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ABSTRACT

A quantum computer exhibits a quantum advantage when it can perform a calculation that a 
classical computer is unable to complete. It follows that a company with a quantum computer 
would be a monopolist in the market for solving such a calculation if its only competitor was a 
company with a classical computer. Conversely, economic outcomes are unclear in settings 
where quantum computers do not exhibit a quantum advantage. We model a duopoly where a 
quantum computing company competes against a classical computing company. The model 
features an asymmetric variable cost structure between the two companies and the potential for an 
asymmetric fixed cost structure, where each firm can invest in scaling its hardware to expand its 
respective market. We find that even if: 1) the companies can complete identical calculations, and 
thus there is no quantum advantage, and 2) it is more expensive to scale the quantum computer, 
the quantum computing company can not only be more profitable but also invest more in market 
creation. The results suggest that quantum computers may not need to display a quantum 
advantage to be able to generate a quantum economic advantage for the companies that develop 
them.
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1 Introduction

We live in an exciting era of optimism in the field of quantum computing where the first

claims of quantum supremacy or advantage1 are being made on a number of innovative

quantum devices. Very simply, we say that a quantum computer has a quantum advantage if

it can perform some calculation, no matter how arbitrary, that a conventional (or “classical”)

computer cannot complete. Demonstrating quantum advantage has been a major pursuit

of a large community of scientists and engineers working on different types of quantum

computers in academia and industry, and will be considered a watershed moment in the

history of science when and if it is achieved (National Academies of Sciences and Medicine

2019). This pursuit has also led to a growing discussion of the business opportunities that

may arise from quantum computers (Ruane, McAfee, and Oliver 2022, Bova, Goldfarb, and

Melko 2021) and quantum’s potential to disrupt or replace classical computing (Cusumano

2018, Yang, Chesbrough, and Hurmelinna-Laukkanen 2021).

In 2019, Martinis’ landmark experiment at Google was the first to make a strong claim

for quantum advantage (Arute et al. 2019). Using a programmable 53-qubit superconduct-

ing qubit device called Sycamore, the experiment produced a probability distribution by

sampling a random quantum circuit that was thought to be impossible to simulate classi-

cally at the time. Google’s claim motivated several groups to repeat the equivalent classical

calculation using new algorithms and powerful hardware, thereby moving the bar which de-

fined quantum advantage for that particular calculation (Pan and Zhang 2021; Huang et al.

2021). Subsequently, another collaboration using a 56-qubit superconducting device called

Zuchongzhi seemingly put the calculation out of reach for classical computers once again

(Wu et al. 2021).

The example above illustrates the challenges in illustrating a quantum advantage. These

challenges arise in part because the benchmark for quantum advantage keeps moving. It is

also important to note that the Sycamore and Zuchongzhi calculations discussed above, while

1We adopt the latter terminology in this article (see Mueck, Palacios-Berraquero, and Persaud 2020).



certainly groundbreaking achievements, involve random quantum circuits that have no im-

mediate practical applications. It stands to reason that finding a business application which

can display quantum advantage may be even more challenging to do. With uncertainty about

the ability of quantum computers to generate a quantum advantage over classical approaches

on problems of practical interest, natural questions arise as to whether a quantum computer

can still generate economic value without being able to generate a quantum advantage.

In this paper, we argue that quantum computers can still generate economic value even

when they do not provide a quantum advantage over classical computers. This outcome

arises because there are asymmetries in the cost structure between the classical and quantum

computer. To illustrate the intuition, we consider a strategic game, using a duopoly model

where a quantum computing company and classical computing company compete. In this

way, our paper builds on a well-established literature in information systems that uses game

theoretic models to understand how technological change might impact new and existing

industries (e.g. Bakos and Nault 1997 on electronic networks, Zhu and Iansiti 2012 and

Adner, Chen, and Zhu 2020 on platforms, Niculescu and Wu 2014 on zero marginal cost

software, and Dellarocas, Katona, and Rand 2013 on hyperlinks).

In the model, each firm’s cost structure is influenced by two different factors, based

on differences between quantum and classical computers. The first factor is the ability of

quantum algorithms to speed up certain processes relative to algorithms that are run on

classical hardware, where the expected efficiency brought on by quantum algorithms leads

to a variable cost advantage for quantum computers. We use the functional form provided

by Grover’s algorithm in our analysis, specifically a quadratic speedup (Grover 1996).

The second factor is the cost to scale each hardware, where the more qubits (bits) a

quantum (classical) computer has, the larger the problems it can solve and thus the larger

the market it can address. Notably, it is currently less expensive to scale a classical computer

than it is to scale a quantum computer (e.g. Moore 2006, Ball 2021). It follows that the

ability for classical computers to scale more cheaply may lead to a cost advantage for classical



computers.

