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Two-way Fixed Effects and Differences-in-Differences
Estimators with Several Treatments∗

Clément de Chaisemartin Xavier D’Haultfœuille†

Abstract

We study regressions with period and group fixed effects and several treatment vari-
ables. Under a parallel trends assumption, the coefficient on each treatment identifies the
sum of two terms. The first term is a weighted sum of the effect of that treatment in
each group and period, with weights that may be negative and sum to one. The second
term is a sum of the effects of the other treatments, with weights summing to zero. Ac-
cordingly, coefficients in those regressions are not robust to heterogeneous effects, and may
be contaminated by the effect of other treatments. We propose alternative differences-in-
differences estimators. To estimate, say, the effect of the first treatment, our estimators
compare the outcome evolution of a group whose first treatment changes while its other
treatments remain unchanged, to control groups whose treatments all remain unchanged,
and with the same baseline treatments or treatments’ history as the switching group. Those
carefully selected comparisons are robust to heterogeneous effects, and do not suffer from
the contamination problem.

(JEL C21, C23)

1 Introduction

To estimate treatment effects, researchers often use panels of groups (e.g. counties, regions), and
estimate two-way fixed effect (TWFE) regressions, namely regressions of the outcome variable
on group and time fixed effects and the treatment. de Chaisemartin and D’Haultfœuille (2020)
∗Several of this paper’s ideas arose during conversations with Enrico Cantoni, Angelica Meinhofer, Vincent

Pons, Jimena Rico-Straffon, Marc Sangnier, Oliver Vanden Eynde, and Liam Wren-Lewis who shared with us
their interrogations, and sometimes their referees’ interrogations, on two-way fixed effects regressions with several
treatments. We are grateful to them for those stimulating conversations. We are grateful to Yubo Wei for his
excellent work as a research assistant.
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have found that almost 20% of empirical papers published by the American Economic Review
(AER) from 2010 to 2012 estimate such regressions.

de Chaisemartin and D’Haultfœuille (2020) and Borusyak and Jaravel (2017) have shown that
with one treatment in the regression, under a parallel trends assumption TWFE regressions
identify a weighted sum of the treatment effects of treated (g, t) cells, with weights that may
be negative and sum to one.1 Because of the negative weights, the treatment coefficient in such
regressions is not robust to heterogeneous treatment effects across groups and time periods: it
may be, say, negative, even if the treatment effect is strictly positive in every (g, t) cell.

However, in 18% of the TWFE papers in the 2010-2012 AER survey in de Chaisemartin and
D’Haultfœuille (2020), the TWFE regression has several treatment variables. By including
several treatments, researchers hope to estimate the effect of each treatment holding the other
treatments constant. For instance, when studying the effect of marijuana laws, as in Meinhofer
et al. (2021), one may want to separate the effect of medical and recreational laws. To do so, one
may estimate a regression of the outcome of interest in state g and year t on state fixed effects,
year fixed effects, an indicator for whether state g has a medical law in year t, and an indicator
for whether state g has a recreational law in year t. In this example, the two treatments are
binary, they can switch on but never switch off, a situation referred to as a staggered adoption
design, and the second treatment always comes after the first. TWFE regressions have also been
used in more complicated designs. For instance, Hotz and Xiao (2011) run TWFE regressions
of measures of daycare quality in state g and year t on two daycare regulations in state g and
year t: the minimum number of years of schooling required to be a daycare director and the
minimum staff-child ratio. Both treatments are non-binary, and can increase or decrease over
time.

In this paper, we start by investigating what TWFE regressions with several treatments identify.
We show that under a parallel trends assumption, the coefficient on each treatment identifies
the sum of two terms. The first term is a weighted sum of the effect of that treatment in
each group and period, with weights that may be negative and sum to one. This first term
also appears in decompositions of TWFE regressions with only one treatment, but we show
that TWFE regressions with several treatments often have more and larger negative weights
than TWFE regressions with only one treatment, and are therefore less robust to heterogeneous
effects. The second term is a sum of the effects of the other treatments, with weights summing
to zero. Accordingly, treatment coefficients in TWFE regressions with several treatments may
also be contaminated by the effect of other treatments, an issue that was not present in TWFE
regressions with one treatment. As the weights sum to zero, this second term disappears if
the effect of the second treatment is homogeneous, but it is often implausible that this effect

1When the treatment is binary and staggered, Goodman-Bacon (2021) shows that negative weights arise
because the TWFE regression leverages DIDs using groups treated at both periods as control groups.
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is homogeneous. In a simple example with two periods and two treatments, we show that this
contamination problem may arise because the coefficient on the first treatment may leverage a
difference-in-differences (DID) comparing the outcome evolution of a group going from untreated
to receiving both treatments to the outcome evolution of a group going from untreated to
receiving the second treatment. If the effect of the second treatment is the same in the two
groups, its effect in both groups cancel each other out in this DID. But if the effects of the second
treatment differ in the two groups, they do not cancel each other out, and they contaminate the
coefficient on the first treatment. The weights attached to any TWFE regression with several
treatments can be computed by the twowayfeweights Stata and R packages.

Then, we propose alternative DID estimators that rely on common trends assumptions, like
TWFE coefficients, but that are robust to heterogeneous effects and do not suffer from the
contamination problem, unlike TWFE coefficients. To do so, we start by assuming that the
treatment does not have dynamic effects: the current outcome is only affected by the current
value of the treatment, not by past treatments. Under this assumption, we propose an estimator
that generalizes the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020), and that
can be used in applications where the treatment switches on and off, and in instances where
the treatment is discrete rather than binary. To isolate the effect of the first treatment, our
new estimator compares the t− 1-to-t outcome evolution, between groups whose first treatment
changes from t−1 to t while their other treatments do not change, and groups whose treatments
all remain the same and that had the same treatments as the switching groups in period t−1. In
the Hotz and Xiao (2011) example, to isolate the effect of the staff to child ratio treatment, our
estimator compares the t− 1 to t outcome evolution of states whose staff to child ratio changes
but whose years-of-schooling requirement for daycare directors does not change, to the outcome
evolution of states whose two treatments remain the same, and with the same treatments as
the switching states in t− 1. Restricting comparisons to groups whose other treatments do not
change avoids the contamination problem. Restricting the control group to groups that do not
experience any change in their treatments and with the same treatments as the switchers in
t− 1 ensures that our estimator is robust to heterogeneous treatment effects and only relies on
parallel trends assumptions. Our new estimator is computed by the did_multiplegt Stata and
R packages.

Then, we propose alternative estimators that allow dynamic effects: the current outcome may
be affected by past values of the treatment. To do so, we restrict attention to binary treatments
following a staggered adoption design, and such that the second treatment always comes after
the first, as in the marijuana laws example. In such instances, one can rely on existing esti-
mators to isolate the effect of the first treatment, by restricting the sample to (g, t) cells that
have not received the second treatment yet, and computing the estimators for the one-binary-
and-staggered-treatment case proposed, say, by Callaway and Sant’Anna (2021). One can also
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rely on existing estimators to estimate the combined effect of the two treatments: one can de-
fine a new treatment equal to the sum of the two treatments, and compute the estimators in
de Chaisemartin and D’Haultfœuille (2021), that allow for dynamic effects and that can be used
with a non-binary discrete treatment.

On the other hand, existing estimators cannot be used to isolate the effect of the second treat-
ment. We propose a novel estimator for that purpose. Our estimator compares the outcome
evolutions of groups that start receiving the second treatment and groups that have not received
it yet, restricting such comparisons to groups that all started receiving the first treatment at
the same date. Such comparisons are valid under a parallel trends assumption, and under the
assumption that the effect of the first treatment follows the same evolution over time in every
group. This second assumption may be strong, but it is necessary to isolate the effect of the sec-
ond treatment: under parallel trends alone, one can only identify the combined effect of the two
treatments. Those two assumptions are partly testable, by comparing the outcome evolution of
groups adopting and not adopting the second treatment, before adopters adopt. Our proposed
estimator may, however, not always be applicable. For instance, in the marijuana laws example,
it requires that for every state adopting a recreational law, one can find a non-adopting state
that adopted a medical law in the same year. Accordingly, we propose two other estimators.
The first relies on the assumption that in each group, the effect of the first treatment increases
or decreases linearly with the duration of exposure. The second relies on the assumption that
the evolution of the effect of the first treatment is the same in every group, and does not depend
on the date at which the first treatment was adopted. All our proposed estimators are computed
by the did_multiplegt Stata package. Our robust-to-dynamic-effects estimators can easily be
extended to applications with two binary and staggered treatments such that neither treatment
systematically comes after the other one. We briefly discuss extensions to more general designs,
but mostly leave them for future work.

Finally, we use our results to revisit Hotz and Xiao (2011). We find that some of the TWFE
regressions with several treatments in that paper estimate weighted sums of effects with very
large negative weights attached to them, both on a given treatment’s own effects, but also on
the effects of the other treatments in the regression. The authors’ regression implicitly rules
out dynamic effects so we follow their specification and compute our heterogeneity-robust DID
estimator that also rules out dynamic effects. We find that for the years-of-schooling treatment,
our estimator is seven times smaller than, and significantly different from, the TWFE coefficient.2

Our paper is related to the recent literature showing that TWFE regressions with one treatment
variable may not be robust to heterogeneous effects (see de Chaisemartin and D’Haultfœuille,
2020; Borusyak and Jaravel, 2017; Goodman-Bacon, 2021). Our paper is also related to several

2There are too few states changing their staff-to-child-ratio treatment without changing their years-of-schooling
treatment for us to compute an heterogeneity-robust DID estimator of that second treatment.
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papers that have considered the causal interpretation of OLS regression coefficients with several
treatments (see Hull, 2018; Sun and Abraham, 2021; Goldsmith-Pinkham, Hull and Kolesár,
2021). We discuss those papers in more details later in the paper, but for now we just note
that when the treatments are indicators for whether group g has started receiving a binary and
staggered treatment ` periods ago, our decomposition of the TWFE regression reduces to one of
the decompositions in Sun and Abraham (2021). Accordingly, our decomposition extends their
result to situations where the different treatments in the regression are different policies that
could be non-binary and non-staggered, rather than indicators for having received a single binary
and staggered policy ` periods ago. Finally, the alternative estimator we propose for the case
without dynamic effects builds upon the DIDM estimator in de Chaisemartin and D’Haultfœuille
(2020), while the alternative estimator we propose for the case with dynamic effects builds upon
the estimators in Callaway and Sant’Anna (2021).

