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Two-Way Fixed Effects and Differences-in-Differences with
Heterogeneous Treatment Effects: A Survey∗

Clément de Chaisemartin† Xavier D’Haultfœuille‡

Abstract

Linear regressions with period and group fixed effects are widely used to estimate poli-
cies’ effects: 26 of the 100 most cited papers published by the American Economic Review
from 2015 to 2019 estimate such regressions. It has recently been show that those regres-
sions may produce misleading estimates, if the policy’s effect is heterogeneous between
groups or over time, as is often the case. This survey reviews a fast-growing literature that
documents this issue, and that proposes alternative estimators robust to heterogeneous
effects.

Keywords: two-way fixed effects regressions, differences-in-differences, parallel trends, hetero-
geneous treatment effects, panel data, repeated-cross section data, policy evaluation.
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1 Introduction

A popular method to estimate the effect of a policy, or treatment, on an outcome is to compare
over time groups experiencing different evolutions of their exposure to treatment. In practice,
this idea is implemented by regressing Yg,t, the outcome in group g and at period t, on group
fixed effects, period fixed effects, and Dg,t, the treatment of group g at period t. For instance,
to measure the effect of the minimum wage on employment in the US, researchers have often
regressed employment in county g and year t on county fixed effects, year fixed effects, and the
minimum wage in county g and year t.

Such two-way fixed effects (TWFE) regressions are probably the most-commonly used tech-
nique in economics to measure the effect of a treatment on an outcome. de Chaisemartin and

∗We are very grateful to Francesco Armillei, Kirill Borusyak, Bruno Ferman, Xavier Jaravel, Jonathan Roth,
Jann Spiess, Gonzalo Vazquez-Bare, and Kaspar Wüthrich for their helpful comments.

†Economics Department, Sciences Po, clement.dechaisemartin@sciencespo.fr
‡CREST-ENSAE, xavier.dhaultfoeuille@ensae.fr.

1



D’Haultfœuille (2021a) conducted a survey of the 20 papers with the most Google Scholar cita-
tions published by the American Economic Review in 2015, and of the similarly selected papers
in 2016, 2017, 2018, and 2019. Of those 100 papers, 26 have estimated at least one TWFE
regression to estimate the effect of a treatment on an outcome. TWFE regressions are also very
commonly used in political science, sociology, and environmental sciences.

Researchers have long thought that TWFE estimators are equivalent to differences-in-differences
(DID) estimators. With two groups and two periods, a DID estimator compares the outcome
evolution from period 1 to 2 between a treatment group s that switches from untreated to
treated, and a control group n that is untreated at both dates:

DID = Ys,2 − Ys,1 − (Yn,2 − Yn,1) . (1)

DID relies on a parallel trends assumption: in the absence of the treatment, both groups would
have experienced the same outcome evolution. Specifically, for every g ∈ {s, n} and t ∈ {1, 2},
let Yg,t(0) and Yg,t(1) denote the potential outcomes in group g at period t without and with the
treatment, respectively.1 Parallel trends requires that the expected evolution of the untreated
outcome be the same in both groups:

E [Ys,2(0) − Ys,1(0)] = E [Yn,2(0) − Yn,1(0)] .

Under that assumption, DID is unbiased for the average treatment effect (ATE) in group s at
period 2 (see, e.g., Abadie (2005)):

E [DID] =E [Ys,2 − Ys,1 − (Yn,2 − Yn,1)]
=E [Ys,2(1) − Ys,1(0) − (Yn,2(0) − Yn,1(0))]
=E [Ys,2(1) − Ys,2(0)] + E [Ys,2(0) − Ys,1(0)] − E [Yn,2(0) − Yn,1(0)]
=E [Ys,2(1) − Ys,2(0)] , (2)

where the last equality follows from the parallel trends assumption. Parallel trends is partly
testable, by comparing the outcome trends of groups s and n, before group s received the
treatment. In practice, such pre-trends tests sometimes fail, but other times they indicate that
the two groups were indeed on parallel paths before s got treated.2

1Implicitly, this notation rules out dynamic treatment effects, and assumes that groups’ potential outcomes
only depend on their current treatment, not on their past treatments. This restriction is not of essence to derive
Equation (2) below, but it is of essence for some of the other results we cover, as noted later in the paper. We
relax it in Section 3.2.

2Pre-trends tests come with caveats unveiled by a recent literature, see Kahn-Lang and Lang (2020), Bilinski
and Hatfield (2018), and Roth (2021). Similarly, recent papers have proposed relaxations of the parallel trends
assumption (see, e.g., Manski and Pepper, 2018; Rambachan and Roth, 2019; Freyaldenhoven et al., 2019).
Though we allude to it in Section 3.2.1, this literature is mostly beyond the scope of this survey. See Roth et al.
(2022) for a review.
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Motivated by the fact that in the two-groups and two-periods design described above, DID is
equal to the treatment coefficient in a TWFE regression with group and period fixed effects, re-
searchers have also estimated TWFE regressions in more complicated designs with many groups
and periods, variation in treatment timing, treatments switching on and off, and/or non-binary
treatments. Recent research has shown that in those more complicated designs, TWFE estima-
tors are unbiased for an ATE if parallel trends holds, and if another assumption is satisfied: the
treatment effect should be constant, between groups and over time. Unlike parallel trends, this
assumption is unlikely to hold, even approximately, in most of the applications where TWFE
regressions have been used. For instance, the effect of the minimum wage on employment is likely
to differ in counties with highly educated workers, and in counties with less educated workers.

The realization that one of the most commonly used empirical method in social science relies
on an often-implausible assumption has spurred a flurry of methodological papers diagnosing
the seriousness of the issue, and proposing alternative estimators. This review aims to provide
an overview of this recent literature, which has developed in such a quick and dynamic manner
that some practitioners may have gotten lost in the whirlwind of new working papers. We start
by giving an overview of the papers that have identified TWFE’s regressions lack of robustness
to heterogeneous treatment effects, and that have proposed diagnostic tools practitioners may
use to assess the seriousness of this issue in their own application. We then give an overview of
the papers that have proposed alternative estimators robust to heterogeneous treatment effects.
Table 1 in the conclusion summarizes the heterogeneity-robust estimators available to applied
researchers, depending on their research design. When available, the Stata and R commands
implementing the diagnostics tools and alternative estimators discussed in this review are ref-
erenced, and the basic syntax of the Stata command is provided. We refer the reader to the
commands’ help files for further details on their syntax.

2 TWFE regressions with heterogeneous treatment effects

2.1 TWFE regressions may not identify a convex combination of treatment effects

We consider observations that can be divided into G groups and T periods, respectively indexed
by the placeholders g and t, which can refer to any group or time period. The data may be an
individual-level panel, or repeated cross-sections where groups are, say, individuals’ county of
birth. The data could also be a cross-section where cohort of birth plays the role of time.

