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1 Introduction

Advanced economies in recent years have been characterized by very low interest rates, also
known as “secular stagnation” (Summers 2014). This has led economists and policymakers
to challenge the textbook view on the relationship between public debt and (primary)
deficits; raising current deficits may no longer have to be offset by lowering future deficits
and raising taxes. Instead, when the interest rate R lies below the growth rate G, there
may be a “free lunch” (Blanchard 2019), according to which deficits can be increased
permanently without causing explosive debt dynamics; and higher debt levels can be
sustained without reduced deficits. In other words, when R lies below G, the fiscal cost of
increased debt may be zero or even negative.

This paper systematically studies the fiscal cost of borrowing and the joint dynamics of
public debt and primary deficits. Our starting point is a tractable model with two main
ingredients. First, R can lie below G, and R increases in government debt. We model this
simply by assuming government debt provides convenience benefits (e.g., Krishnamurthy
and Vissing-Jorgensen 2012, Greenwood, Hanson, and Stein 2015) but also argue that our
results likely carry over to other microfoundations. The second ingredient is a zero lower
bound (ZLB) constraint on the nominal interest rate R, which allows for the possibility that
weak demand reduces output and inflation, and thus also the nominal growth rate G of
the economy.

Building on the model, our paper makes four contributions. First, we show that the
correct condition for the existence of a free lunch policy is not R < G; instead, it is a tighter
condition, R < G− ϕ, where ϕ is the sensitivity of R− G to the logarithm of public debt to
GDP. As a consequence, even for countries in which R < G, borrowing more may not be
free. The intuition for why R < G− ϕ is the free lunch condition is the following. Suppose
that R < G. The government decides to borrow one additional dollar and plans to roll it
over forever. This fiscal choice will have two opposing effects on government’s budget
constraint. On the one hand, the rolling over of additional dollar produces a positive
cash flow for the government equal to G− R. On the other hand however, the additional
borrowed dollar also tightens the budget constraint because of its impact on the interest
rate on all infra-marginal outstanding units of debt. This latter effect is precisely captured
by ϕ and combining the two effects gives us R < G− ϕ as the free lunch condition.

Our second contribution is to characterize the dynamics of debt and deficits at or near
the ZLB. This is important, as many economies with low R today are close to the ZLB.
There, deficits are important instruments to increase aggregate demand (Blanchard and
Tashiro 2019, Furman and Summers 2020). We show that this aggregate-demand channel
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may “invert” the textbook view on deficits and debt at the ZLB: Greater deficits may
reduce, rather than increase, debt. This is because greater deficits raise aggregate demand
and inflation; higher inflation translates into higher nominal growth rates; this pushes
debt down, as it increases the speed at which debt is “inflated away”. This indirect effect
through the nominal growth rate can be sufficiently strong to overwhelm the direct effect
of greater deficits on debt.

The third contribution of our paper is to study the role of inequality and tax progressivity.
Inequality matters for government debt since as much as 69% of U.S. government debt
held by U.S. households is directly or indirectly held by households in the top 10% of the
U.S. wealth distribution (Mian, Straub, and Sufi 2020). To evaluate the role of inequality in
our framework, we allow for saver and spender households, as in Campbell and Mankiw
[1989], Mankiw [2000], Galı́, López-Salido, and Vallés [2007], and Bilbiie [2008]. Using
these two types of households, we show that increased inequality, modeled as a greater
share of income earned by savers, increases fiscal space and increases the availability of
free lunch policies outside the ZLB. We believe that this finding is interesting as it points to
a potential conflict between reducing inequality (e.g. via progressive taxation) on the one
hand, and funding large deficits on the other. We show that at the ZLB, inequality reduces
fiscal space as it reduces aggregate demand and nominal growth rates.

The fourth contribution of our paper is a calibration of our model to the economies of
the United States and Japan in December 2019, before the disruptions caused by Covid-19.
Our calibration suggests that the United States was just inside the free lunch region at the
time, and could sustain a maximum permanent primary deficit of just over 2% of GDP at a
stable debt-to-GDP ratio of 110%. These are the free lunch limits implied by the condition
R < G− ϕ. Notably, the traditional condition of R < G is valid until a debt-to-GDP ratio
of 220%. However, higher deficits beyond the free lunch limit of 110% have to be paid for
either through higher future taxes or reduced spending. In contrast to the United States,
our calibration for Japan as of December 2019 shows ample room for free lunch policies. In
fact, we find that Japan is in the “inverted” regime, in which an increase in deficits would
reduce debt levels, precisely due to the effect on aggregate demand and inflation.

We make our four contribution by analyzing our model in an intuitive deficit-debt
diagram, in which a locus characterizes the feasible set of steady state combinations of the
primary deficit (or surplus) and debt. The deficit-debt locus is hump-shaped: deficits are
zero both for zero debt and when debt is sufficiently large that R = G. In between, deficits
are positive, consistent with the idea that R < G allows an economy to permanently run
positive deficits. The locus characterizes where a free lunch policy is available, namely
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exactly on the left branch of the locus, to the left of its peak. It also explains how, at the ZLB,
the inverted relationship between deficits and debt levels occurs because of a “backward-
bending” shape of the deficit-debt locus. While we focus on our tractable model for the
most part in our paper, we plot the deficit-debt diagram also for a number of alternative
models, to illustrate that our results are likely to generalize.

We provide several extensions to our basic framework that expand the scope of our
results. First among these is the introduction of aggregate risk into our model, building
on the framework of Mehrotra and Sergeyev [2020]. We prove that, even with aggregate
risk, our free lunch condition remains informative. Specifically, when R < G− ϕ holds on
average, the probability of a free lunch succeeding can be chosen to be arbitrarily close to 1
by suitable choice of the size of the free lunch policy. On the contrary, when R > G− ϕ on
average, a free lunch never succeeds. We confirm that this result numerically also holds for
the Blanchard [2019] model.

Our second extension adds capital to the production function and thus allows govern-
ment debt to crowd out capital, as explored by Blanchard and Weil [2001]. Interestingly,
we show that greater crowding out of capital increases fiscal space and makes a free lunch
policy more likely to exist as it reduces the sensitivity of the interest rate to the level of
government debt.

In our third and final extension, we study the role of the maturity structure of debt. We
find that issuing long-term debt generally reduces fiscal space at small debt levels, but
increases it for higher debt levels. This suggests that some forms of Quantitative Easing
(QE) may have the side effect of constraining fiscal space with rising debt levels among
advanced economies.

Related Literature. This study is part of a growing body of theoretical research that
has emerged around two important facts on government debt. The first fact is that the
nominal interest rate on government debt is lower than the nominal growth rate on
average, R < G, going back to at least Feldstein [1976].1 The second, and more recent
fact, is that the demand curve for government debt slopes down empirically, that is, the
interest rate on government debt rises in the volume of government debt (Engen and
Hubbard 2004, Laubach 2009, Krishnamurthy and Vissing-Jorgensen 2012, Greenwood
et al. 2015, Presbitero and Wiriadinata 2020). This fact is typically either attributed to effects
of government debt on the marginal product of capital (due to crowding out of capital), to

1See Bohn [1991], Ball, Elmendorf, and Mankiw [1998], Blanchard [2019], Mehrotra and Sergeyev [2020]
for more recent papers documenting the historical patterns of R vs. G.
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effects of debt on risk premia, or to effects of debt on its “convenience benefits”, capturing
regulatory requirements, liquidity premia, and safety premia.

The literature has explored several ways to explain one or both of these facts. Bohn
[1995] and Barro [2020] suggest that R < G can naturally occur in complete markets
economies with aggregate risk. Due to Ricardian equivalence (Barro 1974), the model
suggests that government debt neither affects R, nor can the government run a permanent
deficit in each state of the world. According to Jiang, Lustig, Van Nieuwerburgh, and
Xiaolan [2019], this approach cannot explain the valuation of U.S. government debt.

The perhaps largest literature on R < G is based on OLG models, going back to
Samuelson [1958] and Diamond [1965]. One branch of this literature studies when R < G is
a sign of dynamic inefficiency (Abel, Mankiw, Summers, and Zeckhauser 1989, Blanchard
and Weil 2001, Ball and Mankiw 2021); another branch evaluates the welfare implications of
increased debt levels (Ball et al. 1998, Blanchard 2019, Brumm, Feng, Kotlikoff, and Kubler
2021a,b); the most relevant branch of the OLG literature for us is the one concerned with the
possibility of “free lunch” policies (Blanchard and Weil 2001, Blanchard 2019). These papers
show that, when R < G, a debt-rollover policy is more likely to succeed when the economy
is inefficient and production is linear in capital, but no general condition is developed.2

Our paper develops a precise condition for a free lunch to exist in a deterministic model,
R < G− ϕ, which is significantly stricter than R < G. We show that the condition still has
bite with aggregate risk, and even holds in the Blanchard [2019] model itself. Interestingly,
in recent work, Aguiar, Amador, and Arellano [2021] find that a similar condition is
indicative of the possibility of robust welfare improvements.

The above facts have also been approached using liquidity premia. Woodford [1990]
illustrates how liquidity demand by producers or consumers can lead to R < G. Angeletos,
Collard, and Dellas [2020] microfound a convenience yield function based on liquidity
needs to revisit the optimality of the Barro [1979] tax smoothing results.3 Bayer, Born, and
Luetticke [2021] estimate the response of the liquidity premium to fiscal policy shocks
empirically and model it with an estimated two-asset HANK model. Domeij and Ellingsen
[2018] obtain R < G in a Bewley-Aiyagari model. The closest paper to ours among this class
of models is Reis [2021]. The paper microfounds liquidity and safety premia of government
debt and shows that a “bubble premium” emerges on public debt, which can be used to

2There is also a long literature on the private production of assets when the return on non-government
assets is also below the growth rate, see, e.g., Tirole [1985], Kocherlakota [2009], Farhi and Tirole [2012],
Hirano and Yanagawa [2016], and Martin and Ventura [2018].

3See also Canzoneri, Cumby, and Diba [2016], Bhandari, Evans, Golosov, and Sargent [2017], Azzimonti
and Yared [2019].
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sustain permanent primary deficits. Different from the analysis in Reis [2021], we focus on
the dynamics of debt and deficits, both with and without the ZLB, and show when a free
lunch exists.4

Mehrotra and Sergeyev [2020] share with our paper the assumption of a convenience
utility function v(b) over government debt, which they employ in a model with aggregate
risk and a specific deficit rule that yields a particularly tractable law of motion of debt-to-
GDP. They use it to show that slower trend growth and higher output risk can increase
debt-to-GDP. By comparison, our paper focuses on free lunch policies and the possibility of
a binding ZLB. Kocherlakota [2021] microfounds a linear utility from holding bonds with a
small probability disaster shock and shows how this allows the government to improve
welfare by increasing debt. Michau [2020] presents a model with net wealth in the utility
and a ZLB constraint and uses it to study fiscal policy plans that lead the economy away
from the ZLB. Guerrieri, Lorenzoni, and Rognlie [2021] argue that a potentially binding
ZLB constraint in the future can be a rationale for preserving fiscal space.

Our model is based on the assumption that monetary policy is active in stabilizing
inflation and economic activity whenever it is not constraint by the ZLB. A recent branch
of the literature explores deviations from this assumption.5 Brunnermeier, Merkel, and
Sannikov [2020a,b] derive a Laffer curve for the rate of inflation in a model with liquidity
needs among producers. Sims [2019] argues that fiscal policy should, in general, use this
“inflation tax” to generate seignorage-like revenue and reduce distortionary taxes (different
from Chari and Kehoe 1999). The deficit-debt schedule that we derive, and on which our
phase diagram is based, may seem similar to the inflation Laffer curve, but is quite distinct,
as we explain in Section 3.4.

This study is also closely related to the burgeoning literature on the sources and impli-
cations of safe asset demand (e.g., Caballero, Farhi, and Gourinchas 2008, Caballero and
Farhi 2018b, and Farhi and Maggiori 2018). In their model of the international monetary
system, Farhi and Maggiori [2018] explore an equilibrium in which there is large demand
for debt issued by a hegemon government. When this is met by too much issuance, default
risk emerges. When there is too little issuance, the ZLB may bind. This pattern resembles
our deficit-debt diagram with a potentially binding ZLB, albeit it emerges in our case as the
steady state locus of a dynamic model, rather than as a one-shot choice of the government
as in Farhi and Maggiori [2018].

4In Appendix C, we show that the economy in Reis [2021] can also be represented in a deficit-debt
diagram.

5See also the recent work by Bassetto and Cui [2018] and Bianchi and Melosi [2019]. See Bassetto and
Sargent [2020] for an excellent survey.
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Finally, the notion of a free lunch formalizes an intuition that is often associated with
“Modern Monetary Theory” (MMT). However, unlike common renditions of MMT (see
Bisin 2020 for a critical review), our model spells out the exact conditions under which a
free lunch policy works or does not work. In line with intuition by Lerner [1943], we find
that a free lunch policy always exists if an economy faces a persistent demand shortage at
the ZLB.

2 Model

We begin with a stylized model that we extend in later sections. The model runs in
continuous time and is deterministic.6 It consists of a government, a household side
with savers and spenders, and a monetary authority. The government issues government
debt, spends, and raises lump-sum taxes. Spenders and savers consume and savers draw
convenience benefits from holding government debt. The monetary authority targets
inflation.

Throughout, we denote by Rt the net nominal interest rate on government debt and
by Gt ≡ γ + πt the net nominal growth rate, which is equal to real trend growth γ plus
inflation πt. G∗ ≡ γ + π∗ corresponds to nominal trend growth, when inflation is at its
target π∗.

To save on notation, we will conduct our analysis entirely in the context of a model
that is de-trended with the nominal growth rate. Potential output y∗ in the de-trended
model is constant and we normalize it to one, y∗ ≡ 1. Any quantities, such as the level of
government debt bt are to be understood as government debt relative to potential GDP.
Moreover, we refer to Rt − Gt as the “de-trended rate of return” on government debt, as
it is the return Rt net of the re-investment that is necessary to keep a constant ratio of
government debt to potential GDP. We abstract from capital in our baseline model, but
discuss it at length in Section 7.2.

Households. The economy is populated by a unit mass of savers and a unit mass of
spenders, as in Campbell and Mankiw [1989] and Mankiw [2000]. Savers choose paths of
consumption ct and government debt holdings bt in order to maximize

max
{ct,bt}

∫ ∞

0
e−ρt {log ct + v (bt)} dt (1)

6We separately study aggregate risk in Section 6.
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subject to the consolidated budget constraint

ct + ḃt ≤ (Rt − Gt) bt + (1− µ)wtnt − τt. (2)

The objective (1) involves flow utility from consumption log ct and a utility v(bt) from hold-
ing government debt (relative to potential GDP). The latter captures safety and liquidity
benefits that have been used extensively and are well documented in the literature (e.g.
Sidrauski 1967, Krishnamurthy and Vissing-Jorgensen 2012). In line with this literature,
we assume that the utility over government debt is twice differentiable, increasing and
concave, v′ ≥ 0, v′′ ≤ 0.7 Flow utility is discounted using a discount rate ρ.

Each saver has a labor endowment of 1− µ, where µ ∈ [0, 1) captures the income share
of spenders. Savers sell a fraction nt ≤ 1 of their endowments at real wage wt each instant.
nt can lie strictly below 1 if there is rationing (see below). Savers pay lump-sum taxes τt.

Spenders are hand-to-mouth.8 Each spender has a labor endowment of µ, and also sells
a fraction nt of it at real wage wt. Spenders pay lump-sum taxes τ̃t. Thus, their consumption
is equal to

c̃t = µntwt − τ̃t. (3)

Representative firm. We assume that labor is used by a representative firm with linear
production technology yt = nt. The firm sets flexible prices, pinning down the real wage to
1 at all times, wt = 1. In contrast, we assume that nominal wages are downwardly rigid.
Similar to Schmitt-Grohé and Uribe [2016], the path of nominal wages Wt satisfies

Ẇt

Wt
≥ π∗ − κ(1− nt). (4)

This implies that, whenever labor demand is falling short of the labor endowments, wage
inflation will fall short of π∗. The lower labor demand is, the lower wage inflation will
be, just like in a standard Phillips curve. κ ≥ 0 parameterizes the slope of the Phillips
curve. Price inflation πt in our de-trended model is equal to wage inflation and therefore
determined by (4). Observe that potential output, with nt = 1, is indeed equal to one,
y∗ = 1. The term 1− nt in (4) is therefore simply equal to the output gap, (y∗ − yt) /y∗.

