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ABSTRACT

Do urban children live more segregated lives than urban adults? Using cellphone location data 
and following the ‘experienced isolation’ methodology of Athey et al. (2021), we compare the 
isolation of students over the age of 16—who we identify based on their time spent at a high 
school—and adults. We find that students in cities experience significantly less integration in 
their day-to-day lives than adults. The average student experiences 27% more isolation outside of 
the home than the average adult. Even when comparing students and adults living in the same 
neighborhood, exposure to devices associated with a different race is 20% lower for students. 
Looking at more broad measures of urban mobility, we find that students spend more time at 
home, more time closer to home when they do leave the house, and less time at school than adults 
spend at work. Finally, we find correlational evidence that neighborhoods with more geographic 
mobility today also had more intergenerational income mobility in the past. We hope future work 
will more rigorously test the hypothesis that different geographic mobility patterns for children 
and adults can explain why urban density appears to boost adult wages but reduce 
intergenerational income mobility.
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1 Introduction

Are the lives of urban children more segregated than the lives of urban adults? Athey et al. (2021)

find that even where residential segregation is high, white and non-white residents interact during

the day as they move around their city.1 Yet while restaurants, shops, and offices have become

less segregated since the 1960s, big city schools have not (Orfield et al., 1994). An adult living in

a segregated neighborhood may go to a workplace filled with heterogeneous individuals, but her

child may go to a segregated school and return home to play with the children next door.

The experienced isolation of the young is particularly important because segregation appears

to harm upward mobility (Cutler and Glaeser, 1997; Chetty and Hendren, 2018). The Opportunity

Atlas data (Chetty et al., 2018) documents a robust negative correlation between urban density and

adult earnings for the children of poor parents – children who grew up in the densest Census tracts

end up about five percentiles lower in the adult income distribution than children from moderately

dense Census tracts (Glaeser and Tan, 2021). This fact is all the more surprising because wage

growth for adults appears to be faster in larger cities (Glaeser and Mare, 2001; Roca and Puga,

2017). One possible explanation for why cities appear to increase human capital accumulation for

adults, but not for children, is that students live more isolated lives than adults.

In this paper, we test whether the same metropolis that connects grown-ups also isolates chil-

dren. We follow the methodology of Athey et al. (2021), who use cell phone GPS data to measure

the racial isolation individual experience each day by looking at the mobility of people who live in

majority white and majority non-white neighborhoods. We use a similar sample of GPS-enabled

devices to examine the diversity of interactions of adults and students in the 100 most populous

metropolitan areas in the US. Using these data, we also directly measure other indicators of urban

mobility, such as time in at school or work, time at home, time spent in neighborhoods with highly

educated residents, and the exploration of new places.

Our data consists of the location histories for a national longitudinal sample of GPS-enabled

devices in 2019. For each device, we infer whether it likely belongs to a student or adult by whether
1The ‘experienced isolation’ measure in Athey et al. (2021) builds on the ‘activity space’ literature in sociology,

surveyed in Cagney et al. (2020)
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it has a regular presence in a high school during weekdays. For privacy reasons, the data exclude

anyone under the age of 16, so our focus is on students aged 16-18. Our school-identified group will

also include teachers and other school personnel, which will lead the measured differences between

adults and students to be muted since our ‘student’ sample also contains adults.

Having identified probable students, we first replicate the ‘experienced isolation’ population-

level measure defined by Athey et al. (2021) for adults and students separately. Like Athey et

al. (2021), we do not have data on race, but follow their methodology by looking at devices from

neighborhoods with differing racial compositions. We label a ‘white device’ (WD) as one that lives

in a Census block group that is majority white (non-Hispanic) and a ‘non-white device’ (NWD) as

one that lives in a majority non-white block group. Our estimates are therefore an examination of

how much individuals from predominantly non-white neighborhoods interact with individuals from

predominantly white neighborhoods.

Overall, we estimate experienced isolation to be 0.65 for adults and 0.73 for students, which

implies that the average student WD is exposed to 73 percentage points more WDs than the average

student NWD. If we exclude time at home, isolation for both groups declines and the gap between

the students and adults becomes proportionally larger. Experienced isolation excluding time at

home is 0.29 for adults and 0.37 for children, making students 27% more isolated outside the house

than adults.

To unpack these figures, we move from these overall segregation estimates to a more detailed

look at patterns by race, age, and location. We first look at exposure to diversity, which we define

at the device level as the average percent of time spent near devices from neighborhoods of a

predominantly different race. The average exposure to diversity is only 0.125, and it is about 30%

lower for students than for adults. Aggregate exposure to diversity is lower for NWDs than WDs,

but, even when comparing students from the same tract, exposure to diversity is lower for students

than adults for both WDs and NWDs.

Looking at more general measures of urban mobility, we find clear ways in which students live

more isolated lives. Students spend more at home and in their neighborhood and spend less time at

school than adults spend at work. When they do leave the house, students stay closer to home and
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spend fewer days traveling outside of their home city. Students go to fewer restaurants and shops,

with more visits to parks and entertainment places instead. On the other hand, students visit more

unique locations in the city, suggesting their less routinized lives lead to more exploration. Students

also generally spend their time in more prosperous and better educated areas, even relative to adults

who live in the same neighborhood.

To examine whether our results are the same at the fringes of a city and its center, we turn to

the connection between population density and outcomes. Density is both a defining characteristic

of urbanism and is negatively associated with children’s outcomes in the Opportunity Atlas data

(Chetty and Hendren, 2018; Glaeser and Tan, 2021). Adults’ time at home declines with density

while students’ time at home increases with density. Meanwhile, time at work is increasing in

density for adults but decreasing in density for students. We also find that in low density locales,

students explore more unique locations than adults, while in high density locales, this pattern is

reversed and adults explore more unique locations. Finally, we see that, while students generally

spend more of their time than adults in areas with high levels of human capital, this pattern is

reversed in the highest density neighborhoods. Taken together, these results suggest that while

density enables the employment and exposure of adults to more skilled people, density reduces the

time at school for students and their interactions with other educated people.

Finally, we examine the correlation between place-based measures of income mobility from

Chetty and Hendren (2018) and several mobility patterns from our data. Although our cellphone

data is modern while mobility data refers to a cohort born between 1978 and 1983, there are some

clear correlations. Most notably, Census tracts where residents have more exposure to diversity,

spend more time outside of the city, and visit more unique locations within the city tend to have

higher upward income mobility.
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2 Data & Measuring Experienced Isolation

2.1 GPS Mobility Data

Our primary data come from a sample of GPS enabled devices for all of 2019. Access to the data is

provided by Replica, an urban data platform. For each device, we observe a unique device identifier

and a sequence of ‘stays’ at different locations.2 Each stay includes the geographic coordinates,

entry time, and exit time. We have no direct information about the device’s user, and consequently

must infer whether a device is a student and their likely race from the location histories of the

device. We provided additional details on the data construction in Appendix A.

2.2 Identifying Likely Student and Adult Devices

For each device-quarter in the data, we identify ‘home’ as a device’s most common overnight

location and work as a device’s most common daytime non-home location.3 To focus on urban

environments, we look only at devices living within the 100 most populous metropolitan Core-

Based Statistical Areas (CBSAs). The smallest CBSA to make the cut is the Spokane-Spokane

Valley Area in Washington. The resulting sample includes 12.1 million unique devices with home

and work detected, or 19.3 million device-quarters.