The remainder of the paper is organized as follows. Section 2 presents the set up. Section
3 presents our decomposition results for TWFE regressions with several treatment. Section 4
presents our alternative estimators. Section 5 presents our empirical application.

2 Set up

We assume that there are G groups and T periods. For every (g, t) ∈ {1, ..., G} × {1, ..., T}, let
Ng,t denote the number of observations in group g at period t, and let N = ∑

g,t Ng,t be the total
number of observations. We are interested in the effect of K treatments. We assume that the
treatments are binary, though our result can be extended to any ordered treatment. Then, for
every (k, i, g, t) ∈ {1, ..., K} × {1, ..., Ng,t} × {1, ..., G} × {1, ..., T}, let Dk

i,g,t denote the value of
treatment k for observation i in group g at period t. For any d ∈ {0, 1}K , let Yi,g,t(d) denote her
potential outcome if (D1

i,g,t, ..., D
K
i,g,t) = d. The outcome of observation i in group g and period t

is Yi,g,t = Yi,g,t(D1
i,g,t, ..., D

K
i,g,t). Importantly, our notation does not necessarily rule out dynamic

effects of past treatments on the outcome. The K treatments may for instance include lags of
the same treatment variables. We discuss this issue in more details after Theorem 1 below.

For all (g, t), all k ∈ {0, ..., K}, and all d ∈ {0, 1}K , let

Dk
g,t = 1

Ng,t

Ng,t∑
i=1

Dk
i,g,t, Yg,t(d) = 1

Ng,t

Ng,t∑
i=1

Yi,g,t(d), and Yg,t = 1
Ng,t

Ng,t∑
i=1

Yi,g,t.

Dk
g,t denotes the average of treatment k in group g at period t, while Yg,t(d) and Yg,t respectively

denote the average potential outcomes and the average observed outcome in group g at period
t. Let also Dg,t = (Dk

g,t)k∈{1,...,K} denote a vector stacking together the K average treatments of
group g at period t.
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We consider the treatments and potential outcomes of each (g, t) cell as random variables. For
instance, aggregate random shocks may affect the potential outcomes of group g at period t,
and that cell’s treatments may also be random. The expectations below are taken with respect
to the distribution of those random variables.

Throughout the paper, we maintain the following assumptions.

Assumption 1 (Balanced panel of groups) For all (g, t) ∈ {1, ..., G} × {1, ..., T}, Ng,t > 0.

Assumption 2 (Sharp design) For all k ∈ {1, ..., K}, all (g, t) ∈ {1, ..., G}×{1, ..., T}, and all
i ∈ {1, ..., Ng,t}, Dk

i,g,t = Dk
g,t.

Assumption 3 (Independent groups) The vectors ((Yg,t(d))d∈{0,1}K , (Dk
g,t)k∈{1,...,K}) are mutu-

ally independent.

Let 0 = (0, ..., 0) denote the vector of K zeros.

Assumption 4 (Strong exogeneity and common trends) For all (g, t) ∈ {1, ..., G} × {2, ..., T},
E(Yg,t(0)− Yg,t−1(0)|Dg,1, ..., Dg,T ) does not vary across g.

Assumption 2 holds when Ng,t = 1 or if the treatments are group-level variables, for instance
county- or state-laws. Assumption 3 requires that potential outcomes and treatments of different
groups be independent, but it allows these variables to be correlated over time within each
group. This is a commonly-made assumption in DID analysis, where standard errors are usually
clustered at the group level (see Bertrand, Duflo and Mullainathan, 2004). To understand better
Assumption 4, let us state two conditions that, together, are sufficient for it to hold, and that
are easily interpretable:

1. E(Yg,t(0)− Yg,t−1(0)|Dg,1, ..., Dg,T ) = E(Yg,t(0)− Yg,t−1(0)).

2. ∀t ≥ 2, E(Yg,t(0)− Yg,t−1(0)) does not vary across g.

Point 1 is related to the strong exogeneity condition in panel data models. It requires that the
shocks affecting group g’s never-treated outcome be mean independent of group g’s treatments.
For instance, this rules out cases where a group gets treated because it experiences negative
shocks, the so-called Ashenfelter’s dip (see Ashenfelter, 1978). Point 2 requires that in every
group, the expectation of the never-treated outcome follow the same evolution over time. It is
a generalization of the standard common trends assumption in DID models (see, e.g., Abadie,
2005).

We now define the FE regression described in the introduction.3

3 Throughout the paper, we assume that the treatments Dk
g,t in Regression 1 are not collinear with the other

independent variables in those regressions, so β̂fe is well-defined.
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Regression 1 (Fixed-effects regression with K treatments)

Let βfe = E
[
β̂fe

]
, where β̂fe is the coefficient of D1

g,t in an OLS regression of Yi,g,t on group
fixed effects, period fixed effects, and the vector Dg,t.

Let D be the vector (Dg,t)(g,t)∈{1,...,G}×{1,...,T} collecting all the treatments in all the (g, t) cells. let
Dg = (D1,g, ..., DT,g) be the vector collecting all the treatments in group g. Let N1 = ∑

i,g,t D
1
i,g,t

denote the number of units receiving the first treatment. Let D−1
g,t = (D2

g,t, ..., D
K
g,t) denote a

vector stacking together the treatments of cell (g, t), excluding treatment 1. Let εg,t denote the
residual of observations in cell (g, t) in the regression of D1

g,t on group and period fixed effects
and D−1

g,t :
D1

g,t = α̂ + γ̂g + ν̂t + (D−1
g,t )′ζ̂ + εg,t. (1)

One can show that if the regressors in Regression 1 are not collinear, the average value of εg,t

across all treated (g, t) cells differs from 0: ∑(g,t):D1
g,t=1(Ng,t/N1)εg,t 6= 0. Then we let wg,t denote

εg,t divided by that average:

wg,t = εg,t∑
(g,t):D1

g,t=1(Ng,t/N1)εg,t

.

3 Decomposition results

3.1 Two treatment variables

For expositional purposes, we begin by considering the case with two treatments. This excludes
the case where the TWFE regression includes two treatments and their interaction, but that case
is covered by our results in the next subsection, where we allow for three (or more) treatments
in the regression, one of which could be the interaction of two treatments. For any (g, t) ∈
{1, ..., G} × {1, ..., T}, and for any (d1, d2) ∈ {0, 1}2, let

∆d1,d2
g,t = 1

Ng,t

Ng,t∑
i=1

[Yi,g,t(d1, d2)− Yi,g,t(0, 0)]

denote the average effect, in cell (g, t), of moving the first treatment from zero to d1 and the
second treatment from zero to d2. Let also

∆1
g,t(D2

g,t) = 1
Ng,t

Ng,t∑
i=1

[
Yi,g,t(1, D2

g,t)− Yi,g,t(0, D2
g,t)
]

denote the average effect, in cell (g, t), of moving the first treatment from zero to one while
keeping the second treatment at its observed value.
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Theorem 1 Suppose that Assumptions 1-4 hold and K = 2. Then,

βfe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t(D2
g,t) +

∑
(g,t):D2

g,t=1

Ng,t

N1
wg,t∆0,1

g,t

 .
Moreover, ∑(g,t):D1

g,t=1
Ng,t

N1
wg,t = 1 and ∑(g,t):D2

g,t=1
Ng,t

N1
wg,t = 0.

Theorem 1 shows that the coefficient of D1
g,t identifies the sum of two terms. The first term is a

weighted sum of the average effect of moving D1
g,t from 0 to 1 while keeping D2

g,t at its observed
value, across all (g, t) such that D1

g,t = 1, and with weights summing to 1. The second term is
a weighted sum of the effect of moving D2

g,t from 0 to 1 while keeping D1
g,t at 0, across all the

(g, t) such that D2
g,t = 1, and with weights summing to 0. If the effect of the second treatment

is constant, meaning that there is a real number δ2 such that for all (g, t), ∆0,1
g,t = δ2, this second

term disappears. Then, Theorem 1 becomes equivalent to Theorem S4 in the Web Appendix
of de Chaisemartin and D’Haultfœuille (2020), with D2

g,t playing the role of a control variable
in the two-way fixed effects regression. Theorem 1 implies that on top of not being robust
to heterogeneous treatment effects, βfe may also be contaminated by the effect of the second
treatment on the outcome. On the other hand, if the effect of the first and second treatments
are both constant (∆1

g,t(D2
g,t) = δ1 and ∆0,1

g,t = δ2 for some real numbers δ1 and δ2), then β̂fe

is unbiased for δ1. Importantly, Theorem 1 and Theorem 2 below can easily be extended to
the case where the treatments are non-binary. Then, the causal effects ∆1

g,t(D2
g,t) and ∆0,1

g,t just
need to be replaced by slopes of the potential outcome function, as in Section 3.2 of the Web
Appendix of de Chaisemartin and D’Haultfœuille (2020).

The contamination bias appears in Theorem 1, because β̂fe may leverage “forbidden compar-
isons”, using the terminology coined by Borusyak and Jaravel (2017). Here, forbidden com-
parisons are differences-in-differences (DIDs) comparing the outcome evolution of a group that
starts receiving the first and the second treatment to the outcome evolution of a group that
starts receiving the second treatment only. For instance, assume that there are four groups and
two time periods. No group is treated at period 1, and at period 2 groups 2 and 4 receive the
first treatment while 3 and 4 receive the second treatment. Then, using the fact that a TWFE
regression with two periods is equivalent to a first-difference regression, and the fact that the
first differences of the two treatments are orthogonal, it is easy to show that

β̂fe = 1
2 (Y2,2 − Y2,1 − (Y1,2 − Y1,1)) + 1

2 (Y4,2 − Y4,1 − (Y3,2 − Y3,1)) .