In our model, customers are purchasing a solution to an intractable problem. The offer-

ings provided by the quantum computing company and classical computing company can be

differentiated or homogeneous. When the products are perfectly differentiated, one computer

can solve a problem that the other computer cannot solve, and vice versa. For example, a

sufficiently coherent quantum computer running a quantum algorithm could solve certain

problems that classical computers cannot solve in human lifetimes (e.g., the factoring of

very large numbers into their respective primes (Shor 1999)). In this setting, the quantum

computing company is the monopolist in the market to solve the problem that generated

the quantum advantage. When the firms’ offerings become more homogeneous, both types

of computers can output the same solution to solve the same problem. When the market

deems each company’s offerings to be perfect substitutes for each other, the quantum and

classical computer offer identical offerings. This represents the case in which the quantum

computer does not exhibit a quantum advantage over its classical competitor, in the sense

that it is feasible to use either computer to solve the problem.

Regardless of the level of differentiation between the firms’ offerings, there may still be

asymmetric costs to generating a solution across the two firms. As we note above, the

principal factor that impacts the variable cost structure of each company’s offering is the

speed in which the solution is generated. In our simplified model, we model variable costs

as the amount of time it takes to output a solution.

Additionally, there is a fixed cost component to each firm’s profit function. Each firm

can choose to invest a fixed amount in to market creating investments. These market creat-

ing investments lead to improvements in each firm’s underlying hardware which allow their

respective computers to solve larger, more intractable problems. For the quantum comput-

ing company, these investments may represent the development of higher quality qubits,

improvements in entanglement, and enhancements in error correction. Investments in these

areas should allow the quantum computer to solve increasingly larger and more intractable



problems. Similarly, the classical computer company might make investments to build com-

pute capabilities which will allow the classical firm to solve increasingly larger problems.2

Taken together, as investments in each company’s hardware increase, the size of the prob-

lems each company can assess become bigger, and in turn the size of each firm’s addressable

market also become bigger.

We model competition as a Cournot duopoly, where each firm sets quantity simultane-

ously. These quantities, in part, determine the price of each firm’s offering. In our setting,

quantities can be thought of as a commitment to the amount of computing time each com-

pany makes available to consumers to solve intractable problems. This assumption implies

that each firm makes a finite amount of computing time available to prospective consumers.

This implication is consistent with observations from the current computing landscape, as

we currently do not have ubiquitous accessibility to either quantum computers or classical

supercomputers to solve these large intractable problems.3

As the cost to solving challenging problems is decreasing in both the speed up associated

with certain algorithms (which may favor quantum computers) and the size of and ability to

scale the hardware (which may currently favor classical computers), it is not clear which of

the two architectures will ultimately have a lower cost structure in aggregate. In this way, we

focus on two forces separate from quantum advantage as typically defined. First, our model

highlights that, for a given scale, quantum computers perform some calculations faster than

classical computers, even though such calculations are feasible on both types of computer.

Second, our model highlights that current quantum computers are more expensive to scale

than classical computers. These two forces determine the market opportunity for quantum

and classical computing.

2For example, the increases in the amount of compute used in A.I. training (https://openai.com/blog/ai-
and-compute/) and NVIDIA’s investments in GPU scaling (https://developer.nvidia.com/blog/scaling-out-
the-deep-learning-cloud-efficiently/).

3Our modeling assumptions on fixed capacity, duopoly competition, and differences in variable costs
reflect similar assumptions in other information systems contexts, such as Choudhary and Vithayathil 2013
and Fazli, Sayedi, and Shulman 2018 on cloud computing and Abhishek, Jerath, and Zhang 2016 and Zhang
2009 on online retail.



Our analysis illustrates that even when there is no quantum advantage and it is cheaper

to scale the classical computer, the quantum computing company can still have a greater

incentive to invest in building its market and can ultimately still be more profitable than

the classical computing company. These outcomes arise due to the efficiency of the quantum

computing company’s variable cost structure. We also illustrate that the quantum computing

company can still be a monopolist even if it does not exhibit a quantum advantage in

settings where a classical computing company can complete a task, but not in a manner

that’s cost effective enough to be commercially viable. In aggregate, our results suggest

that a quantum computing company can generate a quantum economic advantage without

exhibiting a quantum advantage.

Finally, we also explore how advances in areas like error correction (which should make

quantum computers easier to scale in the future) and the creation of quantum-inspired algo-

rithms (which should mitigate the speed up advantage of quantum computers over classical

computers for certain problems) affect our insights.

The paper proceeds as follows. In the second section we employ a model of differentiated

Cournot competition and assess optimal investment and profitability outcomes. In the third

section, we provide additional analysis and context for the main results. In the final section,

we conclude.

2 A Cournot duopoly model

We model competition between a quantum computing company and a classical computing

company. The competition occurs in two stages. In the first stage, each firm invests in the

scale of the computer they build. In the second stage, the companies compete in quantity of

computations.

As we note above, we assume that the duopoly is comprised of a company that has

created a quantum computer and a company that has created a classical computer. The



quantum computing company is labeled as firm 1 and the classical computing company is

labeled as firm 2.