To label a device as a student, we match ‘work’ locations to school parcels. We identify the

locations of high schools using data from the National Center for Education Statistics (NCES),

which is described in Appendix Section A.2. We include only high schools, as our GPS data is

meant to exclude individuals under 16 years old. We identify 391,866 devices that are likely high

school students at these schools. Appendix Figure A.1 shows that our counts of students at a school

are highly correlated with the enrollment reported in the NCES.

Our method of identifying students will also capture teachers and staff. This will add noise and,

to the extent adults working at schools are similar to other adults, will bias our measures towards
2This data is similar in nature to the data used by Athey et al. (2021); however, rather than observing individual

pings each time a device connects to GPS, we observe only these aggregate stays. A consequence of this aggregation
is that our data do not include time in transit.

3We exclude all devices for which we cannot identify a work location. The majority of these devices have insuffi-
cient coverage in the data to confidently identify a work location, but others are either unemployed or employed in
occupations without a static work location, such as mailmen or taxi drivers.
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finding no differences between students and adults. However, there does appear to be signal in the

classification – for example, when examining the types of establishments they visit, we find that

‘students’ go to far fewer bars and beer/liquor stores than adults.

2.3 Inferring Device ‘Race’

Following Athey et al. (2021), we classify devices as either a ‘white device’ (WD) or ‘non-white

device’ (NWD) based on whether or not their home block group is majority white alone (non-

Hispanic) in the American Community Survey (ACS).4 The average home block group for WD is

78.5% white, while the average home block group for NWD is 21.0% white. These assigned races

are likely to overestimate true experienced isolation, since the interactions of the minority group

of a block will be identified with the majority. However, as long as this misattribution is the same

for adults and students, our analysis of differences between these two groups will not be biased.

2.4 Measuring Experienced Isolation and Diversity

We follow Athey et al. (2021) as closely as possible to estimate experienced isolation, but some

modifications are required because our data are at the aggregate ‘stay’ level rather than ‘ping’

level.5 Aggregate experienced isolation—setting aside adult vs. student types for now—is defined

as

EIa = 1
|WDa|

∑
i∈WDa

ˆ 1

t=0
s(l(i, t), t)dt− 1

|NWDa|
∑

i∈NWDa

ˆ 1

t=0
s(l(i, t), t)dt (2.1)

where a is a given CBSA, WDa is the set of of white devices, NWDa is the set of non-white devices,

and s(l(i, t), t) is the share of individuals in i’s location l at time t who are from group WD. In

words, this is simply the difference between the average exposure of WDs to other WDs and the

average exposure of NWDs to WDs.
4We use 2019 ACS block groups rather than 2010 Census blocks as the 2010 Census is now significantly out-of-date.

The results are similar if we instead use 2010 blocks.
5A ping is recorded each time a GPS device shares its location, while stays are aggregates of pings into individual

stops at a location (with entry and exit times). For example, a visit to a grocery store may generate hundreds of
pings but would only result in a single stay. We use the duration of a stay as a weight to approximate for the number
of pings that were emitted during the stay. This still excludes time spent traveling between stays, which is included
in ping-level measures from Athey et al. (2021).
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Wemake several assumptions in order to estimate Equation 2.1. First, we assume that s(l(i, t), t)

does not vary by time for a given location.6 Second, we assume that the full population of visits can

be approximated using the device sample, re-weighted accordingly. Finally, we discretize locations

by geohash7s (approximately 500×500 feet).

To estimate Equation 2.1, we first construct leave-one-out estimates of s(·) for each individual-

location as:

ŝ−i
l =

∑
j∈P −i,WD

l
γjdj∑

j∈P −i
l
γjdj

(2.2)

where P−i
l is the set of stays in location l by devices besides i, P−i∩WD

l is the set of stays in location

l by WDs, and dj is the duration of stay j.7 Next, for each device-quarter in our sample we measure

aggregate exposure as:

Ŝiq = 1∑
j∈Piq

dj

∑
j∈Piq

ŝ−i
l dj (2.3)

where Piq is the set of all stays by device i in quarter q.

Finally, we estimate experienced isolation for a CBSA a as:

ÊIa = 1
|WDa|

∑
i∈WD

∑
q∈Qi

λiqŜiq −
1

|NWDa|
∑

i∈NWD

∑
q∈Qi

λiqŜiq (2.4)

where Qi is the set of quarters in which device i is observed and we abuse notation slightly to let

WDa be the set of all white device-quarters (rather than just devices) in geography a and NWDa

be the corresponding set of non-white device-quarters. We use sample weights λiq to correct for

unevenness in the home locations of GPS sample compared to the ACS. We provide more details

on these sample weights, which are used for all results in the paper, in Appendix Section A.4.

To estimate experienced isolation by student vs adult type, we estimate Equation 2.4 separately

for each type. Note that the leave-one-out estimates of exposure remain the same, but only devices

of a given type are used to aggregate exposure in Equation 2.4 – consequently, our experienced

isolation measure for students measures exposure to both students and adults.
6This is most clearly violated in residential areas, where daytime and nighttime populations will differ substantially.
7We weight by duration in the location to approximate the ping-level measure used in Athey et al. (2020).
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Experienced isolation is defined at the population level – it is the difference in exposure to

WDs by WDs and NWDs living in a CBSA. We also define a companion measure at the individual

level, which we call experienced diversity. Experienced diversity for a given device is the average

exposure to devices of the opposite imputed race and is estimated as

ˆEDiq = 1∑
j∈Piq

dj

∑
j∈Piq

1{NWDiq}ŝ−i
l dj + 1{WDiq}(1− ŝ−i

l )dj (2.5)

where 1{WDiq} and 1{NWDiq} are indicators for whether the device’s imputed race is white or

non-white. As before, ŝ−1
l is the leave-one-out estimate of location l’s share white, dj is the duration

of stay j, and Piq is the set of all stays for device i in quarter q. The two measures are closely

linked – experienced isolation is a transformation of the average experienced diversity in a CBSA.8

3 Experienced Isolation and Diversity of Students and Adults

In this section, we first discuss overall experienced isolation and then turn to experienced diversity,

our individual level component of experienced isolation. We end by discussing the broader patterns

of mobility and interaction that we observe for adults and students.

3.1 Experienced Isolation

The leftmost column of panel (a) in Table 1 shows that overall experienced isolation is 0.65, meaning

that the average WD spends their time (on average) with 65 percentage points more WDs than

the average NWD spends with WDs. The bulk of this isolation comes from the home itself –

experienced isolation outside the home drops to below 0.3.

The second and third columns show the different experienced isolation of students and adults.

Overall student isolation is 0.73 and adult isolation is 0.65. When we exclude nighttime hours,

the experience isolation of both groups falls, but there is still a significant difference between the

groups. When we just look at isolation outside the home, the experienced isolation of adults is 0.288
8Experienced isolation can be computed from experienced diversity as EI = (1 − ĒDWD) − ĒDNWD, where ĒDWD

is the average experienced diversity of white devices and ĒDNWD is the average experienced diversity of NWDs.
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and the experienced isolation of students is 0.368. Excluding time near home, students experience

roughly 27% more isolation than adults.

