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science technologies is relatively likely to be GPT.
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I. Introduction 

Knowing if an emerging technology is general purpose is of significant strategic importance for 

managers and policymakers. Such general purpose technologies (GPTs) are rare and hold potential 

for large scale economic impact because they push the production possibility frontier out several 

times (Bresnahan and Trajtenberg 1995). Examples of GPTs include the steam engine, electricity, 

computers, and the internet (Lipsey, Carlaw, and Bekar 2005). While theoretical models that 

explain the characteristics, benefits, and approaches to create and capture value from GPTs have 

advanced significantly, there is a scarcity of empirical methods to identify GPTs. The handful of 

attempts are customized to evaluate the GPT likelihood of certain technologies rather than provide 

a more universal evaluation approach and typically rely on the power of at least a decade of 

hindsight.  

These limitations have at least three important implications. First, the lack of a more universal 

GPT evaluation approach makes it difficult to robustly evaluate the GPT likelihood of emerging 

technologies. Early approaches to identify GPTs use qualitative arguments and hence are context 

specific. Later quantitative approaches are also context specific. Specifically, a handful of studies 

(Moser and Nicholas 2004; Hall and Trajtenberg 2006; Feldman and Yoon 2012; Graham and 

Iacopetta 2014; Petralia 2020) evaluate the GPT likelihood of specific patents or patent classes 

that represent technologies hypothesized to be general purpose. While these patent-based 

approaches have some elements that can be generalized to other contexts, limitations remain. First, 

not all technologies sharply map onto a patent or class of patents. For example, the USPTO defines 

artificial intelligence (AI) as a collection of patents spread across a variety of patent classes. 

Second, identifying GPTs is not only about technology innovation, but also about technology 

adoption. Patents provide information about innovation activities, not adoption. Last, most patent-

based methods require at least one measure based on forward citation data. This type of data is 

only meaningful after the passing of about a decade since the patented invention (e.g., Moser and 

Nicholas 2004; Hall and Trajtenberg 2006).  

Second, reliance on the power of hindsight, such as that demanded by the citation-based measures, 

means the GPTs are identified only after the factors that influence the trajectory of GPT 

development play out (Lipsey, Carlaw, and Bekar 2005; Bresnahan 2010). By then, it is too late 
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for managers to draw strategic insights from the classification because most of the value the 

technology holds would have already been captured and the magnitude of benefits that could have 

been captured can no longer be influenced by strategic decisions. Conceptually, this implies the 

possibility that, absent a methodology to identify the GPT likelihood of emerging technologies, 

some of the potential GPT benefits might never be realized or might be realized with a delay.  

Third, the lack of a systemic and accessible way to evaluate the GPT likelihood of emerging 

technologies means that scholars and practitioners often speculate about these technologies’ 

general purpose likelihood and base their research and business decisions on these speculations. 

For example, this is the case for several contemporaneously emerging technologies such as 

machine learning (e.g., Brynjolfsson, Rock, and Syverson 2019; Cockburn, Henderson, and Stern 

2019; Trajtenberg 2019), cloud computing (e.g., Etro 2009), blockchain (e.g., Filippova 2019), 

nanotechnology (e.g., Forti, Munari, and Zhang 2019), 3D printing (e.g. Choi 2018), and the 

internet of things (e.g., Edquist, Goodridge, and Haskel 2019). By and large, the speculation is 

based on only one of the three characteristics of GPTs as identified in theoretical models, namely 

widespread interest in these technologies. However, the well-established theoretical definition of 

GPTs as conceived in Bresnahan and Trajtenberg (1995) and Bresnahan (2010) state that GPTs 

exhibit two additional characteristics: capable of ongoing technical improvement, and enabling of 

application sector innovations (Bresnahan, 2010, p. 764). This incomplete assessment of GPT 

classification could lead managers to pursue suboptimal technology strategies. For example, 

collaboration with academia and competitors is necessary to generate value from emerging 

technologies that are likely general purpose (e.g., Allen, 1983; Nuvolari, 2004; Cassiman and 

Veugelers 2006). If the technology is not general purpose, such investments are unnecessary and 

could even be harmful if a potential source of competitive advantage is shared or revealed in the 

process (e.g., Cohen, 2010).  

In this paper, we propose a more systematic methodology to evaluate the GPT likelihood of 

emerging technologies that exploits job posting data. Our framework follows the well-established 

theoretical definition of GPTs (Bresnahan and Trajtenberg, 1995; Bresnahan, 2010). The approach 

is in line with the patent-based studies that engage in applying this theoretical framework to 

identify GPTs (Moser and Nicholas 2004; Hall and Trajtenberg 2006; Feldman and Yoon 2012; 

Graham and Iacopetta 2014; Petralia 2020). We focus on job posting data because human capital 
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is an input into technology development and diffusion. Hence, the skills listed in job postings 

should reflect firms’ intentions to engage with emerging technologies earlier than captured in 

patent data. Indeed, Tambe and Hitt (2012a,b) demonstrate that emergent technology diffusion can 

be measured using labor demand data.  

We develop four measures to evaluate the GPT likelihood of emerging technologies with respect 

to the three GPT criteria in Bresnahan (2010). We evaluate widespread use in many industries by 

calculating a Gini coefficient for job postings referencing emerging technologies across industry 

sectors. We evaluate capable of ongoing technical improvement by estimating use in many 

research job postings through two measures: the number of research job postings and the fraction 

of postings using the technology that are research-focused. We evaluate the ability of emerging 

technologies to enable application sector innovations by calculating a Gini coefficient for research 

job postings referencing the emerging technologies across industry sectors. To examine GPT 

likelihood, we rank order emerging technologies across the four measures. Evaluating GPT 

likelihood by identifying which technologies rank high on all GPT criteria is a similar approach to 

prior quantitative studies that identify GPTs with historical data (e.g., Feldman and Yoon 2012). 

We benchmark and demonstrate the GPT evaluation methodology we propose in the context of a 

set of emerging technologies and job posting data from 2010 to 2019. The job posting data come 

from Burning Glass Technologies and include postings from over 40,000 online job boards. 

According to Burning Glass, they have the near-universe of jobs that were posted online from 2010 

through October 2019. We examine job postings that reference 21 emerging technologies: 3D 

printing, big data, blockchain, business intelligence (BI), cloud computing, CRISPR, data mining, 

data science, geographic information systems (GIS/GPS), internet of things (IoT), machine 

learning (ML), nanotechnology, natural language processing (NLP), polymer science, quantum 

computing, RFID, robotics, service-oriented architecture (SOA), telecommunications, virtual 

reality (VR), and Web 2.0. These represent all technologies from the Gartner “hype cycle” listed 

between its inception in 1995 and 2019 that are also listed as skills in the Burning Glass job posting 

data.  

We start by benchmarking our method against Petralia’s (2020) patent-based quantitative approach 

for evaluating GPT likelihood because that approach is at the frontier of such efforts, builds and 
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extends prior efforts, and eliminates the need to rely on forward citation data that would require a 

much longer observation period than available for emerging technologies. We find that our job 

posting-based measures of whether an emerging technology is likely to be a GPT are strongly 

correlated with the patent-based measures. Moreover, we find that our measures predict future 

changes in the patent-based measures over-and-above using lagged patent-based measures alone. 

This suggests that our approach can be employed to glean early information about the GPT 

likelihood of emerging technologies, and hence help managers make more informed decisions 

while these technologies are diffusing.  

Next, we apply our method to evaluate the GPT likelihood of our set of emerging technologies. 

We find that ML, alongside a set of complementary technologies (BI, big data, data mining, data 

science, and NLP) consistently ranks at or near the top. Because the boundaries of GPT candidates 

can span multiple complementary technologies (Field, 2008; Petralia, 2020), we interpret this 

result to suggest that these technologies are relatively likely to be a GPT. Cloud computing and 

robotics are also relatively prevalent in research job postings and widespread research use in 

application sectors. 

Our interpretation is also informed by a comparison with telecommunications. Our results suggest 

that telecommunications is a potential GPT during our observation period (2010-2019), but less so 

than the ML cluster in 2019. Telecommunications has been identified by others as a GPT during a 

similar period (e.g., Liao et al., 2016; Strohmaier and Rainer, 2016; Petralia, 2020). Therefore, ML 

is relatively likely to be a GPT, as benchmarked against a technology that others have identified 

as a GPT. This benchmark, however, is imperfect because telecommunications in 2010 was likely 

a more mature technology than ML in 2019. For this reason, we prefer to focus our interpretation 

on the relative GPT likelihood of ML and the other emerging technologies in our dataset. 

Our results also suggest that most of the other emerging technologies in our dataset are unlikely to 

be on the path to becoming GPTs in their current form.2 Of course, several of these technologies 

have not received widespread speculation that they are GPTs (e.g., RFID and SOA).  

                                                 
2 A limitation of our observation period is that we may catch some technologies before they are widely used. For 
example, it is possible that some early stage hyped technologies, such as quantum computing, may eventually prove 
to be GPTs, even if they are not yet widespread. 
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Nevertheless, our application of the job posting data method does not provide a definitive measure 

of which technologies in our dataset are GPTs. Without a long enough observation period that 

includes a clear threshold as to what constitutes a GPT, we can only identify the relative rank of 

the emerging technologies in our dataset in terms of the three characteristics of GPTs listed above. 

In this way, the application exercise in our paper suffers from many of the same weaknesses as the 

prior empirical attempts to identify GPTs. Like the prior literature, it can assess whether a 

technology is widely used and enables innovation across industries but there is no ground truth 

available for benchmarking. In addition, like much of the prior literature, our exercise is based on 

one data source. In addition, our set of emerging technologies is limited to those technologies that 

can be mapped to job posting skills in our data. For example, technologies such as tablets or mobile 

phones are too broad to be matched to job posting skills. The extent with which these limitations 

extend to the method we propose depend on the richness of available data and the time frame it 

covers. Given the increased richness of available digital data, we hope future applications of our 

methodology would be able to uncover more nuanced insights.  

The paper proceeds as follows. In Section II, we discuss the strategic importance of general 

purpose technologies and review the advantages and shortcomings of existing approaches to 

identifying GPTs. We describe the state of empirical approaches to identify GPTs and our 

proposed method in Section III. We benchmark our method and provide an application in Section 

IV. We discuss limitations, contributions, and areas for future research in Section V. 

II. General Purpose Technologies 

As originally conceived in Bresnahan and Trajtenberg (1995), GPTs are “characterized by the 

potential for pervasive use in a wide range of sectors and by their technological dynamism” (p. 

84). GPTs are transformative because they open up new opportunities for innovation and economic 

growth, linking the technical implementation of an innovation to its macroeconomic consequences. 

Specifically, GPTs generate productivity gains through an innovation loop. The commercial 

viability of a potential GPT is initially shown in academia or a producing industry. This spurs 

innovation in application industries. These application industry innovations, in turn, further 

advance producing industry innovation, and so on. This feedback loop provides the reason that 

GPTs unusually generate large productivity improvements. Most innovations will push out the 
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production possibility frontier once, but then capital and labor adjustments will have diminishing 

returns. The feedback loop from GPTs means that each innovation pushes the production 

possibilities frontier out several times, increasing productivity substantially over a sustained period 

of time. 

This implies that the benefits of a GPT are large but occur with a long lag (Bresnahan, 

Brynjolfsson, and Hitt 2002). GPTs require complementary innovations that take advantage of the 

capabilities of the technology (e.g., Greenwood and Yorukoglu 1997; Aral, Brynjolfsson, and Wu 

2012; Tambe, Hitt, and Brynjolfsson 2012). Bresnahan (2010) describes how his and Trajtenberg’s 

independent prior research on accounting and CT scans led them to appreciate the importance of 

complementary innovation in application sectors and motivated the GPT research. Complementary 

innovation also means long run financial investments. For example, electricity’s early uses focused 

on street lighting and street railways (Lipsey, Carlaw, and Bekar 2005). Over time, innovation 

occurred in a wide range of sectors, from upstream advances in power generation to downstream 

development of household appliances such as washing machines, vacuum cleaners, and 

refrigerators. Electrification also led to the reorganization of factories (David 1990). Importantly, 

it was primarily these later innovations that drove productivity growth both within companies and 

at a macroeconomic level.  

Because the benefits of GPTs occur with a lag, it is difficult to identify these technologies early 

on. Bresnahan (2010, p. 764) defines a GPT as a technology that “(1) is widely used, (2) is capable 

of ongoing technical improvement, and (3) enables innovation in application sectors.” Wide use, 

ongoing improvement, and follow-on innovation are difficult to measure without the benefit of 

hindsight. Therefore, most studies that seek to identify GPTs use data that is only available with a 

lag of more than a decade, including evidence of widespread adoption, such as patent citations, 

and evidence of productivity impact. The examples in Bresnahan and Trajtenberg’s original article 

and in Jovanovic and Rousseau’s (2005) review are backward-looking, emphasizing that the 

impact can be seen after many years. Lipsey, Carlaw, and Bekar (2005) take a qualitative approach, 

using historical examples to identify GPTs using a millennia-long time scale, starting with the 

domestication of plants. More systematic studies of particular technologies, such as Moser and 

Nicholas’s (2004) study of electricity and Feldman and Yoon’s (2012) examination of the 

purposeful recombination of genetic material (rDNA), use decades of data on patent citations. By 
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this point, the GPT classification is too late to be managerially useful. Therefore, it is valuable for 

managers to have an early sense of whether an emerging technology is likely a GPT for managers 

to make informed decisions about their organization’s technology strategy.  

First, recognizing early that a technology is a GPT would allow organizations to engage in 

managing the necessary coordinated innovation process (e.g., Greenwood and Yorukoglu 1997; 

Aral, Brynjolfsson, and Wu 2012; Tambe, Hitt, and Brynjolfsson 2012) by, for example, investing 

in developing internal R&D capabilities, engaging in collaboration with academic researchers, 

forming alliances with other organizations in the producing industry and with other organizations 

in applications industries, including competitors (e.g., Allen, 1983; Nuvolari, 2004; Cassiman and 

Veugelers 2006; Cohen 2010), and considering third-party service providers (Attewell 1992; 

Bresnahan and Greenstein 1996). If the technology is not a GPT, such large-scale investments in 

innovation coordination are unnecessary and could even be harmful if a potential source of 

competitive advantage is shared or revealed in the process (e.g., Cohen 2010).  

Second, having an early sense of GPT likelihood would help organizations structure their activities 

to maximize the value they can capture from such investments in innovation. As Gambardella et 

al (2020) emphasize, when a technology can be employed to generate innovations that apply to a 

wide range of industries, the profits often accrue to those who own complementary assets. Conti, 

Gambardella, and Novelli (2019) demonstrate that intermediaries often arise that focus on these 

complementary assets and capture much of the value. In other words, when a technology is general 

purpose, it is relatively difficult for innovators to capture the lion’s share of the value. Investing in 

complementary assets becomes particularly important. Alternatively, a more profitable path may 

be to focus on investing only in complementary capital and skills. This path, however, requires 

others to invest in innovation while capturing less of the value. Complementary assets play a less 

central role in value capture if the technology is not general purpose (Gambardella et al. 2020). 

Third, because further innovation in the industries that use the technology is essential for the GPT 

to have an impact, financial investment horizons are likely to be long term. Thus, organizations 

looking to benefit from GPTs need to prepare for the financial burden by, for example, ensuring 

management buy in and securing budgets that are not subject to the same expectations of day to 

day operations. This approach would allow organizations to experiment with different potential 
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areas where the GPT could be incorporated, identify collaborators, and learn how business 

processes need to change (Bresnahan and Greenstein 1996). In contrast, if the technology is not a 

GPT, then the investment horizon is shorter, and the need for organizational change is narrower.  