The first DID in the previous display compares a group that starts receiving the first treatment at
period 2 to a group that does not receive any treatment. Under a parallel trends assumption on
the untreated outcome Yg,t(0, 0), that DID identifies the effect of the first treatment in group 2 at
period 2. On the other hand, the second DID compares a group that starts receiving the first and
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second treatment at period 2 to a group that only starts receiving the second treatment. Under
a parallel trends assumption on the untreated outcome Yg,t(0, 0), that second DID identifies
the sum of three terms. The first is E(Y4,2(0, 1) − Y4,2(0, 0)), the effect of receiving the second
treatment versus nothing in group 4 at period 2. The second is E(Y4,2(1, 1)−Y4,2(0, 1)), the effect
of receiving the first and second treatments versus the second only in group 4 at period 2. The
last term is minus E(Y3,2(0, 1) − Y3,2(0, 0)), the effect of receiving the second treatment versus
nothing in group 3 at period 2. Accordingly, β̂fe is contaminated by the effects of receiving the
second treatment versus nothing, in groups 4 and 3 at period 2.

Importantly, Theorem 1 does not necessarily rule out dynamic effects of past treatments on the
outcome. The two treatments in the regression may for instance be the current treatment and its
first lag. In that case, our potential outcome notation allows the current and lagged treatment to
affect the outcome. Theorem 2 below generalizes Theorem 1, by considering TWFE regressions
with K treatments. It thus applies to cases where potential outcomes depend on up to K − 1
lags of the treatment.4

In this sense, Theorems 1 and 2 complement the pioneering work of Sun and Abraham (2021).
The authors study the so-called event-study regression, an example of a TWFE regression with
several treatments that is often used in staggered adoption designs, and where the treatment vari-
ables in the regression are indicators for having started receiving a single binary-and-staggered
treatment ` periods ago. In those regressions, the authors show that effects of being treated
for `′ periods may contaminate the coefficient supposed to measure the effect of ` periods of
treatment in the regression, and they provide a decomposition formula one can use to quantify
the extent of the phenomenon. If i) the K treatments in Regression 1 are indicators for having
started receiving a single binary-and-staggered treatment ` periods ago, ii) no lags were gath-
ered together in the event-study regression considered by Sun and Abraham (2021), and iii) the
treatment no longer has an effect after K+1 periods of exposure, then our Theorem 2 reduces to
Proposition 3 in Sun and Abraham (2021).5 Though they coincide under conditions i)-iii) above,
Theorems 1 and 2 and their results are non-nested. Our results apply to situations where the
treatment variables in the regression are different, non necessarily mutually exclusive policies,
that may not be binary or may not follow a staggered adoption design. On the other hand, their
results also apply to situations where some of the treatment variables may be gathered together
or omitted from the regression. They also obtain a decomposition without imposing common

4If the treatments have dynamic effects beyond the number of lags specified by the researcher, the regression
is misspecified in the sense that it does not include all the explanatory variables it should have. Theorems 1 and
2 do not consider the consequences of such misspecification. Rather, our goal is to highlight issues that may arise
even when the TWFE regression is correctly specified.

5In their decomposition, Sun and Abraham (2021) gather groups that started receiving the treatment at the
same period into cohorts. Their decomposition can then be further decomposed, thus finally yielding the result
in our Theorem 2.
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trends.

Theorem 1 is also related to the pioneering work of Hull (2018). In his Section 2.2, the author
studies TWFE regressions where indicators for each value that a multinomial treatment may
take are included in the regression, an example of a TWFE regression with several treatments.
Equation (15) therein is, to our knowledge, the first instance where a contamination phenomenon
was shown. However, the paper does not discuss this phenomenon. It also does not give a
decomposition formula like Theorem 1, so one cannot use the paper’s results to compute the
contamination weights, and assess whether they are important in a given regression. Finally, the
paper’s result applies when the data has two periods, and in instances were the treatments in
the regression are indicators for each value that a multinomial treatment may take. Accordingly,
the paper does not cover the case with more two time periods, and non-exclusive treatments.

Another related paper, released after ours, is Goldsmith-Pinkham, Hull and Kolesár (2021),
who show that a contamination phenomenon similar to that in Sun and Abraham (2021) and
in Theorem 1 also arises in linear regressions with several treatments, and a set of controls such
that the treatments can be assumed to be independent of the potential outcomes conditional on
those controls. Again, their result is not nested within and does not nest the results of Sun and
Abraham (2021) nor ours: both Sun and Abraham (2021) and us assume parallel trends rather
than conditional independence. Interestingly, under their conditional independence assumption,
the weights on the effect of D1

g,t are all positive. Thus, their result shows that the contamination
phenomenon can also arise in instances where the negative weighting phenomenon put forward
by de Chaisemartin and D’Haultfœuille (2020) in the context of TWFE regressions is absent.

Overall, our four papers complement each other, and show that the contamination phenomenon is
very pervasive, as it arises under several identifying assumptions (parallel trends and conditional
independence), and irrespective of the nature of the treatments included in the regression.

Theorem 1 has an important consequence for TWFE regressions estimating heterogeneous treat-
ment effects. Often times, researchers run a TWFE regression with a treatment variable Dg,t

interacted with a group-level binary variable Ig, and with (1− Ig). For instance, to study if the
treatment effect differs in poor and rich counties, one interacts the treatment with an indicator
for counties above the median income, and with an indicator for counties below the median
income. Theorem 1 also applies to those regressions. Specifically, one has

βI=1
fe = E

 ∑
(g,t):Dg,t=1,Ig=1

Ng,t

N1
wg,t∆g,t +

∑
(g,t):Dg,t=1,Ig=0

Ng,t

N1
wg,t∆g,t

 .
where βI=1

fe is the coefficient of Dg,t× Ig, and ∆g,t = 1
Ng,t

∑Ng,t

i=1 [Yi,g,t(1)− Yi,g,t(0)] . The previous
display implies that the coefficient of Dg,t × Ig is contaminated by the treatment effect in (g, t)
cells such that Ig = 0. In the example, the coefficient of the treatment interacted with the
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indicator for rich counties is contaminated by the treatment effect in poor counties.6 This calls
into question the use of such TWFE regressions to estimate heterogeneous effects.

Theorem 1 shows that TWFE regressions with several treatments may be affected by a con-
tamination phenomenon that does not affect TWFE regressions with one treatment. However,
TWFE regressions with several treatments also tend to have a larger number of negative weights
and a larger absolute value of the sum of negative weights than TWFE regressions with only one
treatment. Thus TWFE regressions with several treatments may be less robust to heterogeneous
effects. We start by showing this formally, in the following, simple design.

Assumption 5 (Standard DID with two treatments) For all (g, t) ∈ {1, ..., G} × {1, ..., T} and
k ∈ {1, 2}, Dk

g,t = 1{g ≥ Gk}1{t ≥ T k} for some 1 < G1 < G2 ≤ G and 1 < T 1 < T 2 ≤ T .

Assumption 5 corresponds to a standard DID set-up, with two treatments: some groups start
receiving the first treatment at a date T 1, and a subset of those groups then start receiving the
second treatment at a later date T 2. These conditions are typically satisfied when the second
treatment is a reinforcement of the first. Note that there is no variation in treatment timing:
all treated groups start receiving the first (resp. second) treatment at the same date.

In this set-up, we compare the TWFE regression with two treatments considered above to
a TWFE regression with only the first treatment. Specifically, we consider the regression of
Yi,g,t on group fixed effects, period fixed effects, and D1

g,t, estimated on all periods before T 2.
We let β1

fe denote the expectation of the coefficient on D1
g,t in that regression. We also let

N ′1 = ∑
g,t:t<T2,D1

g,t=1 Ng,t denote the number of units receiving the first treatment before period
T2.

Corollary 1 Suppose that Assumptions 1-5 hold, K = 2 and for all t ≥ 2, Ng,t/Ng,t−1 does not
vary across g. Then,

β1
fe = E

 ∑
(g,t):t<T2,D1

g,t=1

Ng,t

N ′1
∆1

g,t(0)

 ,
βfe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t(D2
g,t)

 .
If ∑g,t Ng,tD

2
g,t >

∑
g,t Ng,t1{g < G2}1{t < T 2}, the weights wg,t are negative for all (g, t)

satisfying g ∈ {G1, ..., G2 − 1} and t ∈ {T 1, ..., T 2 − 1}.

The first result shows that β1
fe identifies the average treatment effect on the treated from period

1 to T2 − 1. On the other hand, the second result shows that once we include the subsequent
6This contamination phenomenon disappears if the time fixed effects are interacted with Ig in the regression.
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periods and the second treatment in the regression, the coefficient on D1
g,t may now identify a

weighted sum of the effect of D1
g,t across the treated (g, t) cells, with some negative weights. The

condition ∑g,t Ng,tD
2
g,t >

∑
g,t Ng,t1{g < G2}1{t < T 2} requires that there are more units that

receive the second treatment than units in “control groups” (g < G2) during periods before the
second treatment starts (t < T 2). Interestingly, the contamination term in Theorem 1 vanishes
under Assumption 5: adding the second treatment to the regression generates some negative
weights but does not lead to a contamination bias.

Beyond the simple design considered in Assumption 5, TWFE regressions with several treatments
seem to often have more and larger negative weights than TWFE regressions with only one
treatment. At least, this is the case in the application we revisit in Section 5, where Assumption
5 fails. In that application, the TWFE regression with several treatments has much larger
negative weights attached to it than the TWFE regressions with only one treatment.

3.2 More than two treatment variables

We now go back to the general case where K may be greater than 2. We let 0−1 = (0, ..., 0) be
the vector of K − 1 zeros. We also define

∆1
g,t(D−1

g,t ) = 1
Ng,t

Ng,t∑
i=1

[
Yi,g,t(1, D−1

g,t )− Yi,g,t(0, D−1
g,t )

]
,

∆−1
g,t = 1

Ng,t

Ng,t∑
i=1

[
Yi,g,t(0, D−1

g,t )− Yi,g,t(0,0−1)
]
.

Theorem 2 below generalizes Theorem 1.

Theorem 2 Suppose that Assumptions 1-4 hold. Then,

βfe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t(D−1
g,t ) +

∑
(g,t):D−1

g,t 6=0−1

Ng,t

N1
wg,t∆−1

g,t

 .
Moreover, ∑(g,t):D1

g,t=1
Ng,t

N1
wg,t = 1, and if K = 2 or the treatments D2

g,t, ..., D
K
g,t are mutually

exclusive, ∑(g,t):D−1
g,t 6=0−1

Ng,t

N1
wg,t = 0.

Theorem 2 is similar to Theorem 1, except that when K > 2, we do not always have

∑
(g,t):D−1

g,t 6=0−1

Ng,t

N1
wg,t = 0.