Let β̂fe denote the coefficient of Dg,t, the treatment in group g at period t, in an OLS regression
of Yi,g,t, the outcome of individual i in group g at period t, on group fixed effects, period fixed
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effects, and Dg,t:
Yi,g,t = α̂g + γ̂t + β̂feDg,t + ϵg,t.

de Chaisemartin and D’Haultfœuille (2020) show that under a parallel trends assumption on the
potential outcome without treatment Yg,t(0),

E
[
β̂fe

]
= E

 ∑
(g,t):Dg,t ̸=0

Wg,tTEg,t

 . (3)

If the treatment is binary, TEg,t = Yg,t(1)−Yg,t(0), the ATE in group g at time t. If the treatment
is discrete or continuous, TEg,t = (Yg,t(Dg,t) − Yg,t(0))/Dg,t, the effect of moving the treatment
from 0 to Dg,t scaled by Dg,t.3 The Wg,t are weights summing to 1, that are proportional to and
of the same sign as

Ng,t(Dg,t − Dg,. − D.,t + D.,.), (4)

where Ng,t is the number of observations in cell (g, t), Dg,. is the average treatment of group g

across periods, D.,t is the average treatment at period t across groups, and D.,. is the average
treatment across groups and periods.4

Equations (3) and (4) have two important consequences. First, they imply that β̂fe may be
biased for the average treatment effect across all treated (g, t) cells, the ATT. Indeed, Equation
(4) shows that Wg,t is not proportional to Ng,t, so E

[
β̂fe

]
does not assign to TEg,t a weight

proportional to the population of cell (g, t). A special case where β̂fe is unbiased for the ATT
under the parallel trends assumption alone is when (i) the design is staggered, meaning that
groups’ treatment can only increase over time and can change at most once;5 (ii) the treatment
is binary; (iii) there is no variation in treatment timing: all treated groups start receiving the
treatment at the same date. Then, one can show that Dg,t − Dg,. − D.,t + D.,. is constant across
the treated (g, t)s, so it follows from Equation (4) that Wg,t is proportional to Ng,t, and Equation
(3) then implies that β̂fe is unbiased for the ATT. However, conditions (i)-(iii) are seldom met
in practice. β̂fe can also be unbiased for the ATT if one is ready to make more assumptions
than just parallel trends. For instance, if one is also ready to assume that Dg,t −Dg,. −D.,t +D.,.

is uncorrelated with TEg,t, the treatment effects that are up- and down-weighted by β̂fe do not
systematically differ, and one can then show that β̂fe is unbiased for the ATT (see Corollary 2

3de Chaisemartin and D’Haultfœuille (2020) derive Equation (3) assuming that groups’ potential outcomes
only depend on their current treatment, not on their past treatments. With dynamic effects, Equation (3) still
holds if the treatment is binary and staggered, except that some of the TEg,ts become effects of having been
treated for more than one period.

4Equation (4) holds under the assumption that the number of observations follows the same evolution over
time in every group.

5Together, (i) and (ii) imply that groups can only switch from untreated to treated, and may do so at different
points in time. This is probably the definition of a staggered design many people have in mind. i) extends the
definition of a staggered design to non-binary treatments.
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in de Chaisemartin and D’Haultfœuille, 2020).6 Unfortunately, this no-correlation condition is
often implausible. To see this, note that Dg,t−Dg,.−D.,t+D.,. is decreasing in Dg,., meaning that
β̂fe downweights the treatment effect of groups with the highest average treatment from period
1 to T . However, groups with the largest and lowest average treatment may have systematically
different treatment effects. Similarly, Dg,t − Dg,. − D.,t + D.,. is decreasing in D.,t, and the
treatment effects at time periods with the highest average treatment across groups may also
systematically differ from the treatment effects at time periods where the average treatment is
lower.

Second, and perhaps more worryingly, Equation (4) implies that some of the weights Wg,t may
be negative. This means that in the minimum wage example, β̂fe could be estimating something
like 3 times the effect of the minimum wage on employment in Santa Clara county, minus 2
times the effect in Wayne county. Then, if raising the minimum wage by one dollar decreases
employment by 5% in Santa Clara county and by 20% in Wayne county, one would have E

[
β̂fe

]
=

3 × −0.05 − (2 × −0.2) = 0.25. E
[
β̂fe

]
would be positive, while the minimum wage’s effect on

employment is negative both in Santa Clara and in Wayne county. This example shows that β̂fe

may not satisfy the “no-sign reversal property”: E
[
β̂fe

]
could for instance be positive, even if

the treatment effect is strictly negative in every (g, t). This phenomenon can only arise when
some of the weights Wg,t are negative: when all those weights are positive, β̂fe does satisfy
the no-sign reversal property. Note that despite its intuitive appeal and its popularity among
applied researchers, the no-sign reversal property is not grounded in statistical decision theory,
unlike other commonly-used criteria to discriminate estimators such as the mean-squared error.
Still, it is connected to the economic concept of Pareto efficiency. If an estimator satisfies “no-
sign-reversal”, the estimand attached to it can only be positive if the treatment is not Pareto-
dominated by the absence of treatment, meaning that not everybody is hurt by the treatment.
Conversely, the estimand can only be negative if the treatment does not Pareto-dominate the
absence of treatment. On the other hand, if an estimator does not satisfy “no-sign-reversal”, the
estimand attached to it could for instance be positive, even if the treatment is Pareto-dominated.

Inasmuch as “no-sign-reversal” is a desirable property, it becomes interesting to understand when
β̂fe may satisfy it. Equation (4) shows that with a binary treatment, the weights attached to β̂fe

could all be positive. With a binary treatment, all the (g, t)s entering the summation in (3) must
have Dg,t = 1, so for a weight Wg,t to be strictly negative, one must have 1 + D.,. < Dg,. + D.,t.

This cannot happen if Dg,. + D.,t ≤ 1 for every (g, t). Accordingly, all the weights are likely to
be positive when there is no group that is treated most of the time, and no time periods where
most groups are treated. In staggered designs, this has led Jakiela (2021) to propose to drop

6A special case of this “no-correlation” condition is if the treatment effect is constant, i.e. TEg,t = δ for all
(g, t). Then, it directly follows from Equation (3) that E

[
β̂fe

]
= δ. However, constant effect is most often an

implausible assumption.
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the last periods of the data, those when D.,t is the highest, to mitigate or eliminate the negative
weights. One could also drop the always-treated groups, if there are any.

On the other hand, Equation (4) shows that with a non-binary treatment, it becomes more likely
that some of the weights Wg,t are negative. Gentzkow et al. (2011) study the effect of the number
of newspapers in county g and year t on turnout in presidential elections. Assume that in year
t, county g has 1 newspaper (Dg,t = 1), which is below its average number of newspapers across
years, equal, say, to 2 (Dg,. = 2). At the same time, the average number of newspapers across
counties in year t is equal to 2 (D.,t = 2), which is above the average number of newspapers
across all counties and years, equal, say, to 1 (D.,. = 1). Then, it follows from (4) that the weight
assigned to the effect of newspapers in county g and year t is strictly negative. More generally,
a necessary condition to have that all weights are positive is that in every period where the
population’s treatment is higher than its average across periods (D.,t ≥ D.,.), the treatment of
each treated group must also be larger than its average across periods (Dg,t ≥ Dg,. for all gs such
that Dg,t ̸= 0). In practice, it seems that with a non-binary treatment, β̂fe often has many large
negative weights attached to it. de Chaisemartin and D’Haultfœuille (2020) review Gentzkow
et al. (2011) and Enikolopov et al. (2011), two papers that have estimated TWFE regressions
with a non-binary treatment. In both cases, more than half of the weights attached to β̂fe are
negative, and the sum of the negative weights is large (-0.53 and -2.26, respectively).7

The twowayfeweights Stata (see de Chaisemartin, D’Haultfœuille and Deeb, 2019) and R (see
Zhang and de Chaisemartin, 2021) commands compute the weights Wg,t in (3). The basic syntax
of the Stata command is:

twowayfeweights outcome groupid timeid treatment, type(feTR)

The decomposition in (3) is the main result in de Chaisemartin and D’Haultfœuille (2020).
Related results have appeared earlier in Theorems S1 and S2 of the Supplementary Material of
de Chaisemartin and D’Haultfœuille (2015). Borusyak and Jaravel (2017) consider the case with
a binary and staggered treatment. In their Lemma 1 and Proposition 1, they assume that the
treatment effect varies with the duration elapsed since one has started receiving the treatment
but does not vary across groups and over time. Then, they show that β̂fe estimates a weighted
sum of effects, that may assign negative weights to long-run treatment effects. Their Appendix
C also contains another result related to that in Equation (3).8

7 Gentzkow et al. (2011) do not estimate the TWFE regression defined above, but a first-difference version of
that regression. Many weights attached to their regression are negative, and the sum of negative weights is even
larger than for the TWFE regression.

