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1 Introduction

A large empirical literature has documented substantial and persistent heterogeneity in
firm productivity even within narrowly defined industries.! Motivated by these facts, the-
oretical models of industry dynamics have been developed by Jovanovic (1982), Hopen-
hayn (1992), and Ericson and Pakes (1995) to explain individual firm size, success, and
failure patterns observed in longitudinal micro-level data. These existing theoretical
models share a common feature: a stochastic process that changes a firm’s productivity
(or belief on its productivity) over time. This process of productivity evolution is a key
component that drives the growth and failure of individual firms and overall evolution
of the industry structure.

In this paper, we study two important sources of productivity evolution: investment
in R&D by individual firms and knowledge spillovers from their competitors. There ex-
ists strong empirical evidence that a firm’s technological position does not just evolve
exogenously. Using the knowledge production function framework pioneered by Zvi
Griliches, numerous papers have investigated the linkages of firm R&D spending, knowl-
edge spillovers, and productivity growth.” More recently, Aw et al. (2011) and Doraszel-
ski and Jaumandreu (2013) extend this framework to explicitly model firm’s optimal
R&D decision. These papers utilize the insights from the modern production function
estimation literature to jointly recover firm’s production technology and the impact of
R&D on firm productivity. Nevertheless, this line of empirical work has so far treated
each firm as a single agent. This paper investigates firm R&D decisions and knowledge
spillovers within a dynamic industry equilibrium model.

The idea of simultaneously investigating firm R&D, interfirm or intrafirm spillovers,
and the industry structure dates back to classic theoretical papers like Dasgupta and
Stiglitz (1980) and Spence (1984). Nonetheless, few empirical studies have attempted to
estimate these forces in a dynamic equilibrium model. Some notable exceptions include
Benkard (2004), Goettler and Gordon (2011), and Igami (2017). These papers focus on
industries that are dominated by a few large firms and where strategic interactions in

the product market play a central role in firms’ innovation decisions.” Our paper instead

1See Bartelsman and Doms (2000) and Syverson (2011) for an excellent survey of the micro produc-
tivity literature.

2Griliches (2007) provides an extensive survey of the empirical literature in this tradition.

3For a related computational framework, see also Besanko et al. (2010).



focuses on a more typical manufacturing industry in an emerging economy: the Korean
electric motor sector. Similarly to the settings examined in previous works, this industry
features strong innovation activities and scope for knowledge spillovers; however, it also
has a much larger number of producers. While these producers are highly heterogeneous,
the overall size distribution is quite continuous, and there is no clear dominance by a
small subset of firms. Firms still maximize their value of continuation given expectations
about the evolution of their own and competitors’ states (e.g, market structure) since
these equilibrium objects impact the overall product market competition and, more im-
portantly, the strength of knowledge spillovers. We tailor our empirical strategy to these
features. In particular, we use the oblivious equilibrium concept proposed by Weintraub
et al. (2008) to circumvent the well-known computational burden of the Markov perfect
equilibrium (MPE) in the framework of Ericson and Pakes (1995). When there is a large
number of firms within the industry, the oblivious equilibrium—where firms are assumed
to ignore current information about competitors’ states and condition their choices on
their belief on the long-run average industry structure—closely approximates a Markov
perfect equilibrium.

Equipped with this novel concept of equilibrium, we contribute to the existing empiri-
cal literature along several dimensions. First, it is widely observed that a large fraction of
firms report no R&D activity, even in high-tech industries. We reconcile this observation
with the commonly used first-order Markov productivity process in the firm dynamics
literature (e.g., Hopenhayn, 1992),* by allowing firms to survive and grow by imitation.
Within the context of our model, we propose an identification strategy to capture the
effect of knowledge spillover. We discipline the spillover by matching the extent of “mean
reversion” of measured firm productivity, i.e., the chance of backward firms catching up
in the data.” Second, our equilibrium industry structure is also determined by market
selection based on entry and exit. A high firm turnover rate is a salient feature of a broad
range of manufacturing industries. We are able to recover the quantitative magnitude of

the entry cost and scrap values and investigate how firm turnover interacts with the firm

4This assumption has also been one of the fundamental building blocks of the modern production
function estimation literature, pioneered by Olley and Pakes (1996) and extended by Levinsohn and
Petrin (2003) and Ackerberg et al. (2015).

5As we explain in detail later, the standard Ericson and Pakes (1995) step-by-step innovation setting
implies a firm-level stochastic process closely approximated by a random walk and thus inconsistent
with the empirical regularity of firm growth in our micro-data.



innovation and imitation mechanism. Finally, since most of the manufacturing sector is
also capital intensive, we adapt the model of Ericson and Pakes (1995) to incorporate
both physical capital and R&D investments. We allow a rich set of adjustment frictions
in physical capital to match the observed interdependence of R&D and physical capital
in our micro-data.

The model is estimated with micro-data from the Korean electric motor industry.
In the first step, we utilize the model specification for static market competition to
estimate the firm’s revenue production function. We modify the approach of Ackerberg
et al. (2015) such that a firm’s productivity is influenced by its own R&D. Due to the
presence of knowledge spillover, we treat the estimated process as only “reduced-form”
moments that need to be matched in the subsequent estimation of the dynamic model.
In the second step, we apply a simulated methodmof moments estimator to the industry
equilibrium model and recover the cost of R&D, magnitude of the spillover, adjustment
costs of investment, and distribution of plant scrap values. By accommodating imperfect
competition, productivity heterogeneity, and investment in both physical and knowledge
capital, the model is rich enough to reproduce the observed market structure and industry
turnover patterns.

Our empirical results show, first, that each firm’s own R&D effort improves its future
productivity although this process is subject to substantial idiosyncratic uncertainty. The
within-industry knowledge spillover is significant and helps to reconcile the observed pro-
ducer R&D spending and productivity evolution patterns. Taking into account that the
total knowledge pool is a public good, spillovers are quite important for less productive
producers. For a firm located at the lower end of the industry productivity distribution
and not engaged in R&D, the spillover that it receives increases the chance that its pro-
ductivity improves by 12%. This accounts for the large amount of zero R&D behavior in
our model and the data. Second, each producer also incurs substantial adjustment costs
for physical capital investment. These costs prevent firms from instantaneously respond-
ing to positive R&D outcomes and, in turn, affect the dynamics of firm R&D investment
incentives. Third, the mean random scrap value and entry cost equal 4.89 years and
12.33 years of average firm profit, respectively. The relatively narrow hysteresis band,
defined as the difference between the entry cost and the mean scrap value, explains the
high turnover rate observed in the industry data.

Using the point estimates of the parameters, we first conduct a counterfactual analysis



that isolates the role of knowledge spillover in shaping firm R&D and productivity and
the industry structure. When we increase the strength of knowledge spillover by 50%
relative to our baseline, more firms have free-riding motives, and the total R&D effort of
the industry is cut by around 24%. However, backward firms can catch up more easily.
As a result, the industry has lower productivity dispersion. The free-riding motive is
important in accounting for these responses: in an environment where firms stay with
their baseline R&D policy function, aggregate productivity increases more, reflecting a
better overall productivity distribution due to easier imitation.

Finally, inspired by Korea’s S&T policy, we conduct a series of experiments that
provide linear R&D subsidies. We assume that the government finances such subsidies
with corporate income tax such that it is revenue neutral. It turns out that due to the
knowledge spillover, such a policy could improve aggregate industry output and TFP. The
optimal linear R&D subsidy is around 15%, which is quite close to that implemented
by the Korean government. Industry output would increase by a modest 0.14% with
the subsidy policy. We also show that—as standard theory indicates—such government
policies would unambiguously reduce aggregate output if there were no spillovers.

