that the

recovery will start with low aggregate demand and disinflation. Therefore, it frontloads

interest rate cuts and overheats the economy to ensure that the recovery starts with a

greater aggregate demand and a smaller inflation gap.

As the figure shows, the central bank implements a relatively low inflation despite the

fact that it sets a positive output gap. This aspect is driven by the forward looking nature

of the NKPC. Price setters recognize that the supply recovery will start with negative

output gaps and disinflation. The expected disinflation puts downward pressure on current

inflation. While this result makes overheating relatively less costly, empirical studies of

the Phillips curve suggest that inflation is not influenced by the rationally expected future

output gaps as much as predicted by the NKPC (see, e.g., Rudd and Whelan (2005)).

We next turn to an alternative setup in which inflation is backward-looking.

4.2. Overheating with an inertial Phillips curve

Next suppose inflation is determined by an inertial Phillips curve:

πt = κ
(
yt − y∗st

)
+ bπt−1. (15)

Here, b ∈ (0, 1) is a parameter that captures the strength of inflation inertia. In theory,

inflation inertia can emerge from several frictions, e.g., backward-looking indexation of
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Figure 2: A simulation of the equilibrium in which inflation is determined acording to
the NKPC. The solid lines show the equilibrium with optimal policy. The dotted lines
illustrate a first-best benchmark case in which the policy is not subject to the Taylor-rule
constraint.
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prices or wages (e.g., Galıand Gertler (1999)) or adaptive inflation expectations (e.g.,

Blanchard (2016)). For analytical tractability, we assume inflation is fully backward-

looking.

First, consider the first-best benchmark setup without constraints on expansionary

policy. As long as the central bank does not inherit past inflation, π−1 = 0, it is easy to

check that the equilibrium is the same as before. In particular, the central bank achieves

zero output gaps and zero inflation throughout. As long as π−1 = 0, the divine coincidence

still applies with a backward-looking Phillips curve.

Next, consider the main setup with constraints on expansionary policy. In the high-

supply state, s = H, the equilibrium is characterized by the IS curve (11), the Phillips

curve (15), and the Taylor rule (12). This equilibrium is more complicated than before

since there are two state variables: past output yt−1 and past inflation πt−1. To simplify

this characterization (which is not our focus), we make two assumptions. First, the

Taylor-rule coeffi cient on inflation satisfies φπ = b. With this assumption, Lemma 3 in

the appendix shows that the output gaps converge to zero at a constant rate γH . Second,

we assume the planner’s welfare weight on inflation, ψt, is constant within the low-supply

state (denoted by ψL), positive in the first period after the transition to the high-supply

state (denoted by ΨH), and zero in the remaining periods. With this assumption, Lemma

3 calculates the value function in the first period after the transition to the high-supply

state as:4

ṼH (yt−1, πt−1) = −θH
(yt−1 − y∗H)2

2
−ΨH

π2t
2

with θH =
γ2H

1− βγ2H
and πt = κγH (yt−1 − y∗H) + bπt−1.

In this case, the value function depends on the past inflation, πt−1, as well as on the past

output gap, yt−1 − y∗H [cf. Eq. (7)].

In the low-supply state, s = L, the central bank solves a version of problem (8):

VL (yt−1, πt−1) = max
yt,πt
−(yt − y∗L)2

2
− ψL

π2t
2

+ β
(

(1− λ)VL (yt, πt) + λṼH (yt−1, πt−1)
)

πt = κ (yt − y∗L) + bπt−1 (16)

Our main result characterizes the optimal policy and extends Proposition 1 to this setting.

4The assumption on ψt is innocuous as long as we interpret the parameter ΨH as capturing the total
cost of inflation after transition to state H (as opposed to the cost in a single period).
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To state the result, we define the following derived parameters:

A = 1 + βλ
(
θH + ΨHκ

2γH (γH + b)
)

(17)

B = (ψL + βλΨHb (γH + b))κ

C = β (1− λ)κbψL

D = βλ
(
θH + ΨHκ

2γH (γH + b)
)
.

Proposition 2. Consider the setup with inertial Phillips curve. Suppose φπ = b, φy > κ

and ψt satisfies the simplifying assumptions described earlier. Let A,B,C,D > 0 denote

the parameters in (17). Let γL ∈ (0, b) denote the positive root of the polynomial P (x) =

x2 + x
(
A/κ+B

C

)
− Ab/κ

C
. As long as the economy remains in the low-supply state, the

optimal choice of output and inflation, (yt, πt), converge to a steady-state, (yL, πL), where

yL = y∗L +
D

A+ (B + C) κ
1−b

(y∗H − y∗L) ∈ (y∗L, y
∗
H) (18)

πL =
κ

1− b (yL − y∗L) > 0. (19)

Along the transition path, the optimal output and inflation are given by

yt − yL = −b− γL
κ

(πt−1 − πL) (20)

πt − πL = γL (πt−1 − πL) . (21)

The associated real and nominal interest rates are given by (A.14− A.15) in the appendix.

Starting with zero past inflation π−1 = 0, the planner implements a relatively high initial

output gap, y0 > yL > y∗L. Absent transition to the high supply state, the planner gradually

decreases the output gap toward its steady state value, yt− y∗L ↓ yL− y∗L, and increases the
inflation toward its steady state value, πt ↑ πL.

With inertia in the Phillips curve, the central bank still implements high output gaps in

the low-supply state, as before, but it also reduces the output gaps as the supply recovery is

delayed. For intuition, note that the output gaps increase inflation. With inflation inertia,

past inflation shifts the Phillips curve and worsens the trade-off between increasing the

output (to accelerate the future recovery) and raising inflation. As time passes and the

recovery is delayed, it becomes increasingly costly to induce positive output gaps. The

central bank optimally “undoes”some of the overheating it has initially induced.

Figure 3 illustrates the result in a numerical example. The (blue) solid lines show

the equilibrium with optimal policy. As before, the central bank cuts the interest rate
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Figure 3: A simulation of the equilibrium in which inflation is determined acording to
an inertial Phillips curve. The solid lines show the equilibrium with optimal policy. The
dotted lines illustrate a first-best benchmark case in which the policy is not subject to
the Taylor-rule constraint.
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aggressively in the temporary supply shock state to bring output above its potential level.