We begin by reprising the commonly cited inverse demand functions for a Cournot

duopoly that are generated in Singh and Vives (1984, pg. 547) when a representative con-

sumer maximizes its quadratic utility function.

p1 = α1 − β1q1 − γq2

p2 = α2 − β2q2 − γq1

p1 and p2 are the prices that each firm can charge for their respective offerings. α1 and α2

represent the intercept for each firm’s respective demand. We set α1 = a+x1 and α2 = a+x2,

where a is an exogenous demand intercept which is common to both firms, and x1 and x2 are

endogenous demand parameters that are specific to each firm, respectively. We discuss these

endogenous parameters more below. We assume that β1 = β2 = 1 and thus the firms have a

common slope for demand for each of their respective offerings. As in Singh and Vives, γ is

the measure of product differentiation and we assume γ ∈ [0, 1].4

As γ gets closer to zero, the product offerings become perfectly differentiated. A value of

γ = 0 implies that the quantum computer has a quantum advantage – in other words it can

complete a calculation that is effectively impossible for the classical computer. As γ gets

closer to one, the product offerings become more homogeneous. A value of γ = 1 implies that

the quantum computer and classical computer are supplying identical offerings and thus, the

quantum computer does not offer a quantum advantage over its classical counterpart.

In the Cournot setup, each firm sets its firm-specific quantity, qi, to maximize profits

(Cournot and Fisher 1929). As we note above, quantities can be thought of as the amount of

computing time each company makes available to consumers to solve intractable problems.

The price for each firm’s offerings arise as a function of the chosen quantities. Following

4This demand structure is commonly used in the management and economics literature (.e.g Anand and
Goyal 2009, Abhishek, Jerath, and Zhang 2016, and Bustamante and Frésard 2021.)



our assumptions above, the final inverse demand function for the quantum computing firm

is p1 = a + x1 − q1 − γq2 and the inverse demand function for the classical computing

firm is p2 = a + x2 − q2 − γq1. In other words, following standard economics, each firm’s

price is decreasing in the quantity it produces and the quantity produced by its competitor

provided the offerings are not perfectly differentiated. The revenue generated by the quantum

computing firm and the classical computing firm are p1q1 and p2q2, respectively.

Singh and Vives (1984) assume a constant variable cost structure for each firm. The firms

in our model also have a constant variable cost structure, but the variable cost structure

is asymmetric across the two firms. Each firm’s variable cost structure assumptions are

informed by the speed at which each firm’s computer can solve a problem. As discussed

above, we assume that the quantum computer can complete a process with less resources

(e.g. in a timelier manner) than a classical computer by running a quantum algorithm.

For the purpose of our exercise, we focus on one particular quantum algorithm, Grover’s

Algorithm, which allows for a quadratic speed up over classical algorithms for several types

of problems related to unstructured searches (Grover 1996).

A quadratic speed up implies that the quantum computer can complete specific processes

in square-root the number of steps compared to the equivalent classical algorithm. For the

purpose of model tractability, we assume that the time it takes to complete a calculation is

the sole driver of each firm’s variable cost structure. To incorporate the impact of a quadratic

speed up, we first set the classical computer’s variable cost to c2. The quantum computer,

using Grover’s algorithm, can complete a process in square root the number of steps as

the classical computer which leads to the variable cost function
√
c2 = c. We assume that

a > c2 > c > 1 to ensure the quantum firm has a natural cost advantage over the classical

computer due to the quadratic speed up brought on by the use of Grover’s Algorithm, and

that the common demand intercept is larger than either firm’s variable cost. We also assume

that each firm’s demand intercept is sufficiently large relative to its variable cost to ensure

that the resulting optimal quantities are strictly positive. Taken together, the variable cost



base for the quantum company is calculated as cq1 and for the classical company is c2q2.

Next, we model each company’s ability to scale its respective computer to solve more

complex problems. First, we include an endogenous, convex, fixed cost investment which

allows each firm to increase the size of the market its hardware has access to. Each firm’s

respective investment positively impacts their respective demand intercepts. The fixed cost

investment is B1x
2
1/2 and B2x

2
2/2 for the quantum and classical firm respectively, where x1

and x2 are investment choice variables, and B1 and B2 are positive coefficients that can take

different values. B1 and B2 taking different values reflect that it may be more costly to

scale one type of computer than the other. As we note above, these investments generate an

increase the size of the market (e.g., the intercept for demand) by x1 and x2 for the quantum

and classical computing company, respectively. An increase in market size is driven by an

increase in the size of the problem that each firm’s hardware can assess.

If, for example, B1 > B2, then it is more costly to scale the hardware (and in turn, expand

the market) for a quantum computer than it is for a classical computer. This outcome would,

in part, offset the natural variable cost advantage that a quantum computer gleans via the

quadratic speed up brought on by Grover’s Algorithm. Taken together, while a quantum

computer may be able to provide a result in a more timely manner, it may be more costly

for the firm to build a computer to achieve this more timely result which may impede its

ability to create or expand the market for its service. Thus the net benefits to quantum

computing from a cost perspective are unclear. The full profit function for each company is

represented as,

π1 = q1(a+ x1 − q1 − γq2)− cq1 −B1
x2
1

2
, (1)

π2 = q2(a+ x2 − q2 − γq1)− c2q2 −B2
x2
2

2
. (2)

In each profit function, the first term captures the firm’s revenue, the second term captures

the firm’s variable cost base, and the third term captures the firm’s fixed cost base. The



sequence for firm decisions proceeds in two stages. In the first stage, Firm 1 sets investment

x1 to maximize its profits and Firm 2 sets x2 to maximize its profit. In the second stage, Firm