Panel (b) documents the time allocations of students and adults at different types of locations.

Students spend 65% of their time at home, while adults spend 61% of their time at home. By

contrast, adults spend 17% of their time at work while students spend 14% of their time at school.9

The other time use categories all represent much smaller time allocations. Adults spend more time

at shops, restaurants, parks and entertainment venues. Students appear to spend more time at

religious establishments. Adults also spend more time in the ‘other’ category, which can include

travel, outdoor activities, or time visiting a neighbor’s home.

Panel (b) also shows the experienced isolation for adults and students in each one of these

categories. Every category is more isolated for students than adults. Time at home is particularly

isolating – the isolation of students at home is 0.9 and the isolation of adults at home is 0.85.

In some cases, such as restaurants and entertainment venues, the experienced isolation gaps are

relatively small (0.02 or less). In other areas, such as schools/workplaces or the other category, the

gaps are quite sizable (0.07 or more). The higher aggregate isolation of students partially reflects

the fact that adults spend more time at work than students spend at school, and that (childless)

adults are more likely to live in areas that have visitors from different race neighborhoods.

In the Appendix, we document how these measures vary across individual CBSAs – Figure B.6

maps the overall experienced isolation and gap between students and adults for all CBSAs and

Table B2 provides the raw numbers. While the levels of experienced isolation differ substantially

across CBSAs, the experienced isolation of students is higher than that of adults in nearly all of

the largest CBSAs.10 The gap between student and adult experienced isolation is especially high—

about 10 percentage points—in the CBSAs of the largest American cities, including New York City,

Chicago, and Los Angeles. In Appendix Section B.3, we also discuss the relationship between our

measures and enrollment-based school isolation measures from Logan et al. (2017).
9The American Time Use Survey (ATUS) reports that adults spent 14% of their time working. The discrepancy

can be explained by the fact that we identify place of work as an individual’s most common daytime destination, and
so everyone in our sample has a place of work.

10The three exceptions are El Paso, TX, McAllen-Edinburg-Mission, TX, and Durham-Chapel Hill, NC
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Table 1: Experienced isolation of students and adults

Panel a) Overall experienced isolation (EI) Aggregate Students Adults

All hours 0.6535 0.7321 0.6512
Excluding night time (12am-6am) 0.5677 0.6243 0.5661
Excluding time at home (<150m) 0.2910 0.3679 0.2883
Excluding time in home tract 0.2631 0.3325 0.2605

Panel b) EI by location category Students Adults

% of hours EI % of hours EI

Home 65.389 0.902 61.022 0.851
School/work 14.180 0.354 17.217 0.283
Retail 0.339 0.214 0.554 0.194
Restaurant 0.316 0.188 0.442 0.168
Entertainment 0.475 0.159 0.506 0.144
Park 0.572 0.284 0.606 0.242
Religious organization 0.075 0.319 0.062 0.282
Other 18.265 0.388 19.311 0.308

Panel c) Individual exposure to diversity Average Coefficient on isStudent
(Home CBSA controls)

Coefficient on isStudent
(Home tract controls)

All

Exposure to diversity 0.125 -0.0386 -0.0264
(0.0002) (0.0002)

Exposure to NWD by WD 0.1001 -0.0353 -0.0239
(0.0002) (0.0002)

Exposure to WD by NWD 0.1645 -0.0341 -0.0294
(0.0003) (0.0003)

Excluding time at home (<150m)

Exposure to diversity 0.2631 -0.0529 -0.0377
(0.0003) (0.0003)

Exposure to NWD by WD 0.2087 -0.0534 -0.0411
(0.0003) (0.0003)

Exposure to WD by NWD 0.3496 -0.0303 -0.0309
(0.0005) (0.0004)

Note: This table documents overall experienced isolation measures, computed as a weighted average of CBSA-level
measures, with weights corresponding to the CBSA population. Panel a) documents the overall level of experienced
isolation. ‘At home’ is defined as within 150 meters of home location. Panel b) splits the experienced isolation measures
by categories of locations visited. Panel c) runs individual-quarter regressions of exposure to diversity on whether the
device is a student with either home CBSA or home Census tract fixed effects.
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3.2 Exposure to Diversity

Table 1, Panel (c), focuses on the individual-level measure, exposure to diversity. This is useful

for decomposing the difference between students and adults into a residential location component

and a within neighborhood component. Overall exposure to diversity is 0.125, meaning 12.5% of

the average device’s interactions are with devices of the opposite inferred race.11 The second and

third rows break this measure out for WDs and NWDs. White exposure to diversity is 0.10, while

non-white exposure to diversity is 0.16. This large gap partially reflects the fact that there are

many more devices that we categorize as white.

In the middle and right columns, we report the coefficient on whether a device is a ‘student’

in two separate regressions. In the regressions associated with the middle column, we control for

metropolitan area fixed effects. In those for the right column, we control for tract fixed effects. The

middle column therefore answers the question of whether students are disproportionately isolated

relative to adult residents of their metropolitan area. The right column asks if students are more

isolated that adults who live in their neighborhoods. The middle column reveals more about the

overall isolation of students, since conditioning on place of residence is essentially controlling for a

major determinant of individual isolation.

All six coefficients in these columns are significant and negative. In the first row of the panel,

we find that exposure to diversity is 0.039 points lower for students than for adults, which is

approximately 30% of the sample mean. The estimated student coefficient drops in magnitude

to −0.026 when we include tract of residence fixed effects. This fact suggests that one-third of

the difference in exposure to diversity between students and adults is due to the different home

locations of students. Outside the home, students have about 20% less exposure to devices of the

opposite race than adults. In the second and third rows, we split up the sample by imputed race

and find quite similar results.

In the bottom of Table 1, Panel (c), we report results on exposure to diversity outside the home.

Since race is imputed based on residential location, exposure to diversity is artificially low within the
11If both WDs and NWDs experienced a diversity exposure of 0.125, then the implied isolation measure is 0.75,

which is higher than our measure of isolation. Experienced isolation is computed at the CBSA-level and then
aggregated by taking the population weighted average, which yields slightly different results than averaging exposure
to diversity at the individual-level as smaller metropolitan areas are generally less segregated than larger areas.
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home as all residents are assigned the same race. When we exclude time spent at home, exposure

to diversity increases to 0.26 in aggregate (0.21 for WDs and 0.35 for NWDs). The overall student

exposure to diversity outside the home is 20% lower than adult exposure to diversity when we

control for metropolitan area, and 14% lower when we control for tract of residence. In the bottom

two rows, we find that exposure outside the home is lower for WDs than for NWDs, which reflects

that whites are the overwhelming majority in most metropolitan areas. For WDs, student exposure

to diversity is over 25% lower than adult exposure to diversity when we control for metropolitan

area and 20% lower than adult exposure when we control for tract of residence. The gap between

adult and student exposure to diversity is lower for NWDs, but it is still statistically significant

and economically meaningful. Controlling for either tract or metropolitan area, we find that the

exposure of NWDs to diversity is about 8% lower for students than for adults.