As time passes and the recovery is delayed, this policy raises inflation. To keep inflation

under control, the central bank gradually brings output closer to its potential– undoing

some of the initial overheating.

The last two panels of Figure 3 show the nominal and real interest rates the central

bank targets. As before, after the initial interest rate cut, the central bank raises the

interest rate. Unlike before, the nominal rate can exceed the corresponding nominal

interest rate in the first-best benchmark (cf. Figures 1 and 2). In this model, the level

of the nominal interest rate is also influenced by expected inflation. As inflation increases

over time, expected inflation increases (we assume consumers’ inflation expectations are

rational and forward looking). Thus, the central bank raises the nominal rate to keep the

real rate relatively stable.

5. Final Remarks

Summary. In this note, we developed a model to address two substantive questions:

Should central banks tolerate some degree of overheating during a temporary supply con-

traction? And if the answer is yes, as we find, does this imply that optimal monetary

policy should remain ultra-loose throughout the supply constrained phase?

Our answers to these questions build on the realistic modeling ingredient that aggre-

gate demand has inertia. Inertia implies that the level of aggregate demand in the future,

once aggregate supply recovers, is increasing in the level of aggregate demand in the

current low-supply state. This dynamic linkage across states implies that a policymaker

that anticipates being constrained and facing a negative output gap in the future, once

aggregate supply recovers, overheats the economy in the current low-supply state.

Aggregate demand inertia also implies that, within the low-supply phase, the optimal

policy frontloads the interest rate cuts and then quickly normalizes the interest rate.

The reason is that the initial expansion generates aggregate demand momentum. This

momentum supports aggregate demand and ensures that output stays at the optimal level

of overheating without the initially low interest rate. In this context, keeping the interest

rate “too low for too long”overheats the economy beyond the optimal level.

If the inflation block of the model also features inertia, then the optimal policy features

richer dynamics. The initial expansion in the low supply state gradually increases inflation,

which makes it increasingly costly to run the economy hot. As the recovery is delayed, the

central bank optimally “undoes”some of the initial overheating. The build-up of inflation

19



also raises expected inflation, which induces the central bank to keep hiking the nominal

interest rate until supply recovers. In this context, adjusting the nominal interest rate too

slowly lowers the real interest rate and overheats the economy beyond the optimal level.

Clarifications and extensions. We assumed that potential output immediately re-

covers to a high level once the temporary supply contraction ends. This feature is meant

to capture a Covid-19 style shock, where supply remains depressed mainly due to virus-

related developments (e.g., whether there will be a new variant) and can be expected to

recover rapidly once the virus is under control. For other supply shocks, where the ex-

pected supply recovery is more gradual, the first-best benchmark implies smaller interest

rate cuts during the recovery, which also reduces the need for frontloading interest rate

cuts (see Figure 1). In this sense, our results are more relevant for temporary supply

shocks driven by highly disruptive but short-lived events, such as epidemics, wars, or

political conflicts.

We also abstracted from fiscal policy and focused on the optimal path of monetary

policy. In the Covid-19 recession, fiscal policy played an important role and it was front-

loaded. We could capture frontloaded fiscal policy by assuming a higher level of past

output at the onset of the model (y−1). This would not affect the central bank’s output

gap target in the low-supply phase, but it would reduce the initial interest rate cut nec-

essary to achieve this target (see Eq. (10)). More broadly, fiscal and monetary policy are

substitutes in terms of their impact on aggregate demand, which suggests that our results

can also speak to the optimal timing of fiscal policy. In particular, aggregate demand

inertia provides a rationale for frontloading and then normalizing fiscal policy, along the

lines we observed after the Covid-19 shock. We leave a more complete analysis of the

optimal fiscal policy response to temporary supply shocks for future work.
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Online Appendix: Not for Publication

A. Omitted Proofs

This appendix contains the results and the derivations omitted from the main text.

A.1. Omitted proofs for Section 3

Proof of Lemma 1. Combining the IS curve in (1) and the Taylor rule in (2), output

follows the difference equation,

yt = ηyt−1 + (1− η) (−φ (yt − y∗H) + yt+1) .

We drop the expectations since there is no (residual) uncertainty. Let ỹt = yt−y∗H denote
the output gap. Then, we can rewrite the difference equation as,

ỹt = ηỹt−1 + (1− η) (−φỹt + ỹt+1) .

In matrix notation, we have the system,[
ỹt+1

ỹt

]
= M

[
ỹt

ỹt−1

]
where M =

[
1
1−η + φ − η

1−η

1 0

]
.

The characteristic polynomial of the matrix M is given by

P (x) = x2 − x
(

1

1− η + φ

)
+

η

1− η .

This polynomial has two roots that satisfy

0 < γ1 < 1 < γ2.

Since ỹt−1 is predetermined and ỹt is not, this condition ensures the system is saddle

path stable. Moreover, letting γH ≡ γ1 ∈ (0, 1) denote the stable eigenvalue, the solution

converges to zero at a constant rate:

ỹt+h = γH ỹt+h−1 = γh+1H ỹt−1.

This proves (6).
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We can then solve for the value function as:

VH =
∞∑
h=0

−βh (ỹt+h)
2

2
=
∞∑
h=0

−βh
(
γh+1H ỹt−1

)2
2

= − γ2H
1− βγ2H

(ỹt−1)
2

2
.

This establishes (7).

To establish the comparative statics of γH , let η̃ = η
1−η and note that γH is the solution

to the following equation over the range (0, 1):

P (x, η̃, φ) = x2 − x (1 + η̃ + φ) + η̃ = 0.

Implicitly differentiating with respect to η̃ and evaluating around x = γH , we obtain

dx

dη̃
= − ∂P/∂η̃

∂P/∂x

∣∣∣∣
x=γH

=
1− γH

1 + η̃ + φ− 2γH
> 0.

Here, the inequality follows since γH < 1 and 2γH < γ1 + γ2 = 1 + η̃ + φ (since γH is the

smaller of the two roots γ1, γ2). Since η̃ = η
1−η is increasing in η, we also have

dx
dη
> 0.

Likewise, we obtain

dx

dφ
= − ∂P/∂φ

∂P/∂x

∣∣∣∣
x=γH

=
−γH

1 + η̃ + φ− 2γH
< 0.

Finally, note that we also have the closed-form solution

γH =
1 + η̃ + φ−

√
(1 + η̃ + φ)2 − 4η̃

2
.