7We also assume that the range of v′ is given by [0, ∞) or (0, ∞), that v′′ < 0 whenever v′ > 0, and that v′

is weakly convex.
8One can easily microfound this behavior by assuming that spenders do not enjoy any convenience

benefits from holding government bonds and are unable to borrow.
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Government. The government sets fiscal and monetary policy. Fiscal policy consists of
paths {x, bt, τt, τ̃t} of government spending x, government debt bt and taxes τt, τ̃t, subject
to the flow budget constraint

x + (Rt − Gt) bt ≤ ḃt + τt + τ̃t (5)

The primary deficit is given by
zt ≡ x− τt − τ̃t (6)

We assume taxes adjust to ensure that zt follows a given fiscal rule zt = Z(bt). Our baseline
assumption is that taxes on spenders are zero τ̃ = 0 and taxes on savers τt adjust. We
consider the case where τ̃ 6= 0 in Section 3.5. Typically, Z(b) is downward-sloping in debt
b, corresponding to a lower deficit or greater surplus with a higher debt level.

Government debt bt is short-term and real in our baseline model. We study long-term
debt in Section 7.1. Government spending x ≥ 0 is assumed to be constant for now. Our
analysis below is similar to one in which government spending is allowed to vary while
taxes are kept fixed.

Monetary policy is “dominant” in our model, that is, it successfully implements the
natural allocation whenever feasible. In particular, we denote by {R∗t } the path of the
nominal natural interest rate, which would materialize in the absence of nominal rigidities
in our model, assuming inflation is constant at its target π∗. We assume that the actual
nominal interest rate then follows

Rt = max{0, R∗t }. (7)

In particular, whenever the natural interest rate is positive, Rt tracks the natural interest
rate R∗t , the economy is at potential, yt = nt = 1, and inflation is at its target πt = π∗.9

When the natural rate is negative, however, Rt is constrained to be equal to zero by the
ZLB. In that case, we will find that the economy falls below potential, yt = nt < 1. Labor
endowments are rationed, equally across the two types of agents.10

Equilibrium. We define equilibrium in our model as follows.

Definition 1. Given an initial level of debt b0 and a fiscal rule Z(·), a (competitive) equilib-

9As is well understood, the inflation target can be implemented by an active Taylor rule Rt = R∗t + φπt
with φ > 1. We discuss equilibrium uniqueness in Section 4.

10This is similar to the rationing equilibria in Barro and Grossman [1971], Malinvaud [1977], and Benassy
[1986].
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rium consists of a tuple {ct, c̃t, yt, nt, bt, Rt, Gt, πt, τt, τ̃t, zt, wt}, such that: (a) {ct, bt} maxi-
mizes savers’ objective (1) subject to (2), and c̃t satisfies (3); (b) the deficit {zt} follows the
fiscal rule Z and taxes are in line with (6); (c) debt evolves in line with the flow budget
constraint (5) and remains bounded; (d) monetary policy sets the nominal rate Rt in line
with the rule (7); (e) inflation πt is determined by the Phillips curve (4); (f) output yt is
given by yt = nt and the real wage is wt = 1; (g) the goods market clears ct + c̃t + x = yt.
A steady state equilibrium is an equilibrium in which all quantities, real prices, and inflation
are constant.

Features of government debt in the model. There are two ways to interpret the conve-
nience utility v(b), either as coming from the asset supply or the asset demand side.

v(b) as coming from asset supply. According to this view, government debt offers asset-
specific benefits, due to liquidity, safety, regulatory requirements, or international insti-
tutional demands. These benefits, or some subset of them, are often grouped together as
“convenience benefits”, and collectively explain why certain government bonds may have
a particularly low yield relative to seemingly similar other assets (Krishnamurthy and
Vissing-Jorgensen 2012, Caballero, Farhi, and Gourinchas 2017, Jiang, Lustig, Van Nieuwer-
burgh, and Xiaolan 2020, Koijen and Yogo 2020, Mota 2020). In Appendix D we offer
a simple microfoundation for our convenience utility v(b) based on a low-probability
disaster shock (as in Barro 2020), after which a government may default on its debt.

v(b) as coming from asset demand. According to this view, savers require higher yields
in order to hold greater amounts of government debt. This can be microfounded with
life-cycle (as in Diamond 1965, Blanchard 2019) or precautionary saving motives (as in
Aiyagari and McGrattan 1998). We demonstrate in Section 5.5 and in Appendix C that
results are likely similar when these microfoundations of the asset demand view are used
instead of our v(b) utility.

3 Fiscal space without the ZLB

In this section, we focus on the case without a ZLB constraint, so that Rt = R∗t in all periods,
effectively implementing the flexible price allocation. We study the role of the ZLB in
Section 4. We begin our analysis by characterizing steady state equilibria.

10



3.1 Steady state equilibria

Our model admits a set of steady state equilibria, indexed by the level of steady state debt
b ≥ 0. For each b, one can find a primary deficit z such that ḃ = 0 and the economy remains
steady at that level of debt b.

The interest rate is equal to the natural rate, Rt = R∗t , output and employment are at
potential, yt = nt = 1, inflation is at its target, πt = π∗, and the nominal growth rate is
equal to nominal trend growth, Gt = G∗.

To see how the natural rate is determined, consider the savers’ Euler equation

ċt

ct
= R∗t − G∗ − ρ + v′(bt)ct (8)

Here, v′(bt) enters as it is the marginal convenience utility from saving one more unit in
government bonds. It enters with the opposite sign as the discount rate ρ and therefore
effectively makes the household more patient when saving in government bonds.

In a steady state, savers’ consumption is constant and equal to 1− x − µ by goods
market clearing, where x is government spending and µ consumption of spenders. This
lets us solve (8) for the natural interest rate,

R∗(b) = ρ + G∗ − v′(b) · (1− x− µ)︸ ︷︷ ︸
convenience yield

. (9)

This expression for the natural interest rate on government debt is intuitive. The natural
rate is equal to ρ + G∗, which would be the steady state return on any non-convenience-
bearing assets, minus the steady state convenience yield v′(b) · (1− x− µ). The expression
already suggests how R∗ moves with debt. As v is a concave utility function, R∗ weakly
increases in government debt b.

3.2 Steady state deficits and deficit-debt diagram

It is useful to represent R∗(b) and G∗ in a diagram, Figure 1(a). R∗(b) is increasing in
debt levels as higher debt levels reduce the convenience yield. The threshold for R = G
is determined by v′(b)(1− x− µ) = ρ. It is positive, b > 0, if v′(0) (1− x− µ) > ρ. One
noteworthy implication of the equation for the upper bound is that the size of b can be
large, and is in no meaningful way constrained by existing household or private wealth of
agents. In fact, with ρ → 0, b would diverge to infinity, allowing the government to run
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Figure 1: Interest rate, growth rate, and deficits. Case without ZLB.

(a) Interest rate and growth rate (b) Deficit debt diagram

permanent deficits even for very large debt levels. In this limit, private wealth relative to
potential GDP could become unboundedly large.

For any given level of debt b we can then compute the primary deficit that keeps debt
constant at b by setting ḃ = 0 in (5),

z(b) = (G∗ − R∗(b)) b. (10)

We plot z(b) in Figure 1(b). We refer to this diagram as the deficit-debt diagram and we
will use it extensively in this paper. Each point (b, z) on the locus shown corresponds to
a steady state equilibrium with constant debt level b and constant primary deficit z. The
locus is naturally hump-shaped. If R(0) is finite, the steady state primary deficit is zero
when debt is zero, as well as when R = G, z(0) = z(b) = 0. Between 0 and b, the primary
deficit is positive.

The deficit-debt diagram is an intuitive description of an economy’s “fiscal space”: for
any given initial level of debt, it exactly shows what the primary deficit needs to be in order
for debt to remain put.

To characterize the shape further, we define the semi-elasticity of the convenience yield
as follows,

ϕ (b) ≡ −(1− x− µ)
∂v′(b)
∂ log b

= −(1− x− µ)v′′(b)b.

ϕ is effectively the inverse (semi-)elasticity of savers’ demand for government debt. With ϕ

at hand, we then have the following result.

Proposition 1. If z(b) has a local maximum at some b∗ ∈ (0, b), we have that

R∗(b∗) = G∗ − ϕ(b∗). (11)
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If, in addition, ϕ(b) is weakly increasing in b, then b∗ is the unique local (and global) maximum,
with primary deficit z∗ ≡ ϕ(b∗)b∗.

Proof. From (10) we see that z′(b) = G∗− R∗(b)− R∗′(b)b. Substituting (9) into z′(b) yields
that z′(b∗) = 0 holds precisely when (11). If ϕ(b) = R∗′(b)b is weakly increasing, z′(b) is
strictly decreasing and hence b∗ is the unique global maximum.

The proposition characterizes the maximum of the primary deficit schedule z(b) as
being at a point at which R∗ = G∗ − ϕ, with a maximum primary deficit of z∗ = ϕb∗. This
emphasizes that ϕ(b) is a crucial determinant of the shape of the deficit-debt diagram. The
fact that the maximum is in the interior of [0, b] echoes a similar finding in Bassetto and
Sargent [2020] in an OLG setting.

3.3 The free lunch condition R < G− ϕ

One idea that has garnered considerable attention in the literature surrounding R < G (see,
e.g., Blanchard 2019) is that the condition seemingly allows economies to run larger deficits
temporarily, and then simply “grow out” of the resulting increased debt levels without a
need to raise taxes. We refer to this idea as the “free lunch” property of higher deficits. A
stronger version of the “free lunch” idea is that permanent increases in deficits do not require
tax increases going forward, even if they lead to permanently greater (non-explosive) debt
levels.

Both versions of the free lunch idea can easily be derived from the government budget
constraint (5), under the assumption of a constant interest rate R and a constant growth
rate G > R. Then,

ḃt = − (G− R) bt + z (12)

describes a stable differential equation for debt b. This implies that temporary increases in
deficits of arbitrary magnitude, leading to greater debt levels, can always be grown out
of over time. Also, a permanent increase in deficits by some ∆z simply raises steady state
debt levels by ∆z/(G− R), with no need for a reduction in deficits, i.e. an increase in taxes,
at any point. Both versions of the free lunch property are satisfied with exogenous R and
G in (12). This is clearly a stylized example but it captures one, if not the most, important
reason why fiscal policy in a world with R < G is thought to be so different from fiscal
policy with R > G.

We next investigate the extent to which the free lunch idea holds true in our model. What
distinguishes our model from the stylized analysis in (12), is that R is endogenous to the
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debt level. To understand the dynamics of bt, it is crucial to incorporate this endogeneity.11

To do so, we first describe the behavior of the debt level for a general exogenous path zt of
primary deficits. Then, we feed in the specific paths for deficits that correspond to the two
versions of the free lunch property.

Even along transitions, savers’ consumption remains constant at 1− x− µ. Thus, the
natural rate R∗(bt) is still given by (9),

R∗(bt) = ρ + G∗ − v′(bt) · (1− x− µ).

Therefore, the dynamics of the debt level simply follow

ḃt = − (G∗ − R∗(bt)) bt + zt (13)

for an exogenous path of deficits zt.12 Notably, the dynamics of debt are perfectly backward
looking, despite households being forward looking with rational expectations. This stems
from the fact that consumption is constant even along transitions due to the goods market
clearing condition, pinning down the natural interest rate in each instant.

Representing transitions in the deficit-debt diagram. A useful diagram to study the
effects of temporary or permanent changes in deficits is the deficit-debt diagram. In
Figure 2 we indicate with arrows the direction the economy travels in when deficits are
moved above or below the steady state locus.

As the figure shows, when deficits are raised above the steady state locus, debt grows,
until either the steady state locus is hit, or until, at some point in the future, the deficit is
reduced again down to the steady state locus. When deficits are reduced below the steady
state locus, debt falls over time. Mathematically, this behavior follows immediately from
(13).

Figure 2(a) plots the evolution of debt in a model with exogenous R and G. As one can
see, in this case, any increase in deficits is stable. A free lunch policy is always available.
This would be the outcome of a model with a linear convenience utility v(b), and is
analyzed in Kocherlakota [2021], who microfounds the utility over bonds by allowing for a
small probability disaster state with high and constant marginal utility of wealth. This is
also why the debt rollover experiments in Blanchard and Weil [2001] and Blanchard [2019]
are stable with linear technology.

11See also the response of Miller and Sargent [1984] to Darby [1984] for a similar conceptual point.
12If deficits followed a fiscal rule zt = Z(bt) instead, one would simply have to replace zt in (13).
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Figure 2: Transitions when changing the deficit

(a) Model with exogenous R < G (b) Model with endogenous R∗(b)

The free lunch region in our model. By contrast, Figure 2(b) allows us to see the region
of the state space in which the government can obtain a “free lunch” in our model, with
endogenous R. Indeed, any steady state on the increasing part to the left of the peak at b∗

allows for some form of a free lunch. For example, starting at any of these steady states,
a permanent increase in the deficit to any value below or equal to z∗ can be sustained
indefinitely. If the deficit increase is temporary, it can exceed z∗, as long as it is reduced
back to z∗ or below in time. We show an example transition along these lines in Figure 2(b).

However, while the diagram in Figure 2(b) illustrates how a “free lunch” policy is
indeed possible, it also makes the limits of such a policy very clear. For example, if deficits
are increased by too much and / or for too long, a free lunch cannot be obtained.

More fundamentally, a free lunch policy cannot work if the initial debt level already
exceeds b∗, that is, the initial steady state lies on the downward-sloping branch of the
deficit-debt locus in Figure 2(b).13 In this case, any deficit increases, however temporary,
must ultimately be met by reduced deficits (or surpluses). In other words, taxes must rise.
Crucially, this logic applies despite the fact that the economy displays R < G throughout.

How is this possible? The aspect of our theory that is responsible for this result is
the endogeneity of interest rates R∗(b) to the debt level. As the debt level increases, the
convenience yield of government debt falls, raising the interest cost on all (infra-marginal)
outstanding debt positions. This can undo the positive effect of a greater debt position on
the government budget constraint when R < G that we highlighted at the beginning of

13Strictly speaking, there could be multiple local maxima of z(b) in our model. The condition for the
absence of a free lunch policy is that there can be no steady state with a greater debt level and a greater or
equal deficit z.
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this section. In fact, as Figure 2(a) illustrates, this precisely happens for debt levels greater
than b∗. If the level of debt is larger than b∗, the economics behind the financing of fiscal
deficits are entirely conventional: greater debt must be repaid by raising taxes. Whether
R < G or R > G is totally irrelevant for the question whether debt is above or below b∗. As
the following corollary shows, based on our results in Proposition 1, the correct threshold
is not G, but G− ϕ.

Corollary 1. Assume the deficit-debt diagram z(b) is single-peaked. Then, there is a free-lunch
policy available at a steady state with debt level b0 > 0 if and only if R∗(b0) < G∗ − ϕ(b0).

Proof. If z(b) is single peaked, the unique global maximum b∗ is also the unique local
maximum. All points b0 < b∗ are then necessarily characterized by z′(b0) > 0, or
equivalently, R∗(b0) < G∗ − ϕ(b0). For any such point, a permanent deficit increase
by ∆z ≡ z(b1)− z(b0) > 0, for some b1 ∈ (b0, b∗) is a free lunch policy. Any point b0 ≥ b∗

does not allow for a free lunch as z′(b0) ≤ 0 there.

Is a free lunch policy always Pareto-improving? We largely refrain from making welfare
statements in this paper, partly because different microfoundations for the convenience
utility v(b) exist, and they carry different welfare implications.

If the model in Section 2 is taken literally, then a free lunch policy always constitutes a
Pareto improvement. It is easy to see why: consumption of both agents remains unchanged
in all periods, while debt increases. Since debt enters the utility of savers, welfare increases.
In fact, for a similar logic, increases in the debt level even beyond the upper bound b∗ of
the free lunch region can be welfare improving.

This becomes a bit more nuanced if one assumes that both agents are paying taxes,
e.g. for simplicity τt = τ̃t with both taxes adjusting in response to the policy. Now, a free
lunch policy is still a Pareto-improvement since it is associated with tax reductions for both
agents, and higher interest rates for savers. However, raising debt beyond b∗ generally is
no longer Pareto improving, echoing results in Aguiar et al. [2021].