4 Broader Mobility Patterns of Students and Adults

We now turn to broader patterns of urban mobility between adults and students. We report mea-

sures of the distances they travel, the time spent at home and work/school, and the characteristics

of the areas that they visit. We then turn to the links between density and urban mobility.

4.1 Broader Mobility Patterns of Students and Adults

Table 2 looks at patterns of mobility between students and adults. We document a general pattern

of adults being more mobile than students. The first two rows of Panel (a) mirror results that have

already been shown in Table 1 – adults spend less time at home than students and more time at

work than students spend at school. The results with home tract controls show that the time gaps

found in Table 1 are not the result of residential location.

Rows (3)-(5) show that adults are generally more mobile than students. Students are more

likely to spend time close to their homes, even when they are not in their homes, while adults

are more likely to travel more than > 50 miles away from home. Even when we restrict to days

when devices remain with within 50 miles of their residence, adult devices travel further afield than
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student devices. These facts could be explained by the greater prevalence of car ownership among

adults and by adults commuting further for work than students commute for school.

The last five lines in Panel (a) all focus on the number of visits to different types of establish-

ments. These results differ from those in Table 1 because they focus on the number of different

trips, not total time spent in each category. The first column gives the mean absolute number of

these visits. We report mean levels because they are useful for comparison, but since devices are

not observed all the time, they do not provide a true count of trips. The second and third columns

provide coefficients from regressions on an indicator for student device in which the dependent

variable is the inverse hyperbolic sine of the number of visits in each category.

The mean number of observed restaurant visits per quarter is 1.4, with students having about

7% fewer visits than adults. The mean number of observed retail store visits is 2.0 per quarter,

with students having more than 16% fewer visits than adults. These results parallel those in Table

1, which found that adults spent more time at restaurants and retail locations. While adults also

spend slightly more time at parks and entertainment venues that students, students make more

trips to such places. The average number of observed park visits was 1.4, and students have about

7% more park visits than adults. The average number of observed entertainment-related trips was

also 1.4, and students have 8.3% more of these trips. These results suggest that students make

slightly more short trips to these locations.

The final row of Panel (a) reports the number of unique locations visited in a quarter. We

observe student phones going to about 8% more unique locations than adults, holding metropolitan

areas fixed. When we control for Census tract of residents, the gap drops to about 4%, suggesting

that students live in places where people tend to be more mobile. Even though students spend

more time in the house, they go to more unique places when they do travel, which is compatible

with a view that students’ lives are somewhat less routinized than adults.

In bottom panel, we look at the characteristics of the Census tracts where adults and children

travel, excluding time at home or work. The first three rows show demographic characteristics of

residents. All three demographic variables show a similar pattern. Students are generally exposed

to richer, better educated, and whiter neighborhoods. For all three of these outcomes, however,
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the coefficients fall by more than half once we control for tract of residence. Indeed, the coefficients

for both race and education become quite small with these controls. The implication seems to be

that childless adults live in neighborhoods that are close to poorer areas, perhaps because they are

more likely to live closer to work and less likely to live near wealthier suburban neighborhoods.

The fourth row shows air pollution, measured by the presence of particulates with diameters

smaller than 2.5 micrometers. The air pollution regressions show that children typically face less

pollution than adults in their metropolitan area, but more pollution than adults who live in their

Census tract, although the magnitudes are small in both cases. In the last row, we look at exposure

to crime, but we can do this only for Chicago and Los Angeles where we have neighborhood-level

crime data. Adults are exposed to far more crime than children, but the coefficient drops by more

than one-half when we control for tract of residence. Again, both results may be explained by

parents choosing somewhat healthier neighborhoods than other adults.

These results looked at aggregate differences in urban mobility of students and adults living in

the top 100 CBSAs. We now turn to differential patterns by geography – specifically, by density

of residence within a CBSA. We focus on density, because it is the defining feature of cities and

because density is a strong negative correlate of upward mobility for urban children (Glaeser and

Tan, 2021).

4.2 Density and urban mobility

To examine the relationship between population density and mobility, we use the within-CBSA

density decile for each device’s home block group. Consequently, we are not estimating a constant

treatment effect of physical density but rather the impact of a relatively higher density level within

a metropolitan area. Notably, in both our sample of GPS devices as well as in the ACS, students

disproportionately live in the less dense, more suburban parts of cities. 3.7% of devices in the least

dense decile are students compared to 2.4% in the most dense decile (see Appendix Figure A.2).

Figure 1 plots how certain mobility outcomes vary by within-CBSA density. To construct

the figure, we regress each outcome on home density decile interacted with whether the device is

a student, controlling for metropolitan area fixed effects. We also control for the log household
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Table 2: Urban mobility of students and adults

Average
(not logged)

Coef. on isStudent
(Home CBSA FEs)

Coef. on isStudent
(Home tract FEs)

Device-quarter level outcomes

Frac. of time at home 0.6395 0.0391 0.0345
(0.0003) (0.0003)

Frac. of time at work/school 0.1738 -0.027 -0.0231
(0.0002) (0.0002)

Frac. time <1mi from home (excl. home) 0.0552 0.0164 0.0186
(0.0002) (0.0002)

Frac. of days over 50mi from home 0.0697 -0.0254 -0.0263
(0.0002) (0.0002)

Avg miles from home 7.4075 -0.3238 -0.3639
(0.0011) (0.0011)

Log # restaurant visits 1.4723 -0.0604 -0.0761
(0.0014) (0.0014)

Log # retail visits 2.0087 -0.1601 -0.1827
(0.0015) (0.0015)

Log # park visits 1.4133 0.0704 0.0576
(0.0011) (0.0011)

Log # entertainment visits 1.388 0.0832 0.048
(0.0015) (0.0015)

Log # unique locations (geohash7) 41.2958 0.081 0.0379
(0.0014) (0.0013)

Characteristics of tracts visited

Log median HH income 75845 0.0829 0.0381
(0.0008) (0.0006)

Frac. college graduate 0.3902 0.0102 0.0012
(0.0004) (0.0002)

Frac. White alone 0.5794 0.0315 0.0078
(0.0004) (0.0003)

Air quality (PM25) 8.6467 -0.026 0.0079
(0.0016) (0.0012)

Log crimes per sq. mi. (Chicago & Los Angeles) 9.711 -0.1973 -0.0709
(0.0159) (0.0085)

Note: The table documents coefficients from regressions of mobility metrics on whether the device is a student with fixed
effects for either the device’s home CBSA of Census tract. Miles from home is the average distance of stays outside of the
home on days the device stayed within 50 miles of home, weighted by the stay duration. ‘At home/work/school’ is defined
as within 150 meters of the location’s coordinates. We use data on the average estimated tract-level air pollution in 2019
from the Environmental Protection Agency (EPA). For the crime outcomes, we subset to just devices that live within
those city boundaries and measure crime as the sum of all crimes reported between 2010-2018 in a tract. The
characteristics of tracts visited results exclude time spent at home or work/school. To handle zeros, we use the inverse
hyperbolic sine instead of the logarithm. Both the averages and regressions use the device weights; for tract outcomes, the
regressions are also weighted by time spent in the tract. Standard errors are clustered at the device-quarter level.
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median income and fraction white alone in the device’s home tract to narrow in on the correlation

with home density, holding fixed race and income.12 We normalize the intercept for adults at the

first decile to be the mean outcome for adults at that decile.