As η → 0 (and η̃ → 0), we have γH → 0. Likewise, as φ → ∞, it can be checked that
γH → 0. This completes the proof.

Proof of Proposition 1. The proof is mostly provided in the main text. To characterize
the interest rate, note that the IS curve (1) implies

it,L = ρ+ λ (YH (yt)− yt,L) + (1− λ) (yt+1,L − yt,L)− η

1− η (yt,L − yt−1) .

After substituting yt,L = yt+1,L = yL, we obtain (10).
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A.2. Omitted results and proofs for Section 4

We first consider the case with the NKPC and present the formal results omitted from

Section 4.1 along with their proofs. We then consider the case with an inertial Phillips

curve analyzed in Section 4.2 and present the omitted results and proofs.

A.2.1. Overheating with a New-Keynesian Phillips Curve

Suppose inflation is determined according to the NKPC (14)

πt = κ
(
yt − y∗st

)
+ βEt [πt+1] .

Let Πs (yt−1) , Ys (yt−1) , Vs (yt−1) denote the inflation, the output, and the value function

level when the current state is s ∈ {H,L}, and the most recent output is yt−1. Suppose
also that the relative weight of inflation in the planner’s objective function is constant

throughout, ψt ≡ ψ for each t (see (13)).

We first characterize the equilibrium in the high supply state s = H. To state the

result, we define the polynomial:

P (x) = x3−x2
(

1

1− η + φy +
1 + κ

β

)
+x

((
1

1− η + φy

)
1

β
+ φπ

κ

β
+

η

1− η

)
− 1

β

η

1− η .

(A.1)

Lemma 2. Consider the setup with inflation determined by the NKPC (14). Suppose

ψt ≡ ψ and the polynomial in (A.1) has exactly one stable root that satisfies γH ∈ (0, 1)

(a suffi cient condition is φy (1− β) + (φπ − 1)κ > 0 and βφπ ≤ 1). Suppose the economy

has switched to the high-supply state, s = H, with past output yt−1. Then, the output gap

and the inflation functions are given by:

YH (yt−1)− y∗H = γH (yt−1 − y∗H) (A.2)

ΠH (yt−1) = πh (yt−1 − y∗H) where πh =
κγH

1− βγH
. (A.3)

The output gap and inflation both converge to zero at a constant rate γH . The value

function is given by

VH (yt−1) = −θH
(yt−1 − y∗H)2

2
where θH =

1

1− βγ2H

(
γ2H + ψ

(
κγH

1− βγH

)2)
. (A.4)

In the high-supply state, the equilibrium is determined by the IS curve, the NKPC,
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and the Taylor rule. Under appropriate parametric conditions, the Taylor rule ensures

that the output and inflation gaps converge to zero. As before, the convergence is not

immediate. Due to inertial demand, past output, yt−1, affects the output and inflation

gaps in the high-supply state.

Next consider the equilibrium in the low supply state s = L. Using Lemma 2, the

planner solves the following version of problem (8):

VL (yt−1) = max
yt,πt
−(yt − y∗L)2

2
− ψπ

2
t

2
+ β

(
(1− λ)VL (yt)− λθH

(yt − y∗H)2

2

)
(A.5)

s.t. πt = κ (yt − y∗L) + β ((1− λ) ΠL (yt) + λπH (yt − y∗H)) .

Here, the functions, VL (yt−1) and ΠL (yt−1) ≡ πL, are also both independent of yt−1.

Using this observation, the optimality condition is given by

yL − y∗L + ψ
dπt
dyt

πL = βλθH (y∗H − yL)

where
dπt
dyt

= κ+ βλπH

and πL =
κ (yL − y∗L) + βλπH (yL − y∗H)

1− β (1− λ)
.

Here, the last line uses the NKPC to solve for the inflation in the low-supply state.

Combining these observations, the optimum is given by the unique solution to:

[
1 +

ψ (κ+ βλπH)κ

1− β (1− λ)

]
(yL − y∗L) = βλ

[
θH +

ψ (κ+ βλπH)πH
1− β (1− λ)

]
(y∗H − yL) . (A.6)

This leads to the following result, which generalizes Proposition 1 to this setting.

Proposition 3. Consider the setup with inflation determined by the NKPC (14) and the

parametric conditions described in Lemma 2. Suppose the economy is in the temporary

supply shock state, s = L, with past output yt−1. The central bank implements the constant

output level yL ∈ (y∗L, y
∗
H) that solves (A.6) along with the constant inflation

πt,L = πL ≡
κ (yL − y∗L) + βλπH (yL − y∗H)

1− β (1− λ)
. (A.7)
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The associated real and nominal interest rates are given by

rt,L = ρ+ λ (YH (yL)− yL)− η

1− η (yL − yt−1) (A.8)

it,L = rt,L + λΠH (yL) + (1− λ)πL. (A.9)

The central bank chooses a level of output that induces positive output gaps in the current

low-supply state (current overheating), yL > y∗L, and negative output gaps and disinflation

after transition to the high-supply state (future demand shortages), YH (yL) < y∗H and

ΠH (yL) < 0.

Comparing (A.6) and (9) shows that inflation affects the policy trade-off in two ways.

On the one hand, positive output gaps in the low-supply phase increase current inflation.

This raises the cost of overheating, captured by the second term inside the brackets on the

left side of (A.6). On the other hand, negative output gaps expected in the future high-

supply phase reduce current inflation. Since overheating helps shrink future gaps, this

effect raises the benefit of overheating, captured by the second term inside the brackets

on the right side of (A.6). It follows that inflation affects the cost as well as the benefit

of overheating, but it does not change the qualitative aspects of optimal policy.

The equilibrium with the NKPC has one subtlety: The central bank does not nec-

essarily induce positive inflation in the low-supply state: that is, πL is not necessarily

positive (even though yL > y∗L). This effect is driven by the forward-looking term in the

NKPC, together with the fact that the economy experiences disinflation after transition

to the high-supply state, πH (yL − y∗H) < 0 (see (A.7)). Nonetheless, in our simulations

this effects is typically weak and the central bank implements πL > 0 along with yL > y∗L.