8Prior to that, Chernozhukov et al. (2013) had shown that one-way FE regressions may be biased for the
average treatment effect, though unlike TWFE regressions they always estimate a convex combination of effects.
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2.2 The origin of the problem: forbidden comparisons

2.2.1 Forbidden comparisons when the treatment is binary and the design is staggered

Goodman-Bacon (2021) shows that when the treatment is binary and the design is staggered,
meaning that groups can switch in but not out of treatment, we have

β̂fe =
∑

g ̸=g′,t<t′
vg,g′,t,t′DIDg,g′,t,t′ , (5)

where DIDg,g′,t,t′ is a DID comparing the outcome evolution of two groups g and g′ from a pre
period t to a post period t′, and where vg,g′,t,t′ are non-negative weights summing to one, with
vg,g′,t,t′ > 0 if and only if g switches treatment between t and t′ while g′ does not.9 Some of
the DIDg,g′,t,t′s in Equation (5) compare a group switching treatment from t to t′ to a group
untreated at both dates, while other DIDg,g′,t,t′s compare a switching group to a group treated
at both dates. The negative weights in (3) originate from this second type of DIDs.

To see that, let us consider a simple example, first introduced by Borusyak and Jaravel (2017),10

with two groups and three periods. Group e, the early-treated group, is untreated at period 1
and treated at periods 2 and 3. Group ℓ, the late-treated group, is untreated at periods 1 and
2 and treated at period 3. In this simple example, Equation (5) reduces to

β̂fe = (DIDe,ℓ,1,2 + DIDℓ,e,2,3)/2, (6)

with

DIDe,ℓ,1,2 = Ye,2 − Ye,1 − (Yℓ,2 − Yℓ,1) ,

DIDℓ,e,2,3 = Yℓ,3 − Yℓ,2 − (Ye,3 − Ye,2) .

DIDe,ℓ,1,2 compares the period-1-to-2 outcome evolution of group e, that switches from untreated
to treated from period 1 to 2, to the outcome evolution of group ℓ that is untreated at both
periods. Thus, DIDe,ℓ,1,2 is similar to the DID estimator in Equation (1), and under parallel
trends it is unbiased for the treatment effect in group e at period 2:

E [DIDe,ℓ,1,2] = E [TEe,2] . (7)

DIDℓ,e,2,3, on the other hand, compares the period-2-to-3 outcome evolution of group ℓ, that
switches from untreated to treated from period 2 to 3, to the outcome evolution of group e that

9Goodman-Bacon (2021) actually decomposes β̂fe as a weighted average of DIDs between cohorts of groups
becoming treated at the same date, and between periods of time where their treatment remains constant. One
can then further decompose his decomposition, as we do here.

10Borusyak and Jaravel (2017) have also coined the “forbidden comparisons” expression that we borrow here.

7



is treated at both dates. At both periods, e’s outcome is its treated potential outcome, which is
equal to the sum of its untreated outcome and its treatment effect. Accordingly,

Ye,3 − Ye,2 = Ye,3(0) + TEe,3 − (Ye,2(0) + TEe,2).

On the other hand, group ℓ is only treated at period 3, so

Yℓ,3 − Yℓ,2 = Yℓ,3(0) + TEℓ,3 − Yℓ,2(0).

Taking the expectation of the difference between the two previous equations,

E [DIDℓ,e,2,3] = E [TEℓ,3 − TEe,3 + TEe,2] , (8)

where E [Ye,3(0) − Ye,2(0)] and E [Yℓ,3(0) − Yℓ,2(0)] cancel out under the parallel trends assump-
tion. Finally, it follows from Equations (6), (7), and (8) that

E
[
β̂fe

]
= E [1/2TEℓ,3 + TEe,2 − 1/2TEe,3] . (9)

In this simple example, Equation (3) reduces to (9). The right-hand side of Equation (9) is a
weighted sum of three ATEs where one ATE receives a negative weight. As the previous deriva-
tion shows, this negative weight comes from the fact β̂fe leverages DIDℓ,e,2,3, a DID comparing
a group switching from untreated to treated to a group treated at both periods.

If one is ready to assume that the treatment effect does not change over time, TEe,3 = TEe,2,
and (8) simplifies to

E [DIDℓ,e,2,3] = E [TEℓ,3] . (10)

Then, the negative weight in (8) disappears, and β̂fe estimates a weighted average of treat-
ment effects. This extends beyond this simple example: Theorem S2 of the Web Appendix of
de Chaisemartin and D’Haultfœuille (2020) and Equation (16) of Goodman-Bacon (2021) show
that in staggered adoption designs with a binary treatment, β̂fe estimates a convex combination
of effects, if the treatment effect does not change over time but may still vary across groups.
This conclusion, however, no longer holds if the treatment is not binary or the design is not
staggered. Moreover, assuming constant treatment effects over time is often implausible as this
rules out both dynamic treatment effects and calendar time effects.

The decomposition in Equation (5) is key to understand why β̂fe may not identify a convex
combination of treatment effects. On the other hand, it cannot be used to assess if β̂fe does
indeed estimate a convex combination of effects in a given application. Consider an example
similar to that above, but with a third group n that remains untreated from period 1 to 3. In
this second example, the decomposition in (5) now indicates that β̂fe assigns a weight equal to
1/6 to DIDs comparing a switcher to a group treated at both periods. On the other hand, all
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the weights in (3) are positive in this second example. This phenomenon can also arise in real
data sets. In the data of Stevenson and Wolfers (2006) used by Goodman-Bacon (2021) in his
empirical application, if one restricts the sample to states that are not always treated and to
the first ten years of the panel, all the weights in (3) are positive, but the sum of the weights in
(5) on DIDs comparing a switcher to a group treated at both periods is equal to 0.06. Beyond
these examples, one can show that having DIDs comparing a switcher to a group treated at
both periods in (5) is necessary but not sufficient to have negative weights in (3). Similarly,
the sum of the weights on DIDs comparing a switcher to a group treated at both periods in (5)
is always larger than the absolute value of the sum of the negative weights in (3). The reason
why Equation (5) “overestimates” the negative weights in (3) is that as soon as there are three
distinct treatment dates, there is not a unique way of decomposing β̂fe as a weighted average
of DIDs, and there exists other decompositions than Equation (5) putting less weight on DIDs
using a group treated at both periods as the control group.11

The bacondecomp Stata (see Goodman-Bacon et al., 2019) and R (see Flack and Edward, 2020)
commands compute the DIDg,g′,t,t′s entering in (5), the weights assigned to them, as well as the
sum of the weights on DIDg,g′,t,t′s using a group treated at both periods as the control group.
The basic syntax of the bacondecomp Stata command is:

bacondecomp outcome treatment, ddetail

2.2.2 More forbidden comparisons when the design is not staggered or treatment is not binary

When the treatment does not follow a staggered design, or when it is not binary, β̂fe may
leverage another type of comparison: it may compare the outcome evolution of a group m whose
treatment increases more to the outcome evolution of a group ℓ whose treatment increases less.

