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1 Introduction

A large empirical literature has documented substantial and persistent heterogeneity in

firm productivity even within narrowly defined industries.1 Motivated by these facts, the-

oretical models of industry dynamics have been developed by Jovanovic (1982), Hopen-

hayn (1992), and Ericson and Pakes (1995) to explain individual firm size, success, and

failure patterns observed in longitudinal micro-level data. These existing theoretical

models share a common feature: a stochastic process that changes a firm’s productivity

(or belief on its productivity) over time. This process of productivity evolution is a key

component that drives the growth and failure of individual firms and overall evolution

of the industry structure.

In this paper, we study two important sources of productivity evolution: investment

in R&D by individual firms and knowledge spillovers from their competitors. There ex-

ists strong empirical evidence that a firm’s technological position does not just evolve

exogenously. Using the knowledge production function framework pioneered by Zvi

Griliches, numerous papers have investigated the linkages of firm R&D spending, knowl-

edge spillovers, and productivity growth.2 More recently, Aw et al. (2011) and Doraszel-

ski and Jaumandreu (2013) extend this framework to explicitly model firm’s optimal

R&D decision. These papers utilize the insights from the modern production function

estimation literature to jointly recover firm’s production technology and the impact of

R&D on firm productivity. Nevertheless, this line of empirical work has so far treated

each firm as a single agent. This paper investigates firm R&D decisions and knowledge

spillovers within a dynamic industry equilibrium model.

The idea of simultaneously investigating firm R&D, interfirm or intrafirm spillovers,

and the industry structure dates back to classic theoretical papers like Dasgupta and

Stiglitz (1980) and Spence (1984). Nonetheless, few empirical studies have attempted to

estimate these forces in a dynamic equilibrium model. Some notable exceptions include

Benkard (2004), Goettler and Gordon (2011), and Igami (2017). These papers focus on

industries that are dominated by a few large firms and where strategic interactions in

the product market play a central role in firms’ innovation decisions.3 Our paper instead

1See Bartelsman and Doms (2000) and Syverson (2011) for an excellent survey of the micro produc-
tivity literature.

2Griliches (2007) provides an extensive survey of the empirical literature in this tradition.
3For a related computational framework, see also Besanko et al. (2010).
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focuses on a more typical manufacturing industry in an emerging economy: the Korean

electric motor sector. Similarly to the settings examined in previous works, this industry

features strong innovation activities and scope for knowledge spillovers; however, it also

has a much larger number of producers. While these producers are highly heterogeneous,

the overall size distribution is quite continuous, and there is no clear dominance by a

small subset of firms. Firms still maximize their value of continuation given expectations

about the evolution of their own and competitors’ states (e.g, market structure) since

these equilibrium objects impact the overall product market competition and, more im-

portantly, the strength of knowledge spillovers. We tailor our empirical strategy to these

features. In particular, we use the oblivious equilibrium concept proposed by Weintraub

et al. (2008) to circumvent the well-known computational burden of the Markov perfect

equilibrium (MPE) in the framework of Ericson and Pakes (1995). When there is a large

number of firms within the industry, the oblivious equilibrium—where firms are assumed

to ignore current information about competitors’ states and condition their choices on

their belief on the long-run average industry structure—closely approximates a Markov

perfect equilibrium.

Equipped with this novel concept of equilibrium, we contribute to the existing empiri-

cal literature along several dimensions. First, it is widely observed that a large fraction of

firms report no R&D activity, even in high-tech industries. We reconcile this observation

with the commonly used first-order Markov productivity process in the firm dynamics

literature (e.g., Hopenhayn, 1992),4 by allowing firms to survive and grow by imitation.

Within the context of our model, we propose an identification strategy to capture the

effect of knowledge spillover. We discipline the spillover by matching the extent of “mean

reversion” of measured firm productivity, i.e., the chance of backward firms catching up

in the data.5 Second, our equilibrium industry structure is also determined by market

selection based on entry and exit. A high firm turnover rate is a salient feature of a broad

range of manufacturing industries. We are able to recover the quantitative magnitude of

the entry cost and scrap values and investigate how firm turnover interacts with the firm

4This assumption has also been one of the fundamental building blocks of the modern production
function estimation literature, pioneered by Olley and Pakes (1996) and extended by Levinsohn and
Petrin (2003) and Ackerberg et al. (2015).

5As we explain in detail later, the standard Ericson and Pakes (1995) step-by-step innovation setting
implies a firm-level stochastic process closely approximated by a random walk and thus inconsistent
with the empirical regularity of firm growth in our micro-data.
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innovation and imitation mechanism. Finally, since most of the manufacturing sector is

also capital intensive, we adapt the model of Ericson and Pakes (1995) to incorporate

both physical capital and R&D investments. We allow a rich set of adjustment frictions

in physical capital to match the observed interdependence of R&D and physical capital

in our micro-data.

The model is estimated with micro-data from the Korean electric motor industry.

In the first step, we utilize the model specification for static market competition to

estimate the firm’s revenue production function. We modify the approach of Ackerberg

et al. (2015) such that a firm’s productivity is influenced by its own R&D. Due to the

presence of knowledge spillover, we treat the estimated process as only “reduced-form”

moments that need to be matched in the subsequent estimation of the dynamic model.

In the second step, we apply a simulated methodmof moments estimator to the industry

equilibrium model and recover the cost of R&D, magnitude of the spillover, adjustment

costs of investment, and distribution of plant scrap values. By accommodating imperfect

competition, productivity heterogeneity, and investment in both physical and knowledge

capital, the model is rich enough to reproduce the observed market structure and industry

turnover patterns.

Our empirical results show, first, that each firm’s own R&D effort improves its future

productivity although this process is subject to substantial idiosyncratic uncertainty. The

within-industry knowledge spillover is significant and helps to reconcile the observed pro-

ducer R&D spending and productivity evolution patterns. Taking into account that the

total knowledge pool is a public good, spillovers are quite important for less productive

producers. For a firm located at the lower end of the industry productivity distribution

and not engaged in R&D, the spillover that it receives increases the chance that its pro-

ductivity improves by 12%. This accounts for the large amount of zero R&D behavior in

our model and the data. Second, each producer also incurs substantial adjustment costs

for physical capital investment. These costs prevent firms from instantaneously respond-

ing to positive R&D outcomes and, in turn, affect the dynamics of firm R&D investment

incentives. Third, the mean random scrap value and entry cost equal 4.89 years and

12.33 years of average firm profit, respectively. The relatively narrow hysteresis band,

defined as the difference between the entry cost and the mean scrap value, explains the

high turnover rate observed in the industry data.

Using the point estimates of the parameters, we first conduct a counterfactual analysis

4



that isolates the role of knowledge spillover in shaping firm R&D and productivity and

the industry structure. When we increase the strength of knowledge spillover by 50%

relative to our baseline, more firms have free-riding motives, and the total R&D effort of

the industry is cut by around 24%. However, backward firms can catch up more easily.

As a result, the industry has lower productivity dispersion. The free-riding motive is

important in accounting for these responses: in an environment where firms stay with

their baseline R&D policy function, aggregate productivity increases more, reflecting a

better overall productivity distribution due to easier imitation.

Finally, inspired by Korea’s S&T policy, we conduct a series of experiments that

provide linear R&D subsidies. We assume that the government finances such subsidies

with corporate income tax such that it is revenue neutral. It turns out that due to the

knowledge spillover, such a policy could improve aggregate industry output and TFP. The

optimal linear R&D subsidy is around 15%, which is quite close to that implemented

by the Korean government. Industry output would increase by a modest 0.14% with

the subsidy policy. We also show that—as standard theory indicates—such government

policies would unambiguously reduce aggregate output if there were no spillovers.

This paper is related to three strands of literature. First, our focus on R&D and

knowledge spillover is shared by a large number of papers in the productivity literature.

Many of the earlier empirical works, such as that of Jaffe (1986), are summarized in Zvi

Griliches’s excellent book R&D and Productivity: The Econometric Evidence (Griliches,

2007). The literature has further modernized in terms of its identification strategies in

the recent decade, for instance, with the work of Bloom et al. (2013). Our paper is

consistent with this literature. However, while we construct our knowledge production

process to incorporate both the firm’s own and its rivals’ R&D effort, our emphasis is

more on modeling and estimating firm R&D decisions and industry evolution. Thus, we

utilize an identification strategy for spillovers that depends more than the approaches

in previous works on the model structure and ensure that the recovered spillover is

consistent with various firm decisions and industry structure. Second, our paper is

related to generations of industry dynamic models (e.g., Jovanovic (1982), Hopenhayn

(1992), and, in particular, Ericson and Pakes (1995)). We modify the innovation process

of firms and incorporate it into an otherwise standard Ericson and Pakes (1995) model.