3.4 Discussion

Transversality condition. The transversality condition of the saver associated with utility
maximization problem (1) is given by e−ρtc−1

t bt → 0. This is clearly satisfied in the
equilibria described above, as ct = 1− x and bt always converges to a finite value. The
transversality condition rules out paths along which debt levels explode.
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Present value vs. flow budget constraint. Our analysis illustrates the usefulness of
working with the government’s flow budget constraint. We have found the present value
budget constraint of the government to be somewhat less practical. To see why, let us
discount the flow budget constraint (5) at some arbitrary rate θt. We obtain

∫ T

0
e−
∫ t

0 θuduztdt + b0 ≤ e−
∫ T

0 θudubT +
∫ T

0
e−
∫ t

0 θudu (R(bt)− G∗ − θt) btdt (14)

(14) is equivalent to the flow budget constraint (5). However, (14) is less useful than typical
present value budget constraints. This is because in (5), the interest rate R(bt) is a function
of the stock of debt bt. Irrespective of how θt is chosen, this means that the path of debt
bt cannot be eliminated from (14), which defeats one of the main purposes of writing a
present value constraint. If θt is chosen to be entirely unrelated to R(bt)− G∗, e.g. equal
to the household discount rate ρ, the dependence on bt enters in the final term in (14); if,
instead, θt is chosen to be equal to R(bt)− G∗, the final term in (14) disappears but the
dependence on bt enters in (14) through θt. Moreover, if θt < 0, one cannot take the limit
T → ∞ in (14). This is why we prefer to work with the flow budget constraint (5) instead.

If one were to work with (14), one natural choice for θt is the marginal cost of borrowing,
θt = R(bt)− G∗ + ϕ(bt), which includes ϕ(bt). Locally around a steady state with debt bss,
interest rate Rss = R(bss) and ϕ = ϕ(bss), we then find a present value constraint∫ ∞

0
e−(Rss−G+ϕ)tztdt + bss ≤

ϕ

Rss − G + ϕ
bss (15)

(15) is well-defined whenever there is no free lunch, that is, Rss > G − ϕ. Relative to
a standard present value condition, it includes an extra term (one may call this a “debt
revenue term” as in Reis 2021) on the right hand side of (15), capturing additional fiscal
space afforded by the convenience utility. The fact that discounting includes ϕ means
that this condition is well defined even if Rss < Gss, so long as there is no free lunch,
Rss > Gss − ϕ. If there is a free lunch, (15) is not well-defined as, locally, there are no
constraints on deficits zt around a free lunch steady state.

Comparison with a Sidrauski [1967] money-in-the-utility model. Our model is similar
to money-in-the-utility models in that a real asset enters the utility function directly. As
we show in Appendix C.2, a straightforward money-in-the-utility version of our model
would give a steady state first order condition ρ + G∗ = v′(M/P) · (1− x − µ) where
M is money supply and P is the price level. While this looks almost like the first order
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Figure 3: What determines fiscal space?

(a) Discount rate ρ (b) Income inequality 1− µ

condition (9) in our model, there are crucial differences. The main difference is that, in the
flexible-price money-in-the-utility model, the supply of money determines the price level
P. In Appendix C.2, we show that this allows the government to move M/P up or down
instantaneously, wherever it starts from, and thus realize a free lunch from any initial value
of M/P. This starkly differs from the flexible-price version of our model, where the price
level grows at exogenous rate π∗ and the supply of bonds instead influences the interest
rate Rt. A free lunch in our model is only available when R < G− ϕ.

3.5 What determines fiscal space?

What does the size and shape of the deficit-debt locus depend on? This section investigates
the role of four factors: discount rates, trend growth, income inequality, and tax policy.

Discount rates. A greater discount rate means savers are more impatient and would like
to spend more and save less, which raises R∗. Vice versa, a smaller discount rate means
savers are more patient and would like to spend less and save more, which lowers R∗. A
lower discount rate can capture a reduction in aggregate demand.

Figure 3(a) sketches the deficit-debt diagram, for two values of ρ. For higher ρ, we
see that fiscal space shrinks, as R∗ is increased and G∗ − R∗ falls. We confirm this in the
following result.

Corollary 2. An increase in the discount rate ρ strictly reduces fiscal space.

Proof. See (16) below.
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The result follows directly by substituting out the interest rate (9) in the equation for
the primary deficit (10),

z(b) =
(
v′(b) (1− x− µ)− ρ

)
b (16)

The locus z(b) shifts down with higher ρ. In fact, if ρ rises above v′(0) (1− x− µ), the
government has to run a primary surplus at any positive level of debt.

Trend growth. A reduction in nominal trend growth G∗—whether caused by a produc-
tivity growth slowdown, falling inflation expectations, or declining population growth—
seems like it may tighten fiscal space by moving G∗ closer to R. But this is not obvious as
slower growth rates lead to a greater desire for saving by households, pushing R∗ down
alongside G∗. With log preferences over consumption as in (1), R∗ falls one for one with
G∗, as in (9), leaving G∗ − R∗ unchanged. This is why, without a ZLB in our model, growth
does not affect steady state deficits. We revisit this comparative static below in the model
with a potentially binding ZLB.

Income inequality. Inequality is relevant for fiscal sustainability, as it is mainly richer
households that, directly or indirectly, own government debt. The top 10% of the wealth
distribution in the United States hold 69% of the government debt outstanding held by
the U.S. household sector. The bottom 50% of the wealth distribution hold almost no
government debt at all (Mian et al. 2020). The willingness or ability of richer households to
save may thus be a primary factor in the determination of interest rates on government
debt.

Our model naturally speaks to these issues. To see how, notice that greater inequality,
in the form of a reduced income share of spenders µ ↓, increases the locus z(b) in (16).

Corollary 3. Absent a ZLB constraint, greater inequality, µ ↓, expands fiscal space.

Proof. See (16) above.

Thus, greater income inequality unambiguously expands fiscal space without ZLB. This
is intuitive. Savers in our model have a greater propensity to save out of an increase in
permanent income compared to spenders, so that any increase in inequality reduces R∗

and thus increases fiscal space as z = (G∗ − R∗)b. Figure 3(b) illustrates these findings.
The model provides intuition behind the observation that rising income inequality has

been accompanied by rising fiscal deficits and government debt levels in many advanced
economies. Rising income inequality allows governments to borrow more cheaply from
savers.
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Tax policy. Similar to changes in the income distribution, tax policy also affects fiscal
space. To see how, allow for nonzero taxes (or transfers) on spenders, τ̃ 6= 0, as well as
consumption taxes τc paid by both types of agents and capital income taxes τb. The budget
constraint of savers is then given by

(1 + τc) ct + ḃt ≤
((

1− τb
t

)
Rpre

t − Gt

)
bt + (1− µ)wtnt − τt

where we use Rpre
t as the pre-tax interest rate. We use Rt and R∗t to denote post-tax interest

rates. This changes the Euler equation of savers, leading to an updated equation for the
(post-tax) natural interest rate,

R∗(bt) = ρ + G∗ − v′(bt) ((1 + τc) (1− x)− µ + τ̃) . (17)

The relationship between R∗ and τc, τ̃ then gives us the following result.

Corollary 4. Absent a ZLB constraint, increased regressive income taxes τ̃ and consumption taxes
τc expand fiscal space. Increased capital income taxes τb leave fiscal space unchanged.

Proof. The post-tax interest rate R∗(b) in (17) is the correct one to use in the government
budget constraint. From (17), we see that for any b, R∗(b) falls in τc, τ̃, and is independent
of τb. Substituting (17) into (10) then proves the statements.

Corollary 4 studies the effects of raising taxes on the deficit-debt schedule. To interpret
the results, we bear in mind that increased taxes τ̃, τc, τb, are by construction met by a
reduction in lump-sum taxes on savers τ.

Raising taxes τ̃ on spenders is regressive, reducing demand and thus natural interest
rates R∗ in (17). This acts like an increase in income inequality, and increases fiscal space
absent a binding ZLB constraint. It may be surprising that raising consumption taxes τc

is similarly regressive in our model, even though both agents pay them. This is because
savers trade off consuming and saving in their Euler equation, and their saving is not
just driven by future consumption, but also by convenience benefits from holding bonds.
Greater consumption taxes τc tilt savers towards saving, expanding fiscal space. Increased
capital income taxes τb are irrelevant for fiscal policy in our model, as the before-tax
return on government debt immediately adjusts upwards to keep the after-tax return R∗(b)
constant.14

14Two caveats are in place here. First, with longer-duration debt or large surprise taxes at date t = 0, some
initial expropriation occurs, which can be used for a one-time reduction in government debt. Second, the
only source of capital income in our model is interest income from government debt. If other types of capital
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These results have three important implications. First, they suggest a potential dilemma.
Large redistributive programs may reduce fiscal space, potentially limiting the extent to
which such programs can be deficit-financed. Second, regressive taxation is able to finance
a greater level of government debt than progressive taxation, holding fixed the overall tax
burden. Governments with sufficiently large debt levels and interest rates R near or above
G may thus be forced to resort to such regressive taxation.15

The third implication concerns financial repression. Financial repression can be thought
of as the government imposing a lower bound on the required bond holdings of the saver,
bt ≥ b, thereby allowing it to reduce the interest rate it pays on government debt, from the
market rate Rt down to some Rt − ξt, where ξt measures the shadow value of marginally
relaxing the constraint. Modeled this way, financial repression corresponds to nothing other
than a tax on bondholders. When large debt positions are financed this way, a significant
amount of repression is necessary. Since it acts like a tax on savers, it reduces the resources
of savers, reduces their demand for bonds and thus requires even more stringent financial
repression.

4 Fiscal space near the ZLB

We are now ready to re-introduce the ZLB constraint. As evidenced by the extended period
of time many advanced economies have spent at the ZLB (or a similar effective lower
bound) over the past decade or more, this is a real binding constraint that needs to be
analyzed jointly with fiscal policy.

4.1 Deficit debt diagram with ZLB

To derive the deficit debt diagram, the slope of the Phillips curve κ turns out to be a crucial
parameter. The larger it is, the weaker is nominal growth in the liquidity trap at the ZLB,
which changes the dynamics and the shape of the deficit debt diagram. Below, we derive
the relevant threshold for κ to be equal to κ̂ ≡ 1−µ

1−µ−x (ρ + G∗).

Case (A): κ < κ̂. We begin with the case where κ < κ̂. In this case, whether the ZLB
is binding can be read off from the formula for R∗, (9). R∗ is negative precisely when

income, such as dividends, were present, the capital income tax would adopt some of the properties of a tax
on savers’ income.

15This argument can, in principle, be taken even further. Any policy instrument that discourages demand
reduces natural interest rates R∗ and thus has beneficial effects on the government’s interest expenses.
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b < bZLB, where bZLB is implicitly defined by v′(bZLB) = ρ+G∗
1−µ−x . At the ZLB, output is

demand determined, via the goods market clearing condition,

ct + c̃t + x = yt. (18)

Here, consumption of spenders is simply c̃t = µyt (assuming τ̃ = 0 as before), while
consumption of savers still follows an Euler equation much like (8), only that now, the
interest rate is zero, Rt = 0, and the growth rate is endogenous, due to the endogeneity of
inflation, Gt = G∗ − κ(1− yt). Substituting this into the Euler equation, we find

ċt

ct
= −G∗ + κ(1− yt)− ρ + v′(bt)ct. (19)

Jointly solving (18) and (19), we find an expression for the nominal growth rate of the
economy at the ZLB,

G(b) = G∗ − κ

v′(b) (1− µ)− κ
(−R∗(b)). (20)

This emphasizes a key theme that distinguishes fiscal space considerations at the ZLB vs
those outside the ZLB: Rather than R being endogenous to the level of debt, it is now the
growth rate G. We highlight this in Figure 4(a).

This has important implications for the deficit-debt locus z(b). Without the ZLB, low
natural rates R∗ unambiguously increase fiscal space. Now, however, as soon as R∗ falls
below zero, the nominal rate R stops decreasing, and it is instead the nominal growth
rate G that declines. This has the opposite effect on fiscal space: the permanent deficit
z(b) = (G(b)− R(b))b that the economy can run is reduced by the binding ZLB relative to
the case without ZLB. This can be seen in Figure 4(b).16

Case (B): κ = κ̂. In this case, the reduction in nominal growth at the ZLB is sufficiently
large that no steady state left of bZLB exists. Instead, the Euler equation (19) can be
simplified to

ċt

ct
= ct

(
v′(bt)− v′(bZLB)

)
.

16This result also holds with κ = 0, where both R and G are constant at the ZLB. Also, the fact that our
steady state analysis assumes a permanently binding ZLB should be viewed as an abstraction. Similar results
hold when it is simply the frequency of ZLB incidence over the business cycle that increases as an economy
has a lower average natural interest rate.

22



Figure 4: Fiscal space with ZLB constraint

(a) Interest and growth rate, case (A) (b) Deficit-debt diagram

When κ = κ̂, all ZLB steady states lie on a vertical line with debt level b = bZLB, as shown
in Figure 4(b).

Case (C): κ > κ̂. In this case, nominal growth at the ZLB is sufficiently weak that even
for debt levels b = bZLB, debt still trends to the right. The steady state locus is now
“bending backwards”, as shown in Figure 4(b). There is no steady state for b < bZLB, and
for b > bZLB, growth rates are given by

G(b) = G∗ − κ

κ − v′(b) (1− µ)
R∗(b) < G∗

which lie below G∗ since R∗(b) is positive in this range and κ > v′(b) (1− µ).
How is it possible that the deficit-debt locus bends backwards when κ > κ̂? For

an intuition, imagine the economy starts on the top black branch of the locus and the
government reduces its primary deficit. This has two effects on the dynamics of debt:

ḃ = z︸︷︷︸
direct effect

− (G− R) b︸ ︷︷ ︸
indirect effect

. (21)

Reducing the primary deficit z at a given level of debt b has a negative direct effect on ḃ. It
also indirectly reduces the natural interest rate R∗. In the absence of a ZLB constraint, the
indirect effect unambiguously raises the gap between G and R, implying that both effects
contribute to reducing debt. This is why, without the ZLB, even large deficit reductions
will always lead to faster deleveraging.

This is different in the presence of the ZLB. Now, current (and future) reductions in R∗
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do not materialize as lower R, but instead weaker nominal growth G. This pushes against
the direct effect of lower z in (21). If κ > κ̂, the indirect effect dominates for sufficiently
small deficits, and further deficit reductions no longer lead to any deleveraging.

4.2 Free lunch at the ZLB

We next revisit the question of when free lunch policies exist. To do so, we study transitional
dynamics. Different from the analysis in Section 3, consumption is now no longer constant
along the transition. Then, the economy is governed by a system of two differential
equations, the Euler equation

ċt

ct
= κ

(
1− x + ct

1− µ

)
− G∗ − ρ + v′(bt)ct (22)

in addition to the government budget constraint

ḃt =

(
κ

(
1− x + ct

1− µ

)
− G∗

)
bt + zt. (23)

While this system is harder to represent in the deficit-debt diagram, it is still straightfor-
ward to determine the availability of a free lunch. In fact, a free lunch always exists for any
ZLB steady state.17

To see this for case (A), notice that the ZLB region is always on the left branch of the
hump-shaped deficit-debt locus. An increase in the primary deficit to, say, the maximum
level z∗ ensures both a free lunch and an exit out of the liquidity trap. For cases (B) and (C),
it is even simpler. A second non-ZLB steady state exists, with the same debt level but a
greater deficit.

One issue to point out here is that in the economy with a potentially binding ZLB and
with κ > 0, multiple equilibria (with the same initial debt level) can emerge. This is well
known from standard models with active interest rate rules and a ZLB constraint (Benhabib,
Schmitt-Grohé, and Uribe 2001). Michaillat and Saez [2019] show that a convenience utility
function can resolve multiplicity when there bonds are in zero net supply and κ < v′(0).

Our model allows bonds b to be a state variable, different from zero, which can introduce
multiplicity even if κ < v′(0). For example, starting at one of the (non-ZLB) steady states
on the right branch of the deficit-debt locus, there may be a second, non-steady-state

17If an economy is not literally in a steady state with a binding ZLB constraint, this result is to be understood
as: The closer an economy is to the ZLB, and the more frequently it hits it, the more likely it becomes that a
permanent deficit expansion is possible.
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equilibrium, along which the economy converges towards one of the ZLB steady states on
the left.

Numerically, it turns out that such multiplicity is not easy to get. We have verified for
our two calibrated economies in Section 5 that no equilibrium multiplicity exists with a
deficit policy Z(b) whose slope is not too steep, such as the constant deficit policies we
have discussed before. More generally, we show in Appendix A.1 that by suitable choice of
Z(b), any steady state can be established as a unique equilibrium.