1 sets q1 to maximize its profits and Firm 2 sets q2 to maximize its profits. We use backward

induction to solve the program. Taking the first order condition for firm 1 (firm 2) with

respect to q1 (q2) and then solving simultaneously yields the following optimal quantities:

q∗1 =
−2(a− c+ x1) + (a− c2 + x2)γ

−4 + γ2
, (3)

q∗2 =
−2(a− c2 + x2) + (a− c+ x1)γ

−4 + γ2
. (4)

As expected, each firm’s optimal quantities are increasing in the common demand intercept

and their own investments, and decreasing in competitive intensity, γ, and the competing

firm’s investments.

Next, we plug the optimal quantities from (3) and (4) into the profit functions in Equa-

tions (1) and (2) to generate π1(q
∗
1, q

∗
2) and π2(q

∗
1, q

∗
2). We simultaneously set x1 to maximize

π1(q
∗
1, q

∗
2) and x2 to maximize and π2(q

∗
1, q

∗
2). Below, we define the conditions that ensure that

both π1(q
∗
1, q

∗
2) and π2(q

∗
1, q

∗
2) are concave in x1 and x2, respectively, and that the resulting

optimal investment levels x∗
1 and x∗

2 are both greater than zero.

LEMMA 1: For π1(q
∗
1, q

∗
2) and π2(q

∗
1, q

∗
2) to be concave in x1 and x2 respectively, and for

x∗
1 and x∗

2 > 0, B1, B2, and the intercept a need to be sufficiently high.

Taking the first order condition for π1(q
∗
1, q

∗
2) (π2(q

∗
1, q

∗
2)) with respect to x1 (x2) and then

solving simultaneously yields the optimal investments x∗
1 and x∗

2,

x∗
1 =

4(a(4−B2(−2 + γ)2(2 + γ)) + c(−4 +B2(−2 + cγ)(−4 + γ2)))

−8(2 +B2(−4 + γ2)) +B1(−4 + γ2)(−8 +B2(−4 + γ2)2)
, (5)

x∗
2 =

4(−4c2 −B1c(2c− γ)(−4 + γ2) + a(4−B1(−2 + γ)2(2 + γ)))

−8(2 +B2(−4 + γ2)) +B1(−4 + γ2)(−8 +B2(−4 + γ2)2)
. (6)

Plugging optimal quantities from Equations (3) and (4) and optimal investments from Equa-

tions (5) and (6) into the profit functions in (1) and (2) yields the following optimal profit



Figure 1: Optimal investments.

functions:

π∗
1 =

B1(−8 +B1(−4 + γ2)2)(a(−4 +B2(−2 + γ)2(2 + γ)) + c(4−B2(−2 + cγ)(−4 + γ2)))2

(−8(2 +B2(−4 + γ2)) +B1(−4 + γ2)(−8 +B2(−4 + γ2)2))2

π∗
2 =

B2(−8 +B2(−4 + γ2)2)(4c2 +B1c(2c− γ)(−4 + γ2) + a(−4 +B1(−2 + γ)2(2 + γ)))2

(−8(2 +B2(−4 + γ2)) +B1(−4 + γ2)(−8 +B2(−4 + γ2)2))2

PROPOSITION 1: Given the assumptions in Lemma 1, the quantum computing company

is profitable for all γ.

Note that each firm’s profits are strictly positive provided each firm’s concavity condi-

tions (defined in Lemma 1) are met. Each firm’s profits are a function of a (size of the

common market intercept), c (cost to run a program on a quantum computer), B1 (invest-

ment efficiency for quantum computer), B2 (investment efficiency of classical computer), and

γ (differentiation of product offerings).

When the quantum company has a quantum advantage over the classical firm, γ = 0

and the quantum company extracts monopoly rents in its market as the classical computer

can’t compete with the quantum computer. Perhaps more interestingly, even in cases where

there is no quantum advantage (a setting where the offering are identical – i.e., γ = 1), the

quantum company is still profitable even though it is not a monopolist.



Figure 2: Optimal profits.

To provide more insight, we assess optimal investments and the resulting optimal profits

numerically in Figure 1 and 2 respectively. For both Figure 1 and Figure 2, we set a = 20,

B1 = 10, and γ = 1. Notably, in a setting where γ = 1, the offerings are sufficiently

homogeneous so that the quantum computer does not observe a quantum advantage. For

both figures, we vary B2 along the horizontal axis. Finally, we graph outcomes for both firms

by varying the variable cost, c, to be either 2 or 3.

The figures provide some interesting insights. First, there are settings where the classical

computing company is more profitable than the quantum computing company (e.g., in the

parameter space where the red dashed line approaches the y-axis in Figure 2). In general,

the classical firm is more profitable than the quantum firm when: (1) Variable costs are

comparatively low (in some cases when c = 2, but never when c = 3), and thus the benefit of

the quantum quadratic speed up is diminished (i.e., these may not be tasks that an analyst

needs a quantum computer to solve); (2) The cost to scale is much lower for the classical

firm than the quantum firm (i.e., B2 much lower than B1). These outcomes map well into

the current computing ecosystem and provide predictions for the future. The cost to scale

a classic computer is currently much lower than the cost to scale a quantum computer and

thus B2 is currently much lower than B1. Separately, classical computers have no problems



handling smaller tractable problems (i.e., problems where c2 is still comparatively small).