11To see that, let t0 < t1 < t2 be three dates, let e be an early-treated group becoming treated at t1,
let ℓ be a late-treated group becoming treated at t2, and let n be a group untreated yet at t2. Let v =
min(vℓ,e,t1,t2 , ve,n,t0,t2) > 0. One has

DIDℓ,e,t1,t2 = DIDℓ,n,t0,t2 − DIDe,n,t0,t2 + DIDe,ℓ,t0,t1 . (11)

Then, it follows from Equation (11) that

vℓ,e,t1,t2DIDℓ,e,t1,t2 + ve,n,t0,t2DIDe,n,t0,t2

=(vℓ,e,t1,t2 − v)DIDℓ,e,t1,t2 + vDIDℓ,n,t0,t2 + vDIDe,ℓ,t0,t1 + (ve,n,t0,t2 − v)DIDe,n,t0,t2 . (12)

Plugging Equation (12) into Equation (5) will yield a different decomposition of β̂fe as a weighted average of
DIDs. But the weight on DIDs using a group treated at both periods as the control group is equal to vℓ,e,t1,t2 in the
left-hand-side of Equation (12), and to (vℓ,e,t1,t2 − v) in its right-hand side. Accordingly, this new decomposition
puts strictly less weight than Equation (5) on DIDs using a group treated at both periods as the control group.
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In fact, with two groups m and ℓ and two periods, one can show that

β̂fe = Ym,2 − Ym,1 − (Yℓ,2 − Yℓ,1)
Dm,2 − Dm,1 − (Dℓ,2 − Dℓ,1)

, (13)

where the right hand side of the previous display is the Wald-DID estimator studied by de Chaise-
martin and D’Haultfœuille (2018). The Wald-DID compares the outcome evolution of groups
m and ℓ, and scales that comparison by the differential evolution of m’s and ℓ’s treatments.
de Chaisemartin and D’Haultfœuille (2018) show that the Wald-DID may not estimate a con-
vex combination of effects, unless the treatment effect is constant over time and is the same in
groups m and ℓ. This second requirement was not present in the binary and staggered case. In
that case, we have seen before that if the treatment effect is constant over time, β̂fe estimates a
convex combination of effects, even if the treatment effect varies between groups.

To see that with a non-binary or non-staggered treatment β̂fe may not estimate a convex combi-
nation of effects even if the treatment effect is constant over time, let us consider a simple exam-
ple. Assume that group m goes from 0 to 2 units of treatment from period 1 to 2, while group ℓ

goes from 0 to 1 unit. Then, the denominator of the Wald-DID is equal to 2 − 0 − (1 − 0) = 1,
so

β̂fe = Ym,2 − Ym,1 − (Yℓ,2 − Yℓ,1) .

To simplify, let us also assume that in both groups, potential outcomes are linear in the number
of treatment units, with slopes that are constant over time but may differ for groups m and ℓ:

Ym,t(d) =Ym,t(0) + δmd

Yℓ,t(d) =Ym,t(0) + δℓd.

Then, under parallel trends,

E
[
β̂fe

]
=E [Ym,2(2) − Ym,1(0) − (Yℓ,2(1) − Yℓ,1(0))]

=E [Ym,2(0) + 2δm − Ym,1(0) − (Yℓ,2(0) + δℓ − Yℓ,1(0))]
=E [Ym,2(0) − Ym,1(0)] − E [Yℓ,2(0) − Yℓ,1(0)] + 2δm − δℓ

=2δm − δℓ,

a weighted sum of m and ℓ’s treatment effects, where group ℓ’s effect is weighted negatively.
Intuitively, group ℓ is also treated at period two, and β̂fe, which uses ℓ as a control group,
subtracts its treatment effect out. This example also shows that β̂fe may fail to identify a
convex combination of effects, even without variation in treatment timing: here, both m and ℓ

start getting treated at period 2.
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2.3 Decomposition results for other TWFE regression coefficients

2.3.1 Extensions of the decomposition in Equation (3)

A decomposition similar to (3) can be obtained for TWFE regressions with control variables, and
for first-difference regressions where the outcome’s first difference is regressed on the treatment’s
first difference and period fixed effects. de Chaisemartin and D’Haultfœuille (2020) also derive
decompositions similar to (3), for β̂fe and for the first-difference coefficient, under common trends
and under the assumption that the treatment effect does not change over time. The weights in
all those decompositions are also computed by the twowayfeweights Stata and R commands.

2.3.2 Dynamic TWFE regressions

In staggered designs with a binary treatment, Sun and Abraham (2021) study dynamic TWFE
regressions, also called event-study regressions:

Yg,t = γ̂g + λ̂t +
L∑

ℓ=−K,ℓ̸=−1
β̂ℓ1{Fg = t − ℓ} + εg,t, (14)

where Fg is the first period at which group g is treated. In words, the outcome is regressed
on group and period fixed effects, and relative-time indicators 1{Fg = t − ℓ} equal to 1 if
group g started receiving the treatment ℓ periods ago. For ℓ ≥ 0, β̂ℓ is supposed to estimate
the cumulative effect of ℓ + 1 treatment periods. For ℓ ≤ −2, β̂ℓ is supposed to be a placebo
coefficient testing the parallel trends assumption, by comparing the outcome trends of groups
that will and will not start receiving the treatment in |ℓ| periods.

Actually, Sun and Abraham (2021) show that under parallel trends, for ℓ ≥ 0,

E
[
β̂ℓ

]
= E

∑
g

wg,ℓTEg(ℓ) +
∑
ℓ′ ̸=ℓ

∑
g

wg,ℓ′TEg(ℓ′)
 , (15)

where TEg(ℓ) is the cumulative effect of ℓ + 1 treatment periods in group g, and wg,ℓ and wg,ℓ′

are weights such that ∑g wg,ℓ = 1 and ∑
g wg,ℓ′ = 0 for every ℓ′.12 The first summation in the

right-hand side of Equation (15) is a weighted sum across groups of the cumulative effect of ℓ+1
treatment periods, with weights summing to 1 but that may be negative. This first summation
resembles that in the decomposition of the “static” TWFE coefficient in (3), and it implies that
β̂ℓ may be biased if the cumulative effect of ℓ + 1 treatment periods varies across groups. The
second summation is a weighted sum, across ℓ′ ̸= ℓ and groups, of the cumulative effect of ℓ′ + 1

12Equation (15) follows from Proposition 3 in Sun and Abraham (2021), assuming no binning and that the
treatment does not have an effect after L + 1 periods of exposure. A slight difference is that the decomposition
in Sun and Abraham (2021) gathers groups that started receiving the treatment at the same period into cohorts.
Their decomposition can then be further decomposed, as we do here.
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treatment periods in group g, with weights summing to 0. This second summation was not
present in the decomposition of the static TWFE coefficient. Importantly, its presence implies
that β̂ℓ, which is supposed to estimate the cumulative effect of ℓ + 1 treatment periods, may in
fact be contaminated by the effects of ℓ′ + 1 treatment periods. As ∑g wg,ℓ′ = 0 for every ℓ′, this
second summation disappears if TEg(ℓ′) does not vary across groups, but it is often implausible
that the treatment effect does not vary across groups.

For ℓ ≤ −2, and without assuming parallel trends, Sun and Abraham (2021) show that β̂ℓ

estimates the sum of two terms. As intended, the first term measures deviations from parallel
trends between groups that will and will not start receiving the treatment in |ℓ| periods. But
the second term is similar to the second summation in the right-hand side of Equation (15): a
weighted sum, across ℓ′ ≥ 0 and groups, of the cumulative effect of ℓ′ + 1 treatment periods in
group g, with weights summing to zero. Due to the presence of this second term, the expectation
of β̂ℓ may differ from zero even if parallel trends holds, and it may be equal to zero even if parallel
trends fails. Thus, an important consequence of the results in Sun and Abraham (2021) is that
in the presence of heterogeneous treatment effects, (14) cannot be used to test for parallel trends.

The eventstudyweights Stata command (see Sun, 2020) computes the weights attached to
event-study regressions. Its basic syntax is:

eventstudyweights {rel_time_list}, absorb(i.groupid i.timeid)
cohort(first_treatment) rel_time(ry),

where rel_time_list is the list of relative-time indicators 1{Fg = t − ℓ} included in (14),
first_treatment is a variable equal to the period when group g got treated for the first time,
and ry is a variable equal to timeid minus first_treatment, the number of periods elapsed
since group g started receiving the treatment.