Our paper is one of the first to utilize the novel approximation of Weintraub et al.

(2008) to facilitate the estimation and computation of such a model. This approach is
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necessary given the specificities of our empirical context.6 Third, our paper is also related

to the theoretical literature that emphasizes the role of knowledge diffusion as a source of

economic growth. Our model’s backward learning structure of knowledge spillover, where

firms learn only from their more productive peers, is heavily motivated by the works of

Eeckhout and Jovanovic (2002) and Jovanovic and MacDonald (1994). A particularly

related recent paper is Benhabib et al. (2017), which incorporates both diffusion and

innovation. Our theory is less technically challenging since we focus on idiosyncratic

knowledge depreciation and a stationary environment. However, our paper adds to the

scant empirical micro-level evidence in support of the core learning mechanisms in this

line of work.

The rest of our paper is organized as follows. The second section summarizes the

industry background and motivates our model elements with data. The third section

describes the economic environment and the industry equilibrium. The fourth section

estimates both the revenue production function and the full dynamic equilibrium model.

Finally, the fifth section implements counterfactual simulations of a set of policy changes.

2 Industry Background and Data Descriptives

2.1 Korean Electric Motor Industry

This paper analyzes panel data of Korean manufacturers in the electric motor and gen-

erator industry for 1991 to 1996.7 The data are part of the Korean Annual Mining and

Manufacturing Survey of all establishments with more than 5 workers. These data cover

both the large and small firms, which is important for our study of R&D and knowledge

spillovers in an industry equilibrium framework.8 The electric motor industry is an in-

6There has also been an important breakthrough allowing the empirical estimation of dynamic
oligopoly models without directly solving them. Aguirregabiria et al. (2007), Bajari et al. (2007),
and Pakes et al. (2007) laid the foundations for this line of work. However, since we observe one single
industry over a relatively short period, the data are not sufficient to represent the industry state in its
ergodic set. We thus have to rely on a full solution method.

7The Korean industry classification code SIC31101 and SIC31102 is equivalent to NAICS 335312
(motor and generator manufacturing) in the US census. These establishments primarily engage in
manufacturing electric motors (except internal combustion engine starting motors), power generators
(except battery charging alternators for internal combustion engines), motor generator sets (except
turbine generator set units), and transformers.

8In contrast, the majority of previous studies on R&D investment and knowledge spillovers use data
from Compustat or R&D surveys, which usually include only a limited number of firms spanning multiple
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termediate input sector, where low cost and energy efficiency are the key indicators of

a firm’s technological position. Process innovation plays a predominant role in a firm’s

R&D and learning effort. Studying such a relatively mature industry in our model helps

us abstract from the product innovation often emphasized in other high-tech industries.

The Korean government started a strong science and technology initiative to promote

knowledge-intensive industries after the Asian financial crisis in 1997. The electric mo-

tor industry is part of this initiative and a natural candidate as a setting in which to

study how R&D policy impacts firm R&D, knowledge spillovers, and aggregate industry

productivity.

2.2 Data Descriptives

The Korean Annual Manufacturing Survey reports detailed annual information on each

manufacturing establishment’s value added, physical capital, employment, physical in-

vestment, and, most importantly, R&D investment. On the cost side, we have informa-

tion on total material expenditure and the total wage bill. Table 1 summarizes some

of the key data patterns for the electric motor industry. The average R&D expendi-

ture is 25.8 million won (33 thousand USD) per year.9 However, only a small fraction

of producers, accounting for 11% of the total observations during the sample years, re-

port positive R&D expenditure.10 The average R&D expenditure of performers is much

higher, around 236.5 million won (300 thousand USD) per year. The major components

of the reported R&D are wages for R&D workers and materials for R&D. Producers

show large dispersion in their value added and wage expenditure, with the top firms

(99th percentile) often a few hundred times larger than the bottom ones (1st percentile).

This indicates significant revenue productivity differences across establishments within

the industry. To rescale producers’ R&D investment by their size, we define the R&D

intensity as total R&D expenditures divided by value added. The R&D intensity has

a mean value of 0.13 and a median of 0.06. Physical investment includes net capital

expenditures (purchase minus sales) on buildings, machinery/equipment, and transport

vehicles and averages 110 million won (140 thousand USD) per year. Similar to R&D

industries.
9The average exchange rate between the won and US dollar during the sample period is 786:1.

10Doraszelski and Jaumandreu (2013) reports similar patterns of R&D expenditure in Spanish Man-
ufacturing Survey data.
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investment, plant physical investment shows large differences: it ranges from −39 to

2, 209 million won (-49 thousand to 2.8 million USD) from the 1st to the 99th percentile.

Previous empirical literature has documented a zero or slightly negative correlation

between R&D intensity and firm size (Klette and Kortum, 2004). A similar pattern holds

in our data. Figure 1 illustrates the relation between log R&D intensity and log value

added among R&D performers in our data. It shows that producers with larger value

added tend to have lower R&D intensity. This suggests that larger producers in our

data could have higher per-unit R&D cost; however, it could also be consistent with the

fact that knowledge spillovers tend to decrease the private return to R&D for industry

leaders.

Figure 2 reports the distribution of the investment-to-capital ratio (capital investment

relative to the stock of physical capital) and shows that 46% of firms do not invest in a

given year. In addition, reflecting a pattern often called “investment spikes”, 24% of firms

replace more than 20% of their capital stock in a given year. These lumpy investment

patterns suggest that investment decisions are subject to nonconvex adjustment costs.11

Figure 2 also shows that negative investment is relatively rare: only 4% of firms disinvest

in a given year. This motivates us to consider an asymmetry in the purchase and resale

prices of physical capital in our model.

Table 2 summarizes market concentration in this industry. It shows that in the

Korean electric motor industry, on average, the market share of the top 4 firms is 29%

and of the top 20 firms 59%. These numbers are comparable to those reported for

manufacturing industries in the US by Autor et al. (2020). The average Herfindahl–

Hirschman index (HHI) of this industry is 323, far below the Department of Justice’s

definition of a moderately concentrated market (one with an HHI between 1,500 and 2,500

points). The data pattern suggests that the Korean electric motor industry is neither

perfectly competitive nor dominated by a very few large firms. Therefore, our empirical

setting matches the economic environment described in Weintraub et al. (2008). Their

paper develops the novel equilibrium concept of oblivious equilibrium, characterized by

each firm making decisions based only on its own state and the long-run average industry

state.

11By way of comparison, Chen et al. (2019) show that 49% of firms do not invest in a given year
and 17% of firms replace more than 20% of their capital stock in China, and Zwick and Mahon (2017)
reports that 34% of firms in the US replace less than 1% of their capital and that 16% of firms replace
more than 20% each year.
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Last, we show that this industry has a very high turnover rate. Table 3 reports

that, on average, the entry rate is 15.7% and the exit rate 16.0%.12 Entrants account

for approximately 5% of the total market share each year, and exiting firms account for

11% of the total market share on average. Each entrant cohort’s importance grows over

time. For example, the market share of the cohort born in 1992 accounts for 5% of the

market share, and this number increases to 10% in 1996. Given the high turnover rate

and nontrivial market share accounted for by entries and exits, it is important to include

them in our model.

We next outline an industry equilibrium model consistent with the documented data

patterns for producer R&D, physical investment and turnover and the market structure.

3 A Dynamic Model of R&D Investment

3.1 Sequence of Actions

In this section, we extend the model of dynamic competition by Weintraub et al. (2008)

to incorporate knowledge spillover and physical capital accumulation. Time is discrete

and indexed by t. For each model period t, firm’s state ω ∈ Ω can be described by

a pair of values representing its knowledge capital x ∈ X and physical capital k ∈ K,

where both X and K take discrete values. Accordingly, Ω ∈ X×K takes all the possible

combinations of knowledge and physical capital values. The industry state in each period

t is denoted by st. We focus on a symmetric equilibrium such that each st’s element st(ω)

is the total mass of firms in state ω. The set of possible industry states is denoted by S.

