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ABSTRACT

A prominent challenge when drawing causal inference using observational data is the ubiquitous 
presence of endogenous regressors. The classical econometric method to handle regressor 
endogeneity requires instrumental variables that must satisfy the stringent condition of exclusion 
restriction, making it infeasible to use in many settings. We propose new instrument-free methods 
using copulas to address the endogeneity problem. The existing copula correction method focuses 
only on the endogenous regressors and may yield biased estimates when exogenous and 
endogenous regressors are correlated. Furthermore, (nearly) normally distributed endogenous 
regressors cause model non-identification or finite-sample poor performance. Our proposed two-
stage copula endogeneity correction (2sCOPE) method simultaneously overcomes the two key 
limitations and yields consistent causal-effect estimates with correlated endogenous and 
exogenous regressors as well as normally distributed endogenous regressors. 2sCOPE employs 
generated regressors derived from existing regressors to control for endogeneity, and is 
straightforward to use and broadly applicable. Moreover, we prove that exploiting correlated 
exogenous regressors can address the problem of insufficient regressor non-normality, relax 
identification requirements and improve estimation precision (by as much as  50% in empirical 
evaluation). Overall, 2sCOPE can greatly increase the ease of and broaden the applicability of 
instrument-free methods for dealing with regressor endogeneity. We demonstrate the 
performance of 2sCOPE via simulation studies and an empirical application.
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1. Introduction

Causal inference is central to many problems faced by academics and practitioners, and becomes

increasingly important as rapidly-available observational data in this digital era promise to offer

real-world evidence on cause-and-effect relationships for better decision makings. However, a

prominent challenge faced by empirical researchers to draw valid causal inferences from these

data is the presence of endogenous regressors that are correlated with the structural error in the

population regression model representing the causal relationship of interest. For example, omit-

ted variables such as ability would cause endogeneity of schooling when examining schooling’s

effect on wages (Angrist and Krueger 1991).

Regressor endogeneity poses great empirical challenges to researchers and demands special

handling of the issue in order to draw valid causal inferences. One classical method to deal

with the endogeneity issue is using instrumental variables (IV). The ideal IV has to meet two

requirements: it is correlated with the endogenous regressor via an explainable and validated

relationship (i.e., relevance restriction), yet uncorrelated with the structural error (i.e., exclusion

restriction). Although the theory of IVs is well-developed, researchers often face the challenge

of finding good IVs satisfying these two requirements. Potential IVs often suffer from either

weak correlation with endogenous regressors or challenging justification for exclusion restriction,

which hampers using IVs to correct for the underlying endogeneity concerns (Rossi 2014).

To address the lack of suitable IVs, there has been a growing interest in developing and

applying IV-free endogeneity-correction methods. Several instrument-free approaches have been

developed, including identification via higher moments (Lewbel 1997, Erickson and Whited

2002), heteroscedasticity (Rigobon 2003, Hogan and Rigobon 2003), and latent instrumental

variables (Ebbes et al. 2005). All three IV-free methods decompose the endogenous regressor

into an exogenous part and an endogenous part. The assumption of the endogenous regressor

containing an exogenous component is akin to the stringent condition of exclusion restriction

for IVs, and thus can be difficult to justify.

Park and Gupta (2012) propose an alternative instrument-free method that uses the copula

model to capture the regressor-error dependence. 1 Compared with the three IV-free methods

above, their copula method does not impose the exogeneity assumption as it directly models the

association between the structural error and the endogenous regressor via copula. Furthermore,

1In statistics, a copula is a multivariate cumulative distribution function where the marginal
distribution of each variable is a uniform distribution on [0, 1]. Copulas permit modeling de-
pendence without imposing assumptions on marginal distributions.
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the copula method can handle discrete endogenous regressors better than other IV-free methods.

These features considerably increase the feasibility of endogeneity correction, as evidenced by

the rapidly increasing use of the copula correction method (see examples of recent applications

in the next section on literature review). However, similar to other IV-free methods, the copula

correction method also requires the distinctiveness between the distributions of the endogenous

regressor and the structural error (Park and Gupta 2012). This means that the endogenous

regressor is required to have a non-normal distribution for model identification with the com-

monly assumed normal structural error distribution. Furthermore, we show that the existing

copula correction method implicitly requires all exogenous regressors to be uncorrelated with

the linear combination of copula transformations of endogenous regressors (henceforth referred

to as copula control function (CCF)) used to control for endogeneity, and may yield significant

bias when there are noticeable correlations between the CCF and exogenous regressors.

In practice, we often encounter endogenous regressors or include transformations of endoge-

nous variables as regressors that have close-to-normality distributions. Correlations between the

CCF and exogenous regressors are quite common in practical applications, especially when the

exogenous regressors are included to control for observed confounders. Although regressor nor-

mality or insufficient regressor non-normality leads to more severe identification issues, including

model non-identifiability and poor finite sample performance (Table 1), correlations between

CCF and exogenous regressors may occur more frequently than close-to-normality of endoge-

nous regressors. Thus, we consider the two requirements of sufficient regressor non-normality

and no correlation between CCF and exogenous regressors as being equally important, and

either one can significantly limit the applicability of the copula correction method.

In this paper, we develop a generalized two-stage copula endogeneity correction method,

denoted as 2sCOPE. Similar to the existing copula method (Park and Gupta 2012, denoted

as CopulaP&G), 2sCOPE requires neither IVs nor the assumption of exclusion restriction.

It corrects endogeneity by adding residuals obtained from regressing latent copula data for

each endogenous regressor on the latent copula data for the exogenous regressors as generated

regressors in the structural regression model. To demonstrate the benefits of 2sCOPE, we also

consider as a benchmark another proposed method, called COPE, that corrects endogeneity by

adding latent copula data themselves as generated regressors. Both COPEs methods (referring

to COPE and 2sCOPE) are straightforward to use. However, only the preferred 2sCOPE

overcomes the above two key limitations of CopulaP&G as shown in Table 1. CopulaP&G can
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be viewed as a special case of the 2sCOPE. Importantly, we prove that the 2sCOPE can identify

causal effects under much broader settings than CopulaP&G, as summarized in Table 1.

The contributions of this work are several folds. First, we identify an implicit assumption

required for CopulaP&G to yield consistent estimation, and provide conditions to verify this

implicit assumption to ensure consistent causal-effect estimation. This helps improve the ef-

fectiveness of the rapidly adopted method for addressing the endogeneity issue. An important

result is that the existence of the correlations between endogenous and exogenous regressors

alone does not necessarily invalidate CopulaP&G. Instead, we show that the implicit assump-

tion is the uncorrelatedness of the exogenous regressors with the CCF, the linear combination

of copula transformations of endogenous regressors used to control for endogeneity. The differ-

ence between the implicit assumption and the condition of zero pairwise correlations between

endogenous and exogenous regressors can be substantial, especially with multiple endogenous

regressors.2

Second, we prove that the new 2sCOPE method yields consistent causal-effect estimates

when the implicit assumption above is violated, which we show can cause biased causal effect

estimates for CopulaP&G. Third, we relax the nonnormality assumption on the endogenous

regressors. Specifically, we prove that the structural model with normally distributed endoge-

nous regressors can be identified using the 2sCOPE method as long as one of the exogenous

regressors correlated with endogenous ones is nonnormal, which is considerably more feasible

in many practical applications. Fourth, we prove that when both COPE and 2sCOPE methods

yield consistent estimates, 2sCOPE improves the efficiency (i.e., precision) of the structural

model estimation by exploiting the correlations between the endogenous and exogenous regres-

sors. The efficiency gain is substantial and can be up to ∼50% in our empirical evaluation,

meaning that sample size can be reduced by ∼50% to achieve the same estimation efficiency as

compared with the COPE method that does not exploit the correlations between endogenous

and exogenous regressors.

Finally, 2sCOPE employs generated regressors to address endogeneity. There are a number

of benefits associated with the generated-regressor approach. By including generated regressors

2Specifically, it is possible that with multiple endogenous regressors, the CCF is uncorre-
lated with exogenous regressors when pairwise correlations between endogenous and exogenous
regressors are non-zeros. Even if there is only one endogenous regressor and CCF reduces to be
proportional to the copula transformation of the endogenous regressor, the correlation coefficient
is not invariant to nonlinear transformations and thus changes after the copula transformation
of the endogenous regressor.

4



in the structural model to control endogeneity, 2sCOPE substantially reduces the burden to ad-

dress the endogeneity issues. The vast majority of applications of the existing copula correction

method have used the generated-regressor approach (Becker et al., 2021). We demonstrate that

2sCOPE retains this desirable property of simplicity for a range of commonly used models in

marketing studies, as shown in Table 1, while relaxing the two key limitations of CopulaP&G.

Furthermore, the generated-regressor approach facilitates studying theoretical properties of the

proposed COPEs procedures and the comparison of these procedures. In this work, we provide

theoretical proofs for the implicit assumption needed to ensure consistency of CopulaP&G, and

the consistency and efficiency comparison for the proposed COPEs under correlated regressors

and normally distributed regressors.

A novel finding of our theoretical investigation is as follows. Although the exogenous re-

gressors being correlated with endogenous regressors require special handling for consistent

causal-effect estimation (the first and second contributions above), they can be beneficial as

well by providing additional information to help relax model identification requirements. They

could help address the problem of insufficient regressor non-normality, and sharpen model esti-

mates, as described for the third and fourth contributions above. Overall, the proposed 2sCOPE

method can greatly broaden the applicability of the instrument-free methods for dealing with

endogeneity issues in practice.

To our knowledge, 2sCOPE is the first copula-correction method that relaxes the non-

normality assumption of endogenous regressors and handles correlated endogenous and exoge-

nous regressors (Table 1). The theoretical results presented in this work contribute to better

understanding of the properties of the copula correction methods and guiding their practical

use, and are much needed because model identifiability is central to address the endogeneity

issue and timely given recent progress made in this area (Table 1). Despite rapid adoption of

the copula correction method, recent research based on simulation studies raise concerns about

its performance in models with the intercept term and insufficient regressor non-normality, and

calls for further studies of its properties (Becker et al. 2021). However, Becker et al. (2021)

has not considered exogenous regressors. Haschka (2021)3 generalizes Park and Gupta (2012)

to linear panel models with correlated regressors using maximum likelihood estimation (MLE).

However, as noted in Haschka (2021), Haschka’s approach still requires non-normality of en-

3During the final stage of our writing, we became aware of Haschka (2021), which we add to
Table 1.
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dogenous regressors. In addition, the analysis restricts to linear panel models with common

slope coefficients and heterogeneity only in individual-specific intercepts. First-difference or

fix-effects transformation eliminates these individual-specific intercept parameters, resulting in

simple likelihood containing no individual-specific parameters. 4 Consequently, the approach

cannot estimate the intercept term, which is removed from the model prior to estimation using

first-difference or fixed-effects transformation (Web Appendix A.8 of Haschka (2021)). Overall,

the approach does not address the same question of having both intercept and insufficient re-

gressor non-normality as raised in Becker et al. (2021). Finally, owing to the complex form of

the estimation method, Haschka (2021) notes the lack of theoretical proofs of required model

identification conditions and estimation consistency as one limitation, and thus has to rely solely

on simulation studies to evaluate its empirical properties.

We study the general case of having intercept, regressor normality, and correlated regres-

sors for a variety of types of structural models (Table 1). We precisely identify the implicit

identification requirement for CopulaP&G.5 We then develop 2sCOPE employing a copula con-

trol function approach with theoretical proofs of its capability to eliminate the identification

requirement and to address the problem of regressor normality in the presence of the structural

intercept term. We further provide proofs of required conditions for model identification and

estimation consistency. Consequently, the 2sCOPE provides a theoretically-sound and widely

applicable solution to the issue raised in Becker et al. (2021) besides the other noted issues.

The remainder of this paper unfolds as follows. Section 2 reviews the related literature

on methods for causal inference with endogenous regressors. In Section 3, we show the im-

plicit assumption of CopulaP&G. We propose COPE first for an easier transition followed by

the recommended 2sCOPE procedure, providing theoretical proofs for the consistency of the

proposed COPEs methods as well as for efficiency gain and model identifiability with normally

distributed regressors under the 2sCOPE method. We also summarize the estimation procedure

of the proposed methods. In Section 4, we evaluate the performance of our proposed 2sCOPE

method using simulation studies and compare it with CopulaP&G under different scenarios.

4It is cumbersome to extend Haschka (2021) to models with heterogeneous slope coefficients,
which cannot be eliminated by first-difference or fix-effects transformation and will yield com-
plicated likelihood requiring numerical integration over random coefficients (see Section 3.5).

5Although Haschka (2021) explains why correlated regressors can cause potential bias for
CopulaP&G, no condition of when bias can occur is given. As explained above, non-zero pairwise
correlations between endogenous and exogenous regressors does not necessa6rily cause the bias
problem for CopulaP&G.
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In Section 5, we apply the proposed 2sCOPE method to estimate price elasticity using store

purchase databases. We conclude the paper in Section 6.

Table 1: A Comparison of Copula Methods

Features CopulaP&G Haschka (2021) 2sCOPE

Nonnormality of
Required Required Not Required2

Endogenous Regressors1

No Correlated
Required (implicit) Not Required Not Required

Exogenous Regressors3

Intercept Included4 NO NO5 YES

Theoretical Proof YES NO YES

Estimation Method Control Function MLE Control Function
& MLE

Structural Model Linear Regression LPM-FE Linear Regression

RCL LPM-FE, LPM-RE, LPM-ME
Slope Endogeneity RCL, Slope Endogeneity

Note: 1: When required, normality of any endogenous regressor leads to non-identifiable
models. Insufficient normality of endogenous regressors can also cause poor finite sample
performance (finite sample bias and large standard errors) and require extremely large sample
size to perform well.
2: Non-normality of endogenous regressors is not required as long as at least one correlated
exogenous regressor is not normally distributed.
3: In our paper, correlated exogenous regressors refer to those exogenous regressors correlated
with the CCF (copula control function) used to control for endogeneity.
4: Becker et al. (2021) shows the significance of including intercept in marketing applications,
and the problem of adding intercept using the copula method CopulaP&G (Park and Gupta
2012).
5: The approach cannot estimate the intercept term, which is removed from the panel model
prior to estimation using first-difference or fix-effects transformation (Web Appendix A.8 of
Haschka (2021)).
LPM: Linear Panel Model; FE: Fixed Effects for individual-specific intercepts with common
slope coefficients; RE: Random Effects; ME: Mixed-Effects (including both fixed-effects and
random coefficients); RCL: Random Coefficient Logit

2. Literature Review

The marketing, economic and statistics literature develops a rich set of methods to draw causal

inferences. The gold standard to estimate causal effects is randomized assignment such as con-

trolled lab experiments and field experiments (Johnson et al. 2017, Anderson and Simester 2004,

Godes and Mayzlin 2009). When controlled experiments are not feasible, quasi-experimental

designs such as regression discontinuity and difference in differences are used to mimic ran-

domized experiments and to enable the identification of causal effects with observational data

(Hahn et al. 2001, Hartmann et al. 2011, Narayanan and Kalyanam 2015, Athey and Imbens
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2006, Shi et al. 2017). However, these quasi-experimental designs have special data and design

requirements, and cannot cope with the general issue of endogenous regressors when estimating

causal effects using observational data.