This paper is related to three strands of literature. First, our focus on R&D and
knowledge spillover is shared by a large number of papers in the productivity literature.
Many of the earlier empirical works, such as that of Jaffe (1986), are summarized in Zvi
Griliches’s excellent book RéD and Productivity: The Econometric Evidence (Griliches,
2007). The literature has further modernized in terms of its identification strategies in
the recent decade, for instance, with the work of Bloom et al. (2013). Our paper is
consistent with this literature. However, while we construct our knowledge production
process to incorporate both the firm’s own and its rivals’ R&D effort, our emphasis is
more on modeling and estimating firm R&D decisions and industry evolution. Thus, we
utilize an identification strategy for spillovers that depends more than the approaches
in previous works on the model structure and ensure that the recovered spillover is
consistent with various firm decisions and industry structure. Second, our paper is
related to generations of industry dynamic models (e.g., Jovanovic (1982), Hopenhayn
(1992), and, in particular, Ericson and Pakes (1995)). We modify the innovation process
of firms and incorporate it into an otherwise standard Ericson and Pakes (1995) model.
Our paper is one of the first to utilize the novel approximation of Weintraub et al.

(2008) to facilitate the estimation and computation of such a model. This approach is



necessary given the specificities of our empirical context.® Third, our paper is also related
to the theoretical literature that emphasizes the role of knowledge diffusion as a source of
economic growth. Our model’s backward learning structure of knowledge spillover, where
firms learn only from their more productive peers, is heavily motivated by the works of
Eeckhout and Jovanovic (2002) and Jovanovic and MacDonald (1994). A particularly
related recent paper is Benhabib et al. (2017), which incorporates both diffusion and
innovation. QOur theory is less technically challenging since we focus on idiosyncratic
knowledge depreciation and a stationary environment. However, our paper adds to the
scant empirical micro-level evidence in support of the core learning mechanisms in this
line of work.

The rest of our paper is organized as follows. The second section summarizes the
industry background and motivates our model elements with data. The third section
describes the economic environment and the industry equilibrium. The fourth section
estimates both the revenue production function and the full dynamic equilibrium model.

Finally, the fifth section implements counterfactual simulations of a set of policy changes.

2 Industry Background and Data Descriptives

2.1 Korean Electric Motor Industry

This paper analyzes panel data of Korean manufacturers in the electric motor and gen-
erator industry for 1991 to 1996.” The data are part of the Korean Annual Mining and
Manufacturing Survey of all establishments with more than 5 workers. These data cover
both the large and small firms, which is important for our study of R&D and knowledge

spillovers in an industry equilibrium framework.® The electric motor industry is an in-

SThere has also been an important breakthrough allowing the empirical estimation of dynamic
oligopoly models without directly solving them. Aguirregabiria et al. (2007), Bajari et al. (2007),
and Pakes et al. (2007) laid the foundations for this line of work. However, since we observe one single
industry over a relatively short period, the data are not sufficient to represent the industry state in its
ergodic set. We thus have to rely on a full solution method.

"The Korean industry classification code SIC31101 and SIC31102 is equivalent to NAICS 335312
(motor and generator manufacturing) in the US census. These establishments primarily engage in
manufacturing electric motors (except internal combustion engine starting motors), power generators
(except battery charging alternators for internal combustion engines), motor generator sets (except
turbine generator set units), and transformers.

8In contrast, the majority of previous studies on R&D investment and knowledge spillovers use data
from Compustat or R&D surveys, which usually include only a limited number of firms spanning multiple



termediate input sector, where low cost and energy efficiency are the key indicators of
a firm’s technological position. Process innovation plays a predominant role in a firm’s
R&D and learning effort. Studying such a relatively mature industry in our model helps
us abstract from the product innovation often emphasized in other high-tech industries.
The Korean government started a strong science and technology initiative to promote
knowledge-intensive industries after the Asian financial crisis in 1997. The electric mo-
tor industry is part of this initiative and a natural candidate as a setting in which to
study how R&D policy impacts firm R&D, knowledge spillovers, and aggregate industry
productivity.

2.2 Data Descriptives

The Korean Annual Manufacturing Survey reports detailed annual information on each
manufacturing establishment’s value added, physical capital, employment, physical in-
vestment, and, most importantly, R&D investment. On the cost side, we have informa-
tion on total material expenditure and the total wage bill. Table 1 summarizes some
of the key data patterns for the electric motor industry. The average R&D expendi-

ture is 25.8 million won (33 thousand USD) per year.’

However, only a small fraction
of producers, accounting for 11% of the total observations during the sample years, re-
port positive R&D expenditure.!’ The average R&D expenditure of performers is much
higher, around 236.5 million won (300 thousand USD) per year. The major components
of the reported R&D are wages for R&D workers and materials for R&D. Producers
show large dispersion in their value added and wage expenditure, with the top firms
(99th percentile) often a few hundred times larger than the bottom ones (1st percentile).
This indicates significant revenue productivity differences across establishments within
the industry. To rescale producers’ R&D investment by their size, we define the R&D
intensity as total R&D expenditures divided by value added. The R&D intensity has
a mean value of 0.13 and a median of 0.06. Physical investment includes net capital
expenditures (purchase minus sales) on buildings, machinery/equipment, and transport

vehicles and averages 110 million won (140 thousand USD) per year. Similar to R&D

industries.
9The average exchange rate between the won and US dollar during the sample period is 786:1.
0Doraszelski and Jaumandreu (2013) reports similar patterns of R&D expenditure in Spanish Man-
ufacturing Survey data.



investment, plant physical investment shows large differences: it ranges from —39 to
2,209 million won (-49 thousand to 2.8 million USD) from the 1st to the 99th percentile.

Previous empirical literature has documented a zero or slightly negative correlation
between R&D intensity and firm size (Klette and Kortum, 2004). A similar pattern holds
in our data. Figure 1 illustrates the relation between log R&D intensity and log value
added among R&D performers in our data. It shows that producers with larger value
added tend to have lower R&D intensity. This suggests that larger producers in our
data could have higher per-unit R&D cost; however, it could also be consistent with the
fact that knowledge spillovers tend to decrease the private return to R&D for industry
leaders.

Figure 2 reports the distribution of the investment-to-capital ratio (capital investment
relative to the stock of physical capital) and shows that 46% of firms do not invest in a
given year. In addition, reflecting a pattern often called “investment spikes”, 24% of firms
replace more than 20% of their capital stock in a given year. These lumpy investment
patterns suggest that investment decisions are subject to nonconvex adjustment costs.'!
Figure 2 also shows that negative investment is relatively rare: only 4% of firms disinvest
in a given year. This motivates us to consider an asymmetry in the purchase and resale
prices of physical capital in our model.

Table 2 summarizes market concentration in this industry. It shows that in the
Korean electric motor industry, on average, the market share of the top 4 firms is 29%
and of the top 20 firms 59%. These numbers are comparable to those reported for
manufacturing industries in the US by Autor et al. (2020). The average Herfindahl-
Hirschman index (HHI) of this industry is 323, far below the Department of Justice’s
definition of a moderately concentrated market (one with an HHI between 1,500 and 2,500
points). The data pattern suggests that the Korean electric motor industry is neither
perfectly competitive nor dominated by a very few large firms. Therefore, our empirical
setting matches the economic environment described in Weintraub et al. (2008). Their
paper develops the novel equilibrium concept of oblivious equilibrium, characterized by
each firm making decisions based only on its own state and the long-run average industry

state.

UBy way of comparison, Chen et al. (2019) show that 49% of firms do not invest in a given year
and 17% of firms replace more than 20% of their capital stock in China, and Zwick and Mahon (2017)
reports that 34% of firms in the US replace less than 1% of their capital and that 16% of firms replace
more than 20% each year.