It is also possible to engage in misplaced strategic actions driven by wrong evaluations of emerging 

technologies being GPT. A variety of recent innovations are claimed to represent GPTs, including 

machine learning (e.g., Brynjolfsson, Rock, and Syverson 2019; Cockburn, Henderson, and Stern 

2019; Trajtenberg 2019), cloud computing (e.g., Etro 2009), blockchain (e.g., Filippova 2019), 

nanotechnology (e.g., Forti, Munari, and Zhang 2019), 3D printing (Choi 2018), and the internet 

of things (e.g., Edquist, Goodridge, and Haskel 2019). These claims are generally based on 

evaluating the widespread use criterion of a GPT, while disregarding the other GPT criteria. A 

better assessment of GPT likelihood is thus necessary because it could reduce the uncertainty of 

managerial strategy with respect to innovation, organizational change, and investment.  

III. Method to Identify General Purpose Technologies 

III.1. Current state of established methods to identify GPTs 

The early empirical approaches to identify GPTs used qualitative arguments. Bresnahan and 

Trajtenberg (1995) identify examples of technologies that are widespread and involve 

complementary innovation. Lipsey, Carlaw, and Bekar (2005) provide detailed histories of a 

variety of technologies that they label as GPTs. Jovanovic and Rousseau (2005) provide a narrative 

description of the diffusion of electricity and IT. Such methods are context specific and hence 

cannot be generalized to evaluate emerging technologies.  

More recently, scholars turned to patent-based quantitative approaches to evaluate GPTs. The 

advantages of patents are the rich information they contain about firms’ technological innovations, 

the nature of those innovations, and the relationships between them. There are however significant 

disadvantages in relying on patents to empirically evaluate the GPT likelihood of emerging 

technologies. One such limitation stems from the type of data captured in patents. Patents are a 

great paper trail of technological innovation but not of technological adoption. This is important 

because the characteristics of GPTs, as documented in the well-established theoretical definition 

(Bresnahan and Trajtenberg, 1995; Bresnahan, 2010), span both innovation and adoption patterns. 
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For example, wide use of the technology, the first GPT criterion, includes both attempts to innovate 

by building on the GPT, and attempts to adopt either the GPT or the innovations that build on the 

GPT. These latter actions are not reflected in patents. Moreover, the patenting process is lengthy, 

hence it takes years to observe informative GPT-based innovation attempts in patents. 

Other limitations are directly related to the choices made by scholars who developed the handful 

of quantitative methods to identify GPTs. One such limitation is the choice to restrict to 

technologies whose boundaries are equivalent to those of a patent or a class of patents. 

Unfortunately, not all technologies can be mapped onto a patent or class of patents. For example, 

the USPTO defines artificial intelligence (AI) as a collection of patents spread across a variety of 

patent classes. Another limitation is reliance on patent forward citation data to evaluate the breadth 

of influence and diffusion of GPTs across sectors. Meaningful forward citation data is available 

only after the passing of a long enough period of time. Specifically, four out of the five total studies 

that develop a patent-based approach to evaluate the GPT likelihood of certain technologies rely 

on at least one measure based on forward citation data. Moser and Nicholas (2004) measure how 

patents from the 1920s were cited between 1976 and 2002. Hall and Trajtenberg (2006), Feldman 

and Yoon (2012) and Graham and Iacopetta (2014) construct GPT measures based on forward 

citations over about a decades-long timespan. Hall and Trajtenberg (2006) and Graham and 

Iacopetta (2014) warn that forward citation data younger than about a decade out likely does not 

carry sufficient meaning. Last, Hall and Trajtenberg (2006) warn that the patent-based measures 

they pioneered do not give internally consistent estimates of GPT likelihood, hence more research 

is needed to identify robust approaches to identify GPTs empirically. More specifically, in a recent 

review of advantages and disadvantages of citation-based measures to capture attributes of 

technological generality, Jaffe and de Rassenfosse (2019) summarize the issues raised by Hall and 

Trajtenberg (2006): “The article concludes that the identified measures, although promising, give 

contradictory messages when taken separately and that it is not obvious how to combine those 

measures to choose a sample of GPT patents. The fundamental difficulty is that we don’t have 

measures of how general-purpose a technology is other than broad conceptions of GPT 

technologies. Thus, although it seems plausible that general-purposeness would be reflected in 

citation patterns, it is hard to pin such patterns down or test their validity” (p.27).  
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Most recently, the only other empirical study that engages with identifying GPTs, Petralia (2020), 

takes on the citation limitation challenges to develop a patent-based method that does not rely on 

forward citations. He notes that aside from the disadvantages highlighted above, forward citation 

data are a poor measure for capturing the breadth of use and diffusion of technologies because 

patent citations are “more concerned with delimiting the scope of the invention rather than 

comprehensively accounting for its knowledge composition” (Petralia, 2020, p. 49). Indeed, he 

shows that citation-based measures remain invariant over a long period of time relative to his 

method that is able to capture the dynamics of technology diffusion and evolution.    

III.2. Our method 

We build on the most recent effort of assessing the GPT likelihood of technologies as documented 

in Petralia (2020) to propose a method based on job posting data. We depart from patent data to 

address some of the limitations of patent-based methods as highlighted in the prior section. 

Specifically, we note that human capital is an input into technology development and diffusion, 

and hence the skills listed in job posting data should reflect firms’ intentions to engage with a 

certain technology earlier than captured in patent data. Indeed, Tambe and Hitt (2012a,b) 

demonstrate that emergent technology diffusion can be measured using labor demand data.  

Job postings specify industry, skills needed, and whether the job is a research position. Therefore, 

it is possible to get an informative (though imperfect) early measure of whether a technology is 

widely used and involves innovation, even in application sectors, by analyzing the skill 

requirements in job postings across industry sectors. The approach assumes that an informative 

mapping of emergent technologies to job posting skills can be constructed. The ability to evaluate 

the GPT likelihood of technologies for which such a mapping cannot be developed remains a 

limitation of our approach.     

We base our methodology on the well-established theoretical definition of GPTs: “(1) is widely 

used, (2) is capable of ongoing technical improvement, and (3) enables innovation in application 

sectors.” (Bresnahan, 2010, p. 764). We evaluate widespread use by calculating the Gini 

coefficient on job postings across industry sectors. We assess if a technology is capable of ongoing 

technical improvement by evaluating whether the technology shows up in many research job 

postings, because ongoing technical improvement implies continuous innovation in the 
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technology. We evaluate the ability of technologies to enable innovation in application sectors by 

calculating the Gini coefficient on research job postings across industry sectors.  

The Gini coefficient is a measure of statistical dispersion that ranges between 0 and 1, with 0 

meaning all values are perfectly equal and 1 meaning only one observation has all of the measured 

factor. Gini coefficients are typically used to measure economic inequality, but they are also useful 

in measuring statistical dispersion, particularly when small and zero values for observations are 

informative. In contrast to the Hirshman-Herfindahl index, which measures whether a small 

number of observations have most of the share, the Gini coefficient captures whether a large 

number of observations have little share (e.g., Fleder and Hosanagar 2009; Cui, Orhun, and 

Duenyas 2018). In their patent-based approach for identifying GPTs, Graham and Iacopetta (2014) 

recognize and demonstrate the value of the Gini index for GPT evaluation. Low Gini values 

calculated based on the percentage of technology skill types in job postings across industries 

suggest widespread use of the technology across industries. Similarly, low Gini values calculated 

based on the percentage of technology skill types in research job postings across industries suggest 

the ability of technologies to enable innovation across application sectors. 

We evaluate the extent to which a technology shows up in many research job postings using two 

measures: the number of research job postings with skills that map onto the technology and the 

fraction of such postings that are research-focused. The assumption is that a technology that is 

capable of ongoing technical improvement would have many research job postings and a 

disproportionate fraction of such postings relative to the total number of jobs for the technology. 

It is possible that the research-related jobs use the technology as an input but do not drive 

innovation in the technology directly. Just as many researchers may use microscopes without 

leading to innovation in microscope technology, many researchers may use ML, CRISPR, or 

nanotechnology without improving the technology. However, we argue that a low number of 

research job postings and a low fraction of such postings relative to the total number of jobs for 

the technology suggest the technology is not capable of ongoing technical improvement. In other 

words, we argue that many research job postings and a disproportionate fraction of such postings 

relative to the total number of jobs for the technology is not a sufficient but a necessary condition 

for evaluating if a technology is capable of ongoing technical improvement. 
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To evaluate the GPT likelihood of emerging technologies, we propose to rank the technologies 

along the four measures. Those technologies that rank near the top in all measures would have a 

higher likelihood to be GPT. The approach to rank-order the technologies is in line with some of 

the other patent-based empirical studies that evaluate the GPT likelihood of certain technologies 

(e.g., Feldman and Yoon 2012).  

IV. Our Method in Action: Benchmarking and an Application  

Our goal is to use job posting data to assess the GPT likelihood of emergent technologies. To 

demonstrate our proposed method, we apply it to a set of emerging technologies. To benchmark 

our approach, we evaluate the correlation with and predictive power of our proposed measures 

relative to those developed by Petralia (2020), the most recent patent-based methodology to 

evaluate GPTs.  

IV.1. Data description 

Our job posting data come from 202,049,236 electronic job postings in the US from January 1, 

2010 to October 31, 2019 collected by Burning Glass Technologies, which describes itself as “the 

world’s leading provider of real-time labor market data products and analysis”. As described in 

Hershbein and Kahn (2018), this dataset aggregates, parses, and deduplicates millions of job 

postings into machine-readable form. Hershbein and Kahn provide a systematic analysis of the 

usefulness of this data set to understand the US job market. They demonstrate that the dataset is 

generally representative of the US job market, though somewhat biased to jobs requiring more 

skills than the average US job. Given our focus on research jobs and jobs that require technology 

skills, this bias is unlikely to affect our conclusions.  

Our goal is to use job posting data to assess the GPT likelihood of emergent technologies. Gartner 

has documented the set of emergent technologies in their “hype cycle” lists since 1995. We collect 

all technologies listed in the Gartner “hype cycle” from 1995 to 2019 and identify the subset of 

technologies that are also listed as skills in the Burning Glass job posting data for a total of 21 

technologies. Some technologies listed in the Gartner “hype cycle” are too broad to be mapped to 

skills in the Burning Glass data (e.g., tablets, mobile phones and drones), while others refer to 

broad technology concepts that also do not map to specific job skills (e.g., smart workplaces, 
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digital security and collective intelligence). Nevertheless, the 21 technologies we examine should 

be seen as a non-exhaustive list of emerging technologies.3  

We identify jobs postings that demonstrate labor demand for a particular technology based on 

skills and skill clusters characterizing the postings. Each job posting in the Burning Glass database 

is associated with a set of skills. Burning Glass groups these skills into skill clusters. There are 

17,422 skills and 644 skill clusters in the Burning Glass data. We define job postings representative 

of a certain technology based on the mention of that technology either as a skill or skill cluster in 

a job posting.4 For example, we define a job as ML if the posting has at least one skill which is in 

the skill cluster of “machine learning.” Appendix 1 provides the definitions we use for each 

technology, the job posting counts, and examples for each technology.  

We also use the skill and skill cluster data to identify research job postings as distinct from non-

research job postings. We define a posting as a research job if it includes at least one skill in the 

Burning Glass - defined research skill clusters (“research methodology”, “laboratory research”, 

“medical research” and “clinical research”) to a total of 4,269,779 research job postings in the 

data. While a handful of these research job postings relate to background research and have little 

to do with corporate “research & development” that generates innovation, the skill clustering 

approach ensures that job postings are classified as research if the skills listed in the job posting 

describe the job functions of a researcher. This is different from classifying a job posting as 

research based on weaker indicators such as the title of the job postings. Such an approach could 

lead to false positives because there are instances of job postings where “research” is listed in the 

title although the position is not research in the scholarly sense (e.g., market research job postings). 

At the same time, this approach means several of the jobs classified as non-research might be 

reasonably seen as research job postings. While this means we may undercount research job 

postings, this will not affect the comparison between technologies as long as any potential 

undercounting of research jobs applies to all technologies in similar ways.  

                                                 
3 We also explored alternative strategies for identifying emerging technologies. For example, we identified all 
technologies that appeared on the cover of Science or Nature between 2000 and 2015. This generated a subset of the 
technologies listed in Gartner (specifically machine learning, GIS, CRISPR, quantum computing, robotics, 
nanotechnology, internet of things, and cloud computing) in addition to one technology not listed (fracking).  
4 Some job postings list skills from multiple technologies. We classify these job postings as requiring both skills.  
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IV.2. GPT criteria - Measures 

Our goal is to use the job posting data to assess whether the 21 emerging technologies are (1) used 

in many industries, (2) used in many research job postings, and (3) the research job postings are 

spread across many industry sectors. We evaluate widespread use by calculating the Gini 

coefficient on job postings by 3-digit NAICS,5 from 2010 to 2019. We evaluate a technology’s 

use in many research job postings using the two measures: the number of research job postings 

and the fraction of postings using the technology that are research-focused, from 2010 to 2019. 

We evaluate the ability of technologies to enable innovation in other sectors by calculating the 

Gini coefficient on research job postings by 3-digit NAICS, from 2010 to 2019.  

IV.3. Benchmarking 

We evaluate if the job posting measures we develop correlate with prevailing patent-based 

measures. We focus on the measures developed in Petralia (2020) because the approach is at the 

frontier of such efforts, builds and extends prior efforts, and eliminates the need to rely on forward 

citation data that would require a much longer observation period than available for emerging 

technologies. Specifically, at least an additional decade of forward-looking data would be needed 

to construct informative citation-based metrics.  

Petralia’s approach evaluates electricity and computer & communication patent classes from 1993 

to 2014 to identify the classes that are relatively likely to be GPTs. The GPT-ness of patent classes 

is based on three measures that map onto the three criteria established in Bresnahan (2010): 

1) Widespread use. Petralia (2020) describes this criterion as potential use in a wide variety of 

products and processes and measures it as the count of the number of 3-digit patent classes 

with patents that include keywords describing the GPT candidates of interest – electricity and 

computer & communications.  

                                                 
5 “A NAICS (pronounced NAKES) Code is a classification within the North American Industry Classification 
System. The NAICS System was developed for use by Federal Statistical Agencies for the collection, analysis and 
publication of statistical data related to the US Economy.” (https://www.naics.com/what-is-a-naics-code-why-do-i-
need-one/). We include measures based on the 2-digit NAICS in Appendix 2. All our findings continue to hold using 
this alternative measure.  

https://www.naics.com/what-is-a-naics-code-why-do-i-need-one/
https://www.naics.com/what-is-a-naics-code-why-do-i-need-one/
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2) Capable of ongoing technical improvement. Petralia (2020) describes this criterion as wide 

scope for improvement and evaluates it through the growth in number of patents classified in 

the 3-digit patent classes representing the GPT candidates of interest – electricity and computer 

& communications. 

3) Enables innovation in application sectors. Petralia (2020) describes this criterion as strong 

complementarity with existing and new technologies and measures it as the count of the 

number of other 3-digit patent classes that are listed in patents from the 3-digit patent classes 

representing the GPT candidates of interest – electricity and computer & communications.  