There is a large literature focusing on approaches to addressing endogenous regressors when

inferring causal effects. Rutz and Watson (2019), Papies et al. (2017) and Park and Gupta

(2012) provide an overview of addressing endogeneity in marketing. Three broad classes of

solutions are discussed. The most commonly used solution is to find observed instrumental

variables to correct for endogeneity (Kleibergen and Zivot 2003, Qian 2008, Ataman et al.

2010, Van Heerde et al. 2013 and Novak and Stern 2009). Angrist and Krueger (2001) and

Rossi (2014) provide a survey of literature that uses the instrumental variables approach. Rossi

(2014) surveyed 10 years of publications in Marketing Science and Quantitative Marketing and

Economics, which revealed that the most commonly used instrumental variables are lagged

variables, costs, fixed effects and Hausman style variables from other markets. However, the

survey found that the strength of the instruments is rarely measured and reported, which

is needed to detect the weak instrument problem. Moreover, one generally cannot test the

exclusion restriction condition and verify the validity of instruments. The survey also found

that most papers lack a discussion of why the instruments used are valid. In a word, though

the theory of instrumental variables is well-developed, good instruments are difficult to find,

making the IV approach hard to implement in practice. Studies that identify good instruments

are subsequently highly valued.

The second class of solutions to mitigate endogeneity is to specify the economic structure

that generates the observational data including endogenous regressors (e.g., a supply-side model

for marketing-mix variables). Doing so allows researchers not only to recover parameters of

interest and make causal inferences, but also to perform counterfactual analysis (Chintagunta

et al. 2006). Some other examples of this approach in the marketing literature are Berry (1994),

Sudhir (2001), Dubé et al. (2002), Yang et al. (2003), Sun (2005), Dotson and Allenby (2010)

and Otter et al. (2011). The key concern with this approach is that the performance highly

depends on model assumptions of supply side. Incorrect assumptions or insufficient information

of the supply-side can lead to biased estimates (Chintagunta et al. 2006, Hartmann et al. 2011)

The third class of solutions in the domain of endogeneity correction is instrument-free meth-

ods. This is a more recent stream of methodological development. Three extant instrument-free

approaches are discussed in Ebbes et al. (2009): the higher moments (HM) approach (Lewbel
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1997, Erickson and Whited 2002), the identification through heteroscedasticity (IH) estimator

(Rigobon 2003, Hogan and Rigobon 2003), the latent instrumental variables (LIV) method

(Ebbes et al. 2005). Recently Wang and Blei (2019) proposed a deconfounder approach that

has some flavor of the LIV approach. All these approaches divide the endogenous regressor

P into an endogenous and an exogenous part, P = f(Z) + v, where f(Z) is treated as an

exogenous random variable with unique structures imposed for model identification in different

methods. However, the assumption of f(Z) being exogenous is hard to guarantee. Park and

Gupta (2012) introduce another instrument-free method that doesn’t require the exogeneity

of f(Z). It directly models the association between the structural error and the endogenous

regressor via copula.

The copula method has been rapidly adopted by researchers to deal with the endogeneity

problem because of its feasibility to use in that no instruments are needed. For example, the

copula method has been used to study the effects of marketing activities such as promotion,

advertising and loyalty programs (Burmester et al. 2015, Datta et al. 2015, Gruner et al. 2019,

Keller et al. 2019, Bombaij and Dekimpe 2020, Guitart et al. 2018, Lamey et al. 2018); to study

product design and brand equity (Wetzel et al. 2018, Heitmann et al. 2020); to study sales force

training (Atefi et al. 2018); to study healthy food consumption (Elshiewy and Boztug 2018).

Haschka (2021) develops an MLE method that extends Park and Gupta (2012) to linear panel

models with fixed-effect intercepts and constant slope coefficients in the presence of correlated

regressors. In our paper, we delineate the precise and verifiable condition for CopulaP&G

to yield consistent estimates with correlated endogenous and exogenous regressors. For the

case when this condition fails, we develop a new two-stage endogeneity correction method

using copula control functions (2sCOPE) that relaxes two key assumptions imposed in Park

and Gupta (2012): (1) all endogenous regressors must have non-normal distributions and (2)

exogenous regressors must be uncorrelated with the CCF used to control for the endogeneity.

We provide proofs of the theoretical properties of the proposed methods, including consistency

and efficiency comparisons. We derive the new procedures for a variety of types of structural

models, including the random coefficients models commonly used in marketing studies. As a

result, the proposed 2sCOPE method is applicable in more general settings with the capability

to exploit exogenous regressors to improve model identification and estimation.
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3. Methods

In this section, we develop two copula-based instrument-free methods to handle endogenous re-

gressors when there exist exogenous regressors that are correlated with endogenous regressors.

We first review the CopulaP&G method in Park and Gupta (2012). We show that CopulaP&G

implicitly assumes no correlations between the exogenous regressors and the CCF, as well as

how the violation of the assumption can cause bias in the structural model parameter estimates

for the current copula-based instrument-free method. Then we present two proposed methods

to deal with the problem and the detailed estimation procedure. We also show how exogenous

regressors correlated with endogenous regressors can sharpen structural model parameter es-

timates and permit the identification of the structural model containing normally distributed

endogenous regressors, known to cause the model non-identifiability issue for CopulaP&G.

3.1 Assumptions in the Existing Copula Endogeneity-Correlation Method (CopulaP&G)

Consider the following linear structural regression model with an endogenous regressor and

a vector of exogenous regressors6:

Yt = µ+ Ptα+W ′tβ + ξt, (1)

where t = 1, 2, ..., T indexes either time or cross-sectional units, Yt is a (1×1) dependent variable,

Pt is a (1×1) endogenous regressor, Wt is a (k×1) vector of exogenous regressors, ξt is the

structural error term, and (µ, α, β) are model parameters. Pt is correlated with ξt, and this

correlation generates the endogeneity problem. Wt is exogenous, which means it is not correlated

with ξt, but can be correlated with the endogenous variable Pt.

The key idea of the copula method (Park and Gupta 2012) is to use a copula to jointly model

the correlation between the endogenous regressor Pt and the error term ξt. The advantage of

using copula is that marginals are not restricted by the joint distribution. Using information

contained in the observed data, marginals of the endogenous regressor and the error term are

first obtained respectively. Then the copula model enables researchers to construct a flexible

multivariate joint distribution that captures the correlation between the two variables.

Let F (P, ξ) be the joint cumulative distribution function (CDF) of the endogenous regressor

Pt and the structural error ξt with marginal CDFs H(P ) and G(ξ), respectively. For notational

simplicity, we may omit the index t in Pt and ξt below when appropriate. According to Sklar’s

6Unlike Park and Gupta (2012), our model includes the intercept term. As shown in Becker
et al. (2021), it is important to include the intercept term when evaluating the copula correction
method.
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theorem (Sklar 1959), there exists a copula function C(·, ·) such that for all P and ξ,

F (P, ξ) = C(H(P ), G(ξ)) = C(Up, Uξ), (2)

where Up = H(P ) and Uξ = G(ξ), and they both follow uniform(0,1) distributions. Thus, the

copula maps the marginal CDFs of the endogenous regressor and the structural error to their

joint CDF, and makes it possible to separately model the marginals and correlations of these

random variables.

To capture the association between the endogenous regressor P and the error ξ, Park and

Gupta (2012) uses the following Gaussian copula for its many desirable properties (Danaher

and Smith 2011):

F (P, ξ) = C(Up, Uξ) = Ψρ(Φ
−1(Up),Φ

−1(Uξ))

=
1

2π(1− ρ2)1/2

∫ Φ−1(Up)

−∞

∫ Φ−1(Uξ)

−∞
exp

[
−(s2 − 2ρ · s · t+ t2)

2(1− ρ2)

]
dsdt, (3)

where Φ(·) denotes the univariate standard normal distribution function and Ψρ(·, ·) denotes the

bivariate standard normal distribution with the correlation coefficient ρ. In the Gaussian copula

model, ρ captures the endogeneity of the regressor P , and a non-zero value of ρ corresponds to

P being endogenous.

Under the above copula model for (Pt, ξt) and the commonly-assumed normal distribution

for the structural error ξt, Park and Gupta (2012) develop the following generated regressor

procedure to correct for regressor endogeneity. Let P ∗t = Φ−1(Up) and ξ∗t = Φ−1(Uξ), the above

Gaussian copula assumes [P ∗t , ξ
∗
t ]′ follow the standard bivariate normal distribution with the

correlation coefficient ρ as follows:P ∗t
ξ∗t

 ∼ N


 0

0

 ,
 1 ρ

ρ 1


 (4)

Under the assumption that the structural error ξt follows N(0, σ2
ξ ), Park and Gupta (2012)

show that the structural error can be split into two parts as follows:

ξt = σξξ
∗
t = σξρP

∗
t + σξ

√
1− ρ2ωt, (5)

where the first part σξρP
∗
t captures the correlation between ξt and the endogenous regressor,

and the other part σξ ·
√

1− ρ2ωt being an independent new error term. Equation (1) can be

rewritten as follows:

Yt = µ+ Ptα+Wtβ + σξ · ρ · P ∗t + σξ ·
√

1− ρ2 · ωt. (6)

Based on the above representation, Park and Gupta (2012) suggest the following generated

regressor approach to correcting for the endogeneity of Pt: the ordinary least square (OLS)
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P ∗
t ξt

ωtWt

(a) No Correlation Between P ∗t and Wt

P ∗
t ξt

ωtWt

(b) Has Correlation Between P ∗t and Wt

Figure 1. Correlation Between Wt and New Error ωt. Presence (absence) of a solid line

between two variables means the two variables are correlated (uncorrelated). A line without an

arrow represents stochastic association between two nodes. A line with an arrow represents a

deterministic relationship. Specifically, ωt is determined jointly by P ∗t and ξt.

estimation of Equation (6) with P ∗t = Φ−1(Up) included as an additional regressor will yield

consistent model estimates. Park and Gupta (2012) also pointed out that in order for the

above approach to work, Pt needs to have a non-normal distribution. Suppose Pt is normally

distributed, Pt = P ∗t · σp, resulting in perfect collinearity between Pt and P ∗t and violating the

full rank assumption required for identifying the linear regression model in Equation (6). Thus,

Pt should follow a different distribution from the normal error term so that the causal effect of

P that is independent of all other regressors can be identified.

However, we show here that an additional and implicit assumption for the above generated

regressor approach to yield consistent model estimates is the uncorrelatedness between P ∗t and

Wt. For the OLS estimation to yield consistent estimation, the error term ωt in Equation (6)

is required to be uncorrelated with all the regressors on the right-hand side of the equation:

Pt,Wt, P
∗
t . Figure 1 shows how the correlation between Wt and the new error term ωt changes

when Wt becomes correlated with P ∗t . Absence of a line between two variables means that

the two variables are not correlated. When Wt is not correlated with P ∗t , Wt should also be

uncorrelated with ωt, which is determined by ξt and P ∗t , because of the exogenous feature of

Wt (Figure 1 (a)). However, when Wt is correlated with P ∗t , it would become correlated with

ωt because (1) ωt is a linear combination of ξt and P ∗t (Equation 5), and (2) Wt is uncorrelated

with ξt. The induced correlation between the exogenous regressor Wt and the new error term

ωt is intuitively shown in Figure 1 (b) and formally proved in Theorem 1 below. Thus, the

correlation between the exogenous regressor Wt and the generated regressor P ∗t would cause
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biased OLS estimates of Equation (6) using CopulaP&G because of the induced correlation

between the error term ωt and Wt. That is, Wt becomes endogenous in Equation (6) when Wt

and P ∗t are correlated.

Theorem 1. Assuming (1) the error term is normal, (2) a Gaussian Copula for

the structural error term and Pt, and (3) Pt is endogenous: ρ 6= 0, Cov(ωt,Wt) =

− ρ√
1−ρ2

Cov(Wt, P
∗
t ) 6= 0 if P ∗t and Wt are correlated.

Proof: See Online Appendix A, Proof of Theorem 1.

To summarize, the generated regressor procedure based on Equation (6) makes the following

set of assumptions.

Assumption 1. The structural error follows a normal distribution;

Assumption 2. Pt and the structural error follow a Gaussian copula;

Assumption 3. Nonnormality of the endogenous regressor Pt;

Assumption 4. Wt and P ∗t are uncorrelated.

In Park and Gupta (2012), all the above assumptions except Assumption (4) have been made

explicit. Among the first three assumptions, Park and Gupta (2012) have shown reasonable

robustness of their copula method to non-normal distributions of error term (Assumption 1)

and alternative forms of copula functions (Assumption 2). By contrast, the assumption that

the endogenous regressor Pt follows a non-normal distribution (Assumption 3) is critical. An

endogenous regressor following a normal distribution can cause the structural model to be

unidentifiable regardless of sample size; a nearly normally distributed endogenous regressor

may require a very large sample size for the method to perform well and may cause the method

to have poor performance for a finite sample size. Moreover, we have shown above that for

their method to work, there should be no exogenous regressors that are correlated with P ∗t

(Assumption 4). Both the Assumptions (3 and 4) can be too strong and substantially limit the

applicability of the instrument-free copula method in practice. In the following two subsections,

we will develop two new methods in order to relax the latter two critical assumptions.