Last, we show that this industry has a very high turnover rate. Table 3 reports
that, on average, the entry rate is 15.7% and the exit rate 16.0%.'> Entrants account
for approximately 5% of the total market share each year, and exiting firms account for
11% of the total market share on average. Each entrant cohort’s importance grows over
time. For example, the market share of the cohort born in 1992 accounts for 5% of the
market share, and this number increases to 10% in 1996. Given the high turnover rate
and nontrivial market share accounted for by entries and exits, it is important to include
them in our model.

We next outline an industry equilibrium model consistent with the documented data

patterns for producer R&D, physical investment and turnover and the market structure.

3 A Dynamic Model of R&D Investment

3.1 Sequence of Actions

In this section, we extend the model of dynamic competition by Weintraub et al. (2008)
to incorporate knowledge spillover and physical capital accumulation. Time is discrete
and indexed by t. For each model period ¢, firm’s state w € 2 can be described by
a pair of values representing its knowledge capital x € X and physical capital £ € K,
where both X and K take discrete values. Accordingly, 2 € X x K takes all the possible
combinations of knowledge and physical capital values. The industry state in each period
t is denoted by s;. We focus on a symmetric equilibrium such that each s;’s element s;(w)
is the total mass of firms in state w. The set of possible industry states is denoted by S.

At the beginning of period ¢, all incumbent firms engage in competition in the product
market and simultaneously set their prices. A firm with individual state (zy, k;) earns
profit w(zy, ki; s¢). Incumbent firms and potential entrants then make their exit and
entry decisions. Each incumbent firm observes an idiosyncratic scrap value ¢;.'* The
incumbent firm decides whether to exit based on industry state s, and its own state
(x4, k). If it decides to exit, it obtains the period profit plus the scrap value. The exit
strategy is defined as an indicator function x/(zy, k; s¢, ¢¢). If it decides to remain in the

industry, it can choose to invest in knowledge capital, physical capital, or both.

12\We are not able to report the exit rate for 1991 since that is the first year of our sample period.
13The scrap value ¢, is 4.1.d. across different firms and time and has a well-defined density function
with support R .



There is a pool of ex ante identical potential entrants. An entrant needs to pay a fixed
entry cost k to enter the industry. Entrants draw their initial states from a distribution
®°. Potential entrants keep entering until the expected payoff from entry is zero. The
resulting number of firms entering at industry state s; is a Poisson random variable, with

mean M (s;).'

3.2 Static Payoff

We first describe how firms interact in the product market each period. We assume that

each firm within an industry has a standard Cobb-Douglas production function:

q = exp(zy) (lt)l_ak (),

where ¢, is the output of the individual firm. z; captures the firm’s production efficiency,
k; is physical capital input and [; is labor input.

Each firm produces a differentiated product and faces a residual demand function:

7
G = Qi(pe/ Pr)" = é (%) )

where p; is the price set by the firm while @); and P, are the industry-level output and
price index. [ is defined as the industry market size. This demand function is consistent
with the standard monopolistic competition model of Dixit and Stiglitz (1977). The
parameter 7 governs the elasticity of substitution between different products.

Each period, a firm takes quasifixed factors (x, k;), exogenous variable factor prices
w, and aggregate market price P, as given and chooses variable inputs /; to maximize its

profit:

Ty = pt((lt% I, Pt)Qt — wl;.

We could rewrite this problem as
1+1 1 o 1.9 0 1
max, Py "1 71I(pr<xt>l’ftk)lJr’l7(lt1 k)1+’17 — wly.

The optimal variable input decision is derived as

[ S
w]% (A+5)(A—ap)-1

ly = 1
apy 141 Sl
(exp(aa) k™)™ P77 (14 5)(1 — o)

HUWeintraub et al. (2008) provides a game-theoretic microfoundation for this setting.
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In equilibrium, the industry price index P, is determined by the industry state s;. Sum-
marizing each firm’s own state using a single index p; = exp(x,)k;™* and letting s;(p) be

the number of firms whose ¢; = ¢, then

P, =1 <(1+%)<1_ak>> (Z%(s@)@") :

)

14
(1-(1+73)(1=ar)) "
individual state ¢y is

where 0 = Finally, the equilibrium maximized profit for a firm with

Y S (VRN N S R - S
W(gpt,St) =1 (1 (1 + 77)(1 k)) ng 3t<90)900 (1 + 77)0290 St(SO)SOU'

In summary, the profit of each firm depends only on its knowledge capital x; and physical

(1)

capital k; and the industry structure s;(¢).

3.3 Knowledge Production and Physical Capital Investment

Each period, a firm chooses to invest in knowledge capital, physical capital or both to
improve its own state. There are major differences between the two types of investment.
Consider a firm with state (zy, k;). The investment in physical capital has a deterministic
outcome. It also involves an adjustment cost c(k¢, kiyq1). Thus, a firm could directly
choose the level of physical capital k;,; for the next period. In contrast, improvements
to knowledge capital are uncertain and depend on the firm’s own R&D and knowledge
spillover.

More specifically, the input of knowledge production consists of two components.
One part is the firm’s own innovation effort d; = d(xy, k¢; s¢). The cost of innovation is
cq - (dy - k:f *). Parameter ¢, governs the overall cost level, and parameter dj allows the
per-unit innovation cost to vary by firm size. If dy is larger than 0, the per-unit cost is
higher for larger firms. The other part is the knowledge spillover from other producers
competing in the same industry. Thus, the transition of knowledge capital from x; to
211 is determined jointly by d;, each firm’s relative technological position z; in the
productivity distribution, and is subject to uncertainty. We focus on within-industry
knowledge spillover. Firms receive knowledge spillovers by randomly meeting with a
rival in each period t. If the rival happens to be less productive, then the firm does

not benefit from the meeting. However, if the rival is more productive than the firm,

11



the latter obtains a constant unit of knowledge spillover 6.1 As a result, the average

spillover for a firm with individual state (z, k;) is defined as

szstxk OP(x > x).

T>Tt

Recall that s; is the industry state at time ¢ and that NV, is defined as the total mass of
incumbents at time . The composite term entering the knowledge production takes the

following form:

Dt—d(l’t,kt,St +9228t$ k .

T>Tt

In Jovanovic and MacDonald (1994), learning also depends on the firm’s state, ac-
tions, and the state of the industry, including the distribution of know-how in use.'®
However, unlike in Jovanovic and MacDonald (1994), in our model, the decision to invest
in R&D does not preclude the opportunity to benefit from the knowledge externality.

As in Weintraub et al. (2008), there is an idiosyncratic exogenous depreciation shock
that each firm suffers with probability 6. In reality, such a shock could capture the
firm-level organizational forgetting documented by Benkard (2004), which causes the
production process to be less efficient. With all the pieces that we have described so far,

we can now introduce the knowledge production function. For z, = 27 € X,

(27, with probability 4=2r;
Ty = & 271 with probability 1+5_Dt; (2)
; : ity 1=9)+D:
| with probability “—77

The firm’s physical investment decision is deterministic and follows conventional spec-
ifications in the literature. There are two types of investment frictions. First, the firm
needs to pay an extra convex cost c(ky, ki1 1) for adjusting its physical capital level from

k; to ki 1. By normalizing the purchase price of capital ¢, = 1, we specify the adjustment

15This specification of backward advantage in learning by random meeting is motivated by the ap-
proach of Benhabib et al. (2017). Using UK plant-level data, Griffith et al. (2005) shows that technology
transfer plays an important role in productivity improvements in nonfrontier establishments.