2.3.3 TWFE regressions with more than one treatment

Another case of interest is TWFE regressions with several treatments. For instance, to estimate
separately the effect of medical and recreational marijuana laws on consumption, one may regress
marijuana consumption in state g and year t on state and year fixed effects, on whether state
g has a recreational marijuana law in year t, and on whether state g has a medical law in year
t. de Chaisemartin and D’Haultfœuille (2021b) show that in those regressions, the coefficient
on a given treatment identifies a weighted sum of that treatment’s effect across (g, t)s, with
weights summing to 1 but that may be negative, plus weighted sums of the effects of the other
treatments in the regression, with weights summing to 0. In the example above, the coefficient
on recreational laws may be contaminated by the effect of medical laws. The weights attached
to TWFE regressions with several treatments are also computed by the twowayfeweights Stata
and R commands.
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3 Alternative heterogeneity-robust DID estimators

In this section, we review several recently-proposed alternatives to TWFE regressions. We re-
strict our attention to estimators relying on parallel trends assumptions, like TWFE regressions,
but that do not restrict treatment effect heterogeneity between groups and over time, unlike
TWFE regressions. This excludes papers that have assumed randomized treatment timing (see,
e.g., Athey and Imbens, 2022; Roth and Sant’Anna, 2021) or sequential treatment randomiza-
tion (see, e.g., Bojinov et al., 2021), rather than parallel trends. Intuitively, all the estimators
below carefully choose valid control groups, to avoid making the “forbidden comparisons” that
render TWFE estimators non-robust to heterogeneous treatment effects. We start by reviewing
estimators ruling out dynamic effects, i.e. that assume that a group’s current outcome only
depends on its current treatment, before reviewing estimators that allow dynamic effects. In
complicated designs, say with a continuous treatment that changes often, allowing for dynamic
effects comes with a number of costs: it may result in imprecise estimators, and may complicate
the interpretation of the estimated effects. Then, one may want to carefully evaluate if past
treatments are indeed likely to affect the current outcome.

3.1 Estimators ruling out dynamic effects

With a binary treatment de Chaisemartin and D’Haultfœuille (2020) propose to use the DIDM

estimator, a weighted average, across t, of two types of DIDs:

1. a DID comparing the t−1 to t outcome evolution of groups going from untreated to treated
from t − 1 to t, the “switchers in”, and of groups untreated at both dates.

2. a DID comparing the t − 1 to t outcome evolution of groups treated at both dates, and of
groups going from treated to untreated from t − 1 to t, the “switchers out”.

The first DID compares the outcome evolution of groups switching from untreated to treated,
and groups untreated at both dates. It is therefore similar to the DID estimator in Equation (1),
and it is unbiased for the treatment effect of the switching-in groups at period t, under a parallel
trends assumption on the untreated outcome Yg,t(0). The second DID compares the outcome
evolution of groups treated at both dates, and groups switching from treated to untreated. It is
again similar to the DID estimator in Equation (1), switching “treatment” and “non-treatment”.
Then, one can show that this second DID is unbiased for the treatment effect of the switching-
out groups at period t, under a parallel trends assumption on the treated outcome Yg,t(1).
Accordingly, DIDM relies on parallel trends assumptions on both Yg,t(0) and Yg,t(1), which implies
parallel trends on the treatment effect Yg,t(1) − Yg,t(0). de Chaisemartin and D’Haultfœuille
(2020) propose placebo estimators that one can use to test those two assumptions. The placebos
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compare the outcome trends of switchers and non-switchers, before the switchers switch. The
multi-period DID estimator in Imai and Kim (2021) is related to the DIDM estimator. It can
be used with a binary treatment, to estimate the switchers-in’s treatment effect.

The DIDM estimator can easily be extended to non-binary treatments taking a finite number of
values. Then, it is a weighted average, across d and t, of DIDs comparing the t − 1 to t outcome
evolution of groups whose treatment goes from d to some other value from t − 1 to t, and of
groups with a treatment equal to d at both dates, normalized by the intensity of the treatment
change experienced by the switchers. For instance, in Gentzkow et al. (2011), a county going
from 2 to 4 newspapers is compared to a county with 2 newspapers at both dates.

The DIDM estimator is computed by the did_multiplegt Stata (see de Chaisemartin, D’Haultfœuille
and Guyonvarch, 2019) and R (see Zhang and de Chaisemartin, 2020) commands. The basic
syntax of the Stata command is:

did_multiplegt outcome groupid timeid treatment

de Chaisemartin et al. (2022) extend the DIDM estimator to continuous treatments. To simplify,
we present their estimators in the case with two time periods, though they readily extend to the
case with more periods. de Chaisemartin et al. (2022) assume that from period one to two, the
treatment of some units, hereafter referred to as the movers, changes. They also assume that the
treatment of other units, hereafter referred to as the stayers, does not change. This assumption
is likely to be met when the treatment is say, trade tariffs: tariffs’ reforms rarely apply to all
products, so it is likely that tariffs of at least some products stay constant over time. On the
other hand, this assumption is unlikely to be met when the treatment is say, precipitations:
geographical units never experience the exact same precipitations over two consecutive years.

Under the assumption that there are some stayers, the estimator proposed by de Chaisemartin
et al. (2022) compares the outcome evolution of movers and stayers, with the same period-one
treatment. With a continuous treatment, such comparisons can either be achieved by reweigthing
stayers by propensity score weights, or by adjusting movers’ outcome change using a nonpara-
metric regression of the outcome change on the period-one treatment among the stayers. Under
parallel trends assumptions on all potential outcomes, the corresponding estimands identify a
weighted average of the effect, across all movers, of moving their treatment from its period-one
to its period-two value, scaled by the difference between these two values. This effect can be
interpreted as some average of the effect of increasing the treatment by one unit on the outcome.

The estimators in de Chaisemartin et al. (2022) can be extended to the case where there are no
stayers, provided there are quasi-stayers, meaning units whose treatment barely changes from
period one to two. Alternatively, one could also use the estimator proposed by Graham and Pow-
ell (2012), which compares the outcome evolution of movers and quasi stayers whose treatment
changes by less than some bandwidth, but without conditioning on units’ period-one treatment.
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Their estimator relies on a linear treatment effect assumption, unlike those in de Chaisemartin
et al. (2022). Both estimators require choosing a bandwidth, namely the lowest treatment change
below which a unit can be considered as a quasi-stayer. Neither de Chaisemartin et al. (2022)
or Graham and Powell (2012) derive an “optimal” bandwidth, so for now bandwidth choice is
left to the discretion of the researcher. If the data has at least three periods, one could also
use the correlated-random-coefficient estimator proposed by Chamberlain (1992). While it al-
lows for some treatment effect heterogeneity, that estimator relies on a linear treatment effect
assumption.

de Chaisemartin et al. (2022) show that after some relabelling, some of their estimators are
equivalent or nearly equivalent to estimators that had been previously proposed by de Chaise-
martin and D’Haultfœuille (2018), Abadie (2005), and Callaway and Sant’Anna (2021). This
implies that their estimators can be computed, up to small tweaks, by the companion software
for those papers. We refer the reader to de Chaisemartin et al. (2022) for a precise description
of how their estimators can be computed using existing software.

3.2 Estimators allowing for dynamic effects...

3.2.1 ... When the treatment is binary and the design is staggered.

With dynamic effects, group g’s outcome at time t is allowed to depend on her past treatments.
Then, researchers have proposed to replace the parallel trends assumption on the potential
outcome without treatment Yg,t(0) by a parallel trends assumption on the outcome without
having ever been treated Yg,t(0t), where 0t is a vector of t zeros (see Callaway and Sant’Anna,
2021; Sun and Abraham, 2021): for all g ̸= g′,

E [Yg,t(0t) − Yg,t−1(0t−1)] = E [Yg′,t(0t) − Yg′,t−1(0t−1)] . (16)

We now review the estimators that have been proposed by Callaway and Sant’Anna (2021), Sun
and Abraham (2021), and Borusyak et al. (2021) for binary and staggered treatments, under
the parallel trends assumption in Equation (16).