3.2 Proposed Method I: Copula Endogeneity-correction (COPE)

The first proposed copula method jointly models the endogenous regressor, Pt, the correlated

exogenous variable, Wt, and the structural error term, ξt. The copula model implies that
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[P ∗t ,W
∗
t , ξ
∗
t ] follows the multivariate normal distribution:

P ∗t

W ∗t

ξ∗t

 ∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 , (7)

where P ∗t = Φ−1(H(Pt)), W
∗
t = Φ−1(L(Wt)), and ξ∗t = Φ−1(G(ξt)), and H(·), L(·) and G(·) are

marginal CDFs of Pt, Wt and ξt respectively. Since ξt is assumed to be normally distributed,

ξ∗t = Φ−1(Φ(0,σξ)(ξt)) = σξ · ξt. The above multivariate distribution can be rewritten as follows:
P ∗t

W ∗t

ξ∗t

 =


1 0 0

ρpw
√

1− ρ2
pw 0

ρpξ
−ρpwρpξ√

1−ρ2pw

√
1− ρ2

pξ −
ρ2pwρ

2
pξ

1−ρ2pw

 ·


ω1,t

ω2,t

ω3,t

 ,


ω1,t

ω2,t

ω3,t

 ∼ N



0

0

0

 ,


1 0 0

0 1 0

0 0 1


 . (8)

Then, the structural error in Equation (5) can be re-expressed as

ξt = σξ · ξ∗t =
σξρpξ

1− ρ2
pw

P ∗t +
−σξρpwρpξ

1− ρ2
pw

W ∗t + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

ω3,t. (9)

In this way, the structural error term ξt is split into two parts: one part as a function of P ∗t and

W ∗t that captures the endogeneity of Pt and the association of Wt with ξt|Pt7, and the other

part as an independent new error term. Then, we substitute Equation (9) into the main model

in Equation (1), and obtain the following regression equation:

Yt = µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

P ∗t +
−σξρpwρpξ

1− ρ2
pw

W ∗t + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t. (10)

Given P ∗t and W ∗t as additional regressors, ω3,t is not correlated with all regressors on the right-

hand side of Equation (10) as proved in Theorem 2 below, and thus we can consistently estimate

the model using the least squares estimator. The regressors P ∗t and W ∗t can be generated from

the nonparametric distribution of Pt and Wt as P ∗t = Φ−1(Ĥ(Pt)) and W ∗t = Φ−1(L̂(Wt)),

where Ĥ(Pt) and L̂(Wt) are the empirical CDFs of Pt and Wt, respectively.

Theorem 2. Estimation Consistency. Assuming (1) the error term is normal, (2) the

endogenous regressor Pt and exogenous regressors Wt are non-normally distributed, and (3) a

Gaussian Copula for the error term, Pt and Wt, Cov(ω3,t,Wt) = Cov(ω3,t, Pt) = Cov(ω3,t,W
∗
t ) =

Cov(ω3,t, P
∗
t ) = 0 and thus the OLS estimation of Equation (10) yields consistent estimates of

7Although the exogenous regressor Wt and ξt are uncorrelated, Wt and ξt|Pt (the error
component in ξt remaining after removing the effect of the endogenous regressor Pt) can be
correlated as seen by the correlation between Wt and ωt in Figure 1 (b).
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model parameters.

Proof: See Online Appendix A, Proof of Theorem 2.

As shown in Theorem 2, the proposed COPE method does not require the uncorrelatedness

between P ∗t and Wt for consistent model estimation, an assumption needed for CopulaP&G. In

fact, CopulaP&G can be obtained as a special case of the COPE: when Wt is uncorrelated with

Pt (i.e. ρpw = 0) and also uncorrelated with P ∗t under the joint copula model,
−σξρpwρpξ

1−ρ2pw
W ∗t

in Equation (10) vanishes and COPE based on Equation (10) reduces to CopulaP&G base on

Equation (6). This broader applicability of COPE is a merit of COPE. However, similar to

CopulaP&G, COPE requires the normality of the endogenous regressor Pt to fulfill the full-

rank identification assumption. Moreover, a correlation between endogenous regressor P and

the exogenous regressors W will cause CopulaP&G to transfer the endogeneity from P to W ;

the correction for the induced endogenous regressor W should have the same non-normality

assumption for model identification as with P . In the next subsection, we will develop a novel

two-stage COPE method that relaxes the regressor normality assumption. We further extend

the model to incorporate multiple endogenous variables in the following subsection 3.4.

3.3 Proposed Method II: Two-stage Copula Endogeneity-correction (2sCOPE)

In this subsection, we further propose a two-stage COPE (2sCOPE) method and will

show that this method can relax both the uncorrelatedness assumption between the copula-

transformed endogenous regressor and the exogenous regressors (Assumption 4) and the key

identification assumption of normality on the endogenous regressors (Assumption 3).

Under the Gaussian copula assumption in Equation (7), we have a linear relationship be-

tween P ∗t and W ∗t , and we take advantage of this information to construct the two-stage COPE

estimation. We have the following system of equations that are similar to two-stage least square

method. However, we do not require any variable that satisfies the exclusion restriction.

Yt = µ+ Ptα+Wtβ + ξt (11)

P ∗t = W ∗t γ + εt, (12)

where P ∗t ,W
∗
t are the Gaussian copula transformations of Pt and Wt, respectively. εt and ξt

follow a bivariate joint normal distribution, since they are a linear combination of tri-normal

variate (ξ∗t , P
∗
t ,W

∗
t ) under the Gaussian copula assumption. εt and ξt are correlated because of

the endogeneity of Pt. We can derive the relationship between P ∗t and W ∗t , and between εt and
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ξt directly from Equation (7). Specifically we have

P ∗t = ρpwW
∗
t +

√
(1− ρ2

pw) · ω2,t = ρpwW
∗
t + εt, (13)

which shows γ in Equation (12) is ρpw. Then we substitute εt in Equation (13) into the outcome

regression in Equation (10) and rewrite the model below

Yt = µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

(P ∗t − ρpwW ∗t ) + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t,

= µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

εt + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t. (14)

Equation (14) suggests adding the estimate of the error term εt from the first stage regression

as a generated regressor to the outcome regression instead of using P ∗t and W ∗t . As shown in

Theorem 3, the new error term ω3,t is uncorrelated with all the regressors in Equation (14),

ensuring the consistency of model estimates. This two-step procedure, named as 2sCOPE, adds

the first-stage residual term ε̂t to control for endogeneity and in this aspect is similar to the

control function approach of Petrin and Train (2010). However, unlike Petrin and Train (2010),

2sCOPE requires no use of instrumental variables.

Theorem 3. Estimation Consistency. Assuming (1) the error term is normal, (2) the

endogenous variable Pt or correlated regressors Wt is nonnormal, and (3) a Gaussian Copula

for the error term, Pt and Wt, Cov(ω3,t,Wt) = Cov(ω3,t, Pt) = Cov(ω3,t, εt) = 0 in Equation

(14).

Proof: See Online Appendix A, Proof of Theorem 3.

According to Theorems 2 and 3, both the proposed COPE and 2sCOPE can yield consistent

estimates when assumptions are met. However, compared with the COPE method above,

the 2sCOPE method uses additional information, the correlation between P ∗t and W ∗t , for

model identification. Thus, intuitively, we expect 2sCOPE to have greater estimation efficiency.

Theorem 4 shows that the estimates of 2sCOPE indeed are more precise, with smaller standard

errors than those of COPE.

Theorem 4. Variance Reduction. Assuming (1) the error term is normal, (2) the endoge-

nous variable Pt and correlated regressors Wt are nonnormal, and (3) a Gaussian Copula for

the error term, Pt and Wt, Var(θ̂2) ≤ Var(θ̂1), where θ̂1 and θ̂2 denote parameter estimates

from COPE and 2sCOPE, respectively.

Proof: See Online Appendix A, Proof of Theorem 4.
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Theorem 4 shows that under the assumptions when both COPE and 2sCOPE yield consis-

tent estimates, 2sCOPE further reduces the variance of the estimates and improves estimation

efficiency. Besides estimation efficiency, we show in Theorem 5 below that 2sCOPE also out-

performs COPE in dealing with normal endogenous regressors.

Theorem 5. Nonnormality Assumption Relaxed. Assuming (1) the error term is normal,

(2) one of the exogenous regressors Wt is nonnormal, and (3) a Gaussian Copula for the error

term, Pt and Wt, 2sCOPE estimator θ̂2 is consistent when Pt follows a normal distribution

while the COPE estimator θ̂1 is not consistent.

Proof: See Online Appendix A, Proof of Theorem 5.

Theorem 5 shows that as long as one of the exogenous regressors that are correlated with

the endogenous regressor Pt is nonnormally distributed, 2sCOPE can correct for endogeneity

for normal Pt while COPE cannot. Intuitively, when one of Pt and Wt is normal, P ∗t (or W ∗t ) in

Equation (10) becomes a linear function of Pt (or Wt) under the Gaussian copula assumption,

rendering the COPE model to fail the full rank assumption and become unidentified. Thus, our

first proposed method COPE cannot deal with normal endogenous regressors. For the proposed

2sCOPE method in Equation (14), adding the first stage helps model identification with extra

information, the correlation between P ∗t and W ∗t . As long as not all Wt are normal, εt would

not be a linear function of Pt and Wt and thus would satisfy the full rank assumption for model

identification. Thus, our proposed method 2sCOPE can relax the nonnormality assumption on

the endogenous regressor required in Park and Gupta (2012) as long as one of Wt is nonnormally

distributed.

To sum up, we have proved the consistency of both COPE and 2sCOPE methods (Theorems

2, 3). Theorem 4 and 5 further show that the 2sCOPE method outperforms the COPE method in

terms of estimation efficiency gain and relaxing the nonnormality assumption on the endogenous

regressors required in CopulaP&G by satisfying a very loose condition.

3.4 Multiple Endogenous Regressors

In the above three subsections, we focus on the case of one endogenous regressor, study

the explicit and implicit assumptions of the existing copula correction method CopulaP&G,

and propose two new COPE procedures to relax some key assumptions of CopulaP&G. In

this subsection, we extend these results to the general case of multiple endogenous regressors.

Consider the following structural linear regression model with two endogenous regressors (P1,t
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and P2,t) that are potentially correlated with the exogenous regressor Wt:

Yt = µ+ P1,t · α1 + P2,t · α2 +Wtβ + ξt. (15)

Assumptions in CopulaP&G We first examine CopulaP&G for multiple endogenous re-

gressors. According to Park and Gupta (2012), under a Gaussian copula model for (P1,t, P2,t, ξt),

the structural regression model in Equation (15) can be re-expressed as

Yt =µ+ P1,tα1 + P2,tα2 +Wtβ + σξ
ρξ1 − ρ12ρξ2

1− ρ2
12

· P ∗1,t + σξ
ρξ2 − ρ12ρξ1

1− ρ2
12

· P ∗2,t

+ σξ ·

√
1− ρ2

ξ1 −
(ρξ2 − ρ12ρξ1)2

1− ρ2
12

· ωt. (16)

where P ∗1,t = Φ−1(H1(P1,t)), P
∗
2,t = Φ−1(H2(P2,t)), and H1(·) and H2(·) are CDFs of P1,t and

P1,t, respectively, ρ12 is the correlation between P ∗1,t and P ∗2,t, ρξ1 is the correlation between ξ

and P ∗1,t, ρξ2 is the correlation between ξ and P ∗2,t, and ωt is a standard normal random variable

that is independent of P ∗1,t and P ∗2,t. Park and Gupta (2012) suggest the OLS estimation of

Equation (16) yields consistent estimates of model parameters. Their method simply adds P ∗1,t

and P ∗2,t as two “generated regressors” into the original structural regression model to control

for endogeneity bias. The derivation provided in Park and Gupta (2012) makes explicit the

following three assumptions: the error term ξt follows a normal distribution, (P1,t P2,t, ξt)

follow Gaussian copula, and all endogenous regressors (P1,t, P2,t) are nonnormally distributed

(similar to Assumptions 1, 2, 3 noted in Subsection 3.1 for one endogenous regressor). However,

Assumptions 1, 2, 3 are insufficient to guarantee the consistency of CopulaP&G. For the OLS

estimation of Equation (16) to yield consistent estimates, Wt need also be uncorrelated with

ωt, which requires that Cov(Wt,
ρξ1−ρ12ρξ2

1−ρ212
·P ∗1,t +

ρξ2−ρ12ρξ1
1−ρ212

·P ∗2,t) = 0 (Assumption 4(b) below)

where
ρξ1−ρ12ρξ2

1−ρ212
·P ∗1,t+

ρξ2−ρ12ρξ1
1−ρ212

·P ∗2,t is the CCF used to control for endogeneity in CopulaP&G.

Assumption 4(b). When there are multiple endogenous regressors, Wt is uncorrelated with the

CCF, i.e., the linear combination of P ∗t that is used to control for endogenous regressors. Specif-

ically, Cov(Wt,
ρξ1−ρ12ρξ2

1−ρ212
· P ∗1,t +

ρξ2−ρ12ρξ1
1−ρ212

· P ∗2,t) = 0 is required in the 2-endogenous regressors

case.8

Assumption 4 and 4(b) are verifiable and provide users with criteria to check whether Cop-

ulaP&G would fail to work when there exist exogenous regressors that may be correlated with

the CCF. With only one endogenous regressor, one can simply check the correlations between

8It is clear that this requirement is not the same as either Cov(Wt, P
∗
1,t) = 0, Cov(Wt, P

∗
2,t) =

0 or Cov(Wt, P1,t) = 0, Cov(Wt, P2,t) = 0.
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the copula transformation of this endogenous regressor with each exogenous regressor. For

multiple endogenous regressors, one should check the correlations between the CCF (i.e., the

linear combination of copula transformations of these endogenous regressors used to control

for endogeneity) in CopulaP&G with each exogenous regressor. If there exists one exogenous

regressor in Wt that fails the Assumption 4 or 4(b), CopulaP&G yields biased estimates, and

our proposed COPE or 2sCOPE method should be used, which are derived below.