Proof of Lemma 2.Combining the NKPC, the IS curve, and the policy rule, the dynamic
system that characterizes the equilibrium is given by

yt = ηyt−1 + (1− η)
(
−φy (yt − y∗H)− φππt + Et [πt+1] + Et [yt+1]

)
πt = κ (yt − y∗H) + βEt [πt+1] .

We drop the expectations since there is no (residual) uncertainty. Let ỹt = yt−y∗H denote
the output gap. Then, we can rewrite the system as

ỹt = ηỹt−1 + (1− η)
(
−φyỹt − φππt + πt+1 + ỹt+1

)
πt = κỹt + βπt+1.
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In matrix notation, we have ỹt+1

πt+1

ỹt

 = M

 ỹt

πt

ỹt−1

 where M =


1
1−η + φy + κ

β
φπ − 1

β
− η
1−η

−κ
β

1
β

0

1 0 0

 .
The characteristic polynomial of the matrix M is

P (x) = − det




1
1−η + φy + κ

β
− x φπ − 1

β
− η
1−η

−κ
β

1
β
− x 0

1 0 −x




= x3 − x2
(

1

1− η + φy +
1 + κ

β

)
+ x

((
1

1− η + φy

)
1

β
+ φπ

κ

β
+

η

1− η

)
− 1

β

η

1− η .

This is the polynomial we define in (A.1). We assume the parameters are such that

this polynomial has a single stable root that satisfies γH ∈ (0, 1). The conditions in the

propositions are suffi cient (but not necessary). To check suffi ciency, note that we have

P (0) < 0. We also have

P (1) =
φy (1− β) + (φπ − 1)κ

β
> 0

in view of the first part of the suffi cient condition, φy (1− β) + (φπ − 1)κ. We also have

P

(
1

β

)
= − κ

β3
+ φπ

κ

β2
≤ 0

in view of the second part of the suffi cient condition, βφπ ≤ 1. Thus, with these conditions

the roots of the polynomial satisfy

0 < γ1 < 1 < γ2 ≤
1

β
≤ γ3.

In particular, the polynomial has exactly one stable root that satisfies γH ≡ γ1 ∈ (0, 1).

Since ỹt−1 is predetermined but ỹt, πt are not, the system is saddle path stable. More-

over, the solution converges to zero at the constant rate γH ∈ (0, 1), that is:

ỹt+h = γH ỹt+h−1 = γh+1H ỹt−1

π̃t+h = γH π̃t+h−1.
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This establishes (A.2). To solve for the initial inflation, we use the NKPC to obtain

πt =
∞∑
h=0

βhκỹt+h =
∞∑
h=0

βhγhHκγH ỹt−1 =
κγH ỹt−1
1− βγH

.

This establishes (A.3).

Finally, we calculate the value function as:

VH = −
∞∑
h=0

βh
(
ỹ2t+h

2
+ ψ

πt+h
2

2

)
= −

∞∑
h=0

(
βγ2H

)h( ỹt2
2

+ ψ
πt
2

2

)

= − 1

1− βγ2H

(
γ2H + ψ

(
κγH

1− βγH

)2)
ỹt−1

2

2
.

Here, the second line uses the fact that inflation and the output gap converge to zero at

rate γH ∈ (0, 1) and the last line substitutes ỹt and πt in terms of the past output gap

ỹt−1. This establishes (A.4) and completes the proof of the lemma.

Proof of Proposition 3. The proof is mostly presented earlier in the section. To solve
for the real interest rate, note that the IS curve (11) implies

rt,L = ρ+ λ (YH (yt)− yt,L) + (1− λ) (yt+1,L − yt,L)− η

1− η (yt,L − yt−1) .

After substituting yt,L = yt+1,L = yL, this implies (A.8). The nominal interest rate is then

it,L = rt,L + Et [πt+1] = rt,L + λΠH (yL) + (1− λ)πL.

This establishes (A.9) and completes the proof.

A.2.2. Overheating with an inertial Phillips Curve

Suppose inflation is determined according to the inertial Phillips curve (15)

πt = κ
(
yt − y∗st

)
+ bπt−1.

Suppose also that the parameters satisfy the simplifying assumptions described in the

main text. We first state the lemma that characterizes the equilibrium in the high supply-

state s = H. We then present the proof of Proposition 2, which characterizes the optimal
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policy in the low-supply state s = L.

Lemma 3. Consider the setup with an inertial Phillips curve. Suppose the parameters

satisfy φπ = b, φy > κ and ψt =


ψL if st = L

ΨH if st = H, st−1 = L

0 otherwise

.

Suppose the economy has switched to the high-supply state, s = H, with past output

yt−1. Let γH ∈ (0, 1) denote the smaller root of the polynomial P (x) = (1 + κ)x2 −(
1
1−η + φy

)
x+ η

1−η . Then the output gap and the inflation functions are given by:

YH (yt−1, πt−1)− y∗H = γH (yt−1 − y∗H) (A.10)

ΠH (yt−1, πt−1) = κγH (yt−1 − y∗H) + bπt−1. (A.11)

The value function in the first period after transition (with st−1 = L) is given by:

ṼH (yt−1,πt−1) = −θH
(yt−1 − y∗H)2

2
−ΨH

π2t
2

(A.12)

with θH =
γ2H

1− βγ2H
and πt = κγH (yt−1 − y∗H) + bπt−1.

Proof of Lemma 3. Combining the inertial Phillips curve, the IS curve, and the policy
rule, the dynamic system that characterizes the equilibrium is given by

yt = ηyt−1 + (1− η)
(
−φy (yt − y∗H)− φππt + Et [πt+1] + Et [yt+1]

)
πt = κ (yt − y∗H) + bπt−1.

We drop the expectations since there is no (residual) uncertainty. Let ỹt = yt−y∗H denote
the output gap. Then, we can rewrite the system as

ỹt = ηỹt−1 + (1− η)
(
−φyỹt − φππt + πt+1 + ỹt+1

)
πt = κỹt + bπt−1.

After rewriting the second equation and substituting the first equation, we obtain

ỹt+1 =
1

1 + κ

(
ỹt − ηỹt−1

1− η + φyỹt + (φπ − b) πt
)

πt = κỹt + bπt−1.

This system is in general complicated, because there are two state variables ỹt−1, πt−1.
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However, in the special case φπ = b, inflation drops out of the first equation and the system

becomes block-recursive. In particular, the output gap satisfies the difference equation:

ỹt+1 =
1

1 + κ

((
1

1− η + φy

)
ỹt −

η

1− η ỹt−1
)
.