The weights on the effects of the other treatments may not sum to 0. Accordingly, even if the
effects of all treatments are constant, β̂fe may still be biased for the effect of the first treatment.
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There are three special cases where the weights on the effects of the other treatments sum to 0.
The first one is when K = 2, as shown in Theorem 1. The second one is when the treatments
D2

g,t, ..., D
K
g,t are mutually exclusive, as stated in Theorem 2. The third one is when there is no

complementarity or substitutability between the treatments D2
g,t, ..., D

K
g,t. Specifically, assume

that for all (g, t), there exists (δk
g,t)k=2,...,K such that

E
[
∆−1

g,t |D
]

=
K∑

k=2
Dk

g,tδ
k
g,t. (2)

Then, we have the following decomposition:

Corollary 2 Suppose that Assumptions 1-4 and (2) hold. Then,

βfe = E

 ∑
(g,t):D1

g,t=1

Ng,t

N1
wg,t∆1

g,t(D−1
g,t ) +

K∑
k=2

∑
(g,t):Dk

g,t=1

Ng,t

N1
wg,tδ

k
g,t

 .
Moreover, ∑(g,t):D1

g,t=1
Ng,t

N1
wg,t = 1, and ∑(g,t):Dk

g,t=1
Ng,t

N1
wg,t = 0 for every k ∈ {2, ..., K}.

Accordingly, it is only when the treatments are not mutually exclusive and may be complemen-
tary or substitutable that β̂fe could be biased even under constant treatment effects. This is
because in that case, Regression 1 is misspecified, and one should include the interactions of
the treatments. The weights in Corollary 2 can be computed using the twowayfeweights Stata
command.

In the special case where K = 3 and the three treatment variables in the regression are two
treatments and their interaction, we have ∆−1

g,t = ∆0,1
g,t : when the first treatment is equal to 0, as

in ∆−1
g,t , the interaction of the two treatments must be equal to 0. Accordingly, the decomposition

of βfe in Theorem 2 involves the same causal effects as the decomposition of the coefficient on
the first treatment in the regression without the interaction term in Theorem 1. The weights,
on the other hand, differ. In the decomposition in Theorem 1, they involve residuals of a TWFE
regression of D1

g,t on D2
g,t, while in the decomposition in Theorem 2, they involve residuals

of a TWFE regression of D1
g,t on D2

g,t and D1
g,tD

2
g,t. In the special case with only two time

periods and where groups do not receive any of the two treatments in the first period, one can
show that the coefficient on D1

g,t in the regression with the interaction estimates a weighted
average of the effect of the first treatment and is not contaminated by the effect of the second
treatment. On the other hand, in the regression without the interaction, the coefficient on D1

g,t

estimates a weighted average of the effects of the first treatment plus a weighted sum of the
effects of the second treatment with non-zero weights. In that special case, the regression with
the interaction term is preferable, as it makes the contamination problem disappear. This result
does not, however, translate to more general designs with more than two time periods and where
groups may receive the treatments at every period. It is easy to find examples where adding the
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interaction to the regression actually increases the contamination weights. This is the case for
instance in the application we consider below: in the regression without control variables and
with the two main treatments (the minimum staff-child ratio and the minimum number of years
of schooling required for daycare directors), adding the interaction between the two treatments
actually increases the absolute value of the contamination weights.

4 Alternative estimators of the effect of a treatment controlling for
other treatments

4.1 Alternative estimators when the treatments do not have dynamic effects

Let us first introduce

S =
{

(g, t) : t ≥ 2, D1
g,t 6= D1

g,t−1, D
−1
g,t = D−1

g,t−1,∃g′ : D1
g′,t = D1

g′,t−1 = D1
g,t−1,

D−1
g′,t = D−1

g′,t−1 = D−1
g,t−1

}

and NS = ∑
(g,t)∈S Ng,t. S is the set of cells (g, t) whose first treatment changes between t − 1

and t while their other treatments do not change, and such that there is another group g′ whose
treatments do not change between t−1 and t, and with the same treatments as g in t−1. Then,
let

δS = E

 1
NS

∑
(g,t)∈S

Ng,t∑
i=1

[
Yi,g,t(1, D−1

g,t )− Yi,g,t(0, D−1
g,t )

]
denote the average effect of moving the first treatment from 0 to 1 while keeping all other
treatments at their observed value, across the units in S.7 One may be interested in estimating
other average treatment effects, such as the effect of moving several treatments at the same time.
Such parameters can be estimated following a similar strategy as that we follow to estimate δS .

We now show that δS can be unbiasedly estimated by a weighted average of DID estimators.
This result holds under the following condition.

Assumption 6 (Strong exogeneity and common trends, v2) For all (g, t) ∈ {1, ..., G}×{2, ..., T}
and d = (d1

1, d
−1
1 , ..., d1

T , d
−1
T ) such that d−1

t = d−1
t−1, we have

E
[
Yg,t(d1

t−1, d
−1
t−1)− Yg,t−1(d1

t−1, d
−1
t−1)|Dg = d

]
=E

[
Yg,t(d1

t−1, d
−1
t−1)− Yg,t−1(d1

t−1, d
−1
t−1)|D1

g,t−1 = d1
t−1, D

−1
g,t−1 = d−1

t−1

]
.

Moreover, these conditional expectations do not depend on g.
7When NS = 0, we simply let the term inside brackets be equal to 0.
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Assumption 6 imposes both a strong exogeneity and a parallel trends condition. The strong
exogeneity condition requires that groups’ t − 1 to t outcome evolution, in the counterfactual
scenario where all their treatments are at their t− 1 value at period t, be mean independent of
their treatments at every period other than t− 1. The parallel trends assumption requires that
groups with the same period-t − 1 treatments have the same counterfactual trends. Note that
Assumption 6 does not restrict treatment effect heterogeneity. It also does not imply parallel
trends on the treatment effect, because for a given value of Dg it only imposes parallel trends
on one potential outcome. Below we compare Assumption 6 to the more standard Assumption
4.

We can now define our estimator. For all t ∈ {2, ..., T}, for all (d, d′) ∈ {0, 1}2, and for all
d−1 ∈ {0, 1}K−1, let

Gd,d′,d−1,t =
{
g : D1

g,t = d,D1
g,t−1 = d′, D−1

g,t = D−1
g,t−1 = d−1

}
.

We then let Nd,d′,d−1,t = ∑
g∈Gd,d′,d−1,t

Ng,t denote the number of observations with treatment 1
equal to d′ at period t − 1 and d at period t, and with other treatments equal to d−1 at both
dates. Let also

DID+,d−1,t =
∑

g∈G1,0,d−1,t

Ng,t

N1,0,d−1,t

(Yg,t − Yg,t−1)−
∑

g∈G0,0,d−1,t

Ng,t

N0,0,d−1,t

(Yg,t − Yg,t−1) ,

DID−,d−1,t =
∑

g∈G1,1,d−1,t

Ng,t

N1,1,d−1,t

(Yg,t − Yg,t−1)−
∑

g∈G0,1,d−1,t

Ng,t

N0,1,d−1,t

(Yg,t − Yg,t−1) .

Note that DID+,d−1,t is not defined when N1,0,d−1,t = 0 or N0,0,d−1,t = 0. In such instances, we let
DID+,d−1,t = 0. Similarly, we let DID−,d−1,t = 0 when N1,1,d−1,t = 0 or N0,1,d−1,t = 0. DID+,d−1,t

compares the t− 1-to-t outcome evolution of groups whose first treatment goes from 0 to 1 from
t− 1 to t while their other treatments are equal to d−1 at both dates, to the outcome evolution
of groups whose first and other treatments are respectively equal to 0 and d−1 at both dates.
Under Assumption 6, the latter evolution is a valid counterfactual of the outcome evolution that
the first groups would have experienced if their first treatment had remained equal to 0 at period
t. DID−,d−1,t has a similar interpretation.

Finally, let

DIDM =
T∑

t=2

∑
d−1∈{0,1}K−1

(
N1,0,d−1,t

NS
DID+,d−1,t + N0,1,d−1,t

NS
DID−,d−1,t

)
(3)

if NS > 0, and DIDM = 0 if NS = 0.

Theorem 3 If Assumptions 1-3 and 6 hold, E [DIDM] = δS .

15



DIDM extends the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020) to settings
with several treatments. Relative to the estimator in our previous paper, the estimator in this
paper does not estimate the effect of the first treatment in (g, t) cells such that at least one of
g’s other treatments changes between t− 1 and t. Similarly, it drops control groups whose first
treatment does not change but such that at least one of their other treatments changes between
t−1 and t. These two modifications ensure that our estimator is not contaminated by the effects
of other treatments. Another modification is that our new estimator compares switchers and
non-switchers with the same baseline values of their other treatments. This ensures it does not
require that the effect of the other treatments be constant over time. The asymptotic normality
of the DIDM estimator, when the number of groups goes to infinity, could be established under
similar assumptions and using similar arguments as those used to show Theorem S6 in the
Web Appendix of de Chaisemartin and D’Haultfœuille (2020). DIDM can be computed by the
did_multiplegt Stata command, see the command’s help file for more details.

Our estimators rely on a new assumption, Assumption 6, instead of the more standard As-
sumption 4. Though the two assumptions are non-nested, Assumption 6 may be more plausible,
because it imposes parallel trends conditional on groups’ treatments in the baseline period, rather
than unconditionally. Groups with the same treatments in the baseline period may be more sim-
ilar, and may then be more likely to experience parallel trends. Moreover, by imposing parallel
trends in the counterfactual scenario where groups’ treatments are at their t− 1 value at period
t rather than in the counterfactual where they do not receive any treatment, Assumption 6 may
lead to more precise estimators than Assumption 4, especially when the number of treatments is
large or when the treatments are non binary. Under Assumption 4, an heterogeneity-robust DID
estimator can only use as controls groups that do not receive any of the treatments at two dates
at least. Moreover, treatment effects can only be estimated for groups that do not receive any of
the treatments at one date at least. Those two sets of groups may be small. In our empirical ap-
plication in Section 5, there are two non-binary treatments, and while there are (g, t) cells whose
two treatments are equal to 0, there is no group that does not receive any of the two treatments
at two dates at least. Accordingly, one cannot construct an heterogeneity-robust DID estimator
based on Assumption 4 in this application. Finally, note that Assumption 6 can be tested using
placebo estimators similar to those proposed in de Chaisemartin and D’Haultfœuille (2020), and
adapted to the case with several treatments.