The first panel shows that adults who live in denser areas spend less time at home than adults

in less dense areas. This fits the view that in urban areas, apartments are smaller and people are

more likely to go out to eat or drink or find entertainment or work longer hours. The opposite is

true for children, who spend more of their time at home when they live in denser areas. Panel (b)

shows the mirror of this result for time spent at work or school. Density is associated with more

time at work for adults and less time at school for students, while students in the densest block

groups spend about one percentage point less time at school than those in the least dense.

Panel (c) shows the number of unique locations visited, which declines with density for both

students and adults. The decline with density is quite dramatic for students and quite mild for

adults. In the least decile, students visit far more unique locations than adults. In the most dense

decile, however, adults visit more unique locations than students. This is striking, since one might

expect the greater availability of public transit to be a force in the opposite direction. However,

density seems associated with living more geographically compact lives, especially for students.

Finally, panel (d) shows the education of residents of the tracts in which students and adults

spend time outside of the home. This increases for both students and adults generally; however, in

the densest of areas of the cities, there is a sizeable drop for students relative to adults.

Appendix Figure B.4 includes the relationship between mobility and density for additional

outcomes, such as the number of restaurants visited (which increases for adults, but not students).

Overall, we find that geographic mobility varies substantially with density within metropolitan

areas, that trends often differ between students and adults, and that the densest deciles often have

trend reversals. We now turn to the final section of the paper that concerns the correlation between

geographic mobility and income mobility.
12Appendix Figure B.5 repeats these regressions without controls for income and race.
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Figure 1: Mobility outcomes and density
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(b) Frac. time at work/school
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(c) Log # unique locations
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(d) Frac. college grad of visited tracts
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Note: This figure plots the relationship between urban mobility and density. We regress each outcome on the interaction
between within-CBSA decile of home block group density and whether the device is a student, with fixed effects for the
CBSA and controls for log median household income and fraction white alone. Panels a)-c) use device-quarter level data,
while panel d) uses data on all tracts visited within a given device-quarter. Coefficients are computed relative to adults
in the least dense decile and the Y-axis is shifted by the average outcome for adults in the least dense decile. Standard
errors are clustered at the device-quarter level. The shaded region represents a 95% confidence interval.

5 Correlations with Upward Mobility

As we discussed in Section II, we use data on upward mobility from the Opportunity Atlas, which

is detailed in Chetty et al. (2018). We first focus on majority non-white tracts, and we use the

estimated income mobility for children whose parents were at the 25th percent of the income

distribution at the time of the child’s birth. There is a significant temporal mismatch of more than

20 years between our data and the Opportunity Atlas data, which capture people who would have
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been 17 years old around 1997. Consequently, these results could easily reflect the impact of income

mobility on geographic mobility rather than of geographic mobility on income mobility.

Our results are summarized in Figure 2. In all cases, we report results where income mobility

is regressed on geographic mobility. Each panel shows 12 coefficients taken from 12 separate

regressions, for six different types of geographic mobility. Panel (a) shows regression results for

majority non-white tracts, which include CBSA fixed effects but no other tract-level controls.

Panel (b) adds tract-level controls for fraction white in the tract, log of population density, log of

median age, and the share of residents enrolled in school. Panel (c) reports results for all tracts,

not just those that are majority non-white.

In almost every case, the coefficient on mobility of students is closer to zero than the coefficient

on the mobility of adults. The most natural explanation for this fact is that there are far fewer

students than adults and consequently our tract-level measures of the mobility of students have

more measurement error, which could lead to attenuation bias.

The share of time spent at home, work and school are rarely correlated with upward mobility,

but in all three specifications, time that adults spend in the neighborhood is negatively associated

with upward mobility. While we have controlled for density in panels (b) and (c), this variable may

still be capturing aspects of suburban life which appear to be positively associated with opportunity

the Opportunity Atlas data.

The last three measures of geographic mobility—days spent outside the city, unique locations

visited, and exposure to diversity—are positively correlated with income mobility in all three figures,

using data for both adults and students. In the first two panels, exposure to diversity has the

strongest correlation with upward mobility. Earlier research shows that residential segregation is

negatively associated with upward mobility (Chetty and Hendren, 2018). The correlation between

exposure to diversity and income mobility in Figure 2 provides suggestive evidence that experienced

isolation is also associated with less upward mobility. The number of unique locations visited

by adults is also strongly associated with upward mobility in all three panels. These facts are

compatible with the view that mixing is associated with escaping poverty, but future work will

need to address the possibility that the causality is running in the opposite direction.
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Figure 2: Income mobility and urban mobility

(a) Majority non-white tracts. Controls: CBSA FEs
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(b) Majority non-white tracts. Controls: CBSA FEs and tract characteristics
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(c) All tracts. Controls: CBSA FEs and tract characteristics
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Note: This figure plots coefficients from tract-level regressions of opportunity and urban mobility measures for students
and adults, with fixed effects for CBSAs. Controls for tract characteristics include fraction white alone, log population
density, log median age, and the fraction of residents enrolled in school. The regressions for students and results are run
separately and exclude any tracts with 5 or fewer student devices. Opportunity is measured by the absolute income
mobility for students born to parents in the 25th percentile of income – a value of 1 implies an increase of one percentage
point in the income distribution. Each regression is weighted by the number of households in that tract who are below
the 25th nationwide income percentile. Effects are standardized to be for a one standard deviation increase in the urban
mobility measure for each groups. Each bar represents a 95% confidence interval.
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6 Conclusion

In this paper, we address the hypothesis that adults and students experience different levels of

segregation, even if they live in the same neighborhood. We follow the methods of Athey et al.

(2021) to measure ‘experienced isolation’ of students and adults. Our primary innovation is to look

at the experienced isolation and overall urban mobility of adults and students separately.

Despite the fact that our ‘student’ devices will also include teachers and other school staff, we

find significant differences in the experienced isolation and urban mobility of adults and students.

Overall isolation is 12% higher for students than for adults and isolation when outside the home

is 27% higher for students. Overall exposure to diversity is 30% lower for students than for adults

when controlling for metropolitan areas. Even when comparing devices who live in the same tract,

exposure to diversity is 20% lower for students. These results support the hypothesis that the urban

young live far more isolated lives than adults, which may explain why cities appear to increase wage

growth for adults but reduce income mobility for children (Glaeser and Tan, 2021).

Looking at broader measures of urban mobility, we find that students spend more time at home

than adults, especially when they live in the densest parts of metropolitan areas. Moreover, even

when outside the home, students spend their time closer to home and travel outside the city on

fewer days. Adults spend more time at work than students spend at school, and their workplaces

tend to be more integrated than students’ high schools. Students do, however, spend their time in

more prosperous and better-educated—but also less diverse—neighborhoods than adults.