At the beginning of period t, all incumbent firms engage in competition in the product

market and simultaneously set their prices. A firm with individual state (xt, kt) earns

profit π(xt, kt; st). Incumbent firms and potential entrants then make their exit and

entry decisions. Each incumbent firm observes an idiosyncratic scrap value φt.
13 The

incumbent firm decides whether to exit based on industry state st and its own state

(xt, kt). If it decides to exit, it obtains the period profit plus the scrap value. The exit

strategy is defined as an indicator function χ(xt, kt; st, φt). If it decides to remain in the

industry, it can choose to invest in knowledge capital, physical capital, or both.

12We are not able to report the exit rate for 1991 since that is the first year of our sample period.
13The scrap value φt is i.i.d. across different firms and time and has a well-defined density function

with support R+.
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There is a pool of ex ante identical potential entrants. An entrant needs to pay a fixed

entry cost κ to enter the industry. Entrants draw their initial states from a distribution

Φe. Potential entrants keep entering until the expected payoff from entry is zero. The

resulting number of firms entering at industry state st is a Poisson random variable, with

mean M(st).
14

3.2 Static Payoff

We first describe how firms interact in the product market each period. We assume that

each firm within an industry has a standard Cobb-Douglas production function:

qt = exp(xt)(lt)
1−αk(kt)

αk ,

where qt is the output of the individual firm. xt captures the firm’s production efficiency,

kt is physical capital input and lt is labor input.

Each firm produces a differentiated product and faces a residual demand function:

qt = Qt(pt/Pt)
η =

I

Pt

(
pt
Pt

)η
,

where pt is the price set by the firm while Qt and Pt are the industry-level output and

price index. I is defined as the industry market size. This demand function is consistent

with the standard monopolistic competition model of Dixit and Stiglitz (1977). The

parameter η governs the elasticity of substitution between different products.

Each period, a firm takes quasifixed factors (xt, kt), exogenous variable factor prices

w, and aggregate market price Pt as given and chooses variable inputs lt to maximize its

profit:

πt = pt(qt; I, Pt)qt − wlt.

We could rewrite this problem as

maxltP
1+ 1

η

t I−
1
η (exp(xt)k

αk
t )1+ 1

η (l1−αkt )1+ 1
η − wlt.

The optimal variable input decision is derived as

l∗t =

 wI
1
η

(exp(xt)k
αk
t )1+ 1

η P
1+ 1

η

t (1 + 1
η
)(1− αk)

 1

(1+ 1
η )(1−αk)−1

.

14Weintraub et al. (2008) provides a game-theoretic microfoundation for this setting.
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In equilibrium, the industry price index Pt is determined by the industry state st. Sum-

marizing each firm’s own state using a single index ϕt = exp(xt)k
αk
t and letting st(ϕ) be

the number of firms whose ϕt = ϕ, then

Pt = Iαk

(
w

(1 + 1
η
)(1− αk)

)1−αk (∑
ϕ

st(ϕ)ϕσ

)− 1
σ

,

where σ =
1+ 1

η

(1−(1+ 1
η

)(1−αk))
. Finally, the equilibrium maximized profit for a firm with

individual state ϕt is

π(ϕt, st) = I

(
1− (1 +

1

η
)(1− αk)

)
ϕσt∑

ϕ st(ϕ)ϕσ
≡ (1 +

1

η
)
I

σ

ϕσt∑
ϕ st(ϕ)ϕσ

. (1)

In summary, the profit of each firm depends only on its knowledge capital xt and physical

capital kt and the industry structure st(ϕ).

3.3 Knowledge Production and Physical Capital Investment

Each period, a firm chooses to invest in knowledge capital, physical capital or both to

improve its own state. There are major differences between the two types of investment.

Consider a firm with state (xt, kt). The investment in physical capital has a deterministic

outcome. It also involves an adjustment cost c(kt, kt+1). Thus, a firm could directly

choose the level of physical capital kt+1 for the next period. In contrast, improvements

to knowledge capital are uncertain and depend on the firm’s own R&D and knowledge

spillover.

More specifically, the input of knowledge production consists of two components.

One part is the firm’s own innovation effort dt = d(xt, kt; st). The cost of innovation is

cd · (dt · kdkt ). Parameter cd governs the overall cost level, and parameter dk allows the

per-unit innovation cost to vary by firm size. If dk is larger than 0, the per-unit cost is

higher for larger firms. The other part is the knowledge spillover from other producers

competing in the same industry. Thus, the transition of knowledge capital from xt to

xt+1 is determined jointly by dt, each firm’s relative technological position xt in the

productivity distribution, and is subject to uncertainty. We focus on within-industry

knowledge spillover. Firms receive knowledge spillovers by randomly meeting with a

rival in each period t. If the rival happens to be less productive, then the firm does

not benefit from the meeting. However, if the rival is more productive than the firm,

11



the latter obtains a constant unit of knowledge spillover θ.15 As a result, the average

spillover for a firm with individual state (xt, kt) is defined as

θ
∑
x>xt

∑
k

st(x, k)

Nt

≡ θP (x > xt).

Recall that st is the industry state at time t and that Nt is defined as the total mass of

incumbents at time t. The composite term entering the knowledge production takes the

following form:

Dt = d(xt, kt; st) + θ
∑
x>xt

∑
k

st(x, k)

Nt

.

In Jovanovic and MacDonald (1994), learning also depends on the firm’s state, ac-

tions, and the state of the industry, including the distribution of know-how in use.16

However, unlike in Jovanovic and MacDonald (1994), in our model, the decision to invest

in R&D does not preclude the opportunity to benefit from the knowledge externality.

As in Weintraub et al. (2008), there is an idiosyncratic exogenous depreciation shock

that each firm suffers with probability δ. In reality, such a shock could capture the

firm-level organizational forgetting documented by Benkard (2004), which causes the

production process to be less efficient. With all the pieces that we have described so far,

we can now introduce the knowledge production function. For xt = xj ∈ X,

xt+1 =



xj+1, with probability (1−δ)Dt
1+Dt

;

xj−1, with probability δ
1+Dt

;

xj, with probability (1−δ)+δDt
1+Dt

(2)

The firm’s physical investment decision is deterministic and follows conventional spec-

ifications in the literature. There are two types of investment frictions. First, the firm

needs to pay an extra convex cost c(kt, kt+1) for adjusting its physical capital level from

kt to kt+1. By normalizing the purchase price of capital ck = 1, we specify the adjustment

15This specification of backward advantage in learning by random meeting is motivated by the ap-
proach of Benhabib et al. (2017). Using UK plant-level data, Griffith et al. (2005) shows that technology
transfer plays an important role in productivity improvements in nonfrontier establishments.

16Jovanovic and MacDonald (1994) show that in a competitive industry, imitation by the firms that lag
behind the frontier force some technology convergence among establishments as the industry matures.
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cost of each establishment as:

c(kt, kt+1) = ca(it/kt)
2kt,

where it = kt+1 − (1 − δc)kt is the investment (disinvestment) and ca is the parameter

for the cost of adjustment. Second, the unit resale price of capital is (1 − ℘) of the

purchase price, where parameter ℘ measures the degree of irreversibility of the installed

capital.17 This partial irreversibility is consistent with the data pattern of infrequent

capital adjustment and, in particular, disinvestment.

3.4 Incumbent’s and Entrant’s Problem

Given the knowledge production function described in the last section, for a producer

with (xt, kt), the value of continuation Vc(xt, kt; st) is given by

Vc(xt, kt; st) = maxdt,kt+1{−cddtk
dk
t − ck(1− 1{it<0} · ℘) · it

−c(kt, kt+1) + βEst+1 [V (xt+1, kt+1; st+1)|xt, dt, st]}, (3)

where dt(xt, kt; st) and kt(xt, kt; st) are associated policy functions. The perceived tran-

sition kernel of st is a key determinant of the value of continuation.

Let V (xt, kt; st) be the establishment’s value at the beginning of the current period.