In such a setting, we would expect classical computers to be more profitable than quantum

computers and this is in fact what we observe today. At some point in the future however,

if the difference between B2 and B1 gets smaller, and the computing ecosystem attempts to

tackle larger, more intractable problems (i.e., c increases), then the model predicts that the

quantum computing company would become the more profitable of the two companies even

in settings where it does not display a quantum advantage.

Additionally, note that in the Figure 1, x2 is not always greater than x1 when B2 < B1.

In these settings, despite it being cheaper to scale the classical computer ex ante, there are

still circumstances where we observe greater investments in market creation by the quantum

computing company (i.e.,x2 < x1 when B2 < B1), ex post.

PROPOSITION 2: There are settings where the quantum computer may invest more in

market creation even in circumstances where it is less costly to scale a classical computer

than a quantum computer.

This outcome arises because of the asymmetries in variable cost structures across the

two companies. To illustrate the intuition behind this observation, we use a simplified model

to isolate the benefit to increasing the intercept of market demand on each firm’s profits,

absent the impact on fixed costs. We do this by first removing market-creating investments

from the optimization programs in (1) and (2) by setting x1 = x2 = 0. This yields profit

functions (7) and (8) below.

π1 = q1(a− q1 − γq2)− cq1, (7)

π2 = q2(a− q2 − γq1)− c2q2. (8)

Next we optimize (7) and (8) with respect to q1 and q2, respectively and solve simultaneously.



Optimal quantities are as follows:

q∗1 =
a(−2 + γ) + c(2− cγ)

(−4 + γ2)
(9)

q∗2 =
c(2c− γ) + a(−2 + γ)

(−4 + γ2)
(10)

Note that q∗2 > 0 if a > c(−2c + γ)/(−2 + γ). Thus, this is a necessary condition to ensure

that q∗1, q
∗
2 > 0 for this model set up. Plugging the optimal quantities from (9) and (10), in

to (7) and (8) we get the optimal profits below:

π∗
1 =

(a(−2 + γ) + c(2− cγ))2

(−4 + γ2)2
(11)

π∗
2 =

(c(2c− γ) + a(−2 + γ))2

(−4 + γ2)2
(12)

If we differentiate π∗
1 and π∗

2 in Equations (11) and (12) with respect to a, we get:

∂π∗
1

∂a
=

2(−2 + γ)(a(−2 + γ) + c(2− cγ))

(−4 + γ2)2

and

∂π∗
2

∂a
=

2(c(2c− γ) + a(−2 + γ))(−2 + γ)

(−4 + γ2)2
,

respectively. Additionally, note that ∂π∗
1/∂a > ∂π∗

2/∂a > 0 provided q∗1, q
∗
2 > 0. Thus: 1.)

the quantum computing company’s profits in (11) and classical computing company’s profits

in (12) increase as the intercept a increases (as expected), and 2.) all else equal, an increase

in a has a bigger impact on improving profits for the quantum computing company than on

improving profits for the classical company. Said another way, all else equal, an increase in

the intercept will have a smaller impact on improving the profitability for the firm with the

higher variable cost structure (in this case, the classical computing firm).

Taken together, even in some settings where the cost of market creation is lower for

the classical company (i.e., B2 < B1), the benefits to market creation (i.e., increase in



the demand intercept) is also lower because of the classical computer’s higher variable cost

structure (c2 > c). These competing tensions lead to instances where x2 < x1 even in cases

where B2 < B1. We can conclude that having a lower cost to scaling may not necessarily

lead to greater market creating investments because the classical firm is still a comparatively

high variable cost producer.

Finally, as Figure 2 illustrates, there are many circumstances where the quantum com-

puting company is more profitable than the classical computing company even when γ = 1

(i.e., where competition is at its most intense) and B2 < B1 (i.e., it is cheaper to scale

the classical computer). This outcome arises because the quantum computing company’s

lower variable cost structure has both a direct effect on improving profitability by reducing

the firm’s cost base, and an indirect effect on improving profitability by generating greater

benefits to investing in market creation.

3 Discussion

3.1 Quantum speed ups and quantum vs. economic advantage

In the prior section, we note that the quantum computing company is a monopolist when

it has a quantum advantage over the classical computing company. Next, we illustrate a

situation where the quantum computing company can still be a monopolist even when the

classical computing company can also complete a task that the quantum computing company

can complete.

To illustrate the point, we use a simplified example. Starting with equations (1) and (2)

we first assume that the each firm in the market makes no market-creating investments, or

x1 = x2 = 0. As a result, both companies face a common demand intercept of a. Next, we

assume that γ = 1 and, as such, that both firms provide identical offerings.