Finally, we find the slightest suggestion of evidence that these forms of isolation are associated

with lower levels of upward income mobility. Using measures of income mobility from Chetty and

Hendren (2018), we find positive correlations between upward income mobility and exposure to

diversity, time spent away from the city, and number of unique locations visited. However, we

caution that these correlations are stronger for the adult measures than for the student measures,

and income mobility is assessed for a cohort that is roughly forty years old at the time of our

geographic mobility measures. We hope that future research will assess the connection between

urban mobility and income mobility more thoroughly.
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A Data appendix

A.1 GPS data

The GPS data come from an unbalanced panel of GPS-enabled devices in 2019. Home and work

locations are identified by Replica based on heuristics for when individuals tend to be at home

versus work. Home location is generally the most common overnight location in a quarter, while

work locations is generally the most common non-home daytime location.13

To identify stays at different types of establishments, we use data from SafeGraph on the loca-

tions of various Points of Interest (POIs). The establishments data include the polygon describing

the establishment’s footprint. We use this polygon to identify when a device visits a given establish-

ments. For establishments located within a larger, parent location (e.g., a restaurant within a mall),

we assign the parent location rather than trying to disambiguate the individual establishment.

We categorize establishments according to their North American Industry Classification System

(NAICS) code. Restaurants are those with NAICs codes beginning with ‘722’. Retail locations are

those establishments with NAICS codes beginning with ‘44’ or ‘45’. Parks, while not establishments,

are identified in SafeGraph with a NAICS codes of ‘712190’. Entertainment locations are all non-

park POIs with a NAICS code beginning with ‘71’. Finally, religious organizations are those with

NAICS codes beginning with ‘8131’.

A.2 Building a sample of schools

The schools data comes from the National Center for Education Statistics (NCES). However, NCES

data only includes the school address, name, grades served, and enrollment. Moreover, the address

is often a PO box or simply the town center rather than the actual school location. To match

NCES schools to parcels, we first match each school to Safegraph data on schools using the school’s

name and location. The Safegraph data includes precise coordinates for each school as well as

polygons. Unfortunately, the Safegraph polygons—which are often automatically generated from

satellite imagery—are inaccurate for schools; for large schools with multiple building, the polygon
13We require devices to have at least 8 overnights and 5 days at work in the quarter to make the sample.
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will generally only include a single building. We instead match the Safegraph coordinates to

parcel-level data from LandGrid. These parcels come from local municipalities and provide more

accurate boundaries for school locations. In total, 82% of schools representing 88% of enrollment

are successfully matched to a parcel.

Figure A.1 plots the relationship between a school’s enrollment and the number of devices we

label as a student at that school – the two counts of students are highly correlated. Figure A.2

plots the percent of residents who are students in the GPS sample as well as the percent who are

in grades 9-12 in the 2019 5-year ACS. Students predominantly live in the less dense areas of the

city. The overall trend is true in both the ACS and GPS, although we consistently find fewer high

school (HS) students in the GPS data than in the ACS. This could be due to a number of factors,

including 1) many HS students are under 16 years old and 2) we cannot match all schools to parcel

polygons.

Figure A.1: NCES school enrollment & number of devices in sample
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Note: This figure plots the relationship between the enrollment of a school as reported by the NCES and the number of
devices labeled as a student of that school.

A.3 Sample quality

Figure A.3 plots the fraction of devices who live in each decile of tract characteristics – if sampling

were orthogonal to tract characteristics, 10% of devices would be sampled from each decile. Instead,
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Figure A.2: Percent of residents who are students by density
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Note: This figure plots the percent of residents who are students by within-CBSA home block group density. We
separately plot the percent student in the GPS sample as well as the percent in grades 9-12 in the 2019 5-year ACS.

we can see that devices are over-sampled from poorer, less white, less educated, and more dense

areas.

Figure A.4 plots the distribution of block group fraction white-alone (non-Hispanic). The

average block group of white devices is 78.5% white, while the average block group of non-white

devices is 21.0% white.

A.4 Sample Weights

GPS devices in our sample tend to be slightly over-sampled from poorer, less white, less educated,

and more dense areas (see Appendix Figure A.3). To address the uneven sampling of devices, we

re-weight home locations to match the distribution of the 2019 5-year ACS by using the following

sample weights

λiq =
Ng(iq)

Ñg(iq)

where Ng(iq) is the ACS population of a device’s home tract g and Ñg(iq) is the total number of

devices observed in tract g in quarter q. The average device weight is 20.2 (standard deviation of

12.9). We use these weights for all results.
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Figure A.3: Sampling of devices by block group characteristics
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Note: This figure plots the relationship between the enrollment of a school as reported by the NCES and the number of
devices labeled as a student of that school.

Figure A.4: Distribution of block group level fraction white
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Note: This figure plots a histogram of the number of the number of devices sampled from different bins of home block
group fraction white alone (non-Hispanic). The solid line represents the mean fraction white for each WD and NWD; the
dashed line is the median.
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B Additional results on the mobility of students & adults

B.1 Experienced isolation with continuous race

Our baseline measure of experienced isolation uses a binary measure of race—as in Athey et al.

(2020)—based on whether a device’s home block group is majority white non-Hispanic or not. We

also explore assigning devices a continuous measure of race using the percent of their home block

group that is white. Using this continuous measure of race, we can estimate experienced isolation

as

ÊI
C
a = 1

|Wa|
∑

i

∑
q∈Qi

ρiqλiqŜiq −
1

|NWa|
∑

i

∑
q∈Qi

(1− ρiq)λiqŜiq (B.1)

where ρiq is the continuous measure of race, |Wa| =
∑

i

∑
q∈Qi

λiqρiq, and |NWa| =
∑

i

∑
q∈Qi

λiq(1−

ρiq)

The results are in Table B1. Using this measure, students are 4.12% more isolated in aggregate

and 17.6% more isolated when outside of the home. However, the levels are dramatically different.

Experienced isolation with continuous race will be biased downwards relative to ‘true’ exposure

to diversity. Imagine a device whose true exposure to white individuals is 100%. When using a

continuous measure of race, each exposure to a white individual will not count as a fully segregated

exposure but instead will assume the device is exposed to the average percent white in the indi-

vidual’s home block group, making it look like the device has more diverse exposures than it does.

Similarly, a device whose true exposure is 0% white will have a positive estimated exposure.

Table B1: Experienced isolation using continuous measure of race

Panel a: experienced isolation Aggregate Student Adult

All 0.2134 0.2248 0.2123
Excluding time at home 0.1141 0.1370 0.1129
Excluding time in home tract 0.1060 0.1274 0.1050

Note: This table documents a few basic measures of experienced isolation using a continuous measure of race based on the
percent non-white in a device’s home block group
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B.2 Exposure to diversity and home block group race

Figure B.1 plots the relationship between percent white in a device’s home block group and the

device’s exposure to diversity. This figure is constructed in a similar manner to those in Figure 1,

by regressing exposure to diversity for a given device-quarter on whether the device is a student,

interacted with the percent of their home block group’s residents who are white (truncated to

nearest 10%). Recall that exposure to diversity uses WD and NWD, rather than true race; as such,

devices in racially mixed block groups still have exposure to diversity well below 50%.