4.3 What determines fiscal space near the ZLB?

Next, we revisit the role of some of the drivers of fiscal space, only now allowing for a
potentially binding ZLB constraint. For simplicity, we present illustrations only for the
non-backward-bending case (A), that is, κ < κ̂. The other cases behave similarly.

Growth slowdown. A slowdown in trend growth G∗ did not have an effect fiscal space
outside the ZLB since the natural rate R∗ shifts down one for one with G∗, so the gap
G∗ − R∗ is unchanged. Yet, at the ZLB, a reduction in the natural rate R∗ does not translate
into a reduction in policy rate R; instead the nominal growth rate G falls. We summarize
this formally below.

Corollary 5. With a binding ZLB constraint, a reduction in trend growth G∗ reduces fiscal space:
z(b) = (G(b)− R(b))b falls with lower G∗.

Proof. This follows from the fact that z(b) = G(b)b at the ZLB. Differentiating (20) we find
∂G(b)/∂G∗ = v′(b) (1− µ) /(v′(b) (1− µ)− κ) > 0.

Income inequality. Rising income inequality (falling µ) unambiguously increases fiscal
space without the ZLB (Section 3.5). With a potentially binding ZLB constraint, we have
the following result.

Proposition 2. When the economy is at the ZLB with debt level b, increased inequality locally
reduces fiscal space z(b) if κ > 0.

Proof. Differentiating (20) with respect to µ, we see that

∂G
∂µ

= − κv′(b)

(v′(b) (1− µ)− κ)2 (−R∗(b)) +
κ

v′(b) (1− µ)− κ
v′(b)
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Figure 5: Drivers of fiscal space at the ZLB

(a) Increasing inequality can reduce fiscal space (b) Stimulus checks can reduce debt / GDP

After some algebra, and using κ > 0, ∂G/∂µ > 0 is equivalent to v′(b)x > κ − ρ− G∗. For
any b < bZLB, this is implied if v′(bZLB)x > κ − ρ− G∗. Using v′(bZLB) = ρ+G∗

1−µ−x , this is
equivalent to κ < κ̂, which we assume here. Thus, ∂G/∂µ > 0. From z(b) = G(b)b we see
that inequality reduces fiscal space.

Proposition 2 shows that income inequality can reduce fiscal space, that is, the perma-
nent primary deficit z(b), at the ZLB. This is because income inequality reduces R∗, which
at the ZLB, reduces the nominal growth rate G, rather than the nominal interest rate R.
This reduces fiscal space.

Tax policy. An immediate implication of this result is that, at the ZLB, more progressive
taxation (which here is identical to redistribution) increases fiscal space.

Corollary 6. At the ZLB, redistribution raises fiscal space z(b) if κ > 0.

In particular, this result implies that greater redistribution at the ZLB reduces the debt
level. It turns out that even deficit-financed stimulus checks may ultimately reduce the
debt, by way of increased nominal growth. We spell this out in the next result.

Proposition 3. Starting from a ZLB steady state, a permanent increase in transfers to spenders,
τ̃ < 0, without change in taxes on savers τ, reduces the debt level in the long run if κ >

(1− µ) v′(b)/ (v′(b)b + 1). A necessary and sufficient condition for this to hold for some b <

bZLB is κ > κ̂/
(
v′(bZLB)bZLB + 1

)
.

Proof. A small transfer of dτ̃ < 0 with an associated increase in the primary deficit of
dz = −dτ̃ > 0 leads to a reduction in debt if dḃ = −dz + bdG > 0. Here, dG is the change
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in nominal growth, dG = κv′(b)/ (v′(b) (1− µ)− κ) dz, which follows by substituting
R∗(bt) = ρ + G∗ − v′(bt) (1− x− µ + τ̃) (a special case of (17)) into (20). So, dḃ > 0
iff b · dG/dz > 1, which is equivalent to κ > v′(b)

v′(b)b+1 (1− µ). This condition is loosest
among all debt levels with a binding ZLB when b = bZLB, for which case we note that
v′(bZLB)(1− µ) = κ̂. This proves the results in the proposition.

This result is a close cousin of case (C) in Figure 4(b). In that figure, the locus bent
backwards because deficit-financed transfers to savers at the ZLB can ultimately lower the
debt level. We showed that this happens when κ > κ̂.

Proposition 3 highlights that deficit-financed transfers to spenders can also reduce the
debt level. In fact, this happens under a looser condition on κ. Figure 5(b) reveals that this
is because a transfer to spenders increases fiscal space at the ZLB and thus makes it more
likely that the debt level falls, even if the economy is in case (A) where κ < κ̂.

Once again, the intuition is based on the nominal growth rate response: if the inflation
response to stimulus (i.e. κ) is sufficiently large, a permanent increase in transfers increases
nominal growth sufficiently for debt to remain constant, or even fall. A similar logic applies
to temporary stimulus programs.

This intuition works at the ZLB in our model since it is a region in our model in which
changes in aggregate demand influence G rather than R. However, it also applies to any
situation in which the monetary authority temporarily or permanently keeps the nominal
interest rate unchanged while fiscal policy stimulates.

To see whether this effect is realistic and to which economies it applies most likely,
consider the following calculation. Imagine a permanent increase in the deficit by ∆z raises
output at the ZLB by some multiplier ∆y

∆z times ∆z.18 Using (21), ḃ falls precisely when

κ
∆y
∆z

b > 1.

This “sufficient statistic” condition is more likely to hold when κ, the multiplier ∆y
∆z , and the

initial debt level are large. For realistic κ’s in the range 0.1 to 0.3 (see below), and a debt
level as large as Japan’s (225%), this can be satisfied for multipliers ∆y

∆z the range 1.5− 2.

18This is a “permanent stimulus” multiplier which one would expect to be significantly greater than
multipliers from transitory stimulus.

27



5 Quantifying fiscal space in the United States and Japan

In this section we calibrate the model and measure the shape of the deficit-debt locus for
the United States and Japan as well as possible. For both countries, we are particularly
interested in determining the maximum permanent deficit z∗; the associated debt level
b∗, beyond which a free lunch policy ceases to be feasible; the level of debt b at which the
interest rate R rises above the growth rate G; and, in the case of Japan, the location of ZLB
steady states. We focus on the economies at the end of 2019, before the Covid pandemic, to
avoid misinterpreting temporary shifts due to Covid as shifts in long-run steady states.

5.1 Functional forms for the convenience yield

The crucial object to calibrate is the shape of the convenience yield v′(b)(1− µ− x). Our
calibration strategy proceeds in two steps. We first assume a parametric family of functional
forms for v′(b) and then determine the parameters that match a given steady state with
debt b0 (one of the two economies in 2019) as well as estimates of the local (semi-)elasticity
of the convenience yield ϕ(b0). We henceforth abbreviate ϕ(b0) by ϕ. Since matching
the elasticity only provides accuracy in a neighborhood of b0, we provide analyses of
robustness with respect to the functional forms below.

We consider two functional forms for v′(b) for which the empirical literature has docu-
mented a good empirical fit (e.g., Krishnamurthy and Vissing-Jorgensen 2012, Presbitero
and Wiriadinata 2020). The first is a linear specification, which will be our baseline,

linear: v′(b) (1− µ− x) = v′(b0) (1− µ− x)− ϕ
b− b0

b0
. (24)

The second is a log-linear specification,

log-linear: v′(b) (1− µ− x) = v′(b0) (1− µ− x)− ϕ log
b
b0

. (25)

In both cases, we set v′(b) = 0 for any b sufficiently large to cause the right hand side to
move below zero. The intercept v′(b0) (1− µ− x) is determined by the initial steady state,
for which the Euler equation pins down the convenience yield v′(b0) (1− µ− x) as

v′(b0) (1− µ− x) = ρ + G∗ − R0. (26)

For both functional forms, we can explicitly solve the three main quantities of interest.
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Proposition 4. For the linear specification (24), we have

b
b0

= 1 +
1
ϕ
(G∗ − R0) ,

b∗

b0
=

1
2

b
b0

, z∗ = ϕ
(b∗)2

b0
.

For the log-linear specification, we have

log
b
b0

=
1
ϕ
(G∗ − R0) , log

b∗

b0
= log

b
b0
− 1, z∗ = ϕb∗.

Proof. We have three equations for the three objects: v′(b) (1− µ− x) = ρ, ρ− v′(b∗) (1− µ− x) =
−(1− x − µ)v′′(b∗)b∗, and z∗ = (v′(b∗) (1− µ− x)− ρ) b∗. Deriving the expressions in
the proposition based on (24) and (25) is straightforward algebra.

These are simple expressions that allow us to translate empirical estimates of ϕ directly
into the three objects of interest. Interestingly, the objects are pinned down by only four
statistics: the elasticity ϕ, the initial debt level b0, nominal trend growth G∗, and the initial
interest rate R0. The elasticity ϕ takes a crucial role here, which is why we discuss its
measurement next.

5.2 Measuring the elasticity ϕ

There are different ways to estimate the elasticity ϕ that are equivalent within the context
of the model. By (26), the convenience yield is nothing other than ρ + G− R, so we can
write

ϕ = −∂ (ρ + G− R)
∂ log b

= −b0
∂ (ρ + G− R)

∂b
. (27)

Alternative ways to obtain ϕ are given by

ϕ = −∂ (G− R)
∂ log b

= −b0
∂ (G− R)

∂b
(28)

because, in the model, ρ is independent of b. As both (27) and (28) are valid ways to obtain
ϕ, we will compare estimates across these specifications. Note, however, that specifications
estimating (28) are slightly more robust, as they do not hinge on a convenience-yield
interpretation of R∗(b) and apply equally well to the alternative models in Appendix C.

The derivatives in equations (27) and (28) have been estimated in the literature, and we
summarize these estimates in Table 1.19 For equation (27), Krishnamurthy and Vissing-

19A detailed explanation of the exact specifications used from the existing literature to construct Table 1 is
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Jorgensen [2012] focus on estimates of ∂(ρ+G−R)
∂ log b . This derivative measures how the dif-

ference between the rate of return on government debt R and the return on other assets
ρ + G varies with a change in the log government debt to GDP ratio. Krishnamurthy and
Vissing-Jorgensen [2012] use the yield spread difference between corporate bonds rated
Baa and 10-year Treasuries as the measure of ρ + G− R, and they show a semi-elasticity of
-1.3% to -1.7%, depending on the sample. This implies that a 10 percent increase in debt
to GDP leads to a 13 to 17 basis point decline in the convenience yield. Alternatively, one
can use the Krishnamurthy and Vissing-Jorgensen [2012] estimates to measure b0

∂(ρ+G−R)
∂b ,

which gives estimates between -1.1% and -1.8% when using the average debt to GDP ratio
over the relevant sample period for b0.20 Finally, Jiang et al. [2020] provide estimates of the
effect of government debt to GDP ratios on convenience yields for Eurozone countries from
2002 to 2020. The implied estimate of b0

∂(ρ+G−R)
∂b from their main specification is -0.8%.

There is also a literature estimating the derivative in equation (28), which is b0
∂(G−R)

∂b .
In particular, the recent study by Presbitero and Wiriadinata [2020] estimate this derivative
in a sample of 56 countries from 1950 to 2019. They provide estimates of ∂(G−R)

∂b for 17
advanced economies and for the full sample. After multiplying these estimates by b0, which
is the average debt to GDP ratio in each of the respective samples, the implied estimates
of b0

∂(G−R)
∂b are -1.4%. For this study, we replicated the Presbitero and Wiriadinata [2020]

results for the 17 advanced economies and also for the Group of 7 (G7) countries, and the
coefficient estimate ranges are also reported in Table 1. The appendix shows the full results
from the regressions. The estimates of interest are robust to the inclusion of both time and
country fixed effects. Overall, most of the estimates across the different samples and the
two different objects fit between -1.0% and -2.5%.

An alternative technique to estimate ∂(G−R)
∂ log b is an analysis of the 2021 Georgia Senate

run-off elections that took place on January 5th in the United States. Ex-ante, there was
about an even probability of the two Democrat candidates winning their elections as there
was that at least one of the two winning candidates was Republican. In the event of a
Democrat win, Democrats would obtain the Senate majority, and would likely pass the $1.9
trillion deficit-financed stimulus package already proposed by President-elect Biden. This
was unlikely to happen otherwise. As shown in Figure 17 in Appendix E, the wins by both

in Appendix E. We thank Sam Hanson, Andrea Presbitero, Quentin Vandeweyer, and Ursula Wiriadinata for
helpful discussions.

20Two other studies in the literature use short-term T-bills and more high frequency data. Greenwood
et al. [2015] find estimates for b0

∂(ρ+G−R)
∂b in this range, around -1.4%, whereas Vandeweyer [2019] finds an

estimate of -0.4%. The estimates in these two studies should be regarded as a lower bound as they are based
on a local estimate of the demand for T-bills as opposed to demand for all government debt.
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Democrats in Georgia led to a significant persistent increase in real 10 year Treasury yields
of about 8 basis points. The effect is concentrated right after the election. It is unlikely that
the election was associated with a change in long-term growth prospects; as a result, we
interpret the evidence as suggesting that the prospect of the $1.9 trillion stimulus package,
approximately corresponding to 7.4% of outstanding debt, led to a persistent 8 basis point
reduction in G− R. As this the Democrat win was anticipated with 50% likelihood, this
gives ∂(G−R)

∂ log b = −2.2%. The natural experiment yields an effect of government debt on
G− R that is in the same range as the estimates from the existing literature. Please see the
Appendix E for details on this calculation.

Finally, Laubach [2009] and Engen and Hubbard [2004] estimate the effect of government
debt to GDP on real interest rates, finding effects in the range 3% to 4.4%. The average level
of government debt (total federal debt) to GDP over their sample period was about 50%.
Together, this gives an estimate of ϕ of b0

∂(G−R)
∂b ≈ −1.5% to −2.2% under the assumption

that the real growth rate is unaffected by government debt.
Overall, while there is some variation, most of the implied elasticity estimates ϕ lie in

the range 1.1% – 2.5%. We pick the average estimate ϕ = 1.7% for both countries as our
baseline parameter but explore robustness to ϕ = 1.2% and ϕ = 2.2% below.

5.3 Calibrating other parameters

We calibrate the remaining model parameters as follows, broadly in line with the U.S. and
Japanese economies in December 2019, before the pandemic recession of 2020/21.

For the United States, we set the initial debt level to b0 = 100% of GDP, assume
government consumption expenditure of x = 14% (in line with its value 2019Q4), and
choose an initial nominal rate of R0 = 1.5% (in line with nominal interest rates in December
2019).21 We set the nominal trend growth rate to G∗ = 3.5% (real growth γ = 1.5%),
equal to the average peak-to-peak growth rate from 2008 through 2019. In line with
G∗ − R0 = 2%, the United States was indeed running a primary deficit of about 2% before
the pandemic. We set the discount rate to ρ = 3.5%, in line with about a ρ + γ = 5% real
return on business equity during this period (see Mian, Straub, and Sufi 2021 and sources
therein). We assume savers are the top 10% of the U.S. income distribution. We set their
share of 1− µ to 50%, in line with evidence from Piketty, Saez, and Zucman [2018].

For Japan, we set initial debt to b0 = 238% of GDP (2019 value) and assume government
consumption expenditure of x = 20% (2019 value). The economy is at the ZLB, R0 = 0,

21The effective federal funds rate was 1.55%, the 5-year Treasury yield was 1.68%, the 10-year yield just
above that. The implied 5-year 5-year forward rate was 2.04%.
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Table 2: Baseline calibration

Parameter Description Value U.S. Value Japan

b0 initial debt to GDP 100% 238%

x gov. spending to GDP 14% 20%

R0 initial nominal rate 1.5% 0%

G∗ nominal trend growth 3.5% 2.3%

ρ discount rate 3.5% 1.4%

µ income share spenders 50% 55%

κ slope of Phillips curve 0.10 0.10

and had a peak-to-peak nominal growth rate G0 of 0.6% from 2008 through 2019. During
this time, inflation in Japan was 1.7% below the target of 2%. We therefore set nominal
trend growth to G∗ = 2.3% (real growth γ = 0.3% plus inflation at 2%). We set ρ = 1.4% in
line with a dividend yield of the Nikkei 225 stock market index before the pandemic of
around 1.4 (5-year average 2015 through 2019). The top 10% income share 1− µ in Japan is
set to 45% based on estimates from the World Inequality Database.