Since Petralia’s data and time period largely precedes ours, we cannot directly examine whether 

our measures predict his as provided in his paper. Therefore, we apply his method, using updated 

patent data (grant dates from 2010 to 2019) and our 21 categories of technologies. This required 

some minor changes to his approach. Specifically, Petralia (2020) can construct the first and the 

third measures distinct from one another because his approach is conditional on being able to 

identify patents describing the GPT candidates of interest based on both 3-digit patent classes and 

keywords. We identify patents for our technologies using keywords only because most of our 

technologies are not well-represented by 3-digit patent classes. For example, while there are 3-

digit patent classes for telecommunications, no such classes are available for most other 

technologies on our list. Moreover, to our knowledge, there is no established approach to 

identifying a collection of patent classes that represents several of the technologies on our list. For 

example, in the most recent report on AI and ML patents, the USPTO does not rely on patent 

classes to identify ML patents, and instead uses a proprietary machine learning approach to identify 

the patents based on information contained in the patent text.6   

We draw the keywords from the Burning Glass skills that we used to identify the relevant 

technologies in our Burning Glass job posting data. We search patents using these keywords in 

Google Patents to take advantage of the Google search engine that scans both the abstract and the 

full text of the patents.7 We then match the collected patent IDs into PatentsView.org, a database 

that tracks detailed patent data, including 3-digit patent classes.  From these patents data, it is then 

                                                 
6 https://www.uspto.gov/sites/default/files/documents/OCE-DH-AI.pdf  
7 We exclude polymer science because the only keyword available from the Burning Glass data, “polymer science,” 
is too generic to identify an informative set of patents that represents this technology.  

https://www.uspto.gov/sites/default/files/documents/OCE-DH-AI.pdf
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straightforward to calculate the wide scope for improvement and the potential use in a variety of 

products and processes measures described in Petralia (2020). Specifically, we measure wide 

scope for improvement by the number of yearly patents granted for each technology over our 

observation period, 2010-2019. Petralia (2020) does not suggest a precise formula for measuring 

growth in patents. The paper cites work that uses either a count of patents over various time periods 

or a growth rate. In the application exercise included in his paper, Petralia calculates a growth rate 

over five years. Given the relative short length of our observation period, we focus on a yearly 

count of patents. We measure potential use in a variety of products and processes by counting the 

number of 3-digit patent classes under which each set of technology patents granted in a focal year 

are classified. We consider all 3-digit patent classes listed on each patent.  

We benchmark our job-posting-based method against the Petralia (2020)-inspired patent-based 

method in two steps. First, we test the correlation between our measures and the patent-based ones. 

If our measures are suited to identify GPT likelihood, then they should be correlated with the more 

established patent-based measures for identifying GPTs. Table 1a and 1b show the correlations. In 

Table 1a, we include panel Poisson estimates with year fixed-effects and robust standard errors 

clustered at the year level. We chose models with year fixed effects because GPT evaluation 

methods are preoccupied with evaluating the cross-technology variation in GPT likelihood. The 

approach is in line with other quantitative studies that evaluate the GPT likelihood of certain 

technologies (Moser and Nicholas 2004; Feldman and Yoon 2012). Columns 1 and 2 show that 

the Gini coefficient on all job postings across industries is negatively correlated with the growth 

in the yearly number of patents and with more co-occurring patent classes. Since a lower Gini 

coefficient means more widespread use of the technology, this suggests a strong correlation 

between our measures and the Petralia-inspired patent measures. Columns 3 and 4 show that more 

research job postings are positively correlated with the patent-based measures, as expected. 

Columns 5 and 6 show a negative correlation between the percentage research job postings 

measure and the patent measures. Percentage job postings is the only measure for which we do not 

have a prior for the direction of the correlation. Last, columns 7 and 8 show that the Gini coefficient 

on research job postings is negatively correlated with the patent measures, as expected. Table 1b 

shows the same correlation patterns on a yearly basis.  
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Next, we test if our measures have five-year predictive power of the patent measures, over-and-

above a lagged version of the patent measures. Because the Petralia-inspired patent measures are 

not citation-based, neither method requires a decade of hindsight. In other words, the hypothesized 

benefit of the predictive power of our method relative to the measures in Petralia is not related to 

the lag between patent grant year and the time of informative citation accumulation (i.e., about a 

decade (Hall and Trajtenberg, 2006; Graham and Iacopetta, 2014)), but to the lag between the time 

searching for technology skills in the labor market and the time being granted patents on that 

technology. The average patent evaluation period from application to grant is three years (e.g., 

Graham and Iacopetta 2014).  

Table 2 shows the predictive power of our measures five-years out.8 As before, all models include 

data from 2015 to 2019 (i.e., 2010-2019 data truncated based on lags as appropriate) and are panel 

Poisson with year fixed effects and robust standard errors clustered at the year level. The predictors 

are the job posting measures lagged five years and the patent-based measures lagged five years, in 

all pair-wise combinations. We include lagged patent measures because past patent trends are 

predictive of future patent trends. Hence, we want to check if our job posting measures have any 

predictive power above and beyond the temporal correlation between patent measures. We find 

that our job posting measures are predictive of patent trends five years later. The predictive power 

of our measures is strongest for the capable of ongoing technical improvement patent metric, and 

somewhat weaker for the widespread use measure, although directionally consistent. In Appendix 

3, we show robustness to using four- and six-years lags. The same patterns persist for the patent 

count measure. For the number of patent classes measure, the results do not hold with six-year lags 

though they do hold and are somewhat stronger with four-year lags.  

Taken together, Tables 1 and 2 suggest the job posting measures are strongly correlated with 

patent-based approaches for estimatinsg GPT-ness. Furthermore, the job posting measures predict 

future values of patent-based measures at least five years out over-and-above the predictive power 

of lagged patent measures.  

                                                 
8 Descriptive statistics are provided in Appendix 3. 
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IV.3. An application 

We apply our method to evaluate the GPT likelihood of the emerging technologies in our data. We 

start by examining the co-occurrence of the technologies in job postings to identify closely related 

technologies. There is no requirement in the Gartner process for the technologies to be mutually 

exclusive. Our methodology, however, requires us to draw clear lines between the technologies 

we analyze because we aim to assess whether specific technologies are relatively likely to be GPTs.  

To draw clear lines between the technologies we analyze, we need to identify which technologies 

are most closely related and then choose a surrogate for each group of technologies. We identify 

closely related technologies using data on co-occurrence of technologies in job postings. If two 

technologies frequently appear in the same job postings, we argue that they are likely to represent 

the same underlying tools.9 Table 3a presents the overlap in job postings in 2010; Table 3b presents 

the same overlap in 2019. Each number represents the fraction of job postings that mention the 

technology in the row that also mention the technology in the column. For example, Table 3a the 

bottom row of column 1 shows that 0.9% of RFID jobs also mention ML. In contrast, the last 

column of row 1 shows that 0.3% of ML jobs also mention RFID. As a reminder, we define a job 

posting to represent a technology if the posting has at least one skill requirement that represents 

the technology. Thus, job postings can be classified as representing more than one technology if 

the posting lists skills representing multiple technologies. Thus, Tables 3a and 3b are not 

symmetric because it is possible that there is a larger or smaller fraction of technology A jobs that 

also list technology B skills, than the fraction of technology B jobs that also list technology A 

skills.  

We observe that there is a strong overlap between ML, BI, big data, data mining, data science, and 

NLP. For each of these six technologies, the others are generally in the top five in terms of co-

occurrence in both 2010 and 2019. For example, the top five co-occurring technologies in job 

postings that list ML in 2010 are the other five listed technologies. In 2019, it is big data, data 

mining, data science, NLP, and cloud computing. In 2019, 36% of data science job postings 

                                                 
9 From job posting data alone, it is difficult to assess whether the combined appearance of these technology skill 
clusters is a result of (1) different names for the same underlying technology, (2) gradual substitution of an earlier 
technology for a new one, or (3) complementary technologies. For our purposes, the key takeaway is that these 
technologies cannot be considered separately when assessing whether they are GPTs. 
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mention ML, 54% of NLP job postings mention ML, and 27% of data mining job postings mention 

data science. Clearly, these technologies are closely related. While other technologies are 

sometimes connected, the connections are not symmetric as with 13% of RFID job postings 

mentioning telecommunications in 2010, but only 0.1% of telecommunications job postings 

mention RFID. Other technologies that may seem related on the surface, such as robotics and 

machine learning, do not have a strong overlap.   

Of these six technologies that are most connected, we first focus on ML because it is the technology 

most hypothesized to be a GPT (e.g., Brynjolfsson, Rock, and Syverson 2019; Cockburn, 

Henderson, and Stern 2019; Trajtenberg 2019). Later, we show the results for the other five 

technologies and demonstrate that these technologies display similar patterns. Put differently, and 

consistent with prior work on other major technological changes (e.g., Rosenberg 1963 on 

technological change in 19th century machine tools), our results will suggest that it is not 

appropriate to evaluate the relative GPT likelihood of a technology independent of its cluster of 

related technologies.  

IV.3.1. Evaluating the three criteria for GPT likelihood 

For ease of exposition, we focus on comparing the values for the job posting-based measures in 

2010 and 2019, the first and the last year of our observation period. We have no reason to expect 

anything other than linear trends over time. Indeed, the patterns from 2011 through 2018 change 

roughly monotonically over time. We include data for all years in Appendix 4.  

a) Widespread use 

We evaluate evidence for widespread use by calculating the Gini coefficients by 3-digit NAICS 

(Table 4). We show the data for 2019 and 2010, and rank order the technologies by the values in 

2019. We also show data on the total number of job postings that mention the technologies in 2019 

and 2010.   

Column 1 shows the Gini coefficients in 2019. Telecommunications and robotics are most 

widespread, followed by cloud computing, SOA, and ML. The technologies that are not 

widespread are Web 2.0, VR, polymer science, nanotechnology, and especially CRISPR and 

quantum computing. Column 2 shows the same values for 2010. ML, robotics, 3D printing, and 
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IoT were not widely diffused in the earlier period. In contrast, Web 2.0 was less concentrated in 

2010 than in 2019. This change over time demonstrates that, had we undertaken this exercise in 

2010, ML would not have appeared as a likely GPT in terms of widespread use. The contrast in 

number of jobs between columns 3 and 4 explains why. It was too early in 2010. ML was not yet 

widespread. This is consistent with the timing of the commercial development of deep learning, 

the underlying technique that propelled the ML hype and GPT speculation. The commercial 

opportunities in deep learning became apparent in 2012 because of the ImageNet competition that 

year (Agrawal, Gans, and Goldfarb 2018). This suggests some caution in interpreting the results 

on those technologies that are relatively immature and not widespread such as quantum computing. 

It is possible that over time, they will become more widespread.   

b) Many research job postings 

We capture widespread use in research by the total number of research job postings and by the 

percentage of research job postings out of total job postings per technology (Table 5). These job 

postings include all research-related jobs that mention the technology skill cluster. We order the 

data by the total number of research job postings in 2019 (column 1).  

ML has the most research job postings in 2019, followed by cloud computing, robotics, and 

telecommunications. These four technologies also have the most job postings overall as seen in 

Table 4. Column 3 therefore examines research jobs as a fraction of total job postings. Of these 

four relatively widely diffused technologies, only ML has over 10% of job postings as research 

jobs. Of the other categories with a high percentage of job postings as research jobs, only 3D 

printing was not near the bottom of Table 4 in terms of widespread use.  

The data from 2010 provide further insight. Even as the number of job postings in ML and cloud 

computing grew substantially, the proportion of those postings that are research jobs remained 

relatively flat (columns 3 and 4). These technologies do not seem to have moved away from 

research as they have diffused. For ML in particular, this suggests that research use is a key aspect 

of its application.  

Overall, we observe that ML is the only technology near the top in both number and percentage of 

research job postings over time. The other technologies are near the top in one or the other. 
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However, this does not suggest ML is more likely to be a GPT in this dimension. We do not know 

of a formal literature on whether “potential for innovation” focuses on whether there are many 

researchers working on a technology or whether a large fraction of people working on a technology 

are researchers. As such, we cannot reject cloud computing or telecommunications as potential 

GPTs based on the “potential for innovation” criterion. They satisfy it under one metric but not 

the other. 

c) Research job postings across application sectors 

Table 6 examines whether the technologies we study are used for research in a range of application 

sectors by repeating the 3-digit NAICS analysis restricted to research job postings. The data is 

again ordered by the 2019 values.  

The set of technologies that were widespread across research job postings in 2019 (column 1) 

includes cloud computing, robotics, IoT, telecommunications, and especially ML. We interpret 

this to suggest that these five technologies are relatively likely to be GPTs, as defined by the 

criterion of enabling innovation in applications sectors. Of all of the technologies examined, only 

telecommunications was widespread in many research job postings in 2010 (column 2). Thus, of 

all the technologies listed in the Gartner hype cycle since 1995 that are also listed as Burning Glass 

skill clusters, only telecommunications displayed somewhat similar values in 2010 to ML, cloud, 

and robotics in 2019, suggesting that the technology had a high GPT likelihood in 2010.   

d) Ranking the three GPT criteria 

Table 7 presents the relative rank of the technologies in each of the three GPT criteria in 2019. 

While there is no established formula for weighing our four measures evaluating the three criteria 

for GPTs, we interpret our findings to suggest that, of all emerging technologies in our data, ML 

is relatively likely to be a GPT. ML ranks consistently near the top in all measures and ranks at the 

top in most research job postings, and degree of widespread of those postings across industry 

sectors. Since innovation in applications sectors is a key distinguishing feature of GPTs 

(Bresnahan and Trajtenberg 1995), we view the widespread use in research as particularly 

important. Cloud computing, robotics, and telecommunications are also relatively prevalent in 



23 
 

research job postings and widespread research use. Although their fraction of research job postings 

is relatively low, we cannot exclude the possibility that these technologies are potential GPTs.  

It is also informative to focus on the 2010 data. In that year, only telecommunications was 

relatively widespread, with a large number of research job postings in a wide range of industries. 

In other words, looking at the 2010 data, telecommunications stood out as a possible GPT, though 

with values in the research-related categories that were less likely to be GPTs than ML did in 2019. 

Telecommunications has been previously identified as a GPT (e.g., Liao et al., 2016; Strohmaier 

and Rainer, 2016; Petralia, 2020). We view this as supportive that our approach is informative in 

evaluating a relative GPT likelihood of emerging technologies. Moreover, the fact that ML looks 

relatively more likely to be a GPT in 2019 then telecommunications suggests that ML might be a 

GPT. However, we caution against drawing a bold conclusion about ML since telecommunications 

was likely relatively more mature compared to ML and the other emerging technologies during 

our observation period.   

All other ranking data suggest that, aside from ML, cloud computing, robotics, and 

telecommunications, most of the other technologies listed are much less likely to be on the path to 

becoming GPTs in their current form.  

IV.3.2. The three GPT criteria for the ML cluster 

In section IV.3., we identified six technologies that appear in many of the same job postings and 

that all relate to the use of data: ML, BI, big data, data mining, data science, and NLP. In Table 8 

(a, b, c), we repeat the above analysis for these six technologies. The results show that all of the 

technologies other than NLP have aspects of GPTs. Furthermore, ML, data science, and to a lesser 

extent big data have a large number of research job postings. We interpret this to suggest that, 

taken together, these technologies are likely to be a GPT, compared to the other technologies 

examined above. Furthermore, there was a notable change between 2010 and 2019. In 2010, none 

of these data-focused technologies had all three features of GPTs: widespread, with a large number 

or proportion of research jobs, and used for research in a wide variety of industries. By 2019, data 

science and ML clearly meet these criteria relative to the other technologies examined. Big data, 

data mining, and BI also can be seen as relatively likely to be GPTs. Prior literature highlighted 
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ML as a GPT; however, Table 8 suggests an important nuance. It is this cluster of technologies 

that together are relatively more likely to represent a GPT.  

V. Discussion and Conclusion 

GPTs are different from other technologies. They hold potential for substantial economic impact, 

but the impact is not guaranteed. Economic actors need to engage in appropriate strategies that 

solve the canonical GPT problem; the large productivity gains from GPTs occur when there is a 

coordinated positive feedback loop in innovation between producing and application industries. 

Thus, application-industry organizations looking to benefit from GPTs need to develop processes 

for research collaborations with industry, with academia and with companies in producing 

industries. Furthermore, these processes take time, are costly, and the productivity benefits may 

require several years to appear. Some of these benefits may accrue to intermediaries or end-users 

rather than to the innovators (Gambardella et al., 2020). 

It is then beneficial to have an early sense if a technology is GPT. When new technologies appear, 

it is not unusual to find claims that these technologies are general purpose. The speculations are 

generally informed by observed widespread engagement with the emerging technologies. 

Although this is just one characteristic of GPTs, the speculations emerge because a more 

comprehensive evaluation of GPT-ness is generally available with a lag, after the benefits of the 

technology have been realized. We propose an approach that evaluates all three GPT criteria 

(Bresnahan, 2010) to reveal information about the GPT likelihood of emerging technologies while 

they emerge.  