COPE Under the Gaussian Copula assumption that [P ∗1,t, P
∗
2,t,W

∗
t , ξ
∗
t ] follows a multivariate

normal distribution:

P ∗1,t

P ∗2,t

W ∗t

ξ∗t


∼ N





0

0

0

0


,



1 ρp ρwp1 ρξp1

ρp 1 ρwp2 ρξp2

ρwp1 ρwp2 1 0

ρξp1 ρξp2 0 1




,

we have:

P ∗1,t

P ∗2,t

W ∗t

ξ∗t


=



1 0 0 0

ρp
√

1− ρ2
p 0 0

ρwp1
ρwp2−ρpρwp1√

1−ρ2p

√
1− ρ2

wp1 −
(ρwp2−ρpρwp1)2

1−ρ2p
0

ρξp1
ρξp2−ρpρξp1√

1−ρ2p

−ρwp1ρξp1−
(ρwp2−ρpρwp1)(ρξp2−ρpρξp1)

1−ρ2p√
1−ρ2wp1−

(ρwp2−ρpρwp1)2

1−ρ2p

m


·



ω1,t

ω2,t

ω3,t

ω4,t


,



ω1,t

ω2,t

ω3,t

ω4,t


∼ N





0

0

0

0


,



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (17)

where m is a function of all the ρs. Under the Gaussian Copula assumption above, we can

derive ξ∗t as a function of Pt and Wt. After simplification, the structural error in Equation (15)

can be decomposed as

ξt = σξξ
∗
t = η1P

∗
1,t + η2P

∗
2,t − (η1ρwp1 + η2ρwp2)W ∗t + σξ ·m · ω4,t. (18)

where

η1 =
σξρξp1(1− ρ2

wp2)− σξρξp2(ρp − ρwp1ρwp2)

1− ρ2
p − ρ2

wp1 − ρ2
wp2 + 2ρpρwp1ρwp2

, η2 =
σξ(ρwp1ρwp2ρξp1 + ρξp2 − ρpρξp1 − ρ2

wp1ρξp2)

1− ρ2
p − ρ2

wp1 − ρ2
wp2 + 2ρpρwp1ρwp2

.

The COPE method with one endogenous regressor in Equation (10) is then extended to

Yt = µ+ P1,tα1 + P2,tα2 +Wtβ + η1P
∗
1,t + η2P

∗
2,t − (η1ρwp1 + η2ρwp2)W ∗t + σξ ·m · ω4,t. (19)
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In Equation (19), the new error term ω4,t is uncorrelated with all the regressors on the right-

hand side of Equation (19). Thus, the OLS estimation of Equation (19) provides consistent

estimates of structural regression model parameters (µ, α1, α2, β).

2sCOPE Under the multivariate Gaussian distribution assumption on (ξt, P
∗
1,t, P

∗
2,t,W

∗
t ), the

system equations of 2sCOPE method in Equation (11, 12) are easily extended to the case with

two endogenous regressors as

Yt = µ+ P1,tα1 + P2,tα2 +Wtβ + ξt, (20)

P ∗1,t = ρwp1W
∗
t + ε1,t, (21)

P ∗2,t = ρwp2W
∗
t + ε2,t, (22)

where Equations (21) and (22) can be directly derived from the Gaussian copula assumption;

(ξt, ε1,t.ε2,t) are a linear transformation of (ξt, P
∗
1,t, P

∗
2,t,W

∗
t ), and thus also follow a multivariate

Gaussian distribution. As a result, we can decompose the structural error ξt as additive terms

for ε1,t, ε2,t and a remaining independent error term ω4,t as follows

Yt = µ+ P1,tα1 + P2,tα2 +Wtβ + η1ε1,t + η2ε2,t + σξ ·m · ω4,t. (23)

Note that Equation (23) can also be obtained from Equation (19) by noting that ε1,t =

P ∗1,t − ρwp1W ∗t and ε2,t = P ∗2,t − ρwp2W ∗t , and thus OLS estimation of Equation (23) also yields

consistent estimation of structural model parameters. However, the 2sCOPE procedure adds

only two residual terms (ε1,t, ε2,t) as generated regressors instead of three copula transformations

of regressors (P ∗1,t, P
∗
2,t,W

∗
t ) as generated regressors. Thus, 2sCOPE adds a smaller number of

generated regressors than COPE, and thus provides higher estimation efficiency. In addition,

by adding residual terms as the generated regressors, 2sCOPE relaxes the assumption of regres-

sor non-normality required in COPE. The proof for the estimation consistency of COPE and

2sCOPE, estimation efficiency gain and relaxation of the regressor-nonnormality assumption

for 2sCOPE can be found in Appendix under the related Theorems 2, 3, 4, 5.

Until now, we have shown the derivation of our proposed COPE and 2sCOPE methods, the

difference of these two proposed methods from the existing copula method CopulaP&G, and

the assumptions for each method to work. Table 2 summarizes the assumptions for the three

methods. Our proposed methods can deal with the case when there are exogenous regressors

that are correlated with the endogenous regressors. Moreover, 2sCOPE can further relax the

regressor-nonnormality assumption. Table 3 summarizes the estimation procedure of the two

methods.
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Table 2: Summary of Assumptions for the Three Methods

CopulaP&G COPE 2sCOPE

• The structural error follows a

normal distribution (Asm. 1);

• Pt and the structural error fol-

low a Gaussian copula (Asm.

2);

• All regressors in Pt are nonnor-

mally distributed (Asm. 3);

• Wt is uncorrelated with the

CCF (copula control function

which is the linear combination

of all P ∗t used to control for en-

dogeneity) (Asm. 4, 4(b)).

• The structural error follows

a normal distribution;

• Pt, Wt and the structural

error follow a Gaussian

copula;

• All regressors in Pt and

Wt are nonnormally dis-

tributed.

• The structural error follows

a normal distribution;

• Pt, Wt and the structural

error follow a Gaussian

copula;

• Pt can be normally dis-

tributed as long as one of

Wt is nonnormal.

Table 3: Estimation Procedure

COPE 2sCOPE

Stage 1:

• Obtain empirical CDFs for each regressor

in Pt and Wt, denoted as Ĥ(Pt) and L̂(Wt);

• Compute P ∗t = Φ−1(Ĥ(Pt)) and W ∗t =

Φ−1(L̂(Wt));

• Add P ∗t and W ∗t to the outcome structural

regression model as generated regressors.

• Obtain empirical CDFs for each regressor in Pt

and Wt, Ĥ(Pt) and L̂(Wt);

• Compute P ∗t = Φ−1(Ĥ(Pt)) and W ∗t =

Φ−1(L̂(Wt));

• Regress each endogenous regressor in P ∗t sepa-

rately on W ∗t and obtain residual ε̂t;

Stage 2:

• Add ε̂t to the outcome structural regression

model as generated regressors.

• Standard errors of parameter estiamtes are estimated using bootstrap in both methods.
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3.5 COPEs for Random Coefficient Linear Panel Model with Correlated and Normally Dis-

tributed Regressors

We consider the following random coefficient model for linear panel data

Yit = µ̄+ µi + P ′itαi +W ′itβi + ξit, (24)

where i = 1, · · · , N indexes cross-sectional units and t = 1, · · · , T indexes occasions. Pit (Wit)

denotes a vector of endogenous (exogenous) regressors. Pit and Wit can be correlated. The

error term ξit
iid∼ N(0, σ2

ξ ), which is correlated with Pit due to the endogeneity of Pit but is

uncorrelated with the exogenous regressors in Wit. The individual-specific intercept µi and

individual-specific slope coefficients (αi, βi) permit heterogeneity in both intercepts and regres-

sor effects across cross-sectional units. Extant marketing studies have shown the ubiquitous

presence of heterogeneous consumers’ responses to marketing mix variables (e.g., price sensitiv-

ity) and substantial bias associated with ignoring such heterogeneity in slope coefficients. Thus,

it is important to permit individual-specific slope coefficients, especially in marketing studies.

The linear panel data model as specified in Equation (24) is general and includes the linear

panel model with only individual-specific intercepts considered in Haschka (2021) as a special

case. Specifically, Haschka (2021) fixes (αi, βi) to be the same value (α, β) across all units,

assuming all cross-sectional units have the same slope coefficients. In contrast, the model in

Equation (24) relaxes this strong assumption and can generate unit-specific slope parameters,

which can be used for targeting purposes.

A fully random coefficient model typically assumes (µi, αi, βi) follows a multivariate normal

distribution. Estimation algorithms for such random coefficient models are well-established

when all regressors are exogenous. Alternatively, one can assume a mixed-effect model where µi

is a fix-effect parameter with µi’s allowed to be correlated with the regressors Pit and Wit. To

avoid potential incidental parameter problem associated with these fix-effect parameters, one

often uses the first-difference or fixed-effects transformation to eliminate the incidental intercept

parameters as follows

ỹit = P̃ ′itαi + W̃ ′itβi + ξ̃it, (25)

where ỹit, P̃it, W̃it and ξ̃it denote new variables obtained from the first-difference or fixed-effect

transformation. Haschka (2021) considered a special case of Equation (25) by fixing (αi, βi) to be

constants. As shown above, the fixed-effect approach eliminates the intercepts from the model

and can make the intercept parameter in-estimable (Web Appendix A8 in Haschka (2021)).
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It is straightforward to apply COPEs to address regressor endogeneity in the general ran-

dom coefficient model for linear panel data in Equation (24) and the transformed one without

intercepts in Equation (25).9 Assuming (Pit,Wit, ξit) follow a Gaussian copula, COPE adds the

generated regressor P ∗it = Φ−1(Ĥ(Pit)) and W ∗it = Φ−1(L̂(Wit)) into Equation (24) to control

for regressor endogeneity. The 2sCOPE procedure adds the residuals obtained from regressing

P ∗it on W ∗it. Both COPEs methods can be implemented using standard methods for random

coefficient linear panel models. By contrast, maximum likelihood approach for copula correction

for the random coefficients model would require constructing complicated joint likelihood on

the error term, Pt and Wt, which involves newly appearing numerical integrals with respect to

random effects and cannot be maximized by standard estimation algorithms for random coef-

ficient models. Finally, current applications applying CopulaP&G do not consider the role of

exogenous regressors. Our analysis shows that this may yield bias if any exogenous regressor

is correlated with the CCF added to control endogeneity, for which COPEs should be used to

address regressor endogeneity.

3.6 COPEs for Slope Endogeneity and Random Coefficient Logit Model

In Online Appendix B and C, we derive the COPEs methods to tackle the slope endogeneity

problem and address endogeneity bias in random coefficient logit models with correlated and

normally distributed regressors. In these two cases, we show how to apply COPEs to correct

for the endogenous bias, which can avoid the potential bias of CopulaP&G due to the potential

correlations between the exogenous regressors and CCF, as well as make use of the correlated

exogenous regressors to relax the non-normality assumption of endogenous regressors, improve

model identification and sharpen model estimates. As shown there, both COPE and 2sCOPE

can be implemented using standard estimation methods by adding generated regressors to con-

trol for endogenous regressors. By contrast, the maximum likelihood approach can require

constructing complicated joint likelihood that is not what the standard estimation method uses

and thus requires separate development and significantly more computation involving numerical

integration.

9Similar to Haschka (2021), a GLS transformation can be applied to both sides of Equation
(25), resulting in a pooled regression for which COPEs can be directly applied.
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4. Simulation Study

In this section, we conduct Monte Carlo simulation studies for the following goals: (a) to assess

the performance of the proposed methods for correlated regressors, (b) to assess the performance

of the proposed methods under regressor normality, (c) to assess generalizability and restrictions

of the distributional assumptions about the endogenous and exogenous regressors, and (d) to

compare the performance of the proposed methods with existing methods. Following Park and

Gupta (2012), we measure the estimation bias using tbias calculated as the ratio of the absolute

difference between the mean of the sampling distribution and the true parameter value to the

standard error of the parameter estimate. As defined above, tbias represents the size of bias

relative to the sampling error. Online Appendix D provides additional simulation results on

the robustness of COPEs to the mis-specifications of the structural error distribution and the

copula dependence structure.

4.1 Case 1: Non-normal Regressors

We first examine the case when P and W are correlated. The specific data-generating

process (DGP) is summarized below:
P ∗t

W ∗t

ξ∗t

 ∼ N



0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 = N




0

0

0

 ,


1 0.5 0.5

0.5 1 0

0.5 0 1


 , (26)

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (27)

Pt = H−1(UP,t) = H−1(Φ(P ∗t )), Wt = L−1(UW,t) = L−1(Φ(W ∗t )), (28)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · Pt + (−1) ·Wt + ξt. (29)

where ξ∗t and P ∗t are correlated with the correlation coefficient ρpξ = 0.5, and thus ξt and Pt

are correlated, generating the endogeneity problem. W ∗t is exogenous and is not correlated with

ξ∗t . But W ∗t and P ∗t are correlated with the correlation coefficient ρpw = 0.5, and thus Wt and

Pt are correlated. We consider four different estimation methods: (i) OLS, (ii) CopulaP&G

in the form of Equation (6), (iii) the proposed method COPE in the form of Equation (10),

and the proposed method 2sCOPE in the form of Equation (14). We set the sample size T

= 1000, and generate 1000 data sets as replicates using the DGP above. In the simulation,

we use the gamma distribution Gamma(1, 1) with shape and rate equal to 1 for Pt and the

exponential distribution Exp(1) with rate 1 for Wt. Models are estimated on all generated data

sets, providing the empirical distributions of the parameter estimates.
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Table 4: Results of the Simulation Study Case 1

OLS CopulaP&G COPE 2sCOPE

ρpw Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

0.5 µ 1 0.689 0.045 6.964 1.231 0.081 2.849 1.012 0.093 0.129 1.009 0.059 0.157

α 1 1.571 0.036 15.75 1.055 0.069 0.791 0.985 0.072 0.213 0.986 0.070 0.197

β -1 -1.259 0.031 8.236 -1.289 0.031 9.169 -0.997 0.067 0.038 -0.995 0.042 0.123

ρpξ 0.5 - - - 0.570 0.047 1.504 0.505 0.055 0.090 0.504 0.038 0.097

σξ 1 0.862 0.020 6.902 1.011 0.043 0.244 1.008 0.041 0.206 1.006 0.040 0.143

D-error - - 0.002613 0.001614

0.7 µ 1 0.730 0.041 6.629 1.307 0.076 4.037 1.011 0.085 0.124 1.005 0.053 0.088

α 1 1.800 0.041 19.67 1.260 0.068 3.838 0.988 0.078 0.148 0.991 0.075 0.118

β -1 -1.529 0.037 14.21 -1.567 0.037 15.36 -0.997 0.071 0.041 -0.994 0.056 0.110

ρpξ 0.5 - - - 0.633 0.043 3.130 0.503 0.057 0.048 0.500 0.026 0.000

σξ 1 0.799 0.018 11.18 0.980 0.044 0.468 1.007 0.041 0.160 1.003 0.040 0.084

D-error - - 0.002902 0.001760

Note: Mean and SE denote the average and standard deviation of parameter estimates over all
the 1,000 simulated samples.