With these adjusted assumptions, we provide a numerical example to illustrate how a

quantum computing company can still end up as a monopolist even if it does not display a



quantum advantage. First, we assume the intercept for demand is a = 20. Next, we note

that when c = 2, the variable cost base for the quantum firm is c = 2 and for the classical

firm is c2 = 4. When c = 3, the variable cost base for the quantum firm is c = 3 and for

the classical firm is c2 = 9. Finally, if we increase the value for c to c = 5, the variable

cost base for the quantum firm is c = 5 and for the classical firm is c2 = 25. In this last

case, the variable cost for the classical firm is greater than the common intercept of the

demand curve (i.e., a = 20). When the classical computing firm’s variable cost is 25, there

is no retail price that could be set for the classical computing company’s service that would

allow the firm to be profitable (i.e., any price less than 25 would lead to a loss and any

price greater than 20 would result in no consumer demand). So we have a situation where

the classical computer can complete a task in a somewhat timely manner compared to the

quantum computer (i.e., 25 steps vs. 5 steps) and hence there is no quantum advantage, but

where the classical computer company’s offering may not be commercially viable because

its variable cost base is greater than the demand intercept. This is another example of

economic advantage without quantum advantage. In this example, the asymmetric cost

structure would result in the quantum computing company becoming a monopolist in the

market despite offering a perfect substitute to its classical competitor.

COROLLARY 1: When the classical computer can perform a calculation, but not in a

timely enough manner to be commercially viable, the quantum computing company becomes

a monopolist despite not exhibiting a quantum advantage

Examples of the above corollary might be most apparent in a setting where one requires

computational results relatively quickly. For example, real-time transactions in financial

markets or complex queries to large cloud databases may require response times in seconds,

as opposed to minutes (or even hours). Quadratic speedups such as Grover’s algorithm may

be sufficient to deliver such speedups, as could other algorithms discussed below. Thus,

in cases like this, while there may be no strict quantum advantage (in the sense that the

equivalent calculation is still possible on classical hardware), quantum economic advantage



is nonetheless achieved.

3.2 Other Quantum Algorithms and Quantum-inspired algorithms

We next explore how technological advances will affect the relative variable costs, c and

c2. In the main model, we use Grover’s algorithm to illustrate the impact of a quantum

speedup on the quantum computing company’s variable cost structure. With respect to

Grover’s algorithm, there are two important points to discuss. First, Grover’s algorithm

provides a provable improvement for a class of problems related to unstructured search when

it is run on a coherent quantum computer. Second, Grover’s algorithm scales polynomially

with the number of qubits (i.e.
√
N time for quantum versus N for classical). Despite the

fact that a quadratic speed up could be argued to be only a modest improvement, we have

illustrated above that it is sufficient to promote a robust quantum economic advantage in

certain cases. Nevertheless, our application of Grover’s algorithm in the model should bias

the analysis away from finding a quantum economic advantage, as there are a large variety

of quantum algorithms that offer a much larger speed up over their classical counterparts.

The most well-known of these algorithms is Shor’s algorithm for factoring, which reduces

the computational cost from scaling exponentially in N to scaling polynomially in N (Shor

1999). Shor’s algorithm run on a coherent quantum computer would be so effective that it

puts our standard RSA public key encryption protocols at risk! For example, factoring a

2048-bit RSA key (the size recommended by NIST) is estimated to take billions of years or

more using conventional computers, whereas a fully fault-tolerant quantum computer with

a sufficient number of logical qubits could complete the task in seconds to days (Van Meter

and Horsman 2013).

In contrast to Grover’s and Shor’s algorithms, many quantum speedups have not been

mathematically proven. These other quantum algorithms remain open to competition from

“quantum-inspired” approaches, which are algorithmic improvements inspired by the study

of quantum algorithms that can be applied to classical computers. As these new quantum-



inspired algorithms continue to be developed, a quantum computer’s variable cost advantage

related to the timeliness of its speed up will presumably be mitigated for certain applications.

For example, it was believed for some time that a particular quantum algorithm would give

an exponential speedup for a certain type of machine learning problem relevant for recom-

mendation systems (Kerenidis and Prakash 2017), like those used by Amazon and Netflix.

However, Ewin Tang developed a classical algorithm that, inspired by a deep understanding

of the quantum speedup, was proven to be capable of performing the same calculation on a

normal computer without the need for quantum hardware (Tang 2019).

While quantum-inspired algorithms might mitigate the speed up advantage of quantum

computers relative to classical computers for some problems, there are classes of problems

(like those addressable by Shor’s algorithm) that should only be solvable by quantum com-

puters in a timely manner. Therefore, our model uses the mathematically proven speed-up

from Grover’s algorithm as the basis for the difference in variable costs and our results apply

even if quantum-inspired algorithms mitigate the usefulness of other quantum algorithms.

3.3 Advances in Quantum Computing

It is important to note that while classical computers are currently easier to scale than their

quantum counterparts, there are reasons to expect that the cost to scale each architecture

will change over time. It is possible that if these costs change over time, so to will the gap

between B1 and B2.