For both countries, we also need to set the slope of the Phillips curve κ. Hazell, Herreno,
Nakamura, and Steinsson [2020] estimate two values for the slope κ of their reduced form
Phillips curve, 0.1 and 0.3. We choose the lower estimate, κ = 0.1. This is conservative
regarding the “inverted” dynamics at the ZLB, and is also closer to the structural Phillips
curve estimates of Hazell et al. [2020] applied to our setting.22

We study robustness to different calibrations and different functional forms for the
convenience yield in Appendix B (for simplicity only for the case of the United States).

5.4 Calibrated deficit-debt diagrams

Figure 6 shows the calibrated deficit-debt diagrams for the United States and Japan. For
both, the figure also plots two gray dotted lines, corresponding to the two alternative
values of ϕ, 1.2% and 2.3%.

The diagram for the United States suggests that the highest permanent primary deficit

22Their estimate of the slope in a New-Keynesian Phillips curve is 0.0063. When shocks are permanent,
with a discount rate in the Phillips curve equal to the U.S. real return on equity of 5%, this gives a slope of
0.0063/(1− 0.05) = 0.126.
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Figure 6: Calibrated deficit-debt diagrams
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that the United States can run is z∗ = 2.0% of GDP, at a debt level of b∗ = 109% of GDP. The
debt level at which R rises above G is b = 218% of GDP. According to this calibration, the
United States was running its fiscal policy within the free-lunch zone as of December, 2019.
Not only was the United States running a primary deficit of about 2% of GDP at the time,
but CBO was projecting longer run six to ten year out primary deficit to be 2.2% of GDP in
August, 2019. The calibration thus suggests that projected U.S. fiscal policy more or less
sustainable on the eve of the Covid-19 recession. Of course, the Covid-19 shock increased
the debt level by a considerable amount. To the extent that the U.S. economy recovers to
the pre-Covid fundamentals, the same diagram in Figure 6 can be used to evaluate fiscal
sustainability going forward.

The diagram for Japan is very different. It suggests a markedly higher maximum
permanent deficit of z∗ = 3.5%, achieved at b∗ = 223%. R doesn’t rise above G until
b = 446% of GDP. The most important difference, however, is the ZLB region. For the
United States, there is only a small ZLB region at the far left end of the plot. For Japan,
there is a large ZLB region, which is “backward bending” as in case (C) of Figure 4 instead.

This has important implications for fiscal policy in Japan. It suggests that modestly
raising the deficit may reduce, rather than increase, the debt level in the long run.23 Vice
versa, regressive policies, such as the increase in the Japanese consumption tax passed
in 2012, may increase the debt level. Moreover, redistribution increases fiscal space and
allows the government to reduce its debt.

The deficit-debt diagram of Japan in Figure 6 is the namesake of our title: Here, both
deficits that are too low and deficits that are too high increase the debt. Intermediate

23An interesting extension of our framework would be to include inflation inertia. In that case, increasing
the deficit in Japan would first raise the debt to GDP level, as the direct effect in (21) dominates; and then, as
inflation picks up and the indirect effect starts dominating the direct effect, the debt to GDP level would fall
again.
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Figure 7: Deficit-debt schedules across models
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deficits keep the debt constant or reduce it.

5.5 Comparison across models

As we mentioned above, we view the convenience utility v(b) as a convenient reduced
form description of an increasing relationship between b and R. We next investigate what
the deficit diagram would look like in more complex, but less “reduced form” settings.

In Appendix C, we describe how one can compute deficit-debt schedules in three
alternative models, based on Aiyagari and McGrattan [1998], Blanchard [2019] and Reis
[2021]. For each, we attempt to hit the same calibration targets as those mentioned above.24

While Aiyagari and McGrattan [1998] and Reis [2021] do not have aggregate risk, Blanchard
[2019] does. For Blanchard [2019], therefore, we compute the “risky steady state” (see,
e.g. Coeurdacier, Rey, and Winant 2011), that is, the steady state along a path at which the
aggregate shock realizes at its mean forever.

Figure 7(A) shows the resulting schedules and compares them to our benchmark
schedule. The schedules are similar across models. This suggests that the lessons drawn
from our stylized model are robust, and also apply to other models. In particular, while it
is harder to prove theoretically, we have numerically verified that a free lunch exists in the
(deterministic) Aiyagari and McGrattan [1998] and Reis [2021] models also precisely when
R < G− ϕ, that is, to the left of the peak of the deficit-debt schedule.

One interesting observation is that the original Blanchard [2019] model assumes no
initial debt, and matches R− G = −1%. Figure 7(B) shows the deficit-debt schedule of the
original calibration, along with a version that keeps a zero-debt calibration but moves to

24We do not calibrate ϕ in the Blanchard [2019] model as it lacks a free parameter to do so. We also exclude
the ZLB for this cross-model comparison.
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R− G = −2% (which we argued above captures better the United States in 2019), with the
same risk premium as in Blanchard [2019], and compares them to our preferred calibration
of Blanchard [2019]. We see that it is crucial to calibrate that model with a positive level of
debt.

6 Fiscal space under aggregate risk

So far, we have analyzed a purely deterministic economy. We now introduce aggregate risk
and study its implications for fiscal space and the viability of free lunch policies. To keep
things tractable, we omit the ZLB in this section. Our model with aggregate risk builds on
the representative-agent model of Mehrotra and Sergeyev [2020].

6.1 Introducing aggregate shocks

Instead of constant (de-trended) potential output, we now assume that (de-trended) poten-
tial output yt is risky and follows a geometric Brownian motion,

d log yt = σdZt

where we now allow explicitly for aggregate risk with standard deviation σ. Zt is a standard
Brownian motion. We assume government spending is a fixed share of yt, xyt. Furthermore,
we allow agents to have a relative risk aversion different from 1, denoted by ν > 0. Savers
thus maximize expected lifetime utility,

max
{Ct,Bt}

E0

∫ ∞

0
e−ρt

{
C1−ν

t
1− ν

+ y1−ν
t v

(
Bt

yt

)}
dt (29)

where we denote real consumption and debt by Ct and Bt. We continue to use ct = Ct/yt

and bt = Bt/yt for normalized consumption and debt. The utility function in (29) is set up
to be scale invariant, as in Mehrotra and Sergeyev [2020]. The budget constraint is

Ct + Ḃt ≤ (Rt − G∗) Bt + (1− µ)wtnt − Tt (30)

where Tt are unnormalized taxes on savers. We continue to use τt ≡ Tt/yt. Normalized
consumption ct in this economy follows
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ν
ċt

ct
= Rt − G∗ − ρ +

1
2

ν2σ2 + cν
t v′(bt) (31)

where, in equilibrium, ct = 1− x− µ as before, which determines the interest rate as

Rt = R(bt) = G∗ + ρ− 1
2

ν2σ2 − (1− x− µ)ν v′(bt). (32)

The new term −1
2 ν2σ2 in (32) relative to (9) captures the role of aggregate risk, which all

else equal, reduces the interest rate on government debt due to a precautionary motive.
Since the new term is constant, R(bt) has the same functional form as (9).

We denote the primary deficit to GDP ratio by zt = x− τt. The normalized government
budget constraint is then given by

dbt = ztdt +
(

R(bt)− G∗ +
σ2

2

)
btdt− btσdZt. (33)

The transversality condition for savers in this economy is given by E0
[
e−ρtC−ν

t Bt
]
→ 0.

One sufficient condition for it to hold is that there exists an ε > 0 such that asymptotically
for large t,

R(bt)− G∗ +
zt

bt
+

1
2

ν2σ2 < ρ− ε. (34)

6.2 Deficit-debt diagram and free lunch

Just like before, we can plot the locus z(b) ≡ (G∗ − R(b)) b. Given that R(bt) has the same
functional form, and we calibrated both R(b0) and R′(b0), this locus looks identical to
those we plotted before. The interpretation is different, however. Before, sitting on the
locus zt = z(bt) ensured a steady state equilibrium. Here, zt = z(bt) only ensures that log
government debt remains unchanged in expectation, Et [d log bt] = 0. In that sense, the locus
here corresponds to a “risky steady state” in the spirit of Coeurdacier et al. [2011]. Just like
before, when the economy is above the locus, zt > z(bt), log debt rises on average. As in
Bohn [1998], a fiscal rule is necessary here to avoid violating the transversality condition
(34). As before, we write it as zt = Z(bt).

To study the analogue of a “free lunch” in this economy, we fix a fiscal rule that is
consistent with (34) and leads to a well-defined stationary distribution of debt to GDP levels.
Fix an initial debt level b0 and denote the stochastic process of primary deficits implied by
the fiscal rule by zt. We construct the following counterfactual path of government debt b∆

t :
It starts at in increased initial debt level b∆

0 = b0 + ∆, where ∆ > 0, but otherwise follows

37



the exact same deficit path,

db∆
t = ztdt +

(
R(b∆

t )− G∗ +
σ2

2

)
b∆

t dt− b∆
t σdZt.

In other words, b∆
t is the path of government debt that arises when the government runs

a one-time deficit ∆ at date 0, but otherwise keeps its deficit unchanged. We refer to the
probability that the shifted path b∆

t converges back to the original debt level bt, P(b∆
t → bt),

as the success probability of a free lunch policy. While before, any free lunch had a success
probability of 1, this is no longer the case with aggregate risk.

Despite these differences, the following result shows that our condition R < G− ϕ is
still relevant with aggregate risk.

Proposition 5. Denote by F (b) the cdf of the stationary distribution of debt to GDP in the model
with aggregate risk. Assume the convenience yield is of the form (24). Denote by R ≡

∫
R(b)F (db)

the average interest rate and by ϕ the average semi-elasticity ϕ ≡
∫ ∂(R−G)

∂ log b F (db). The success
probability of a free lunch policy of size ∆ approaches 1 for small ∆ if R < G∗ − ϕ,

lim
∆→0

P(b∆
t → bt) = 1.

By contrast, P(b∆
t → bt) = 0 for any ∆ if R > G∗ − ϕ.

Proof. See Appendix A.2.

The result generalizes our condition for a free lunch policy from Section 3. Instead of
R < G∗ − ϕ being the relevant condition, evaluated at a given initial level of debt, it is the
average of the condition that matters. Precisely when R < G∗ − ϕ, a free lunch success
probability arbitrarily close to 1 can be ensured by choosing a suitable ∆.

Figure 8 illustrates the result in Proposition 5 for the U.S. calibration from Section 5.
It plots free lunch success probabilities as a function of the initial debt level b0. For each
b0, we choose a simple fiscal rule Z(b0) = 2ρ (b0 − b). We vary the standard deviation of
aggregate risk σ from a small value of 0.001 to 0.025, the standard deviation of post-WWII
U.S. GDP growth.

The panels vary the size of the one-time deficit ∆. Panel (a) shows success probabilities
for a very small value of ∆. As can be seen, success probabilities are essentially a step
function: 0% to the left of the threshold R < G − ϕ, and 100% to the right. This is a
numerical confirmation of Proposition 5. With greater ∆, there is no longer a clean step
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Figure 8: Success probabilities of running a free lunch with aggregate risk

(a) Size ∆ = 0.001% of GDP
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(b) Size ∆ = 20% of GDP
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(c) Size ∆ = 50% of GDP
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Note. The probabilities are computed by simulating 1,000 sample paths for each b0. Convergence criterion:
|b∆

t − bt| < 0.01% at any point t < 10, 000.

function. However, across σ, the success probabilities still line up closely with the vertical
dash-dotted blue line, which is the deterministic free lunch threshold for that ∆ from
Section 3.25

This shows that, both theoretically and numerically, the condition R < G − ϕ even
applies with aggregate risk.

6.3 Free lunch in the Blanchard [2019] model

We can similarly compute the probability of a free lunch succeeding in the Blanchard [2019]
model. We use the recalibrated model that matches the same U.S. calibration targets in
2019 as our baseline model (see Section 5.5 and Appendix C.5 for details). Figure 9 plots
the success probabilities of a free lunch policy that raises initial debt by 1% across different
levels of initial debt. As before, we keep the path of deficits unchanged.

Just like in the previous section, the threshold R = G− ϕ also matters for the viability
of a free lunch policy in the Blanchard [2019] model. Here, R = G− ϕ corresponds to the
peak of the “risky steady state” locus z(b) shown in Figure 7 (see Appendix C.5 for details).

7 Maturity structure and crowding out of capital

We present two additional insights in this section, building on the basic model in Section 2.
First, we study how maturity structure interacts with fiscal space. Second, we extend the

25This threshold is simply computed as the value of b0 for which b0 + ∆ just converges back to b0 holding
the deficit constant at z(b0). In other words, b0 satisfies z(b0) = z(b0 + ∆).
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Figure 9: Success probabilities of running a free lunch of 1% of GDP in the Blanchard [2019] model
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Note. The probabilities are computed by simulating 50 sample paths for each b0. Convergence criterion:
|b∆

t − bt| < 0.01% at any point t < 1, 000.

model in Section 2 to allow for physical capital.

7.1 Maturity structure and fiscal space

We begin by introducing long-term debt into the model. In particular, denote the stock
of long-term debt relative to potential GDP by bLT

t . We assume that long-term debt also
carriers convenience benefits for savers, albeit less than short-term debt. Thus, we assume
a convenience utility of

v
(

bt + αbLT
t

)
where α ∈ (0, 1). This specification implies that the natural interest rate on short-term debt,
which we continue to denote by R∗t , is given by

R∗t = ρ + G∗ − v′(bt + αbLT
t ) (1− µ− x)

with Rt = max{R∗t , 0} as before. The interest rate on long-term debt, which we denote by
RLT

t , is then
RLT

t = Rt + (1− α) v′(bt + αbLT
t ) (1− µ− x) .

In particular, RLT
t is strictly greater than Rt, and the spread between the two shrinks in

bt + αbLT
t .

To see how this affects the deficit-debt diagram, we denote the share of LT debt issued
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Figure 10: Fiscal space with various shares ϑ of long-term debt
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Note. Plot uses α = 0.7. Left panel: ϑ = 0.5. Right panel: ϑ ∈ {0.1, 0.5, 0.8}. This figure is only illustrative and
uses a slightly lower κ of κ = 0.075.

by the government by ϑ. The government budget constraint is then

d
dt

(
bt + bLT

t

)
=
(

Rt − Gt
) (

bt + bLT
t

)
+ zt

where Rt = (1− ϑ) Rt + ϑRLT
t and Gt is equal to G∗ outside the ZLB and (20) at the ZLB,

as before.
Figure 10(A) plots Rt, RLT

t , and Gt as function of total debt b + bLT, illustrating the
positive spread between Rt and RLT

t , which shrinks at higher debt levels. Figure 10(B) plots
the deficit debt locus z

(
b + bLT), as function of total debt b + bLT, for various shares of

long-term debt ϑ. Two observations are noteworthy. First, with greater shares of long-term
debt ϑ, there is less fiscal space at small debt levels; the ZLB region is greater; and the
boundary of the free lunch region b∗ generally shifts to the left. Second, with greater ϑ,
there is generally more fiscal space at higher debt levels. This is a direct consequence of the
fact that long-term debt has smaller convenience benefits, so both interest rates Rt and RLT

t

increase less rapidly in long-term debt.
A stylized way to think of large scale purchases of long-term government debt (one

type of quantitative easing, QE) is that it changes the maturity composition of government
liabilities towards short-term debt, effectively lowering ϑ. As Figure 10(B) shows, this
can help an economy escape the ZLB (as in Gertler and Karadi 2018, Caballero and Farhi
2018a, and Cui and Sterk forthcoming), and gives it greater fiscal space at low debt levels.
However, it also highlights that QE may reduce fiscal space at higher debt levels.
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7.2 Crowding out of capital

Our baseline model does not involve any capital. In this extension, we include capital. To
keep things simple, we assume there is no ZLB constraint, as in Section 3. We let (potential)
output now be a Cobb-Douglas aggregate of capital k and labor n, which is still equal to
n = 1 without the ZLB. Thus, yt = kα

t after de-trending, letting α ∈ [0, 1] be the capital
share. We let δk ≥ 0 denote the depreciation rate of capital and assume that government
spending is a share x of potential output as yt may now differ from 1. Following Ball and
Mankiw [2021], we allow for an exogenous markup m ≥ 1; pure profits are earned by
savers.