Firms can exit for both exogenous and endogenous reasons. We assume that a firm exits

with probability ξ for reasons not directly related to firm profitability. This is useful to

account for the exit of highly productive and large producers in our data. Whether the

reason for exit is endogenous or exogenous, the firm obtains a random scrap value φt

upon exit:

V (xt, kt; st) = π∗(xt, kt; st) + Eφt [(1− ξ)max{Vc(xt, kt; st), φt}+ ξφt] , (4)

where the scrap value φt has an exponential distribution with parameter λ. The in-

cumbent’s decision rule χ(xt, kt;φt, st) = 1 if it decides to exit and χ(xt, kt;φt, st) = 0

otherwise.

Potential entrants are ex ante identical. Upon entry, they draw their initial endow-

ment of x and k from a time-invariant distribution Φe. Each potential entrant incurs

17The presence of irreversibility is emphasized by Abel and Eberly (1996) and follow-up works.
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entry cost κ. Potential entrants’ decision ε = 1 if

Ve(st) ≡ βEst+1 [

∫
V (xe, ke, st+1)dΦe|st] ≥ κ. (5)

In a setting with a finite and large number of firms, Weintraub et al. (2008) show that

the mass of entrants for time t is a Poisson random variable with mean M(st).
18

3.5 Oblivious Equilibrium

Following Ericson and Pakes (1995), the standard symmetric Markov perfect strategies

can be defined by actions a ∈ A and entry decision ε ∈ {0, 1}. In our application, a =

{d, k, χ}, where d : Ω×S→ R+ is each firm’s R&D investment strategy, k : Ω×S→ K is

its physical investment strategy, and χ : Ω×S→ {0, 1} is its exit strategy. Similarly, we

define the entry strategy for potential entrants as ε : S→ {0, 1}. Then, Markov perfect

equilibrium strategies a and ε satisfy the following:

1. Each incumbent and potential entrant chooses optimal strategies given the per-

ceived transition kernel of industry state s.

2. These perceptions are consistent with the behaviors of each agent’s competitors.

Computing the Markovian transition kernel of industry state s is burdensome since it

depends on the optimal incumbent strategy a and entrant strategy ε for each industry

player. It becomes quickly infeasible for any manufacturing industry with more than

a dozen firms. As a result, we rely on the concept of oblivious equilibrium, developed

in Weintraub et al. (2008). Their paper establishes that when the number of firms is

large, oblivious strategies, which ignore current information about competitors’ states

and are conditioned only on knowledge of the long-run average industry state, can closely

approximate a Markov perfect equilibrium.

Let Ã ∈ A be the set of oblivious strategies. Then, for oblivious strategies a =

(d, k, χ) ∈ Ã and ε ∈ {0, 1}, the associated expected state of the industry in the long

18The Poisson random variable is justified by the following entry model: there areN potential entrants,
and vN (i) is the expected present value for each entering firm if i firms enter simultaneously. Each
potential entrant employs the same strategy, and the condition for a mixed-strategy Nash equilibrium
is
∑N−1

i=0 Ci
N−1p

i
N (1 − pN )N−1−ivN (i + 1) = κ. The equation has a unique solution p∗N ∈ (0, 1); the

number of firms entering is a binomial random variable YN with parameters (N, p∗N ). As N → ∞, YN
converges to a Poisson random variable with mean M .
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run is Sa,ε. Define Ṽ (x, k|a′, Sa,ε) as the expected payoff of an incumbent under the

assumption that the industry state will be equal to Sa,ε in all future periods. Then,

given self-generated Sa,ε, oblivious equilibrium strategies a and ε satisfy the following:

1. For an incumbent Ṽ (x, k|a, Sa,ε) ≥ Ṽ (x, k|a′, Sa,ε), ∀a′ ∈ A.

2. Entrants satisfy the zero-profit condition such that β
∫
Ṽ (x, k|Sa,ε)dΦe ≤ κ with

equality if the mass of entrants M > 0.

Weintraub et al. (2008) prove that when the equilibrium incumbent strategies and

entry rate function are oblivious, the industry state st is an irreducible, aperiodic and

positive recurrent Markov chain. Their key insight is that when there is a large number

of firms and the market tends not to be concentrated, individual firms do not benefit

by unilaterally deviating to an optimal (nonoblivious) strategy by keeping track of the

true industry state averaged over the invariant distribution of industry states. In other

words, in any industry state that has a significant probability of occurrence, the oblivious

strategy approximates the Markov perfect strategy.

Our procedure for calculating the equilibrium follows the above definition closely.

Given a set of parameters, the steps to compute the equilibrium are as follows:

1. Initial guess of the mean number of entrants M .

2. Initial guess of the average long-run industry structure s0.

3. Solve the incumbent’s maximization problem and recover its optimal investment

policy and exit policy: a = (d, k, χ) given s0.

4. Construct the transition matrix Tx,k,χ with the optimal policies. The long-run

average industry structure is calculated as s1 = M(I − Tx,k,χ)−1Φe.

5. If |s0 − s1| is not close enough, go back to step (2).

6. Check the free-entry condition of potential entrants. If it does not hold, go back

to step (1).
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4 Model Estimation

4.1 Revenue Function

The first stage of estimation focuses on the static part of the model. To be consistent

with the theoretical model, we assume that labor is a short-run variable input while

capital is quasi fixed. The empirical log revenue function for each establishment i at

time t is then

ln rit = α0t + α̃k ln kit + x̃it + uit. (6)

α0t absorbs all common parameters and industry aggregates (I and Pt). α̃k = σαk is

the capital coefficient in the static revenue equation with labor optimized out, and the

scaled productivity x̃it = −(1 + η)(1− α̃k)xit. uit is an i.i.d. measurement error shock.

We then follow Ackerberg et al. (2015) in estimating parameter α̃k in equation 6

and the productivity process. Assume that a firm’s material input at time t enters

final production together with value added in a Leontief fashion. This assumption then

justifies the standard proxy function function ft(·) where

mit = ft(x̃it, kit, lit).

We then obtain

ln rit = α0t + α̃k ln kit + f−1
t (mit, kit, lit) + uit.

Our model has a step-by-step innovation setup where the outcome can be influenced

both by the firm’s own R&D and by knowledge spillovers. Note that absent spillovers,

each firm’s productivity change is a random walk that depends only on the firm’s own

R&D (adjusted by its size). In our model, the existence of a backward advantage in

obtaining spillovers rationalizes the mean reversion of the first-order Markov productivity

process that is often assumed to be exogenous in the empirical literature. In this sense,

despite the fact that the empirical productivity process does not map directly to our

structural parameters, we use it to define the key moments to target for identification

of the underlying model knowledge production parameters. Specifically, we approximate

the productivity evolution using a first-order Markov process, where

x̃it = g(x̃it−1, dit−1, kit−1) + ξit

= m0 +m1x̃it−1 +m2 log(
dit−1

kit−1

) + ξit. (7)
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Then, we rely on the following moment conditions to estimate the revenue production

function parameters and the empirical productivity process.

E

ξit
 lit−1

mit−1

kit

 = 0 (8)

The estimation results are reported in Table 4. We find that the coefficient of capital

in the revenue equation is 0.46. It is well known that one cannot identify the elasticity

parameter η and the production technology parameter αk separately with only revenue

data. As a result, we calibrate the value of η = −5, following conventional findings in

the trade literature.19 Combined, these imply a σ = −(1 + η)(1 − α̃k) = 2.14 and a

capital share coefficient αk = 0.22.

More importantly, we also find that the measured productivity process features mean

reversion with m1 = 0.89. The coefficient of the private R&D-to-capital ratio is also pos-

itive and significant with m2 = 0.007. These estimates are generally in line with recent

studies on R&D and productivity such as Aw et al. (2011) and Doraszelski and Jauman-

dreu (2013). However, unlike these earlier studies, we treat this measured productivity

process as an auxiliary regression to target in our estimation of the dynamic parameters.

4.2 Parameterization and Estimation of Dynamic Parameters

We start by setting a few fixed parameters based on our empirical setting and data. First,

we set the annual discounting rate β at 0.925 to reflect the relatively high interest rate

during our sample period in Korea. Second, both the annual rate of depreciation δc =

0.15 and the exogenous exit rate ξ = 0.02 are directly calculated from our data. Finally,

the investment cost ck is normalized to 1. The aggregate market size I is calculated as

the annual average of industry total value added over the sample period I = 562, 025

million won. We use the average number of entrants over the years from 1991 to 1996 to

approximate an empirical estimate of the mass of entrants M in our model. The average

number of entrants is M = 78.