Table 4 reports estimation results. As expected, OLS estimates of both α and β are bi-

ased (tbias = 15.75/8.24) as a result of the regressor endogeneity. The estimation result of

CopulaP&G reduces the bias, but still shows significant bias for both the coefficient estimates

of Pt and Wt. The bias of CopulaP&G depends on the strength of the correlation between

W and P . Stronger correlations between P ∗ and W ∗ can cause a larger bias of CopulaP&G

estimates. For example, when the correlation between W ∗ and P ∗ increases from 0.5 to 0.7, the

bias of estimated α increases by around five times (from 0.055 to 0.260 in Table 4 under the

column “CopulaP&G”). The bias confirms our derivation in the model section, demonstrating

that using the existing copula method may not solve the endogeneity problem completely with

correlated regressors.

We next examine our proposed methods. Both methods (COPE and 2sCOPE) provide

consistent estimates without the use of instruments. The average estimates of ρpξ is close to

the true value 0.5 and is significantly different from 0, implying significant correlation between

the endogeneity regressor and the error term. Moreover, the proposed method 2sCOPE shows
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larger efficiency. The standard error of α(β) in 2sCOPE is 0.070 (0.042), which is 2.78%

(37.31%) smaller than the corresponding standard errors using COPE. We further calculate the

estimation precision of COPE and 2sCOPE using the D-error measure |Σ|1/K (Arora and Huber

2001, Qian and Xie 2021), where Σ is the covariance matrix of the parameter estimates in the

regression mean function, and K is the number of these parameters. A smaller value of D-error

means greater estimation efficiency and improved estimation precision. When ρpw = 0.5, the

D-error measure is 0.002613 for COPE and is 0.001614 for 2sCOPE (Table 4), and thus 2sCOPE

increases estimation precision by 38.2%, meaning that for 2sCOPE to achieve the same precision

with COPE, sample size can be reduced by 38.2%. A 39.3% of efficiency gain for 2sCOPE is

found for ρpw = 0.7 in Table 4.

We perform a further simulation study for a small sample size. Specifically, we use the same

DGP as described above to generate synthetic data, except with the sample size T=200. Online

Appendix D Table 11 reports the results and shows that OLS estimates have endogeneity bias

and CopulaP&G reduces the endogeneity bias but significant bias remains. Both our proposed

methods, COPE and 2sCOPE, perform well and have unbiased estimates for the small sample

size T=200. The efficiency gain of 2sCOPE relative to COPE appears to be greater when sample

size becomes smaller. When the correlation between P ∗ and W ∗ is 0.5, the D-error measures are

0.0166 and 0.0091 for COPE and 2sCOPE (Online Appendix Table 11), respectively, meaning

that 2sCOPE increases estimation precision by 1-0.0091/.0166=46% compared with COPE,

and thus sample size can be reduced by almost a half (∼50%) for 2sCOPE to achieve the

same estimation precision as that achieved by COPE. A similar magnitude of efficiency gain for

2sCOPE relative to COPE (∼50%) is observed when the correlation between P ∗ and W ∗ is 0.7

(Online Appendix Table 11).

4.2 Case 2: Normal Regressors

Next, we examine the case when the endogenous regressor and (or) the correlated exogenous

regressor are normally distributed. We pay special attention to this case because normality is

not allowed for endogenous regressors in Park and Gupta (2012). We use the Gaussian copula

as described in Equations (26) to Equations (29) for DGP to generate the data, except that the

marginal CDFs for regressors (H(·) and L(·)) are chosen according to the distributions listed

in the first two columns in Table 5.

Table 5 summarizes the estimation results. As expected, OLS estimates are biased. Copu-
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laP&G produces biased estimates whenever the endogenous regressor P follows a normal distri-

bution. The estimates of CopulaP&G are biased when P follows a gamma distribution (first row

of Table 5) for a different reason: P and W are correlated. Similar to CopulaP&G, the results of

proposed COPE are biased in all the three scenarios when at least one of Pt and Wt is normal.

When Wt is normal, β is 0.323 away from the true value -1; when Pt is normally distributed, α

is 0.684 away from the true value; when both Pt and Wt are normal, α is 0.663 away from the

true value 1 and β is 0.324 away from the true value -1. Thus, similar to CopulaP&G, COPE

also requires the assumption of regressor non-normality for estimation consistency. This is ex-

pected because COPE adds P ∗t and W ∗t , the copula transformation of regressors, as additional

regressors, and will cause perfect co-linearity and model non-identification problem whenever

at least one of these regressors is normally distributed.

Table 5: Results of Case 2: Normal Regressors

Distribution OLS CopulaP&G COPE 2sCOPE

P W Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

Gamma Normal µ 1 0.431 0.045 12.63 1.018 0.078 0.227 1.017 0.080 0.217 1.015 0.077 0.190

α 1 1.569 0.037 15.40 0.979 0.070 0.302 0.979 0.070 0.296 0.985 0.070 0.212

β -1 -1.259 0.030 8.619 -1.333 0.028 11.78 -1.323 0.433 0.746 -0.997 0.045 0.067

ρpξ 0.5 - - - 0.640 0.039 3.556 0.589 0.141 0.631 0.506 0.036 0.151

σξ 1 0.861 0.019 7.240 1.064 0.046 1.394 1.135 0.162 0.837 1.005 0.038 0.134

Normal Exp µ 1 1.286 0.042 6.777 1.286 0.045 6.374 0.994 0.073 0.081 1.023 0.070 0.334

α 1 1.628 0.031 20.36 1.532 0.462 1.152 1.684 0.437 1.568 1.048 0.126 0.381

β -1 -1.286 0.032 8.956 -1.287 0.032 8.960 -0.992 0.066 0.127 -1.024 0.062 0.383

ρpξ 0.5 - - - 0.089 0.419 0.980 -0.167 0.384 1.738 0.465 0.074 0.473

σξ 1 0.829 0.018 9.492 0.940 0.151 0.394 0.981 0.151 0.129 0.980 0.063 0.318

Normal Normal µ 1 1.001 0.026 0.046 1.002 0.030 0.052 1.001 0.033 0.024 1.002 0.028 0.057

α 1 1.668 0.030 22.38 1.663 0.450 1.474 1.663 0.460 1.441 1.655 0.395 1.657

β -1 -1.335 0.029 11.44 -1.335 0.029 11.42 -1.324 0.438 0.740 -1.328 0.197 1.668

ρpξ 0.5 - - - 0.006 0.412 1.198 0.001 0.412 2.426 0.010 0.303 1.616

σξ 1 0.816 0.019 9.687 0.917 0.155 0.534 1.003 0.211 0.016 0.879 0.092 1.317

By contrast, the proposed 2sCOPE method provides consistent estimates as long as Pt and

Wt are not both normally distributed. Both α and β are tightly distributed near the true value

whenever Pt or Wt is nonnormally distributed. Unlike CopulaP&G and COPE, 2sCOPE adds

the residual term obtained from regressing P ∗t on W ∗t as the generated regressor. Thus, as long
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as Pt and Wt are not both normally distributed, the residual term is not perfectly co-linear

with the original regressors, permitting model identification. Only when both Pt and Wt are

normally distributed (the last scenario in Table 5), the residual term added into the structural

regression model becomes a linear combination of Pt and Wt, causing perfect co-linearity and

model non-identification. Overall, this simulation study demonstrates the advantage of the

proposed 2sCOPE to relax the nonnormality assumption in CopulaP&G as long as one of Pt

and Wt is nonnormally distributed.

4.3 Case 3: Multiple Endogenous Regressors

In this case, we examine the performance of our proposed methods when the model has mul-

tiple endogenous regressors. We use the data-generating process (DGP) with two endogenous

regressors and one exogenous regressor that is correlated with the endogenous regressor below:

P ∗1,t

P ∗2,t

W ∗t

ξ∗t


∼ N





0

0

0

0


,



1 ρp ρwp1 ρξp1

ρp 1 ρwp2 ρξp2

ρwp1 ρwp2 1 0

ρξp1 ρξp2 0 1




= N





0

0

0

0


,



1 0.3 0.4 0.5

0.3 1 0.4 0.5

0.4 0.4 1 0

0.5 0.5 0 1




,(30)

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (31)

P1,t = H−1
1 (Up1) = H−1

1 (Φ(P ∗1,t)), P2,t = H−1
2 (Φ(P ∗2,t)), Wt = L−1(UW,t) = L−1(Φ(W ∗t )), (32)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · P1,t + 1 · P2,t + (−1) ·Wt + ξt, (33)

where H−1
1 (·) (H−1

2 (·)) and L−1(·) are the inverse distribution functions of the gamma and

exponential distributions used to generate these regressors. Sample size T = 1000. We generate

1000 data sets, and use existing methods and our proposed methods to estimate the model.

Table 6 shows the estimation results. Both the OLS and CopulaP&G estimates are biased,

while our proposed methods provide unbiased estimates for all parameters, indicating that our

proposed methods perform well with multiple endogenous regressors.

4.4 Case 4: Multiple Exogenous Control Covariates

We investigate the performance of our proposed methods when there exist multiple exoge-

nous regressors consisting of both continuous and discrete variables. We generate the data using
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Table 6: Results of the Simulation Study Case 3: Multiple Endogenous Regressors

OLS CopulaP&G COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.419 0.045 13.02 1.267 0.090 2.949 1.012 0.097 0.125 1.008 0.069 0.120

α1 1 1.450 0.029 15.46 1.040 0.060 0.665 0.990 0.060 0.166 0.991 0.059 0.153

α2 1 1.450 0.031 14.72 1.040 0.059 0.673 0.990 0.058 0.177 0.991 0.056 0.167

β -1 -1.320 0.029 11.04 -1.353 0.028 12.56 -0.997 0.057 0.061 -0.995 0.040 0.134

ρξp1 0.5 - - - 0.567 0.043 1.545 0.503 0.049 0.052 0.502 0.040 0.048

ρξp2 0.5 - - - 0.568 0.042 1.625 0.503 0.047 0.073 0.503 0.038 0.075

σξ 1 0.772 0.018 12.58 1.019 0.048 0.402 1.012 0.044 0.283 1.010 0.042 0.233

the following DGP:

P ∗t

W ∗1,t

W ∗2,t

ξ∗t


∼ N





0

0

0

0


,



1 ρpw1 ρpw2 ρξp

ρpw1 1 ρw 0

ρpw2 ρw 1 0

ρξp 0 0 1




= N





0

0

0

0


,



1 0.5 0.5 0.5

0.5 1 0.3 0

0.5 0.3 1 0

0.5 0 0 1




,(34)

ξt = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (35)

Pt = H−1(Φ(P ∗t )), W1,t = L−1(Φ(W ∗1,t)), (36)

W2,t =


1, if Φ(W ∗2,t) ≥ 0.5

0. if Φ(W ∗2,t) < 0.5

, (37)

Yt = µ+ α · Pt + β1 ·W1,t + β2 ·W2,t + ξt = 1 + 1 · Pt + (−1) ·W1,t + (−1) ·W2,t + ξt, (38)

where H−1(·) and L−1(·) are the inverse distribution functions of the gamma and exponential

distributions. W2,t is a binary variable that follows a Bernoulli distribution. We set sample

size T = 1000 and generate 1000 data sets to estimate parameters using OLS and copula

methods. We follow the approach of Park and Gupta (2012) to generate latent copula data

for discrete variables. Specifically, for a discrete regressor Wt, such as the binary exogenous

regressor W2,t, we define UW,t, uniformly distributed on [0,1], as the CDF for a latent variable

W ∗t that determines the discrete value of Wt. We then relate UW,t to Wt through the following

inequality: K(Wt − 1) < UW,t < K(Wt), where K(·) is the CDF of Wt and can be directly

estimated from the frequencies of the observed data. The above inequality implies the following

relationship between W ∗t = Φ−1(UW,t) and KW,t: Φ−1(K(Wt − 1)) < W ∗t < Φ−1(K(Wt)).
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The estimation results for the multiple-exogenous-regressor case with both discrete and con-

tinuous ones are summarized in Table 7. The OLS and CopulaP&G estimates are biased because

of endogeneity and correlated exogenous regressors, respectively. The proposed COPEs meth-

ods perform well and provide consistent estimates for all parameters. This indicates that our

proposed methods perform well with multiple exogenous correlated regressors. Moreover, cor-

recting for endogeneity using our proposed methods does not require every exogenous correlated

regressor to be informative (i.e., continuously distributed).

Table 7: Results of the Simulation Study Case 4: Multiple Exogenous Control Covariates

OLS CopulaP&G COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.701 0.046 6.452 1.281 0.083 3.394 1.007 0.115 0.057 1.005 0.061 0.085

α 1 1.573 0.038 15.10 1.037 0.071 0.532 0.985 0.073 0.208 0.987 0.072 0.180

β1 -1 -1.225 0.041 5.523 -1.220 0.039 5.584 -0.990 0.069 0.140 -0.992 0.048 0.161

β2 -1 -1.096 0.075 1.273 -1.202 0.073 2.758 -1.006 0.115 0.051 -1.003 0.080 0.042

ρpξ 0.5 - - - 0.589 0.045 1.976 0.503 0.061 0.053 0.504 0.038 0.097

σξ 1 0.862 0.020 7.066 1.023 0.044 0.532 1.011 0.040 0.264 1.006 0.040 0.115

4.5 Case 5: Random Coefficient Linear Panel Model

We investigate the performance of our proposed COPEs methods in random coefficient linear

panel model. We use the copula and marginal distributions for [Pit,Wit, ξit] as specified in Case

1 (Equations 26-28). We assign ρpw = 0.7 as an example. We then generate the outcome Yit

using the following standard random coefficient linear panel model:

Yit = µ̄+ µi + Pit(ᾱ+ ai) +Wit(β̄ + bi) + ξit = 1 + µi + Pit(1 + ai) +Wit(−1 + bi) + ξit,

where [µi, ai, bi] ∼ N(0, I3), t = 1, ..., 50 indexes occasions for repeated measurements, and

i = 1, ..., 500 indexes the individual units. The above random coefficients model permits in-

dividual units to have heterogeneous baseline preferences (µi) and heterogeneous responses to

regressors (ai, bi). Such random coefficients models are frequently used in marketing studies to

capture individual heterogeneity and to profile and target individuals. The correlation between

ξit and Pit creates the regressor endogeneity problem in the random coefficient model, which

can cause biased estimates for standard linear random coefficient estimation methods ignoring

the regressor-error correlation. We generate individual-level panel data as described above for
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1000 times and use the data for estimation. Estimation results are in Table 8. LME is the

standard estimation method for linear mixed models assuming all regressors are exogenous, as

implemented in the R function lme(). LME and CopulaP&G are biased because of endogene-

ity and correlated exogenous regressors, respectively. Our proposed methods provide unbiased

estimates that are tightly distributed around the true values for all parameters.