Whether capital is affected by the debt level in our model is not obvious. If capital does
not carry a convenience yield, it is entirely unaffected by the debt level.26 In the literature,
capital is often influenced by the debt level as both are treated as substitutable (e.g. in OLG
or Bewley models, see appendix C). In our model, this can be captured by including capital
in the convenience utility,

max
{ct,bt}

∫ ∞

0
e−ρt

{
log ct + v

(
bt + kt

yt

)}
dt. (35)

We now also divide bt + kt by (potential) output yt explicitly. Before, this was unnecessary
as potential output was equal to 1. The budget constraint of savers now includes capital
and pure profits,

ct + ḃt + k̇t ≤ (Rt − Gt) bt +
(

rk
t − γ

)
kt + (1− µ)wtnt − τt +

(
1−m−1

)
yt

where rk
t ≡ αkα−1

t − δk denotes the real net return on capital. By no arbitrage, Rt = rk
t + π∗.

Two first order conditions jointly pin down the capital stock k and interest rate R∗ as a
function of debt,27

R∗ = ρ + G∗ − (1− µ− x) v′
(

b + k
y

)
R∗ − G∗ = m−1αkα−1 − δk − γ. (36)

26This is for instance the case in the microfoundation proposed in Appendix D.
27Observe that even if R∗ < G∗, we may have dynamic efficiency here, that is, αkα−1 > δk + γ, for m

sufficiently above 1.
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Expanding both conditions to first order, we find the sensitivity of capital to debt

d (k/y)
d (b/y)

= −
k/y ϕ

rk+δk

b/y + k/y
(

1 + ϕ

rk+δk

) (37)

and the sensitivity R− G to debt

d (R− G)

d log (b/y)
= ϕ× b/y

b/y + k/y
(

1 + ϕ
R−π+δk

) . (38)

Equation (37) gives us the extent of “crowding out” of capital. Crowding out happens
when (a) there is positive capital, k/y > 0, requiring that α > 0; and (b) the interest rate
is sensitive to wealth, ϕ > 0. Equation (38) shows that the sensitivity of R− G to b/y is
unambiguously smaller with positive capital. This implies an extended region in which a
free lunch is available.

Proposition 6. Crowding out of capital unambiguously increases the free lunch region. The
condition for a free lunch is now given by

R < G− ϕ× b/y

b/y + k/y
(

1 + ϕ
R−π+δk

) (39)

Proof. See Appendix A.3.

This result may seem surprising at first: Isn’t it the case that crowding out of capital
increases the marginal product of capital, and hence the interest rate more quickly?

The answer is no. More crowding out due to a higher capital stock k/y, by definition,
implies that household wealth b/y + k/y increases less quickly with government debt.
This, by (36), leads to a weaker interest rate response. This is why k/y reduces the elasticity
of R− G to debt in (38). We illustrate this in Figure 11.

Note also that the modified free lunch condition (39) is independent of the markup
m. While m matters for welfare, as it determines whether the economy is dynamically
inefficient or not when R < G, m is irrelevant for whether there exists a free lunch or not
(conditional on k/y).
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Figure 11: Fiscal space with crowding out of capital
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Note. Black line = baseline model without capital. Blue line = calibration of model with capital such that
k/y = 3 in the initial steady state, with δk = 0.06.

8 Conclusion

The textbook view of debt and deficits is that raising deficits lead to an explosive path for
government debt unless, at some point, deficits are reduced below their original level. In
this paper, we argued that debt may not explode if R < G− ϕ and the increase in deficits
is modest (“free lunch”); and that debt may not even rise at all if the economy is at the ZLB
and the nominal growth rate is sufficiently responsive to increased deficits. We further
illustrated how inequality increases fiscal space outside the ZLB, but may reduce it at the
ZLB. For the United States we found very little room for free lunch policies in 2019; but
significant room for free lunch policies for Japan.

We have mostly focused on characterizing long-run dynamics in our paper. Our
modeling approach, however, is very much amenable to being integrated in richer dynamic
models, including models with capital adjustment costs, inertial inflation, and sticky prices.
We believe that such models can usefully connect short-run effects of fiscal deficits to the
long-run effects we characterize here.
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Appendix

A Proofs and model details

A.1 Equilibrium multiplicity and uniqueness

In this section, we prove two results: First, that every steady state of the model is indeed
the unique equilibrium outcome and globally stable for some fiscal rule Z(b). And second,
without ZLB constraint, we can never have multiplicity with simple constant z policies.

A.1.1 Unique steady state for some fiscal rule

We proceed in two steps. First, assume κ < κ̂, where κ̂ is defined in Section 4. In that case,
the deficit-debt locus is not “backward bending”. Fix a steady state b0 with deficit z0 and
R0, G0. Define r(b) ≡ R(b)− G(b). Let r̃(b) be a continuously differentiable function that
lies strictly below r(b) for b < b0 and strictly above r(b) for b > b0, with r̃(b0) = r(b0).

We claim that a fiscal rule defined as Z(b) ≡ −r̃(b)b establishes the steady state at b0 as
unique equilibrium. To show this, we need to show that the steady state is locally saddle-
path stable. Then, global uniqueness follows the global version of the Picard–Lindelöf
theorem.

When is the steady state locally saddle path stable? If the economy is not at the ZLB in
the steady state b0, there is nothing to show, as the behavior of bt in that case follows from
a simple one-dimensional ODE, see (13). If the economy is at the ZLB, there is locally a
two-dimensional ODE system that characterizes the joint dynamics of saver consumption
and debt, ct, bt,

ċt

ct
= 0− (G∗ − κ (1− yt))− ρ + v′(bt)ct

yt = ct + x + µyt

ḃt = Z(bt) + (0− (G∗ − κ (1− yt))) bt

or simplified in terms of just ct and bt,

ċt

ct
= κ

(
1− x + ct

1− µ

)
− G∗ − ρ + v′(bt)ct

ḃt = Z(bt)−
(

G∗ − κ

(
1− x + ct

1− µ

))
bt
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The linearized homogeneous ODEs around the steady state, stated in terms of linear
deviations

(
ĉt, b̂t

)
are given by

˙̂ct = −
κ

1− µ
ĉt + v′(b0)ĉt + v′′(b0)c0b̂t

˙̂bt =
(
Z ′(b0)− G0

)
b̂t −

κ

1− µ
b0ĉ

or stacked in vector form,(
˙̂ct
˙̂bt

)
=

(
− κ

1−µ + v′(b0) v′′(b0)c0

− κ
1−µ b0 Z ′(b0)− G0

)(
ĉt

b̂t

)

By construction of Z(b), we have that

Z ′(b0) = r̃(b0) + r̃′(b0)b0 < G(b0) + G′(b0)b0

Define the matrix as A. Its characteristic polynomial is given by

P(λ) ≡ det (A− λI) =

λ2−λ

(
Z ′(b0)− G0 −

κ

1− µ
+ v′(b0)

)
−
((

G0 −Z ′(b0)
) (

v′(b0)−
κ

1− µ

)
+
(
−v′′(b0)

)
c0κb0

)
From κ < κ̂ and b0 < bZLB, it follows that v′(b0) > v′(bZLB) > κ

1−µ . Moreover, since
Z ′(b0) < G0, P(0) < 0. Together with the fact that P(λ) has a positive coefficient in front
of λ2, this leads us to conclude that P(λ) has exactly one positive and one negative root.
Thus, b0 is locally saddle path stable, giving us local (and global) uniqueness.

The case with κ > κ̂ follows analogously.

A.1.2 Without ZLB, simple deficit rule gives uniqueness

Without a ZLB constraint and with a simple deficit rule, zt = z = const, the dynamics of
debt are governed entirely by (13). This is a simple ordinary differential equation (ODE),
which admits a unique solution of the right hand side is Lipschitz continuous in b. For
any initial debt b0 > 0 and z > 0, we can pick a lower bound b below which the solution
won’t go since ḃt > 0 for any b < b0. Above any such b, the right hand side of (13)
is Lipschitz continuous in b, as v′ is weakly convex with domain (b, ∞) and thus has a
bounded derivative. The Picard-Lindelöf theorem then establishes uniqueness.
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A.2 Details on the model with aggregate risk

A.2.1 Derivation of R(bt) in (32) with aggregate risk.

The saver solves (29) subject to (30). Denote by λt the costate of Bt. This implies a first
order condition of

λt = C−ν
t

and a law of motion of λt of

Et [dλt] = λt (ρ + G∗ − Rt) dt− y−γ
t v′(bt)dt (40)

Denote ct ≡ Ct/yt. In equilibrium, ct = 1− x− µ is a constant by goods market clearing.
Thus,

λt = y−ν
t c−ν

and so
dλt =

1
2
(νσ)2 λtdt− νσλtdZt (41)

Combining (40) with (41) we find

1
2
(νσ)2 λt = λt (ρ + G∗ − Rt)− y−γ

t v′(bt)

which simplifies to (32),

Rt = R(bt) = G∗ + ρ− 1
2

ν2σ2 − cνv′(bt)

A.2.2 Derivation of normalized government budget constraint (33).

To derive (33), observe that the usual budget constraint still holds,

dBt = (R(bt)− G∗) Btdt + (xyt − Tt) dt (42)

Therefore, the evolution of bt ≡ Bt/yt is given by

dbt = ztdt +
(

R(bt)− G∗ +
σ2

2

)
btdt− btσdZt

where the σ2

2 term is the Ito correction coming from the volatility of yt.
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A.2.3 Derivation of sufficiency of (34) for the transversality condition.

Define ht ≡ e−ρtC−ν
t Bt. To derive (34), observe that ht = e−ρtC−ν

t Bt = e−ρtλtBt. Therefore,
building on (41) and (42),

dht = −ρhtdt +
1
2
(νσ)2 htdt− νσhtdZt + (R(bt)− G∗) htdt +

zt

bt
htdt

If (34) holds, we can bound ht above by process h̃t, which evolves as

dh̃t = −εh̃tdt− νσh̃tdZt

at all times t > T where T is chosen such that (34) holds. h̃t is a standard geometric
Brownian motion whose expectation E0h̃t converges to zero. Thus, E0ht ≤ E0h̃t must
converge to zero as well.

A.2.4 Proof of Proposition 5

The evolution of debt bt without the increase in debt by ∆ is given by

dbt = ztdt +
(

R(bt)− G∗ +
σ2

2

)
btdt− btσdZt

The evolution of debt b∆
t after increasing debt by ∆ > 0 at date 0 is

db∆
t = ztdt +

(
R(b∆

t )− G∗ +
σ2

2

)
b∆

t dt− b∆
t σdZt

Given the convenience yield is affine-linear, as in (24), the interest rate schedule R(b) has a
constant slope φ ≡ R′(b). In the notation of (24), φ = ϕ/b0. Here, we use ϕ(b) to denote
the local semi-elasticity of R to debt around an arbitrary debt level b, ϕ(b) = ∂R(b)

∂ log b = φb.
Of course, around b0, ϕ(b0) is exactly equal to the ϕ in (24).

We denote the difference between the two by ∆bt ≡ b∆
t − bt. It satisfies the SDE

d (∆bt) =

[
R(bt)− G∗ + ϕ(bt) +

σ2

2
+ φ∆bt

]
∆btdt− ∆bt · σdZt (43)

Our goal is to show that lim∆→0 P(∆bt → 0) = 1.We do so by first analyzing a simpler
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process, ∆̃bt, defined by

d
(

∆̃bt

)
=

[
R(bt)− G∗ + ϕ(bt) +

σ2

2

]
∆̃btdt− ∆̃bt · σdZt (44)

with same initial condition ∆̃b0 = ∆b0 = ∆.

Characterizing the process ∆̃bt. The SDE for log ∆̃bt is given by

d log ∆̃bt = [R(bt)− G∗ + ϕ(bt)] dt− σdZt (45)

We can integrate (45),

log ∆̃bT − log ∆ =
∫ T

0
(R(bt)− G∗ + ϕ(bt)) dt− σZT

We note here that ∆̃bT scales with ∆.
Since bt follows a stationary Markov process, the strong law of large numbers (Ergodic

Theorem) holds,
1
T

∫ T

0
btdt→

∫
bF (db) a.s.

By linearity of R, ϕ, it follows that

1
T

∫ T

0
(R(bt)− G∗ + ϕ(bt)) dt→ R− G∗ + ϕ a.s. (46)

with R, ϕ as defined in the text of Proposition 5. Moreover, another application of the
strong law of large numbers gives28

1
T

ZT → 0 a.s. (47)

Together, (46) and (47) imply that

1
T

(
log ∆̃bT − log ∆

)
→ R− G∗ + ϕ a.s.

We now distinguish two cases, depending on the sign of R− G∗ + ϕ. Suppose first that
R− G∗ + ϕ < 0. Pick some δ > 0 such that R− G∗ + ϕ + δ < 0. For almost any sample

28See e.g. https://www.stat.berkeley.edu/~pitman/s205s03/lecture15.pdf, Example 15.6 for a
proof.
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path of ∆̃bT, we can find a time T, such that for any T > T,

1
T

(
log ∆̃bT − log ∆

)
≤ R− G∗ + ϕ + δ

This implies
∆̃bT ≤ ∆ · exp

{(
R− G∗ + ϕ + δ

)
T
}

Given R− G∗ + ϕ + δ < 0, this establishes that ∆̃bT → 0 along almost any sample path,
and hence ∆̃bT → 0 almost surely. In addition, it establishes that ∆̃bT is integrable along
almost any sample path, that is, ∫ ∞

0
∆̃bTdT < ∞ a.s.

Now consider the case R−G∗+ ϕ > 0 and chose δ such that R−G∗+ ϕ− δ > 0. Then,
for almost any sample path of ∆̃bT, we can find a time T, such that for any T > T,

1
T

(
log ∆̃bT − log ∆

)
≥ R− G∗ + ϕ− δ

and therefore
∆̃bT ≥ ∆ · exp

{(
R− G∗ + ϕ + δ

)
T
}

Given R− G∗ + ϕ− δ > 0, this establishes that in this case, ∆̃bT → ∞ along almost any
sample path, and hence ∆̃bT → ∞ almost surely.

Having investigated the properties of ∆̃bt, we now return to ∆bt.

Characterizing the process ∆bt. ∆bt differs from ∆̃bt as the former has an additional
nonlinear term, φ (∆bt)

2, in its SDE (43). We therefore clearly have that ∆bt ≥ ∆̃bt. This
already gives us our first result, namely that R−G∗+ ϕ > 0 implies almost sure divergence
of ∆bt, or in other words, P(b∆

t → bt) = 0.
Accordingly, we focus on the case R− G∗ + ϕ < 0 hereafter. We can formally study

the difference between ∆bt and ∆̃bt by characterizing the SDE of ∆̃bt/∆bt (which must lie
between 0 and 1). After some algebra combining (43) and (44), we find

d

(
∆̃bt

∆bt

)
= −φ∆̃btdt
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This SDE has the solution
∆̃bT

∆bT
− 1 = −

∫ T

0
φ∆̃btdt

or, equivalently,

∆bT =
∆̃bT

1−
∫ ∞

0 φ∆̃btdt

which is well defined for any sample path with
∫ T

0 φ∆̃btdt < 1. Since we showed above
that (a) for T → ∞,

∫ T
0 ∆̃btdt is finite almost surely and (b) ∆̃bt scales in ∆, it follows that

for any ∆ for which
∫ ∞

0 φ∆̃btdt < 1,

lim
T→∞

∆bT =
limT→∞ ∆̃bT

1−
∫ ∞

0 φ∆̃btdt
= 0

Thus,

P (∆bT → 0) ≥ P
(∫ ∞

0
φ∆̃btdt < 1

)
but the latter probability approaches 1 as we take ∆→ 0, since ∆̃bt scales in ∆. Therefore,

lim
∆→0

P (∆bT → 0) = 1

which is what we set out to prove.

A.3 Details on the model with capital

We begin with the household optimization problem (35). The Euler equation for bonds is
given by

ċt

ct
= Rt − Gt − ρ +

ct

yt
v′
(

bt + kt

yt

)
(48)

The Euler equation for capital is given by

ċt

ct
= rk

t − γ− ρ +
ct

yt
v′
(

bt + kt

yt

)
(49)

We characterize the steady state. Then, subtracting (48) from (49), we find

R∗ − G∗ = rk − γ = m−1αkα−1 − δk − γ = m−1α
y
k
− δk − γ
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Figure 12: Robustness in deficit-debt diagram
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Moreover, in a steady state, (48) looks as usual

R∗ = ρ + G∗ − (1− µ− x) v′
(

b + k
y

)
.