Given the first-stage estimates of the production function coefficients α̃0 and α̃k

and the preset parameters β, δc, ξ, andη, we estimate the set of dynamic parameters

Θ0 = [dk, cd, ca, λ, δ, θ, ℘] in the second stage. Recall that dk is the cost parameter of

19The implied markup in a monopolistic competitive setting is 1.25.
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R&D with respect to capital size, which governs the effect of capital size on the R&D

cost. cd is the effectiveness of R&D inputs in improving plant knowledge capital. ca is

the physical capital adjustment cost, and ℘ captures the asymmetry in disinvestment of

physical capital. λ is the parameter of the plant scrap value distribution. δ represents

idiosyncratic uncertainty over the depreciation in plant-level knowledge capital. Most

importantly, θ controls the size of knowledge spillover from frontier firms. Since the es-

timation involves solving a dynamic industry equilibrium with no closed-form solutions,

we use the method of simulated moments (MSM), which minimizes a distance criterion

between key moments from the actual and simulated data.

Recent empirical techniques have been proposed to estimate the dynamic industry

equilibrium model without solving the equilibrium. Especially related to this study is the

estimation procedure proposed by Bajari et al. (2007), which handles both continuous

and discrete control variables. Their approach breaks the estimation into two stages.

In the first stage, firm policy functions are recovered by regressing observed actions on

the observed state variables. The probability distribution defining the evolution of the

industry state is also recovered at this stage. In the second stage, the structural param-

eters that make these observed policies optimal are estimated. The major breakthrough

of their approach is to avoid the computational burden of calculating the Markov perfect

equilibrium, albeit with a trade-off with respect to the precise calculation of the agent’s

value function and policy function.

We have the plant-level data for only one industry over a six-year period, while the

possible state space is very large. This would make the sampling error of estimating the

policy functions a major concern if we were to adopt the strategy of Bajari et al. (2007).

On the other hand, the large number of firms and low industry concentration make the

weaker notion of equilibrium—oblivious equilibrium—especially attractive since it has

been proved to be a good approximation of MPE in this case.

In the literature, there is often a concern over using the simulated method of mo-

ments at this stage in comparison with the approach of Bajari et al. (2007): the dynamic

competition model that we use has not been proved to have a unique equilibrium in gen-

eral. However, since we are focusing on only a single market, this problem is alleviated,

at least in our estimation, by the matching of a full set of moments with policies and

state transitions from observed and simulated data, which allow the data to confirm the

correct equilibrium.
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4.2.1 Moments

In this section, we describe the set of data moments utilized and their relevance for the

identification of key parameters. The sample that we use to estimate the dynamic pa-

rameters is an unbalanced panel of incumbent plants in the electric motor industry in

1991 and their subsequent annual observations through 1996, including their exits. On

the other hand, all entrants in subsequent years are used only to construct a frequency

estimate of the initial state distribution Ψe and are excluded from the construction of

moments.

Table 5 reports the moments that we use in our estimation. The first set of moments

captures the key features of optimal plant R&D investment behavior in equilibrium. The

R&D investment cost cd affects a plant’s R&D investment intensity. It is also the driv-

ing force behind the long-run productivity advantage of R&D performers. On the other

hand, the idiosyncratic shock δ is shaped by the proportion of positive R&D investors.

Given its own technological position and expectation on industry productivity evolution,

a plant makes an optimal decision on whether to stick with the “corner solution” of in-

vesting nothing in R&D. Note here that all moments of the change in firm productivity

over time are constructed conditional on survival. Thus, they are also affected by indus-

try competition and turnover.

The second set of moments described in Table 5 relates to the plant’s physical invest-

ment behavior. Following Cooper and Haltiwanger (2006), the cost parameter ca helps

capture the nonlinear relationship between plant-level investment and profitability. The

level of the investment ratio and fraction of the plant’s positive investment depend on

the magnitude of this parameter. The fraction of disinvestment identifies parameter ℘,

which controls the asymmetry of disinvestment, and the covariance between adjusted

investment and the productivity level helps identify dk, which determines the effect of

capital on R&D expenditure. Since we model the firm’s investment behavior within an

industry equilibrium, the investment moments also indirectly influence other key model

parameters such as technological spillover and R&D costs.

Third, the long-run exit pattern helps identify the scrap value distribution param-

eter.20 Finally, we use the autocorrelation between productivity to identify parameter

20Obviously, the other moments are also affected by the exit pattern of incumbent firms in an industry
equilibrium setting.
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θ, which controls the R&D spillover effect: we simulate a sequence of {xit} from our

structural model and calculate the autocorrelation based on the simulated sequence of

productivity. More specifically, we run the second-stage estimation of the production

function on the simulated sequence of productivity, where

x̂it = g(x̂it−1, d̂it−1) + ξit

= m̃0 + m̃1xit−1 + m̃2 log(
d̂it−1

k̂it−1

) + ξit. (9)

Then, we match the estimated m̃ coefficients with the m coefficients estimated from the

data by changing the spillover parameter θ.

4.2.2 Empirical Implementation and Computation Details

The estimation of the dynamic parameters Θ0 is implemented according to the following

procedures. First, denote the set of data moments in Table 5 as Γd, which is a 10-by-

1 vector. Second, for a given set of parameters Θ, the industry equilibrium is solved,

and optimal policy functions for R&D expenditure, physical investment and survival

(d∗, k∗, χ∗) are generated. Third, we use the optimal policy functions to simulate the

path for each plant in the oblivious equilibrium. We define the simulated moments as

ΓS. The MSM estimate Θ̂ minimizes the weighted distance between the data moments

and the simulated moments:

L(Θ) = minΘ[Γd − ΓS(Θ)]′W [Γd − ΓS(Θ)],

where W is a positive definite matrix. In our numerical analysis, Ŵ is calculated through

a bootstrap procedure: we randomly resample the data and calculate the moments of

interest for each sample; then, we obtain a variance–covariance matrix based on these

bootstrap samples.

The range of X is determined by the standard deviation of productivity in the

data. The space of capital K ≡ [kmin, kmax] is chosen to match xmin and xmax based

on the firm’s static profit maximization strategy, where kmin =
log(

σαK
ck+δk

)+σxmin

1−σαK
and

kmax ≈
log(

σαK
(1−β)(ck+δk)

)+σxmax

1−σαK
. The dynamic optimization problem is solved with a col-

location method as in Midrigan and Xu (2014). In addition, we follow Andrews et

al. (2017) and use finite differencing to calculate the standard errors of the estimated

parameters.
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4.2.3 Estimation Results

Table 6 reports the point estimates and their 5%− 95% confidence intervals. By solving

the industry equilibrium with the reported point estimates Θ, we can also infer the fixed

entry cost κ on the basis of the model’s free entry condition, equation 5. To further

evaluate the overall fit of the estimation, we also report the simulated moments at the

point estimates in Table 7. The simulated data do a good job of replicating the pattern

of R&D investment and productivity evolution, which are the core pieces of this model.

With the estimated set of parameters, the policy function derived from our simulation

is shown in Figure 3. Panel (a) of Figure 3 shows that firms with higher productivity are

more willing to invest in R&D but that a higher capital level lowers the R&D incentive

because it increases the unit R&D investment cost. The kink in panel (a) is driven by

the limit of maximum productivity that a firm can achieve in the model. Panel (b) shows

the summation of individual R&D activity and knowledge spillover. From panel (b), we

can see that backward firms enjoy significant spillover, which helps them move upward

on the spectrum of the productivity distribution. Panel (c) shows the probability of

exit of firms in the productivity–capital space: firms with both low productivity and

low capital have the highest probability of exit, at approximately 0.17. The probability

of exit decreases when either productivity or capital increases. After reaching a certain

threshold in the productivity–capital space, firms suffer from possibility of exogenous

exit only, the probability of which is 0.02 in our model. Panel (d) shows the investment-

to-capital ratio. As expected, firms with high productivity and low capital have the

highest incentive to invest.

Figure 4 plots the distribution of the industry structure. Panel (a) shows the dis-

tribution of entrants directly obtained from our data, which has the highest density in

the middle but is smoothly distributed over the entire productivity–capital space. Panel

(b) shows the distribution of the industry structure in equilibrium, from which we can

observe that the industry is much more concentrated in states with medium to high

levels of capital and medium levels of productivity. Panels (c) and (d) zoom in on the

marginal distributions of capital and productivity in equilibrium, respectively. Overall,

the visualization of the policy functions and the long-run market structure illustrate that

our model is consistent with many of the salient facts on firm and industry dynamics.