Table 8: Results of the Simulation Study Case 5: Random Coefficient Linear Panel Model

LME CopulaP&G COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ̄ 1 0.722 0.046 6.052 1.314 0.049 6.399 1.001 0.054 0.016 1.004 0.048 0.091

ᾱ 1 1.853 0.045 18.83 1.293 0.045 6.469 1.000 0.045 0.009 1.000 0.046 0.008

β̄ -1 -1.557 0.045 12.39 -1.598 0.044 13.56 -0.996 0.048 0.079 -1.000 0.044 0.005

σµ 1 0.985 0.033 0.459 0.982 0.033 0.547 0.985 0.033 0.463 0.984 0.031 0.522

σα 1 0.988 0.036 0.326 0.987 0.034 0.397 0.986 0.035 0.403 0.989 0.035 0.316

σβ 1 0.993 0.031 0.235 0.992 0.033 0.249 0.992 0.031 0.264 0.992 0.033 0.248

ρpξ 0.5 - - - 0.646 0.009 16.33 0.509 0.012 0.757 0.507 0.005 1.365

σξ 1 0.794 0.004 57.71 0.957 0.010 4.439 0.985 0.009 1.689 0.985 0.009 1.640

Note: σµ, σα, σβ are standard deviations of µi, ai, bi.

5. Empirical Application

In this section, we apply our methods to a real marketing application. We illustrate the proposed

methods to address the price endogeneity issue using store-level sales data of toothpaste category

in Chicago over 373 weeks from 1989 to 199710. To control for product size, we select toothpaste

with the most common size, which is 6.4 oz. Retail price is usually considered endogenous. The

endogeneity of retail price can come from unmeasured product characteristics or demand shocks

that can influence both consumers’ and retailers’ decisions. Since these variables are unobserved

by researchers, they are absorbed into the structural error, leading to the endogeneity problem.

Prices of different stores are correlated and often used as an IV for each other. This allows us

to test the performance of the proposed COPEs methods in an empirical setting where a good

IV exists. Besides the endogenous price, two promotion-related variables, bonus promotion

and direct price reduction, would also affect demand. Following Park and Gupta (2012), we

10We obtained the data from https://www.chicagobooth.edu/research/kilts/datasets/dominicks.
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treat the promotion variables as exogenous regressors. We focus on category sales in two large

stores in Chicago (referred to as Stores 1 and 2). We convert retail price, in-store promotion

and sales from UPC level to aggregate category level. They are computed as weekly market

share-weighted averages of UPC-level variables. The correlation between log retail price and

Table 9: Summary Statistics

Store 1 Store 2

Variables Mean SD Max Min Mean SD Max Min

Sales (Unit) 115 52.8 720 35 165.7 93.7 1334 26

Price ($) 2.06 0.20 2.48 1.46 2.10 0.21 2.48 1.47

Bonus 0.18 0.20 0.80 0.00 0.16 0.19 0.79 0.00

PriceRedu 0.10 0.19 0.72 0.00 0.10 0.19 0.73 0.00

bonus promotion in Store 1 (Store 2) is -0.30 (-0.15), and the correlation between log retail

price and price reduction promotion in Store 1 (Store 2) is -0.23 (-0.35). Both the correlations

are significantly different from zero. The appreciable correlations between price and promotion

variables actually provide a good setting for testing our methods and examining the impact

that our proposed methods can make in the setting of correlated endogenous and exogenous

regressors. Summary statistics of key variables are summarized in Table 9.

We estimate the following linear regression model:

log(Salest) = β0 + log(Retail Pricet) · β1 +W ′tβ2 + ξt,

where t = 1, 2, ..., T indexes week. The vector Wt includes all exogenous regressors, which are

two promotion variables, bonus promotion and price reduction, in this application. Figure 2

shows log sales and log retail prices of toothpaste at store 1 over time (store 2 is very similar).

To control for the possible trend of retail price over time, we use de-trended log retail prices (as

instrumental variables as well) for estimation below.

Figure 3 shows the histograms of detrended log retail prices and the two promotion variables.

All the three variables are continuous variables. Moreover, except log retail price, which is a

bit close to normal distribution, the other two regressors, bonus and price reduction, are both

nonnormally distributed. Therefore, we expect that the proposed 2sCOPE method can exploit

these additional features of exogenous regressors correlated with the endogenous regressor for

model identification and estimation even if the endogenous regressor is close to normal distri-
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(a) Store 1 log sales (b) Store 1 log retail price

Figure 2. Log Sales and Log Retail Price of Toothpaste in Store 1.

(a) detrended log price (b) bonus (c) price reduction

Figure 3. Histogram of Log Retail Price, Bonus and Price Reduction in Store 1
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bution. We estimate the model using the OLS, two-stage least squares (TSLS), CopulaP&G

and our two proposed COPEs methods.

We use the IV-based TSLS estimator as a benchmark to test the validity of our proposed

methods. Following Park and Gupta (2012), we use retail price at the other store as an in-

strument for price. This variable can be a valid instrument as it satisfies the two key require-

ments. First, retail prices across stores in a same market can be highly correlated because

wholesale prices are usually offered the same (or very close). The Pearson correlation be-

tween the detrended log retail prices at Stores 1 and 2 is 0.79, providing strong explanatory

power on the endogenous price. The correlation is comparable to that in Park and Gupta

(2012). Second, some unmeasured product characteristics such as shelf-space allocation, shelf

location and category location are determined by retailers and are usually not systematically

related to wholesale prices (exclusion restriction). For the three copula-based methods, we

make use of information from the existing endogenous and exogenous regressors and no extra

IVs are needed. In CopulaP&G, we add the copula transformation of the detrended log price,

logP∗ = Φ−1(Ĥ(logP)), as a “generated regressor” to the outcome regression. For the COPE

method, we add another two “generated regressors”, copula transformation of bonus and price

reduction (Bonus∗ = Φ−1(L̂1(Bonus)), PriceRedu∗ = Φ−1(L̂2(PriceRedu))). For the 2sCOPE

method, we first regress logP∗ on Bonus∗ and PriceRedu∗, and then add the residual as the only

“generated regressor” to the outcome regression. Ĥ(·), L̂1(·), L̂2(·) are all estimated CDFs using

the univariate empirical distribution for each regressor. Standard errors of parameter estimates

are obtained using bootstrap.

Table 10 reports the estimation results. Beginning with the results from Store 1, OLS

estimates are significantly different from TSLS estimates, indicating that the price endogeneity

issue occurs. Instrumenting for retail price changes the price coefficient estimate from -0.767 to

-1.797, implying that there is a positive correlation between unobserved product characteristics

and the price. The estimates of ρ in the three IV-free copula-based methods, representing

the correlation between the endogenous regressor Pt and the error term, are all significantly

positive, further confirming our previous conclusion. This direction of correlation is consistent

with previous empirical findings (e.g., Villas-Boas and Winer 1999, Chintagunta et al. 2005).

The price elasticity estimates from the CopulaP&G, the proposed COPE and 2sCOPE are -

3.082, -3.111 and -2.014, respectively. Among the three estimates, the estimate of -2.014 from

the proposed 2sCOPE is close to the estimate of -1.797 from the TSLS method, whereas the
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Table 10: Estimation Results: Toothpaste Sales

OLS TSLS CopulaP&G COPE 2sCOPE

Store Parameters Est SE t-value Est SE t-value Est SE t-value Est SE t-value Est SE t-value

Store 1 Constant 1.301 1.197 0.25 -2.993 1.646 1.82 -8.526 2.619 3.26 -8.569 2.820 3.04 -3.908 2.314 1.69

Price -0.767 0.288 2.66 -1.797 0.396 4.54 -3.082 0.620 4.97 -3.111 0.664 4.69 -2.014 0.555 3.63

Bonus 0.371 0.122 3.31 0.104 0.141 0.74 0.415 0.115 3.61 0.522 0.288 1.81 0.064 0.171 0.37

PriceRedu 0.498 0.115 4.33 0.285 0.125 2.28 0.544 0.111 4.90 1.033 0.211 4.90 0.275 0.143 1.92

ρ - - - - - - 0.521 0.098 5.32 0.662 0.117 5.66 0.297 0.089 3.34

Store 2 Constant -3.898 1.246 3.13 0.763 1.943 0.39 1.107 3.404 0.33 1.324 3.430 0.39 0.001 2.702 0.00

Price -1.982 0.300 6.61 -0.864 0.467 1.85 -0.799 0.807 0.99 -0.783 0.811 0.96 -1.048 0.648 1.62

Bonus 0.062 0.116 0.53 0.286 0.148 1.93 0.032 0.117 0.27 -0.819 0.426 1.92 0.239 0.151 1.58

PriceRedu 0.283 0.111 2.55 0.540 0.137 3.94 0.275 0.110 2.5 0.540 0.194 2.78 0.467 0.152 3.07

ρ - - - - - - -0.319 0.177 1.80 -0.358 0.164 2.18 -0.188 0.109 1.72

existing copula and the proposed COPE yield substantially smaller price elasticity estimates.

We confirm in the literature that the TSLS and 2sCOPE estimates are reasonable because

the price elasticity of toothpaste category in the literature is around -2.0 (Hoch et al. 1995,

Mackiewicz and Falkowski 2015). Comparing the estimates of ρ from the three IV-free copula-

based methods, our proposed 2sCOPE provides a much smaller estimate of ρ (0.297 for 2sCOPE

vs 0.521 for CopulaP&G and 0.662 for COPE in Table 10), consistent with the over-correction

in both CopulaP&G and COPE.

Reasons for the substantial difference in the estimates from the CopulaP&G include (1) its

ignoring correlated endogenous and exogenous regressors which can lead to inconsistent esti-

mates, and (2) the unimodal close-to-normality distribution for the logarithm of price variable

leading to potentially poor finite sample performance. In fact, the correlations between logP∗

and the exogenous regressors are -0.44 for Bonus and -0.26 for PriceRedu, both of which are

substantially larger than the corresponding correlations (-0.30 and -0.15, respectively) between

logP and the exogenous regressors. The p-value for the null hypothesis of these correlations

being zeros are significantly less than 0.05 (< 0.001), indicating a violation of Assumption 4

required for CopulaP&G to yield consistent estimates.

Reasons for the substantial difference in the estimates from the proposed COPE method

include (1) a uni-modal close-to-normality distribution for the price variable leading to poten-

tially poor finite sample performance of COPE, and (2) loss of estimation precision manifested

due to a larger standard error of estimates as compared with those from 2sCOPE. By contrast,
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the proposed 2sCOPE can relax the non-normality assumption of the endogenous regressor,

and yield consistent and efficient estimates even if the endogenous regressor follows a normal or

nearly normal distribution. Moreover, 2sCOPE provides estimates with smaller standard error

than COPE, which confirms Theorem 4 showing that using two-stage copula estimation reduces

estimation variance.

Unlike Store 1, the results from Store 2 indicate that the retail price is not endogenous.

First, The estimates of ρ, which is the correlation between price and the error term, are not

significantly different from 0 for both CopulaP&G and 2sCOPE (t-value ≤ 1.96 under columns

“CopulaP&G” and “2sCOPE” for Store 2 in Table 10), and only slightly significantly different

from 0 for COPE (a t-value of 2.18, slightly larger than 1.96 under Column “COPE” in Table 10).

The estimate of ρ for the COPE, however, is questionable because of the limitations of COPE

mentioned in the paragraph above. Second, the estimated price coefficient of OLS is -1.982,

which is very close to the estimates of TSLS and 2sCOPE in store 1 and further confirming no

endogeneity of price in store 2. Overall, the price elasticity estimates from TSLS and the three

IV-free copulas-based methods are close to each other for Store 2, and the observed differences

between them and the OLS estimate can be attributed to estimation variability incurred from

using more complicated models instead of the presence of endogeneity.

In sum, the convergence of results between TSLS and the proposed method 2sCOPE in both

stores supports the validity of the proposed methods in addressing the endogeneity issue. More-

over, the difference between the estimates in the two proposed methods (COPE vs 2sCOPE)

in store 1 shows the advantages of 2sCOPE in terms of relaxing the non-normality assumption

of the endogenous regressor and estimation efficiency gain by exploiting additional information

from correlated exogenous regressors.

6. Conclusion

Causal inference lies at the center of social science research, and observational studies often

beg rigorous post-study designs and methodologies to overcome endogeneity concerns. In this

paper, we focus on the instrument-free copula method to handle the problem of endogenous re-

gressors. We propose a generalized two-stage copula endogeneity correction (2sCOPE) method

that overcomes two key limitations of the existing copula-based method in Park and Gupta

(2012) (CopulaP&G), and extend CopulaP&G to more general settings. Specifically, 2sCOPE

allows exogenous regressors to be correlated with endogenous regressors and relaxes the non-
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normality assumption on the endogenous regressors. To demonstrate the benefits of 2sCOPE,

we compare it with the other proposed method, called COPE. Similar to CopulaP&G, both

COPEs (COPE and 2sCOPE) methods correct endogeneity by adding “generated regressors”

derived from the existing regressors and are straightforward to use. COPE is a direct extension

to CopulaP&G by adding latent copula transformation of existing regressors, while 2sCOPE

has two stages and adds the residuals from regressing latent copula data for the endogenous

regressor on the latent copula data for the exogenous regressors as a “generated regressor” in

the structural regression model. We theoretically prove that both proposed COPEs methods

can yield consistent causal-effect estimates when exogenous regressors are correlated with the

endogenous regressors, which can cause biased estimates in the method of Park and Gupta

(2012). Moreover, the 2sCOPE method can further relax the nonnormality assumption on the

endogenous regressors and improve estimation efficiency.