The estimators proposed by Callaway and Sant’Anna (2021)

In a staggered adoption design, groups can be aggregated into cohorts that start receiving the
treatment at the same period. Callaway and Sant’Anna (2021) define their parameters of interest
as TEc,c+ℓ, the average treatment effect at period c + ℓ of the cohort that started receiving the
treatment at period c, for every c ≥ 2 and ℓ ≥ 0 such that ℓ + c ≤ T . To estimate, say,
TEc,c, the treatment effect at time c of the cohort that started receiving the treatment at c,
they propose to compare c’s outcome evolution from c − 1 to c to the same outcome evolution
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among all never-treated groups n, assuming for now that such groups exist. This DID estimator
is unbiased:

E [Yc,c − Yc,c−1 − (Yn,c − Yn,c−1)]
=E [Yc,c(0c−1, 1) − Yc,c−1(0c−1) − (Yn,c(0c) − Yn,c−1(0c−1))]
=E [Yc,c(0c−1, 1) − Yc,c(0c)] + E [Yc,c(0c) − Yc,c−1(0c−1) − (Yn,c(0c) − Yn,c−1(0c−1))]
=E [Yc,c(0c−1, 1) − Yc,c(0c)] ,

where the last equality follows from Equation (16). More generally, to estimate c’s effect at
period c + ℓ, Callaway and Sant’Anna (2021) propose to compare its c − 1 to c + ℓ outcome
evolution to that of the never treated groups.

Callaway and Sant’Anna (2021) also propose estimators of more aggregated treatment effects,
such as the average effect of having been treated for ℓ+1 periods across all groups reaching that
treatment horizon, or the average treatment effect across all treated units that do not belong to
a group treated throughout the panel. When there is no group that is always treated, this latter
parameter is in fact the ATT.

Callaway and Sant’Anna (2021) also propose estimators similar to those above, but that use
the not-yet-treated instead of the never-treated as controls. This is very useful when there is
no never-treated group: in that case, the cohort-and-period specific effects TEc,c+ℓ can still be
estimated, for every c ≥ 2 and ℓ ≥ 0 such that ℓ + c ≤ U , where U is the last period when at
least one group is still untreated. Even when there are never-treated groups, the not-yet-treated
is a larger control group, so this second set of estimators may be more precise than the first.
Note that in staggered adoption designs with a binary treatment, the DIDM estimator proposed
by de Chaisemartin and D’Haultfœuille (2020) also compares switchers to not-yet-treated, and
is unbiased for switchers’ instantaneous treatment effect.

Callaway and Sant’Anna (2021) also propose estimators relying on a conditional parallel trends
assumption. Rather than assuming that all groups have the same evolution of their never-
treated outcome, conditional parallel trends requires that groups with the same value of some
time-invariant covariates have the same evolution of their never-treated outcome, an often weaker
assumption. In the minimum wage example, if the proportion of college graduates at the start
of the panel is conditioned upon, conditional parallel trends assumes that in the absence of a
minimum wage, counties with the same proportion of college graduates would have experienced
the same employment evolution, rather than assuming that all counties would have experienced
the same employment evolution.

Finally, Callaway and Sant’Anna (2021) propose placebo estimators to test the parallel trends
assumption underlying their estimators. Their placebo estimators are robust to heterogeneous
effects, unlike the coefficients β̂ℓ for ℓ ≤ −2 from the event-study regression in (14).
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The estimators proposed by Callaway and Sant’Anna (2021) are computed by the csdid Stata
command (see Rios-Avila et al., 2021), and by the did R command (see Sant’Anna and Callaway,
2021). The basic syntax of the Stata command is

csdid outcome, time(timeid) gvar(cohort)

where cohort is a variable equal to the period when a group starts receiving the treatment.

The estimators proposed by Sun and Abraham (2021)

Sun and Abraham (2021) also propose DID estimators of the cohort-and-period specific effects
TEc,c+ℓ that only rely on the parallel trends assumption in Equation (16), and that are robust to
heterogeneous treatment effects. Their estimators either use the never-treated groups as controls,
or the last-treated groups if there are no never-treated. With the former control group, their
estimators of the TEc,c+ℓ parameters are identical to those proposed by Callaway and Sant’Anna
(2021) with the same control group. Operationally, they show that their estimators can be
computed via a simple linear regression, which may reduce computing time. Unlike Callaway
and Sant’Anna (2021), they do not propose estimators relying on a conditional parallel trends
assumption, and they also do not propose estimators using the not-yet-treated as controls.

Their estimators are computed by the eventstudyinteract Stata command (see Sun, 2021).
Its basic syntax is

eventstudyinteract outcome {rel_time_list}, absorb(i.groupid i.timeid)
cohort(first_treatment) control_cohort(controlgroup)

where rel_time_list is the list of relative-time indicators 1{Fg = t − ℓ} one would include in
the dynamic TWFE regression in (14), first_treatment is a variable equal to the period when
group g got treated for the first time, and controlgroup is an indicator for the control group
observations (e.g.: the never treated).

The estimators proposed by Borusyak et al. (2021)

Borusyak et al. (2021) have proposed estimators that may be more efficient than those in Call-
away and Sant’Anna (2021) and Sun and Abraham (2021), under some assumptions. Their
estimators can be obtained by running a TWFE regression of the outcome on group and time
fixed effects, and fixed effects for every treated (g, t) cell. To be concrete, if the data has 50
groups, 10 time periods, and 100 treated (g, t) cells, the regression has a constant and 158 fixed
effects (49 for groups, 9 for time periods, and 100 for the treated (g, t) cells). Under the assump-
tions of the Gauss-Markov theorem, the coefficients from this regression are the linear estimators
of the population coefficients with the lowest variance. But under parallel trends, the population
coefficient on the fixed effect for treated cell (g, t) is actually equal to TEg,t, the ATE in cell
(g, t), so the estimators in Borusyak et al. (2021) are the linear estimators of those ATEs with
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the lowest variance. With estimators of TEg,t in hand, one can estimate TEc,c+ℓ as the average
of all the TEg,ts such that group g started receiving the treatment at period c and t = c + ℓ.
Again, Gauss-Markov ensures that this estimator is the best linear estimator of TEc,c+ℓ. As
the estimators in Callaway and Sant’Anna (2021) and Sun and Abraham (2021) are also linear
estimators, those in Borusyak et al. (2021) have a lower variance.

A second, numerically equivalent way of computing the estimators in Borusyak et al. (2021)
amounts to fitting a regression of the outcome on group and time fixed effects in the sample
of untreated observations, and using that regression to predict the counterfactual outcome of
treated observations. Estimates of the treatment effect of those observations are then merely
obtained by substracting their counterfactual to their actual outcome. This second method is
computationally faster than the first. It also readily generalizes to more complicated specifi-
cations, such as triple-differences, or models allowing for group-specific linear trends. Using
this representation of their estimator, Borusyak et al. (2021) show that it can also be used to
estimate the effect of a binary and non-staggered treatment, if that treatment does not have
dynamic effects. This second method is the one used by the did_imputation Stata command
(see Borusyak, 2021) and by the didimputation R command (see Butts, 2021) to compute the
estimators proposed by Borusyak et al. (2021). The basic syntax of the Stata command is:

did_imputation outcome groupid timeid first_treatment,

where first_treatment is a variable equal to the period when group g first got treated.

Liu et al. (2021) and Gardner (2021) have independently proposed the same estimators as
Borusyak et al. (2021),13 but the result showing that this estimator is efficient under the as-
sumptions of the Gauss-Markov theorem only appears in Borusyak et al. (2021). Note that
Wooldridge (2021) has also proposed an estimation strategy connected, and in some cases nu-
merically equivalent, to that of Borusyak et al. (2021).

Understanding the differences between those estimators

Under parallel trends, the estimators in Borusyak et al. (2021) may offer precision gains with
respect to those in Callaway and Sant’Anna (2021) or Sun and Abraham (2021), under the
assumptions of the Gauss-Markov theorem. Those require, among other things, that the never
treated potential outcomes Yg,t(0t) be independent of each other, both across groups and over
time. It is, of course, often implausible that the potential outcomes of the same group are
uncorrelated over time. With serial correlation, it is no longer guaranteed that the estimators
in Borusyak et al. (2021) will always be more efficient than those in Callaway and Sant’Anna
(2021) and Sun and Abraham (2021), but simulations in Borusyak et al. (2021) show that one
can often still expect efficiency gains when serial correlation is moderate.