This is a standard difference equation with the characteristic polynomial given by

P (x) = (1 + κ)x2 −
(

1

1− η + φy

)
x+

η

1− η = 0.

Note that P (0) > 0 and P (1) < 0 in view of the parametric condition φy > κ. Thus, the

polynomial has a single stable root that satisfies γH ∈ (0, 1). It follows that the output

gap converges to zero at a constant rate

ỹt+h = γH ỹt+h−1 = γh+1H ỹt−1.

This establishes (A.10). Substituting ỹt into the inertial Phillips curve, we solve for

inflation as:

πt = κỹt + bπt−1 = κγH ỹt−1 + bπt−1.

This establishes (A.11).

Finally, consider the value function in the first-period after transition. Using the

simplifying assumption on ψt, we obtain

ṼH (yt−1, πt−1) = −
∞∑
h=0

βh
ỹ2t+h

2
−ΨH

π2t
2

= −
∞∑
h=0

βh
(
γh+1H ỹt−1

)2
2

−ΨH
(κỹt + bπt−1)

2

2

= − γ2H
1− βγ2H

ỹ2t−1
2
−ΨH

(κγH ỹt−1 + bπt−1)
2

2
.

This establishes (A.12) and completes the proof of the lemma.

Proof of Proposition 2. Consider problem (16), which we replicate here

VL (yt−1, πt−1) = max
yt,πt
−(yt − y∗L)2

2
− ψL

π2t
2

+ β
(

(1− λ)VL (yt, πt) + λṼH (yt−1, πt−1)
)

πt = κ (yt − y∗L) + bπt−1
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In this case, the value function VL (yt−1, πt−1) depends on past inflation, πt−1, but it is

still independent of past output, yt−1. Using this observation, the optimality condition is

given by

yt − y∗L + ψL
dπt
dyt

πt = β

(
(1− λ) dπt

dyt

∂VL(yt,πt)

∂πt
+

λ
(
∂ṼH(yt,πt)

∂yt
+ dπt

dyt

∂ṼH(yt,πt)

∂πt

) ) .
Using Eq. (A.12) to calculate the partial derivatives of ṼH (yt, πt), we obtain:

yt − y∗L + ψL
dπt
dyt

πt = β

(
(1− λ) dπt

dyt

∂VL(yt,πt)

∂πt
+

λ
(
θH (y∗H − yt)−ΨH

(
κγH + dπt

dyt
b
)

(κγH (yt − y∗H) + bπt)
) ) .

Substituting dπt
dyt

= κ and using the Envelope Theorem, ∂VL(yt−1,πt−1)
∂πt−1

= −bψLπt, we obtain

yt − y∗L + ψLκπt = β

 − (1− λ)κbψLπt+1+

λ

(
(θH + ΨHκ

2γH (γH + b)) (y∗H − yt)
−ΨHκb (γH + b) πt

)  .
Here, πt+1 = πt+1,L denotes inflation when the economy stays in state L. After rearranging

terms, we obtain:

A (yt − y∗L) +Bπt + Cπt+1 = D (y∗H − y∗L) .

Here, A,B,C,D > 0 are the derived parameters in (17):

A = 1 + βλ
(
θH + ΨHκ

2γH (γH + b)
)

B = (ψL + βλΨHb (γH + b))κ

C = β (1− λ)κbψL

D = βλ
(
θH + ΨHκ

2γH (γH + b)
)
.

Combining the equation for yt with the NKPC, we obtain the system:

A (yt − y∗L) +Bπt + Cπt+1 = D (y∗H − y∗L) (A.13)

πt = κ (yt − y∗L) + bπt−1.

We next calculate the steady-state, denoted by (yL, πL). From the second equation, the

steady-state inflation satisfies πL =
κ(yL−y∗L)

1−b . Substituting this into the first equation, we
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solve for the steady-state output as:

yt = y∗L +
D (y∗H − y∗L)

A+ (B + C) κ
1−b
.

We next characterize the transition dynamics away from the steady-state. Let ỹt =

yt − yL and π̃t = πt − πt denote the deviations from the steady state (these variables are

different than the output and inflation gaps). With this notation, we write (A.13) as

Aỹt +Bπ̃t + Cπ̃t+1 = 0

π̃t = κỹt + bπ̃t−1.

After substituting for π̃t+1 and π̃t in terms of π̃t−1, we can write this system as

(A+ (B + bC)κ) ỹt + Cκỹt+1 + (B + bC) bπ̃t−1 = 0

π̃t = κỹt + bπ̃t−1

In matrix notation, we have[
ỹt+1

π̃t

]
=

[
−A+(B+bC)κ

Cκ
− (B+bC)b

Cκ

κ b

][
ỹt

π̃t−1

]
.

The characteristic polynomial is given by

P (x) = det

([
−A+(B+bC)κ

Cκ
− x − (B+bC)b

Cκ

κ b− x

])

= x2 + x

(
A+ (B + bC)κ

Cκ
− b
)

+
(B + bC) b

Cκ
κ− A+ (B + bC)κ

Cκ
b

= x2 + x

(
A/κ+B

C

)
− Ab/κ

C
.

Note that P (0) < 0 and

P (b) = b2 + b
B

C
> 0.

This implies there is a stable root that satisfies γL ≡ γ1 ∈ (0, b). Note also that the sum
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of the roots satisfy

γ1 + γ2 = −A/κ+B

C
= −A/κ+ (ψL + βλΨHb (γH + b))κ

β (1− λ)κbψL

= −A/κ+ βλΨHb (γH + b)κ

β (1− λ)κbψL
− 1

β (1− λ) b

< − 1

β (1− λ) b
< −1.

Here, the first line substitutes B and C from (17) and the last line follows since β, 1−λ, b ∈
(0, 1). It follows that the other root is unstable and satisfies γ2 < −1.

These observations prove that the system is saddle path stable. Starting with the

inflation deviation π̃t−1, both the output deviation and inflation deviation converge to

zero at a constant rate γL

ỹt+1 = γLỹt and π̃t = γLπ̃t−1 for each t.

To characterize the output in terms of past inflation, note the Phillips curve implies

π̃t = γLπ̃t−1 = κỹt + bπ̃t−1 =⇒ ỹt = −
(
b− γL
κ

)
π̃t−1.