We conduct simulation studies and use an empirical marketing application to empirically

verify the performance of our proposed methods. The simulation results show that both methods

yield consistent estimates under relaxed assumptions. Moreover, 2sCOPE method outperforms

COPE in terms of dealing with normal endogenous regressors and improving estimation effi-

ciency. Endogenous regressors are allowed to be normally distributed as long as one of the

exogenous regressors is nonnormally distributed, which is a very weak assumption. The effi-

ciency gain is substantial and can be up to ∼50%, meaning that sample size can be reduced by

∼50% to achieve the same estimation efficiency as compared with COPE method that does not

exploit the correlations between endogenous and exogenous regressors. Last but not least, our

robustness checks show that the proposed methods are reasonably robust to the structural error

distributional assumption and non-Gaussian copula correlation structure (Online Appendix D).

We further apply our methods to a commonly used public dataset in marketing. When dealing

with endogenous price, we find that the estimated price coefficient using our proposed 2sCOPE

is very close to the TSLS estimate, while OLS and CopulaP&G show large biases. Moreover,

results of the two proposed methods demonstrate the advantage of 2sCOPE in dealing with

(nearly) normal endogenous regressors and improving estimation efficiency.

These findings have rich implications for guiding the practical use of copula-based instrument-

free methods to handle endogeneity. A known critical assumption for CopulaP&G is the non-

normality of endogenous regressors. The users of the method in the literature have all been

practicing the check and verification of this assumption. However, our work shows that this
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is insufficient: one also needs to check Assumption 4 for the one-endogenous-regressor case,

and Assumption 4(b) for the multiple-endogenous-regressors case. Note that neither assump-

tion is the same as checking the pairwise correlations between the endogenous and exogenous

regressors. Assumption 4 evaluates pairwise correlations involving copula transformation of

the endogenous regressor, which, as shown in our empirical application, can be substantially

different from the pairwise correlations using the regressor itself (Danaher and Smith 2011).

Assumption 4(b) evaluates the correlations between exogenous regressors and the linear combi-

nation of generated regressors, which are even more different from checking pairwise correlations

on the regressors themselves. When the above assumptions are satisfied, CopulaP&G is pre-

ferred to our proposed COPEs methods, since the simpler and valid model outperforms more

general but more complex models.

If any endogenous regressor fails to have sufficient departure from being normally distributed,

or any exogenous regressor violates the Assumptions 4 or 4(b), our proposed COPEs methods

should be used instead of CopulaP&G. Then the next step is to decide which of COPE and

2sCOPE to use. Both methods employ the generated regressor approach and are straightfor-

ward to use. However, if any endogenous regressor is normally distributed or is close to be

normally distributed, only 2sCOPE can perform well. 2sCOPE also performs better by reduc-

ing estimation variance. Overall, 2sCOPE has much to recommend, and COPE is considered

here mostly for demonstrating the benefits of 2sCOPE.

The 2sCOPE is straightforward to extend to many other settings, and we have derived

2sCOPE for a range of commonly used marketing models, including linear regression models,

linear panel models with mixed-effects, random coefficient logit models and slope endogeneity.

The 2sCOPE method proposed here can be applied to these cases and many other cases not

studied here while accounting for correlations between exogenous and endogenous regressors and

exploiting the correlations for model identification in the presence of insufficient non-normality

of endogenous regressors.

Although the proposed 2sCOPE contributes to the literature by relaxing key assumptions

of the existing copula correction method CopulaP&G and extending it to more general settings,

it is not without limitations. For the 2sCOPE to work best, the distributions of the endogenous

regressors need to contain adequate information. The condition is violated when the endogenous

regressors follow Bernoulli distributions or discrete distributions with small support, as noted

in Park and Gupta (2012). The proposed 2sCOPE method does not address this limitation.
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Developing instrument-free methods to handle such inadequately distributed endogenous regres-

sors is an important topic for future research. The simplicity of 2sCOPE hinges on the normal

structural error and Gaussian copula dependence structure. Although 2sCOPE demonstrates

reasonable robustness to departures from these assumptions as shown in Online Appendix D,

future research is needed for more flexible methods testing and relaxing these assumptions. De-

spite these limitations, we expect that the proposed 2sCOPE will provide a useful alternative

to a broad range of empirical problems when instruments are not available.
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Online Appendix A: Proofs

Proof of Theorem 1

Under the Gaussian copula assumption for structural error term ξt and the endogenous

regressor Pt, and the normality assumption of ξt, the outcome regression becomes (Equation 6)

Yt = µ+ Ptα+Wtβ + σξ · ρ · P ∗t + σξ ·
√

1− ρ2 · ωt

Because of the exogeneity assumption of Wt in linear model (Equation 1), Cov(Wt, ξt) = 0,

Cov(Wt, ξt) = Cov(Wt, σξ · ρ · P ∗t + σξ ·
√

1− ρ2 · ωt)

= σξ · ρ · Cov(Wt, P
∗
t ) + σξ ·

√
1− ρ2 · Cov(Wt, ωt) = 0.

Thus, whenever Wt and P ∗t is correlated, the covariance between Wt and P ∗t is

Cov(Wt, ωt) = − ρ√
1− ρ2

Cov(Wt, P
∗
t ) 6= 0,

and Wt would be correlated with the new error term ωt. Theorem proved.

Proof of Theorem 2: Consistency of COPE

Under the Gaussian copula model for (Pt, ξt) and the normality assumption of the error term

ξt, we can divide ξt into an endogenous and exogenous part and our proposed COPE method

is based on the OLS estimation of the regression below (Equation 10) by adding P ∗t and W ∗t as

generated regressors.

Yt = µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

P ∗t +
−σξρpwρpξ

1− ρ2
pw

W ∗t + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t

We want to prove that the new error term ω3,t is uncorrelated with all terms of the right-hand

side. Since ω1,t, ω2,t and ω3,t follow a standard multivariate Gaussian distribution (Equation

8), they are independent. According to the same equation, W ∗t and P ∗t are linear functions of

ω1,t and ω2,t. Thus, P ∗t and W ∗t are normally distributed and are independent of ω3,t. Since

functions of independent variables are still independent, Pt (Wt), as a function of P ∗t (W ∗t ),

would be uncorrelated with ω3,t and thus ω3,t is not correlated with Pt, P
∗
t ,Wt and W ∗t on the

right-hand side of Equation (10). Since Pt and Wt are nonnormal distributed, the full rank

assumption is satisfied and thus COPE yields consistent estimates. Theorem proved.

Next we show that this result can be readily extended to the multi-dimension Wt case.

We first derive the regression of the COPE method. Here we take 2-dimension Wt as an

example. When there are one endogenous regressor Pt and two exogenous regressors Wt, the

44



linear regression is:

Yt = β0 + β1Pt + β2W1,t + β3W2,t + ξt (39)

Under the Gaussian Copula assumption,

P ∗t

W ∗1,t

W ∗2,t

ξ∗t


∼ N





0

0

0

0


,



1 ρ1 ρ2 ρξ

ρ1 1 ρw 0

ρ2 ρw 1 0

ρξ 0 0 1




(40)

The multivariate normal distribution can be written as follows:

P ∗t

W ∗1,t

W ∗2,t

ξ∗t


=



1 0 0 0

ρ1

√
1− ρ2

1 0 0

ρ2
ρw−ρ1ρ2√

1−ρ21

√
1− ρ2

2 −
(ρw−ρ1ρ1)2

1−ρ21
0

ρξ
−ρ1ρξ√

1−ρ21

(ρw−ρ1ρ2)ρ1ρξ
1−ρ21

−ρ2ρξ√
1−ρ22−

(ρw−ρ1ρ2)2

1−ρ21

γ


·



ω1,t

ω2,t

ω3,t

ω4,t


,

where ωk,t ∼ N(0, 1), k = 1, 2, 3, 4, γ =

√√√√√1− ρ2
ξ −

ρ21ρ
2
ξ

1−ρ21
−
( (ρw−ρ1ρ2)ρ1ρξ

1−ρ21
−ρ2ρξ√

1−ρ22−
(ρw−ρ1ρ2)2

1−ρ21

)2

. Structural

error ξt can then be written as a function of P ∗t and W ∗t ,

ξt = σξξ
∗
t =

σξρξ(1− ρ2
w)

1− ρ2
1 − ρ2

2 + 2ρ1ρ2ρw + ρ2
w

(
P ∗t −

ρ1 − ρ2ρw
1− ρ2

w

W ∗1,t −
ρ2 − ρ1ρw

1− ρ2
w

W ∗2,t

)
+ σξγ · ω4,t.

(41)

Thus, our COPE method in 2-W case becomes:

Yt = β0 + β1Pt + β2W1,t + β3W2,t + β4P
∗
t + β5W

∗
1,t + β6W

∗
2,t + σξγ · ω4,t (42)

where

β4 =
σξρξ(1− ρ2

w)

1− ρ2
1 − ρ2

2 + 2ρ1ρ2ρw + ρ2
w

β5 =
−σξρξ(1− ρ2

w)

1− ρ2
1 − ρ2

2 + 2ρ1ρ2ρw + ρ2
w

· ρ1 − ρ2ρw
1− ρ2

w

β6 =
−σξρξ(1− ρ2

w)

1− ρ2
1 − ρ2

2 + 2ρ1ρ2ρw + ρ2
w

· ρ2 − ρ1ρw
1− ρ2

w

.

Since ω4,t is independent of P ∗t , W ∗1,t and W ∗2,t, it would also be uncorrelated with any functional

form of P ∗t , W ∗1,t and W ∗2,t, and thus ω4,t is uncorrelated with any other terms in Equation (42).

The COPE method can easily be extended to the case with multiple endogenous regressors

by adding copula transformation of each regressor as generated regressors into the outcome

regression, and the proof of estimation consistency is similar.
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Proof of Theorem 3: Consistency of 2sCOPE

We have shown the derivation of 2sCOPE method in Section 3. The system of equations

used in 2sCOPE method (Equations 11, 12) leads to the following equations

Yt = µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

εt + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t,

P ∗t = ρpwW
∗
t + εt.

The proof of consistency is similar to the proof of Theorem 2. Since ω3,t is independent of P ∗t

and W ∗t , it would also be uncorrelated with any functional form of P ∗t and W ∗t , and thus ω3,t is

uncorrelated with Pt, Wt and εt. Once Pt or Wt is nonnormal, εt is not a linear function of Pt

and Wt, satisfying the full rank condition required for model identification using the 2sCOPE

method. Theorem proved.

Next we show that this result can be easily extended to the multi-dimension Wt case. We

first derive the system of equations of the 2sCOPE method. Here we take 2-dimension Wt as

an example. Because of the Gaussian relationship among P ∗t and W ∗t we assumed in Equation

(40), the first stage regression becomes

P ∗t =
ρ1 − ρ2ρw

1− ρ2
w

W ∗1,t +
ρ2 − ρ1ρw

1− ρ2
w

W ∗2,t +

√
1− ρ2

1 −
(ρ2 − ρ1ρw)2

1− ρ2
w

ω3,t

=
ρ1 − ρ2ρw

1− ρ2
w

W ∗1,t +
ρ2 − ρ1ρw

1− ρ2
w

W ∗2,t + ε2,t

= γ1W
∗
1,t + γ2W

∗
2,t + ε2,t. (43)

The structural error ξt in Equation (11) and the first-stage error term ε2,t are linear transfor-

mations of the Gaussian data (ξt, P
∗
t ,W

∗
1,t,W

∗
2t) and thus follow a bivariate normal distribution.

Thus, ξt can be decomposed to a sum of one term containing ε2,t and an independent new error

term, resulting in the following regression equation:

Yt = β0 + β1Pt + β2W1,t + β3W2,t + β4ε2,t + σξγ · ω4,t. (44)

where

β4 =
σξρξ(1− ρ2

w)

1− ρ2
1 − ρ2

2 + 2ρ1ρ2ρw + ρ2
w

.

Since ω4,t is independent of P ∗t , W ∗1,t and W ∗2,t, it is uncorrelated with any functional form

of P ∗t , W ∗1,t and W ∗2,t, and thus ω4,t is uncorrelated with Pt, W1,t, W2,t and ε2,t in Equation

(44). Thus, 2sCOPE that performs OLS regression of Equation (44) yields consistent model

estimates. Without loss of generality, the result can be extended to cases with any dimension

of Wt.
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Proof of Theorem 4: Variance Reduction

According to the COPE method in Equation (10),

Yt = µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

P ∗t +
−σξρpwρpξ

1− ρ2
pw

W ∗t + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t.

The coefficients of P ∗t and W ∗t follows a linear relationship. Denote δ3 and δ4 the coefficients of

P ∗t and W ∗t respectively. Then,

δ4 + ρpwδ3 = 0.

With the two-stage estimation in 2sCOPE (Equation 14), ρpw is estimated in the first stage and

is thus treated as a known parameter in the main regression. That is, 2sCOPE can be viewed

as the COPE method with a linear restriction. The linear restriction is,

δ4 + ρ̂pwδ3 = 0. (45)

In this case, the two-stage copula method (2sCOPE) can be viewed as one kind of restricted

least square estimation based on COPE. We next prove that restricted least square can achieve

reductions in standard errors. Suppose we simplify the regression expression in Equation (10)

as

y = Xθ + ε,

where ε ∼ N(0, σ2I), X ≡ (1, Pt,Wt, P
∗
t , W ∗t ), and θ = (µ, α, β, δ3, δ4). The restriction in

Equation (45) becomes

Rθ = 0,whereR = (0, 0, 0, ρ̂pw, 1).

Thus, the 2sCOPE yields the least square estimates θ̂2 of Equation (10) subject to the above

restriction, whereas COPE yields the unrestricted least square estimates, θ̂1, as follows.

θ̂1 ∼ N(θ, σ2(X ′X)−1),

θ̂2 ∼ N(θ, σ2M(X ′X)−1M ′).

where according to restricted least square theory, M = I − (X ′X)−1R′(R(X ′X)−1R′)−1R. Let

us compare the variance of θ̂1 and θ̂2. Note that,

M(X ′X)−1M ′

=(I − (X ′X)−1R′(R(X ′X)−1R′)−1R)(X ′X)−1(I −R′(R(X ′X)−1R′)−1R(X ′X)−1)

=(X ′X)−1 − (X ′X)−1R′(R(X ′X)−1R′)−1R(X ′X)−1.
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Therefore,

V ar(θ̂1)− V ar(θ̂2) = σ2{(X ′X)−1 −M(X ′X)−1M ′}

= σ2(X ′X)−1R′(R(X ′X)−1R′)−1R(X ′X)−1 ≥ 0.

Since the matrix V ar(θ̂1) − V ar(θ̂2) is positive semi-definite, all the diagonal elements should

be greater than or equal to zero. Thus, the imposition of the linear restriction brings about a

variance reduction. Theorem proved.