Empirically, we leverage the insight that early trends of technology diffusion and adoption can be 

observed in job posting data (Tambe and Hitt, 2012a,b). We construct measures that capture the 

three GPT criteria for a set of 21 emerging technologies that we can map to job posting skills. We 

benchmark our approach against the latest patent-based quantitative method for evaluating GPT 

likelihood inspired by Petralia (2020). We find that our measures of whether an emerging 

technology is likely to be a GPT are correlated with the patent-based measures. Moreover, we find 

that our measures predict future values of the patent-based ones over-and-above the predictive 

power of lagged patent measures. 
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Next, we apply our method to compare the relative GPT likelihood of our set of emerging 

technologies. Our results suggest that a suite of data-focused technologies—often represented by 

ML—are relatively likely to be a GPT. Cloud computing and robotics also display some 

characteristics of GPTs. We based this interpretation, at least in part, on a comparison with 

telecommunications. Telecommunications, an established GPT (e.g., Liao et al., 2016; Strohmaier 

and Rainer, 2016; Petralia, 2020) has a high GPT likelihood throughout our observation period, 

although less than the ML cluster in 2019.  

Our results also show that several technologies are unlikely to be general purpose. For some of 

these technologies, this is unsurprising; both scholars and practitioners did not engage in 

speculations about the general purpose likelihood of these technologies. Thus, we view the result 

that RFID, Web 2.0, and SOA are relatively unlikely to be GPTs as evidence that our method has 

power to distinguish between technologies. For other technologies, the results suggest that some 

claims of technologies being general purpose seem unlikely in their current stage; notably for 3D 

printing, nanotechnology, IoT, and blockchain.  

An important limitation of this particular application of our proposed method is that our 

measurement focuses on a particular time window in the diffusion and adoption of emerging 

technologies. It does not capture GPTs that have already widely diffused and no longer have 

significant innovation in the applications sectors as captured by skills in job postings. This is the 

case for GPTs such as electricity and the internet. The application also does not capture 

technologies in very early stages. For example, quantum computing may someday become a GPT, 

given that it represents the next generation of computational devices, but the technology is not yet 

sufficiently developed. A longer-run observation period can mitigate some of these issues. With a 

longer observation period, it might be possible to exploit the trajectory of job postings over time, 

or the relative importance of research jobs and breadth of industries to identify the potential of 

very early stage technologies to become GPTs. It is reasonable to assume that job posting data will 

continue to accumulate, allowing future research to derive more nuanced insights from and further 

develop this GPT evaluation method.  

Another limitation of our application example is that it does not prove whether an emerging 

technology is a GPT, but rather provides a relative GPT likelihood ranking of emerging 
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technologies. In essence, during our observation period, we do not observe an objective threshold 

above which a technology could be labeled general purpose. A longer-run dataset can solve the 

issue if the data covers the period of emergence of at least one established GPT because the 

established GPTs would provide the threshold. The closest we get in our dataset is to compare 

against telecommunications, a technology that is identified as general purpose in other studies 

(e.g., Liao et al. 2016; Strohmaier and Rainer 2016; Petralia 2020). However, our dataset does not 

cover the emergence period of telecommunications. This suggests that, when employed in future 

studies, the method we propose will likely render better insights for future emerging technologies.  

A longer-run data set would also enable better benchmarking of our method. Because the ten-year 

observation period does not capture job posting data about established GPTs at a similar stage of 

development, we benchmark our approach against patent-based measures inspired by established 

quantitative approaches to identify GPTs over the same period of time. Future research could 

revisit the issue once enough time has passed to enable the power of hindsight. It is important to 

note that a better assessment of the predictive power of the job posting approach, relative to a 

patent-based approach, is not sufficient in of itself. The patent-based methods also rely on relative 

assessments for GPT likelihood; they do not compare against an objective threshold to identify 

GPTs (e.g., Moser and Nicholas, 2004, Feldman and Yoon, 2012). The advantage is that available 

patent data cover a longer period of time than the job posting data in this paper. Future research 

should compare across methods to analyze if an objective threshold for GPTs could be identified.  

There are also several measurement limitations when using job posting data. Job postings do not 

represent hires. Also, job postings are not directly capturing technology usage; this measurement 

concern might be exacerbated for skills that are listed to mainly signal intent for technology usage. 

The job posting methodology is also limited to evaluating technologies that can be mapped to 

skills. Some technologies are too broad to be mapped to job posting e.g., tablets, mobile phones 

and drones, while others refer to broad technology concepts rather than products e.g., smart 

workplaces, digital security, and collective intelligence.  

More broadly, focusing on job postings has some advantages over established approaches 

exploiting patent data, but also drawbacks. This suggests the possibility that other data sources 

could be employed to balance the disadvantages. These could include unstructured data, such as 
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text; advances in natural language processing techniques lower the cost of extracting information 

about the diffusion and adoption of emerging technologies from such data types. For example, 

future research could exploit data about entrepreneurship patterns, VC investment, news articles 

describing engagement with emerging technologies, and search trends. Each type of data will have 

some advantages and some limitations in tracing technology diffusion and adoption, but some will 

likely be complementary to job postings and patents. Hence, the combined approaches should 

provide a better understanding of where each type of data might succeed or fail and hence, an 

overall more accurate GPT assessment of emerging technologies.  

Despite these limitations, even relative comparisons using our approach have an action-focused 

interpretation. An emerging strategy literature focuses on ‘enabling technologies’ (e.g. Teece 

2018; Gambardella et al 2020; Rathje and Katila 2021), which Rathje and Katila (2021, p. 1) call 

“junior GPTs”. In this literature, technologies can be represented on a continuum of their 

propensity to enable other innovation, and GPTs represent the most important enabling 

technologies (Rathje and Katila 2021). Our ranking stacks technologies based on their enabling 

propensity. Therefore, an alternative interpretation of our method is that the higher the ranking, 

the higher the enabling ability and hence relative GPT likelihood. Having an early sense of 

enabling propensity is important because many of the managerial consequences of GPTs apply to 

enabling technologies, albeit at a smaller scale. For example, managers need to anticipate the 

innovation externalities that are needed by collaborating with other organizations and understand 

that any substantial benefits depend on further innovations over a relatively long time horizon. 

Some of these benefits may accrue to others, whether intermediaries who specialize in key 

complements or consumers (Gambardella et al. 2020).  

Certainly, these insights would be strengthened by future research efforts towards improving our 

ability to identify GPTs early on. The various limitations of our method suggest there is still 

considerable work to do, related to alternative data sources, longer time horizons, and alternative 

ways to combine data. Gambardella et al. (2020) note that the benefits of GPTs tend not to accrue 

to those investing in the complex and costly innovation process required to generate value. Thus, 

absent appropriate policy interventions, innovators likely underinvest in GPTs relative to a social 

optimum. These dynamics are clearly complicated by a poor understanding of which technologies 

are general purpose.   



28 
 

 
References 
 
Agrawal, Ajay, Joshua Gans, Avi Goldfarb. 2018. Prediction Machines: The Simple Economics of 

Artificial Intelligence. Harvard Business Review Press, Boston MA.  

Allen, Robert. C. 1983. Collective Invention. Journal of Economic Behavior & Organization 4(1): 
1-24. 

Aral, Sinan, Erik Brynjolfsson, Lynn Wu. 2012. Three-Way Complementarities: Performance Pay, 
Human Resource Analytics, and Information Technology. Management Science 58(5), 
913-931.  

Attewell, P., 1992, Technology diffusion and organizational learning: the case of business 
computing, Organization Science 3, 1-19. 

Bresnahan, Timothy. 2010. General Purpose Technologies. In Bronwyn Hall, Nathan Rosenberg 
Eds. Handbook of the Economics of Innovation. Chapter 18, 761-791. 

Bresnahan, Timothy, Erik Brynjolfsson, Lorin Hitt. 2002. Information Technology, Workplace 
Organization, and the Demand for Skilled Labor: Firm-Level Evidence, The Quarterly 
Journal of Economics, 117(1), 339–376. 

Bresnahan, T.,  S. Greenstein. 1996. Technical Progress and Co-invention in Computing and in 
the Uses of Computers. Brookings Papers on Economic Activity, Microeconomics 1996; 
1-83. 

Bresnahan, T., M. Trajtenberg. 1995. General Purpose Technologies ‘Engines of Growth’? 
Journal of Econometrics. 65, 83-108. 

Brynjolfsson, Erik, Daniel Rock, Chad Syverson. 2019. Artificial Intelligence and the Modern 
Productivity Paradox: A Clash of Expectations and Statistics. In Agrawal, Gans, Goldfarb 
Eds. The Economics of Artificial Intelligence: An Agenda. University of Chicago Press, 23-
57. 

Cassiman. B., Veugelers. R., 2006. In search of complementarity in innovation strategy: Internal 
R&D and External Knowledge Acquisition. Management Science 52(1): 68-82 

 
Choi, Jongmin. 2018. The rise of 3D printing and the role of user firms in the U.S.: Evidence from 

patent data. Technology Analysis & Strategic Management 30(1), 1195-1209. 



29 
 

Cockburn, Iain, Rebecca Henderson, Scott Stern. 2019. The Impact of Artificial Intelligence on 
Innovation. In Agrawal, Gans, Goldfarb Eds. The Economics of Artificial Intelligence: An 
Agenda. University of Chicago Press, 115-146. 

Conti, Raffaele, Alfonso Gambardella, Elena Novelli. 2019. Specializing in Generality: Firm 
Strategies When Intermediate Markets Work. Organization Science 30(1), 126-150. 

Cohen, W. 2010. Fifty years of empirical studies of innovation activity and performance. In the 
Handbook of the Economics of Innovation, 1, 129-213. 

 
Cui, Yao, Yeşim Orhun, Izak Duenyas. 2018. How Price Dispersion Changes When Upgrades Are 

Introduced: Theory and Empirical Evidence from the Airline Industry. Management 
Science 65(8), 3835-3852.  

David, Paul. 1990. The Dynamo and the Computer: An Historical Perspective on the Modern 
Productivity Paradox. American Economic Review Papers & Proceedings 80(2), 355-361. 

Edquist, Harald, Peter Goodridge, Jonathan Haskel. 2019. The Internet of Things and Economic 
Growth in a Panel of Countries. Economics of Innovation and New Technology. 

Etro, Federico. 2009. The Economic Impact of Cloud Computing on Business Creation, 
Employment, and Output in Europe: An Application of the Endogenous Market Structures 
Approach to a GPT Innovation. Review of Business and Economics 0(2): 179-208. 

Feldman, Maryann, JiWoong Yoon. 2012. An empirical test for general purpose technology: an 
examination of the Cohen-Boyer rDNA technology. Industrial and Corporate Change 
21(2), 249-275.  

Filippova, Evgeniia. 2019. Empirical Evidence and Economic Implications of Blockchain as a 
General Purpose Technology. IEEE Technology & Engineering Management Conference, 
Atlanta, GA. 

Fleder, Daniel, Kartik Hosanagar. 2009. Blockbuster Culture's Next Rise or Fall: The Impact of 
Recommender Systems on Sales Diversity. Management Science 55(5):697-712.  

Forti, Enrico, Federico Munari, Chunxiang Zhang. 2019. “Does VC Backing Affect Brand 
Strategy in Technology Ventures?” Strategic Entrepreneurship Journal 14(2): 265-286. 

Gambardella, Alfonso, Sohvi Heaton, Elena Novelli, David Teece. 2020. Profiting From Enabling 
Technologies. Working paper, City University of London Business School. 

Graham, Stuart J. H., Maurizio Iacopetta. "Nanotechnology and the Emergence of a General 
Purpose Technology." Annals of Economics and Statistics, no. 115/116 (2014): 25-55.  



30 
 

Greenwood, Jeremy, Mehmet Yorukoglu. 1997. “1974” Carnegie-Rochester Conference Series on 
Public Policy 46: 49-95. 

Hall, Bronwyn H., Manuel Trajtenberg, 2006. "Uncovering General Purpose Technologies with 
Patent Data," Chapters, in: Cristiano Antonelli & Dominique Foray & Bronwyn H. Hall & 
W. Edward Steinmueller (ed.), New Frontiers in the Economics of Innovation and New 
Technology, chapter 14, Edward Elgar Publishing. 

Hershbein, Brad, Lisa B. Kahn. 2018. "Do Recessions Accelerate Routine-Biased Technological 
Change? Evidence from Vacancy Postings." American Economic Review 108(7): 1737-72. 

Jaffe, Adam, B., Gaetan de Rassenfosse. 2019. “Patent Citation Data in Social Science Research: 
Overview and Best Practices.” In Ben Depoorter, Peter Menell and David Schwartz 
Research Handbook on the Economics of Intellectual Property Law Volume 2, Chapter 2, 
20-46. 

Jovanovic, Boyan, Peter Rousseau. 2005. General Purpose Technologies. In Philippe Aghion, 
Steven N. Durlauf Eds. Handbook of Economic Growth Volume 1B, Chapter 18, 1181-
1224. 

Lipsey, Richard, Kenneth Carlaw, Clifford Bekar. 2005. Economic Transformations: General 
Purpose Technologies and Economic Growth. Oxford University Press, Oxford UK. 

Moser, Petra, Tom Nicholas. 2004. Was electricity a general purpose technology? Evidence from 
historical patent citations. American Economic Review Papers & Proceedings 94(2), 388-
394.  

National Academies of Sciences (NAS), Engineering, and Medicine, “Quantum Computing: 
Progress and Prospects” (Washington, DC: The National Academies Press, 2019). 

Nuvolari, Alessandro. 2004. Collective Invention During the British Industrial Revolution: The 
Case of the Cornish Pumping Engine. Cambridge Journal of Economics 28(3): 347-363. 

Petralia, Sergio. 2020. Mapping general purpose technologies with patent data. Research Policy 
49(7). 

Rathje, Jason, Katila Riitta. 2021. Enabling Technologies and the Role of Private Firms: A 
Machine Learning Matching Analysis. Strategy Science, forthcoming.   

Rosenberg, Nathan. 1963. Technological Change in the Machine Tool Industry, 1840-1910. 
Journal of Economic History, 414-443.  

https://ideas.repec.org/h/elg/eechap/3286_14.html
https://ideas.repec.org/h/elg/eechap/3286_14.html
https://ideas.repec.org/s/elg/eechap.html
https://ideas.repec.org/b/elg/eebook/3286.html
https://ideas.repec.org/b/elg/eebook/3286.html


31 
 

Tambe, Prasanna, Lorin Hitt. 2012a. Now IT’s Personal: Offshoring and the Shifting Skill 
Composition of the U.S. Information Technology Workforce. Management Science 58(4), 
678-695. 

Tambe, Prasanna, Lorin Hitt. 2012b. The Productivity of Information Technology Investments: 
New Evidence from IT Labor Data. Information Systems Research 23(3-part 1), 599-617.  

Tambe, Prasanna, Lorin Hitt, Erik Brynjolfsson. 2012. The Extroverted Firm: How External 
Information Practices Affect Innovation and Productivity. Management Science 58(5), 
843-859. 

Trajtenberg, Manuel. 2019. AI as the next GPT: A Political Economy Perspective. In Agrawal, 
Gans, Goldfarb Eds. The Economics of Artificial Intelligence: An Agenda. University of 
Chicago Press, 175-186.



32 
 

Table 1a: Correlation between our job posting measures and the patent-based measures.  