16 Jovanovic and MacDonald (1994) show that in a competitive industry, imitation by the firms that lag
behind the frontier force some technology convergence among establishments as the industry matures.

12



cost of each establishment as:

C(kta k?t+1) = Ca(it/kt)tha

where 7, = ki1 — (1 — 6.)k; is the investment (disinvestment) and ¢, is the parameter
for the cost of adjustment. Second, the unit resale price of capital is (1 — p) of the
purchase price, where parameter @ measures the degree of irreversibility of the installed
capital.!” This partial irreversibility is consistent with the data pattern of infrequent

capital adjustment and, in particular, disinvestment.

3.4 Incumbent’s and Entrant’s Problem

Given the knowledge production function described in the last section, for a producer

with (zy, k¢), the value of continuation V.(zy, ky; s¢) is given by

Vi@, ks 8t) = maz g, py oy {—cadik™ — en(1 = Lpscoy - 9) - i

_C(kt7 kt—i—l) + BESt+1 [V(It—‘rh kt—f—l; St-‘rl) |xt7 dt7 St]}) (3)

where dy(zy, ki; s¢) and ky(xy, ky; s¢) are associated policy functions. The perceived tran-
sition kernel of s; is a key determinant of the value of continuation.

Let V (x4, ki; s¢) be the establishment’s value at the beginning of the current period.
Firms can exit for both exogenous and endogenous reasons. We assume that a firm exits
with probability ¢ for reasons not directly related to firm profitability. This is useful to
account for the exit of highly productive and large producers in our data. Whether the
reason for exit is endogenous or exogenous, the firm obtains a random scrap value ¢;

upon exit:

V(xﬁ kt; St) = ﬂ-*(xt? kt; St) + E¢t [(1 - é)ma‘r{%<xt7 kt; 5t)7 (bt} + £¢t] ) (4>

where the scrap value ¢; has an exponential distribution with parameter A. The in-
cumbent’s decision rule x(xy, ki; ¢y, s¢) = 1 if it decides to exit and x(x, ki; ¢g, 8¢) = 0
otherwise.

Potential entrants are ex ante identical. Upon entry, they draw their initial endow-

ment of x and k from a time-invariant distribution ®¢. Each potential entrant incurs

1"The presence of irreversibility is emphasized by Abel and Eberly (1996) and follow-up works.
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entry cost k. Potential entrants’ decision € = 1 if

Ve(sy) = BEsm[/ V (e, ke, S41)dP|s¢] > K. (5)

In a setting with a finite and large number of firms, Weintraub et al. (2008) show that

the mass of entrants for time ¢ is a Poisson random variable with mean M (s;).'®

3.5 Oblivious Equilibrium

Following Ericson and Pakes (1995), the standard symmetric Markov perfect strategies
can be defined by actions a € A and entry decision € € {0,1}. In our application, a =
{d,k, x}, where d : QxS — R, is each firm’s R&D investment strategy, k: Q@ xS — K is
its physical investment strategy, and x : Q xS — {0, 1} is its exit strategy. Similarly, we
define the entry strategy for potential entrants as € : S — {0,1}. Then, Markov perfect

equilibrium strategies a and e satisfy the following:

1. Each incumbent and potential entrant chooses optimal strategies given the per-

cewed transition kernel of industry state s.
2. These perceptions are consistent with the behaviors of each agent’s competitors.

Computing the Markovian transition kernel of industry state s is burdensome since it
depends on the optimal incumbent strategy a and entrant strategy e for each industry
player. It becomes quickly infeasible for any manufacturing industry with more than
a dozen firms. As a result, we rely on the concept of oblivious equilibrium, developed
in Weintraub et al. (2008). Their paper establishes that when the number of firms is
large, oblivious strategies, which ignore current information about competitors’ states
and are conditioned only on knowledge of the long-run average industry state, can closely
approximate a Markov perfect equilibrium.

Let A € A be the set of oblivious strategies. Then, for oblivious strategies a =
(d,k,x) € Aand e € {0,1}, the associated expected state of the industry in the long

18The Poisson random variable is justified by the following entry model: there are N potential entrants,
and vy (%) is the expected present value for each entering firm if ¢ firms enter simultaneously. Each
potential entrant employs the same strategy, and the condition for a mixed-strategy Nash equilibrium
is N PCh piv(1— pa)N Ty (i + 1) = k. The equation has a unique solution pj € (0,1); the
number of firms entering is a binomial random variable Yy with parameters (N, py). As N — oo, Yy
converges to a Poisson random variable with mean M.
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run is S, .. Define f/(m,k|a',5’a75) as the expected payoff of an incumbent under the
assumption that the industry state will be equal to S, in all future periods. Then,

given self-generated S, ., oblivious equilibrium strategies a and e satisfy the following:
1. For an incumbent V (x, k|a, Sq.c) > V(x, k|d’, Sa.), Va' € A.

2. Entrants satisfy the zero-profit condition such that 8 [V (z,k|S,.)d®¢ < k with
equality if the mass of entrants M > 0.

Weintraub et al. (2008) prove that when the equilibrium incumbent strategies and
entry rate function are oblivious, the industry state s; is an irreducible, aperiodic and
positive recurrent Markov chain. Their key insight is that when there is a large number
of firms and the market tends not to be concentrated, individual firms do not benefit
by unilaterally deviating to an optimal (nonoblivious) strategy by keeping track of the
true industry state averaged over the invariant distribution of industry states. In other
words, in any industry state that has a significant probability of occurrence, the oblivious
strategy approximates the Markov perfect strategy.

Our procedure for calculating the equilibrium follows the above definition closely.

Given a set of parameters, the steps to compute the equilibrium are as follows:
1. Initial guess of the mean number of entrants M.
2. Initial guess of the average long-run industry structure sg.

3. Solve the incumbent’s maximization problem and recover its optimal investment

policy and exit policy: a = (d, k, x) given s.

4. Construct the transition matrix 7}, with the optimal policies. The long-run

average industry structure is calculated as s = M (I — Tx,k,x)_lcbe.
5. If |sp — s1] is not close enough, go back to step (2).

6. Check the free-entry condition of potential entrants. If it does not hold, go back
to step (1).
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4 Model Estimation

4.1 Revenue Function

The first stage of estimation focuses on the static part of the model. To be consistent
with the theoretical model, we assume that labor is a short-run variable input while
capital is quasi fixed. The empirical log revenue function for each establishment i at

time t is then
ln Tt = Q¢ + O~ék 111 kit + i‘it + Uit (6)

ag; absorbs all common parameters and industry aggregates (I and P,). & = oay is
the capital coefficient in the static revenue equation with labor optimized out, and the
scaled productivity Z;; = —(1 +1)(1 — ag)xi. w; is an i.i.d. measurement error shock.
We then follow Ackerberg et al. (2015) in estimating parameter & in equation 6
and the productivity process. Assume that a firm’s material input at time ¢ enters
final production together with value added in a Leontief fashion. This assumption then

justifies the standard proxy function function f;(-) where
Mt = [e(Tit, Kie, lit)-
We then obtain
Inry = g + G In ke + f; ' (mag, i, Lie) + wa

Our model has a step-by-step innovation setup where the outcome can be influenced
both by the firm’s own R&D and by knowledge spillovers. Note that absent spillovers,
each firm’s productivity change is a random walk that depends only on the firm’s own
R&D (adjusted by its size). In our model, the existence of a backward advantage in
obtaining spillovers rationalizes the mean reversion of the first-order Markov productivity
process that is often assumed to be exogenous in the empirical literature. In this sense,
despite the fact that the empirical productivity process does not map directly to our
structural parameters, we use it to define the key moments to target for identification
of the underlying model knowledge production parameters. Specifically, we approximate

the productivity evolution using a first-order Markov process, where
Tig = 9(Tir—1, dig—1, kir—1) + it

. dip—
=mg + mTi—1 + My 10g(k;_1) + &it- (7)
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Then, we rely on the following moment conditions to estimate the revenue production

function parameters and the empirical productivity process.

lit—1
E &G | mi— =0 (8)
kit

The estimation results are reported in Table 4. We find that the coefficient of capital
in the revenue equation is 0.46. It is well known that one cannot identify the elasticity
parameter 1 and the production technology parameter «; separately with only revenue
data. As a result, we calibrate the value of n = —5, following conventional findings in
the trade literature.'” Combined, these imply a 0 = —(1 4+ 7n)(1 — az) = 2.14 and a
capital share coefficient oy, = 0.22.