We have proved that there would be variance reduction when there exist restriction of

parameters. When the exogenous variable Wt is a scalar, the linear restriction is shown in

Equation (45). We next show that when Wt is extended to a multi-dimension vector, there

are still linear restrictions and variance reduction of 2sCOPE. We take a 2-dimension Wt as

an example below. According to the 2sCOPE method with 2-dimension Wt in Equations (43,

44), 2sCOPE is equivalent to adding two restrictions to COPE in Equation (42). The two

restrictions are:

β5 + γ̂1β4 = 0

β6 + γ̂2β4 = 0

where γ̂1 and γ̂2 are estimated and obtained in the first stage in Equation (43). Thus, compared

with COPE, we still have variance reduction using 2sCOPE in the 2-W case. Without loss of

generality, this result can be extended to cases with any dimension of Wt.

Proof of Theorem 5: Nonnormality Assumption Relaxed

In this section, we prove that our proposed 2sCOPE method can relax the nonnormality

assumption on the endogenous regressors imposed in CopulaP&G, while COPE does not.

We first examine the COPE method in Equation (10),

Yt = µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

P ∗t +
−σξρpwρpξ

1− ρ2
pw

W ∗t + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t.

If the endogenous regressor Pt is normally distributed, Pt = Φ−1
σp (Φ(P ∗t )) = σpP

∗
t and thus

P ∗t and Pt would be fully collinear, violating the full rank assumption and making the model

unidentified.

We then examine the 2sCOPE method in Equation (14).

Yt = µ+ Ptα+Wtβ +
σξρpξ

1− ρ2
pw

εt + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t,

εt = P ∗t − ρpwW ∗t .

When the endogenous regressor Pt is normally distributed, Pt = Φ−1
σp (Φ(P ∗t )) = σpP

∗
t . Since
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we add the residual εt from the first stage to the outcome regression instead of adding each P ∗t

and W ∗t , εt would not be perfectly collinear with Pt and Wt as long as one of the W s correlated

with Pt is not normally distributed. Theorem proved.

Online Appendix B: COPEs for Slope Endogeneity with Correlated and Normally

Distributed Regressors

In this section, we describe the COPEs approaches to addressing slope endogeneity with corre-

lated regressors in the following model:

Yt = µ+ Ptαt +W ′tβt + ηt, where αt = ᾱ+ ξt, (46)

αt, βt are individual-specific regression coefficients and ᾱ is the mean of αi, ξt ∼ N(0, σ2
ξ ).

The normal error term ηi is uncorrelated with the regressors Pt and Wt and thus causes no

endogeneity concern. However, the random coefficient ξt can be correlated with the regressor

Pt, causing the problem of “slope endogeneity”. Pt and Wt can be correlated. Assuming

that (Pt,Wt, αt) follows a Gaussian copula model, the COPE approach to addressing the slope

endogeneity problem is derived as follows.

Yt = µ+ Pt(ᾱ+
σξρpξ

1− ρ2
pw

P ∗t +
−σξρpwρpξ

1− ρ2
pw

W ∗t + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

ω3,t) +W ′tβt + ηt

= µ+ Ptᾱ+
σξρpξ

1− ρ2
pw

Pt × P ∗t +
−σξρpwρpξ

1− ρ2
pw

Pt ×W ∗t +W ′tβt +

σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

Pt × ω3,t + ηt. (47)

Given both Pt×P ∗t and Pt×W ∗t in Equation (47), the unobserved variable w3,t is independent

of all regressors (Pt,Wt, P
∗
t ,W

∗
t ) and uncorrelated with functions of these regressors. Thus,

Equation (47) can be estimated using standard methods for random-effects models with ω3,t

as the random effect and (Pt × P ∗t , Pt × W ∗t ) as generated regressors. The method of Park

and Gupta (2012) adds only Pt × P ∗t as a generated regressor, and may fail to yield consistent

estimates when Pt and Wt are correlated, resulting in the correlation between the random effect

in their method and the regressor Wt.

The 2sCOPE for addressing the slope endogeneity problem with correlated regressors is

derived as follows

Yt = µ+ Pt(ᾱ+
σξρpξ

1− ρ2
pw

εt + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

· ω3,t) +W ′tβt + ηt

= µ+ Ptᾱ+
σξρpξ

1− ρ2
pw

P ∗t × εt +W ′tβt + σξ

√
1− ρ2

pξ −
ρ2
pwρ

2
pξ

1− ρ2
pw

Pt × ω3,t + ηt, (48)

where only one generated regressor, P ∗t × εt, is needed, given which the random effect ω3,t is
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independent of all regressors in Equation (48).

Both COPE and 2sCOPE can be implemented using the standard methods for random

effects models by simply adding generated regressors to control for endogenous regressors. By

contrast, the maximum likelihood approach requires constructing a complicated joint likelihood

of (ξt, ηt, P
∗
t ,W

∗
t ), which is not what the standard random effects method uses and thus requires

separate development and significantly more computation involving numerical integration.

Online Appendix C: COPEs for Random Coefficient Logit Model with Correlated

and Normally Distributed Regressors

We next consider endogeneity bias in the following random utility model with correlated en-

dogenous and exogenous regressors:

uhjt = ψhj + P ′jtαh +W ′jtβh + ξjt + εhjt, j = 1, · · · , J,

uh0t = εh0t, j = 0 if no purchase,

where uhjt denotes the utility for household h = 1, · · · , nh at occasion t = 1, · · · , T with

j = 1, · · · , J alternatives and j = 0 denotes the option of no purchase. In the utility func-

tion, ψhj is the individual-specific preference for choice j with ψhJ normalized to be zero for

identification purpose, (Pjt,Wjt) include the choice characteristics, and (αh, βh) denote the

individual-specific random coefficients. These individual-specific coefficients (ψhj , αh, βh) per-

mit heterogeneity in both intercepts and regressor effects across cross-sectional units, such as

consumers or households. In this model, the association between regressors in Pjt and the unob-

served common shock ξjt causes endogeneity bias. We further allow Pjt and Wjt to be correlated.

The term εhjt is the idiosyncratic error uncorrelated with all regressors. An individual at any

occasion chose the alternative with the largest utility, i.e., Yhjt = 1 iff uhjt > uhj′t ∀j′ 6= j.

When εhjt follows an i.i.d Type I extreme value distribution, the choice probability follows the

random-coefficient multinomial logit model.

The COPEs approach can be used to address the endogeneity issue using the following

two-step procedure. In the first step, we estimate the model

uhjt = δjt + ψ̃hj + P ′jtah +W ′jtbh + εhjt,

where δjt = µj + P ′jtᾱ + W ′jtβ̄ + ξjt, (µj , ᾱ, β̄) is the mean of random effects (ψhj , αh, βh),

ψ̃hj = ψhj − µj , ah = αh − ᾱ and bh = βh − β̄. δjt is treated as occasion- and choice-specific

fixed-effect parameters in this model. Since the regressors are uncorrelated with the error term

εhij , there is no endogeneity bias in the model. In the second step, we estimate the equation
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below.

δ̂jt = µj + P ′jtᾱ+W ′jtβ̄ + ξjt + ηjt, (49)

where δ̂jt denotes the estimate of the fix-effect δjt; ηjt denotes the estimation error of δ̂ij and

is approximately normally distributed. In the second-step model, the structural error is corre-

lated with Pjt, leading to endogenous bias. We then apply COPEs to correct for the endogenous

bias, which can avoid the potential bias of CopulaP&G due to the potential correlations be-

tween P and W , as well as make use of this correlation to relax the non-normality assumption

of Pit, improve model identification and sharpen model estimates. The above development is for

individual-level data. Park and Gupta (2012) also derived their copula method for addressing

endogeneity bias in random coefficient logit models using aggregate-level data. It is straight-

forward to extend the COPEs to the setting with correlated regressors and (nearly) normal

regressor distributions.

Online Appendix D: Additional Results

Case 1: Additional Results

Table 11: Results of the Simulation Study for Case 1 with Sample Size of 200

OLS CopulaP&G COPE 2sCOPE

ρpw Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

0.5 µ 1 0.683 0.097 3.264 1.228 0.191 1.194 1.020 0.223 0.091 0.999 0.137 0.005

α 1 1.583 0.079 7.388 1.048 0.178 0.271 0.990 0.184 0.056 0.996 0.175 0.023

β -1 -1.265 0.068 3.902 -1.291 0.068 4.293 -1.019 0.166 0.116 -1.004 0.101 0.044

ρpξ 0.5 - - - 0.559 0.122 0.489 0.493 0.139 0.048 0.489 0.097 0.109

σξ 1 0.857 0.044 3.224 1.016 0.107 0.148 1.018 0.100 0.176 1.001 0.094 0.013

D-error - - 0.016598 0.009069

0.7 µ 1 0.723 0.091 3.050 1.304 0.175 1.740 1.006 0.197 0.031 0.983 0.114 0.153

α 1 1.817 0.095 8.583 1.255 0.161 1.584 1.032 0.182 0.175 1.044 0.174 0.253

β -1 -1.539 0.084 6.388 -1.574 0.086 6.686 -1.045 0.180 0.250 -1.033 0.131 0.251

ρpξ 0.5 - - - 0.624 0.103 1.200 0.490 0.135 0.077 0.480 0.067 0.297

σξ 1 0.796 0.039 5.156 0.988 0.105 0.116 0.999 0.096 0.011 0.982 0.090 0.205

D-error - - 0.016245 0.008867
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Case D1: Misspecification of ξt

Similar to CopulaP&G, we assume the structural error to be normally distributed. Though

the normality of ξt is a reasonable and commonly used assumption in marketing and economics

literature, the true distribution of ξt is often unknown, resulting in possible misspecifications.

In this simulation study, we examine the robustness of the proposed methods to the departures

from the normality of ξt. We generate 1,000 data sets using the same multivariate normal

distribution as in Equation (26). The rest of DGP is:

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ(ξ∗t )− 0.5, (50)

Pt = H−1(Up,t) = H−1(Φ(P ∗t )), Wt = L−1(Uw,t) = L−1(Φ(W ∗t )), (51)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · Pt + (−1) ·Wt + ξt. (52)

where we set Pt ∼ Gamma(1, 1) and Wt ∼ Exp(1) in the simulation. Note that the structural

error ξt now follows a uniform distribution instead of a normal distribution. For estimation, we

assume normality of ξt and use the OLS estimator and the proposed methods.

Table 12: Results of the Simulation Study Case D1: Misspecification of ξt

OLS COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.912 0.013 6.807 1.005 0.026 0.203 1.004 0.016 0.232

α 1 1.161 0.010 16.30 0.992 0.017 0.506 0.992 0.016 0.481

β -1 -1.073 0.009 8.180 -0.998 0.020 0.116 -0.996 0.011 0.321

ρpξ 0.5 - - - 0.502 0.051 0.043 0.499 0.034 0.015

σξ 0.289 0.251 0.004 8.624 0.293 0.009 0.476 0.292 0.009 0.385

Table 12 reports estimation results. As the same in Case 1, OLS estimates are biased.

COPE and 2sCOPE can still recover the true parameter values despite the misspecification of ξt,

demonstrating the robustness of the proposed COPEs methods to the normal error assumption.

D2: Misspecification of Copula

In the proposed methods, we use the Gaussian copula to capture the dependence structure

among the regressors and error term (Up, Uw and Uξ). In practice, the dependence might

come from an economic mechanism (such as marketing strategic decisions) and thus might be

different from what the Gaussian copula generates. In this section, we examine the robustness

of the Gaussian copula in simulated data. Specifically, we generate the dependence among Up,
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(a) T Copula (ρ = 0.5) (b) Gaussian Copula (ρ = 0.5)

Figure 4. Scatter plots of Randomly Generated Pairs Up, Uw (Up,Uξ) for Considered Copulas.

Uw and Uξ using copula models other than the Gaussian copula. Specifically, we consider the

following T copula models which provide flexible random general generation from arbitrary and

heterogeneous correlation structures among more than two variables:

C(Up, Uw, Uξ) =

∫ t−1
ν (Up)

−∞

∫ t−1
ν (Uw)

−∞

∫ t−1
ν (Uξ)

−∞

Γ(ν+d
2 )

Γ(ν2 )
√

(πν)d|Σ|

(
1 +

x′Σ−1x

ν

)
dx, (53)

where t−1
ν denotes the quantile function of a standard univariate tν distribution. We set the

degree of freedom ν=2, and the dimension of the copula d=3 in this example. Σ is covariance

matrix capturing correlations among variables. The data-generating process (DGP) of t copula

is summarized below:
P ∗t

W ∗t

ξ∗t

 ∼ tdν



0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 = tdν




0

0

0

 ,


1 0.5 0.5

0.5 1 0

0.5 0 1


 . (54)

Figure 4 shows the scatter plots of randomly generated (Up, Uw, Uξ) pairs from the above

copulas, as well as the Gaussian copula with the same correlation of 0.5. The figure shows

disparate dependence structures between Up and ξt (Up and Uw) for these two copulas.

We then use the following process to generate Pt,Wt and ξt:

ξt = G−1(Uξ) = Φ−1(Uξ), (55)

Pt = H−1(Up),Wt = L−1(Uw), (56)

Yt = 1 + 1 · Pt + (−1) ·Wt + ξt. (57)

where H(·) is a gamma distribution and L(·) is an exponential distribution. We set T = 1000,

generate 1000 data sets and estimate the parameters using the OLS estimator and the proposed

COPEs methods.

Table 13 summarizes the estimation results. OLS estimates are still biased for all param-

eters. By contrast, estimates from the proposed COPE and 2sCOPE methods are centered

closely around the true values. Therefore, the proposed methods based on the Gaussian copula
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are reasonably robust to the misspecification of the copula dependence structure among the

regressors and the structural error.

Table 13: Results of the Simulation Study Case D2: Misspecification of Copula

OLS COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.710 0.530 5.463 1.002 0.127 0.016 0.988 0.077 0.156

α 1 1.580 0.044 13.13 1.030 0.115 0.257 1.029 0.116 0.250

β -1 -1.289 0.047 6.142 -1.033 0.127 0.262 -1.017 0.070 0.248

ρpξ 0.5 - - - 0.463 0.085 0.435 0.458 0.067 0.622

σξ 1 0.864 0.026 5.236 0.993 0.054 0.133 0.988 0.054 0.230
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