This establishes (20− 21).

Finally, we calculate the interest rate the planner needs to set to implement the optimal

output and inflation path. First consider the real interest rate. Using the IS curve (11),

rt = ρ+ Et [yt+1]−
yt

1− η +
η

1− ηyt−1

= ρ+ λYH (yt) + (1− λ) yt+1 −
yt

1− η +
η

1− ηyt−1

= ρ+ λ (YH (yt)− yt) + (1− λ) (yt+1 − yt)−
η

1− η (yt − yt−1) (A.14)

Here, yt+1 denote the future output if the economy stays in the low-supply state (charac-

terized earlier). Likewise, the nominal interest rate is given by

it = Et [πt+1] + rt

=
λΠH (yt) + (1− λ)πt+1+

ρ+ λ (YH (yt)− yt) + (1− λ) (yt+1 − yt)− η
1−η (yt − yt−1) .

(A.15)

Here, πt+1 is the inflation if the economy stays in state L. This completes the proof.
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B. Alternative model with a ZLB constraint

In the main text, we formalize expansionary policy constraints by requiring the central

bank to follow a Taylor rule after transition to state s = H. In this appendix, we show

that our results are robust to an alternative setup in which the central bank sets the

policy optimally in both states, but the expansionary policy is constrained by the zero

lower bound (ZLB) on the nominal interest rate. We relegate the proofs to the end of the

appendix.

Environment with a ZLB constraint. Consider the setup in Section 2 with two

differences. First, there is a ZLB constraint on the nominal interest rate, it ≥ 0. Since

prices are fully sticky in our baseline model, the nominal and the real interest rates are

the same. Thus, the ZLB also implies a lower bound constraint on the real rate.

Second, the central bank does not follow the Taylor rule (2) in state s = H. Instead,

the central bank sets the policy optimally in all states. As before, the central bank sets

policy without commitment, and it minimizes the present discounted value of quadratic

output gaps. We can then formulate the policy problem recursively as

Vst (yt−1) = max
it,yt
−
(
yt − y∗st

)2
2

+ βEt
[
Vst+1 (yt)

]
(B.1)

s.t. yt = ηyt−1 + (1− η)
(
− (it − ρ) + Et

[
Yst+1 (yt)

])
it ≥ 0.

As in our main setup, Ys (y−1) and Vs (y−1) denote the central bank’s optimal output

choice and optimal value, respectively, when the current state is s ∈ {H,L} and the most
recent output is y−1. The central bank takes its future interest rate decisions and output

choices as given and sets the current interest rate and output to minimize quadratic gaps,

subject to the inertial IS curve and the ZLB constraint.

Overheating with a ZLB constraint. Recall that, in the first-best benchmark with-

out expansionary policy constraints, the central bank sets a relatively low interest rate in

the first period after transition to the high-supply state [see (4)]. We assume the para-

meters are such that this interest rate is negative: In the first-best benchmark, the ZLB

constraint is violated in the first period after transition. Thus, a central bank that is

subject to a ZLB constraint cannot achieve zero gaps in all periods and states.

Assumption 1. ρ− η
1−η (y∗H − y∗L) < 0.
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Our first result characterizes the equilibrium after the economy transitions to the

absorbing state s = H.

Lemma 4. Suppose Assumption 1 holds and the economy has switched to the high-supply
state, s = H, with past output y−1 ≡ yt−1. Let yH = y∗H − 1−η

η
ρ ∈ (y∗L, y

∗
H).

• If y−1 ≥ yH , then the ZLB constraint does not bind and the central bank can achieve

zero gaps, YH (y−1) = y∗H and VH (y−1) = 0. The interest rate is given by

it,H = ρ− η

1− η (y∗H − yt−1) . (B.2)

• If y−1 < yH , then the ZLB constraint binds and the output gap is negative for at least

one period, YH (y−1) < y∗H and VH (y−1) < 0. The output and the value functions

are characterized in the proof and satisfy the following:

—YH (y−1) ≥ y−1 is continuous, strictly increasing, and piecewise linear (it is lin-

ear except for a finite number of kink points). Output converges to the effi cient

level y∗H after finitely many periods.

—VH (y−1) is continuous, strictly concave and increasing, and piecewise differen-

tiable. At the ZLB cutoff, y−1 = yH , the value function is differentiable with a

zero derivative, dVH(yH)
dy−1

= 0.

Lemma 4 says that, after the supply recovers, the ZLB constraint binds when output

is suffi ciently low relative to potential. Technically, the ZLB constraint introduces a

finite number of kink points into the solution, but the optimal output and the value

function satisfy intuitive properties. Starting with a suffi ciently low output level, the

output gradually recovers and eventually reaches its potential level, y∗H . Similar to our

baseline analysis in Lemma 1, a greater past output increases the current output as well

as the value function (over the relevant range y−1 < yH).

We next establish the analogue of our main result (Proposition 1) in this alternative

setup with a ZLB constraint. Consider the optimal policy in the temporary low-supply

state, s = L. For now, suppose past output y−1 is high enough so that the ZLB constraint

does not bind in the low-supply state (we consider the case with a binding ZLB in this

state subsequently). Then, we can rewrite problem (3) as

VL (y−1) = max
y
−(y − y∗L)2

2
+ β ((1− λ)VL (y) + λVH (y)) . (B.3)
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The value function in the future low-supply state does not depend on past output, VL (y) ≡
VL (as long as the ZLB does not bind, which we will verify). The value function in the

future high-supply state VH (y) is concave. Therefore, the optimality condition is

y − y∗L = βλδ; where δ ∈ ∇VH (y) . (B.4)

Here, δ is a subgradient of the value function. It is equal to the derivative, except possibly

at kink points, where it lies in an interval between the left and the right derivatives. Let

yL denote the optimum that solves (B.4).

Eq. (B.4) establishes our main result with the ZLB constraint: the (unique) optimum

satisfies yL ∈ (y∗L, yH) and thus yL > y∗L and YH (yL) < YH (yH) = y∗H . In the temporary

low-supply state, the central bank chooses a level of output that induces positive output

gaps in the current low-supply state (current overheating), and negative output gaps after

transition to the high-supply state (future demand shortages). The intuition is the same

as in Section 3. As before, the central bank overheats the current output to accelerate

the recovery in future periods after transition to high supply.