More importantly, we also find that the measured productivity process features mean
reversion with m; = 0.89. The coefficient of the private R&D-to-capital ratio is also pos-
itive and significant with my = 0.007. These estimates are generally in line with recent
studies on R&D and productivity such as Aw et al. (2011) and Doraszelski and Jauman-
dreu (2013). However, unlike these earlier studies, we treat this measured productivity

process as an auxiliary regression to target in our estimation of the dynamic parameters.

4.2 Parameterization and Estimation of Dynamic Parameters

We start by setting a few fixed parameters based on our empirical setting and data. First,
we set the annual discounting rate 8 at 0.925 to reflect the relatively high interest rate
during our sample period in Korea. Second, both the annual rate of depreciation 4. =
0.15 and the exogenous exit rate & = 0.02 are directly calculated from our data. Finally,
the investment cost ¢ is normalized to 1. The aggregate market size I is calculated as
the annual average of industry total value added over the sample period I = 562,025
million won. We use the average number of entrants over the years from 1991 to 1996 to
approximate an empirical estimate of the mass of entrants M in our model. The average
number of entrants is M = 78.

Given the first-stage estimates of the production function coefficients ag and day
and the preset parameters (3, 0., &, andn, we estimate the set of dynamic parameters

©¢ = [dg,cq,¢a, N, 6,0, 9] in the second stage. Recall that dj, is the cost parameter of

19The implied markup in a monopolistic competitive setting is 1.25.
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R&D with respect to capital size, which governs the effect of capital size on the R&D
cost. ¢q4 is the effectiveness of R&D inputs in improving plant knowledge capital. ¢, is
the physical capital adjustment cost, and g captures the asymmetry in disinvestment of
physical capital. A is the parameter of the plant scrap value distribution. o represents
idiosyncratic uncertainty over the depreciation in plant-level knowledge capital. Most
importantly, 8 controls the size of knowledge spillover from frontier firms. Since the es-
timation involves solving a dynamic industry equilibrium with no closed-form solutions,
we use the method of simulated moments (MSM), which minimizes a distance criterion
between key moments from the actual and simulated data.

Recent empirical techniques have been proposed to estimate the dynamic industry
equilibrium model without solving the equilibrium. Especially related to this study is the
estimation procedure proposed by Bajari et al. (2007), which handles both continuous
and discrete control variables. Their approach breaks the estimation into two stages.
In the first stage, firm policy functions are recovered by regressing observed actions on
the observed state variables. The probability distribution defining the evolution of the
industry state is also recovered at this stage. In the second stage, the structural param-
eters that make these observed policies optimal are estimated. The major breakthrough
of their approach is to avoid the computational burden of calculating the Markov perfect
equilibrium, albeit with a trade-off with respect to the precise calculation of the agent’s
value function and policy function.

We have the plant-level data for only one industry over a six-year period, while the
possible state space is very large. This would make the sampling error of estimating the
policy functions a major concern if we were to adopt the strategy of Bajari et al. (2007).
On the other hand, the large number of firms and low industry concentration make the
weaker notion of equilibrium—oblivious equilibrium—especially attractive since it has
been proved to be a good approximation of MPE in this case.

In the literature, there is often a concern over using the simulated method of mo-
ments at this stage in comparison with the approach of Bajari et al. (2007): the dynamic
competition model that we use has not been proved to have a unique equilibrium in gen-
eral. However, since we are focusing on only a single market, this problem is alleviated,
at least in our estimation, by the matching of a full set of moments with policies and
state transitions from observed and simulated data, which allow the data to confirm the

correct equilibrium.
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4.2.1 Moments

In this section, we describe the set of data moments utilized and their relevance for the
identification of key parameters. The sample that we use to estimate the dynamic pa-
rameters is an unbalanced panel of incumbent plants in the electric motor industry in
1991 and their subsequent annual observations through 1996, including their exits. On
the other hand, all entrants in subsequent years are used only to construct a frequency
estimate of the initial state distribution W¢ and are excluded from the construction of
moments.

Table 5 reports the moments that we use in our estimation. The first set of moments
captures the key features of optimal plant R&D investment behavior in equilibrium. The
R&D investment cost ¢4 affects a plant’s R&D investment intensity. It is also the driv-
ing force behind the long-run productivity advantage of R&D performers. On the other
hand, the idiosyncratic shock ¢ is shaped by the proportion of positive R&D investors.
Given its own technological position and expectation on industry productivity evolution,
a plant makes an optimal decision on whether to stick with the “corner solution” of in-
vesting nothing in R&D. Note here that all moments of the change in firm productivity
over time are constructed conditional on survival. Thus, they are also affected by indus-
try competition and turnover.

The second set of moments described in Table 5 relates to the plant’s physical invest-
ment behavior. Following Cooper and Haltiwanger (2006), the cost parameter ¢, helps
capture the nonlinear relationship between plant-level investment and profitability. The
level of the investment ratio and fraction of the plant’s positive investment depend on
the magnitude of this parameter. The fraction of disinvestment identifies parameter g,
which controls the asymmetry of disinvestment, and the covariance between adjusted
investment and the productivity level helps identify dj, which determines the effect of
capital on R&D expenditure. Since we model the firm’s investment behavior within an
industry equilibrium, the investment moments also indirectly influence other key model
parameters such as technological spillover and R&D costs.

Third, the long-run exit pattern helps identify the scrap value distribution param-

eter.?’ Finally, we use the autocorrelation between productivity to identify parameter

200bviously, the other moments are also affected by the exit pattern of incumbent firms in an industry
equilibrium setting.
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6, which controls the R&D spillover effect: we simulate a sequence of {z;} from our
structural model and calculate the autocorrelation based on the simulated sequence of
productivity. More specifically, we run the second-stage estimation of the production
function on the simulated sequence of productivity, where

Tyt = g(Tit—1, dz’t—l) + &t

~

- . N dis_
= Mo + M1 + Mo log(= i 1) + &t (9)
it—1

Then, we match the estimated m coefficients with the m coefficients estimated from the

data by changing the spillover parameter 6.

4.2.2 Empirical Implementation and Computation Details

The estimation of the dynamic parameters 0 is implemented according to the following
procedures. First, denote the set of data moments in Table 5 as I'?, which is a 10-by-
1 vector. Second, for a given set of parameters ©, the industry equilibrium is solved,
and optimal policy functions for R&D expenditure, physical investment and survival
(d*,k*, x*) are generated. Third, we use the optimal policy functions to simulate the
path for each plant in the oblivious equilibrium. We define the simulated moments as
I'S. The MSM estimate © minimizes the weighted distance between the data moments

and the simulated moments:
L(©) = ming[l'* — T%(0)WY —T9(0)],

where W is a positive definite matrix. In our numerical analysis, W is calculated through
a bootstrap procedure: we randomly resample the data and calculate the moments of
interest for each sample; then, we obtain a variance—covariance matrix based on these
bootstrap samples.