13Before that, Gobillon and Magnac (2016) have proposed a similar strategy to estimate treatment effects
under a factor model.
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If trends are not exactly parallel, the estimators in Borusyak et al. (2021) may be more or less
biased than those in Callaway and Sant’Anna (2021) or Sun and Abraham (2021) depending on
the nature of the violation of parallel trends. Borusyak et al. (2021) do not provide a closed-form
of their estimators, but one can show that with only one treated group s, which starts to receive
the treatment at period ts, their estimator of that group’s treatment effect at ts + ℓ is

Ys,ts+ℓ − 1
ts − 1

ts−1∑
k=1

Ys,k − 1
G − 1

∑
g ̸=s

(
Yg,ts+ℓ − 1

ts − 1

ts−1∑
k=1

Yg,k

)
. (17)

Instead, the estimator in Callaway and Sant’Anna (2021) and Sun and Abraham (2021) is

Ys,ts+ℓ − Ys,ts−1 − 1
G − 1

∑
g ̸=s

(Yg,ts+ℓ − Yg,ts−1) . (18)

Equations (18) and (17) show that the estimator in Callaway and Sant’Anna (2021) and Sun
and Abraham (2021) use groups’ ts − 1 outcome, the last period before s gets treated, as the
baseline outcome, while the estimator in Borusyak et al. (2021) uses the average outcome from
period 1 to ts −1. This is why the latter estimator is often more precise. However, it is also more
biased, when parallel trends does not exactly hold and the discrepancy between groups’ trends
gets larger over longer horizons, as would for instance happen when there are group-specific
linear trends. In such instances, Roth (2021) notes that leveraging earlier pre-treatment periods
increases the bias of a DID estimator, since one makes comparisons from earlier periods. If,
on the other hand, parallel trends fails due to anticipation effects arising a few periods before
ts, Equations (17) and (18) imply that the estimators in Borusyak et al. (2021) is less biased
than those in Callaway and Sant’Anna (2021) or Sun and Abraham (2021). Beyond the simple
example we consider here, deriving a closed-form expression of the estimators in Borusyak et al.
(2021) is not straightforward. Whether the conclusions we derive in this simple example carry
through to more complicated designs is thus an open question.

In any case, if one views parallel trends as a reasonable first-order approximation rather than
an assumption that holds exactly, it may make sense to investigate how sensitive one’s findings
are to violations of parallel trends. To do so, one may for instance implement the partial
identification approaches in Manski and Pepper (2018) or Rambachan and Roth (2019). The
latter approach assumes that parallel trends do not hold exactly, and that the magnitude of
placebo estimators is informative as to the magnitude of the bias in the actual estimators caused
by differential trends. The estimators proposed by Callaway and Sant’Anna (2021) and Sun and
Abraham (2021) may be more amenable to the approach in Rambachan and Roth (2019) than
the estimators proposed by Borusyak et al. (2021). Consider again the same simple example as
above. For any ℓ ≤ ts − 2, one can construct the following placebo estimator:

Ys,ts−1 − Ys,ts−ℓ−2 − 1
G − 1

∑
g ̸=s

(Yg,ts−1 − Yg,ts−ℓ−2) . (19)
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This placebo compares the treated and control groups’ outcome evolution, from period ts − ℓ−2
to ts − 1, namely over ℓ + 1 periods before group s got treated. It exactly mimicks the estimator
of group s’s treatment effect at period ts + ℓ proposed by Callaway and Sant’Anna (2021) and
Sun and Abraham (2021), which compares the same groups, over the same number of periods.
Accordingly, the magnitude of that placebo may indeed be informative as to the magnitude of the
bias of the estimator in Equation (18), as requested by Rambachan and Roth (2019). Building
a placebo that would similarly mimick the estimator proposed by Borusyak et al. (2021) is not
feasible, precisely because that estimator leverages all pre-treatment periods to construct its
baseline. See de Chaisemartin and D’Haultfœuille (2021a) for more discussion of the advantages
of having placebos that mimick actual estimators.

Another difference between these approaches is that Borusyak et al. (2021) impose parallel
trends for every group and between every pair of consecutive time periods.14 Callaway and
Sant’Anna (2021), on the other hand, impose a weaker parallel trends assumption: from period
c onwards, cohort c must be on the same trend as the never-treated groups, but before that
cohort c may have been on a different trend. The assumption in Callaway and Sant’Anna (2021)
is the minimal assumption ensuring that all the TEc,c+ℓ can be unbiasedly estimated, but it is
conditional on the design: which groups are required to be on parallel trends at which dates
depends on groups’ realized treatments. It is also not testable. We refer the reader to Marcus and
Sant’Anna (2021) and Borusyak et al. (2021) for further discussion on the differences between
parallel trends assumptions.

Overall, this discussion suggests that whether the estimators in Borusyak et al. (2021) should be
preferred to those in Callaway and Sant’Anna (2021) and Sun and Abraham (2021) may depend
on one’s degree of confidence in the parallel trends assumption, on the type of violations of this
assumption that seems more likely to arise in the application at hand, and on one’s willingness
to undertake a sensitivity analysis such as the one proposed by Rambachan and Roth (2019).

3.2.2 ... When the treatment is not binary or the design is not staggered.

de Chaisemartin and D’Haultfœuille (2021a) propose treatment effect estimators robust to het-
erogeneous and dynamic treatment effects and which can be used even if the treatment is not
binary or the design is not staggered. In their survey of 26 highly cited 2015-2019 AER papers
using a TWFE regression, they find that 19% have a binary treatment and a staggered design,
so being able to accommodate more general designs is important.

For simplicity, we describe those estimators when the treatment is binary but non-staggered,
and refer the reader to de Chaisemartin and D’Haultfœuille (2021a) for details as to how the
approach below can be adapted to non-binary treatments. When the treatment is binary and

14de Chaisemartin and D’Haultfœuille (2020) and Sun and Abraham (2021) also impose that assumption.
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non-staggered, groups untreated at t = 1 can still be aggregated into cohorts, according to the
date at which they first get treated. Then, for every c ≥ 2 and ℓ ≥ 0 such that ℓ + c ≤ T , let Nc

be the number of groups in cohort c and let

FTTc,c+ℓ = 1
Nc

∑
g∈c

(Yg,c+ℓ(0c−1, 1, Dg,c+1, ..., Dg,c+ℓ) − Yg,c+ℓ(0c+ℓ))

be the average effect, across all groups in cohort c, of having been treated for the first time
ℓ periods ago, relative to having never been treated. Notice that in the non-staggered case, a
group treated at c may revert to being untreated after that, and FTTc,c+ℓ is defined conditional
on groups’ treatment trajectories from c + 1 to c + ℓ, (Dg,c+1, ..., Dg,c+ℓ). de Chaisemartin
and D’Haultfœuille (2021a) show that under the parallel trends assumption in Equation (16),
FTTc,c+ℓ can be unbiasedly estimated by a DID comparing the c − 1 to c + ℓ outcome evolution
of groups in cohort c and groups untreated from period 1 to c + ℓ.