We can now solve for the associated interest rate:

it = ρ+ λ (YH (yL)− yL)− η

1− η (yL − yt−1) . (B.5)

Recall that YH (yL) > yL. This shows that the ZLB constraint does not bind in the low-

supply state (it > ρ > 0) when past output is already equal to the target level, yt−1 = yL.

However, there is a suffi ciently low level of past output (yt−1) below which the ZLB

constraint binds in the low-supply state for at least one period:

yL = yL −
1− η
η

(ρ+ λ (YH (yL)− yL)) . (B.6)

The following proposition summarizes the discussion in this appendix and completes the

characterization of equilibrium in s = L.

Proposition 4. Suppose Assumption 1 holds and the economy is in the temporary supply
shock state, s = L, with past output y−1 ≡ yt−1. Let yL be given by (B.6).

• If y−1 ≥ yL, then the ZLB constraint does not bind in s = L and the central

bank chooses the output level yL that is the unique solution to (B.4). The output

choice satisfies yL ∈ (y∗L, yH). In the temporary supply shock state, the economy

experiences overheating, yL > y∗L. At the transition to the high-supply state, the
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Figure B.1: A simulation of the equilibrium with a ZLB constraint starting in the low-
supply state, s0 = L, with the most recent output equal to potential output in the
low-supply state, y−1 = y∗L. The solid lines correspond to the equilibrium with optimal
policy. The dotted lines correspond to a first-best benchmark case in which the policy is
not subject to the ZLB constraint. The dashed lines correspond to another benchmark in
which the policy is myopic and minimizes gaps in the current period.

economy experiences demand shortages, YH (yL) < YH (yH) = y∗H . The interest rate

in s = L is given by (B.5).

• If y−1 < yL, then the ZLB constraint binds in s = L for at least one period. The

initial interest rate is zero, it = 0, and the initial output is below its unconstrained

level, YL (y−1) < yL. The output function YL (y−1) (characterized in the appendix)

is continuous and strictly increasing. Absent a transition to the high-supply state,

output converges to the target level yL after finitely many periods.

Numerical illustration. Figure B.1 simulates the equilibrium for a numerical example.

The dotted lines plot the first-best optimal policy without the ZLB constraint. The solid

lines plot the optimal policy with the ZLB constraint and illustrate the main result. The

dashed lines plot another benchmark in which the central bank is myopic and focuses on

closing the current output gap.

The figure resembles Figure 1 in the main text. As before, the optimal policy induces

overheating in the low-supply state. The policy achieves this by cutting the rate aggres-
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sively in the earlier periods while the economy is in the low-supply state. In fact, in this

simulation the policy runs into the ZLB constraint in the earlier periods. Once the policy

brings the output in the low-supply state to a target level above the potential (denoted

by yL > y∗L in the figure), it raises the interest rate to keep the output constant until the

economy transitions to the high-supply state. After the transition, the policy cuts the

interest rate once again to raise aggregate demand toward the higher aggregate supply

level. However, the policy runs into the ZLB constraint. Due to the binding ZLB, the

recovery in the high-supply state takes several periods to complete.

As before, the central bank anticipates that the transition to the high-supply state

will start with low aggregate demand and a binding constraint on expansionary policy.

Therefore, the central bank optimally frontloads interest rate cuts and raises the output

in the low-supply state above its potential. Compared to the myopic benchmark (the

dashed line), the optimal policy induces some overheating in the low-supply state, but it

also reduces the output gaps and accelerates the recovery once the economy switches to

the high-supply state.

Proof of Lemma 4. If y−1 ≥ yH , then the central bank can achieve a zero gap,

YH (y−1) = y∗H and VH (y−1) = 0. Using the IS curve (1) with yt = yt+1 = y∗H , the interest

rate is given by (B.2). The interest rate is nonnegative, it,H ≥ 0. In this case, the ZLB

constraint does not bind.

In contrast, if y−1 < yH , then the ZLB constraint binds and the output gap is negative

for at least one period, YH (y−1) < y∗H and VH (y−1) < 0.

Consider the constrained range, y−1 ≤ yH . In this range, the IS curve with it,H = 0

implies that output satisfies the recursive relation

YH (y−1) = ηy−1 + (1− η) (ρ+ YH (YH (y−1))) . (B.7)

We first solve this relation over a sequence of cutoff points for past output. Given

yH,−1 ≡ y∗H and yH,0 = yH , we recursively define a sequence of cutoffs with:

yH,k+1 = yH,k −
1− η
η

(
ρ+ yH,k−1 − yH,k

)
. (B.8)

Using (B.7), it is easy to check that the output function maps a lower cutoff into the

higher cutoff:

YH
(
yH,k+1

)
= yH,k. (B.9)

Note also that the cutoffs satisfy yH,k+1 ≤ yH,k −
(1−η)ρ
η
. Therefore, there exists KH such
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that yH,KH
< 0. Then, the cutoffs

{
yH,k

}KH

k=−1 cover the entire region [0, y∗H ].

We next extend the solution to the intervals,
[
yH,k, yH,k−1

]
. Specifically, we claim

that the output function is piecewise linear and strictly increasing. That is, there exist

{ak, bk}KH

k=0 such that

YH (y−1) = aky−1 + bk for y−1 ∈
[
yH,k, yH,k−1

]
. (B.10)

We also claim that the slope coeffi cients satisfy ak > ak−1 ≥ 0 and ak < min
(

1, η
1−η

)
.

Using the characterization for the unconstrained region, the claim holds for k = 0 with

the coeffi cients

a0 = 0 and b0 = y∗H . (B.11)

Suppose the claim holds for k − 1 and consider it for k. Using Eq. (B.7), we have

aky−1 + bk = ηy−1 + (1− η) (ρ+ ak−1 (aky−1 + bk) + bk−1) .

After rearranging terms, we obtain a recursive characterization for the coeffi cients

ak = η + (1− η) ak−1ak (B.12)

=⇒ ak =
η

1− (1− η) ak−1
bk = (1− η) (ρ+ ak−1bk + bk−1)

=⇒ bk =
(1− η) (ρ+ bk−1)

1− (1− η) ak−1
= ak

1− η
η

(ρ+ bk−1) .