The range of X is determined by the standard deviation of productivity in the

data. The space of capital K = [kpin, kmax] 1S chosen to match zp, and y., based
IOg( czj_{;(k )“l‘o'mmin

l—cagk

on the firm’s static profit maximization strategy, where ky;, = and
o OB E ey g ) HPmax

Kmax ~ The dynamic optimization problem is solved with a col-

l—ocag

location method as in Midrigan and Xu (2014). In addition, we follow Andrews et
al. (2017) and use finite differencing to calculate the standard errors of the estimated

parameters.
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4.2.3 Estimation Results

Table 6 reports the point estimates and their 5% — 95% confidence intervals. By solving
the industry equilibrium with the reported point estimates ©, we can also infer the fixed
entry cost x on the basis of the model’s free entry condition, equation 5. To further
evaluate the overall fit of the estimation, we also report the simulated moments at the
point estimates in Table 7. The simulated data do a good job of replicating the pattern
of R&D investment and productivity evolution, which are the core pieces of this model.

With the estimated set of parameters, the policy function derived from our simulation
is shown in Figure 3. Panel (a) of Figure 3 shows that firms with higher productivity are
more willing to invest in R&D but that a higher capital level lowers the R&D incentive
because it increases the unit R&D investment cost. The kink in panel (a) is driven by
the limit of maximum productivity that a firm can achieve in the model. Panel (b) shows
the summation of individual R&D activity and knowledge spillover. From panel (b), we
can see that backward firms enjoy significant spillover, which helps them move upward
on the spectrum of the productivity distribution. Panel (c¢) shows the probability of
exit of firms in the productivity—capital space: firms with both low productivity and
low capital have the highest probability of exit, at approximately 0.17. The probability
of exit decreases when either productivity or capital increases. After reaching a certain
threshold in the productivity—capital space, firms suffer from possibility of exogenous
exit only, the probability of which is 0.02 in our model. Panel (d) shows the investment-
to-capital ratio. As expected, firms with high productivity and low capital have the
highest incentive to invest.

Figure 4 plots the distribution of the industry structure. Panel (a) shows the dis-
tribution of entrants directly obtained from our data, which has the highest density in
the middle but is smoothly distributed over the entire productivity—capital space. Panel
(b) shows the distribution of the industry structure in equilibrium, from which we can
observe that the industry is much more concentrated in states with medium to high
levels of capital and medium levels of productivity. Panels (c¢) and (d) zoom in on the
marginal distributions of capital and productivity in equilibrium, respectively. Overall,
the visualization of the policy functions and the long-run market structure illustrate that
our model is consistent with many of the salient facts on firm and industry dynamics.

The knowledge spillover effect varies across different firms. The lower a firm’s own
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productivity is (i.e., the further it lags behind the technology frontier), the larger the
knowledge spillover effect that it gains from the industry. The value of the knowledge
spillover parameter 6 of 4.5 can be interpreted as follows: among active R&D performers,
on average, the knowledge spillover effect is 1.31 times the importance of an individual
firm’s R&D effort. The spillover effect is smaller for firms with higher productivity. For
a firm with productivity at the 95th percentile in this industry, the spillover effect is only
0.29 times the importance of its own R&D spending. Among non-R&D performers, the
spillover effect increases their probability of technology advancement by 10% on average.
For a firm with the lowest productivity in this industry, the knowledge spillover effect
increases its probability of technology advancement by 12%.

In terms of the quadratic adjustment cost, Cooper and Haltiwanger (2006) report a
value of 0.225 in the absence of controls for fixed costs and 0.025 with controls for fixed
costs. Bloom (2006) reports a quadratic adjustment coefficient of 4.743 on a monthly
basis, which implies a yearly value of 0.39. Our estimate of c¢,, which equals 0.04,
indicates that it is less costly to acquire or sell physical capital in the Korean electric
motor industry than in the settings examined in these prior works. However, our estimate
of the disinvestment parameter p is 0.50, which implies that disinvestment comes with
a price discount of capital of approximately 50%.

The estimated scrap value implies an unconditional mean of 1,667 million won, which
is approximately five times the industry average of static profit. On the other hand, the
entry cost implied from the free-entry condition is 4,200 million won. These values
results in quite a narrow hysteresis band, driven by the high turnover rate observed in
the data.

5 Policy Simulation: Optimal R&D Subsidy Plans

We now use our estimated model to further understand the role of knowledge spillover
and conduct policy analysis.

First, we examine by how much knowledge spillover affects aggregate R&D efforts and
hence productivity dispersion among firms. With a higher spillover effect 6, firms have
a lower incentive to invest in R&D because it is harder to pull away from other firms by
performing R&D. Both the reduction in R&D effort among leading firms and the easier

catch-up among laggards imply a smaller productivity dispersion. To disentangle the
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effect of # on productivity dispersion and R&D incentives, we compare the benchmark
case with two cases: in the first case, 6 is increased by 50%, and the R&D policy of
firms is allowed to change endogenously. Second, 6 is increased by 50%, but R&D policy
is exogenously fized to be the same as in the benchmark case. Table 8 summarizes the
aggregate R&D efforts and productivity dispersion. Comparing columns (1) and (2)
of case one with our benchmark results in Table 8, we can see that a 50% increase in
spillover parameter 6 results in an 24% decrease in aggregate R&D efforts and a 0.6%
increase in aggregate productivity. This is because firms have a lower incentive to invest
in R&D when spillover to other firms is larger. On the other hand, when the spillover
effect is larger, the variance in productivity is also smaller in this industry, as we can see
by comparing column (3) of case 1 with the benchmark case.

To separate out the effect of increased spillover and lowered R&D efforts, in case
two, we focus solely on the increased spillover effect by fixing firms’ R&D policy to
what it was in the benchmark case. The result shows that if firms’ R&D policy remains
unchanged when the spillover effect is larger, aggregate productivity increases by 2.4%,
while aggregate R&D efforts stay basically the same in the new equilibrium, as we can see
by comparing columns (1) and (2) of case two with the benchmark case. This additional
aggregate productivity gain over that in case one highlights the importance of taking
into account how R&D firms respond to free-riding on their spillovers in equilibrium.

Right after our sample period, Korea launched its S&T policy, geared toward the
acquisition of core competences in strategic technology areas and development of an in-
novation system to enable the nation to successfully transition toward a knowledge—based
economy. To achieve this policy goal, the Special Law for S&T Innovation was enacted in
1997. In accordance with the law, the Five—year Plan for S&T Innovation was launched

the same year. The program contains specific action plans to achieve the policy goal:

1. A corporate tax deduction of 50% of the increase in R&D and human resource
development (HRD) investments over the annual average investments of the past

four years or 5% of the current expenditures for the same purposes (15% for SMEs).

2. A corporate tax deduction of 5% of the total investment in equipment and facilities
for R&D and/or HRD and a direct R&D subsidy for SMEs of up to 100 million

won or 75% of the total investment.

Motivated by the actual R&D subsidy plans in Korea, our main counterfactual results
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are targeted at finding the optimal subsidy plan with a revenue-equivalent tax. Because
of the existence of the spillover effect, there is an externality from firm’s own R&D on
other firms’ productivity in this industry, which is not endogenized in firm’s own R&D
decisions. Therefore, from the social planner’s point of view, firm’s own R&D effort is
less than socially optimal. To increase this effort, we propose a subsidy plan whereby for
every dollar of firm R&D spending, a certain fraction is subsidized by the government.
The total subsidy expenditure is financed through a tax on firm’s profits. In other
words, the following balance condition of subsidy expenditures and tax revenues need to
be satisfied:

ZT cm(x, k) - s(z, k) = Zs - cqdk® - s(z, k),
x,k xz,k

where 7 is the uniform tax rate on firm’s static profit 7(z, k) and s is the rate of R&D
subsidy. Our main counterfactual aims at finding the optimal subsidy plan s that max-
imizes industry output.