Figure B.1: Exposure to diversity by home block group percent white

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Percent White-alone

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ex
po

su
re

 to
 d

iv
er

sit
y

Adults
Students

Note: This figure documents how exposure to diversity varies by the racial composition of a device’s home block group.
The figure is constructed by regressing exposure to diversity for a given device-quarter on whether the device is a
student, interacted with the percent of their home block group’s residents who are white (truncated to nearest 10%).
The shaded region represents a 95% confidence interval

B.3 Experienced isolation and school dissimilarity

Figure B.2 compares measures of segregation from GPS data at the MSA-level to the dissimilarity

indices from Logan et al. (2012, 2017) for the top 50 MSAs. The first measure is the experienced

isolation of students while at school, while the second is the dissimilarity of WD/NWD school

populations within a CBSA, intended to be analogous to the measure in Logan et al. Dissimilarity

is defined as the percentage of students in one group who would have to move to a different

school to achieve a racial balance representative of the MSA. The GPS measures and the Logan
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measure are positively correlated, which is encouraging, but there are also clear differences. These

differences are perhaps expected for a number of reasons: 1) the dissimilarity indices are based

on 2010 elementary school enrollment while the experienced isolation is based on 2019 high school

students; 2) the dissimilarity indices compare white students and either Black or Hispanic, while

we are comparing students from majority white and non-white neighborhoods; 3) our data will

include some teachers; 4) the dissimilarity indices are defined either for MSAs or PMSAs instead

of CBSAs, so the geographic match is imperfect (e.g., the results for Chicago are comparing the

Chicago PMSA and the Chicago-Joiliet-Naperville CBSA).

Figure B.2: GPS measures vs. elementary school dissimilarity
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Note: Figure B.2 compares MSA-level experienced isolation of students while at school and dissimilarity of school
populations of WD/NWD to the dissimilarity indices from Logan et al. (2012, 2017) . The dissimilarity indices are based
on 2010 elementary school enrollment from NCES. Correlation for EI is 0.55 and for dissimilarity is 0.56.

B.4 Experienced isolation and residential isolation

Figure B.3 plots the relationship between an CBSA’s experienced and residential isolation, splitting

experienced isolation by whether or not a device is within its home tract. The relationship is

plotted for both binary and continuous race and can help highlight the differences of each type

of race assignment. For binary race, the time at home is estimated to be extremely isolated—

generally far above residential isolation—because devices are spending the majority of their time

in a home parcel where all other devices have the same, binary race. Meanwhile, for continuous
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race, experienced isolation is approximately equal to residential isolation while in the home tract.

This is because experienced isolation with continuous race and residential are making a similar

underlying assumption – interactions in the home tract are (approximately) with the average race

of that location.14

For the majority of CBSAs, we estimate that experienced isolation is higher than residential

isolation. This is counter to the findings in Athey et al. (2020). We believe that the discrepancies

stem from differences in data construction. Athey et al. (2020) use raw GPS pings, which are

recorded each time an app on the device connects to GPS, while we use staypoints, which are

aggregations of pings into ‘stays’ in a given location. In Athey et al. (2020), a unit of ‘exposure’ to

a neighborhood is therefore at the ping level, while in our measure we weight by staypoint minutes

in a location.

The use of stays instead of pings leads to larger estimates of experienced isolation for two reasons,

both related to how time spent at home affects the aggregate measure. First, using pings puts less

weight on time spent at home. Devices are less likely to ping overnight while the holder is sleeping;

however, a staypoint is still formed from the evening to the morning. Athey et al. (2020) report

that 42.5% of pings are at home for the average device (their Table A3), while devices in our sample

are at home for 63.9% of minutes observed. Excluding night time stays, for example, substantially

reduces our measure of experienced isolation, although it remains higher than residential isolation

(Table 1).

The second reason is that exposure when using pings will include devices walking/driving

through the location, while staypoints include only those devices that stop for at least 5 minutes

in a location. This difference is particularly noticeable for residential locations – the experienced

isolation in Athey et al. (2020) of ‘at home’ pings is 0.672 (Table A9), which is lower than expected

given that, by definition, all devices who live in that geohash7 are assigned the same race. This low

number is likely due to devices who walk/drive through the location during the day, who are more

diverse than the residents. The assumption that the time people visit a location is independent
14The measures differ for two reasons: 1) with experienced isolation, race is measured at the block group rather

than tract level and 2) interactions in the home block group include outside visitors, although for residential tracts
the majority of interactions are with other residents.
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of their race is violated in the case of residences where night-time and day-time populations differ

substantially.

While the home-based assignment of race makes it difficult to compare experienced and residen-

tial isolation directly, we find that individuals experience far less isolation outside of the home tract

than they do within their home tract, as discussed in Athey et al. (2020). Experienced isolation

outside of the home tract is also substantially lower than residential isolation. Moreover, we do not

believe the home-based assignment affect the relative differences in either measure of isolation for

students and adults.

Figure B.3: Experienced vs. residential isolation

(a) Binary race
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(b) Continuous race
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Note: Each figure plots the relationship between experienced isolation and residential isolation at the MSA level.
Residential isolation is estimated to be consistent with the method of estimating experienced isolation; it uses either
binary block-group level race or continuous race.

B.5 Additional tables and figures
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Figure B.4: Mobility outcomes and density – other outcomes

(a) Exposure to diversity
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(c) Frac. days outside of city
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(d) Log # retail visits
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(e) Log # restaurant visits
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(f) Log # entertainment visits
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Note: This figure extends Figure 1 to additional mobility outcomes. To deal with zeros, we use an inverse hyperbolic sine
transformation rather than logarithm. We exclude controls for home tract income and fraction white in panels g) and h).
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Figure B.5: Mobility outcomes and density – no controls

(a) Frac. time at home
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(b) Frac. time at work/school
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(c) Log # unique locations
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(d) Frac. college grad of visited tracts
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(e) Exposure to diversity
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(f) Frac. time in neighborhood

1 2 3 4 5 6 7 8 9 10
Within-CBSA decile of population density

0.04

0.05

0.06

0.07

0.08

Fr
ac

. t
im

e 
in

 n
ei

gh
bo

rh
oo

d

Adults
Students

(g) Frac. days outside of city
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(h) Log # retail visits
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(i) Log # restaurant visits
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(j) Log # entertainment visits
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(k) Tract log median HH income
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(l) Tract frac. white alone
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Note: This figure replicates Figures 1 and B.4 without any controls for home characteristics, except home CBSA. This
figure also includes two other tract-level outcomes (without controls). To deal with zeros, we use an inverse hyperbolic
sine transformation rather than logarithm.
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Figure B.6: Experienced isolation by CBSA

(a) Aggregate

(b) Difference between students and adults

Note: These figures map aggregate experienced isolation and the difference between student and adult isolation for each of
the top 100 CBSAs.
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Table B2: Experienced and residential isolation for all MSAs