 (1) (2) (3) (4) (5) (6) (7) (8) 

2010-2019 Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Widespread use 
(Gini by 3-digit industry) 

-3.672*** 
(0.201) 

-1.485*** 
(0.080) 

      

Many research jobs 
(count of research jobs in 
hundreds) 

  0.007*** 
(0.002) 

0.004*** 
(0.001) 

    

Disproportionate research 
jobs 
(fraction of research jobs) 

    -5.364*** 
(0.443) 

-0.979*** 
(0.148) 

  

Widespread research use 
(Gini by 3-digit industry) 

      -3.346** 
(0.578) 

-1.675*** 
(0.195) 

LL -793.32 -9,288.82 -851.64 -9,709.74 -824.43 -9,977.35 -829.98 -9,365.55 
Observations 200 200 200 200 200 200 200 200 

Note: Unit of observation is the technology-year. Dependent variables are based on patent data 2010-2019. Independent variables are based on job posting data 2010-2019. All 
columns show Poisson regressions with year fixed-effects and robust standard errors clustered at the year level. In columns 1, 3, 5 and 7 the dependent variable is count of patents in 
thousands. In columns 2, 4, 6 and 8 the dependent variable is count of co-occurring patent classes. *significant at 10%, **significant at 5%, ***significant at 1% 
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Table 1b: Correlation between our job posting measures and the patent-based measures, by year.  

Panel A: 

DV=Count of 
patents 

Widespread use 
(Gini by 3-digit industry) 

Many research jobs 
(count of research jobs in 

hundreds) 

Disproportionate research 
jobs 

(fraction of research jobs) 

Widespread research use 
(Gini by 3-digit industry) 

2010 -5.435*** 
(1.226) 

0.060*** 
(0.010) 

-1.553 
(2.820) 

-9.116*** 
(1.426) 

2011 -3.770*** 
(0.970) 

0.047*** 
(0.007) 

-4.143* 
(2.487) 

-10.950*** 
(1.738) 

2012 -3.971*** 
(0.903) 

0.040*** 
(0.006) 

-5.466** 
(2.466) 

-6.760*** 
(1.270) 

2013 -4.534*** 
(0.878) 

0.033*** 
(0.005) 

-6.060*** 
(2.189) 

-2.283** 
(1.081) 

2014 -3.830*** 
(0.858) 

0.023*** 
(0.005) 

-6.077*** 
(2.045) 

-1.241 
(1.019) 

2015 -3.632*** 
(0.811) 

0.015*** 
(0.003) 

-5.606*** 
(1.725) 

-2.952*** 
(0.793) 

2016 -3.833*** 
(0.786) 

0.011*** 
(0.003) 

-6.701*** 
(1.842) 

-4.988*** 
(0.917) 

2017 -3.356*** 
(0.723) 

0.007*** 
(0.002) 

-7.016*** 
(1.776) 

-2.678*** 
(0.734) 

2018 -3.532*** 
(0.685) 

0.004*** 
(0.001) 

-5.294*** 
(1.581) 

-3.037*** 
(0.783) 

2019 -2.868*** 
(0.580) 

0.004*** 
(0.001) 

-3.976*** 
(1.137) 

-2.061*** 
(0.540) 

Obs. 20 20 20 20 
Note: Unit of observation is the technology. Dependent variables are based on patent data. Independent variables are based on job posting data. All columns show cross-sectional 
Poisson regressions. The dependent variable is count of patents in thousands. *significant at 10%, **significant at 5%, ***significant at 1% 
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Panel B: 

DV= Co-
occurring patent 

classes 

Widespread use 
(Gini by 3-digit industry) 

Many research jobs 
(count of research jobs in 

hundreds) 

Disproportionate research 
jobs 

(fraction of research jobs) 

Widespread research use 
(Gini by 3-digit industry) 

2010 -1.941*** 
(0.125) 

0.021*** 
(0.001) 

3.789*** 
(0.264) 

-3.527*** 
(0.164) 

2011 -1.456*** 
(0.101) 

0.016*** 
(0.001) 

0.472** 
(0.214) 

-4.084*** 
(0.184) 

2012 -1.572*** 
(0.103) 

0.013*** 
(0.001) 

-0.186 
(0.204) 

-2.170*** 
(0.153) 

2013 -1.883*** 
(0.111) 

0.012*** 
(0.001) 

-1.273*** 
(0.165) 

-1.496*** 
(0.143) 

2014 -1.729*** 
(0.113) 

0.010*** 
(0.001) 

-1.379*** 
(0.141) 

-1.470*** 
(0.133) 

2015 -1.343*** 
(0.104) 

0.006*** 
(0.000) 

-1.067*** 
(0.109) 

-1.165*** 
(0.107) 

2016 -1.454*** 
(0.105) 

0.005*** 
(0.000) 

-1.191*** 
(0.104) 

-1.810*** 
(0.120) 

2017 -1.464*** 
(0.102) 

0.004*** 
(0.000) 

-1.495*** 
(0.118) 

-1.427*** 
(0.102) 

2018 -1.257*** 
(0.096) 

0.002*** 
(0.000) 

-1.017*** 
(0.106) 

-1.569*** 
(0.109) 

2019 -1.150*** 
(0.087) 

0.002*** 
(0.000) 

-1.004*** 
(0.098) 

-1.227*** 
(0.083) 

Obs. 20 20 20 20 
Note: Unit of observation is the technology. Dependent variables are based on patent data. Independent variables are based on job posting data. All columns show cross-sectional 
Poisson regressions. The dependent variable is count of co-occurring patent classes. *significant at 10%, **significant at 5%, ***significant at 1% 
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Table 2: Job posting measures predict patent-based measures five years later 

 (1) (2) (3) (4) (5) (6) (7) (8) 

2010-2019 Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Widespread use lagged 5 
years 
(Gini by 3-digit industry) 

-1.360*** 
(0.412) 

-0.044 
(0.064) 

      

Many research jobs lagged 
5 years 
(count of research jobs in 
hundreds) 

  0.010*** 
(0.003) 

-0.001 
(0.001) 

    

Disproportionate research 
jobs lagged 5 years 
(fraction of research jobs) 

    -1.838*** 
(0.321) 

-0.097 
(0.357) 

  

Widespread research use 
lagged 5 years 
(Gini by 3-digit industry) 

      -2.518*** 
(0.735) 

-0.238*** 
(0.075) 

Dependent variable 
lagged 5 years 

0.090*** 
(0.011) 

0.004*** 
(0.000) 

0.086*** 
(0.010) 

0.004*** 
(0.000) 

0.094*** 
(0.014) 

0.004*** 
(0.000) 

0.092*** 
(0.008) 

0.003*** 
(0.000) 

LL -290.30 -2,231.45 -290.41 -2,228.95 -293.24 -2,230.97 -280.76 -2,224.45 
Observations 100 100 100 100 100 100 100 100 

Note: Unit of observation is the technology-year. Dependent variables are based on patent data 2010-2019. Independent variables are based on job posting data 2010-2019. All 
columns show Poisson regressions with year fixed-effects and robust standard errors clustered at the year level. In columns 1, 3, 5 and 7 the dependent variable is count of patents 
in thousands. In columns 2, 4, 6 and 8 the dependent variable is count of co-occurring patent classes. *significant at 10%, **significant at 5%, ***significant at 1% 
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Table 3a: Overlap of technology in job postings in 2010 

 

 

ML BI 
Big Data 

Data 

Mining 

Data 

Science 

NLP Cloud Telecom GIS Quantum Robotics Nanotech IoT CRISPR VR 3D 

Print 

Polymer Block- Web2.0 SOA RFID 

              chain    

ML 100 8.4 10.1 40.2 27.9 13.8 5.3 3.5 0.9 0.1 3.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 1.2 0.5 0.3 

BI 0.3 100 0.4 3.5 1.1 0.1 2.1 2.9 0.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.5 0.0 

Big Data 7.5 9.3 100 10.0 3.4 3.9 13.7 1.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.9 0.0 

Data Mining 8.6 22.7 2.9 100 10.9 2.6 2.6 4.8 1.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.0 0.2 

Data Science 14.5 16.7 2.3 26.3 100 3.4 2.4 3.5 1.4 0.0 0.5 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.4 0.5 0.0 

NLP 21.9 3.8 8.3 19.2 10.6 100 7.2 20.3 0.5 0.1 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.7 0.1 

Cloud 0.4 5.2 1.5 1.0 0.4 0.4 100 7.1 0.4 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1.8 1.2 0.1 

Telecom 0.1 2.7 0.1 0.7 0.2 0.4 2.6 100 0.9 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.1 

GIS 0.3 5.9 0.1 1.7 0.9 0.1 1.6 10.3 100 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.5 0.8 0.1 

Quantum 6.3 0.0 0.0 1.1 5.3 5.3 5.3 6.3 0.0 100 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Robotics 1.2 0.6 0.0 0.3 0.4 0.1 0.4 1.7 0.3 0.0 100 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.2 

Nanotech 0.1 0.8 0.0 0.2 0.0 1.1 0.3 0.6 0.0 0.1 2.6 100 0.0 0.0 0.0 0.1 1.2 0.0 0.6 0.0 0.0 

IoT 0.1 2.8 0.0 0.6 0.1 0.0 3.0 23.7 0.1 0.0 0.2 0.0 100 0.0 0.0 0.0 0.0 0.0 0.2 1.8 1.6 

CRISPR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

VR 10.1 0.8 0.0 2.6 3.8 0.4 2.0 4.3 2.4 0.0 6.5 0.0 0.0 0.0 100 0.0 0.0 0.0 2.4 0.0 1.4 

3D Print 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1 0.5 0.0 2.0 0.5 0.0 0.0 0.0 100 0.0 0.0 1.0 0.0 0.0 

Polymer 0.1 0.3 0.0 0.1 0.6 0.0 0.0 1.3 0.0 0.0 0.2 1.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

Blockchain 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 

Web2.0 0.4 4.5 1.0 1.2 0.3 0.4 7.8 3.5 0.5 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 100 2.9 0.0 

SOA 0.2 15.4 0.4 1.6 0.3 0.2 5.3 4.8 0.9 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 2.8 100 0.1 

RFID 0.9 3.7 0.0 3.2 0.2 0.2 2.6 13.4 0.7 0.0 1.4 0.0 1.1 0.0 0.3 0.0 0.0 0.0 0.2 1.2 100 

Note: Each number represents the fraction of job postings that mention the technology in the row that also mention the technology in the column. The shade of blue darkens with 
higher numbers. 
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Table 3b: Overlap of technology in job postings in 2019 

 
ML BI 

Big Data 
Data 

Mining 

Data 

Science 

NLP Cloud Telecom GIS Quantum Robotics Nanotech IoT CRISPR VR 3D 

Print 

Polymer Block- Web2.0 SOA RFID 

              chain    

ML 100 9.8 32.5 12.8 44.8 14.1 19.2 1.9 0.6 0.6 6.3 0.0 5.7 0.1 1.5 0.3 0.0 2.2 0.0 0.7 0.1 

BI 4.4 100 10.7 5.9 9.0 0.6 10.3 2.0 0.5 0.1 0.7 0.0 0.9 0.0 0.1 0.0 0.0 0.3 0.0 0.7 0.0 

Big Data 19.1 14.0 100 6.5 21.3 3.8 27.6 2.8 0.5 0.2 0.9 0.0 3.2 0.0 0.2 0.0 0.0 0.7 0.1 1.0 0.2 

Data Mining 20.7 21.1 17.8 100 26.6 6.2 7.0 2.2 1.1 0.3 1.1 0.0 1.1 0.1 0.2 0.0 0.0 0.4 0.1 0.2 0.1 

Data 

 

36.2 16.1 29.3 13.3 100 7.6 13.5 1.9 1.0 0.2 1.5 0.0 2.7 0.1 0.3 0.1 0.0 0.7 0.0 0.3 0.2 

NLP 54.3 5.4 25.1 14.7 36.3 100 14.2 3.9 0.4 0.5 4.4 0.0 3.1 0.0 0.4 0.0 0.0 2.1 0.1 0.5 0.0 

Cloud 4.9 5.9 12.1 1.1 4.3 1.0 100 4.2 0.3 0.2 0.6 0.0 2.7 0.0 0.1 0.0 0.0 0.6 0.1 1.2 0.0 

Telecom 0.7 1.6 1.8 0.5 0.9 0.4 6.1 100 0.7 0.1 0.4 0.0 1.3 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.2 

GIS 2.0 3.5 2.5 2.2 3.8 0.3 3.9 6.2 100 0.0 0.6 0.0 0.5 0.0 0.1 0.1 0.0 0.0 0.0 0.6 0.2 

Quantum 14.9 4.3 8.0 4.3 5.6 2.9 22.4 3.0 0.2 100 4.3 0.1 74.3 0.1 0.5 0.0 0.0 13.2 0.0 0.6 0.0 

Robotics 9.1 2.1 2.1 1.0 2.8 1.7 3.4 1.5 0.3 0.3 100 0.1 1.8 0.1 1.1 1.9 0.0 1.0 0.0 0.1 0.2 

Nanotech 5.6 0.9 2.0 0.2 3.3 0.2 1.2 6.1 0.3 0.5 9.3 100 3.6 1.1 0.7 3.2 1.9 0.0 0.2 0.0 0.0 

IoT 13.7 4.9 13.3 1.7 8.1 1.9 24.9 8.4 0.4 7.6 2.9 0.1 100 0.0 1.1 0.3 0.0 6.2 0.0 0.8 0.7 

CRISPR 2.0 0.2 0.7 2.3 2.5 0.1 0.5 0.1 0.0 0.2 3.0 0.3 0.0 100 0.2 0.1 0.0 0.2 0.0 0.0 0.0 

VR 16.6 1.7 3.2 1.1 3.9 1.3 4.7 2.0 0.4 0.2 8.8 0.1 5.2 0.1 100 2.7 0.0 2.4 0.1 0.2 0.1 

3Dprint 3.4 0.4 0.5 0.3 1.0 0.0 0.9 0.8 0.3 0.0 16.3 0.3 1.7 0.0 2.9 100 0.4 0.2 0.0 0.0 0.3 

Polymer 0.5 0.2 0.0 0.7 0.4 0.0 0.1 0.2 0.0 0.0 0.7 1.3 0.0 0.0 0.2 2.9 100 0.0 0.0 0.0 0.1 

Blockchain 21.4 5.5 11.2 2.3 8.0 5.1 23.1 2.6 0.1 5.4 6.8 0.0 24.5 0.0 2.0 0.2 0.0 100 0.0 0.8 0.3 

Web2.0 1.4 4.0 8.1 2.0 0.8 0.8 21.1 6.5 0.4 0.0 0.3 0.1 0.2 0.0 0.3 0.1 0.0 0.1 100 2.0 0.0 

SOA 3.9 9.1 9.4 0.7 1.8 0.8 26.3 2.1 1.1 0.1 0.3 0.0 1.8 0.0 0.1 0.0 0.0 0.4 0.3 100 0.0 

RFID 0.6 1.0 4.1 0.4 3.5 0.1 2.3 6.0 0.7 0.0 2.1 0.0 3.9 0.0 0.1 0.3 0.0 0.3 0.0 0.0 100 

Note: Each number represents the fraction of job postings that mention the technology in the row that also mention the technology in the column. The shade of blue darkens with 
higher numbers. 
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Table 4: Evidence of widespread use 

 (1) (2) (3) (4) 

Technology Gini all jobs 2019 
(3 digit NAICS) 

Gini all jobs 2010 
(3 digit NAICS) Total jobs 2019 Total jobs 2010 

Telecommunications 0.55 0.56 411,262 244,240 

Robotics 0.57 0.72 105,108 18,136 

Cloud computing 0.62 0.68 590,189 88,591 
Service-oriented architecture 
(SOA) 0.63 0.66 27,608 20,794 

ML 0.65 0.78 152,002 7,255 

GIS 0.74 0.69 48,662 21,389 

3D printing 0.75 0.91 12,532 196 

Internet-of-things 0.76 0.87 63,072 1,590 

Blockchain 0.77 n/a 15,829 0 

RFID 0.79 0.83 11,754 2,352 

Web 2.0 0.83 0.71 3,627 20,246 
Virtual Reality 0.85 0.83 13,299 507 
Polymer Science 0.90 0.87 1,677 1,469 

Nanotechnology 0.90 0.90 1,081 1,143 

CRISPR 0.95 n/a 3,670 0 

Quantum Computing 0.95 0.93 6,436 95 
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Table 5: Number of research jobs 