Historically, classical computers have scaled more efficiently over time following a pattern

predicted by Moore’s law (Moore 2006). Moore’s law is the observation that the number of

bits ni in a classical computer (transistors) doubles every 2 years:

ni = n02
(yi−y0)/T2 (13)

where n0 is the number of transistors in some reference year y0, and T2 = 2 is the doubling



time. This can be inverted to say how the cost per transistor decreases as a function of

year. The quantum version of Moore’s law is sometimes called Rose’s law, after D-Wave’s

founder Geordie Rose in 2002. It can be presumed to have the same form as Eq. (13), with

different values of n0 and T2. Further simplifications in the comparison could be to assume

that T2 = 2 for quantum, or to say that T2 for classical is slowing down as we approach the

“end” of Moore’s law for CMOS architectures (Track, Forbes, and Strawn 2017).

Notably, our model incorporates the cost to scale each architecture at a specific point in

time. As Moore’s law implies that the increase in the ability to scale classical computers

will eventually slow down, it may also be reasonable to predict that the differences in scaling

efficiency between a classical and quantum computer will continue to decrease over time,

and that the gap between B1 and B2 might get smaller over time. If this future is realized, it

may have a material impact on the profitability of quantum computers relative to classical

computers. When the difference between B1 and B2 gets smaller, the difference in profitably

between the quantum and classical computer becomes larger, even in settings where no

quantum advantage is observed.

4 Conclusion

Our model has emphasized the marginal advantages of quantum computing over classical

computing. The results show that it is possible for quantum computers to be worth deploying

even if quantum advantage is never achieved. The relative usefulness of quantum computers

depends on how the benefit of faster calculation compares to the higher cost of scaling.

That does not imply that quantum computers will be immediately useful for a wide range

of applications. Instead, the results suggest that quantum advantage is not the appropriate

benchmark for a commercially viable quantum computer. Economics emphasizes decisions

at the margins. Hence, fast calculations that are nevertheless feasible on classical computers

may be the key to unlocking the potential of the quantum computing industry.
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5 Proof of Lemma 1

For π1(q
∗
1, q

∗
2) and π2(q

∗
1, q

∗
2) to be concave in x1 and x2 respectively, and for x∗

1 and x∗
2 > 0,

B1, B2 and a need to be sufficiently high. We plug the optimal quantity from each company

from (3) and (4) into the profit functions in Equations (1) and (2) and take the second order

derivatives with respective to x1 and x2 respectively. This yields the following outcomes:

∂2π1(q
∗
1, q

∗
2)

∂x2
1

=
8−B1(−4 + γ2)2

(−4 + γ2)2
(14)

∂2π2(q
∗
1, q

∗
2)

∂x2
2

=
8−B2(−4 + γ2)2

(−4 + γ2)2
(15)

For each respective second order condition to be negative, B1 and B2 need to be sufficiently

high respectively. Specifically:

B1 >
ˆ̂
B1 =

8

(−4 + γ2)2
(16)

B2 >
ˆ̂
B2 =

8

(−4 + γ2)2
(17)

Thus, we assume (16) and (17) as they are necessary conditions for π1(q
∗
1, q

∗
2) (π2(q

∗
1, q

∗
2)) to

be concave in x1 (x2).

Next we assess the numerator for x∗
1 from (5). We define the numerator for x∗

1 as:

D = 4(a(4−B2(−2 + γ)2(2 + γ)) + c(−4 +B2(−2 + cγ)(−4 + γ2))).

Taking the first derivative of D with respect to B2 we get

∂D

∂B2

= −4(−4 + γ2)(a(−2 + γ) + c(2− cγ)).

Note that ∂D/∂B2 < 0 for all γ and for a > c2 > c > 1. Solving for the value of B2 which

leads the numerator to equal zero will give us the value for B2 over which the numerator is



negative. For the numerator, that value is:

B̂2 =
4(a− c)

(−4 + γ2)(a(−2 + γ) + c(2− cγ))
.

Thus, the numerator for x∗
1 will be negative if B2 > B̂2.

Next we assess the numerator for x∗
2 from (6). We define the numerator for x∗

2 as:

E = 4(−4c2 −B1c(2c− γ)(−4 + γ2) + a(4−B1(−2 + γ)2(2 + γ)))

Taking the first derivative of E with respect to B1 we get:

∂E

∂B1

= −4(c(2c− γ) + a(−2 + γ))(−4 + γ2).

Note that ∂E/∂B1 < 0 for all γ provided that a > a∗ = c(−2c+γ)/(−2+γ). Note also that

this constraint approaches a∗ = c2 as γ → 0. Thus, conditional on a > a∗, the numerator is

decreasing in B1. Solving for the value of B1 which leads the numerator to equal zero will

give us the value for B1 over which the numerator is negative. For the numerator, that value

is

B̂1 =
4(a− c2)

(c(2c− γ) + a(−2 + γ))(−4 + γ2)

Thus, the numerator for x∗
2 will be negative if B1 > B̂1 and a > a∗. Next, x∗

1 and x∗
2 both

have the same denominator. We define this common denominator as:

F = −8(2 +B2(−4 + γ2)) +B1(−4 + γ2)(−8 +B2(−4 + γ2)2)

Taking the first derivative of F with respect to B2 we get:

∂F

∂B2

= −8(−4 + γ2) +B1(−4 + γ2)3



Note that ∂F/∂B2 < 0 provided B1 >
ˆ̂
B1. As we assume B1 >

ˆ̂
B1 in (16), F is decreasing

in B2. Also

∂F

∂B1

= (−4 + γ2)(−8 +B2(−4 + γ2)2).