Experienced isolation Residential isolation

CBSA Aggregate Student Adult Aggregate

New York-Newark-Jersey City, NY-NJ-PA 0.644 0.750 0.641 0.717

Los Angeles-Long Beach-Anaheim, CA 0.648 0.744 0.646 0.692

Chicago-Naperville-Elgin, IL-IN-WI 0.673 0.763 0.670 0.691

Dallas-Fort Worth-Arlington, TX 0.662 0.750 0.658 0.600

Houston-The Woodlands-Sugar Land, TX 0.664 0.744 0.662 0.627

Washington-Arlington-Alexandria, DC-VA-MD-WV 0.650 0.753 0.647 0.625

Miami-Fort Lauderdale-Pompano Beach, FL 0.684 0.758 0.682 0.673

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.677 0.748 0.676 0.717

Atlanta-Sandy Springs-Alpharetta, GA 0.690 0.780 0.686 0.655

Boston-Cambridge-Newton, MA-NH 0.615 0.676 0.614 0.640

Phoenix-Mesa-Chandler, AZ 0.683 0.769 0.681 0.627

San Francisco-Oakland-Berkeley, CA 0.619 0.718 0.616 0.602

Riverside-San Bernardino-Ontario, CA 0.677 0.718 0.676 0.535

Detroit-Warren-Dearborn, MI 0.714 0.789 0.712 0.771

Seattle-Tacoma-Bellevue, WA 0.611 0.713 0.609 0.469

Minneapolis-St. Paul-Bloomington, MN-WI 0.623 0.706 0.620 0.590

San Diego-Chula Vista-Carlsbad, CA 0.641 0.728 0.639 0.610

Tampa-St. Petersburg-Clearwater, FL 0.661 0.733 0.658 0.588

Denver-Aurora-Lakewood, CO 0.649 0.750 0.646 0.614

St. Louis, MO-IL 0.700 0.775 0.698 0.725

Baltimore-Columbia-Towson, MD 0.672 0.738 0.670 0.661

Charlotte-Concord-Gastonia, NC-SC 0.667 0.724 0.665 0.625

Orlando-Kissimmee-Sanford, FL 0.655 0.717 0.653 0.603

San Antonio-New Braunfels, TX 0.681 0.711 0.680 0.533

Portland-Vancouver-Hillsboro, OR-WA 0.586 0.653 0.584 0.438

Pittsburgh, PA 0.615 0.687 0.614 0.604

Sacramento-Roseville-Folsom, CA 0.684 0.788 0.681 0.594

Cincinnati, OH-KY-IN 0.639 0.726 0.637 0.645

Las Vegas-Henderson-Paradise, NV 0.640 0.732 0.638 0.526

Kansas City, MO-KS 0.667 0.768 0.665 0.669

Austin-Round Rock-Georgetown, TX 0.623 0.718 0.619 0.537
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Columbus, OH 0.655 0.739 0.653 0.629

Cleveland-Elyria, OH 0.697 0.767 0.695 0.699

Indianapolis-Carmel-Anderson, IN 0.677 0.711 0.677 0.647

San Jose-Sunnyvale-Santa Clara, CA 0.616 0.705 0.613 0.496

Nashville-Davidson–Murfreesboro–Franklin, TN 0.640 0.738 0.637 0.594

Virginia Beach-Norfolk-Newport News, VA-NC 0.642 0.711 0.640 0.562

Providence-Warwick, RI-MA 0.637 0.677 0.632 0.656

Milwaukee-Waukesha, WI 0.722 0.774 0.720 0.782

Jacksonville, FL 0.661 0.751 0.659 0.585

Oklahoma City, OK 0.632 0.696 0.630 0.587

Memphis, TN-MS-AR 0.694 0.767 0.693 0.694

Raleigh-Cary, NC 0.619 0.643 0.618 0.540

Richmond, VA 0.672 0.741 0.670 0.627

New Orleans-Metairie, LA 0.647 0.716 0.645 0.663

Louisville/Jefferson County, KY-IN 0.627 0.650 0.627 0.654

Hartford-East Hartford-Middletown, CT 0.669 0.766 0.666 0.679

Salt Lake City, UT 0.606 0.697 0.605 0.540

Buffalo-Cheektowaga, NY 0.670 0.741 0.668 0.719

Rochester, NY 0.679 0.768 0.677 0.745

Grand Rapids-Kentwood, MI 0.622 0.716 0.619 0.548

Tucson, AZ 0.684 0.754 0.682 0.639

Tulsa, OK 0.660 0.746 0.658 0.616

Urban Honolulu, HI 0.597 0.687 0.595 0.663

Fresno, CA 0.675 0.720 0.672 0.565

Bridgeport-Stamford-Norwalk, CT 0.631 0.716 0.628 0.654

Worcester, MA-CT 0.599 0.655 0.598 0.511

Omaha-Council Bluffs, NE-IA 0.643 0.705 0.640 0.605

Albuquerque, NM 0.649 0.699 0.648 0.466

Greenville-Anderson, SC 0.618 0.671 0.617 0.513

Bakersfield, CA 0.719 0.787 0.716 0.671

Albany-Schenectady-Troy, NY 0.598 0.665 0.596 0.631

New Haven-Milford, CT 0.646 0.739 0.644 0.621

McAllen-Edinburg-Mission, TX 0.633 0.594 0.634 0.104

Baton Rouge, LA 0.660 0.676 0.659 0.612

Knoxville, TN 0.632 0.644 0.631 0.589
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Oxnard-Thousand Oaks-Ventura, CA 0.682 0.769 0.678 0.696

El Paso, TX 0.610 0.605 0.610 0.447

Allentown-Bethlehem-Easton, PA-NJ 0.654 0.723 0.652 0.648

Columbia, SC 0.688 0.767 0.684 0.598

North Port-Sarasota-Bradenton, FL 0.611 0.687 0.609 0.586

Dayton-Kettering, OH 0.704 0.756 0.702 0.748

Charleston-North Charleston, SC 0.608 0.686 0.606 0.535

Greensboro-High Point, NC 0.679 0.716 0.677 0.622

Stockton, CA 0.662 0.728 0.659 0.427

Cape Coral-Fort Myers, FL 0.666 0.742 0.664 0.529

Little Rock-North Little Rock-Conway, AR 0.662 0.734 0.661 0.663

Colorado Springs, CO 0.635 0.704 0.633 0.500

Boise City, ID 0.621 0.706 0.620 0.409

Akron, OH 0.637 0.715 0.635 0.571

Springfield, MA 0.689 0.764 0.687 0.665

Lakeland-Winter Haven, FL 0.630 0.689 0.629 0.472

Des Moines-West Des Moines, IA 0.559 0.672 0.555 0.518

Poughkeepsie-Newburgh-Middletown, NY 0.636 0.693 0.634 0.575

Winston-Salem, NC 0.685 0.732 0.683 0.642

Ogden-Clearfield, UT 0.558 0.610 0.556 0.476

Madison, WI 0.560 0.635 0.559 0.466

Deltona-Daytona Beach-Ormond Beach, FL 0.646 0.681 0.645 0.526

Toledo, OH 0.633 0.700 0.632 0.599

Wichita, KS 0.622 0.691 0.620 0.588

Durham-Chapel Hill, NC 0.631 0.617 0.632 0.580

Provo-Orem, UT 0.552 0.598 0.551 0.413

Syracuse, NY 0.643 0.666 0.642 0.643

Augusta-Richmond County, GA-SC 0.674 0.754 0.671 0.574

Jackson, MS 0.704 0.782 0.702 0.683

Palm Bay-Melbourne-Titusville, FL 0.626 0.678 0.624 0.436

Harrisburg-Carlisle, PA 0.655 0.719 0.654 0.653

Chattanooga, TN-GA 0.610 0.699 0.608 0.678

Scranton–Wilkes-Barre, PA 0.667 0.700 0.667 0.536

Spokane-Spokane Valley, WA 0.546 0.604 0.544 0.503
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