The knowledge spillover effect varies across different firms. The lower a firm’s own
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productivity is (i.e., the further it lags behind the technology frontier), the larger the

knowledge spillover effect that it gains from the industry. The value of the knowledge

spillover parameter θ of 4.5 can be interpreted as follows: among active R&D performers,

on average, the knowledge spillover effect is 1.31 times the importance of an individual

firm’s R&D effort. The spillover effect is smaller for firms with higher productivity. For

a firm with productivity at the 95th percentile in this industry, the spillover effect is only

0.29 times the importance of its own R&D spending. Among non-R&D performers, the

spillover effect increases their probability of technology advancement by 10% on average.

For a firm with the lowest productivity in this industry, the knowledge spillover effect

increases its probability of technology advancement by 12%.

In terms of the quadratic adjustment cost, Cooper and Haltiwanger (2006) report a

value of 0.225 in the absence of controls for fixed costs and 0.025 with controls for fixed

costs. Bloom (2006) reports a quadratic adjustment coefficient of 4.743 on a monthly

basis, which implies a yearly value of 0.39. Our estimate of ca, which equals 0.04,

indicates that it is less costly to acquire or sell physical capital in the Korean electric

motor industry than in the settings examined in these prior works. However, our estimate

of the disinvestment parameter ℘ is 0.50, which implies that disinvestment comes with

a price discount of capital of approximately 50%.

The estimated scrap value implies an unconditional mean of 1, 667 million won, which

is approximately five times the industry average of static profit. On the other hand, the

entry cost implied from the free-entry condition is 4, 200 million won. These values

results in quite a narrow hysteresis band, driven by the high turnover rate observed in

the data.

5 Policy Simulation: Optimal R&D Subsidy Plans

We now use our estimated model to further understand the role of knowledge spillover

and conduct policy analysis.

First, we examine by how much knowledge spillover affects aggregate R&D efforts and

hence productivity dispersion among firms. With a higher spillover effect θ, firms have

a lower incentive to invest in R&D because it is harder to pull away from other firms by

performing R&D. Both the reduction in R&D effort among leading firms and the easier

catch-up among laggards imply a smaller productivity dispersion. To disentangle the
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effect of θ on productivity dispersion and R&D incentives, we compare the benchmark

case with two cases: in the first case, θ is increased by 50%, and the R&D policy of

firms is allowed to change endogenously. Second, θ is increased by 50%, but R&D policy

is exogenously fixed to be the same as in the benchmark case. Table 8 summarizes the

aggregate R&D efforts and productivity dispersion. Comparing columns (1) and (2)

of case one with our benchmark results in Table 8, we can see that a 50% increase in

spillover parameter θ results in an 24% decrease in aggregate R&D efforts and a 0.6%

increase in aggregate productivity. This is because firms have a lower incentive to invest

in R&D when spillover to other firms is larger. On the other hand, when the spillover

effect is larger, the variance in productivity is also smaller in this industry, as we can see

by comparing column (3) of case 1 with the benchmark case.

To separate out the effect of increased spillover and lowered R&D efforts, in case

two, we focus solely on the increased spillover effect by fixing firms’ R&D policy to

what it was in the benchmark case. The result shows that if firms’ R&D policy remains

unchanged when the spillover effect is larger, aggregate productivity increases by 2.4%,

while aggregate R&D efforts stay basically the same in the new equilibrium, as we can see

by comparing columns (1) and (2) of case two with the benchmark case. This additional

aggregate productivity gain over that in case one highlights the importance of taking

into account how R&D firms respond to free-riding on their spillovers in equilibrium.

Right after our sample period, Korea launched its S&T policy, geared toward the

acquisition of core competences in strategic technology areas and development of an in-

novation system to enable the nation to successfully transition toward a knowledge–based

economy. To achieve this policy goal, the Special Law for S&T Innovation was enacted in

1997. In accordance with the law, the Five–year Plan for S&T Innovation was launched

the same year. The program contains specific action plans to achieve the policy goal:

1. A corporate tax deduction of 50% of the increase in R&D and human resource

development (HRD) investments over the annual average investments of the past

four years or 5% of the current expenditures for the same purposes (15% for SMEs).

2. A corporate tax deduction of 5% of the total investment in equipment and facilities

for R&D and/or HRD and a direct R&D subsidy for SMEs of up to 100 million

won or 75% of the total investment.

Motivated by the actual R&D subsidy plans in Korea, our main counterfactual results
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are targeted at finding the optimal subsidy plan with a revenue-equivalent tax. Because

of the existence of the spillover effect, there is an externality from firm’s own R&D on

other firms’ productivity in this industry, which is not endogenized in firm’s own R&D

decisions. Therefore, from the social planner’s point of view, firm’s own R&D effort is

less than socially optimal. To increase this effort, we propose a subsidy plan whereby for

every dollar of firm R&D spending, a certain fraction is subsidized by the government.

The total subsidy expenditure is financed through a tax on firm’s profits. In other

words, the following balance condition of subsidy expenditures and tax revenues need to

be satisfied: ∑
x,k

τ · π(x, k) · s(x, k) =
∑
x,k

s · cddkdk · s(x, k),

where τ is the uniform tax rate on firm’s static profit π(x, k) and s is the rate of R&D

subsidy. Our main counterfactual aims at finding the optimal subsidy plan s that max-

imizes industry output.

Table 9 shows how the total industry quantity changes with respect to different

subsidy plans. We see an inverted U-shape of the total industry quantity with respect

to an increase in total subsidy expenditures. This arises because on the one hand, in the

new equilibrium with the revenue-equivalent subsidy and tax plan, firms with a lower

elasticity-weighted marginal cost are taxed to subsidize firms with a higher marginal

cost. Therefore, the revenue-equivalent tax policy creates a misallocation of resources if

we shut off knowledge spillover. On the other hand, when there is knowledge spillover,

the R&D subsidy increases firms’ incentive to conduct R&D and hence endogenize the

knowledge spillover effect. From Table 9, we can see that the total industry quantity is

maximized at a subsidy rate of about 15%, with a tax rate of 1.27%.

6 Conclusion

This paper develops and estimates a structural model of R&D investment and produc-

tivity evolution among manufacturing plants in the Korean electric motor industry from

1991 to 1996. Plant-level decisions on R&D investment, physical capital investment,

entry, and exit are developed with an equilibrium industry evolution model. Plant pro-

ductivity is affected by the plant’s own R&D and by spillovers from the R&D of its
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competitors. The model provides a detailed set of pathways connecting the R&D in-

vestment, plant productivity, plant physical investment and industry turnover patterns

observed in the data.

The structural parameter estimates show that a plant’s own R&D expenditure has

a positive effect on its future productivity. Among active R&D performers, on average,

the knowledge spillover effect is 1.31 times the firm’s individual R&D effort. Among

non-R&D performers, the spillover effect increases their probability of technology ad-

vancement by 10% on average. The public externality from R&D is important given the

large number of firms within the same industry. A narrow difference between the entry

cost and the mean scrap value explains the high turnover rate in this industry. Finally,

the industry equilibrium model provides a natural link from individual plant R&D deci-

sions to aggregate industry productivity and output. This feature of the model provides

us with a powerful tool to evaluate various industry or innovation policies. As our coun-

terfactual experiments show, the optimal linear R&D subsidy rate is approximately 15%,

which is quite close to that implemented by the Korean government for SMEs. Industry

output would increase by a modest 0.14% with the subsidy policy.

There are quite a few possible extensions of the current framework. An interesting

one would be to look at the interaction of firms’ decision to export, R&D, and the overall

industry evolution. Given the fact that trade and innovation policy are considered to

be among the most important institutional arrangements in emerging economies such as

Korea, it is important to provide a general framework for evaluating how these policies

interact and affect long-run industry performance.

25



References

Abel, Andrew B and Janice C Eberly, “Optimal investment with costly reversibil-
ity,” The Review of Economic Studies, 1996, 63 (4), 581–593.