This completes our derivation of (36). Linearizing the two equations in (36), we obtain

dR = ϕ

(
b + k

y

)(
d

b
y
+ d

k
y

)
and dR = − (k/y)−1 dR

R− G∗ + δk + γ

Combining these two equations, yields (37), (38), and Proposition 6.

B Robustness of the U.S. deficit-debt diagram

The implied numbers by our calibration in Section 5 should not be taken as gospel. They
instead illustrate how our stylized model can be put to work to parse through recent U.S.
and Japanese data. We show robustness across alternative calibrations in Figure 12. For
simplicity, we do this only for the U.S. economy, and focus on the case without binding ZLB.
In particular, we show deficit debt loci for smaller or greater elasticities ϕ; for the log-linear
functional form (25); and for a reduced pre-Covid natural interest rate R0 = 1%. Shifting
G∗ and R0 in parallel (e.g. G∗ = 4%, R0 = 2%) does not affect the deficit-debt schedule
above the ZLB. Also, neither ρ nor the level of government spending x, nor the spenders’
income share µ affects the deficit-debt schedule conditional on calibrating R0. Across the
alternatives shown in Figure 12, the maximum deficit z∗ remains relatively robust around
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2-2.5%. Among alternatives with the linear functional form (24), the debt level b∗ at which
z∗ is attained varies in the range 100% to 130%. The debt level at which R crosses G is most
uncertain, with estimates varying between just below 200% to just above 300%.

C The deficit-debt diagram in other models

In this section, we derive the interest rate and growth rate schedules R(b) and G(b) in a
variety of models, and compute the deficit-debt locus z(b) ≡ (G(b)− R(b)) b.

C.1 Model inspired by Reis [2021]

Here, we sketch a version of the two-agent model in Reis [2021] and use it to derive the
corresponding functions for R(b) and G(b).

There are two types of agents, entrepreneurs E and financiers F. Each instant t, an
agent i is randomly allocated to be either E or F, with probabilities α and 1− α for E and F.
Agents solve

max E0

[∫ ∞

0
e−ρt log ci

tdt
]

subject to the budget constraint

dai
t =

(
Rtbi

t + rl
tl

i
t + ri

tk
i
t − τt − ci

t

)
dt (50)

where ai
t = bi

t + li
t + ki

t is agent i’s total wealth, and subject to the constraint

bi
t ≥ 0, ki

t ≥ 0.

Here, bi
t is agent i’s holdings of bonds, li

t agent i’s lending (or if negative, borrowing), and
ki

t agent i’s holding of capital. τt is a lump-sum tax. Thus, each agent can invest in three
different assets each instant: government bonds bi

t paying rate Rt, loans li
t paying rate rl

t

and capital paying rate ri.
The return on capital ri crucially differs by type. If i is type E, then ri

t is constant, and
equal to ri

t = A− δ ≡ m > 0. If i is type F, ri
t is subject to idiosyncratic investment risk and

given by
ri

t = η(A− δ)− σdzi
t

where η ∈ (0, 1) captures reduced capital quality in the hands of type F agents. We simplify
the model here and set η → 0. This essentially assumes that type F agents do not invest in
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capital.29

To avoid too much investment on the side of type E agents, we also impose a borrowing
constraint

−rl
tl

i
t ≤ γri

tk
i
t

for some γ > 0. For type F agents, the borrowing constraint is simply assumed to be li
t ≥ 0.

In equilibrium, aggregate bonds outstanding Bt have to equal the sum of all individual
positions,

Bt =
∫

bi
tdi

and the market for loans has to clear,

0 =
∫

li
tdi.

Our goal is to use this description of the household side to solve for both the steady
state interest rate R and the steady state growth rate G as a function of the overall supply
of steady state bonds B.

Given the iid type switching, we can split total wealth at into wealth held by E’s,
aE

t = αat and wealth held by F’s, aF
t = (1− α) at. E’s always borrow to their maximum.

Further, we assume that γ is sufficiently high so that E’s do not hold any government
bonds. Then, from (50) and the fact that agents always consume ci

t = ρai
t , E’s wealth

evolves as

ȧE
t =

(1− γ)mrl
t

rl
t − γm

aE
t − ρaE

t

with positions in capital and lending markets given by

aE
t = kE

t − γ
mkE

R
.

Given capital kE
t , output is simply

yt = AkE
t . (51)

F’s hold all government bonds, and lend, so that rl
t = Rt. Their wealth then evolves as

ȧF
t = (Rt − ρ) aE

t

29The case with η > 0 is similar, it just requires a case distinction.
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and is given by

aF
t = γ

mkE
t

Rt
+ Bt. (52)

In a steady state, total wealth evolves according to

ȧt

at
= α

(1− γ)mRt

Rt − γm
+ (1− α)Rt − ρ (53)

and is given by
at = kE

t + Bt. (54)

We denote by bt ≡ Bt/yt government debt relative to GDP.
This gives us all the equations we need. Assuming that b is constant, we combine (51),

(53) and (54) to find a steady state growth rate G of the economy of

G = α
(1− γ)mR

R− γm
+ (1− α)R− ρ. (55)

The interest rate R is itself determined by the amount of lending in equilibrium, using (52),
(54) and the fact that aF

t = (1− α) at,

γ
mkE

R
+ B = (1− α)

(
kE + B

)
.

Solving for R we find
R(b) =

γm
1− α− αAb

. (56)

Together with (55), we can solve for G as function of b as well,

G(b) =
(1− γ)m
1 + Ab

+ (1− α)
γm

1− α− αAb
− ρ.

We sketch the two schedules in Figure 13 and the implied deficit-debt diagram.30

C.2 Model inspired by Brunnermeier et al. [2020a]

Next, we study a model that is inspired by recent models studying R < G with the fiscal
theory of the price level (Brunnermeier et al. 2020a,b, Bassetto and Cui [2018], Sims 2019).31

30We calibrate the model exactly as above, matching R0 = 1.5%, G0 = 3.5%, ϕ = 1.7%, b0 = 1. This yields
δ = 0.04, ρ = 0.03, γ = 0.033, A = 0.12, α = 0.74.

31For a recent book on the fiscal theory, see Cochrane [2019]. For a classic reference, see Leeper [1991].
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Figure 13: R(b), G(b) and deficits in the Reis [2021] model
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We do so using a version of our model in Section 2. In particular, we assume away the zero
lower bound, assume flexible prices with price level Pt, µ = 0, and nominal bonds Bt (now
measured relative to real GDP), so that the budget constraint of the government is given by

Ptzt + (Rt − γ) Bt ≤ Ḃt (57)

Since Bt is measured relative to real GDP, it is no longer Gt that is subtracted from Rt, but
instead the real growth rate γ. Preferences continue to be those in (1) with the real value
of government bonds still denoted by bt, only that here, bt is endogenous and given by
bt = Bt/Pt.

We follow the literature and assume that Bt grows at an exogenous rate µB > 0 and
pays an exogenous nominal interest rate Rt. We also assume a fixed level of the primary
deficit z ∈ R. In equilibrium, as we continue to normalize relative to potential, goods
market clearing implies ct + x = 1 at all dates. This means that along any transition, the
Euler equation still implies a version of (9),

Rt = ρ + γ + πt − v′ (bt) · (1− x). (58)

Moreover, (57), together with Ḃt/Bt = µB, implies that

z + (Rt − γ− µB) bt = 0. (59)

Finally, for any positive t, the real value of debt bt changes according to

ḃt = (µB − πt) bt. (60)

We guess and verify that, irrespective of the initial level of nominal government debt
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B0, this economy always exhibits a constant real value of debt bt. Thus, guessing that
bt = b = const, we find that inflation is pinned down by growth in nominal debt due to
(60), πt = µB > 0. The level of debt is pinned down by (58),

v′ (b) =
ρ + γ + µB − R

1− x

and the primary surplus that can be financed follows from (59),

z = (γ + µB − R) b. (61)

This illustrates the key differences between our approach and an approach based on the
fiscal theory of the price level. In the latter, the price level flexibly adjusts to achieve a given
real value of debt, for an exogenously chosen nominal rate R and nominal growth rate
G = γ + µB. This happens because the monetary authority sets a (passive) fixed nominal
interest rate R here while the fiscal authority sets an exogenous path for nominal debt. This
leads to an expression for the primary deficit (61) that is to be read like the revenue from
seignorage: setting R = 0 to capture money, we can rewrite this as

z = G ·
(
v′
)−1

(
ρ + G
1− x

)
(62)

That is, by choosing inflation π, and thus nominal growth G, the fiscal authority can trace
out a Laffer curve for seignorage revenue.

By contrast, the monetary authority in our model follows an active Taylor rule to
implement the inflation target πt = π∗, while the fiscal authority chooses primary deficits
zt. Thus, unless the economy is at the ZLB, nominal growth G is entirely unaffected by fiscal
policy. In that sense, it cannot simply maximize the Laffer curve (62). Instead, debt bt is a
backward looking state variable that is controlled by primary deficits zt.

The difference is not just semantics. To illustrate, imagine an economy that starts with
a given level of debt b0 that is to the right of the peak, b0 > b∗. What happens when
policymakers would like to increase the deficit z? They can do so by raising µB − R, that is,
by either increasing the rate of nominal debt growth µB or reducing the nominal interest
rate paid on debt. Crucially, and very differently from the dynamics in Section 3.3, the
increase in the deficit z leads to a reduction in levels of debt to GDP. In our model, the
same experiment would lead to an increase in debt to GDP. We view this as an important
distinction between our model and models based on the fiscal theory of the price level (or
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Figure 14: Deficit debt diagram and response to sudden increase in primary deficit with fiscal theory of the
price level
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models based on seignorage).

C.3 Model inspired by Aiyagari and McGrattan [1998]

For this model, we move to discrete time. Compared to the model in Section 2, however,
the main difference is that agents no longer enjoy any convenience utility from holding
government debt; instead, they are hit by idiosyncratic income shocks and value govern-
ment debts for their liquidity, which allows them to partially self insure against the income
risk. Recent papers in this vein are Domeij and Ellingsen [2018] and Bayer et al. [2021]. We
set µ = 0 for this section.

Specifically, households solve

max E0

∞

∑
t=0

e−ρtu(cit) (63)

subject to the budget constraint

cit + bit ≤
1 + Rt

1 + Gt
bit−1 + (1− τt) eitwtnt (64)

and a borrowing constraint bit ≥ 0. Here, eit follows a Markov chain with a mean of
the stationary distribution of 1. τt is a proportional labor income tax. We assume all
agents have a labor endowment of 1, as before, and that, at the ZLB, all endowments
are equally rationed, and equal to nt. Inflation is downwardly rigid, just as before, with
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1 + πt ≥ (1 + π∗) (1− κ (1− yt)). We continue to work with the same linear aggregate
production function, so that the real wage wt is still equal to one. Aggregating across
households, we find the aggregate demand for bonds

bt ≡
∫

bitdi.

The government budget constraint in discrete time is given by

x +
1 + Rt

1 + Gt
bt−1 ≤ bt + τtwtnt

where zt ≡ x− τtwtnt continues to denote the primary deficit relative to GDP.
As is well known from Aiyagari [1994], and more recently studied in a two-asset context

in Bayer et al. [2021], the household problem above implies a steady state schedule

1 +R(b, y)

so that if 1+Rt
1+Gt

= 1+R(b, y) and (1− τt)wtnt = y, for all t, in (64), the steady state demand
for bonds is equal to b. Observe thatR(b, y) is homogeneous of degree zero. This defines
an increasing function for the natural interest rate R∗(b),

1 + R∗(b) = (1 + G∗) (1 +R(b, 1− τ)) .

What happens when the natural rate is negative, R∗(b) < 0? In that case, the ZLB is
binding. Output y and tax rate τ are pinned down jointly by

1 = (1 + G∗) (1− κ (1− y)) (1 +R(b, (1− τ) y))

and the government budget constraint

τy = R(b, (1− τ)y)b + x.

This then determines 1 + G(b) = (1 + G∗) (1− κ (1− y)).
To show that this procedure, while more involved, can predicts behavior similar to

our more reduced form model in Section 2, we simulate this model with a standard AR(1)
process for log eit (annual persistence 0.90, standard deviation of log eit of 0.70). We use the
risk aversion in u to match the slope ϕ = ∂R(b,1)

∂ log b at some initial debt level b0. The other
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Figure 15: R(b), G(b) and deficits in a model based on liquidity
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parameters are similar to those in Section 5.3.32

The left panel of Figure 15 shows the interest rate R(b) and growth rate G(b) schedules
as a function of the debt level. The right panel of Figure 15 shows the deficit-debt diagram
(G(b)− R(b)) b. The plots look very similar to those in Section 5.4, and the robustness
plots in Appendix B (specifically those with the log-linear functional form for v′(b)).

C.4 Model inspired by Diamond [1965]

We sketch the well-known Cobb-Douglas version of the Diamond [1965] model and show
that it implies a simple closed-form deficit schedule z(b), and derive the conditions under
which there is a free lunch (which in the Diamond [1965] model coincides with the region
of dynamic inefficiency).

The model operates in discrete time and consists of two-period-lived overlapping
generations. The generation born at date t has Gt members, where G > 1. Each maximizes
preferences

(1− β) log cyt + β log cot+1

over consumption when young cyt and when old cot+1, subject to the budget constraints

cyt + at ≤ wt (1− τt) cot+1 = Rt+1at.

We have β ∈ (0, 1), τt is an income tax. The policy function is then

at = βwt (1− τt) . (65)

32We choose ρ, G∗ to match the same initial interest rate and growth rate at the same initial debt level
b0, we use the same steady state x and τ. The parameters we find are: x = 0.14, τ = 0.12, EIS = 1.37,
β = 0.99, G∗ = 3.5%. We choose κ = 0.075 here.
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The per capita saving at of generation t finances capital for t + 1 and bonds maturing in
t + 1. Normalizing the latter two in terms of the population size at t + 1, we have an asset
market clearing condition

G−1at = kt+1 + Bt+1. (66)

Production in period t is neoclassical with aggregate output per capita

yt = kα
t l1−α

t

where lt is the labor endowment of each member of generation t, which we normalize
to 1. Thus, the wage is wt = (1− α) kα

t and, with a depreciation rate of 1, the return is
Rt+1 = αkα−1

t+1 + 1− δ. With (65) and (66), the law of motion for capital is then

kt+1 = G−1β (1− α) (1− τ) kα
t − Bt+1 (67)

The government’s budget constraint is simply given by

GBt+1 = RtBt − τtwt + Xt

where Xt denotes government spending per capita.
Next, we focus on steady states, at which all prices and per capita quantities are constant.

Moreover, we normalize government debt and spending by output y = kα. We denote
b ≡ B/y as before and x = X/y. Then, (67) becomes

k1−α = G−1β (1− α) (1− τ)− b

and we can rearrange it to obtain an expression for the interest rate

R(b) =
αG

β (1− α) (1− τ)− Gb
.

The normalize government budget constraint can be written as usual

z(b) = (G− R(b)) b

where we defined the primary deficit relative to GDP as z(b) ≡ x− τ (1− α). Different
from our model in Section 2, it turns out that for this analysis, it is somewhat more tractable
to fix the tax rate τ and instead vary government spending x if z(b) changes.

We can analyze the deficit schedule z(b) just like before. In particular, we can ask when
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higher debt levels allow for a greater primary deficit z(b), which in this model is equivalent
to dynamic inefficiency. The condition for this is

R(b) < G− b · R′(b) (68)

where ϕ = b · R′(b). Observe that the standard condition for dynamic inefficiency that is
usually taught in this model is R < G, or in terms of primitives, α

1−α < β (1− τ). Yet, as
(68) highlights this condition is only accurate for levels of government debt around zero,
where ϕ = 0. When b > 0, ϕ > 0, and the relevant condition becomes R < G− ϕ. In terms
of primitives, this corresponds to

b <
β (1− α) (1− τ)

G
− 1

G

√
α · β (1− α) (1− τ) ≡ b∗

where b∗ is, as before, the deficit-maximizing level of debt. The deficit associated with b∗ is
given by

z∗ =
(√

β (1− α) (1− τ)−
√

α

)2

.

We thus find that OLG models based on Diamond [1965] admit a similar interest rate
schedule as the one we derived in Section 3, and the relevant condition for a free lunch
(here equivalent to dynamic inefficiency) is given by R < G− ϕ, which only in the case
without debt reduces to R < G.