  (1) (2) (3) (4) 

Technology Total research jobs in 
2019 

Total research jobs in 
2010 

% research in 2019 
(out of total per tech) 

% research in 2010 
(out of total per tech) 

ML 19,772 989 13.0 13.6 

Cloud computing 11,274 867 1.9 1.0 

Robotics 6,405 1,963 6.1 10.8 

Telecommunications 6,354 4,044 1.6 1.7 

CRISPR 2,609 0 71.1 n/a 

GIS 1,797 480 3.7 2.2 

Internet-of-things 1,779 48 2.8 3.0 

3D printing 1,569 20 12.5 10.2 

Virtual Reality 1,075 47 8.1 9.3 

Polymer Science 618 486 36.9 33.1 

Blockchain 524 0 3.3 n/a 
Nanotechnology 441 251 40.8 22.0 
Quantum Computing 378 11 5.9 11.6 
Service-oriented architecture 
(SOA) 348 165 1.3 0.8 

RFID 146 69 1.2 2.9 

Web 2.0 137 309 3.8 1.5 
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Table 6: Research job postings across applications sectors  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  (1) (2) 
Technology Gini research jobs 2019 

(3 digit NAICS) 
Gini research jobs 2010 

(3 digit NAICS) 

ML 0.60 0.86 

Cloud computing 0.63 0.87 

Robotics 0.64 0.81 

Internet-of-things 0.72 0.96 

Telecommunications 0.74 0.67 

3D printing 0.82 0.98 

GIS 0.83 0.88 

Polymer Science 0.88 0.91 

Blockchain 0.89 n/a 

Virtual Reality 0.90 0.96 

CRISPR 0.90 n/a 

Service-oriented architecture (SOA)  0.91 0.96 

Nanotechnology 0.94 0.95 

RFID 0.95 0.95 

Quantum Computing 0.95 0.99 

Web 2.0 0.98 0.93 



41 
 

Table 7: GPT likelihood relative rank in 2019  
 (1) (2) (3) (4) 

Technology Widespread use 
(Gini 3-digit NAICS) 

Many research jobs 
(count of research jobs) 

Disproportionate research 
jobs 

(fraction of research jobs) 

Widespread research 
use 

(Gini 3-digit NAICS) 
ML 5 1 4 1 
Cloud Computing 3 2 13 2 
Robotics 2 3 7 3 
Internet of Things 8 7 12 4 
Telecommunications 1 4 14 5 
3D Printing 7 8 5 6 
Geographic Information Systems 6 6 10 7 
Polymer Science 13 10 3 8 
Blockchain 9 11 11 9 
Virtual Reality 12 9 6 10 
CRISPR 15 5 1 11 
Service-oriented architecture 4 14 15 12 
Nanotechnology 14 12 2 13 
RFID 10 15 16 14 
Quantum Computing 16 13 8 15 
Web 2.0 11 16 9 16 
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Table 8a: Evidence of widespread use for data-related technologies 
  (1) (2) (3) (4) 
Technology Gini for all jobs 2019 (3-digit 

NAICS) 
Gini for all jobs 2010 (3-digit 

NAICS) Total jobs 2019 Total jobs 2010 

BI 0.42 0.48 338,615 221,120 
Data mining 0.49 0.57 94,205 33,730 
Data science 0.56 0.66 188,092 14,013 
Big data 0.63 0.81 258,761 9,680 
ML 0.65 0.78 152,002 7,255 
NLP 0.67 0.78 39,386 4,563 

 
Table 8b: Number of research jobs for data-related technologies 
  (1) (2) (3) (4) 
Technology Total research in 2019 Total research in 2010 % research in 2019  

(out of total per tech) 
% research in 2010  

(out of total per tech) 
Data science 26,527 2,161 14.10 15.42 
ML 19,772 989 13.01 13.63 
Data mining 13,499 3,899 14.33 11.56 
Big data 12,540 148 4.85 1.53 
BI 10,921 3,302 3.23 1.49 
NLP 4,250 182 10.79 3.99 

 
Table 8c: Research job postings across applications sectors for data-related technologies 
  (1) (2) 
Technology Gini research jobs 2019 (3-digit NAICS) Gini research jobs 2010 (3-digit NAICS) 
Data mining 0.51 0.84 
Data science 0.55 0.86 
BI 0.56 0.69 
ML 0.60 0.86 
Big data 0.64 0.94 
NLP 0.73 0.94 
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Online Appendix 1: Classification of job postings  
 
Table A1.1: Our definition of the different types of job postings and examples for each 

Technology 
category 

First 
year in 
Gartner 
hype-
cycle 

Definition Example research job Example non-research job Count 
research 
job 
postings 
(2010 – 
2019) 

Count 
non-
research 
job 
postings  
(2010 – 
2019) 

Count 
total job 
postings 
(2010-
2019) 

ML 2007 At least one skill in the 
BG defined skill 
cluster “Machine 
Learning” 

ID: 38317996020 
Title: Oncology 
Bioinformatics/Data Science 
Roles 
Employer: Astrazeneca 
Degree-level: PhD 
Skills: Python, Machine Learning, 
Artificial Intelligence, Clinical 
Research, Mathematical 
Modeling, Somatic, Data 
Analysis, Natural Language 
Processing, Next Generation 
Sequencing (NGS), 
Bioinformatics, Big Data, Data 
Management, UNIX, Time Series 
Models, Molecular Targets, 
Cancer knowledge, Biomarkers, 
Drug Discovery, Biotechnology, 
Deep Learning, Communication 
Skills, Genomics, Data Science, 
Oncology, Bayesian Modeling, 
Biology, Immunology 

ID: 38413121409 
Title: Senior Technical Product 
Manager - Mulesoft 
Employer: Salesforce 
Degree-level: Master's 
Skills: Data Warehouse Processing, 
Quick Learner, Data Science, Oral 
Communication, Data Warehousing, 
Analytical Skills, Product 
Management, Technical Writing / 
Editing, Mulesoft, Extraction 
Transformation and Loading (ETL), 
Machine Learning, Product 
Development, Writing, Network 
Troubleshooting, Software 
Engineering, Target Market, 
Communication Skills, Artificial 
Intelligence, Troubleshooting, 
Product Sales, Creative Problem 
Solving, Prioritizing Tasks, MuleSoft 
Anypoint, Customer Acquisition, 
Creativity  

68,552 469,132 537,684 

Business 
Intelligence (BI) 

2012 At least one skill in 
BG defined skill 
cluster “Business 
Intelligence” or 
“Business Intelligence 
Software” 

ID: 38472330759 
Title: Data & Applied Scientist 
Employer: Parkland Health 
Degree-level: Master’s 
Skills: Pentaho, Social Services, 
Data Science, Data Analysis, 
Predictive Models, SAS, Meeting 
Deadlines, Tableau, Model 
Building, Data Visualization, 
Machine Learning, Writing, 

ID: 38472246468 
Title: Systems Analyst Big 
Data/Hadoop 
Employer: (not available) 
Degree-level: Master’s 
Skills: Microsoft Visio, Extraction 
Transformation and Loading (ETL), 
Data Warehousing, Business 
Intelligence, Systems Analysis, 
Apache Hadoop, Microsoft Office, 

64,335 2,842,778 2,907,113 



44 
 

Scikit-learn, Statistical Methods, 
Natural Language Processing, 
Experiments, SPSS, R, Pattern 
Recognition, Research, Critical 
Thinking, SQL, D3.js, SAP 
BusinessObjects, Qlikview, 
WEKA 

Big Data Analytics, Software 
Installation, Data Management, Big 
Data, Information Technology 
Industry Knowledge 

Big Data 2011 At least one skill in 
BG defined skill 
cluster “Big Data” 

ID: 38472636425 
Title: Quantitative Research 
Analyst 
Employer: (not available) 
Degree-level: (not available) 
Skills: Deep Learning, Fixed 
Income, Communication Skills, 
Big Data, Investment Strategy, 
Research, Quantitative Research, 
Natural Language Processing, 
Machine Learning, Risk 
Management, Investment 
Management, Decision Making, 
Business Development 

ID: 38472244950 
Title: Enterprise Database 
Administrator/Developer 
Employer: General Mills 
Degree-level: Bachelor’s 
Skills: Microsoft Active Directory, 
SAP, Oracle, Teradata DBA, 
Authentication, Problem Solving, 
Domain Name System (DNS), 
Database Administration, Clustering, 
SAP HANA, Apache Hadoop, 
VMware, Python, MongoDB, Linux, 
Ansible, MySQL, SQL 

55,298 1,148,248 1,203,546 

Data Mining 1996 At least one skill in 
BG defined skill 
cluster “Data Mining” 

ID: 38316930989 
Title: Research Scientist 
Employer: Point Blank Solutions, 
Inc 
Degree-level: PhD 
Skills: Experiments, 
Experimental Design, Writing, 
Physical Abilities, Computer 
Literacy, Technical Writing / 
Editing, Scheduling, Project 
Design, Typing, Engineering 
Design, Data Mining, Risk 
Assessment, Risk and Mitigation 
Analysis, Product Development, 
Chemical Engineering, Failure 
Analysis, Process Improvement, 
Research, Initiative, Planning, 
Root Cause Analysis, New 
Product Development, 
Engineering Design and 
Installation, Simulation, Financial 
Analysis, Project Management, 
Polymer Science, Numerical 
analysis, Technical Training 

ID: 38472290861 
Title: Business Intel Engineer II 
Employer: Amazon 
Degree-level: Bachelor’s 
Skills: Business Intelligence, Data 
Engineering, Predictive Models, Data 
Mining, Teamwork / Collaboration, 
Data Science, Problem Solving, 
Presentation Skills, Decision Making, 
Physics, Retail Industry Knowledge, 
Machine Learning, Amazon Web 
Services (AWS), Amazon Web 
Services (AWS), Data Validation, Big 
Data Analytics, Python, Data Quality, 
Economics, Program Development, 
SQL, Creativity, Research, Big Data 

82,406 573,979 656,385 
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Data Science 2004 At least one skill in 
BG defined skill 
cluster “Data Science” 

ID: 38472583705 
Title: Senior Data Scientist, 
Evaluations 
Employer: Quartet Health 
Degree-level: PhD 
Skills: Mental Health, Data 
Science, Predictive Models, 
Medical Coding, Problem 
Solving, Teamwork / 
Collaboration, Primary Care, 
Multi-Tasking, Biostatistics, Data 
Transformation, Customer 
Contact, Software Development, 
Applied Statistics, Extraction 
Transformation and Loading 
(ETL), Python, Software 
Engineering, Communication 
Skills, Economics, Git, 
Epidemiology, Statistical 
Programming, Information 
Technology Industry Knowledge, 
Bioinformatics, Data wrangling, 
Experiments, Statistical Methods, 
Research, Creativity  

ID: 38472253223 
Title: Hris Analyst 
Employer: Fluke Networks 
Degree-level: Bachelor’s 
Skills: Cost per hire, Detail-Oriented, 
Human Resource Management 
Industry Knowledge, Data 
Manipulation, Oracle Business 
Intelligence Enterprise Edition 
(OBIEE), Oracle, Teamwork / 
Collaboration, Problem Solving, 
Organizational Skills, Analytical 
Skills, Data Analysis, Business 
Intelligence Reporting, Data Science, 
Time Management, Communication 
Skills, Microsoft Excel, Taleo, Oracle 
HCM Assessments, HR Metrics, 
Project Management, Microsoft 
Office, Root Cause Analysis, Sales, 
Research, Microsoft Sharepoint, 
Creativity, Human Resource 
Information System (HRIS), Critical 
Thinking 

104,062 643,609 747,671 

Natural Language 
Processing (NLP) 

1995 At least one skill in 
BG defined skill 
cluster “Natural 
Language Processing 
(NLP)” 

ID: 38321530432 
Title: Principal Analyst, 
Quantitative Research - 
Advanced Analytics 
Employer: FINRA 
Degree-level: PhD 
Skills: Predictive Models, 
Decision Trees, Research, 
Machine Learning, Data 
Collection, Self-Starter, 
Economics, Natural Language 
Processing, Organizational Skills, 
Financial Industry Knowledge, 
Surveillance, Random Forests, 
Quantitative Research, 
Derivatives, Securities, Risk 
Management, Meeting Deadlines, 
Fixed Income, Writing, Pattern 
Recognition, Data Science, 
Statistical Methods, Equities, 

ID: 38472293179 
Title: Principal Technical Program 
Manager Tpm Alexa - Product 
Knowledge 
Employer: Amazon 
Degree-level: Bachelor’s 
Skills: Program Management, Natural 
Language Processing, Amazon Web 
Services (AWS), Amazon Web 
Services (AWS), Planning, Web 
Application Development, Total 
productive maintenance, Product 
Knowledge, Multi-Tasking, Amazon 
Alexa, Quality Management, Product 
Management 

15,737 148,173 163,910 
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Stress Testing, Predictive 
Analytics 

Cloud Computing 2008 At least one skill in 
BG defined skill 
clusters “Cloud 
Computing”, “Cloud 
Solutions”, “Cloud 
Storage” 

ID: 38413077222 
Title: Cloud Architect/Research 
Technologist 
Employer: (not available) 
Degree-level: Master’s 
Skills: OpenStack, Cloud 
architecture, Teamwork / 
Collaboration, Chef 
Infrastructure Automation, AWS 
Simple Storage Service (S3), 
Microsoft Azure, Writing, 
ServiceNow, ServiceNow, 
Configuration Management, 
Troubleshooting, Linux, CEPH 
(Software), CloudStack, Linux 
Scripting, VMware, 
Virtualization, Communication 
Skills, Experiments, Xen, UNIX 
Shell, Google Compute Engine 
(GCE), Kubernetes, Research, 
UNIX, Puppet, Creativity, Hyper-
V 

ID: 38448369509 
Title: Systems Administrator 
Employer: (not available) 
Degree-level: Bachelor’s 
Skills: Scalability Design, Network 
Switches, Cisco, MacIntosh OS, 
Cloud Computing, Cisco Switching, 
Ubuntu, Virtual Private Networking 
(VPN), Secure Shell, Good Clinical 
Practices (GCP), Caching, Linux, 
Network Administration, Ethernet, 
Kubernetes, Graphics Processing 
Units (GPU), System Administration 
 

42,723 2,737,205 2,779,928 

Telecommunications 1995 At least one skill in 
BG defined skill 
cluster 
“Telecommunications” 

ID: 38321785505 
Title: Decision Analyst 
Employer: Huntington National 
Bank 
Degree-level: PhD 
Skills: SQL, Risk Management, 
Microsoft Excel, Data Mining, 
SPSS, Digital Marketing, Direct 
Marketing, Direct Mail, Business 
Intelligence, R, Microstrategy, 
SAS, Retail Industry Knowledge, 
SQL Server, S-Plus, Economics, 
Statistics, Apache Hadoop, 
Python, Machine Learning, 
Problem Solving, Research, 
Oracle, Telecommunications, 
Java, Writing, Experimental 
Design, JavaScript, PERL 
Scripting Language, 
Communication Skills, SAP 
BusinessObjects, C++, Tableau, 

ID: 38472246535 
Title: Regional Field Support 
Engineer Employer: Wayfair 
Degree-level: Bachelor’s 
Skills: Troubleshooting, Windows 
Server, Linux, Group policy, Voice 
over IP (VoIP), Communication 
Skills, Hypertext Preprocessor (PHP), 
Physical Abilities, VBScript, 
Creativity, UNIX, CentOS, SQL, 
Microsoft PowerShell, Warehouse 
Operations, FreeBSD, Microsoft 
Active Directory, Microsoft 
Windows, Dynamic Host 
Configuration Protocol (DHCP), 
Switchgear, Detail-Oriented, 
Energetic, Problem Solving, Repair, 
Cisco, Network Switches, Domain 
Name System (DNS), E-Commerce, 
It Support, Team Building, Hardware 
and Software Configuration, Planning 