Ackerberg, Daniel A, Kevin Caves, and Garth Frazer, “Identification properties
of recent production function estimators,” Econometrica, 2015, 83 (6), 2411–2451.

Aguirregabiria, Victor, Pedro Mira, and Hernan Roman, “An Estimate Dynamic
Model of Entry, Exit, and Growth in Oligopoly Retail Markets,” American Economic
Review, 2007, 97 (2), 449–454.

Andrews, Isaiah, Matthew Gentzkow, and Jesse M Shapiro, “Measuring the
sensitivity of parameter estimates to estimation moments,” The Quarterly Journal of
Economics, 2017, 132 (4), 1553–1592.

Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and
John Van Reenen, “The fall of the labor share and the rise of superstar firms,”
The Quarterly Journal of Economics, 2020, 135 (2), 645–709.

Aw, Bee Yan, Mark J Roberts, and Daniel Yi Xu, “R&D investment, exporting,
and productivity dynamics,” American Economic Review, 2011, 101 (4), 1312–44.

Bajari, Patrick, C Lanier Benkard, and Jonathan Levin, “Estimating dynamic
models of imperfect competition,” Econometrica, 2007, 75 (5), 1331–1370.

Bartelsman, Eric J and Mark Doms, “Understanding productivity: Lessons from
longitudinal microdata,” Journal of Economic literature, 2000, 38 (3), 569–594.

Benhabib, Jess, Jesse Perla, and Christopher Tonetti, “Reconciling models of
diffusion and innovation: A theory of the productivity distribution and technology
frontier,” Technical Report, National Bureau of Economic Research 2017.

Benkard, C Lanier, “A dynamic analysis of the market for wide-bodied commercial
aircraft,” The Review of Economic Studies, 2004, 71 (3), 581–611.

Besanko, David, Ulrich Doraszelski, Yaroslav Kryukov, and Mark Satterth-
waite, “Learning-by-doing, organizational forgetting, and industry dynamics,” Econo-
metrica, 2010, 78 (2), 453–508.

Bloom, Nicholas, Mark Schankerman, and John Van Reenen, “Identifying tech-
nology spillovers and product market rivalry,” Econometrica, 2013, 81 (4), 1347–1393.

Bloom, Nick, The impact of uncertainty shocks: Firm level estimation and a 9/11 sim-
ulation number 718, Centre for Economic Performance, London School of Economics,
2006.

26



Chen, Zhao, Xian Jiang, Zhikuo Liu, Juan Carlos Suárez Serrato, and Daniel
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Figure 1: Relation between R&D Intensity and Firm Size among R&D Performers

Note: Figure 1 illustrates the relation between log R&D intensity and log value added among R&D
performers in our data. R&D intensity is defined as the ratio of R&D expenditure over value added.
The results show that producers with larger value added tend to have lower R&D intensity.

Figure 2: Investment Rate

Note: Figure 2 reports the distribution of the investment-to-capital ratio (capital investment relative
to the stock of physical capital) in the Korean electric motor industry. The results show that 46% of
firms do not invest in a given year. In addition, 24% of firms replace more than 20% of their capital
stock in a given year (displaying a pattern often called “investment spike”).

29



Figure 3: Plots of Policy Functions

Figure 3 shows the equilibrium policy functions at the estimated parameter values. Panel (a) shows the R&D decision in the space of
physical capital K and productivity X. Panel (b) shows the summation of individual R&D expenditures and knowledge spillover. Panel
(c) shows firms’ probability of exit. Panel (d) shows the investment-to-capital ratio.

(a) R&D Expenditures (b) R&D Expenditures Plus Knowledge Spillover

(c) Probability of Exit (d) Investment-to-Capital Ratio
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Figure 4: Plots of Joint and Marginal Distributions

Figure 4 shows the distributions of the industry structure. Panel (a) shows the distribution of entrants, which is exogenously obtained
from the data. Panel (b) shows the joint distribution of physical capital and productivity in the industry in equilibrium. Panels (c) and
(d) show the marginal distribution of capital and productivity in equilibrium, respectively.

(a) Distribution of Entrants (b) Joint Distribution

(c) Marginal Distribution of Physical Capital (d) Marginal Distribution of Productivity
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Table 1: Summary Statistics

Note: Table 1 summarizes the key data patterns of the Korean electric motor industry. The data are
from the Korean Annual Manufacturing Survey, which reports detailed annual information on each
manufacturing establishment’s value added, physical capital, employment, physical investment, and
R&D investment. On the cost side, we have information on total material expenditure and the total
wage bill. All units are in million won. The average exchange rate between the won and US dollar
during the sample period was 786:1.

Mean Std. 1% 25% Med. 75% 99%

R&D expenditure 25.8 210.9 0.0 0.0 0.0 0.0 694.0

R&D intensity of performers 0.13 0.31 0.00 0.02 0.06 0.12 2.00

Physical capital 688.6 2977.2 4.7 36.4 90.0 296.4 15805.3

Physical investment 110.0 647.5 -39.2 0.0 0.0 25.5 2209.4

Investment-to-capital ratio 0.27 1.09 -0.18 0.00 0.00 0.19 4.57

Value added 1118.0 4257.7 42.1 133.8 262.8 634.8 19766.7

Wage bill 455.8 1675.9 24.0 67.1 121.2 268.1 7288.0

Unit of variables: million won

Table 2: Market Concentration

Note: Table 2 summarizes market concentration in the Korean electric motor industry. It shows the
market share of the top 4 firms and the top 20 firms and the average HHI of this industry from 1991 to
1996. In the Korean electric motor industry, on average, the market share of the top 4 firms is 29% and
of the top 20 firms 59%. The average HHI of this industry is 323, far below the Department of Justice’s
definition of a moderately concentrated market (one with an HHI between 1,500 and 2,500 points).
The data pattern suggests that the Korean electric motor industry is neither perfectly competitive nor
dominated by a very few large firms.

Year Market Share of C4 Market Share of C20 HHI

91 27% 59% 280

92 27% 56% 266

93 31% 60% 342

94 30% 58% 355

95 32% 61% 353

96 31% 60% 341
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Table 3: Turnover Rates

Note: Table 3 summarizes the entry and exit rate in the Korean electric motor industry. On average,
the entry rate is 15.7%, and the exit rate is 16.0%. The exit rate for 1991 is not reported since that
is the first year of our sample period. Entrants account for about 5% of the total market share each
year, and exiting firms account for 11% of the total market share on average. Each entrant cohort’s
importance grows over time. For example, the market share of the cohort born in 1992 accounts for 5%
of the market share, and this number increases to 10% in 1996.

Year Entry Rate Exit Rate
Market Share
of Entrants

Market Share
of Exits

91 19% N/A 4% N/A

92 17% 17% 5% 13%

93 17% 9% 4% 9%

94 16% 17% 5% 13%

95 15% 12% 6% 6%

96 11% 25% 3% 13%

Table 4: Production Function Parameters

Note: Table 4 shows the estimated values of the production function parameters. Standard errors are
reported in parentheses.

ACF

α̃k 0.4655*
(0.000)

m1 0.8897*
(0.000)

m2 0.0071*
(0.000)

*significant at the 1% level
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Table 5: Key Data Moments

Note: Table 5 reports the moments that we use in our estimation. The first set of moments captures
the key features of optimal plant R&D investment behavior in equilibrium. We use the fraction of
R&D performers, R&D intensity of performers, and standard deviation of the relative productivity
level. The second set of moments relates to the plant’s physical investment behavior. We use the mean
investment ratio, the fraction of positive investment, fraction of disinvestment, and covariance between
capital investment (weighted by physical capital) and individual productivity. The third set of moments
relates to the turnover rate in the Korean electric motor industry. We use the mean exit rate in this
industry. The fourth set of moments relates to the autocorrelation between productivity to identify
the parameter that affects the knowledge spillover effect. We simulate a sequence of productivity {xit}
from our structural model and calculate the autocorrelation based on this sequence. Establishment

productivity xit evolves according to x̂it = m̃0 + m̃1xit−1 + m̃2 log( d̂it−1

k̂it−1
) + ξit, where dit−1 is the R&D

expenditure of establishment i at time t− 1 and kit−1 is physical capital. Arguments for identification
can be found in section 4.2.1.