In a staggered design, one has

FTTc,c+ℓ = 1
Nc

∑
g∈c

(Yg,c+ℓ(0c−1, 1, 1, ..., 1) − Yg,c+ℓ(0c+ℓ)) ,

so FTTc,c+ℓ is just the cumulative effect of having been treated for ℓ + 1 periods. Outside
of staggered designs, FTTc,c+ℓ may be harder to interpret, as it may bundle together many
different treatment effects. For instance, if some of the groups that get treated for the first time
at period c remain treated at c + 1 while others go back to being untreated at c + 1, FTTc,c+1

aggregates together E(Yg,c+1(0c−1, 1, 1) − Yg,c+1(0c+1)), the effect of two treatment periods for
the first set of groups, and E(Yg,c+1(0c−1, 1, 0) − Yg,c+1(0c+1)), the effect of having been treated
for one period one period ago for the second set of groups. One could try to separately estimate
the effects of all the treatment trajectories observed in the data, as Callaway and Sant’Anna
(2021) successfully do in the staggered case. But in the staggered case, there can be at most
T + 1 treatment trajectories, while in the non-staggered case there may be up to 2T of them.
Trying to separately estimate the effects of all trajectories may often yield noisy estimates.

Instead, de Chaisemartin and D’Haultfœuille (2021a) show that the FTTc,c+ℓ parameters can be
aggregated into an economically interpretable parameter, namely the cost-benefit ratio a planner
would use to conduct a cost-benefit analysis comparing the actual treatments of groups that were
initially untreated to the counterfactual status quo scenario where they would have remained
untreated throughout the panel. In other words, the planner seeks to assess whether the treat-
ment changes that occurred over the panel were beneficial. de Chaisemartin and D’Haultfœuille
(2021a) show that this cost-benefit ratio is equal to a weighted sum, across c and ℓ, of the
FTTc,c+ℓ parameters. Accordingly, this cost-benefit ratio can simply be estimated by a weighted
sum of DIDs. Importantly, this cost-benefit ratio can also be interpreted as some average of
the effect produced by a one-unit increase of the treatment. By symmetry, de Chaisemartin
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and D’Haultfœuille (2021a) show that the cost-benefit ratio comparing the actual treatments of
groups that were initially treated to the counterfactual status quo scenario where they would
have remained treated throughout the panel can also be estimated by a weighted sum of DIDs.

The estimators proposed by de Chaisemartin and D’Haultfœuille (2021a) are computed by the
did_multiplegt Stata and R commands. To compute those estimators rather than those pro-
posed in de Chaisemartin and D’Haultfœuille (2020), the Stata command’s basic syntax is:

did_multiplegt outcome groupid timeid treatment, robust_dynamic dynamic(#)
average_effect

where dynamic(#) specifies the horizon over which effects of a first treatment switch have to be
estimated.

The estimators in de Chaisemartin and D’Haultfœuille (2021a) can be used with a binary treat-
ment switching on and off, with a discrete treatment, or with a continuous and staggered treat-
ment (groups start getting treated at different dates, with differing intensities, but once a group
gets treated its treatment intensity never changes). The estimators proposed by Callaway et al.
(2021) can also accommodate continuous and staggered treatments. For continuous and non-
staggered treatments, in their Section 4.3 de Chaisemartin et al. (2022) extend their baseline
estimators to allow for dynamic effects. With respect to their baseline estimators, the main dif-
ference is that when allowing for dynamic effects, fewer units can be used as controls. Without
dynamic effects, at period t, any unit whose treatment has not changed between t − 1 and t can
be used as a valid control. With dynamic effects, only units whose treatments have not changed
from period 1 to t can be used as valid controls. Therefore, the need for “stayers” becomes
even stronger when allowing for dynamic effects: many units need to keep the same value of
the treatment for a large number of time periods. Developing estimators robust to dynamic
effects that can be used with a continuous treatment and no stayers has not been done yet and
is another promising area for future research.

The estimators in de Chaisemartin and D’Haultfœuille (2021a) can, of course, also be used with a
binary and staggered treatment. Without covariates in the estimation, they are then equivalent
to the estimators proposed by Callaway and Sant’Anna (2021) using the not-yet-treated as con-
trols. With covariates, the estimators in Callaway and Sant’Anna (2021) and de Chaisemartin
and D’Haultfœuille (2021a) differ. Callaway and Sant’Anna (2021) consider time-invariant co-
variates, and assume that trends are parallel once we condition on them. de Chaisemartin and
D’Haultfœuille (2021a) instead consider time-varying covariates and assume that trends are par-
allel once the linear effect of those time-varying covariates on the outcome is accounted for. This
for instance allows them to include group-specific linear trends in the estimation. With covari-
ates, the parallel trends conditions in Callaway and Sant’Anna (2021) and de Chaisemartin and
D’Haultfœuille (2021a) are not nested, and in principle one could combine both.
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Finally, it is worth noting that de Chaisemartin and D’Haultfœuille (2021b) propose estimators
for the case with several treatments. They propose both estimators that generalize the DIDM

estimator in de Chaisemartin and D’Haultfœuille (2020) and rule out dynamic effects, and
estimators that generalize those in Callaway and Sant’Anna (2021) and allow for dynamic effects.

4 Conclusion, and avenues for future research

The literature reviewed in this survey has shown that TWFE regressions may not always es-
timate a convex combination of treatment effects. In such cases, it may be hard to give them
a causal interpretation, as TWFE coefficients could for instance be of a different sign than ev-
ery unit’s treatment effect. Table 1 below summarizes the alternative estimators available to
applied researchers, depending on their research design and on whether they are ready or not
to rule out dynamic effects. The table shows that the literature so far has mostly focused on
providing alternative estimators for the case with a binary treatment and staggered adoption.
Heterogeneity-robust DID estimators that can be used in more complicated designs are scarce,
while many applications where TWFE regressions have been used either do not have a staggered
design, or do not have a binary treatment. Developing more estimators that can be used in such
designs is a promising avenue for future research. This can often be done by building upon the
insights gained from studying the binary-and-staggered case. For instance, the estimators pro-
posed by de Chaisemartin and D’Haultfœuille (2021a) build upon those proposed by Callaway
and Sant’Anna (2021) for the binary-and-staggered case. We hope that the whirlwind of DID
working papers shall continue, till heterogeneity-robust DID estimators are as widely applica-
ble as TWFE regressions. It is also important to stress that at this stage, it is still unclear
whether researchers should systematically abandon TWFE estimators: those estimators some-
times estimate a convex combination of effects, and they often have a lower variance than the
heterogeneity-robust estimators reviewed in the previous section. A comparison of the mean-
squared error of TWFE and heterogeneity-robust DID estimators in a broad set of applications
is another promising avenue for future research.



Table 1: A summary of available heterogeneity-robust DID estimators

Panel A: Estimators ruling out dynamic effects (outcome unaffected by past treatments)

Treatment Estimators available Stata15 commands

Binary de Chaisemartin and D’Haultfœuille (2020) did_multiplegt
Imai and Kim (2018)
Borusyak et al. (2021) did_imputation

Discrete de Chaisemartin and D’Haultfœuille (2020) did_multiplegt

Continuous, with stayers de Chaisemartin et al. (2022) See paper

Continuous, w/o stayers de Chaisemartin et al. (2022) See paper
Graham and Powell (2012) gmm
Chamberlain (1992) gmm

Several treatments de Chaisemartin and D’Haultfœuille (2021b) did_multiplegt

Panel B: Estimators allowing dynamic effects (outcome affected by past treatments)

Treatment Estimators available Stata15 commands

Binary and staggered Callaway and Sant’Anna (2021) csdid
Sun and Abraham (2021) eventstudyinteract
Borusyak et al. (2021) did_imputation
de Chaisemartin and D’Haultfœuille (2021a) did_multiplegt

Binary or discrete, non-staggered de Chaisemartin and D’Haultfœuille (2021a) did_multiplegt

Continuous and staggered de Chaisemartin and D’Haultfœuille (2021a) did_multiplegt
Callaway et al. (2021)

Continuous and non-stagg., with stayers de Chaisemartin et al. (2022) See paper

Continuous and non-stagg., w/o stayers No estimator available yet

Several treatments de Chaisemartin and D’Haultfœuille (2021b) did_multiplegt

15All the Stata commands have R equivalents with the same name, except eventstudyinteract that
does not have an R equivalent, and csdid whose R equivalent is called did.
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