53,241 3,364,855 3,418,096 
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Microsoft Powerpoint, Verbal / 
Oral Communication, Microsoft 
Word, Statistical Analysis, 
Teradata 

GIS 2002 At least one skill in 
BG defined skill 
cluster “Geographic 
Information System 
(GIS) Software” 

ID: 38414176209 
Title: Research Specialist II 
Employer: County Riverside 
Degree-level: PhD 
Skills: QDA Miner, Survey 
Analysis, Staff Management, 
SPSS, Qualtrics, ArcGIS, 
Research, SQL, SQL Server, 
Statistics, Microsoft Excel, 
Project Management, Data 
Collection, Program Evaluation, 
Database Design, Public Health 
and Safety, Economics, Data 
Warehousing, Presentation Skills, 
Social Services, Data Analysis, 
Statistical Analysis, Natural 
Sciences, Case Management, 
Public administration, SAS, 
Planning, Microsoft Access, 
Report Writing, Writing, 
Research Design 

ID: 38444284893 
Title: Coast Finance Manager – 
Forestry 
Employer: (not available) 
Degree-level: Master’s 
Skills: Information Systems, 
Organizational Skills, Positive 
Disposition, Geographic Information 
System (GIS), Customer Contact, 
Planning, Self-Motivation, Land 
Development, Forestry Operations, 
Verbal / Oral Communication, 
Communication Skills, Finance, 
Property Management, Accounting, 
Budgeting 

11,756 315,985 327,741 

Quantum 
Computing 

1999 At least one skill in 
BG defined skill 
cluster ”Quantum 
Computing” 
 

ID: 38426245831 
Title: Quantum Scientist, Lead 
Employer: Booz Allen Hamilton 
Inc. 
Degree-level: PhD 
Skills: Physics, Research Design, 
Machine Learning, Data 
Visualization, Customer Service, 
Data Science, Leadership, 
Research, Scheduling, Quantum 
Computing, Strategic Planning, 
Project Management 

ID: 38444716328 
Title: Associate Partner Security 
Strategy Risk and Compliance 
Employer: IBM 
Degree-level: Master’s 
Skills: Technical Writing / Editing, 
Thought Leadership, Sales 
Leadership, Systems Integration, 
Professional Services Marketing, 
Quantum Computing, Internet of 
Things (IoT), Management 
Consulting 

1,309 12,095 13,404 

Robotics 2007 At least one skill in 
BG defined skill 
cluster “Robotics” 

ID: 38416313106 
Title: Human Systems Engineer - 
Elsys 
Employer: Georgia Institute of 
Technology 
Degree-level: PhD 

ID: 38444276675 
Title: PLC Programmer 
Employer: Diedre Moire Corporation 
Degree-level: (not available) 
Skills: Variable Frequency Drives 
(VFDs), Programmable Logic 
Controller (PLC) Programming, 

35,705 514,053 549,758 
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Skills: Computational Modeling, 
Experimental Design, Industrial 
Engineering, Software 
Development, Simulation, 
Robotics, Autonomous Systems, 
Computer Engineering, System 
Architecture, Decision Making, 
Surveys, Research, Human 
Computer Interaction, Systems 
Engineering, Industrial 
Engineering Industry Expertise, 
Psychology, Avionics 

Human Machine Interface (HMI), 
Compliance with Customer 
Specifications, Electrical Systems, 
C++, Visual Basic, Software 
Development, Automation Systems, 
Technical Support, Servo Drives / 
Motors, Machinery, Rockwell 
Automation, Debugging, Microsoft 
C# 

Nanotechnology 2002 At least one skill in 
BG defined skill 
cluster 
”Nanotechnology” 

ID: 38446874232 
Title: Associate Scientists I 
Employer: Black Diamond 
Structures, Llc 
Degree-level: Master’s 
Skills: Lifting Ability, 
Nanotechnology, Chemistry, 
Research, PH Meters, Microsoft 
Office, Java, Materials Science, 
Mechanical Engineering, X-Rays, 
Detail-Oriented, Laboratory 
Safety and Chemical Hygiene 
Plan, Data Analysis, 
Organizational Skills, 
Microscope, Laboratory 
Equipment, Technical Support, 
Tableau, Lab Safety 

ID: 38452828314 
Title: High Vacuum Technician 
Employer: Texstars Llc 
Degree-level: Bachelor’s 
Skills: Detail-Oriented, 
Manufacturing Processes, Quality 
Management, Plumbing, Repair, 
Robotics, Purchasing, Technical 
Support, Electronic Schematics, 
Programmable Logic Controller 
(PLC) Programming, Preventive 
Maintenance, Equipment Repair, 
Predictive / Preventative 
Maintenance, Quality Assurance and 
Control, Nanotechnology, Windows 
Programming 

4,101 7,279 11,380 

Internet-of-things 
(IoT) 

2011 At least one skill in 
BG defined skill 
cluster “Internet of 
Things (IoT)” 

ID: 38426874176 
Title: Senior Staff Rf And 
Electrical Engineer Advanced 
Development 
Employer: Eargo 
Degree-level: PhD 
Skills: FDA Regulations, 
Firmware, Scheduling, Research, 
Experiments, Initiative, Quality 
Assurance and Control, 
Budgeting, Emissions Testing, 
Software Testing, Compliance 
Testing, Electrical Systems, 
Communication Skills, 
Engineering Design, Circuit 
Board, Embedded Firmware, 

ID: 38444285332 
Title: Product Marketing Manager 
Employer: (not available) 
Degree-level: Bachelor’s 
Skills: Pricing Strategy, Demand 
Forecasting, Product Research, 
Product Design, Research, Market 
Strategy, Key Performance Metrics, 
New Product Development, Internet 
of Things (IoT), Microsoft Excel, 
Competitive Analysis, Time 
Management, Written 
Communication, Product 
Management, Market Research, 
Software Development, Retail 
Industry Knowledge, Writing, 

5,835 198,806 204,641 
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Internet of Things (IoT), 
Schematic Design, Configuration 
Management, Verbal / Oral 
Communication, Schematic 
Diagrams, Power Supplies, 
Detail-Oriented, Teamwork / 
Collaboration, Design for 
Manufacture/Design for 
Assembly (DFM/DFA), 
Electrical Engineering, 
Organizational Skills, Simulation, 
Engineering Design and 
Installation, Electrical Design, 
Oscilloscopes, Electrical Control, 
Digital Signal Processing (DSP), 
Test Equipment 

Product Development, Planning, 
Software as a Service (SaaS), 
Software as a Service (SaaS), Product 
Marketing 

CRISPR (DNA logic 
and/or editing) 

2005 At least one skill in 
BG defined skill 
clusters ”CRISPR” or 
“CRISPR-DM” 

ID: 38444688851 
Title: Scientist - Drug Discovery 
Biology & Pharmacology 
Employer: (not available) 
Degree-level: (not available) 
Skills:  Biochemical and Cell-
Based Assays, Pharmacology, 
Research, Experiments, CRISPR, 
Biotechnology, Drug Discovery, 
Repair, Biology, Assay 
Development, Remodeling 

ID: 38414235752 
Title: Flow Cytometry Technical 
Sales Specialist 
Employer: Nanocellect Biomedical 
Degree-level: Master’s 
Skills: Cell Cloning, Sales 
Forecasting, Sales, Flow Cytometry, 
Sales Planning, Market Planning, 
CRISPR, Biotechnology, Client Base 
Retention, Product Sales, Description 
and Demonstration of Products, 
Technical Sales, Genomics, Product 
Knowledge, Problem Solving, 
Strategic Sales, Leadership, Editing, 
Customer Service, Biology, Customer 
Contact, Sales Strategy, Market 
Dynamics, Business Acumen, Lead 
Generation 

7,549 3,339 10,888 

Virtual Reality (VR) 1995 At least one skill in the 
BG defined skill 
cluster “Augmented 
Reality/Virtual Reality 
(AR/VR)” or skill 
“Augmented Reality 
(AR)” 

ID: 38488240063 
Title: Vice President, Strategy & 
Innovation Research 
Employer: Synchrony Financial 
Degree-level: Master’s 
Skills:  Project Management, 
Consumer Insights, Business 
Strategy, Strategic Planning, 
Psychology, Communication 
Skills, Regression Analysis, 
Economics, New Product 

ID: 38486938318 
Title: Technology Analyst 
Employer: Infosys 
Degree-level: (not available) 
Skills: Requirements elicitation, 
Virtual Reality (VR), Information 
Technology Industry Knowledge, 
Opportunity Identification, Software 
Development, Employee Training, 
Level design  
 

3,112 43,738 46,850 
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Development, Consumer 
Segmentation, Creativity, People 
Management, Budget 
Management, Research, Virtual 
Reality (VR), Creative Problem 
Solving, Quantitative Research, 
Budgeting, Building Effective 
Relationships, Market Research, 
Presentation Skills, Consumer 
Behavior, Teamwork / 
Collaboration, Marketing 
Communications, Research 
Design, Focus groups, 
Benchmarking, Planning, 
Consumer Research 

3D printing 2007 At least one skill in the 
BG defined skill 
cluster “3D 
Printing/Additive 
Manufacturing (AM)” 

ID: 38496736012 
Title: Research and Development 
Mechanical Engineer 
Employer: Sandia Corporation 
Degree-level: Master’s 
Skills:  Mechanical Design, 
Critical Thinking, Research, 
Creativity, Prioritizing Tasks, 
Laboratory Testing, Finite 
Element Analysis, Kinematics, 
Packaging, Computational Fluid 
Dynamics, Materials Science, 
Mechanical Engineering, 
Aerodynamics, Radar Systems, 
Remote Sensing, Fluid 
Mechanics, Problem Solving, 
Teamwork / Collaboration, Novel 
Materials, Microfluidics, 
Autonomous Systems, Materials 
Selection, 3D Printing / Additive 
Manufacturing (AM), Simulation, 
Systems Integration, Product 
Development, Physics, 
Nondestructive Testing (NDT) 

ID: 38485145033 
Title: Value Stream Manager 
Employer: United Technologies 
Corporation 
Degree-level: Bachelor’s 
Skills: 3D Printing / Additive 
Manufacturing (AM), Problem 
Solving, Facebook, Supervisory 
Skills, Cost Control, Scheduling, 
Process Improvement 

5,734 39,904 45,638 

Polymer Science 2003 At least one BG 
defined skill “Polymer 
Science” 

ID: 38491999087 
Title: Industrial Researcher - 
Post-Doctoral 
Employer: Evonik 
Degree-level: PhD 

ID: 38491786895  
Title: Process Engineer 
Employer: Cps 
Degree-level: Bachelor’s 
Skills: Machinery, Mechanical 
Engineering, Polymer Science, 

6,425 12,354 18,779 
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Skills:  UV-Vis, Polymer 
Synthesis, 3D Printing / Additive 
Manufacturing (AM), 
Microscope, Cytotoxicity, 
Materials Science, Tissue 
Engineering, Personal Protective 
Equipment (PPE), Extrusion, 
Viscometers, Biomaterials, 
Research, Creativity, Chemistry, 
Polymer Science, Microsoft 
Office, Clinical Development, 
Communication Skills 

Process Engineering, Chemical 
Engineering 

Blockchain 2016 At least one BG 
defined skill 
“Blockchain” or 
“Bitcoin” 

ID: 38493674160 
Title: Blockchain Researcher 
Employer: Anchorage 
Degree-level: (not available) 
Skills:  Structured Methods, 
Economics, Research Reports, 
Cryptography, Algebra, 
Blockchain, Creativity, 
Onboarding, Research, 
Teamwork / Collaboration, Anti 
Money Laundering (AML), 
Analytical Skills, Educational 
Materials, Detail-Oriented, 
Oracle, Writing, Calculus 

ID: 38485086384  
Title: Marketing Specialist 
Employer: Intlmaec 
Degree-level: Bachelor’s 
Skills: Bilingual, Social Media, 
Editing, Marketing, Training 
Programs, Infographics, Marketing 
Automation, CPT Coding, English, 
Chinese, Deep Learning, Creativity, 
Blockchain, Big Data 

1,382 36,869 38,251 

Web 2.0 2006 At least one BG 
defined skill “Web 
2.0” 

ID: 37840019691 
Title: Research and Development 
Cybersecurity 
Employer: Sandia Corporation  
Degree-level: Master's 
Skills:  Creativity, Cyber Security 
Knowledge, Analytical Skills, 
Intrusion detection, Critical 
Thinking, Information Extraction, 
Research, Python, 
Authentication, Information 
Assurance, Cryptography, Web 
2.0, Vulnerability analysis, 
Apache Webserver, Simulation, 
Network Engineering, Agile 
Development, Experiments, 
Network Security, Software 

ID: 38515713994  
Title: Engineer 4 Network 
Engineering Data Center 
Employer: Comcast 
Degree-level: (not available) 
Skills: Technical Support, JNCIE, 
Network Troubleshooting, Cisco, 
Engineering Design and Installation, 
PERL Scripting Language, Technical 
Training, Network Switches, Web 
2.0, Building Effective Relationships, 
Network Infrastructure (Edge POE 
Devices), System/Network 
Configuration, Juniper Networks, 
Ansible, Kubernetes, Network 
Engineering, Network Testing, 
Virtualization, Traffic Engineering, 
Engineering Design, Communication 
Skills, Python, SDN, Next Generation 

1,653 101,416 103,069 
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Engineering, Technology 
Transfer, Written 
Communication, Writing, System 
Design, Planning, Web Servers, 
Routers, PERL Scripting 
Language, Security Vulnerability 
& Penetration Testing, 
Vulnerability assessment 

Data Center, Troubleshooting, 
Routing Optimization 

Service-Oriented 
Architecture (SOA) 

2004 At least one BG 
defined skill “Service-
Oriented Architecture 
(SOA)” 

ID: 38540054216 
Title: Emerging Technologies 
Lead Systems/Software Engineer 
Employer: MITRE Corporation 
Degree-level: PhD 
Skills:  Prototype Design 
Development, Written 
Communication, AJAX, Systems 
Engineering, Python, Software 
Engineering, C++, Service-
Oriented Architecture (SOA), 
Java, Unified Modeling 
Language (UML), Object-
Oriented Programming, 
Creativity, JavaScript, Rhapsody, 
DevOps, Extensible Markup 
Language (XML), Software 
Architecture, Experiments, 
Computer Engineering, SysML, 
Application Lifecycle 
Management, Software 
Development, Agile 
Development, Mentoring, Web 
Services Architecture, Microsoft 
C#, XML Schemas, Scrum, 
Business Development, 
Extensible Stylesheet Language 
XSL, Internet Technologies, 
Project Planning and 
Development Skills 

ID: 38529201989 
Title: Senior Software Developer .Net 
Developer 
Employer: Comtech Global 
Degree-level: Bachelor’s 
Skills: .NET, Oracle, Detail-Oriented, 
Microsoft Project, Oracle SOA Suite, 
Computer Engineering, Microsoft 
Edge, Web 2.0, Writing, Software 
Development, Service-Oriented 
Architecture (SOA), Communication 
Skills 

2,586 252,861 255,447 

RFID 2003 At least one BG 
defined skill “Radio 
Frequency 
Identification (RFID)” 

ID: 38475177245 
Title: Biological Threat Analyst, 
Mid 
Employer: Booz Allen Hamilton 
Inc. 
Degree-level: PhD 

ID: 38472278381  
Title: Secure Mobile Systems 
Engineer, Senior 
Employer: Booz Allen Hamilton Inc. 
Degree-level: Master’s 

853 62,788 63,641 
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Skills:  Detail-Oriented, 
Virology, Customer Service, 
Data Science, Biodefense, 
Analytical Skills, Problem 
Solving, Threat Analysis, 
Intelligence Analysis, 
Epidemiology, Empower, 
Splunk, Radio Frequency 
Identification (RFID), 
Immunology, Microbiology, 
Infectious Disease, Telematics, 
Graphics Processing Units (GPU) 