The DIDM estimator in this paper can be extended to accommodate non-binary treatments, just
as the DIDM estimator in de Chaisemartin and D’Haultfœuille (2020) can also be extended to
accommodate a non-binary treatment (see Section 4 of theWeb Appendix of de Chaisemartin and
D’Haultfœuille, 2020). With a non-binary treatment, the DIDM estimator starts by computing
a weighted average of DIDs comparing the t − 1 to t outcome evolution in groups whose first
treatment changes and whose other treatments do not change, to the same outcome evolution
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in groups whose treatments do not change and with the same treatments in t − 1. Then, the
estimator normalizes that weighted average by the average treatment change among switchers.

4.2 Alternative estimators when the treatments have dynamic effects

In the previous subsection, we have implicitly assumed that the treatments do not have dynamic
effects, since the outcome of a unit at period t only depended on her period-t treatment, not
on her previous treatments.8 When treatments can have dynamic effects, estimating the effect
of a treatment controlling for other treatments is difficult. We propose an estimation strategy
when there are two binary treatments, which both follow a staggered adoption design. For any
g ∈ {1, ..., G}, let F 1

g = min{t : D1
g,t = 1} denote the first date at which group g receives the

first treatment, with the convention that F 1
g = T + 1 if group g never receives that treatment.

Similarly, let F 2
g = min{t : D2

g,t = 1} denote the first date at which group g receives the second
treatment, with the convention that F 2

g = T + 1 if group g never receives that treatment.

Assumption 7 (Staggered design with two binary treatments) For all (g, t) ∈ {1, ..., G} ×
{2, ..., T}, D1

g,t ∈ {0, 1}, D2
g,t ∈ {0, 1}, D1

g,t−1 ≤ D1
g,t, D2

g,t−1 ≤ D2
g,t, and F 2

g ≥ F 1
g .

Assumption 7 requires that both treatments weakly increase over time, which means that once
a group has switched from untreated to treated, it cannot switch back to being untreated.
Assumption 7 also requires that groups start receiving the second treatment after the first. This
is typically satisfied when the second treatment is a reinforcement of the first. Our running
example will be that of a researcher seeking to separately estimate the effects of medical and
recreational marijuana laws in the US: so far, states have passed the former before the latter,
and none of the medical and recreational laws passed since the late 1990s have been reverted.
Another example where Assumption 7 holds include voter ID laws in the US, where non-strict
laws are typically passed before strict ones (see Cantoni and Pons, 2021). Another example are
anti-deforestation policies, where plots of lands are typically put into a concession, and then
some concessions get certified (see Panlasigui et al., 2018).9

To allow for dynamic effects, we need to modify our potential outcome notation. For all (d1,d2) ∈
{0, 1}2T , let Yi,g,t(d1; d2) denote the potential outcome of observation i in group g at period t,
if her two treatments from period 1 to T are equal to d1,d2, and let Yg,t(d1; d2) be the average
outcome in group g and at period t under that scenario. This dynamic potential outcome
framework is similar to that in Robins (1986). It allows for the possibility that observations’
outcome at time t be affected by their past and future treatments.

8On the other hand and as discussed above, Theorems 1 and 2 do apply to dynamic effect cases, when the
other treatment variables in the regression are lags of the treatment.

9Assumption 5 is a special case of Assumption 7, without variation in treatment timing.
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Our estimator relies on the following assumptions.

Assumption 8 (No Anticipation) For all g, for all (d1,d2) ∈ {0, 1}2T ,

Yg,t(d1; d2) = Yg,t(d1
1, ..., d

1
t ; d2

1, ..., d
2
t ).

Assumption 8 requires that a group’s current outcome do not depend on her future treatments,
the so-called no-anticipation hypothesis. Abbring and Van den Berg (2003) have discussed
that assumption in the context of duration models, and Malani and Reif (2015), Botosaru and
Gutierrez (2018), and Sun and Abraham (2021) have discussed it in the context of DID models.

For any j ∈ {1, ..., T}, let 0j and 1j denote vectors of j zeros and ones, respectively. We also
adopt the convention that 00 and 10 denote empty vectors. Hereafter, we refer to Yg,t(0T ; 0T )
as group g’s -treated potential outcome at period t, her outcome if she never receives either of
the two treatments. Our estimators rely on the following assumption on Yg,t(0T ; 0T ).

Assumption 9 (Independent groups, strong exogeneity, and common trends for the never-
treated outcome) For all t ≥ 2 and g ∈ {1, ..., G}, E(Yg,t(0T ; 0T ) − Yg,t−1(0T ; 0T )|D) does not
vary across g.

Assumption 9 is an adaptation of Assumptions 3-4 to the set-up we consider in this section, and
where we allow for dynamic effects.

Under Assumption 7, the estimators of instantaneous and dynamic treatment effects proposed
in de Chaisemartin and D’Haultfœuille (2021) can still be used with two treatments, redefining
the treatment as D̃g,t = D1

g,t + D2
g,t. However, those estimators will average together effects of

the first and of the second treatment. Estimating separately the effect of the first treatment
is straightforward: one can just compute the estimators in Callaway and Sant’Anna (2021)
or de Chaisemartin and D’Haultfœuille (2021), restricting the sample to all (g, t)s such that
D2

g,t = 0. In the marijuana laws example, to estimate the effect of medical marijuana laws, one
can just restrict the sample to all state×year (g, t) such that state g has not passed a recreational
law yet in year t. The horizon until which dynamic effects can be estimated will just be truncated
by the second treatment.

Estimating separately the effect of the second treatment is more challenging but can still be
achieved, under the following, supplementary assumption.

Assumption 10 (Restriction on the effect of the first treatment) For all g ∈ {1, ..., G}, j ∈
{1, ..., T}, and t > j, there exists λj,g(D) and µj,t(D) such that

E(Yg,t((0j−1,1T−(j−1)); 0T )− Yg,t(0T ; 0T )|D) = λj,g(D) + µj,t(D).
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Assumption 10 requires that the effect of the first treatment evolves over time in the same way
in every group: for any t > j + 1,

E(Yg,t((0j−1,1T−(j−1)); 0T )−Yg,t(0T ; 0T )|D)−E(Yg,t−1((0j−1,1T−(j−1)); 0T )−Yg,t−1(0T ; 0T )|D),

the difference between group g’s effect of being treated for t− (j− 1) and t− 1− (j− 1) periods,
should be the same in every group. Still, Assumption 10 allows such treatment effects to vary
in an unrestricted way with the number of time periods over which a group has been treated,
and to vary with the time period at which the treatment was adopted. It also allows, to some
extent, the treatment effect to vary across groups: groups’ treatment effects can be arbitrarily
heterogeneous at the first period where they start receiving the treatment, but the period to
period evolution of that effect should then be the same in every group.

To understand why that assumption is needed, let us go back to the marijuana law example.
Without Assumption 10, a state passing a recreational marijuana law may start experiencing a
different outcome trend than other states that have only passed a medical law, either because
of the recreational law, or because its evolution of the effect of the medical law differs from that
in other states. In other words, that assumption is key to disentangle the effects of the two
treatments, which is often of interest. Under the standard parallel trends assumption on the
never-treated outcome (Assumption 9), one could only estimate the combined effects of the two
treatments.

Though it is arguably strong, this assumption is partly testable, as we explain in more details
below: it implies that groups that start receiving the treatment at the same time should then
have the same outcome evolution until they adopt the second treatment. A violation of this
assumption would lead our estimators to be upward (resp. downward biased) if the effect of the
first treatment increases less (resp. more) in groups that adopt the second treatment than in
groups that do not adopt it.

Assumption 11 (Non-pathological design) There exists (g, g′) ∈ {1, ..., G}2 such that F 1
g = F 1

g′

and 1 < F 2
g < F 2

g′.

For any f ∈ {1, ..., T}, let
Gf = {g ∈ {1, ..., G} : F 1

g = f}

denote the set of groups that started receiving the first treatment at date f . Let

F = {f ∈ {1, ..., T} : ∃(g, g′) ∈ G2
f : 1 < F 2

g < F 2
g′}

be the set of dates such that at least two groups start receiving the first treatment at that date
and start receiving the second treatment at different dates. Assumption 11 ensures that F is
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not empty. For any f ∈ F , let

NTf = max
g∈Gf

F 2
g − 1

be the last period at which at least one group that started receiving the first treatment at period
f has still not received the second treatment. Then, we let

Lnt,f = NTf − min
g∈Gf :F 2

g≥2
F 2

g

denote the number of time periods between the first date at which a group that started receiving
the first treatment at date f starts receiving the second treatment, and the last date at which a
group that started receiving the first treatment at date f has not received the second treatment
yet. Note that Lnt,f ≥ 0 for all f ∈ F . Let also

Lnt = max
f∈F

Lnt,f .

For any ` ∈ {0, ..., Lnt}, f ∈ F such that NTf ≥ `+ f + 1, and t ∈ {`+ f + 1, ..., NTf}, let

N f
t,` =

∑
g∈Gf :F 2

g =t−`

Ng,t

denote the number of units in groups that started receiving the first treatment at date f and
the second treatment ` periods ago at t, and such that at least one group also started receiving
the first treatment at date f and has not started receiving the second treatment yet at t. Let

N` =
∑

f∈F :NTf≥`+f+1

NTf∑
t=`+f+1

N f
t,`

be the number of units reaching ` periods after they started receiving the second treatment at
a date where there is still a group that started receiving the first treatment at the same date as
their group and that has not received the second treatment yet. Across those units, the average
cumulative effect of having received the second treatment for `+ 1 periods while fixing the first
treatment at its observed value is

δ` = E

 1
N`

∑
f∈F :NTf≥`+f+1

NTf∑
t=`+f+1

∑
(i,g):g∈Gf ,F 2

g =t−`

Yi,g,t(D1
g ; (0t−`−1,1`+1))− Yi,g,t(D1

g ; 0t)
 .

Remark that by construction, N` > 0 for all ` ∈ {0, ..., Lnt}, so δ` is well-defined for such `. Note
also that δ` does not include the effect of the second treatment for groups that start receiving
the two treatments at the same time. For those groups, it is impossible to separately estimate
the effects of the first and second treatments, using our DID estimation strategy at least.