Identification Data

R&D Investment and Productivity Improvement

fraction of R&D performers pin down δ 11%

R&D intensity of performers (R&D/Value-added) pin down cd 0.13

std relative productivity level pin down δ/cd 0.31

Physical Capital Investment

mean investment ratio ( i
k it

) pin down ca .27

fraction of positive investment pin down ca 49.6%

fraction of disinvestment pin down ℘ 4%

Cov(i/k, x) pin down dk 0.08

Firm Turnover

mean exit rate pin down ub 16%

Estimated Evolution Path of Productivity

m1 (coefficient of lagged productivity) pin down θ 0.8897*
(0.000)

m2 (coefficient of dit

kit
) pin down dk 0.007*

(0.000)

*significant at the 1% level.
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Table 6: Dynamic Parameter Estimates

Note: Table 6 reports the point estimates and their 95% confidence intervals. δ represents idiosyncratic
uncertainty over the change in plant-level knowledge capital. cd is the effectiveness of R&D inputs in
improving plant knowledge capital. θ controls the size of the knowledge spillover effect. dk is the cost
parameter of R&D with respect to capital size, which captures the effect of capital size on the R&D
cost. ca is the physical capital adjustment cost. ℘ captures the asymmetry of disinvestment of physical
capital. λ is the parameter of the plant scrap value distribution.

Point Estimate 95% confidence interval

δ 0.85 [0.79, 0.91]

cd 0.20 [0.17, 0.23]

θ 4.50 [3.02, 5.98]

dk 0.30 [0.24, 0.36]

ca 0.04 [0.01, 0.06]

℘ 0.50 [0.45, 0.55]

λ 0.61 [0.46, 0.75]

Table 7: Model Fit

Note: Table 7 reports the data moments and simulated moments at the point estimates in Table 6.

Data Simulation

R&D Investment and Productivity Improvement

fraction of R&D performers 11% 13%

R&D intensity of performers (R&D/Value-added) 0.13 0.10

std relative productivity level 0.31 0.27

Physical Capital Investment

mean investment ratio ( i
k it

) .27 .25

fraction of positive investment 49.6% 49.0%

fraction of disinvestment 4% 4%

Cov(i/k, x) 0.08 0.08

Firm Turnover

mean exit rate 16% 13%

Estimated Evolution Path of Productivity

m1 (coefficient of lagged productivity) 0.8897* 0.8909*
(0.000) (0.000)

m2 (coefficient of dit

kit
) 0.007* 0.004*

(0.000) (0.000)

*significant at the 1% level.
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Table 8: Effect of θ on R&D Efforts and Productivity Dispersion

Note: Table 8 shows the counterfactual results on how much knowledge spillover affects aggregate R&D
efforts and hence productivity dispersion among firms. θ measures the level of knowledge spillover. We
compare the benchmark case with two other cases: first, θ is increased by 50%, and the R&D policy of
firms is allowed to change endogenously. Second, θ is increased by 50%, but R&D policy is exogenously
fixed to be the same as in the benchmark case.

(1) (2) (3)
Aggregate
productivity

Aggregate R&D
efforts

Variance of
productivity

Benchmark θ 0.3094 57.8003 0.0572

Case 1: θ̃ = θ ∗ (1 + 50%) 0.3112 43.7572 0.0508

Case 2: θ̃ = θ ∗ (1 + 50%) ,
but fix R&D policy at θ

0.3167 57.6590 0.0507

Table 9: Results of Policy Simulations

Note: Table 9 shows how the total industry quantity changes with respect to different subsidy plans.
In our main counterfactual analysis, we propose a subsidy plan whereby for every dollar of firm R&D
spending, a certain fraction is subsidized by the government. The total subsidy expenditure is financed
through a tax on firm profits. In other words, the following balance condition of subsidy expenditures
and tax revenues needs to be satisfied:

∑
x,k τ · π(x, k) · s(x, k) =

∑
x,k s · cddkdk · s(x, k) , where τ is

the uniform tax rate on firms’ static profit π(x, k) and s is the rate of the R&D subsidy.

Subsidy Rate (Percentage
of R&D Cost Cd)

Tax Rate Industry Quantity Total Expenditures of Subsidy

0.00% 0.00% 613.21 0.00
2.00% 0.13% 613.46 0.28
4.00% 0.27% 613.59 0.59
5.00% 0.33% 613.73 0.75
10.00% 0.78% 614.08 1.63
15.00% 1.27% 614.10 2.67
20.00% 1.85% 614.06 3.89
25.00% 2.58% 612.74 5.34
30.00% 3.45% 610.91 7.08
35.00% 4.37% 608.62 9.22
40.00% 5.59% 605.19 11.76
45.00% 6.87% 602.18 14.57
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A Profit from Static Competition

The static competition of heterogeneous firms is built in a standard monopolistic com-
petition setting. We assume that firm i within an industry has a standard Cobb-Douglas
production function with constant returns to scale. We describe individual firm’s prob-
lem, suppressing the notation i for convenience.

qt = exp(xt)(l
1−α
t (kt)

α),

where qt is the output of firm i. The firm’s efficiency xt captures each firm’s knowledge
capital. kt is physical capital input, and lt is labor input.

Each firm produces a differentiated product and faces a demand function such that

qt = Qt(pt/Pt)
η =

I

Pt
(
pt
Pt

)η, (10)

where pt is the price set by firm i while Qt and Pt are the industry-level output and price
index. Accordingly, I is defined as the industry market size. This demand function is
from the widely used monopolistic competition model of Dixit and Stiglitz (1977). The
parameter η captures the elasticity of substitution between different products.

Thus, in each period, a firm takes quasi-fixed factors (kt, xt), exogenous variable
factor prices wt, and the aggregate market price Pt and chooses variable inputs lt to
maximize its profit:

πt = p(I, Pt, qt)qt − wtlt. (11)

We could rewrite this problem as

maxlt P
1+ 1

η

t I−
1
η︸ ︷︷ ︸

Dt

(exp(xt)k
α
t︸ ︷︷ ︸

ϕt

)1+ 1
η (l

(1−α)
t )1+ 1

η − wtlt, (12)

where the optimal labor decision is

l∗t =

[
Dt(ϕt)

1
η

+1(1 + 1/η)(1− α)

wt

] 1
1−(1+1/η)(1−α)

. (13)

Substitute the optimal labor decision into the individual price equation p(I, Pt, qt):

p(I, Pt, ϕt) = Dt(ϕt)
1
η

[
Dt(ϕt)

1
η

+1(1 + 1/η)(1− α)

wt

] 1
1−(1+1/η)(1−α)

(1−α)
η

=

[
Dα
t

(
(1 + 1/η)(1− α)

w

) 1−α
η

ϕ
1
η

t

] ησ
1+η

, (14)
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where σ = 1
η/(1+η)−(1−α)

and ησ
1+η

= 1
1−(1+1/η)(1−α)

.

Define st(ϕ) as the number of firms whose ϕt = ϕ. In equilibrium, the industry price
index Pt is determined by the industry state st.

Pt = [
∑
ϕ

st(ϕ)p(I, Pt, ϕ)1+η]
1

1+η

=

[∑
ϕ

st(ϕ)

(
Dα
t

(
(1 + 1/η)(1− α)

w

) 1−α
η

ϕ
1
η

)ησ] 1
1+η

−→

P 1+η
t = P

(1+η)ασ
t

[
I−ασ

∑
ϕ

st(ϕ)

(
(1 + 1/η)(1− α)

w

)(1−α)σ

(ϕ)σ

]

P−σt =

[
I−ασ

∑
ϕ

st(ϕ)

(
(1 + 1/η)(1− α)

w

)(1−α)σ

(ϕ)σ

]
, (15)

where we use the fact that (1 + η)(1− ασ) = −σ. As a result,

Pt = Iα
(

w

(1 + 1/η)(1− α)

)1−α
(∑

ϕ

st(ϕ)ϕσ

)− 1
σ

. (16)

Given the industry aggregate price Pt and market size I, we can also define total
sales as

r(I, ϕt) = I

(
p(I, Pt, ϕt)

Pt

)1+η

≡ I
ϕσt∑

ϕ st(ϕ)ϕσ
. (17)

Finally, we have the equilibrium maximized profit for the firm with individual state
ϕt as

π(ϕt, st) = I(1− (1 +
1

η
)(1− α))

ϕσt∑
ϕ st(ϕ)ϕσ

. (18)
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