C.5 The Blanchard model

Here, we compute the deficit-debt locus of the (Cobb-Douglas) model in Blanchard [2019].
The model is a stochastic version of the model in the previous section, which we briefly re-
cap here. The model operates in discrete time and consists of two-period-lived overlapping
generations. Each period corresponds to N = 25 years. There is no population growth,
G = 0, so all returns have to be considered detrended. Households solve

max log cy,t + β
1

1− γ
log Et

[
c1−γ

o,t+1

]
over consumption when young cyt and when old cot+1, subject to the budget constraints

cyt + kt + bt ≤ wt (1− τt) cot+1 = Rt+1kt + R f
t+1bt.
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Here, agents can choose between a risk-free bond, paying the risk free rate R f
t+1, and risky

capital, paying Rt+1. As before, production is Cobb-Douglas per head of generation t

yt = Atkα
t−1l1−α

t

where lt is the labor endowment of each member of generation t, which we normalize to
1. Thus, the wage is wt = (1− α) Atkα

t−1 and the return on capital is Rt+1 = αAt+1kα−1
t .

log At ∼ N (µ, σ2) is iid stochastic technology.
The government’s budget constraint is still given by

bt = R f
t bt−1 − τtwt + xt.

We look for a “risky steady state”, characterizing the steady state of the path along
which log At continues to realize at its mean µ. For this exercise, we set government
spending to zero (as done by Blanchard 2019), xt = 0. For a given (end of period) debt
per capita b, the risky steady state is described by the following four equations: The two
budget constraints

cy = (1− α) eµkα +
(

1− R f
)

b co(A) = αAkα + R f b

and two Euler equations

1
cy

=
β

1− γ

1
EA [co(A)1−γ]

EA

[
co(A)−γαAkα−1

]
EA

[
co(A)−γαAkα−1

]
= R f EA

[
co(A)−γ

]
Together, the equations pin down k, R f , cy, co(A) for any given b. By normalizing by output
y = eµkα (all normalized variables are denoted with a hat), we can simplify this:

ĉy = 1− α +
(

1− R f
)

b̂ ĉo(A) = αAe−µ + R f b̂

The risk free rate R f = R f (b̂) then solves the risk-free Euler equation

1
ĉy

= β
1

EA [ĉo(A)1−γ]
R f EA

[
ĉo(A)−γ

]
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Figure 16: Interest rates and deficit-debt schedule in the risky steady state of the Blanchard [2019] model
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and the capital output ratio can then be computed from

k
y
=

α

R f
EA [ĉo(A)−γ Ae−µ]

EA [ĉo(A)−γ]

The expected return on capital is then equal to

ER =
α

k/y
EA
[
Ae−µ

]
We calibrate the model as in the Cobb-Douglas calibration of Blanchard [2019]. With

zero initial debt, we choose α = 1/3, a period length of 25 years, σ = 0.2, and calibrate γ

and β to match jointly a riskless rate R f equal to −1% annual (i.e. one percent below G∗)
and an expected return on capital ER equal to +2% annual, (i.e. two percent above G∗).
This yields γ = 18.7 and β = 0.31 (not annualized).

Figure 16(A) shows the annual risk-free rate and the annual expected return on capital
as we vary the debt-to-GDP ratio b̂. Without loss, we add G∗ = 3.5% to both to ease
comparability with our own analysis. Both interest rates increase with debt, with a roughly
constant risk premium separating them. Figure 16(B) shows the annualized deficit-debt
schedule implied by this calibration, constructed as

z(b̂) =
(

1−
(

R f (b̂)
)1/N

)
· Nb̂.

In Figure 7 we also present two additional calibrations. First, a calibration which reduces
both R f and ER annually by 1%. This gives γ = 18.8, β = 0.40. Second, a calibration that
matches those same interest rate targets, but at an initial level of debt of 100% of GDP. This
gives γ = 21.7, β = 0.45.
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Simulating the model. To simulate the Blanchard [2019] model forward, we begin with
initial values k−1, b−1, R f

−1, a sequence of deficits zt, and draw a random sequence of
productivity shocks {At}.

At each step t, we compute output as

yt = Atkα
t−1

We evolve debt forward with
bt = R f

t−1bt−1 + zt

We use this to write consumption of the currently young generation as

cyt = (1− α) yt + zt cot+1(A′, R f
t ) = αA′kα

t + R f
t bt

We solve for the unknown kt and R f
t by solving

1
cyt

= β
1

EA′
[
cot+1(A′, R f

t )
1−γ
]EA′

[
cot+1(A′, R f

t )
−γαA′kt

α−1
]

EA′
[
cot+1(A′, R f

t )
−γαA′k′α−1

]
= R f

t EA′
[
cot+1(A′, R f

t )
−γ
]

To construct Figure 9, we first simulate the economy for a steady state k−1 = kss, b−1 =

bss associated with a given initial debt-to-GDP level b̂ss. We assume a deficit rule that
avoids explosive debt levels,

zt = zss − 0.08 · N ·
(

R f
t−1bt−1 − R f

ssbss

)
Then, for every b̂ss, we simulate the same economy again, for the same shocks {At},

except that (a) the initial debt level b−1 is now increased by 1% of initial GDP; and (b) the
deficit path zt is unchanged, taken directly from the economy without the initial 1% debt
shift.

C.6 Model with indebted demand and convenience yield

The model in Section 2 can easily be extended to allow for “indebted demand” as in Mian
et al. [2021].33 To do so, we include a term in savers’ preferences that captures their average

33We ignore the ZLB in this section.
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saving motive, not specific to bonds,

max
{ct,bt}

∫ ∞

0
e−ρt {log ct + v (bt) + v̂(bt + dt + ht)} dt (69)

Here, v̂(b + d + h) is a utility over total wealth, bonds b as well as private debt d. For
tractability, we include human capital h in total wealth. We denote the return on assets
other than government bonds by R̂t. Rt continuous to denote the return on government
debt.

Then, human wealth is equal to

(
R̂t − G∗

)
ht = (1− µ)wtnt − τt + ḣt

and the budget constraint can be written as

ct + ḃt + ḋt ≤ (Rt − G∗) bt +
(

R̂t − G∗
)

dt + (1− µ)wtnt − τt. (70)

At the steady state, the first order conditions for bonds and other assets pin down R
and R̂,

R̂ = G∗ +
ρ

1 + v̂′(b + d + h) (b + d + h)

R = R̂− v′(b)
(
1− µ− x +

(
R̂− G∗

)
d
)

The first equation is like the one in Mian et al. [2021]: Increased total wealth of savers means
a reduced return on wealth R̂. Despite this, interest rates on government debt behave in a
more nuanced way. R unambiguously falls when other wealth (e.g. d) increases, since that
increases savers incomes and their desired saving. But R can rise when savers’ holdings of
government debt increase, as it diminishes the convenience yield R̂− R on government
debt, in line with the analysis in this paper.

D Microfoundations for the convenience utility

So far, we have taken the convenience yield v(b) as given, deriving implications for fiscal
space. We next propose a microfoundation for the convenience yield v(b) that is fully
consistent with our previous analysis. This also allows us to study implications of debt
with multiple maturities.

Convenience benefits are typically thought of as either liquidity or safety premia. Many
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microfoundations exist for liquidity (e.g. Lagos and Wright 2005), and some have been
shown to reduce to a v(b) function (Angeletos et al. 2020). In this section, instead, we
propose a model of safety premia, interpreting bonds as being safe if they are likely to pay
out even after a big disaster.34

Consider an economy like the one in Section 2, with two changes. First, there is no
ad-hoc convenience utility function v. Second, there is a flow probability λ > 0 with
which a disaster occurs. Conditional on the disaster occurring, it reduces potential output
y∗ from 1, our normalized pre-disaster value, to δ ∈ (0, 1), with probability f (δ), where∫ 1

0 f (δ)dδ = 1. The only friction that we assume in this model is that the government can
only raise tax revenue τt from savers up to some fraction τ + x of output.35 For simplicity,
it cannot tax spenders, τ̃ = 0. If debt service requires greater taxes, we assume that the
government defaults. We assume that default entails default costs (in the form of transfers
to households, not resource costs) that are sufficiently large so that all bond wealth is lost.36

We analyze this model in two steps. First, we focus on the economy after a disaster of
size δ happened. Then, we study the economy before the disaster shock, and argue that it
is isomorphic to our model in Section 2.37

When a disaster of size δ materializes, the interest rate rises to R = G∗+ ρ, as bonds lose
their “specialness”. This requires the economy to run a primary surplus of ρb/δ relative to
GDP. Given the upper bound on taxes of τ + x, default occurs when output after the shock
δ falls below δ ≡ ρb/τ. We denote by Ṽt(b; δ) the utility of an individual saver with bond
position b after shock δ realizes.

Before the disaster occurs, savers now maximize utility

ρVt(b) ≡ max
c

log c + λ
∫ 1

0
f (δ)

(
Ṽt (b; δ)−Vt(b)

)
dδ + V̇t(b) + V′t (b)ḃt (71)

where ḃt is given by the budget constraint (2). Combining the first order condition for c
and the Envelope theorem for Vt(b), this formulation can be shown to imply a natural rate

34We describe in Appendix C a number of alternative models and show that they numerically have similar
implications to our reduced-form convenience-yield model of Section 2.

35We include the share of government spending x here so that the government can always finance its
spending. This is equivalent to a cap on the primary surplus of τ.

36This is equivalent to the government defaulting on all its debt. The case with partial default is very
similar to the analysis below.

37This is again similar to the “risky steady state” in Coeurdacier et al. [2011], and to the Poisson shocks in
Caballero and Farhi [2018a] and Caballero, Farhi, and Gourinchas [2016].
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before the disaster that depends on b and is given by

R∗(b) = ρ + G∗ − λF
(

ρb
τ

)
(72)

where we defined

F(δ) ≡
∫ 1

δ
f (δ)δ−1dδ− 1. (73)

F(δ) determines the insurance value of a bond that pays off whenever the shock is better
than δ. If F(δ) < 0, this implies that the bond, on net, is risky, which will be the case for δ

close to 1. If F(δ) > 0, which will be the case for δ closer to zero, the bond is, on net, safe.
In that case, λF

(
ρb
τ

)
corresponds to the convenience yield, analogous to v′(b)(1− x) in

(9). As before, the convenience yield falls in b.
The definition of F in (73) illustrates exactly the premium for “safety”: bonds that pay

out in very adverse states of the world, with low δ, carry a higher convenience yield. In the
special case where the density is equal to f (δ) = 2δ and F(δ) = 1− 2δ, we find that the
convenience yield is given by

λF
(

ρb
τ

)
= λ− 2

ρλ

τ
b

microfounding our affine-linear specification (24).

E Details on estimation of ϕ

E.1 Further discussion of estimates from the literature

The estimates of ∂(ρ+G−R)
∂ log b from Krishnamurthy and Vissing-Jorgensen [2012] reported in

Table 1above come from their Table 1, columns 4 and 5. The measure of the spread is the
Baa corporate yield minus the Treasury bond yield, which they prefer because “Aaa bonds
offer some convenience services of Treasuries and thus the Baa-Treasury spread is more
appropriate for capturing the full effect of Treasury supply on the Treasury convenience
yield.” For the estimates of b0

∂(ρ+G−R)
∂b , we collected the same data as in Krishnamurthy

and Vissing-Jorgensen [2012] and regressed the Baa minus Treasury spread on the level
of the debt to GDP ratio. We multiply this coefficient ∂(ρ+G−R)

∂b (which is -0.027 and -0.048
for the long and short time periods, respectively) by the average level of the debt to GDP
ratio b0 (which is 0.42 and 0.36 for the long and short timer periods, respectively) to get the
estimate.
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The Greenwood et al. [2015] estimate is from column 1 of Panel B of their Table 1. The
measure of the spread is the difference between the actual yield on an 2-week Treasury
bill and the 2-week fitted yield, based on the fitted Treasury yield curve in Gürkaynak,
Sack, and Swanson [2007]. The derivative is with respect to the amount of Treasury bills
outstanding scaled by GDP. The implied estimate of ∂(ρ+G−R)

∂b is -0.167, which we then
multiply by the average Treasury bill to GDP ratio b0 (which is 0.084) to get the estimate.
We use the estimate from Panel B which goes only through 2007 because of the endogeneity
issues discussed by Greenwood et al. [2015] surrounding the Great Recession and financial
crisis (see the last full paragraph on page 1689 of their article). The Vandeweyer [2019]
regression estimate comes from column 2 of Table 4 of his study. The measure of the
spread is the 3-month T-bill rate minus the 3-month General Collateral Repo rate, and this
is regressed on the ratio of outstanding T-bills to GDP. The implied estimate of ∂(ρ+G−R)

∂b
is -0.040, which we then multiply by the average Treasury bill to GDP ratio b0 (which
is 0.010) to get the estimate. We use column 2 of Table 4, as this regression controls for
the Federal Funds rate as suggested by Nagel [2016]. The Vandeweyer [2019] natural
experiment involves the 2016 money market reform which led to a large rise in demand for
T-bills by money market funds. Money market funds increased their holdings of T-bills
by $400 billion, which was about 20% of the stock outstanding. Vandeweyer [2019] uses
a model-based counter-factual to show that this shock led to an 18 basis point reduction
in yields on government debt, which gives ∂(ρ+G−R)

∂ log b = 0.009. The estimate from Takaoka
[2018] comes from Table 4, and the estimate from Jiang et al. [2020] comes from Table 5,
panel A, column 2. For the Jiang et al. [2020] estimate of -0.01, we multiply by the average
government debt to GDP ratio in their sample to get the final estimate of -0.008.

The estimates of b0
∂(G−R)

∂b come from Presbitero and Wiriadinata [2020], Table A3,
column 1. The coefficients ∂(G−R)

∂b come from that table (-0.027 for advanced economies,
-0.024 for the full sample), and then these are multiplied by the average government debt to
GDP ratiob0 for the respective samples, which are 0.53 and 0.56 for the advanced economies
and the full sample, respectively.

E.2 Regressions based on Presbitero and Wiriadinata [2020]

The other estimates from Table 1 come from our own data analysis using a data set
constructed exactly as the one used by Presbitero and Wiriadinata [2020]. The associated
regression table is Table 3.
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Table 3: Results from regressions on Presbitero and Wiriadinata [2020] data

Left hand side: G - R

(1) (2) (3) (4) (5) (6)

Log(Gov Debt/GDP) -0.024∗∗∗ -0.031∗∗∗ -0.015∗∗ -0.025∗∗ -0.028∗∗ -0.020∗∗

(0.006) (0.005) (0.004) (0.007) (0.006) (0.003)

Observations 1184 1184 1184 490 490 490
R2 0.103 0.179 0.553 0.162 0.209 0.698
FE Country Country and Year Country Country and Year
Sample

* p < 0.1, ** p < 0.05, *** p < 0.01.

Standard errors are heteroskedasticity-robust, clustered by country.

Note. This table presents coefficient estimates of G− R on government debt to GDP ratios. The sample for the
first three columns are the 17 advanced economies covered by the JST Macrohistory data base. The sample
for columns 4 through 6 is G7 countries (Canada, France, Germany, Italy, Japan, United Kingdom, United
States). The time period covered is 1950 to 2019. Please see Presbitero and Wiriadinata [2020] for more details.

E.3 Georgia Senate election

The Georgia Senate election of January 5, 2021 offers a unique opportunity to assess
how markets perceive a sudden rise in expected government debt. On the eve of the
election, trading at Electionbettingodds.com implied a 50.8% probability of the Republicans
controlling the Senate, and a 49.1% probability of the Democrats controlling the Senate.
It was widely reported in the press that President-Elect Biden’s administration would
propose a $1.9 trillion “American Rescue Plan” once the President-Elect took office. Our
assumption in the calculation below is that the win by the two Democrats in the Georgia
Senate election of January 5, 2021 increased the expected government debt by $2 trillion,
which at the time was about 7.4% of total debt outstanding.

Figure 17 shows the effect on the 10 year nominal interest rate, the 10 year TIPS interest
rate, and expected inflation. As it shows the victory by the Democrats in the Georgia
Senate election led to a 15 basis point immediate reaction which then declined to an 8 basis
point reaction after a week. Taken together, these numbers imply that a 3.7% rise in total
government debt outstanding relative to prior expectations led to an 8 basis point decline
in G− R, which gives an estimate of ∂(G−R)

∂ log b of -0.022. The data for these calculations come
from Bloomberg.
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Figure 17: The change in real interest rates around the January 5th, 2021 Georgia run-off election.
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