Table 9 shows how the total industry quantity changes with respect to different
subsidy plans. We see an inverted U-shape of the total industry quantity with respect
to an increase in total subsidy expenditures. This arises because on the one hand, in the
new equilibrium with the revenue-equivalent subsidy and tax plan, firms with a lower
elasticity-weighted marginal cost are taxed to subsidize firms with a higher marginal
cost. Therefore, the revenue-equivalent tax policy creates a misallocation of resources if
we shut off knowledge spillover. On the other hand, when there is knowledge spillover,
the R&D subsidy increases firms’ incentive to conduct R&D and hence endogenize the
knowledge spillover effect. From Table 9, we can see that the total industry quantity is

maximized at a subsidy rate of about 15%, with a tax rate of 1.27%.

6 Conclusion

This paper develops and estimates a structural model of R&D investment and produc-
tivity evolution among manufacturing plants in the Korean electric motor industry from
1991 to 1996. Plant-level decisions on R&D investment, physical capital investment,
entry, and exit are developed with an equilibrium industry evolution model. Plant pro-
ductivity is affected by the plant’s own R&D and by spillovers from the R&D of its
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competitors. The model provides a detailed set of pathways connecting the R&D in-
vestment, plant productivity, plant physical investment and industry turnover patterns
observed in the data.

The structural parameter estimates show that a plant’s own R&D expenditure has
a positive effect on its future productivity. Among active R&D performers, on average,
the knowledge spillover effect is 1.31 times the firm’s individual R&D effort. Among
non-R&D performers, the spillover effect increases their probability of technology ad-
vancement by 10% on average. The public externality from R&D is important given the
large number of firms within the same industry. A narrow difference between the entry
cost and the mean scrap value explains the high turnover rate in this industry. Finally,
the industry equilibrium model provides a natural link from individual plant R&D deci-
sions to aggregate industry productivity and output. This feature of the model provides
us with a powerful tool to evaluate various industry or innovation policies. As our coun-
terfactual experiments show, the optimal linear R&D subsidy rate is approximately 15%,
which is quite close to that implemented by the Korean government for SMEs. Industry
output would increase by a modest 0.14% with the subsidy policy.

There are quite a few possible extensions of the current framework. An interesting
one would be to look at the interaction of firms’ decision to export, R&D, and the overall
industry evolution. Given the fact that trade and innovation policy are considered to
be among the most important institutional arrangements in emerging economies such as
Korea, it is important to provide a general framework for evaluating how these policies

interact and affect long-run industry performance.
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Figure 1: Relation between R&D Intensity and Firm Size among R&D Performers

Note: Figure 1 illustrates the relation between log R&D intensity and log value added among R&D
performers in our data. R&D intensity is defined as the ratio of R&D expenditure over value added.
The results show that producers with larger value added tend to have lower R&D intensity.
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Figure 2: Investment Rate

Note: Figure 2 reports the distribution of the investment-to-capital ratio (capital investment relative
to the stock of physical capital) in the Korean electric motor industry. The results show that 46% of
firms do not invest in a given year. In addition, 24% of firms replace more than 20% of their capital
stock in a given year (displaying a pattern often called “investment spike”).
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Figure 3: Plots of Policy Functions

Figure 3 shows the equilibrium policy functions at the estimated parameter values. Panel (a) shows the R&D decision in the space of
physical capital K and productivity X. Panel (b) shows the summation of individual R&D expenditures and knowledge spillover. Panel
(c) shows firms’ probability of exit. Panel (d) shows the investment-to-capital ratio.
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Figure 4: Plots of Joint and Marginal Distributions

Figure 4 shows the distributions of the industry structure. Panel (a) shows the distribution of entrants, which is exogenously obtained
from the data. Panel (b) shows the joint distribution of physical capital and productivity in the industry in equilibrium. Panels (c¢) and
(d) show the marginal distribution of capital and productivity in equilibrium, respectively.
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Table 1: Summary Statistics

Note: Table 1 summarizes the key data patterns of the Korean electric motor industry. The data are
from the Korean Annual Manufacturing Survey, which reports detailed annual information on each
manufacturing establishment’s value added, physical capital, employment, physical investment, and
R&D investment. On the cost side, we have information on total material expenditure and the total
wage bill. All units are in million won. The average exchange rate between the won and US dollar
during the sample period was 786:1.

Mean  Std. 1%  25% Med. 75% 99%
R&D expenditure 25.8 210.9 0.0 0.0 0.0 0.0 694.0
R&D intensity of performers — 0.13 0.31 0.00 0.02 0.06 0.12 2.00
Physical capital 688.6 2977.2 4.7 36.4  90.0 296.4 15805.3
Physical investment 110.0 6475 -39.2 0.0 0.0 25.5 2209.4
Investment-to-capital ratio 0.27 1.09 -0.18  0.00 0.00 0.19 4.57
Value added 1118.0 4257.7 421 133.8 262.8 634.8 19766.7
Wage bill 455.8 16759 24.0 67.1 121.2 268.1 7288.0

Unit of variables: million won

Table 2: Market Concentration

Note: Table 2 summarizes market concentration in the Korean electric motor industry. It shows the
market share of the top 4 firms and the top 20 firms and the average HHI of this industry from 1991 to
1996. In the Korean electric motor industry, on average, the market share of the top 4 firms is 29% and
of the top 20 firms 59%. The average HHI of this industry is 323, far below the Department of Justice’s
definition of a moderately concentrated market (one with an HHI between 1,500 and 2,500 points).
The data pattern suggests that the Korean electric motor industry is neither perfectly competitive nor
dominated by a very few large firms.

Year Market Share of C4 Market Share of C20 HHI

91 27% 59% 280
92 27% 56% 266
93 31% 60% 342
94 30% 58% 355
95 32% 61% 353
96 31% 60% 341
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Table 3: Turnover Rates

Note: Table 3 summarizes the entry and exit rate in the Korean electric motor industry. On average,
the entry rate is 15.7%, and the exit rate is 16.0%. The exit rate for 1991 is not reported since that
is the first year of our sample period. Entrants account for about 5% of the total market share each
year, and exiting firms account for 11% of the total market share on average. Each entrant cohort’s
importance grows over time. For example, the market share of the cohort born in 1992 accounts for 5%
of the market share, and this number increases to 10% in 1996.

Market Share Market Share

Year Entry Rate Exit Rate of Entrants of Exits

91 19% N/A 4% N/A
92 17% 17% 5% 13%
93 17% 9% 4% 9%
94 16% 17% 5% 13%
95 15% 12% 6% 6%
96 11% 25% 3% 13%

Table 4: Production Function Parameters

Note: Table 4 shows the estimated values of the production function parameters. Standard errors are
reported in parentheses.

ACF

ok 0.4655%
(0.000)

ms 0.8897%
(0.000)

ms 0.0071*
(0.000)

*significant at the 1% level
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Table 5: Key Data Moments

Note: Table 5 reports the moments that we use in our estimation. The first set of moments captures
the key features of optimal plant R&D investment behavior in equilibrium. We use the fraction of
R&D performers, R&D intensity of performers, and standard deviation of the relative productivity
level. The second set of moments relates to the plant’s physical investment behavior. We use the mean
investment ratio, the fraction of positive investment, fraction of disinvestment, and covariance between
capital investment (weighted by physical capital) and individual productivity. The third set of moments
relates to the turnover rate in the Korean electric motor industry. We use the mean exit rate in this
industry. The fourth set of moments relates to the autocorrelation between productivity to identify
the parameter that affects the knowledge spillover effect. We simulate a sequence of productivity {x;}
from our structural model and calculate the autocorrelation based on this sequence. Establishment

productivity x;; evolves according to Z;; = Mg + M1xy—1 + Mo log(%) + &;¢, where dj; 1 is the R&D
vit—1

expenditure of establishment ¢ at time ¢ — 1 and k;;_1 is physical capital. Arguments for identification

can be found in section 4.2.1.