We now define an estimator of δ`. For any f ∈ F and t such that NTf ≥ t, let

Nnt,f
t =

∑
g∈Gf :F 2

g >t

Ng,t.
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Then, for any ` ∈ {0, ..., Lnt}, f ∈ F such that NTf ≥ ` + f + 1, and t ∈ {` + f + 1, ..., NTf},
we define

DIDf
t,` =

∑
g∈Gf :F 2

g =t−`

Ng,t

N f
t,`

(Yg,t − Yg,t−`−1)−
∑

g∈Gf :F 2
g >t

Ng,t

Nnt,f
t

(Yg,t − Yg,t−`−1)

if N f
t,` > 0 and Nnt,f

t > 0, and we let DIDf
t,` = 0 if N f

t,` = 0 or Nnt,f
t = 0. Then, for all

` ∈ {0, ..., Lnt}, we let

DID` =
∑

f∈F :NTf≥`+f+1

NTf∑
t=`+f+1

N f
t,`

N`

DIDf
t,`.

Theorem 4 Suppose that Assumptions 1-2 and 7-11 hold. Then, E [DID`] = δ` for all ` ∈
{0, ..., Lnt}.

DID` can be computed by the did_multiplegt Stata command, restricting the sample to the
(g, t)s such that D1

g,t = 1, and including F 1
g in the trends_nonparam option. The asymptotic

normality of the DID` estimators, when the number of groups goes to infinity, could be estab-
lished under similar assumptions and using similar arguments as those used to show Theorem 4
in de Chaisemartin and D’Haultfœuille (2021).

Beyond the somewhat complicated notation above, the idea underlying DID` is actually quite
simple: it amounts to comparing the outcome evolution of groups that adopt/do not adopt
the second treatment, and that adopted the first treatment at the same date. This ensures
that the “treatment” and “control” groups involved in this comparison have been exposed to
the first treatment for the same number of periods. Under Assumptions 9 and 10, this in turn
ensures that their outcome evolution would have been the same if the “treatment groups” had
not adopted the second treatment. The estimation procedure we propose can easily be extended
to more than two treatments. For instance, if there was a third treatment following a staggered
adoption design and always adopted after the second one, one could estimate its effect using the
did_multiplegt Stata command, restricting the sample to the (g, t)s such that D2

g,t = 1, and
including the interaction of F 1

g and F 2
g in the trends_nonparam option.

Theorem 4 complements the pioneering work of Callaway and Sant’Anna (2021) and Sun and
Abraham (2021), who provide DID estimators of the effect of a single treatment following a
staggered adoption design. To our knowledge, our paper is the first to consider the case with
several treatments following consecutive staggered designs, which arises relatively often, as the
examples given above show. Our main insight is to show that one can obtain unbiased estimators
of the effect of the second treatment, under the restriction on the effect of the first treatment
stated in Assumption 10, and provided one controls for the first treatment’s adoption date.

The assumptions underlying Theorem 4 are refutable. They imply that groups that start receiv-
ing the treatment at the same time should have the same outcome evolution until they adopt the
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second treatment, see Equation (19) in the Appendix. This can be tested, using similar placebo
estimators as in de Chaisemartin and D’Haultfœuille (2021), the main difference being that one
should compare groups with the same value of F 1

g . The placebo estimators one can use to test
the assumptions underlying Theorem 4 can also be computed by the did_multiplegt command,
restricting the sample to the (g, t)s such that D1

g,t = 1, including F 1
g in the trends_nonparam

option, and requesting the placebo option. One should still keep in mind that such pre-trends
tests come with some caveats, as shown by Roth (2019): they may be underpowered and could
fail to detect violations of the assumptions, and they may lead to pre-testing issues. However,
our placebo estimators can be used to conduct the sensitivity analysis proposed by Manski and
Pepper (2018) or Rambachan and Roth (2019).

The estimation strategy proposed in Theorem 4 requires that there is at least one pair of groups
that receive the first treatment at the same date, and such that the first group receives the
second treatment strictly before the second group. When the number of groups is relatively low
(e.g.: the 50 US states), there may not be any pair of groups receiving the first treatment at the
same time period. Then, two alternative estimation strategies can be proposed. First, instead
of Assumption 10, one may assume that the effect of the first treatment evolves linearly with
the number of periods of exposure, with a slope that differs across groups:

E(Yg,t((0j−1,1T−(j−1)); 0T )− Yg,t(0T ; 0T )|D) = λj,g(D) + µg(D)(t− j).

Then, one can recover the counterfactual outcome that a group adopting the second treatment
would have obtained without it by extrapolating a linear estimate of its outcome evolution
prior to adoption. The resulting estimator can be computed by the did_multiplegt command,
restricting the sample to the (g, t)s such that D1

g,t = 1, and including the group indicator in
the trends_lin option. Second, one could also strengthen Assumption 10, by assuming that
the effect of the first treatment evolves potentially non-linearly with the number of periods of
exposure, but that this evolution is the same in every group and at every time period:

E(Yg,t((0j−1,1T−(j−1)); 0T )− Yg,t(0T ; 0T )|D) = λj,g(D) + µt−j(D).

Then, one can recover the counterfactual outcome that a group adopting the second treatment
would have obtained without it, by extrapolating the outcome evolution experienced by groups
that reached a similar number of periods of exposure to the first treatment without adopting
the second one. The resulting estimator can be computed by the did_multiplegt command,
restricting the sample to the (g, t)s such that D1

g,t = 1, and including indicators for reaching 1,
2, etc. periods of exposure to the first treatment in the controls option.

The approach in Theorem 4 can easily be extended to some instances where the assumptions
of Theorem 4 fail. For example, there may applications with two binary treatments following a
staggered adoption design, but such that some groups receive treatment 1 before treatment 2,
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other groups receive treatment 2 first, and other groups receive both treatments at the same time.
Then, one can start by restricting attention to the subsample of groups such that D1

g,t ≥ D2
g,t

for all t and F 1
g < F 2

g . This subsample includes groups that only receive treatment 1, groups
that receive both treatments but receive the second one strictly after the first, and groups
that do not receive any treatment. In that subsample, one can estimate the instantaneous and
dynamic effects of receiving only the first treatment, using the did_multiplegt command and
restricting the sample to (g, t)s such that D2

g,t = 0. One can then estimate the effect of receiving
the second treatment when one has already received the first one, using the did_multiplegt
command, restricting the sample to the (g, t)s such that D1

g,t = 1 and including F 1
g in the

trends_nonparam option. Second, one can restrict attention to the subsample of groups such
that D2

g,t ≥ D1
g,t for all t and F 2

g < F 1
g . In that subsample, one can estimate the effect of

receiving only the second treatment, and the effect of receiving the first treatment when one
has already received the second one, using the same steps as above but reverting the roles of
the first of second treatments. Finally, one can restrict attention to the subsample of groups
that either receive both treatments at the same time or that do not receive any treatment, and
estimate the effect of receiving both treatments at the same time using the did_multiplegt
command. Comparing these five sets of estimates may be indicative of whether the treatments
are complements or substitutes, even though differences could also be driven by heterogeneous
effects across the various subsamples.

The approach outlined above can also be used when a single treatment changes several times
over the duration of the panel, to isolate the effect of each change. To simplify, take the example
of a binary treatment that can switch at most once from 0 to 1, and then once from 1 to 0. To
estimate the effect of switching from 0 to 1, one can just use the did_multiplegt command in
the subsample of (g, t)s such that group g has never switched from 1 to 0 at or before t. To
estimate the effect of switching from 1 to 0, one can just use the did_multiplegt command in
the subsample of (g, t)s such that group g has switched from 0 to 1 at or before t, including the
date of that switch in the trends_nonparam option, and defining the treatment as an indicator
for switching from 1 to 0. More generally, assume one is interested in the effect of a single
treatment, that may not be binary and that can change multiple times, and one is interested in
separately estimating the effect of each treatment change. Following similar steps as those used
in the proof of Theorem 4, one can show that the estimators computed by the did_multiplegt
command, restricting the sample to the (g, t)s such that g has experienced a first treatment
change at or before t and has not experienced a third treatment change at or before t, and
including the date of the first treatment change interacted with groups’ treatment values before
and after that change in the trends_nonparam option, are unbiased for the instantaneous and
dynamic effects of a second treatment change, under assumptions similar to Assumptions 9 and
10. One can proceed similarly to estimate effects of a third, fourth, etc. treatment change,
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but the corresponding estimators may soon become noisy, especially so when the treatment is
not binary. In such instances, the approach proposed in de Chaisemartin and D’Haultfœuille
(2021) of estimating the total cumulative effects of all treatment changes, rather than trying to
separately estimate their effects, may be more feasible in practice.

5 Application

In this section, we revisit Table 11 in Hotz and Xiao (2011).10 The authors use a 1987, 1992, and
1997 US state-level panel data set to estimate the effect of state center-based daycare regulations
on the demand for family home daycare. Family home day cares are not subject to those
regulations. More stringent regulations may increase the cost of center-based establishments,
but may also increase their safety and quality. Accordingly, the effects of those regulations on the
demand for family home daycare is ambiguous. In Column (3) of Table 11, the authors regress
the revenue of family home day cares in state g and year t on state fixed effects, year fixed
effects, some control variables, and four state center-based daycare regulations: the minimum
staff-child ratio, the minimum years of schooling required to be the director of a center-based
care, and two indicators for whether there is no such minima to allow for potentially non-linear
effects.

The coefficient on the minimum years of schooling treatment is equal to -0.445 and is highly
significant (s.e.=0.167),11 thus suggesting that increasing by one the years of schooling required
for directors of center-based daycare decreases the revenue of family home daycare by 0.44 million
USD. However, this coefficient may not be robust to heterogeneous effects across state and years,
and may also be contaminated by the effects of the other treatments in the regression. Following
Corollary 2, this coefficient can be decomposed into the sum of four terms. The first term is a
weighted sum of the effects of increasing by one the years of schooling required in 127 state×year
cells, where 63 effects receive a positive weight and 64 receive a negative weight, and where the
positive and negative weights respectively sum to 10.022 and -9.022. The second term is a sum
of the effects of not having a requirement on directors’ years of schooling in 26 state×year cells,
where 11 effects receive a positive weight and 15 receive a negative weight, and where the positive
and negative weights respectively sum to 0.175 and -0.175. The third term is a sum of the effects
of increasing by one the staff to child ratio in 148 state×year cells, where 70 effects receive a

10That table is not the main one in the paper, but it is the only one that can be replicated using the publicly
available data set. Several other tables report results from TWFE regressions with several treatments, but all
make use of proprietary data.