Skills: JavaScript, Microsoft 
PowerShell, Hardware Experience, 
System Administration, Puppet, 
System Design, Ansible, C++, 
Communication Skills, Virtualization, 
Java, Python, Written 
Communication, Cryptography, 
Systems Engineering, VMware, 
Radio Frequency Identification 
(RFID), Swift (Programming 
Language), Transmission Control 
Protocol / Internet Protocol (TCP / 
IP), Certification & Accreditation, 
Configuration Management, 
Objective C, Linux, Information 
Systems, Bash, Microsoft C#, 
Building Effective Relationships, 
Software Customizations, Ruby, 
Software Development, Chef 
Infrastructure Automation, Hardware 
and Software Configuration, Systems 
Management 

Note: Research jobs defined as such if at least one skill in BG defined skill clusters labeled as “…Research…” and referencing scholarly-type research (i.e. “Research 
Methodology”, “Laboratory Research”, “Medical Research” and “Clinical Research”
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Online Appendix 2: Job postings by NAICS 2-digit industry sector (2010 and 2019) 
 

Table A2.1. Number of jobs in data by industry and technology (2010) 
 

NAICS 2 11 21 22 23 31-33 42 44-45 48-49 51 52 53 54 55 56 61 62 71 72 81 92 

                     

ML 12 120 12 0 748 27 389 49 1211 558 31 1518 5 165 291 135 15 32 11 93 

3D printing 0 2 0 1 57 0 0 1 5 3 0 17 0 3 32 2 0 0 1 1 

Blockchain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cloud 30 77 101 145 6279 569 1945 505 10442 3729 421 23968 130 4892 859 1780 123 1941 339 726 

CRISPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GIS 120 350 218 164 2330 182 160 285 1571 402 242 5317 27 623 858 243 49 161 316 1389 

IoT 0 1 1 7 396 7 10 9 185 23 1 373 0 54 12 29 1 7 1 26 

Nanotech 0 2 5 3 199 7 7 3 13 15 4 202 0 7 264 18 0 0 3 261 

Polymer 0 25 2 6 709 12 18 2 39 5 1 293 3 42 64 20 0 2 6 6 
Quantum 
Computing 0 0 0 0 13 0 0 1 11 0 0 34 0 0 24 0 0 1 3 2 

RFID 13 7 3 14 572 29 61 44 73 26 15 528 3 106 27 89 8 20 6 34 

Robotics 24 71 73 264 6240 565 329 119 400 111 100 2183 13 686 866 1474 99 44 99 381 

SOA 5 28 65 30 1406 101 459 280 1326 1675 39 5938 28 1170 202 248 31 299 96 285 

Telecom 87 395 878 1949 19370 788 4453 1662 45906 9761 2233 50085 429 18163 6065 9821 393 2654 2954 6855 

VR 0 0 0 3 40 3 6 2 34 7 3 111 0 23 94 22 1 1 1 18 

Web 2.0 1 16 26 18 1298 63 382 153 1899 811 120 4627 29 937 804 286 62 167 137 202 

BI 73 536 794 510 16665 1499 5625 2130 15210 21366 1603 53752 421 12577 3879 6879 392 3727 994 1940 

BigData 0 34 5 7 456 41 243 101 1333 659 65 1486 6 346 83 1173 38 126 23 127 

Data Mining 29 508 107 46 3240 292 1468 322 3204 4428 170 7027 53 1453 871 1907 98 490 159 383 

Data Science 25 152 71 17 1684 66 494 83 1148 2437 104 3261 24 417 520 447 42 118 65 167 

NLP 0 45 4 3 211 1 103 34 707 269 21 823 1 162 131 548 21 34 14 70 
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Table A2.2. Number of jobs in data by industry and technology (2019) 
 

NAICS 2 11 21 22 23 31-33 42 44-45 48-49 51 52 53 54 55 56 61 62 71 72 81 92 

                     

ML 183 421 297 188 13184 613 8508 1790 12356 16756 926 27392 223 14250 5141 3209 195 793 598 1915 

3D printing 14 41 21 64 4703 90 211 74 230 67 30 1687 10 577 1342 304 38 166 48 168 

Blockchain 13 27 6 25 412 11 159 67 723 2047 41 6004 11 1700 209 62 21 47 41 67 

Cloud 761 817 906 1460 27744 2110 21171 4732 44397 39693 4034 123784 963 62274 7105 8780 1076 5522 1702 6836 

CRISPR 0 0 0 1 572 10 0 3 6 9 0 1088 0 41 789 424 0 5 1 21 

GIS 290 362 1031 800 1390 1216 230 666 1481 1291 735 9655 73 2891 2415 604 142 209 505 5492 

IoT 111 137 238 169 8074 683 2874 451 11375 1674 256 16989 63 4018 692 678 65 320 108 382 

Nanotech 0 2 0 12 172 1 1 0 4 10 2 231 2 23 381 33 4 0 2 28 

Polymer 0 19 1 4 728 9 45 3 18 8 3 266 5 82 148 12 1 2 24 9 

Quantum 
Computing 0 0 0 0 63 19 7 12 174 55 0 5576 0 36 313 1 0 0 0 26 

RFID 3 16 16 101 993 28 6198 265 139 52 34 1052 5 334 80 286 37 88 35 407 

Robotics 93 241 243 1387 25299 679 3431 1317 2648 4477 1614 13873 187 6082 4580 10314 258 804 627 1784 

SOA 20 34 58 56 1104 44 975 242 1146 2118 204 5919 61 3275 311 360 61 232 162 348 

Telecom 157 948 2233 7129 19142 1341 21695 4506 50677 17285 6201 56555 811 29306 10515 26306 989 3730 9812 16637 

VR 6 24 22 146 2478 19 753 79 2146 141 53 1934 8 823 942 218 149 227 29 237 

Web 2.0 0 0 4 2 93 0 111 5 247 159 3 602 5 613 223 59 14 22 6 58 

BI 266 937 1282 1426 25533 2637 18810 4832 17018 45374 3682 58125 842 25854 8721 13605 1011 5276 3322 5171 

BigData 175 380 490 208 13128 731 7936 1649 18403 28922 979 53968 265 28865 2985 2656 403 1408 714 2881 

Data Mining 59 500 302 331 7906 592 4065 1487 4456 20002 821 13964 228 5445 3405 5979 269 785 411 1990 

Data Science 287 551 604 281 14146 746 7475 2517 12969 25268 1428 35320 299 14487 7392 5946 421 3460 1051 3036 

NLP 31 52 30 78 1610 82 1321 217 2920 5488 189 7181 103 3203 1121 3978 59 543 209 1095 
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Table A2.3. Number of research jobs in data by industry and technology (2010) 
NAICS 2 11 21 22 23 31-33 42 44-45 48-49 51 52 53 54 55 56 61 62 71 72 81 92 

                     

ML 6 24 0 0 123 4 58 3 153 117 3 225 0 11 61 49 0 2 0 12 

3D printing 0 0 0 0 7 0 0 0 0 1 0 2 0 0 10 0 0 0 0 0 

Blockchain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cloud 0 1 3 3 89 10 4 2 177 29 1 254 1 20 20 38 0 11 1 2 

CRISPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GIS 16 2 3 3 50 1 5 7 14 8 8 86 0 3 72 30 3 0 8 66 

IoT 0 0 0 0 7 0 0 0 6 0 0 8 0 0 0 1 0 1 1 14 

Nanotech 0 2 0 0 46 2 0 1 3 12 0 72 0 1 66 5 0 0 1 4 

Polymer 0 5 0 0 251 4 6 1 22 1 0 91 2 15 21 7 0 0 3 1 
Quantum 
Computing 0 0 0 0 0 0 0 0 2 0 0 8 0 0 1 0 0 0 0 0 

RFID 0 0 0 0 13 0 1 0 2 1 0 25 0 0 7 4 0 3 0 0 

Robotics 4 3 5 3 627 4 6 2 24 4 0 510 1 46 137 221 0 1 2 31 

SOA 0 0 0 0 29 0 2 1 9 3 0 69 0 3 0 14 0 0 0 0 

Telecom 0 5 3 5 850 19 33 22 404 95 13 978 3 120 118 712 0 16 20 71 

VR 0 0 0 0 4 0 0 0 1 0 0 14 0 6 6 2 0 0 0 3 

Web 2.0 0 0 0 0 37 3 6 0 42 4 9 81 0 11 36 7 0 0 3 1 

BI 6 6 4 4 501 45 107 11 250 300 12 826 1 73 145 400 6 27 30 39 

BigData 0 0 0 0 19 0 6 1 43 5 0 27 0 9 3 5 0 3 0 1 

Data Mining 5 31 2 1 724 40 108 17 288 341 10 858 1 88 154 704 4 32 16 41 

Data Science 6 10 1 1 427 13 46 9 135 308 7 533 3 51 147 140 0 5 7 46 

NLP 0 2 0 0 18 0 3 0 30 9 0 46 0 7 14 31 0 0 0 1 
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Table A2.4. Number of research jobs in data by industry and technology (2019) 
NAICS 2 11 21 22 23 31-33 42 44-45 48-49 51 52 53 54 55 56 61 62 71 72 81 92 

                     

ML 22 41 40 21 2045 57 930 287 1688 2682 127 3027 36 1473 1252 1006 11 123 66 291 

3D printing 0 10 3 2 468 18 26 3 16 5 5 312 1 50 240 38 9 1 6 30 

Blockchain 0 0 0 4 30 0 6 2 33 100 0 115 0 47 21 7 1 5 10 3 

Cloud 21 11 11 38 790 47 412 75 1135 1215 53 2343 12 813 373 398 28 86 43 121 

CRISPR 0 0 0 1 452 10 0 1 3 7 0 753 0 30 553 337 0 1 0 11 

GIS 13 7 8 12 68 7 5 14 18 45 17 239 1 58 361 93 17 3 36 301 

IoT 6 8 9 2 291 16 63 15 133 61 7 542 0 117 37 31 2 22 21 22 

Nanotech 0 0 0 0 78 1 1 0 0 5 0 123 1 7 126 21 0 0 0 14 

Polymer 0 5 1 3 249 4 17 1 13 4 0 138 1 25 45 8 1 2 0 5 
Quantum 
Computing 0 0 0 0 15 0 0 0 14 6 0 280 0 6 30 0 0 0 0 5 

RFID 0 0 1 0 25 0 3 0 0 0 0 24 0 21 5 10 0 0 0 15 

Robotics 6 21 10 7 1716 22 120 31 148 99 6 1325 10 317 523 568 7 12 18 195 

SOA 0 0 1 0 15 2 22 10 21 43 0 74 0 24 4 10 0 3 0 2 

Telecom 0 0 18 8 1053 14 100 59 475 229 12 1058 4 344 433 720 3 56 35 337 

VR 0 2 0 1 339 0 21 6 153 5 2 180 0 49 128 25 3 2 12 19 

Web 2.0 0 0 0 0 0 0 0 0 0 0 0 1 0 94 11 6 0 1 0 0 

BI 23 12 42 15 901 32 608 182 641 1449 74 1885 12 536 609 857 50 144 187 240 

BigData 6 12 26 14 992 34 631 139 1277 2455 64 2121 11 1007 520 346 12 56 44 125 

Data Mining 8 22 35 12 1994 41 360 91 633 1101 55 2372 16 578 1032 2569 19 80 77 214 

Data Science 34 38 55 35 2555 59 1100 506 2072 3669 180 4117 39 1876 1545 1613 51 208 249 432 

NLP 3 8 6 7 234 4 155 38 435 962 27 631 4 325 176 189 5 17 16 40 
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Online Appendix 3: Comparison with patent-based approaches, robustness 
 
 
 

 
Table A3.1: Descriptive statistics for Table 2 
 
  (1) (2) (3) (4)  

Mean St. Dev. Min Max 
Widespread use lagged 5 years 
(Gini by 3-digit industry) 0.75 0.15 0.40 1 

Many research jobs lagged 5 years 
(count of research jobs in hundreds) 14.64 19.22 0 67.72 

Disproportionate research jobs lagged 5 years 
(fraction of research jobs) 0.08 0.10 0 0.65 

Widespread research use lagged 5 years 
(Gini by 3-digit industry) 0.88 0.10 0.63 1 

Count of patents (thousands) 5.35 8.50 0 44.18 
Count of patents (thousands) lagged 5 years 2.60 5.25 0 31.98 
Co-occurring patent classes 266.64 144.59 0 534 
Co-occurring patent classes lagged 5 years 179.31 127.29 0 463 
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Table A3.2: Job posting measures predict patent-based measures four years later 

 (1) (2) (3) (4) (5) (6) (7) (8) 

2010-2019 Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Widespread use lagged 4 
years 
(Gini by 3-digit industry) 

-1.457*** 
(0.427) 

-0.069 
(0.081) 

      

Many research jobs lagged 
4 years 
(count of research jobs in 
hundreds) 

  0.009*** 
(0.003) 

0.000 
(0.001) 

    

Disproportionate research 
jobs lagged 4 years 
(fraction of research jobs) 

    -1.778*** 
(1.246) 

-0.052 
(0.241) 

  

Widespread research use 
lagged 4 years 
(Gini by 3-digit industry) 

      -2.134** 
(0.850) 

-0.314*** 
(0.059) 

Dependent variable 
lagged 4 years 

0.087*** 
(0.008) 

0.004*** 
(0.000) 

0.085*** 
(0.007) 

0.004*** 
(0.000) 

0.090*** 
(0.011) 

0.004*** 
(0.000) 

0.088*** 
(0.008) 

0.004*** 
(0.000) 

LL -326.48 -2,346.80 -326.88 -2,348.01 -330.04 -2,347.63 -321.81 -2,331.06 
Observations 120 120 120 120 120 120 120 120 

Note: Unit of observation is the technology-year. Dependent variables are based on patent data 2010-2019. Independent variables are based on job posting data 2010-2019. All 
columns show Poisson regressions with year fixed-effects and robust standard errors clustered at the year level. In columns 1, 3, 5 and 7 the dependent variable is count of patents 
in thousands. In columns 2, 4, 6 and 8 the dependent variable is count of co-occurring patent classes. *significant at 10%, **significant at 5%, ***significant at 1% 
 

 
  



60 
 

Table A3.3: Job posting measures predict patent-based measures six years later 

 (1) (2) (3) (4) (5) (6) (7) (8) 

2010-2019 Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Count of 
patents 

Co-occurring 
patent classes 

Widespread use lagged 6 
years 
(Gini by 3-digit industry) 

-1.113*** 
(0.348) 

0.121 
(0.068) 

      

Many research jobs lagged 
6 years 
(count of research jobs in 
hundreds) 

  0.005*** 
(0.002) 

-0.001* 
(0.001) 

    

Disproportionate research 
jobs lagged 6 years 
(fraction of research jobs) 

    -2.025*** 
(0.463) 

0.090 
(0.540) 

  

Widespread research use 
lagged 6 years 
(Gini by 3-digit industry) 

      -2.129*** 
(0.687) 

-0.100 
(0.076) 

Dependent variable 
lagged 6 years 

0.100*** 
(0.013) 

0.003*** 
(0.000) 

0.100*** 
(0.015) 

0.003*** 
(0.000) 

0.104*** 
(0.017) 

0.003*** 
(0.000) 

0.098*** 
(0.007) 

0.003*** 
(0.000) 

LL -242.81 -1,982.17 -245.66 -1,979.57 -243.34 -1,984.50 -238.02 -1,984.06 
Observations 80 80 80 80 80 80 80 80 

Note: Unit of observation is the technology-year. Dependent variables are based on patent data 2010-2019. Independent variables are based on job posting data 2010-2019. All 
columns show Poisson regressions with year fixed-effects and robust standard errors clustered at the year level. In columns 1, 3, 5 and 7 the dependent variable is count of patents 
in thousands. In columns 2, 4, 6 and 8 the dependent variable is count of co-occurring patent classes. *significant at 10%, **significant at 5%, ***significant at 1% 
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Online Appendix 4: Time-series data for the three GPT criteria (2010-2019) 
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