Identification Data

RE&D Investment and Productivity Improvement

fraction of R&D performers pin down § 11%
R&D intensity of performers (R&D/Value-added) pin down ¢q4 0.13
std relative productivity level pin down §/cq  0.31
Physical Capital Investment
mean investment ratio (%Z ;) pin down ¢, .27
fraction of positive investment pin down ¢, 49.6%
fraction of disinvestment pin down p 4%
Cov(i/k, x) pin down dj, 0.08
Firm Turnover
mean exit rate pin down wuy 16%
Estimated FEvolution Path of Productivity
my (coefficient of lagged productivity) pin down 6 0.8897*
(0.000)
ma (coefficient of Z—L:) pin down dy, 0.007*
(0.000)

*significant at the 1% level.
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Table 6: Dynamic Parameter Estimates

Note: Table 6 reports the point estimates and their 95% confidence intervals. ¢ represents idiosyncratic
uncertainty over the change in plant-level knowledge capital. ¢4 is the effectiveness of R&D inputs in
improving plant knowledge capital. 6 controls the size of the knowledge spillover effect. dj is the cost
parameter of R&D with respect to capital size, which captures the effect of capital size on the R&D
cost. ¢ is the physical capital adjustment cost. g captures the asymmetry of disinvestment of physical
capital. A is the parameter of the plant scrap value distribution.

Point Estimate 95% confidence interval

5 0.85 0.79,0.91]
ca 0.20 [0.17,0.23]
0 4.50 [3.02, 5.98]
dy 0.30 [0.24, 0.36]
Ca 0.04 [0.01, 0.06]
o 0.50 [0.45, 0.55]
A 0.61 [0.46, 0.75]

Table 7: Model Fit

Note: Table 7 reports the data moments and simulated moments at the point estimates in Table 6.

Data Simulation
RED Investment and Productivity Improvement
fraction of R&D performers 11% 13%
R&D intensity of performers (R&D/Value-added) 0.13 0.10
std relative productivity level 0.31 0.27
Physical Capital Investment
mean investment ratio (f,,) .27 .25
fraction of positive investment 49.6% 49.0%
fraction of disinvestment 4% 4%
Cov(i/k, x) 0.08 0.08
Firm Turnover
mean exit rate 16% 13%
Estimated Fvolution Path of Productivity
my (coefficient of lagged productivity) 0.8897* 0.8909*
(0.000) (0.000)
my (coefficient of %) 0.007* 0.004*
(0.000) (0.000)

*significant at the 1% level.
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Table 8: Effect of 6 on R&D Efforts and Productivity Dispersion

Note: Table 8 shows the counterfactual results on how much knowledge spillover affects aggregate R&D
efforts and hence productivity dispersion among firms. 6 measures the level of knowledge spillover. We
compare the benchmark case with two other cases: first, 6 is increased by 50%, and the R&D policy of
firms is allowed to change endogenously. Second, 6 is increased by 50%, but R&D policy is exogenously
fixed to be the same as in the benchmark case.

M ) )
Aggregate Aggregate R&D  Variance of
productivity efforts productivity

Benchmark 6 0.3094 57.8003 0.0572

Case 1: 6 = 0 % (14 50%) 0.3112 43.7572 0.0508

Case 2: 6 =0« (1 +50%) , 3167 57.6590 0.0507

but fix R&D policy at 6

Table 9: Results of Policy Simulations

Note: Table 9 shows how the total industry quantity changes with respect to different subsidy plans.
In our main counterfactual analysis, we propose a subsidy plan whereby for every dollar of firm R&D
spending, a certain fraction is subsidized by the government. The total subsidy expenditure is financed
through a tax on firm profits. In other words, the following balance condition of subsidy expenditures
and tax revenues needs to be satisfied: >, 7-7(z,k) - s(2, k) =3, 5 cadk® - s(z,k) , where T is
the uniform tax rate on firms’ static profit 7T(.7j, k) and s is the rate of the R&D subsidy.

Subsidy Rate (Percentage

of R&D Cost Cy) Tax Rate Industry Quantity Total Expenditures of Subsidy

0.00% 0.00% 613.21 0.00
2.00% 0.13% 613.46 0.28
4.00% 0.27% 613.59 0.59
5.00% 0.33% 613.73 0.75
10.00% 0.78% 614.08 1.63
15.00% 1.27% 614.10 2.67
20.00% 1.85% 614.06 3.89
25.00% 2.58% 612.74 5.34
30.00% 3.45% 610.91 7.08
35.00% 4.37% 608.62 9.22
40.00% 5.59% 605.19 11.76
45.00% 6.87% 602.18 14.57
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A Profit from Static Competition

The static competition of heterogeneous firms is built in a standard monopolistic com-
petition setting. We assume that firm ¢ within an industry has a standard Cobb-Douglas
production function with constant returns to scale. We describe individual firm’s prob-
lem, suppressing the notation ¢ for convenience.

g = exp() (1}~ (ke)®),

where ¢; is the output of firm 7. The firm’s efficiency x; captures each firm’s knowledge
capital. k; is physical capital input, and [; is labor input.
Each firm produces a differentiated product and faces a demand function such that

1
@ =Qp/P) =5 ()" (10)
where p; is the price set by firm ¢ while (); and P, are the industry-level output and price
index. Accordingly, I is defined as the industry market size. This demand function is
from the widely used monopolistic competition model of Dixit and Stiglitz (1977). The
parameter 7 captures the elasticity of substitution between different products.
Thus, in each period, a firm takes quasi-fixed factors (k:,z;), exogenous variable
factor prices wy, and the aggregate market price P, and chooses variable inputs [; to
maximize its profit:

Tt ZP(L PtaQt)Qt—wtlt. (11)

We could rewrite this problem as

1

mazy, P, T (exp(a) k) (107 ) 0 — (12)
T N——
t CPt

where the optimal labor decision is

- [tht)%“u 1)1 cw] e »

Wy

Substitute the optimal labor decision into the individual price equation p(I, P, q;):

1 (1—a)
1D (1 +1 1 — @) | T@FYma-ay
p(L, Por) = Dyfp)s | 2l2t) w /n) )]
t
A+ 1/ —a)\ 5 1]™
« n — n %
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— 1 7 — !
where o = 20 —(—a) and ﬁ—n—m'

Define s;(¢) as the number of firms whose ¢; = ¢. In equilibrium, the industry price
index P; is determined by the industry state s;.

P= > s, B, )

_[S i) (D?((1+1/72(1—a))"903z> ] —
— )\
pren _ plnes [[cw Z 5¢(¢p) ((1 - 1/73(1 >) <¢)U]
—a)\!'"?
P [l—%zst«o) ((1 =i )) W] | "

where we use the fact that (1 +7)(1 —ao) = —o. As a result,

p=1I ((1 i &)) (Z St(sO)w”) : (16)

®

Given the industry aggregate price P, and market size I, we can also define total
sales as

r(I,p) =1 (p—(I,Z, (pt)) = [—Z ng@)gpa. (17)

Finally, we have the equilibrium maximized profit for the firm with individual state
Pt as

Il Ha ey
s = 10— (14 (1 =)= T (18)
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