11This standard error is slightly larger than that in Hotz and Xiao (2011), because we cluster it at the state
rather than at the state×year level, which is more in line with the standard practice in empirical work (see
Bertrand, Duflo and Mullainathan, 2004). We also use the bootstrap to compute it, to ensure that it is comparable
to the standard error of the DIDM estimator below.
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positive weight and 78 receive a negative weight, and where the positive and negative weights
respectively sum to 0.199 and -0.199. The last term is a sum of the effects of not having a
requirement on staff to child ratio in 5 state×year cells, where 4 effects receive a positive weight
and 1 receive a negative weight, and where the positive and negative weights respectively sum to
0.056 and -0.056. Results are similar for the other three treatment coefficients in the regression,
except that the contamination weights attached to them are even larger. For instance, for the
coefficient on the staff to child ratio treatment, the weighted sum of the effects of the minimum
years of schooling treatment has positive and negative weights summing to 334.916 and -334.916.

When the other three treatment variables are dropped from the regression, the coefficient on the
minimum years of schooling becomes small (-0.022) and insignificant (s.e.=0.035). We follow
Theorem 1 in de Chaisemartin and D’Haultfœuille (2020) to decompose this coefficient, and find
that it estimates a weighted sum of the effects of increasing by one the years of schooling required
in 127 state×year cells, where 64 cells receive a positive weight and 63 receive a negative weight,
and where the positive and negative weights respectively sum to 1.856 and -0.856. Thus, the
regression with only one treatment has considerably less negative weights attached to it than
the regression with several treatments. The same holds for the three other treatment variables.

Finally, we compute the estimator proposed in Section 4.1, for the minimum years of schooling
treatment, controlling for the staff-to-child ratio treatment. Our estimators do not assume linear
treatment effects, so unlike the authors we do not need to control for the indicators for whether
there is no such minima. There are 8 state×year cells (g, t) such that the years of schooling
treatment has changed from t−1 to t in g, while the staff to child ratio treatment has not changed.
Our estimator estimates the average effect of increasing the years of schooling requirement by
one in those 8 (g, t) cells.12 As the data only has three time periods, accounting for dynamic
effects may not be a first-order concern here. Moreover, the authors’ TWFE regression implicitly
rules out such dynamic effects so we follow their specification. There are only 2 state×year cells
(g, t) such that the staff to child ratio treatment changes, while the years of schooling treatment
does not change, thus making it challenging to estimate the effect of the staff to child ratio
treatment separately from that of the years of schooling treatment.

We find that DIDM, computed with the same controls as in the TWFE regression estimated by
the authors, is equal to -0.066 and is insignificant (s.e.=0.136).13 DIDM is almost seven times
smaller than the coefficient on the years of schooling treatment in the TWFE regression. The

12The estimator in Section 4.1 can easily be extended to non-binary treatments. In Section 4 of their Web
Appendix, de Chaisemartin and D’Haultfœuille (2020) cover that extension in the case with only one treatment.
With several treatments, the extension to non-binary treatments is similar.

13We use the bootstrap, clustered at the state level, to compute the standard error of the DIDM estimator.
In this application, that standard error is lower than the standard error of the TWFE coefficient. Though in
practice, TWFE coefficients tend to have lower standard errors than heterogeneity-robust DID estimators, the
opposite can also happen, as this example demonstrates.
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two estimators are significantly different (t-stat=2.253). Under parallel trends, this means that
the constant treatment effect assumption is rejected: if the effects of the years of schooling and
staff to child ratio treatments were both constant over time and between groups, DIDM and the
TWFE coefficient would both estimate the constant effect of the years of schooling treatment.

Overall, the conclusion that increasing the years of schooling required for directors of center-
based daycare decreases the revenue of family home daycare may not be robust. First, the
significant difference between the DIDM and TWFE estimators suggests that effects are indeed
heterogeneous in this application. Then, owing to the large negative weights attached to it, in
the presence of heterogeneous effects the TWFE coefficient may be biased and contaminated by
other treatments’ effects. Finally, the DIDM estimator, which is robust to heterogeneous effects
and not contaminated by other treatments’ effects, is 7 times smaller than the TWFE coefficient
and insignificant.

6 Conclusion

In this paper, we show that treatment coefficients in TWFE regressions with several treatments
may not robust to heterogeneous effects, and could be contaminated by the effects of other treat-
ments in the regression. We propose alternative DID estimators that are robust to heterogeneous
effects and do not suffer from this contamination problem.
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7 Proofs

7.1 Theorem 1

The result directly follows from Theorem 2. If K = 2, D−1
g,t = D2

g,t. Then, D−1
g,t 6= 0−1 if and

only if D2
g,t = 1, and one then has D2

g,t∆−1
g,t = D2

g,t∆
0,1
g,t .

7.2 Corollary 1

The first result is a direct consequence of Theorem 1 in de Chaisemartin and D’Haultfœuille
(2020): by symmetry all the weights of the treated units are identical. Turning to the second
result, let us introduce, to simplify notation, Ik

g = 1{g > Gk} and Jk
t = 1{t > T k}, for (k, g, t) ∈

{1, 2} × {1, ..., G} × {1, ..., T}. Because Ng,t/Ng,t−1 does not vary with g, we can also write
Ng,t = Aagbt with A = ∑

g,t Ng,t, ag = ∑
t Ng,t/A and bt = ∑

g Ng,t/A. Then, ∑g ag = ∑
t bt = 1.

Finally, we let, for k ∈ {1, 2}, pk
G = ∑

g agI
k
g and pk

T = ∑
t btJ

k
t .

Now, consider Regression (1) of the first treatment on other regressors. We can assume therein
and without loss of generality that ∑g agγg = ∑

t bgνt = 0. Combining this with Conditions (8)
and (9) below, we obtain

α = p1
Gp

1
T − p2

Gp
2
T ζ,

γg = (I1
g − p1

G)p1
T − (I2

g − p2
G)p2

T ζ,

νt = p1
G(J1

t − p1
T )− p2

G(J2
t − p2

T )ζ.

By definition of the residual εg,t of (1), we also have ∑g,t Ng,tD
2
g,tεg,t = 0. Then, using the fact

that G1 < G2 and T 1 < T 2, we obtain

p2
Gp

2
T = αp2

Gp
2
T +

(∑
g

agγgI
2
g

)
p2

T + p2
G

(∑
t

btνtJ
2
t

)
p2

T + p2
Gp

2
T ζ.

Plugging the expressions of α, γg and νt in this equation, we obtain, after some algebra,

ζ = (1− p1
G)(1− p1

T )
(1− p2

G)(1− p2
T ) .

Using again the expressions of α, γg and νt above, we get

εg,t = (I1
g − p1

G)(J1
t − p1

T )− (1− p1
G)(1− p1

T )
(1− p2

G)(1− p2
T )(I2

g − p2
G)(J2

t − p2
T ). (4)

Now, if D2
g,t = 1, then I2

g = J2
t = 1 and also I1

g = J1
t = 1. As a result, εg,t = 0. This shows that

there is no contamination weights. Finally, suppose that (g, t) ∈ {G1, ..., G2−1}×{T 1, ..., T 2−1}.
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Then D1
g,t = 1 but I2

g = J2
t = 0 and we get, using (4),

εg,t = (1− p1
G)(1− p1

T )
[
1− p2

Gp
2
T

(1− p2
G)(1− p2

T )

]
.

Thus, εg,t < 0 if p2
Gp

2
T > (1− p2

G)(1− p2
T ). The last result follows by observing that by definition

of p2
G, p2

T and using Ng,t = Aagbt, we have

Ap2
Gp

2
T =

∑
g,t

Ng,tD
2
g,t,

A(1− p2
G)(1− p2

T ) =
∑
g,t

Ng,t1{g < G2}1{t < T 2}.

7.3 Theorem 2

We first establish the following lemma.

Lemma 1 If Assumptions 1-4 hold, for all (g, g′, t, t′) ∈ {1, ..., G}2 × {1, ..., T}2,

E (Yg,t|D)− E (Yg,t′|D)− (E (Yg′,t|D)− E (Yg′,t′|D))
=D1

g,tE
(
∆1

g,t(D−1
g,t )

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
−D1

g′,tE
(
∆1

g′,t(D−1
g′,t)

∣∣∣D)
− E

(
∆−1

g′,t

∣∣∣D)
−D1

g,t′E
(
∆1

g,t′(D−1
g,t′)

∣∣∣D)
− E

(
∆−1

g,t′

∣∣∣D)
+D1

g′,t′E
(
∆1

g′,t′(D−1
g′,t′)

∣∣∣D)
+ E

(
∆−1

g′,t′

∣∣∣D)
.