Note that ∂F/∂B1 < 0 provided B2 >
ˆ̂
B2. As we assume B2 >

ˆ̂
B2 in (17), F is also

decreasing in B1.

Next note that

B̂2 − ˆ̂
B2 =

4(c(2c− γ) + a(−2 + γ))γ

(−4 + γ2)2(a(−2 + γ) + c(2− cγ))
> 0

if a > a∗, as previously assumed. Thus ∂F/∂B1 < 0 when B2 ≥ B̂2 provided a > a∗.

Similarly,

B̂1 − ˆ̂
B1 =

4γ(a(−2 + γ) + c(2− cγ))

(c(2c− γ) + a(−2 + γ))(−4 + γ2)2
> 0

if a > a∗. Thus ∂F/∂B2 < 0 when B1 ≥ B̂1 provided a > a∗. Finally, note that F = 0 when

we set B1 = B̂1 and B2 = B̂2. As we assume that a > a∗, we know that F is decreasing in

B1 when B1 ≥ B̂1 and B2 when B2 ≥ B̂2. Thus F < 0 if B1 > B̂1, B2 > B̂2, and a > a∗.

Taken together, when B1 > B̂1, B2 > B̂2, and a > a∗ = c(−2c + γ)/(−2 + γ), the

numerators and denominators of both x∗
1 and x∗

2 are negative, and hence x∗
1 and x∗

2 are

strictly positive.

In turn, x∗
1, x

∗
2 > 0 and π1(q

∗
1, q

∗
2) and π2(q

∗
1, q

∗
2) will be concave in x1 and x2, respectively,

provided B1 > B∗
1 = Max[B̂1,

ˆ̂
B1], B2 > B∗

2 = Max[B̂2,
ˆ̂
B2], and a > a∗.

6 Proof of Proposition 1

Given the assumptions in Lemma 1, the quantum computing company is profitable for all

γ. Optimal profits in (11) are:

π∗
1 =

B1(−8 +B1(−4 + γ2)2)(a(−4 +B2(−2 + γ)2(2 + γ)) + c(4−B2(−2 + cγ)(−4 + γ2)))2

(−8(2 +B2(−4 + γ2)) +B1(−4 + γ2)(−8 +B2(−4 + γ2)2))2



Rearranging the terms in the equation above yields:

π∗
1 =

B1(−8 +B1(−4 + γ2)2)x∗2
1

16

Given the assumptions in Lemma 1, x∗2
1 > 0. Additionally, as we assume in Equation (16)

in Lemma 1, we know that B1 >
ˆ̂
B1 = 8/(−4 + γ2)2 > 0 and thus the first two terms

in the numerator are also positive. Thus, optimal profits are positive for all γ given the

assumptions made in Lemma 1.

7 Proof of Proposition 2

We generate the conditions where x∗
1 > x∗

2. First, we calculate x∗
1 − x∗

2. Doing so yields the

following expression:

4(4(−1 + c)c−B2(−4 + γ2)(a(−2 + γ) + c(2− cγ)) +B1(c(2c− γ) + a(−2 + γ))(−4 + γ2))

−8(2 +B2(−4 + γ2)) +B1(−4 + γ2)(−8 +B2(−4 + γ2)2)
.

We note that given the assumptions in Lemma 1, the denominator of the expression above

is negative. Thus for x∗
1 > x∗

2 the numerator also needs to be negative. Notably:

• 4(−1 + c)c > 0 as we assume c > 1

• −B2(−4 + γ2)(a(−2 + γ) + c(2− cγ)) < 0 as we assume a > c2 > c > 1

• +B1(c(2c−γ)+a(−2+γ))(−4+γ2)) > 0 as we assume a > a∗ = c(−2c+γ)/(−2+γ)

is a necessary condition to get x1∗, x1∗ > 0.

Thus x∗
1 > x∗

2 if

4(−1 + c)c+B1(c(2c− γ) + a(−2 + γ))(−4 + γ2) < B2(−4 + γ2)(a(−2 + γ) + c(2− cγ))



or,

4(−1 + c)c+B1(c(2c− γ) + a(−2 + γ))(−4 + γ2)

(−4 + γ2)(a(−2 + γ) + c(2− cγ))
< B2

Finally, we illustrate via a numerical example that there are instances where x∗
1 > x∗

2

even when B1 > B2 that do not violate any of the assumptions in the paper including those

in Lemma 1: We set B1 = 10, B2 = 8, c = 2, γ = 1, a = 20 (similar to the parameters in

our figures). With these inputs:

B1 = 10 > B2 = 8,

4(−1 + c)c+B1(c(2c− γ) + a(−2 + γ))(−4 + γ2))

(−4 + γ2)(a(−2 + γ) + c(2− cγ))
=

107

15
< B2 = 8,

x∗
1 =

102

109
> x∗

2 =
89

109
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