Note that ak−1 < 1 implies ak = η
1−(1−η)ak−1 ∈ (0, 1). Likewise, ak−1 <

η
1−η implies

ak = η
1−(1−η)ak−1 <

η
1−η . We also need to check ak = η

1−(1−η)ak−1 > ak−1. Note that this is

equivalent to P (ak−1) > 0 where P (x) = x2− 1
1−ηx+ η

1−η . This polynomial has roots
η
1−η

and 1. Since ak−1 < min
(

1, η
1−η

)
, we have P (ak−1) > 0 and thus ak > ak−1. This proves

the claim in (B.10) by induction.

Eqs. (B.9) and (B.10) imply that the output function maps each interval
[
yH,k, yH,k−1

]
into the higher interval

[
yH,k−1, yH,k−2

]
. This establishes the claim in the proposition that

output converges to y∗H after finitely many periods (at most KH + 1 periods).

We next consider the value function VH (y−1). Following similar steps, we can define

the value function recursively over the intervals
[
yH,k, yH,k−1

]
. Let VH,0 (y−1) = 0 and

define a sequence of functions with:
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VH,k (y−1) = −1

2
(aky−1 + bk − y∗H)2 + βVH,k−1 (aky−1 + bk) . (B.13)

For each interval, the value function agrees with the corresponding function in the se-

quence:

VH (y−1) = VH,k (y−1) for y−1 ∈
[
yH,k, yH,k−1

]
.

Note also that the functions in the sequence are differentiable with derivatives that satisfy:

dVH,k (y−1)

dy−1
= − (aky−1 + bk − y∗H) ak + β

dVH,k−1 (aky−1 + bk)

dy−1
ak. (B.14)

Therefore, inside each interval, the value function is differentiable and its derivative agrees

with the derivative of the corresponding function in the sequence:

dVH (y−1)

dy−1
=
dVH,k (y−1)

dy−1
for y−1 ∈

(
yH,k, yH,k−1

)
.

At each cutoff yH,k, the value function is left and right-differentiable with derivatives

respectively given by
dVH,k+1(yH,k)

dy−1
and

dVH,k(yH,k)
dy−1

.

We next prove that the value function, VH (y−1), is strictly concave over the constrained

range, y−1 ≤ yH,0. For the interior points,
(
yH,k, yH,k−1

)
, it is easy to check that the

derivative, dVH(y−1)
dy−1

, is strictly decreasing. Consider the cutoff points, yH,k. It suffi ces to

check that the left derivative is greater than the right derivative:

dVH,k+1
(
yH,k

)
dy−1

>
dVH,k

(
yH,k

)
dy−1

.

This claim is true for k = 0. Suppose it is true for k − 1. Using Eq. (B.14), we have

dVH,k+1
(
yH,k

)
dy−1

= −
(
yH,k−1 − y∗H

)
ak+1 + β

dVH,k
(
yH,k−1

)
dy−1

ak+1

dVH,k
(
yH,k

)
dy−1

= −
(
yH,k−1 − y∗H

)
ak + β

dVH,k−1
(
yH,k−1

)
dy−1

ak.

Since
dVH,k(yH,k−1)

dy−1
>

dVH,k−1(yH,k−1)
dy−1

and ak+1 > ak, we also have
dVH,k+1(yH,k)

dy−1
>

dVH,k(yH,k)
dy−1

.

This proves the claim and shows that VH (y−1) is strictly concave over the constrained

range.

Finally, we prove that the value function is differentiable at the cutoff point at which
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starts to bind, y−1 = yH = yH,0, with derivative equal to zero,
dVH(yH,0)

dy−1
= 0. The right

derivative is zero since VH,0 (y−1) = 0. Recall that YH
(
yH,0

)
= y∗H . Therefore, using Eq.

(B.14) for k = 1, we have

dVH,1
(
yH,0

)
dy−1

= −
(
YH
(
yH,0

)
− y∗H

)
a1 = 0.

This completes the proof of the proposition. Note also that Eqs. (B.8−B.14) enable a

numerical characterization of equilibrium in the high-supply state.

Proof of Proposition 4. The case y−1 > yL is analyzed before the proposition. Suppose

y−1 < yL so that the ZLB constraint binds. In this case, the IS curve with it,L = 0 implies

the output function satisfies the recursive relation

YL (y−1) = ηy−1 + (1− η) (ρ+ λYH (YL (y−1)) + (1− λ)YL (YL (y−1))) . (B.15)

The analysis follows similar steps as in the proof of Lemma 4. Given yL,0 = yL and

yL,−1 ≡ yL, we recursively define a sequence of cutoffs with:

yL,k+1 = yL,k −
1− η
η

(
ρ+ λYH

(
yL,k

)
+ (1− λ) yL,k−1 − yL,k

)
. (B.16)

Using (B.15), it is easy to check that the output function maps a lower cutoff into the

higher cutoff:

YL
(
yL,k+1

)
= yL,k. (B.17)

Using YH (yL) > yL, we also obtain yL,k+1 < yL,k −
(1−η)ρ
η
. Therefore, there exists KL

such that yL,KL
< 0. Then, the cutoffs

{
yL,k

}KL

k=−1 cover the entire region [0, yL].

We can then define the output function recursively over the intervals
[
yL,k, yL,k−1

]
.

Let YL,0 (y−1) = yL and define a sequence of functions with:

YL,k (y−1) = ηy−1+(1− η) (ρ+ λYH (YL,k (y−1)) + (1− λ)YL,k−1 (y−1)) for y−1 ∈
[
yL,k, yL,k−1

]
.

(B.18)

These functions are uniquely defined and increasing over [0, yL] (since the output function

in the high-supply state, YH (·), is piecewise linear with slopes strictly less than one, as
we characterized earlier). Then, Eq. (B.17) implies that for each interval the output

function agrees with the corresponding function in the sequence

YL (y−1) = YL,k (y−1) for y−1 ∈
[
yL,k, yL,k−1

]
.
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In particular, the output function maps each interval
[
yL,k, yL,k−1

]
into the higher interval[

yL,k−1, yL,k−2
]
. This establishes the claim in the proposition that, absent transition to

the high-supply state, output converges to the target level yL after finitely many periods

(at most KL + 1 periods). This completes the proof of the proposition. Note also that

Eqs. (B.16−B.18) enable a numerical characterization of equilibrium in the low-supply

state.
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