Proof of Lemma 1

For all (g, t) ∈ {1, ..., G} × {1, ..., T},

E (Yg,t|D) =E
 1
Ng,t

Ng,t∑
i=1

Yi,g,t

∣∣∣∣∣∣D


=E
(

1
Ng,t

Ng,t∑
i=1

[
Yi,g,t(0,0−1) +D1

i,g,t(Yi,g,t(1, D−1
g,t )− Yi,g,t(0, D−1

g,t )

+Yi,g,t(0, D−1
g,t )− Yi,g,t(0,0−1)) + (1−D1

i,g,t)(Yi,g,t(0, D−1
g,t )− Yi,g,t(0,0−1))

] ∣∣∣∣∣D
)

=E
(
Yg,t(0,0−1)

∣∣∣D)
+D1

g,tE
(
∆1

g,t(D−1
g,t )

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
=E

(
Yg,t(0,0−1)

∣∣∣Dg

)
+D1

g,tE
(
∆1

g,t(D−1
g,t )

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
, (5)

where the third equality follows from Assumption 2, and the fourth from Assumption 3. More-
over, by Assumption 4

E
(
Yg,t(0,0−1)

∣∣∣Dg

)
− E

(
Yg,t′(0,0−1)

∣∣∣Dg

)
− E

(
Yg′,t(0,0−1)

∣∣∣Dg

)
+ E

(
Yg′,t′(0,0−1)

∣∣∣Dg

)
=0. (6)

The result follows by combining (5) and (6).
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Proof of Theorem 2

It follows from the Frisch-Waugh theorem and the definition of εg,t that

E
(
β̂fe

∣∣∣D)
=
∑

g,t Ng,tεg,tE (Yg,t|D)∑
g,t Ng,tεg,tD1

g,t

. (7)

Now, by definition of εg,t again,
T∑

t=1
Ng,tεg,t = 0 for all g ∈ {1, ..., G}, (8)

G∑
g=1

Ng,tεg,t = 0 for all t ∈ {1, ..., T}, . (9)

Then,∑
g,t

Ng,tεg,tE (Yg,t|D)

=
∑
g,t

Ng,tεg,t (E (Yg,t|D)− E (Yg,1|D)− E (Y1,t|D) + E (Y1,1|D))

=
∑
g,t

Ng,tεg,t

(
D1

g,tE
(
∆1

g,t(D−1
g,t )

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D)
−D1

1,tE
(
∆1

1,t(D−1
1,t )

∣∣∣D)
− E

(
∆−1

1,t )
∣∣∣D)

− D1
g,1E

(
∆1

g,1(D−1
g,1)

∣∣∣D)
− E

(
∆−1

g,1)
∣∣∣D)

+D1
1,1E

(
∆1

1,1(D−1
1,1)

∣∣∣D)
+ E

(
∆−1

1,1)
∣∣∣D))

=
∑
g,t

Ng,tεg,t

(
D1

g,tE
(
∆1

g,t(D−1
g,t )

∣∣∣D)
+ E

(
∆−1

g,t

∣∣∣D))
=

∑
(g,t):D1

g,t=1
Ng,tεg,tE

(
∆1

g,t(D2
g,t)
∣∣∣D)

+
∑

(g,t):D−1
g,t 6=0−1

Ng,tεg,tE
(
∆−1

g,t

∣∣∣D)
. (10)

The first and third equalities follow from Equations (8) and (9). The second equality follows
from Lemma 1. The fourth equality follows from Assumption 2 and the fact that ∆0

g,t(0−1) = 0.
Finally, Assumption 2 also implies that∑

g,t

Ng,tεg,tD
1
g,t =

∑
(g,t):D1

g,t=1
Ng,tεg,t. (11)

Combining (7), (10), (11) yields

E
(
β̂fe

∣∣∣D) =
∑

(g,t):D1
g,t=1

Ng,t

N1
wg,tE

(
∆1

g,t(D2
g,t)
∣∣∣D)

+
∑

(g,t):D−1
g,t 6=0−1

Ng,t

N1
wg,tE

(
∆−1

g,t

∣∣∣D)
. (12)

Then, the first result follows from the law of iterated expectations. Finally, if K = 2 or the
treatments are mutually exclusive,

∑
(g,t):D−1

g,t 6=0−1

Ng,tεg,tE
(
∆−1

g,t

∣∣∣D)
=

K∑
k=2

∑
(g,t):Dk

g,t=1
Ng,tεg,tE

(
∆−1

g,t

∣∣∣D)
.

Moreover, by definition of εg,t,
∑

(g,t):Dk
g,t=1 Ng,tεg,t = 0 for all k = 2, ..., K − 1. The second result

follows.
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Theorem 3

First, by definition of DIDM,

DIDM =
T∑

t=2

∑
d−1∈{0,1}K−1

N1,0,d−1,t

NS
DID+,d−1,t + N0,1,d−1,t

NS
DID−,d−1,t, (13)

using here the convention that 0/0 = 0. Let t ≥ 2 and d−1 ∈ {0, 1}K−1 be such that N1,0,d−1,t > 0
and N0,0,d−1,t > 0. For every g such that D1

g,t−1 = 0, D1
g,t = 1, and D−1

g,t = D−1
g,t−1 = d−1, we have

E (Yg,t − Yg,t−1|D) =E
(
∆1

g,t(D−1
g,t−1)

∣∣∣D)
+ E

(
Yg,t(0, d−1)− Yg,t−1(0, d−1)

∣∣∣D)
. (14)

Under Assumptions 3 and 6, for all t ≥ 2, there exists ψ0,d−1,t ∈ R such that for all g ∈
G0,0,d−1,t ∪ G1,0,d−1,t,

E
(
Yg,t(0, d−1)− Yg,t−1(0, d−1)

∣∣∣D)
=E

(
Yg,t(0, d−1)− Yg,t−1(0, d−1)

∣∣∣Dg

)
=E

(
Yg,t(0, d−1)− Yg,t−1(0, d−1)

∣∣∣D1
g,t−1 = 0, D−1

g,t−1 = d−1
)

=ψ0,d−1,t. (15)

As a result,

N1,0,d−1,tE (DID+,d−1,t|D)
=

∑
g∈G1,0,d−1,t

Ng,tE
(
∆1

g,t(D−1
g,t−1)

∣∣∣D)
+

∑
g∈G1,0,d−1,t

Ng,tE
(
Yg,t(0, d−1)− Yg,t−1(0, d−1)

∣∣∣D)

− N1,0,d−1,t

N0,0,d−1,t

∑
g∈G0,0,d−1,t

Ng,tE
(
Yg,t(0, d−1)− Yg,t−1(0, d−1)

∣∣∣D)

=
∑

g∈G1,0,d−1,t

Ng,tE
(
∆1

g,t(D−1
g,t−1)

∣∣∣D)
+ ψ0,d−1,t

 ∑
g∈G1,0,d−1,t

Ng,t −
N1,0,d−1,t

N0,0,d−1,t

∑
g∈G0,0,d−1,t

Ng,t


=

∑
g∈G1,0,d−1,t

Ng,tE
(
∆1

g,t(D−1
g,t−1)

∣∣∣D)
.

The first equality follows by (14), the second by (15), and the third after some algebra. Given
that DID+,d−1,t = 0 if N1,0,d−1,t = 0 or N0,0,d−1,t = 0, we obtain, by definition of S and with the
convention that sums over empty sets are 0,

E (N1,0,d−1,tDID+,d−1,t|D) = E

( ∑
g:D1

g,t=1,D−1
g,t =d−1

(g,t)∈S

Ng,t∆1
g,t(D−1

g,t−1)
∣∣∣∣∣D
)
. (16)

A similar reasoning yields, for all t ≥ 2 and d−1 ∈ {0, 1}K−1,

E (N0,1,d−1,tDID−,d−1,t|D) = E

( ∑
g:D1

g,t=0,D−1
g,t =d−1

(g,t)∈S

Ng,t∆1
g,t(D−1

g,t−1)
∣∣∣∣∣D
)
. (17)
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Plugging (16) and (17) into (13) yields

E(DIDM) =E
(
E

(
T∑

t=2

∑
d−1∈{0,1}K−1

∑
g:D−1

g,t =d−1

(g,t)∈S

Ng,t∆1
g,t(D−1

g,t−1)
∣∣∣∣∣D
))

=E
(
E

( ∑
(g,t)∈S

Ng,t∆1
g,t(D−1

g,t−1)
∣∣∣∣∣D
))

=δS .

Theorem 4

First, by Assumption 9, for all t ≥ 2 there is a function of D ψt(D) such that

ψt(D) = E(Yg,t(0T ; 0T )− Yg,t−1(0T ; 0T )|D). (18)

Then, for all 1 ≤ f < t ≤ T ,

E[Yg,t((0f−1,1T−f+1); 0T )− Yg,t−1((0f−1,1T−f+1); 0T )|D]
=E[Yg,t((0f−1,1T−f+1); 0T )− Yg,t(0T ; 0T )|D]− E[Yg,t−1((0f−1,1T−f+1); 0T )− Yg,t−1(0T ; 0T )|D]

+ E[Yg,t(0T ; 0T )− Yg,t−1(0T ; 0T )|D]
=µf,t(D)− µf,t−1(D) + ψt(D); (19)

where the second equality uses (18) and Assumption 10. Then, for any ` ∈ {0, ..., Lnt}, f ∈ F
such that NTf ≥ `+ f + 1 and t ∈ {`+ f + 1, ..., NTf} such that N f

t,` > 0 and Nnt,f
t > 0,

E
(
DIDf

t,`|D
)

=
∑

g∈Gf :F 2
g =t−`

Ng,t

N f
t,`

E (Yg,t − Yg,t−`−1|D)−
∑

g∈Gf :F 2
g >t

Ng,t

Nnt,f
t

E (Yg,t − Yg,t−`−1|D)

=
∑

g∈Gf :F 2
g =t−`

Ng,t

N f
t,`

E
(
Yg,t(D1

g ; (0t−`−1,1`+1))− Yg,t(D1
g ; 0T )|D

)

+
∑

g∈Gf :F 2
g =t−`

Ng,t

N f
t,`

E
(
Yg,t(D1

g ; 0T )− Yg,t−`−1(D1
g ; 0T )|D

)

−
∑

g∈Gf :F 2
g >t

Ng,t

Nnt,f
t

E
(
Yg,t(D1

g ; 0T )− Yg,t−`−1(D1
g ; 0T )|D

)

=
∑

g∈Gf :F 2
g =t−`

Ng,t

N f
t,`

E
(
Yg,t(D1

g ; (0t−`−1,1`+1))− Yg,t(D1
g ; 0T )|D

)
. (20)

The first equality follows from the definition of DIDf
t,`, and N

f
t,` > 0 and Nnt,f

t > 0. The second
equality follows from Assumption 8. The third equality follows from (19).
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By definition of NTf , we have Nnt,f
t > 0 for all f ∈ F and t such that NTf ≥ t. We adopt the

convention that a sum over an empty set is equal to 0. Then, for any ` ∈ {0, ..., Lnt}, f ∈ F
such that NTf ≥ `+ f + 1 and t ∈ {`+ f + 1, ..., NTf}, Equation (20) implies that

N f
t,`E

(
DIDf

t,`|D
)

=
∑

g∈Gf :F 2
g =t−`

Ng,tE
(
Yg,t(D1

g ; (0t−`−1,1`+1))− Yg,t(D1
g ; 0T )|D

)
.

We obtain the result by summing over f ∈ F and t such that NTf ≥ ` + f + 1 and t ∈
{`+ f + 1, ..., NTf}, and by the law of iterated expectations.
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